WorldWideScience

Sample records for underwent pet scans

  1. Brain PET scan

    Science.gov (United States)

    ... results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  2. Heart PET scan

    Science.gov (United States)

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  3. Lung PET scan

    Science.gov (United States)

    ... Chest PET scan; Lung positron emission tomography; PET - chest; PET - lung; PET - tumor imaging; ... Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, ...

  4. First PET scans in Estonia

    International Nuclear Information System (INIS)

    Nazarenko, Sergei

    2003-01-01

    First PET scans in Estonia were performed on 25th November 2002 in North Estonia Regional Hospital, Tallinn. Six patients with melanoma underwent scanning with FDG. This event was a result of thorough extensive preparations first started in 2000 during the European Association of Nuclear Medicine congress in Paris. During the congress first contacts were made with providers of mobile PET units. At the same time negotiations were begun with potential FDG suppliers. For the introduction of PET in Estonia mobile truckmounted scanning technology was chosen due to low level of initial investments. Of particular importance was also availability of maintenance personnel from the device providers. A significant prerequisite was potential availability of FDG from the neighbourhood - Finland and Sweden. The latter avoided the necessity for investments into local cyclotrons and local FDG production. For the first scanning experience the dedicated truckmounted PET-camera Accel, Siemens was brought by the International Hospital Group (IHG, Amersfoort, Netherlands). The device arrived by ferry from Stockholm to Tallinn harbour at 10 o'clock in the morning and left by ferry for Helsinki at 23 o'clock. The team-on-truck consisted of one technician for device operation, two drivers and two company representatives. North Estonia Regional Hospital provided three additional technicians for patient preparation and FDG injection, one nuclear medicine doctor and one specialist of biomedical engineering and medical physics. The FDG was provided by MAP Medical Technologies, Schering, Helsinki, Finland. The shipments were made by air. This was possible due to small distance between Tallinn and Helsinki of approximately 80 km due to the regular flight connections between the two cities. The FDG was shipped in two lots with a time interval of 4 hours. The patient selection was based on clinical and histopathology data. In all six patients the exam was justified for detailied staging and

  5. Functional imaging in differentiating bronchial masses: an initial experience with a combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan.

    Science.gov (United States)

    Kumar, Arvind; Jindal, Tarun; Dutta, Roman; Kumar, Rakesh

    2009-10-01

    To evaluate the role of combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in differentiating bronchial tumors observed in contrast enhanced computed tomography scan of chest. Prospective observational study. Place of study: All India Institute of Medical Sciences, New Delhi, India. 7 patients with bronchial mass detected in computed tomography scan of the chest were included in this study. All patients underwent (18)F-FDG PET-CT scan, (68)Ga DOTA-TOC PET-CT scan and fiberoptic bronchoscope guided biopsy followed by definitive surgical excision. The results of functional imaging studies were analyzed and the results are correlated with the final histopathology of the tumor. Histopathological examination of 7 bronchial masses revealed carcinoid tumors (2 typical, 1 atypical), inflammatory myofibroblastic tumor (1), mucoepidermoid carcinoma (1), hamartoma (1), and synovial cell sarcoma (1). The typical carcinoids had mild (18)F-FDG uptake and high (68)Ga DOTA-TOC uptake. Atypical carcinoid had moderate uptake of (18)F-FDG and high (68)Ga DOTA-TOC uptake. Inflammatory myofibroblastic tumor showed high uptake of (18)F-FDG and no uptake of (68)Ga DOTA-TOC. Mucoepidermoid carcinoma showed mild (18)F-FDG uptake and no (68)Ga DOTA-TOC uptake. Hamartoma showed no uptake on either scans. Synovial cell sarcoma showed moderate (18)F-FDG uptake and mild focal (68)Ga DOTA-TOC uptake. This initial experience with the combined use of (18)F-FDG and (68)Ga DOTA-TOC PET-CT scan reveals different uptake patterns in various bronchial tumors. Bronchoscopic biopsy will continue to be the gold standard; however, the interesting observations made in this study merits further evaluation of the utility of the combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in larger number of patients with bronchial masses.

  6. Model PET Scan Activity

    Science.gov (United States)

    Strunk, Amber; Gazdovich, Jennifer; Redouté, Oriane; Reverte, Juan Manuel; Shelley, Samantha; Todorova, Vesela

    2018-05-01

    This paper provides a brief introduction to antimatter and how it, along with other modern physics topics, is utilized in positron emission tomography (PET) scans. It further describes a hands-on activity for students to help them gain an understanding of how PET scans assist in detecting cancer. Modern physics topics provide an exciting way to introduce students to current applications of physics.

  7. A prospective study of the clinical impact of PET scanning in lung cancer patients

    International Nuclear Information System (INIS)

    Hicks, R.J.; Kalff, V.; Binns, D.S.; McManus, M.; Millward, M.; Ball, D.J.

    1998-01-01

    Full text: PET scanning using F-18 fluorodeoxyglucose (FDG), has been shown to very accurately stage patients with non-small cell lung cancer. At this Institute these patients are only sent for PET imaging where there remains any significant doubt as to their clinical staging or management after the completion of conventional screening test including CT scanning. This study examines how PET scan findings influenced the clinical management decisions in 45 consecutive patients (26 males, mean age 69±9 yrs: range 36-78 yrs). Referring doctors were asked to indicate reason for the PET scan, stage their patients on the basis of aU their current investigations, including CT scans, and to indicate their management plans prior to PET scanning. Follow-up of subsequent patient management at 2-4 weeks post PET scan was then obtained and compared to pre scan plans. Results:, PET was used to stage 27 patients, restage 8, plan radiotherapy in 4, post treatment follow-up in 3, assess solitary nodules in 2, and as a baseline for experimental therapy in 1. To date follow-up has shown that in 14 (31%) patients PET scanning found new distant abnormalities which caused planned radical surgery or radiotherapy to be changed to palliative treatment only. Following PET findings, which clarified equivocal findings on other imaging modalities 9 patients underwent curative lung surgery. This found localised disease only in the 5 who have had surgery to this time. Similarly 7 patients continued on to have radical radiotherapy. In 3 patients, original treatment protocols changed (smaller radiation portal, surgery after good response to radiotherapy, planned chemotherapy ceased). In 8(18%) patients PET scans did not alter planned therapy. 1 patient awaits follow-up. Conclusions: In carefully selected patients with lung cancer, PET scanning significantly affected management decisions in 82%. It was used not only to spare unnecessary treatment, but also to target treatment appropriate to

  8. Impact of 18F-FDG PET scan on the prevalence of benign thoracic lesions at surgical resection

    Directory of Open Access Journals (Sweden)

    Kamlesh Mohan

    2011-10-01

    Full Text Available OBJECTIVE: The main utility of 18-fluorodeoxyglucose positron emission tomography (FDG-PET lies in the staging of lung cancer. However, it can also be used to differentiate indeterminate pulmonary lesions, but its impact on the resection of benign lesions at surgery is unknown. The aim of this study was to compare the prevalence of benign lesions at thoracotomy carried out for suspected lung cancer, before and after the introduction of PET scanning in a large thoracic surgical centre. MATERIALS AND METHODS: We reviewed our prospectively recorded surgical database for all consecutive patients undergoing thoracotomy for suspected or proven lung cancer and compared the prevalence of benign lesions in 2 consecutive 2-year groups, before (group I and after (group II the introduction of FDG-PET scan respectively. RESULTS: Surgical resection was performed on 1233 patients during the study period. The prevalence of benign lesions at surgery in groups I and II was similar (44/626 and 41/607, both 7%, and also in group II between those who underwent FDG-PET scan and the remainder (21/301 and 20/306 respectively, both 7%. In group II, of the 21 patients with benign lesions, who underwent FDG-PET, 19 had a false positive scan (mean standardised uptake value 5.3 [range 2.6-12.7]. Of these, 13 and 4 patients respectively had non-diagnostic bronchoscopy and percutaneous transthoracic lung biopsy pre thoracotomy. There was no difference in the proportion of different benign lesions resected between group I and those with FDG-PET in group II. CONCLUSION: The introduction of FDG-PET scanning has not altered the proportion of patients undergoing thoracotomy for ultimately benign lesions, mainly due to the avidity for the isotope of some non-malignant lesions. Such false positive results need to be considered when patients with unconfirmed lung cancer are contemplated for surgical resection.

  9. Impact of 18F-FDG PET scan on the prevalence of benign thoracic lesions at surgical resection

    International Nuclear Information System (INIS)

    Mohan, Kamlesh; Ledson, Martin J.; Walshaw, Martin J.; McShane, James; Page, Richard; Irion, Klaus

    2011-01-01

    Objective: the main utility of 18-fluorodeoxyglucose positron emission tomography (FDG-PET) lies in the staging of lung cancer. However, it can also be used to differentiate indeterminate pulmonary lesions, but its impact on the resection of benign lesions at surgery is unknown. The aim of this study was to compare the prevalence of benign lesions at thoracotomy carried out for suspected lung cancer, before and after the introduction of PET scanning in a large thoracic surgical centre. Materials and methods: we reviewed our prospectively recorded surgical database for all consecutive patients undergoing thoracotomy for suspected or proven lung cancer and compared the prevalence of benign lesions in 2 consecutive 2-year groups, before (group I) and after (group II) the introduction of FDG-PET scan respectively. Results: Surgical resection was performed on 1233 patients during the study period. The prevalence of benign lesions at surgery in groups I and II was similar (44/626 and 41/607, both 7%), and also in group II between those who underwent FDG-PET scan and the remainder (21/301 and 20/306 respectively, both 7%). In group II, of the 21 patients with benign lesions, who underwent FDG-PET, 19 had a false positive scan (mean standardised uptake value 5.3 [range 2.6-12.7]). Of these, 13 and 4 patients respectively had non-diagnostic bronchoscopy and percutaneous transthoracic lung biopsy pre thoracotomy. There was no difference in the proportion of different benign lesions resected between group I and those with FDG-PET in group II. Conclusion: the introduction of FDG-PET scanning has not altered the proportion of patients undergoing thoracotomy for ultimately benign lesions, mainly due to the avidity for the isotope of some non-malignant lesions. Such false positive results need to be considered when patients with unconfirmed lung cancer are contemplated for surgical resection. (author)

  10. Impact of a second FDG PET scan before adjuvant therapy for the early detection of residual/relapsing tumours in high-risk patients with oral cavity cancer and pathological extracapsular spread

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chun-Ta; Huang, Shiang-Fu; Chen, I-How; Kang, Chung-Jan [Chang Gung Memorial Hospital and Chang Gung University, Department of Otorhinolaryngology, Head and Neck Surgery, Taoyuan (China); Chang Gung Memorial Hospital and Chang Gung University, Head and Neck Oncology Group, Taoyuan (China); Fan, Kang-Hsing; Lin, Chien-Yu [Chang Gung Memorial Hospital and Chang Gung University, Head and Neck Oncology Group, Taoyuan (China); Chang Gung Memorial Hospital and Chang Gung University, Department of Radiation Oncology, Taoyuan (China); Wang, Hung-Ming [Chang Gung Memorial Hospital and Chang Gung University, Head and Neck Oncology Group, Taoyuan (China); Chang Gung Memorial Hospital and Chang Gung University, Department of Medical Oncology, Taoyuan (China); Ng, Shu-Hang [Chang Gung Memorial Hospital and Chang Gung University, Head and Neck Oncology Group, Taoyuan (China); Chang Gung Memorial Hospital and Chang Gung University, Department of Diagnostic Radiology, Taoyuan (China); Hsueh, Chuen; Lee, Li-Yu [Chang Gung Memorial Hospital and Chang Gung University, Head and Neck Oncology Group, Taoyuan (China); Chang Gung Memorial Hospital and Chang Gung University, Department of Pathology, Taoyuan (China); Lin, Chih-Hung [Chang Gung Memorial Hospital and Chang Gung University, Head and Neck Oncology Group, Taoyuan (China); Chang Gung Memorial Hospital and Chang Gung University, Department of Plastic and Reconstructive Surgery, Taoyuan (China); Yen, Tzu-Chen [Chang Gung Memorial Hospital and Chang Gung University, Head and Neck Oncology Group, Taoyuan (China); Chang Gung Memorial Hospital and Chang Gung University, Department of Nuclear Medicine and Molecular Imaging Center, Taoyuan (China)

    2012-06-15

    Extracapsular spread (ECS) to the cervical lymph nodes is a major adverse prognostic factor in oral cavity squamous cell carcinoma (OSCC). We prospectively examined the value of FDG PET immediately before postoperative radiotherapy/concurrent chemoradiotherapy (pre-RT/CCRT PET) to detect residual/relapsing disease in the early postsurgical follow-up period in high-risk OSCC patients with ECS. We examined 183 high-risk OSCC patients with ECS who underwent preoperative FDG PET/CT for staging purposes. Of these patients, 29 underwent a second pre-RT/CCRT FDG PET/CT scan. The clinical utility of the second FDG PET/CT was examined using Kaplan-Meier curve analysis. Patients who underwent the second FDG PET/CT scan had baseline clinicopathological characteristics similar to those who did not undergo a second scan. Of the patients who underwent the second scan, seven (24 %) had unexpected, newly discovered lesions. Five eventually died of the disease, and two had no evidence of recurrence after a change in RT field and dose. In an event-based analysis at 2 months, rates of neck control (6/29 vs. 6/154, p = 0.001), distant metastases (3/29 vs. 4/154, p = 0.046), and disease-free survival (7/29 vs. 10/154, p = 0.003) were significantly higher in patients who received a second PET scan than in those who did not. The second pre-RT/CCRT PET scan was of particular benefit for detecting new lesions in OSCC patients with both ECS and lymph node standardized uptake value (SUV) of {>=}5.2 in the first PET scan. The present findings support the clinical value of pre-RT/CCRT FDG PET for defining treatment strategy in OSCC patients with both ECS and high nodal SUV, even when FDG PET had already been performed during the initial staging work-up. (orig.)

  11. Impact of {sup 18}F-FDG PET scan on the prevalence of benign thoracic lesions at surgical resection

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Kamlesh; Ledson, Martin J.; Walshaw, Martin J., E-mail: mwalshaw@doctors.org.u [Liverpool Heart and Chest Hospital (United Kingdom). Dept. of Respiratory Medicine; McShane, James [Liverpool Heart and Chest Hospital (United Kingdom). Dept. of Audit and Research; Page, Richard [Liverpool Heart and Chest Hospital (United Kingdom). Dept. of Thoracic Surgery; Irion, Klaus [Liverpool Heart and Chest Hospital (United Kingdom). Dept. of Radiology

    2011-09-15

    Objective: the main utility of 18-fluorodeoxyglucose positron emission tomography (FDG-PET) lies in the staging of lung cancer. However, it can also be used to differentiate indeterminate pulmonary lesions, but its impact on the resection of benign lesions at surgery is unknown. The aim of this study was to compare the prevalence of benign lesions at thoracotomy carried out for suspected lung cancer, before and after the introduction of PET scanning in a large thoracic surgical centre. Materials and methods: we reviewed our prospectively recorded surgical database for all consecutive patients undergoing thoracotomy for suspected or proven lung cancer and compared the prevalence of benign lesions in 2 consecutive 2-year groups, before (group I) and after (group II) the introduction of FDG-PET scan respectively. Results: Surgical resection was performed on 1233 patients during the study period. The prevalence of benign lesions at surgery in groups I and II was similar (44/626 and 41/607, both 7%), and also in group II between those who underwent FDG-PET scan and the remainder (21/301 and 20/306 respectively, both 7%). In group II, of the 21 patients with benign lesions, who underwent FDG-PET, 19 had a false positive scan (mean standardised uptake value 5.3 [range 2.6-12.7]). Of these, 13 and 4 patients respectively had non-diagnostic bronchoscopy and percutaneous transthoracic lung biopsy pre thoracotomy. There was no difference in the proportion of different benign lesions resected between group I and those with FDG-PET in group II. Conclusion: the introduction of FDG-PET scanning has not altered the proportion of patients undergoing thoracotomy for ultimately benign lesions, mainly due to the avidity for the isotope of some non-malignant lesions. Such false positive results need to be considered when patients with unconfirmed lung cancer are contemplated for surgical resection. (author)

  12. Derivation of the scan time requirement for maintaining a consistent PET image quality

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Jae Sung; Kim, Seok-Ki

    2015-01-01

    Objectives: the image quality of PET for larger patients is relatively poor, even though the injection dose is optimized considering the NECR characteristics of the PET scanner. This poor image quality is due to the lower level of maximum NECR that can be achieved in these large patients. The aim of this study was to optimize the PET scan time to obtain a consistent PET image quality regardless of the body size, based on the relationship between the patient specific NECR (pNECR) and body weight. Methods: eighty patients (M/F=53/27, body weight: 059 ± 1 kg) underwent whole-body FDG PET scans using a Philips GEMINI GS PET/CT scanner after an injection of 0.14 mCi/kg FDG. The relationship between the scatter fraction (SF) and body weight was determined by repeated Monte Carlo simulations using a NEMA scatter phantom, the size of which varied according to the relationship between the abdominal circumference and body weight. Using this information, the pNECR was calculated from the prompt and delayed PET sinograms to obtain the prediction equation of NECR vs. body weight. The time scaling factor (F TS ) for the scan duration was finally derived to make PET images with equivalent SNR levels. Results: the SF and NECR had the following nonlinear relationships with the body weight: SF=0.15 ⋅ body weight 0.3 and NECR = 421.36 (body weight) −0.84 . The equation derived for F TS was 0.01⋅ body weight + 0.2, which means that, for example, a 120-kg person should be scanned 1.8 times longer than a 70 kg person, or the scan time for a 40-kg person can be reduced by 30%. Conclusion: the equation of the relative time demand derived in this study will be useful for maintaining consistent PET image quality in clinics

  13. PET scanning in plastic and reconstructive surgery.

    Science.gov (United States)

    Liodaki, Eirini; Eirini, Liodaki; Liodakis, Emmanouil; Emmanouil, Liodakis; Papadopoulos, Othonas; Othonas, Papadopoulos; Machens, Hans-Günther; Hans-Günther, Machens; Papadopulos, Nikolaos A; Nikolaos, Papadopulos A

    2012-02-01

    In this report we highlight the use of PET scan in plastic and reconstructive surgery. PET scanning is a very important tool in plastic surgery oncology (melanoma, soft-tissue sarcomas and bone sarcomas, head and neck cancer, peripheral nerve sheath tumors of the extremities and breast cancer after breast esthetic surgery), as diagnosis, staging, treatment planning and follow-up of cancer patients is based on imaging. PET scanning seems also to be useful as a flap monitoring system as well as an infection's imaging tool, for example in the management of diabetic foot ulcer. PET also contributes to the understanding of pathophysiology of keloids which remain a therapeutic challenge.

  14. PET scanning in plastic and reconstructive surgery

    International Nuclear Information System (INIS)

    Eirini, L.; Emmanouil, L.; Othonas, P.; Hans-Guenther, M.; Nikolaos, P.A.

    2012-01-01

    In this report we highlight the use of position emission tomography (PET) scan in plastic and reconstructive surgery. PET scanning is a very important tool in plastic surgery oncology (melanoma, soft-tissue sarcomas and bone sarcomas, head and neck cancer, peripheral nerve sheath tumors of the extremities and breast cancer after breast esthetic surgery), as diagnosis, staging, treatment planning and follow-up of cancer patients is based on imaging. PET scanning seems also to be useful as a flap monitoring system as well as an infection's imaging tool, for example in the management of diabetic foot ulcer. PET also contributes to the understanding of pathophysiology of keloids which remain a therapeutic challenge. (author)

  15. Effectiveness of PET Scan in Postoperative Long Term Follow up of Patients with Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Atilla Pekcolaklar

    2012-01-01

    Full Text Available Aim: There is very few data about the use of positron emission tomography [PET] in the long term follow up of patients operated for lung cancer. We aimed to evaluate the effectiveness of PET scan in detecting distant metastases in the long term follow up of asymptomatic patients operated for non-small cell lung cancer [NSCLC]. Material and Method: PET scan was performed to sixty five asymptomatic patients. The patients who had a positive PET scan for metastasis underwent MRI and/or biopsy to verify metastasis. Result: : Mean age of the patients was 58.09 8.64 [44-82] years, and 57 [87.7 %] of them were male. Forty eight [73.8%] of the patients had epidermoid cell, 15 [23.1%] had adeno and 2 [%3.1] had large cell carcinoma. Postoperative stage of 1 [1.5%] patient was 1A, 14 [21.5%] of them were stage 1B, 1 [1.5%] of them was stage 2A, 27 [41.5%] of them were stage 2B and 22 [33.8%] of them were stage 3A. PET scan detected metastasis in 7 [10.8%] patients. In one patient PET scan was proven to be false positive. Sites of metastases in PET scan were lung in 3 [4.5%] patients, vertebra in 3 [4.6%] patients and tibia in 1 [1.5%] patient. In detecting distant metastases accuracy rate of PET was calculated as 98%, sensitivity was 100%, and specificity was 98%. Discussion: In asymptomatic patients with NSCLC, PET imaging appears to be useful as an alternative to conventional imaging to rule out unsuspected systemic disease in the postoperative long term follow up.

  16. Rare Case of Intratracheal Metastasis Detected on 68Ga-Prostate-Specific Membrane Antigen PET/CT Scan in a Case of Thyroglobulin Elevated Negative Iodine Scan Syndrome.

    Science.gov (United States)

    Sasikumar, Arun; Joy, Ajith; Pillai, M R A; Oommen, Karuna Elza; Jayakumar, R

    2018-04-01

    A 64-year-old woman underwent completion thyroidectomy with upper tracheal ring resection and right-sided neck dissection for papillary carcinoma of the thyroid infiltrating the trachea and was given I radioiodine treatment. Three years later, she presented with hemoptysis. On evaluation, she had increased serum thyroglobulin and negative iodine scan (TENIS). F-FDG PET/CT scan did not identify any site of disease. One year later, Ga-PSMA scan done revealed a moderate focal tracer-avid intratracheal soft tissue; biopsy revealed it to be metastatic papillary carcinoma of the thyroid. This case kindles the possibility of using Ga-PSMA PET/CT to reveal occult disease in cases of TENIS.

  17. Influence of PET/CT-introduction on PET scanning frequency and indications. Results of a multicenter study

    International Nuclear Information System (INIS)

    Stergar, H.; Bockisch, A.; Eschmann, S.M.; Krause, B.J.; Roedel, R.; Tiling, R.; Weckesser, M.

    2007-01-01

    Aim: to evaluate the influence of the introduction of combined PET/CT scanners into clinical routine. This investigation addresses the quantitative changes between PET/CT and stand alone PET. Methods: the study included all examinations performed on stand alone PET- or PET/CT-scanners within 12 month prior to and after implementation of PET/CT. The final data analysis included five university hospitals and a total number of 15 497 exams. We distinguished exams on stand alone tomographs prior to and after installation of the combined device as well as PET/CT scans particularly with regard to disease entities. Various further parameters were investigated. Results: the overall number of PET scans (PET and PET/CT) rose by 146% while the number of scans performed on stand alone scanners declined by 22%. Only one site registered an increase in stand alone PET. The number of exams for staging in oncology increased by 196% while that of cardiac scans decreased by 35% and the number of scans in neurology rose by 47%. The use of scans for radiotherapy planning increased to 7% of all PET/CT studies. The increase of procedures for so-called classic PET oncology indications was moderate compared to the more common tumors. An even greater increase was observed in some rare entities. Conclusions: the introduction of PET/CT led to more than a doubling of overall PET procedures with a main focus on oncology. Some of the observed changes in scanning frequency may be caused by a rising availability of new radiotracers and advancements of competing imaging methods. Nevertheless the evident increase in the use of PET/CT for the most common tumour types demonstrates its expanding role in cancer staging. The combination of molecular and morphologic imaging has not only found its place but is still gaining greater importance with new developments in technology and radiochemistry. (orig.)

  18. Recurrent surgical site infection of the spine diagnosed by dual 18F-NaF-bone PET/CT with early-phase scan

    International Nuclear Information System (INIS)

    Shim, Jai-Joon; Lee, Jeong Won; Jeon, Min Hyok; Lee, Sang Mi

    2016-01-01

    We report a case of a 31-year-old man who showed recurrently elevated level of the serum inflammatory marker C-reactive protein (CRP) after spinal operation. He underwent 18 F-flurodeoxyglucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) and dual 18 F-sodium-fluoride ( 18 F-NaF) PET/CT with an additional early-phase scan to find a hidden inflammation focus. Only mildly increased 18 F-FDG was found at the surgical site of T11 spine on 18 F-FDG PET/CT. In contrast, dual 18 F-NaF bone PET/CT with early-phase scan demonstrated focal active inflammation at the surgical site of T11 spine. After a revision operation of the T11 spine, serum CRP level decreased to the normal range without any symptom or sign of inflammation. Inflammatory focus in the surgical site of the spine can be detected with using dual 18 F-NaF bone PET/CT scan with early-phase scan. (orig.)

  19. The effect, identification and correction of misalignment between PET transmission and emission scans on brain PET imaging

    International Nuclear Information System (INIS)

    Zhang Xiangsong; He Zuoxiang; Tang Anwu; Qiao Suixian

    2004-01-01

    Objectives: To study the effect of misalignment between PET transmission and emission scans of brain on brain PET imaging, and the Methods to identify and correct it. Methods: 18F-FDG PET imaging was performed on 8 volunteers. The emission images were reconstructed with attenuation correction after some translations and rotations in the x-axis and transverse plane were given, 1 mm and 1 degree each step, respectively. The 3-D volume fusion of PET emission and transmission scans was used to identify the suspected misalignment on 10 18F-FDG PET brain imaging. Three Methods were used to correct the misalignment. First, to quantitate the amount of the misalignment by 3-D volume registration of PET emission and transmission scans, the emission images were reconstructed with corrected translations and rotations in x-direction and transverse plane. Second, the emission images were reconstructed with mathematic calculation of brain attenuation. Third, 18F-FDG PET brain imaging was redone with careful application of laser alignment. Results: The translations greater than 3 mm in x-direction and the rotations greater than 8 degrees in transverse plane could lead to visible artifacts, which were presented with decreasing radioactivity uptake in the cortex of half cerebrum and in the frontal cortex at the side in the translating or rotating direction, respectively. The 3-D volume fusion of PET emission and transmission scans could identify and quantitate the amount of misalignment between PET emission and transmission scans of brain. The PET emission images reconstructed with corrected misalignment and mathematic calculation of brain attenuation were consistent with redone PET brain imaging. Conclusions: The misalignment between PET transmission and emission scans of brain can lead to visible artifacts. The 3-D volume fusion of PET emission and transmission scans can identify and quantitate the amount of the misalignment. The visible artifacts caused by the misalignment can be

  20. Prospective evaluation of fluorodeoxyglucose positron emission tomography/computed tomography scan (FDG-PET/CT) for axillary staging in breast cancer

    International Nuclear Information System (INIS)

    Yamaguchi, Masahide; Noguchi, Akinori; Tani, Naoki

    2008-01-01

    Seventy-two patients from 2005 October to 2007 February with operative breast cancer underwent fluorodeoxyglucose positron emission tomography/computed tomography scan (FDG-PET/CT) of chest and body, ultrasound scan (US) and enhanced computed tomography scan (CT) followed by sentinel lymph node biopsy (SLNB) and axillary lymph node dissection (ALND). The results of PET/CT were compared with histopathological diagnosis of SLNB and ALND. Sensitivity, specificity and accuracy of PET/CT for detection of axillary lymph node metastases were 61%, 96% and 88%, respectively. Seven false-negative and two false-positive of PET/CT results were found. In patients with false-negative of PET/CT results there are two skin-invasive breast cancer patients and axillary lymph node metastases were detected in three patients with US, in one with CT and in four with SLNB. In clinical method for diagnosis of axillary lymph node metastases SLNB should be recommended because sensitivity of PET/CT for early breast cancer patients were low and positive diagnosis of axillary lymph node metastases with PET needs more than 1 cm size of lesion. PET/CT is useful for not-early breast cancer patients. To decide the operation of axillary lymph node disection needs total diagnosis of US, CT, SLNB and clinical findings. (author)

  1. Detection of Recurrent Cervical Cancer by Whole-body FDG PET Scans

    Institute of Scientific and Technical Information of China (English)

    Jiaxin Yang; Jinhui Wang; Zhaohui Zhu; Keng Shen; Bocheng Wang

    2008-01-01

    OBJECTIVE To evaluate the role of whole-body {18F} fluro-2-dexoxyglucose (FDG) positron emission tomography (PET) scans in the detection of recurrent cervical cancer.METHODS Between June, 2000 and January, 2006, 25 patients had undergone a PET scan at the Peking Union Medical College Hospital to evaluate possible recurrent cervical cancer. All the PET findings were reviewed and compared to available clinical data to classify each PET scan result as a true positive, true negative, false positive, or false negative.RESULTS A total of 38 PET scans were conducted on the 25patients whose median age was 46 years. The Stage distributions were IA (n = 1), IB (n = 11), IIA (n = 5), IIB (n = 4), IIIB (n = 2), WB (n= 1), and unknown Stage (n = 1). There were 22 cases of squamous cell carcinoma and 3 cases of adenocarcinoma resulting in 9 true positive PET scans, 27 true negatives, 2 false positives and no false negatives. The sensitivity of the FDG PET scans for detecting recurrent cervical cancer was 100%, specificity 93.1%, positive predictive value 81.8%, and negative predictive value 100%.CONCLUSION The whole body FDG PET scans are a sensitive and specific imaging modality for the detection of recurrent cervical cancer. However the cost of PET scans is too high at this time. A large prospective study will determine whether this modality should be used routinely and take the place of other imaging methods in the early detection of recurrent cervical carcinoma

  2. Clinical efficacy of FDG-PET scan as preoperative diagnostic tool in cervical cancer stage Ib and IIa: comparison between the results of FDG-PET scan and operative findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hoon

    1999-12-01

    This study was done to evaluate the clinical feasibility of FDG-PET scan for routine preoperative diagnostic methods in cervical carcinoma. PET-scans were performed from March, 1999 to November, 1999. There were 6 stage Ib and 7 IIa patients and all patients were performed radical hysterectomy and bilateral pelvic lymph node dissections and were evaluated by FDG-PET scan before operation. The mean age of the patients were 50.3 years old. Six cases had lymph node metastases by pelvis MRI, and three cases by FDG-PET scan. We could not find any lymph node metastases at surgery in 3 patients (50.0%) among 6 patients who were diagnosed by nodal metastases by pelvis MRI. And we found 1 patients with nodal metastases who had negative findings by pelvis MRI. By FDG-PET scan, we could find metastases in all positive patients. But we also found 2 additional metastatic cases in the patients with negative findings. In this study, the comparison was very difficult due to the individual differences in the comparison would be made by site-specific not person. The sensitivity of MRI and FDG-PET scan were 50.0% and 30.0%. The specificity were 94.1 % and 95.6%. The positive predictive value were 55.6 % and 50.0 %. In conclusion, we could find any superiority of FDG-PET scan in the diagnosis of lymph node metastases the pelvis MRI. So there are limitations to use the FDG-PET scan in the routine preoperative diagnostic tools in cervical cancer. But if we have more experiences to use the FDG-PET scan such as precise cut-off value of SUV and combination of other imaging technique, the FDG-PET scan are still promising diagnostic tools in cervical cancer.

  3. The clinical impact of PET scanning in patients with melanoma: A prospective study

    International Nuclear Information System (INIS)

    Kalff, V.; Hicks, R.J.; Binns, D.S.; Henderson, M.A.; Ainslie, J.; Jenner, D.A.

    1998-01-01

    Full text: Small series have shown that PET scanning using F-18 fluorodeoxyglucose (FDG), can quite accurately stage patients melanoma. At this Institute these patients are only sent for PET imaging if they have high risk melanomas ( >3 Clarke's grade primaries) or there remains any significant doubt as to their clinical staging or management after the completion of conventional screening. This prospective study examines how PET scan findings influenced the clinical management decisions in 53 patients (29 males, mean age 54±13 yrs: range 31-81 yrs) Referring doctors were asked to indicate reason for the PET scan, stage their patients on the basis of all their current investigations, and to indicate their management plans prior to PET scanning. Follow-up of subsequent patient management at 2-4 weeks post PET scan was then obtained and compared to pre PET plans. PET was used to stage 26 patients, restage 17, follow-up 5, assess recurrence in 3, and other in 2 patients. To date follow-up has shown that in 32/49 (65%) patients PET was used to triage patients to locoregional surgery (10 patients), radical radiotherapy (5 patients), or to continuing follow-up only (17 patients). Three further high risk patients with negative PET scans had sentinel mode biopsy. In only 13 patients was management already determined, with planned treatment being changed in 6. Four patients have not had their post PET scan review yet. To date proven false negative PET scans have occurred in 3 cases, 2 sentinel node biopsies showed microscopic disease, and one scan incorrectly labelled gall-bladder melanoma as hydro-nephrotic kidney. Interestingly in 3 cases, PET discovered other unsuspected tumours (rectum x 2, plasmacytoma). PET scanning has been incorporated into routine management to triage most high risk patients, but it still alters interventions in half of those patients where management has already been planned. PET clearly misses small volume disease, the importance of which is

  4. Automated calculation of myocardial external efficiency from a single 11C-acetate PET/CT scan

    DEFF Research Database (Denmark)

    Harms, Hans; Tolbod, Lars Poulsen; Hansson, Nils Henrik

    of this study was to develop and validate an automated method of calculating MEE from a single dynamic 11C-acetate PETscan. Methods: 21 subjects underwent a dynamic 27 min 11C-acetate PETscan on a Siemens Biograph TruePoint 64 PET/CTscanner. Using cluster analysis, the LV-aortic time-activity curve (TACLV......). Conclusion: Myocardial efficiencycanbe derived directly andautomatically froma single dynamic 11C-acetate PET scan. This eliminates the need for a separate CMR scan and eliminates any potential errors due to different loading conditions between CMR and PETscans.......Background: Dynamic PETwith 11C-acetate can be used to assess myocardial oxygen use which in turn is usedto calculate myocardial external efficiency (MEE), anearly marker of heart failure. MEE is defined as the ratio of total work (TW) and total energy use (TE). Calculation of TW and TE requires...

  5. Cerebral FDG-PET scanning abnormalities in optimally treated HIV patients

    DEFF Research Database (Denmark)

    Andersen, Ase B; Law, Ian; Krabbe, Karen S

    2010-01-01

    with no history of virological failure, a CD4 count above 200 x 106 cells/l and no other co-morbidities. The distribution of the regional cerebral metabolic rate of glucose metabolism was measured using fluorine-18-flourodeoxyglucose positron emission tomography (FDG-PET) scanning. The PET scans were evaluated...... in the relative metabolic rate of glucose. Compared to healthy subjects, the patients with abnormal FDG-PET scanning results had a shorter history of known HIV infection, fewer years on antiretroviral therapy and higher levels of circulating TNF alpha and IL-6 (p = 0.08). CONCLUSION: A large proportion...... of optimally treated HIV patients exhibit cerebral FDG-PET scanning abnormalities and elevated TNF alpha and IL-6 levels, which may indicate imminent neuronal damage. The neuroprotective effect of early ARV treatment should be considered in future prospective follow-up studies....

  6. Mycobacterial Infection of the Gallbladder Masquerading as Gallbladder Cancer with a False Positive Pet Scan

    Directory of Open Access Journals (Sweden)

    Adeeb Majid

    2013-01-01

    Full Text Available Isolated mycobacterial infection of gall bladder is an extremely rare entity. Only anecdotal reports are evident in the literature. A preoperative diagnosis of mycobacterial infection of gallbladder is therefore very difficult. The case of a 72-year-old male who underwent surgery for suspected gallbladder cancer is presented. The diagnosis of cancer was based on radiological findings and an abnormal uptake of fluorine-18-fluoro-2-deoxy-D-glucose (FDG on positron emission tomography (PET scan whilst being followed up for colorectal cancer. He underwent cholecystectomy and gallbladder bed resection. Histopathology was consistent with mycobacterial infection of the gallbladder.

  7. TH-E-BRF-10: Interim Esophageal Cancer Response Assessment Via 18FDG-PET Scanning During Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, K [Duke University Medical Physics Graduate Program, Durham, NC (United States); Wu, Q; Perez, B; Czito, B; Palta, M; Willett, C; Das, S [Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: Local failure occurs in a large proportion of esophageal cancer patients treated with chemoradiation. The treatment strategy for non-responders could potentially be modified if they are identified during therapy. This work investigates the utility of an interim 18FDG-PET scan acquired during the course of therapy as a predictor of pathological response post-therapy. Methods: Fifteen patients underwent 18FDG-PET scanning prior to radiation therapy (RT) and once during RT, after delivery of ∼32 Gy. The physician-contoured GTV on the planning CT scan was used to automatically segment a PET-based GTV on the pre-RT PET (GTV-pre-PET) as the volume with >40% of the maximum GTV PET SUV value. The pre- and intra-RT CTs were deformably registered to each other to transfer the GTV-pre-PET to the intra-RT PET (GTV-intra-PET). The fractional decrease in the maximum SUV, mean SUV and the SUV to the highest intensity 10% – 90% volumes from GTV-pre-PET to GTV-intra-PET were compared to pathological response assessed at the time of post-RT surgery. Results: Based on post-treatment pathology of 15 patients, 7 were classified as achieving favorable response (treatment effect grade ≤ 1) and 8 as unfavorable response (treatment effect grade > 1). Neither fractional decrease in maximum SUV nor mean SUV were significant between the favorable and unfavorable groups. However, the fractional decrease in SUV20% (SUV to the highest 20% volume) was significant (p = 0.02), with an area under the Receiver Operating Characteristics (ROC) curve of 0.84. An optimal cutoff value of 0.46 for this metric was able to distinguish between the two groups with 71% sensitivity (favorable) and 88% specificity (unfavorable). Conclusion: The fractional decrease in SUV to the volume with highest 20% intensity from pre- to intra-RT 18FDG-PET imaging may be used to distinguish between favorable and unfavorable responders with high sensitivity and specificity.

  8. TH-E-BRF-10: Interim Esophageal Cancer Response Assessment Via 18FDG-PET Scanning During Radiation Therapy

    International Nuclear Information System (INIS)

    Higgins, K; Wu, Q; Perez, B; Czito, B; Palta, M; Willett, C; Das, S

    2014-01-01

    Purpose: Local failure occurs in a large proportion of esophageal cancer patients treated with chemoradiation. The treatment strategy for non-responders could potentially be modified if they are identified during therapy. This work investigates the utility of an interim 18FDG-PET scan acquired during the course of therapy as a predictor of pathological response post-therapy. Methods: Fifteen patients underwent 18FDG-PET scanning prior to radiation therapy (RT) and once during RT, after delivery of ∼32 Gy. The physician-contoured GTV on the planning CT scan was used to automatically segment a PET-based GTV on the pre-RT PET (GTV-pre-PET) as the volume with >40% of the maximum GTV PET SUV value. The pre- and intra-RT CTs were deformably registered to each other to transfer the GTV-pre-PET to the intra-RT PET (GTV-intra-PET). The fractional decrease in the maximum SUV, mean SUV and the SUV to the highest intensity 10% – 90% volumes from GTV-pre-PET to GTV-intra-PET were compared to pathological response assessed at the time of post-RT surgery. Results: Based on post-treatment pathology of 15 patients, 7 were classified as achieving favorable response (treatment effect grade ≤ 1) and 8 as unfavorable response (treatment effect grade > 1). Neither fractional decrease in maximum SUV nor mean SUV were significant between the favorable and unfavorable groups. However, the fractional decrease in SUV20% (SUV to the highest 20% volume) was significant (p = 0.02), with an area under the Receiver Operating Characteristics (ROC) curve of 0.84. An optimal cutoff value of 0.46 for this metric was able to distinguish between the two groups with 71% sensitivity (favorable) and 88% specificity (unfavorable). Conclusion: The fractional decrease in SUV to the volume with highest 20% intensity from pre- to intra-RT 18FDG-PET imaging may be used to distinguish between favorable and unfavorable responders with high sensitivity and specificity

  9. Automatic extraction of forward stroke volume using dynamic PET/CT

    DEFF Research Database (Denmark)

    Harms, Hans; Tolbod, Lars Poulsen; Hansson, Nils Henrik

    Background: Dynamic PET can be used to extract forward stroke volume (FSV) by the indicator dilution principle. The technique employed can be automated and is in theory independent on the tracer used and may therefore be added to any dynamic cardiac PET protocol. The aim of this study...... was to validate automated methods for extracting FSV directly from dynamic PET studies for two different tracers and to examine potential scanner hardware bias. Methods: 21 subjects underwent a dynamic 27 min 11C-acetate PET scan on a Siemens Biograph TruePoint 64 PET/CT scanner (scanner I). In addition, 8...... subjects underwent a dynamic 6 min 15O-water PET scan followed by a 27 min 11C-acetate PET scan on a GE Discovery ST PET/CT scanner (scanner II). The LV-aortic time-activity curve (TAC) was extracted automatically from dynamic PET data using cluster analysis. The first-pass peak was isolated by automatic...

  10. Unusual soft tissue uptake of F-18 sodium fluoride in three patients undergoing F-18 NaF PET/CT bone scans for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, Andrew S.; Howard, Brandon A. [Div. of Nuclear Medicine, Dept. of Radiology, Duke University Medical Center, Durham (United States)

    2017-09-15

    Three males aged 71 to 80 years with known stage IV metastatic prostate cancer underwent F-18 sodium fluoride (NaF) PET/CT to assess osseous metastatic disease burden and stability. In addition to F-18 NaF avid known osseous metastases, each patient also exhibited increased F-18 NaF activity in soft tissues. The first patient exhibited multiple F-18 NaF avid enlarged retroperitoneal and pelvic lymph nodes on consecutive PET/CT scans. The second patient demonstrated an F-18 NaF avid thyroid nodule on consecutive PET/CT scans. The third patient exhibited increased F-18 NaF activity in a hepatic metastasis.

  11. A False Positive {sup 18}F-FDG PET/CT Scan Caused by Breast Silicone Injection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chao Jung; Lee, Bi Fang; Yao, Wei Jen; Wu, Pei Shan; Chen, Wen Chung; Peng, Shu Lin; Chiu, Nan Tsing [Cheng Kung University Medical College and Hospital, Tainan (Turkmenistan)

    2009-04-15

    We present here the case of a 40-year-old woman with a greater than 10 year prior history of bilateral breast silicone injection and saline bag implantation. Bilateral palpable breast nodules were observed, but the ultrasound scan was suboptimal and the magnetic resonance imaging showed no gadolinium enhanced tumor. The {sup 18}F-FDG PET/CT scan showed a hypermetabolic nodule in the left breast with a 30% increase of {sup 18}F-FDG uptake on the delayed imaging, and this mimicked breast cancer. She underwent a left partial mastectomy and the pathology demonstrated a siliconoma.

  12. Evaluating FDG uptake changes between pre and post therapy respiratory gated PET scans

    International Nuclear Information System (INIS)

    Aristophanous, Michalis; Yong, Yue; Yap, Jeffrey T.; Killoran, Joseph H.; Allen, Aaron M.; Berbeco, Ross I.; Chen, Aileen B.

    2012-01-01

    Purpose: Whole body (3D) and respiratory gated (4D) FDG-PET/CT scans performed pre-radiotherapy (pre-RT) and post-radiotherapy (post-RT) were analyzed to investigate the impact of 4D PET in evaluating 18F-fluorodeoxyglucose (FDG) uptake changes due to therapy, relative to traditional 3D PET. Methods and materials: 3D and 4D sequential FDG-PET/CT scans were acquired pre-RT and approximately one month post-RT for patients with non-small cell lung cancer (NSCLC). The lesions of high uptake targeted with radiotherapy were identified on the pre-RT scan of each patient. Each lesion on the 3D and each of the five phases of the 4D scan were analyzed using a region of interest (ROI). For each patient the ROIs of the pre-RT scans were used to locate the areas of initial FDG uptake on the post-RT scans following rigid registration. Post-RT ROIs were drawn and the FDG uptake was compared with that of the pre-RT scans. Results: Sixteen distinct lesions from 12 patients were identified and analyzed. Standardized uptake value (SUV) maxima were significantly higher (p-value <0.005) for the lesions as measured on the 4D compared to 3D PET. Comparison of serial pre and post-RT scans showed a mean 62% decrease in SUV with the 3D PET scan (range 36–89%), and a 67% decrease with the 4D PET scan (range 30–89%). The mean absolute difference in SUV change on 3D versus 4D scans was 4.9%, with a range 0–15% (p-value = 0.07). Conclusions: Signal recovery with 4D PET results in higher SUVs when compared to standard 3D PET. Consequently, differences in the evaluation of SUV changes between pre and post-RT plans were observed. Such difference can have a significant impact in PET-based response assessment.

  13. Extraction of left ventricular myocardial mass from dynamic 11C-acetate PET

    DEFF Research Database (Denmark)

    Harms, Hans; Tolbod, Lars Poulsen; Hansson, Nils Henrik

    Background: Dynamic 11C-acetate PET is used to quantify oxygen metabolism, which is used to calculate left ventricular (LV) myocardial efficiency, an early marker of heart failure. This requires estimation of LV myocardial mass and is typically derived from a separate cardiovascular magnetic...... resonance (CMR) scan. The aim of this study was to explore the feasibility of estimating myocardial mass directly from a dynamic 11C-acetate PET scan. Methods: 21 subjects underwent a 27-min 11C-acetate PET scan on a Siemens Biograph TruePoint 64 PET/CT scanner. In addition, 10 subjects underwent a dynamic...... 11C-acetate 27-min PET scan on a GE Discovery ST PET/CT scanner. Parametric images of uptake rate K1 and both arterial (VA) and venous (VV) spillover fractions were generated using a basis function implementation of the standard single tissue compartment model using non-gated dynamic data. The LV...

  14. Guidance for reading FDG PET scans in dementia patients

    International Nuclear Information System (INIS)

    Herholz, K.

    2014-01-01

    18F-2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) is a powerful method for detection of disease-related impairment of cerebral glucose metabolism in neuro degenerative diseases. It is of particular interest for early and differential diagnosis of dementia. Reading FDG PET scans requires training to recognise deviations from normal functional brain anatomy and its variations. This paper provides guidance for displaying FDG PET brain scans in a reproducible manner that allows reliable recognition of characteristic disease-related metabolic changes. It also describes typical findings in Alzheimer’s disease, Frontotemporal Dementia and Dementia with Lewy Bodies and possible confounding factors, such as vascular changes and brain atrophy. It provides a brief overview on findings in other neuro degenerative diseases and addresses the potential and limitations of software packages for comparison of individual scans with reference data.

  15. The impact of PET scanning on management of paediatric oncology patients

    International Nuclear Information System (INIS)

    Wegner, E.A.; Barrington, S.F.; O'Doherty, M.J.; Kingston, J.E.; Robinson, R.O.; Ferner, R.E.; Taj, M.; Smith, M.A.

    2005-01-01

    Limited information is available on the use of positron emission tomography (PET) in paediatric oncology. The aim of this study was to review the impact of PET on the management of paediatric patients scanned over a 10-year period. One hundred and sixty-five consecutive oncology patients aged 11 months to 17 years were included. Two hundred and thirty-seven scans were performed. Diagnoses included lymphoma (60 patients), central nervous system (CNS) tumour (59), sarcoma (19), plexiform neurofibroma with suspected malignant change (13) and other tumours (14). A questionnaire was sent to the referring clinician to determine whether the PET scan had altered management and whether overall the PET scan was thought to be helpful. One hundred and eighty-nine (80%) questionnaires for 126 patients were returned (63 relating to lymphoma, 62 to CNS tumours, 30 to sarcoma, 16 to plexiform neurofibroma and 18 to other tumours). PET changed disease management in 46 (24%) cases and was helpful in 141 (75%) cases. PET findings were verified by histology, clinical follow-up or other investigations in 141 cases (75%). The returned questionnaires indicated that PET had led to a management change in 20 (32%) lymphoma cases, nine (15%) CNS tumours, four (13%) sarcomas, nine (56%) plexiform neurofibromas and four (22%) cases of other tumours. PET was thought to be helpful in 47 (75%) lymphoma cases, 48 (77%) CNS tumours, 24 (80%) sarcomas, 11 (69%) neurofibromas and 11 (61%) cases of other tumours. PET findings were verified in 44 (70%) lymphoma cases, 53 (85%) CNS tumours, 21 (70%) sarcomas, 12 (75%) neurofibromas and 11 (61%) other tumour cases. PET imaging of children with cancer is accurate and practical. PET alters management and is deemed helpful (with or without management change) in a significant number of patients, and the results are comparable with the figures published for the adult oncology population. (orig.)

  16. Side-by-side reading of PET and CT scans in oncology: Which patients might profit from integrated PET/CT?

    International Nuclear Information System (INIS)

    Reinartz, Patrick; Wieres, Franz-Josef; Schneider, Wolfram; Schur, Alexander; Buell, Ulrich

    2004-01-01

    Most early publications on integrated positron emission tomography/computed tomography (PET/CT) devices have reported the new scanner generation to be superior to conventional PET. However, few of these studies have analysed the situation where, in addition to PET, a current CT scan is available for side-by-side viewing. This fact is important, because combined PET/CT or a software-based fusion of the two modalities may improve diagnosis only in cases where side-by-side reading of PET and CT data does not lead to a definitive diagnosis. The aim of this study was to analyse which patients will profit from integrated PET/CT in terms of lesion characterization. A total of 328 consecutively admitted patients referred for PET in whom a current CT scan was available were included in the study. The localization of all pathological PET lesions, as well as possible infiltration of adjacent anatomical structures, was assessed. Of 467 pathological lesions, 94.0% were correctly assessed with respect to localization and infiltration by either conventional PET alone (51.6%) or combined reading of PET and the already existing CT scans (42.4%). Hence, in only 6.0% of all lesions, affecting 6.7% of all patients, could evaluation have profited from integrated PET/CT. We conclude that side-by-side viewing of PET and CT scans is essential, as in 42.4% of all cases, combined viewing was important for a correct diagnosis in our series. In up to 6.7% of patients, integrated PET/CT might have given additional information, so that in nearly 50% of patients some form of combined viewing of PET and CT data is needed for accurate lesion characterization. (orig.)

  17. False positive and false negative FDG-PET scans in various thoracic diseases

    International Nuclear Information System (INIS)

    Chang, Jung Min; Lee, Hyun Ju; Goo, Jin Mo; Lee, Ho Young; Lee, Jong Jin; Chung, June Key; Im, Jung Gi

    2006-01-01

    Fluorodeoxygucose (FDG)-positron emission tomography (PET) is being used more and more to differentiate benign form malignant focal lesions and it has been shown to be more efficacious than conventional chest computed tomography (CT). However, FDG is not a cancer-specific agent, and false positive findings in benign diseases have been reported. Infectious diseases (mycobacterial, fungal, bacterial infection), sarcoidosis, radiation pneumonitis and post-operative surgical conditions have shown intense uptake on PET scan. On the other hand, tumors with low glycolytic activity such as adenomas, bronchioloalveolar carcinomas, carcinoid tumors, low grade lymphomas and small sized tumors have revealed false negative findings on PET scan, Furthermore, in diseases located near the physiologic uptake sites (heart, bladder, kidney, and liver), FDG-PET should be complemented with other imaging modalities to confirm results and to minimize false negative findings. Familiarity with these false positive and negative findings will help radiologists interpret PET scans more accurately and also will help to determine the significance of the findings. In this review, we illustrate false positive and negative findings of PET scan in a variety of diseases

  18. [Indications and instructions to patients for a positron emission tomography-PET scan. The importance of the hybridic PET/CT-computerised tomography scan and which specialty should be responsible for its function].

    Science.gov (United States)

    Grammaticos, Philip; Datseris, Ioannis; Gerali, Sofia; Papantoniou, Vassilios; Valsamaki, Pipitsa; Boundas, Dimitrios

    2007-01-01

    Indications and instructions to patients for performing a positron emission tomography - PET scan are mentioned. Although PET camera was developed in 1970 its clinical indications were established in about 1998. The hybridic PET/CT- computerized tomography scanner appeared in 2001 and its clinical indications are still under discussion. These discussions refer to both the use of PET/CT as an acquisition correction and anatomic localization device for PET images (AC/A) and to its use as a diagnostic CT scan (dCT). Most of the patients submitted for a PET scan have already done a dCT scan. This was the case in 286 out of the first 300 patients referred to "Evangelismos" hospital in Athens for a PET scan. These two scans can be matched electronically. Extra cost, space, personnel and radiation absorption dose especially in children, are additional factors to be considered in using the PET/CT scanner. The specialty of Nuclear Medicine is now based on the PET camera, its best part and main equipment for molecular imaging. It is very much easier and faster for a Nuclear Medicine physician who routinely reports tomographic PET and SPET images, to be familiar with the CT images than for a Radiologist to get to "know how" about the PET camera and the whole Nuclear Medicine Department. Nuclear Medicine is about open radiation sources, molecular imaging, specific radio-pharmacology, radiobiology, radiation protection etc, while on the other hand in some countries, Nuclear Physicians have already spent, as part of their official training, six months in a Radiology Department whose function is considered to be at least 25% about the CT scanner. We come to the conclusion that the PET/CT scanner should be under the responsibility of the Nuclear Medicine Department and the Radiologist should act as an advisor.

  19. The Utility and indication of FDG-PET scan in patients with cervical cancer: experience in patients with no evidence of recurrence with conventional radiologic examination and tumor markers

    International Nuclear Information System (INIS)

    Kim, Jong Hoon

    2000-12-01

    The purpose of this study was to investigate the clinical feasibility of FDG-PET(Positron Emission Tomography) scan in patients with clinically no evidence of disease after treatment of cervical cancer. One hundred and one patients with clinically NED(no evidence of disease) state after treatment of cervical cancer underwent PET scan. FDG-PET scan was obtained with a GE Advance Scanner, beginning at 50 minutes after injection of 370-555 MBq(10-15 mCi) of 18F FDG. Regional scan was also obtained with emission image. Uptake exceeding 3.0 SUV was determined as a positive finding. Recurrence was confirmed by CT, MRI, and needle biopsy if possible. Among 101 patients showing no evidence of disease, 17 patients(16.8%) showed abnormal PET scan findings. Clinically, 8 patients(7.9%) were confirmed to have recurrent lesion by CT, MRI or by needle biopsy. PET scan could detect recurrent lesions in the mediastinum or lung(10/17), pelvis(7/17), and supraclavicular lymph node(2/17). The sensitivity and specificity of PET scan in patients with cervical cancer showing no evidence of disease were 100% and 90.3%, respectively. The positive predictive value, negative predictive value and false positive rate were 47.1%, 100% and 52.9%. PET scan could detect 7.9% of early recurrence in patients with cervical cancer with NED status. FDG-PET scan may be a useful method in detecting metastases or recurrence of a cervical cancer showing no evidence of disease by routine conventional imaging studies

  20. Pharmacokinetic Analysis of 64Cu-ATSM Dynamic PET in Human Xenograft Tumors in Mice

    DEFF Research Database (Denmark)

    Li, Fan; Jørgensen, Jesper Tranekjær; Madsen, Jacob

    2015-01-01

    The aim of this study was to evaluate the feasibility to perform voxel-wise kinetic modeling on datasets obtained from tumor-bearing mice that underwent dynamic PET scans with 64Cu-ATSM and extract useful physiological parameters.METHODS: Tumor-bearing mice underwent 90-min dynamic PET scans...... relevant parameters from voxel-wise pharmacokinetic analysis to be used for preclinical validation of 64Cu-ATSM as a hypoxia-specific PET tracer....

  1. F-18 FDG PET scan findings in patients with pulmonary involvement in the hypereosinophilic syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hoon; Kim, Tae Hoon; Yun, Mi Jin [College of Medicine, Yonsei University, Seoul (Korea, Republic of)] (and others)

    2005-08-15

    Hypereosinophilic syndrome (HES) is an infiltrative disease of eosinophils affecting multiple organs including the lung. F-18 2-fluoro-2-deoxyglucose (F-18 FDG) may accumulate at sites of inflammation or infection, making interpretation of whole body PET scan difficult in patients with cancer. This study was to evaluate the PET findings of HES with lung involvement and to find out differential PET features between lung malignancy and HES with lung involvement. F-18 FDG PET and low dose chest CT scan was performed for screening of lung cancer. Eight patients who showed ground-glass attenuation (GGA) and consolidation on chest CT scan with peripheral blood eosinophilia were included in this study. The patients with history of parasite infection, allergy and collagen vascular disease were excluded. CT features and FDG PET findings were meticulously evaluated for the distribution of GGA and consolidation and nodules on CT scan and mean and maximal SUV of abnormalities depicted on F-18 FDG PET scan. In eight patients, follow-up chest CT scan and FDG PET scan were done one or two weeks after initial study. F-18 FDG PET scan identified metabolically active lesions in seven out of eight patients. Maximal SUV was ranged from 2.8 to 10.6 and mean SUV was ranged from 2.2 to 7.2. Remaining one patient had maximal SUV of 1.3. On follow-up FDG PET scan taken on from one to four weeks later showed decreased degree of initially noted FDG uptakes or migration of previously noted abnormal FDG uptakes. Lung involvement in the HES might be identified as abnormal uptake foci on FDG PET scan mimicking lung cancer. Follow-up FDG PET and CT scan for the identification of migration or resolution of abnormalities and decrement of SUV would be of help for the differentiation between lung cancer and HES with lung involvement.

  2. F-18 FDG PET scan findings in patients with pulmonary involvement in the hypereosinophilic syndrome

    International Nuclear Information System (INIS)

    Lee, Jae Hoon; Kim, Tae Hoon; Yun, Mi Jin

    2005-01-01

    Hypereosinophilic syndrome (HES) is an infiltrative disease of eosinophils affecting multiple organs including the lung. F-18 2-fluoro-2-deoxyglucose (F-18 FDG) may accumulate at sites of inflammation or infection, making interpretation of whole body PET scan difficult in patients with cancer. This study was to evaluate the PET findings of HES with lung involvement and to find out differential PET features between lung malignancy and HES with lung involvement. F-18 FDG PET and low dose chest CT scan was performed for screening of lung cancer. Eight patients who showed ground-glass attenuation (GGA) and consolidation on chest CT scan with peripheral blood eosinophilia were included in this study. The patients with history of parasite infection, allergy and collagen vascular disease were excluded. CT features and FDG PET findings were meticulously evaluated for the distribution of GGA and consolidation and nodules on CT scan and mean and maximal SUV of abnormalities depicted on F-18 FDG PET scan. In eight patients, follow-up chest CT scan and FDG PET scan were done one or two weeks after initial study. F-18 FDG PET scan identified metabolically active lesions in seven out of eight patients. Maximal SUV was ranged from 2.8 to 10.6 and mean SUV was ranged from 2.2 to 7.2. Remaining one patient had maximal SUV of 1.3. On follow-up FDG PET scan taken on from one to four weeks later showed decreased degree of initially noted FDG uptakes or migration of previously noted abnormal FDG uptakes. Lung involvement in the HES might be identified as abnormal uptake foci on FDG PET scan mimicking lung cancer. Follow-up FDG PET and CT scan for the identification of migration or resolution of abnormalities and decrement of SUV would be of help for the differentiation between lung cancer and HES with lung involvement

  3. Clinical efficacy of FDG-PET scan in the patients with primary or recurrent gynecologic malignancies: clinical experiences with FDG-PET scan in cervical carcinoma of uterus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hoon

    1998-12-01

    This study was done to evaluate the clinical feasibility of FDG-PET scan in patients with cervical carcinoma. PET-scans were performed in 74 patients with cervical carcinoma from March, 1998 to September, 1998. Fourteen cases were done at pretreatment period and sixty cases were done at post-treatment follow up period. In this study, the scans were obtained after bladder emptying by foley catheter insertion and diuretics to reduce the tracer activity in the bladder and improve the images of central lesions. We could find some incidental recurrent or metastatic lesions by FDG-PET scan (at pretreatment; 5 cases, at post-treatment; clinically no evidence of disease; 8 cases). FDG-PET scan had high sensitivity (100%) for central lesions and metastatic lymph nodes of cervical cancer but could not precisely define the anatomic location of the cancer and the sensitivity was not superior than MRI. Earlier detection of metastatic lymph nodes was superior than CT/MRI (sensitivity; 100 %) for metastatic lymph nodes. Also we found 3 double primary cancers incidentally (2 lung cancers and 1 thyroid cancer). In conclusion, FDG-FET scan might be useful for the earlier of hidden lesions that cannot be detected by routine conventional methods and differential diagnosis with radiation fibrosis and benign lymph adenophy.

  4. Technical considerations on scanning and image analysis for amyloid PET in dementia

    International Nuclear Information System (INIS)

    Akamatsu, Go; Ohnishi, Akihito; Aita, Kazuki; Ikari, Yasuhiko; Senda, Michio; Yamamoto, Yasuji

    2017-01-01

    Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice. (author)

  5. Technical Considerations on Scanning and Image Analysis for Amyloid PET in Dementia.

    Science.gov (United States)

    Akamatsu, Go; Ohnishi, Akihito; Aita, Kazuki; Ikari, Yasuhiko; Yamamoto, Yasuji; Senda, Michio

    2017-01-01

    Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice.

  6. The significance of incidental focal colonic 18FDG uptake on PET scanning

    International Nuclear Information System (INIS)

    Bartholomeusz, Dylan; Schultz, Christopher

    2009-01-01

    Full text: The incidental discovery of colonic polyps, colonic malignancy, diverticulitis and inflammation during PET scanning is well described. This study is a retrospective review of the incidence and follow up of incidental focal FOG uptake in the colon detected during routine PET scanning. PET scan reports over 12 months were reviewed for the reporting of incidental colonic uptake and then clinical follow up performed in available patient records for the incidence of further colonic investigation and results. In 2008, 1985 PET scans were reported at the Royal Adelaide Hospital for the staging and detection of malignancy. Review of the results show that incidental focal colonic uptake was seen in 27 cases, (II female aged 56-83 years). Follow up colonoscopy was performed in 8 cases and in 4 cases showed tubulovillous adenomas, 7-9 mm in size, in the region of abnormal FOG uptake, I had divetticulae and another focal inflammation. Two colonoscopies revealed no abnormality (25% false negative rate). One patient with Head and Neck cancer did not have colonoscopy but the colonic lesion resolved on a post therapy PET scan. Of the 18 cases that did not have colonoscopic follow up 5 were reported on the PET scan to have diffuse probably physiological caecal activity but 13 had focal lesions in the large bowel. Although incidental colonic lesions were detected in only 1.3% of studies, of those having colonoscopy 75 % had significant findings.

  7. Statistical image reconstruction methods for simultaneous emission/transmission PET scans

    International Nuclear Information System (INIS)

    Erdogan, H.; Fessler, J.A.

    1996-01-01

    Transmission scans are necessary for estimating the attenuation correction factors (ACFs) to yield quantitatively accurate PET emission images. To reduce the total scan time, post-injection transmission scans have been proposed in which one can simultaneously acquire emission and transmission data using rod sources and sinogram windowing. However, since the post-injection transmission scans are corrupted by emission coincidences, accurate correction for attenuation becomes more challenging. Conventional methods (emission subtraction) for ACF computation from post-injection scans are suboptimal and require relatively long scan times. We introduce statistical methods based on penalized-likelihood objectives to compute ACFs and then use them to reconstruct lower noise PET emission images from simultaneous transmission/emission scans. Simulations show the efficacy of the proposed methods. These methods improve image quality and SNR of the estimates as compared to conventional methods

  8. Case report: PET/CT, a cautionary tale

    International Nuclear Information System (INIS)

    Wang, Jayson; Cook, Gary; Frank, John; Dina, Roberto; Livni, Naomi; Lynn, John; Fleming, William; Seckl, Michael J

    2007-01-01

    The use of combined positron emission tomography/computerised tomography (PET/CT) scanners in oncology has been shown to improve the staging of tumours and the detection of relapses. However, mis-registration errors are increasingly recognised to be a common pitfall of PET/CT studies. We report a patient with a germ cell tumour of the testis, who underwent a PET/CT scan to detect the site of relapse with a view to surgical removal. However, the PET/CT scan mislocalised the tumour site to be within the T2 vertebral body. A subsequent endoscopic ultrasound scan however showed the tumour to be anterior to the vertebral body, which was confirmed at surgery. In this report, we highlight the artefactual mislocalisation errors which may occur with PET/CT imaging, and the need to review and verify these scans

  9. Automatic extraction of forward stroke volume using dynamic PET/CT

    DEFF Research Database (Denmark)

    Harms, Hans; Tolbod, Lars Poulsen; Hansson, Nils Henrik Stubkjær

    2015-01-01

    Background The aim of this study was to develop and validate an automated method for extracting forward stroke volume (FSV) using indicator dilution theory directly from dynamic positron emission tomography (PET) studies for two different tracers and scanners. Methods 35 subjects underwent...... a dynamic 11 C-acetate PET scan on a Siemens Biograph TruePoint-64 PET/CT (scanner I). In addition, 10 subjects underwent both dynamic 15 O-water PET and 11 C-acetate PET scans on a GE Discovery-ST PET/CT (scanner II). The left ventricular (LV)-aortic time-activity curve (TAC) was extracted automatically...... from PET data using cluster analysis. The first-pass peak was isolated by automatic extrapolation of the downslope of the TAC. FSV was calculated as the injected dose divided by the product of heart rate and the area under the curve of the first-pass peak. Gold standard FSV was measured using phase...

  10. Prospective evaluation of 68Ga-DOTANOC PET-CT in differentiated thyroid cancer patients with raised thyroglobulin and negative 131I-whole body scan: comparison with 18F-FDG PET-CT

    International Nuclear Information System (INIS)

    Kundu, Parveen; Lata, Sneh; Sharma, Punit; Singh, Harmandeep; Malhotra, Arun; Bal, Chandrasekhar

    2014-01-01

    The purpose of the study was to evaluate the role of 68 Ga-DOTANOC PET-CT in differentiated thyroid cancer (DTC) patients with negative 131 I-whole body scan (WBS) along with serially increasing serum thyroglobulin (Tg), and compare the same with 18 F-FDG PET-CT. Sixty two DTC patients with serially rising Tg levels and negative 131 I-WBS were prospectively enrolled. All patients underwent 68 Ga-DOTANOC PET-CT and 18 F-FDG PET-CT within an interval of two weeks. PET-CT analysis was done on a per-patient basis, location wise and lesion wise. All PET-CT lesions were divided into four categories-local, nodal, pulmonary and skeletal. Histopathology and/or serial serum Tg level, clinical and imaging follow up (minimum-1 year) were used as a reference standard. Ga-DOTANOC PET-CT demonstrated disease in 40/62 (65 %) patients and 18 F-FDG PET-CT in 45/62 (72 %) patients, with no significant difference on McNemar analysis (p = 0.226). Per-patient sensitivity and specificity of 68 Ga-DOTANOC PET-CT was 78.4 %, 100 %, and for 18 F-FDG PET-CT was 86.3 %, 90.9 %, respectively. Out of 186 lesions detected by both PET-CTs, 121/186 (65 %) lesions were seen on 68 Ga-DOTANOC PET-CT and 168/186 (90.3 %) lesions on 18 F-FDG PET-CT (p 68 Ga-DOTANOC PET-CT and 18 F-FDG PET-CT for detection of local disease (k = 0.92), while moderate agreement was noted for nodal and pulmonary disease (k = 0.67). 68 Ga-DOTANOC PET-CT changed management in 21/62 (34 %) patients and 18 F-FDG PET-CT in 17/62 (27 %) patients. Ga-DOTANOC PET-CT is inferior to 18 F-FDG PET-CT on lesion based but not on patient based analysis for detection of recurrent/residual disease in DTC patients with negative WBS scan and elevated serum Tg levels. It can also help in selection of potential candidates for peptide receptor radionuclide therapy. (orig.)

  11. Clinical application of early PET-CT imaging after radiofrequency ablation of liver neoplasms

    International Nuclear Information System (INIS)

    Liu Zhaoyu; Chang Zhihui; Lu Zaiming; Xin Jun; Wang Xiaoming; Guo Qiyong

    2009-01-01

    Objective: To evaluate the application of early 18 F-FDG PET-CT imaging after radiofrequency ablation (RFA) of hepatic malignancies. Methods: Fifteen patients with liver tumors (five hepatocellular carcinoma, ten colorectal cancer liver metastasis) underwent RFA as part of clinical management. The lesions were all hypermetabolic on PET-CT performed within 2 weeks prior to RFA. All subjects underwent 18 F-FDG PET-CT (early PET-CT) within 24 hours after RFA. Total photopenia, focal uptake, and rim-shaped uptake were regarded as complete ablation, residual tumor, and inflammation, respectively. Follow-up PET-CT scans were performed as the reference standard. Results: Twelve patients showed total photopenia at the ablation site on the early PET-CT scan, and in all of these patients, total photopenia at the ablation sites was seen on the follow-up PET-CT scans. Two patients had focal uptake at the ablation sites on the early PET-CT scan, and both of these foci increased in size and intensity, which were compatible with residual tumors at the time of ablation. Only one patient had rim-shaped uptake on the early PET-CT scan. The rim-shaped uptake disappeared on PET-CT performed 3 months later, which indicated the nature of inflammation. Conclusions: There is infrequent inflammatory uptake at the RFA site of liver tumors on 18 F-FDG PET-CT if scanning is performed within 24 hours after ablation. Thus, early PET- CT has the potential to evaluate the efficacy of an RFA procedure by indicating tumor-free as total photopenia and residual tumors as focal uptake. (authors)

  12. Metal artifact reduction of CT scans to improve PET/CT

    NARCIS (Netherlands)

    Van Der Vos, Charlotte S.; Arens, Anne I.J.; Hamill, James J.; Hofmann, Christian; Panin, Vladimir Y.; Meeuwis, Antoi P.W.; Visser, Eric P.; De Geus-Oei, Lioe Fee

    2017-01-01

    In recent years, different metal artifact reduction methods have been developed for CT. These methods have only recently been introduced for PET/CT even though they could be beneficial for interpretation, segmentation, and quantification of the PET/CT images. In this study, phantom and patient scans

  13. Metal Artifact Reduction of CT Scans to Improve PET/CT

    NARCIS (Netherlands)

    Vos, C.S. van der; Arens, A.I.J.; Hamill, J.J.; Hofmann, C.; Panin, V.Y.; Meeuwis, A.P.W.; Visser, E.P.; Geus-Oei, L.F. de

    2017-01-01

    In recent years, different metal artifact reduction methods have been developed for CT. These methods have only recently been introduced for PET/CT even though they could be beneficial for interpretation, segmentation, and quantification of the PET/CT images. In this study, phantom and patient scans

  14. Feasibility of F-18-FDG PET/CT scan in abdominopelvic regions

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi

    2008-01-01

    F-18-2-Fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET)/CT scan, which simultaneously provides metabolic function and morphology on the same tomographic section, is being the key imaging modality for diagnosis and treatment strategy of makignancies in various organs. FDG PET/CT scanning of the whole body beneficially allows the assessment of primary tumor and regional lymph nodes, and distant metastases and co-existed benign/other malignant lesions, as ''one stop shopping'' fashion. This technique contributes to the selection of the optimal treatment in individual patients, and also can predict histopathologic response to treatment and postoperative/post chemo-radiation therapeutic prognosis. In this paper, we describe the fundamental knowledge required for accurate interpretation of FDG PET/CT scan, and review the utility of this technique for diagnosis and treatment strategy of makignancies in abdominal and pelvic regions. (author)

  15. Evaluation of attenuation correction in cardiac PET using PET/MR.

    Science.gov (United States)

    Lau, Jeffrey M C; Laforest, R; Sotoudeh, H; Nie, X; Sharma, S; McConathy, J; Novak, E; Priatna, A; Gropler, R J; Woodard, P K

    2017-06-01

    Simultaneous acquisition Positron emission tomography/magnetic resonance (PET/MR) is a new technology that has potential as a tool both in research and clinical diagnosis. However, cardiac PET acquisition has not yet been validated using MR imaging for attenuation correction (AC). The goal of this study is to evaluate the feasibility of PET imaging using a standard 2-point Dixon volume interpolated breathhold examination (VIBE) MR sequence for AC. Evaluation was performed in both phantom and patient data. A chest phantom containing heart, lungs, and a lesion insert was scanned by both PET/MR and PET/CT. In addition, 30 patients underwent whole-body 18 F-fluorodeoxyglucose PET/CT followed by simultaneous cardiac PET/MR. Phantom study showed 3% reduction of activity values in the myocardium due to the non-inclusion of the phased array coil in the AC. In patient scans, average standardized uptake values (SUVs) obtained by PET/CT and PET/MR showed no significant difference (n = 30, 4.6 ± 3.5 vs 4.7 ± 2.8, P = 0.47). There was excellent per patient correlation between the values acquired by PET/CT and PET/MR (R 2  = 0.97). Myocardial SUVs PET imaging using MR for AC shows excellent correlation with myocardial SUVs obtained by standard PET/CT imaging. The 2-point Dixon VIBE MR technique can be used for AC in simultaneous PET/MR data acquisition.

  16. Selected PET radiomic features remain the same.

    Science.gov (United States)

    Tsujikawa, Tetsuya; Tsuyoshi, Hideaki; Kanno, Masafumi; Yamada, Shizuka; Kobayashi, Masato; Narita, Norihiko; Kimura, Hirohiko; Fujieda, Shigeharu; Yoshida, Yoshio; Okazawa, Hidehiko

    2018-04-17

    We investigated whether PET radiomic features are affected by differences in the scanner, scan protocol, and lesion location using 18 F-FDG PET/CT and PET/MR scans. SUV, TMR, skewness, kurtosis, entropy, and homogeneity strongly correlated between PET/CT and PET/MR images. SUVs were significantly higher on PET/MR 0-2 min and PET/MR 0-10 min than on PET/CT in gynecological cancer ( p = 0.008 and 0.008, respectively), whereas no significant difference was observed between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images in oral cavity/oropharyngeal cancer. TMRs on PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min increased in this order in gynecological cancer and oral cavity/oropharyngeal cancer. In contrast to conventional and histogram indices, 4 textural features (entropy, homogeneity, SRE, and LRE) were not significantly different between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images. 18 F-FDG PET radiomic features strongly correlated between PET/CT and PET/MR images. Dixon-based attenuation correction on PET/MR images underestimated tumor tracer uptake more significantly in oral cavity/oropharyngeal cancer than in gynecological cancer. 18 F-FDG PET textural features were affected less by differences in the scanner and scan protocol than conventional and histogram features, possibly due to the resampling process using a medium bin width. Eight patients with gynecological cancer and 7 with oral cavity/oropharyngeal cancer underwent a whole-body 18 F-FDG PET/CT scan and regional PET/MR scan in one day. PET/MR scans were performed for 10 minutes in the list mode, and PET/CT and 0-2 min and 0-10 min PET/MR images were reconstructed. The standardized uptake value (SUV), tumor-to-muscle SUV ratio (TMR), skewness, kurtosis, entropy, homogeneity, short-run emphasis (SRE), and long-run emphasis (LRE) were compared between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images.

  17. The history of cerebral PET scanning: from physiology to cutting-edge technology.

    Science.gov (United States)

    Portnow, Leah H; Vaillancourt, David E; Okun, Michael S

    2013-03-05

    To review the discoveries underpinning the introduction of cerebral PET scanning and highlight its modern applications. Important discoveries in neurophysiology, brain metabolism, and radiotracer development in the post-World War II period provided the necessary infrastructure for the first cerebral PET scan. A complete review of the literature was undertaken to search for primary and secondary sources on the history of PET imaging. Searches were performed in PubMed, Google Scholar, and select individual journal Web sites. Written autobiographies were obtained through the Society for Neuroscience Web site at www.sfn.org. A reference book on the history of radiology, Naked to the Bone, was reviewed to corroborate facts and to locate references. The references listed in all the articles and books obtained were reviewed. The neurophysiologic sciences required to build cerebral PET imaging date back to 1878. The last 60 years have produced an evolution of technological advancements in brain metabolism and radiotracer development. These advancements facilitated the development of modern cerebral PET imaging. Several key scientists were involved in critical discoveries and among them were Angelo Mosso, Charles Roy, Charles Sherrington, John Fulton, Seymour Kety, Louis Sokoloff, David E. Kuhl, Gordon L. Brownell, Michael Ter-Pogossian, Michael Phelps, and Edward Hoffman. Neurophysiology, metabolism, and radiotracer development in the postwar era synergized the development of the technology necessary for cerebral PET scanning. Continued use of PET in clinical trials and current developments in PET-CT/MRI hybrids has led to advancement in diagnosis, management, and treatment of neurologic disorders.

  18. 18FDG PET scanning of benign and malignant musculoskeletal lesions

    International Nuclear Information System (INIS)

    Feldman, Frieda; Heertum, Ronald van; Manos, Chitra

    2003-01-01

    To describe the technique, applications and advantages of 18 FDG PET scanning in detection, analysis and management of musculoskeletal lesions.Design and patients Forty-five patients (19 males,26 females) aged 9 to 81 years had radiographs, routine radionuclide scans, CT and/or MRI of clinically suspected active benign or malignant musculoskeletal lesions. 18 FDG scans with a Siemens ECAT EXACT 921 dedicated PET unit (Knoxville, Tenn.) and FWH=6 mm images acquired as a 5-6 bed examination (6 min emission and 4 min transmission) used OSEM iterative reconstruction with segmented transmission attenuation correction and a Gaussian filter (cutoff 6.7 mm). Region of interest (ROI) 3 x 3 pixel image analysis based on transverse whole body images (slice thickness 3.37 mm) generated Maximum Standard Uptake Values (Max SUV) with a cutoff of 2.0 used to distinguish benign and malignant lesions. Thirty-nine studies were available for SUV ROI analysis. Overall sensitivity for differentiating malignant from benign osseous and non-osseous lesions was 91.7% (22/24), overall specificity was 100% (11/11) with an accuracy of 91.7%. All aggressive lesions had a Max SUV >2.0. Data separating benign from malignant lesions and aggressive from benign lesions were statistically significant (P 18 FDG PET contributes unique information regarding metabolism of musculoskeletal lesions. By supplying a physiologic basis for more informed treatment and management, it influences prognosis and survival. Moreover, since residual, recurrent or metastatic tumors can be simultaneously documented on a single whole body scan, PET may theoretically prove to be cost-effective. (orig.)

  19. Forced diuresis and dual-phase 18F-fluorodeoxyglucose-PET/CT scan for restaging of urinary bladder cancers

    International Nuclear Information System (INIS)

    Harkirat, S; Anand, SS; Jacob, MJ

    2010-01-01

    The results of 18 F-fluorodeoxyglucose (FDG)-PET imaging carried out with the current standard techniques for assessment of urinary tract cancers have been reported to be less than satisfactory because of the urinary excretion of the tracer. To investigate the role of dual-phase FDG-PET/CT in the restaging of invasive cancers of the urinary bladder, with delayed imaging after forced diuresis and oral hydration as the scanning protocol. FDG-PET has been considered to be of limited value for the detection of urinary tract cancers because of interference by the FDG excreted in urine. We investigated the efficacy of delayed FDG-PET/CT in the restaging of invasive bladder cancer, with imaging performed after intravenous (IV) administration of a potent diuretic and oral hydration. Twenty-nine patients with invasive cancer of the urinary bladder were included in this study. Patients were divided into two groups: Group I (22 patients) included cases with invasive bladder cancer who had not undergone cystectomy and group II (seven patients) included cases with invasive bladder cancer who had undergone cystectomy and urinary diversion procedure. All patients underwent FDG-PET/CT scan from the skull base to the mid-thighs 60 min after IV injection of 370 mega-Becquerel (MBq) of FDG. Additional delayed images were acquired 60-90 min after IV furosemide and oral hydration. PET/CT data were analyzed as PET and CT images studied separately as well as fused PET/CT images and the findings were recorded. The imaging findings were confirmed by cystoscopy, biopsy or follow-up PET/CT. The technique was successful in achieving adequate washout of urinary FDG and overcame the problems posed by the excess FDG in the urinary tract. Hypermetabolic lesions could be easily detected by PET and precisely localized to the bladder wall, perivesical region and pelvic lymph nodes. PET/CT delayed images were able to demonstrate 16 intravesical lesions (in 13 patients), with excellent clarity. Lymph

  20. Forced diuresis and dual-phase 18F-fluorodeoxyglucose-PET/CT scan for restaging of urinary bladder cancers

    Directory of Open Access Journals (Sweden)

    Harkirat S

    2010-01-01

    Full Text Available Context: The results of 18 F-fluorodeoxyglucose (FDG-PET imaging carried out with the current standard techniques for assessment of urinary tract cancers have been reported to be less than satisfactory because of the urinary excretion of the tracer. Aims: To investigate the role of dual-phase FDG-PET/CT in the restaging of invasive cancers of the urinary bladder, with delayed imaging after forced diuresis and oral hydration as the scanning protocol. Settings and Design: FDG-PET has been considered to be of limited value for the detection of urinary tract cancers because of interference by the FDG excreted in urine. We investigated the efficacy of delayed FDG-PET/CT in the restaging of invasive bladder cancer, with imaging performed after intravenous (IV administration of a potent diuretic and oral hydration. Materials and Methods: Twenty-nine patients with invasive cancer of the urinary bladder were included in this study. Patients were divided into two groups: Group I (22 patients included cases with invasive bladder cancer who had not undergone cystectomy and group II (seven patients included cases with invasive bladder cancer who had undergone cystectomy and urinary diversion procedure. All patients underwent FDG-PET/CT scan from the skull base to the mid-thighs 60 min after IV injection of 370 mega-Becquerel (MBq of FDG. Additional delayed images were acquired 60-90 min after IV furosemide and oral hydration. PET/CT data were analyzed as PET and CT images studied separately as well as fused PET/CT images and the findings were recorded. The imaging findings were confirmed by cystoscopy, biopsy or follow-up PET/CT. Results: The technique was successful in achieving adequate washout of urinary FDG and overcame the problems posed by the excess FDG in the urinary tract. Hypermetabolic lesions could be easily detected by PET and precisely localized to the bladder wall, perivesical region and pelvic lymph nodes. PET/CT delayed images were able to

  1. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT.

    Science.gov (United States)

    Hanna, Gerard G; McAleese, Jonathan; Carson, Kathryn J; Stewart, David P; Cosgrove, Vivian P; Eakin, Ruth L; Zatari, Ashraf; Lynch, Tom; Jarritt, Peter H; Young, V A Linda; O'Sullivan, Joe M; Hounsell, Alan R

    2010-05-01

    Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non-small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTV on the CT scan alone and then on the PET-CT scan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. PET-CT improved the CI between observers when defining the GTV using the PET-CT images compared with using CT alone for matched cases (median CI, 0.57 for CT and 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTV(CT) to GTV(FUSED) was -5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.

  2. 18F-FDG PET-CT Simulation for Non-Small-Cell Lung Cancer: Effect in Patients Already Staged by PET-CT

    International Nuclear Information System (INIS)

    Hanna, Gerard G.; McAleese, Jonathan; Carson, Kathryn J.; Stewart, David P.; Cosgrove, Vivian P.; Eakin, Ruth L.; Zatari, Ashraf; Lynch, Tom; Jarritt, Peter H.; Young, V.A. Linda D.C.R.; O'Sullivan, Joe M.

    2010-01-01

    Purpose: Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non-small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. Methods and Materials: A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTV on the CT scan alone and then on the PET-CT scan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. Results: PET-CT improved the CI between observers when defining the GTV using the PET-CT images compared with using CT alone for matched cases (median CI, 0.57 for CT and 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTV CT to GTV FUSED was -5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). Conclusion: PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.

  3. Comparison between FDG Uptake and Clinicopathologic and Immunohistochemical Parameters in Pre-operative PET/CT Scan of Primary Gastric Carcinoma

    International Nuclear Information System (INIS)

    Han, Eun Ji; Choi, Woo Hee; Chung, Yong An; Kim, Ki Jun; Maeng, Lee So; Sohn, Kyung Myung; Jung, Hyun Suk; Sohn, Hyung Sun; Chung, Soo Kyo

    2009-01-01

    The purpose of this study was to find out what clinicopathologic or immunohistochemical parameter that may affect FDG uptake of primary tumor in PET/CT scan of the gastric carcinoma patient. Eighty-nine patients with stomach cancer who underwent pre-operative FDG PET/CT scans were included. In cases with perceptible FDG uptake in primary tumor, the maximum standardized uptake value (SUVmax) was calculated. The clinicopathologic results such as depth of invasion (T stage), tumor size, lymph node metastasis, tumor differentiation and Lauren's classification and immunohistochemical markers such as Ki-67 index, expression of p53, EGFR, Cathepsin D, c-erb-B2 and COX-2 were reviewed. Nineteen out of 89 gastric carcinomas showed imperceptible FDG uptake on PET/CT images. In cases with perceptible FDG uptake in primary tumor, SUVmax was significantly higher in T2, T3 and T4 tumors than T1 tumors (5.8±3.1 vs. 3.7±2.1, p=0.002). SUVmax of large tumors (above or equal to 3 cm) was also significantly higher than SUVmax of small ones (less than 3 cm) (5.7±3.2 vs. 3.7±2.0, p=0.002). The intestinal types of gastric carcinomas according to Lauren showed higher FDG uptake compared to the non-intestinal types (5.4±2.8 vs. 3.7±1.3, p=0.003). SUVmax between p53 positive group and negative group was significantly different (6.0±2.8 vs. 4.4±3.0, p=0.035). No significant difference was found in presence of LN metastasis, tumor differentiation, Ki-67 index, and expression of EGFR, Cathepsin D, c-erb-B2 and COX-2. T stage of gastric carcinoma influenced the detectability of gastric cancer on FDG PET/CT scan. When gastric carcinoma was perceptible on PET/CT scan, T stage, size of primary tumor, Lauren's classification and p53 expression were related to degree of FDG uptake in primary tumor

  4. Comparison between FDG Uptake and Pathologic or Immunohistochemical Parametersin Pre-operative PET/CT Scan of Patient with Primary Colorectal Cancer

    International Nuclear Information System (INIS)

    Na, Sae Jung; Chung, Yong An; Maeng, Lee So; Kim, Ki Jun; Sohn, Kyung Myung; Kim, Sung Hoon; Sohn, Hyung Sun; Chung, Soo Kyo

    2009-01-01

    To evaluate the relationship between F-18 FDG uptake of tumor in PET/CT scan and pathological or immunohistochemial parameters of colorectal cancer. 147 colorectal cancer patients who underwent both pre-operative F-18 FDG PET/CT scan and surgery were included. In cases with perceptible FDG uptake in primary tumor, the maximum standardized uptake value (SUVmax) was calculated. The pathologic results such as site, size, depth of invasion (T stage), growth pattern, differentiation of primary tumor, lymph node metastasis and Dukes-Astler and Coller stage and immunohistochemical markers such as expression of EGFR, MLH1, MSH2 and Ki-67 index were reviewed. 146 out of 147 PET/CT scans with colorectal cancer showed perceptible focal FDG uptake. SUVmax showed mild positive linear correlation with size of primary tumor (r=0.277, p=0.001) and Ki-67 index (r=0.226, p=0.019). No significant difference in F-18 FDG uptake was found according to site, depth of invasion (T stage), growth pattern, differentiation of primary tumor, presence of lymph node metastasis, Dukes-Astler and Coller stage and expression of EGFR. The degree of F-18 FDG uptake in colorectal cancer was associated with the size and the degree of Ki-67 index of primary tumor. It could be thought that FDG uptake of primary tumor has a correlation with macroscopic and microscopic tumor growth

  5. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT

    International Nuclear Information System (INIS)

    Wiesmueller, Marco; Schmidt, Daniela; Beck, Michael; Kuwert, Torsten; Gall, Carl C. von; Quick, Harald H.; Navalpakkam, Bharath; Lell, Michael M.; Uder, Michael; Ritt, Philipp

    2013-01-01

    PET/MR hybrid scanners have recently been introduced, but not yet validated. The aim of this study was to compare the PET components of a PET/CT hybrid system and of a simultaneous whole-body PET/MR hybrid system with regard to reproducibility of lesion detection and quantitation of tracer uptake. A total of 46 patients underwent a whole-body PET/CT scan 1 h after injection and an average of 88 min later a second scan using a hybrid PET/MR system. The radioactive tracers used were 18 F-deoxyglucose (FDG), 18 F-ethylcholine (FEC) and 68 Ga-DOTATATE (Ga-DOTATATE). The PET images from PET/CT (PET CT ) and from PET/MR (PET MR ) were analysed for tracer-positive lesions. Regional tracer uptake in these foci was quantified using volumes of interest, and maximal and average standardized uptake values (SUV max and SUV avg , respectively) were calculated. Of the 46 patients, 43 were eligible for comparison and statistical analysis. All lesions except one identified by PET CT were identified by PET MR (99.2 %). In 38 patients (88.4 %), the same number of foci were identified by PET CT and by PET MR . In four patients, more lesions were identified by PET MR than by PET CT , in one patient PET CT revealed an additional focus compared to PET MR . The mean SUV max and SUV avg of all lesions determined by PET MR were by 21 % and 11 % lower, respectively, than the values determined by PET CT (p CT and PET MR were minor, but statistically significant. Nevertheless, a more detailed study of the quantitative accuracy of PET MR and the factors governing it is needed to ultimately assess its accuracy in measuring tissue tracer concentrations. (orig.)

  6. The impact of time between staging PET/CT and definitive chemo-radiation on target volumes and survival in patients with non-small cell lung cancer

    International Nuclear Information System (INIS)

    Everitt, Sarah; Plumridge, Nikki; Herschtal, Alan; Bressel, Mathias; Ball, David; Callahan, Jason; Kron, Tomas; Schneider-Kolsky, Michal; Binns, David; Hicks, Rodney J.

    2013-01-01

    Background and purpose: To investigate the impact of treatment delays on radiation therapy (RT) target volumes and overall survival (OS) in patients with non-small cell lung cancer (NSCLC) who underwent two baseline FDG PET/CT scans. Material and methods: Patients underwent a staging (PET1) and RT planning (PET2) FDG PET/CT scan. At PET1 all patients were eligible for radical chemo-RT. OS and progression-free survival (PFS) were compared for patients remaining eligible for radical RT and those treated palliatively because PET2 showed progression. RT target volumes were contoured using PET1 and PET2. Normal tissue doses were compared for patients remaining eligible for radical RT. Results: Eighty-two patients underwent PET2 scans between October 2004 and February 2007. Of these, 21 had a prior PET1 scan, median 23 days apart (range 8–176 days). Six patients (29%) were unsuitable for radical RT after PET2; five received palliative treatment and one received no treatment. Patients treated palliatively had significantly worse OS and PFS than patients treated radically p < 0.001. Mean RT tumour volume increased from 105cc to 198cc (p < 0.005) between scans. Conclusions: Disease progression while awaiting initiation of curative RT in NSCLC is associated with larger treatment volumes and worse survival

  7. Comparison of F-18 FDG PET and I-131 whole body scan in diagnosis of suspicious metastatic thyroid carcinoma

    International Nuclear Information System (INIS)

    Seok, Ju Won; Chung, June Key

    2005-01-01

    There are several reports about the usefulness of F-18 FDG PET in thyroid cancer. The aim of this study was to evaluate the effectiveness of F-18 FDG PET and I-131 whole body scan in suspicious metastatic thyroid cancer. There were 46 patients (11 men, 35 women; age range, 18-74yr; mean age, 47.3yr) with suspicious metastatic thyroid cancer after total thyroidectomy who performed FDG PET and I-131 scan. The interval of FDG PET and I-131 scan was within 6 months. An overall clinical evaluation was performed including cytology, thyroglobulin level, sonography, MRI and CT. Metastatic regions were divided into four areas: neck, mediastinum, lung and bone. Among 46 patients, the number of patients, metastatic lesions were detected, totaled 36 (78.3%). Twenty-nine patients (63.0%) were detected by FDG PET and 18 patients (39.1%) were detected by I-131 scan. Twenty-one patients were detected in neck by two methods. Nineteen patients (90.5%) were detected by FDG PET and 7 patients (33.3%) were detected by I-131 scan. Eighteen patients were detected in mediastinum by two methods. Ten patients (55.5%) were detected by FDG PET and 10 patients (55.5%) were detected by I-131 scan. Ten patients were detected in lung by two methods. Nine patients (90.0%) were detected by FDG PET and 3 patients (30.0%) were detected by I-131 scan. Three patients were detected in bone by two methods. Three patients (100%) were detected by FDG PET and 0 patients (0%) were detected by I-131 scan. These data indicate that for detecting metastatic lesions, F-18 FDG PET and I-131 whole body scan may provide complementary information. Thus, the combination of FDG PET and I-131 scan is the method of choice for detecting suspicious metastatic thyroid cancer after total thyroidectomy

  8. The diagnostic value of PET/CT scanning in patients with cervical cancer

    DEFF Research Database (Denmark)

    Loft, Annika; Berthelsen, Anne Kiil; Roed, Henrik

    2007-01-01

    OBJECTIVE: To investigate the clinical value of PET/CT as a supplement to FIGO staging in patients with cervical cancer stage >or=1B. METHODS: This prospective study included 120 consecutive patients. After staging, a whole-body PET/CT scan was performed and these examinations were divided into two....../CT scanning for newly diagnosed cervical cancer FIGO stage >or=1B has a high sensitivity and specificity, and can be a valuable supplement to the FIGO staging procedure....

  9. Role of -FDG PET Scan in Rheumatoid Lung Nodule: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Christine L. Chhakchhuak

    2013-01-01

    Full Text Available Flourine-18 fluoro-2-deoxy-glucose (18F-FDG positron emission tomography combined with computed tomography (PET/CT is a useful test for the management of malignant conditions. Inflammatory and infectious processes, however, can cause increased uptake on PET scanning, often causing diagnostic dilemmas. This knowledge is important to the rheumatologist not only because of the inflammatory conditions we treat but also because certain rheumatic diseases impose an increased risk of malignancy either due to the disease itself or as a consequence of medications used to treat the rheumatic diseases. There is an increasing body of evidence investigating the role of PET scans in inflammatory conditions. This paper describes a patient with rheumatoid arthritis who developed pulmonary nodules that showed increased uptake on PET/CT scan and reviews the use of PET scanning in the diagnosis and management of rheumatoid arthritis.

  10. Clinical Utility of 4D FDG-PET/CT Scans in Radiation Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Aristophanous, Michalis, E-mail: maristophanous@lroc.harvard.edu [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center and Harvard Medical School, Boston, MA (United States); Berbeco, Ross I.; Killoran, Joseph H. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center and Harvard Medical School, Boston, MA (United States); Yap, Jeffrey T. [Department of Radiology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Sher, David J.; Allen, Aaron M.; Larson, Elysia; Chen, Aileen B. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center and Harvard Medical School, Boston, MA (United States)

    2012-01-01

    Purpose: The potential role of four-dimensional (4D) positron emission tomography (PET)/computed tomography (CT) in radiation treatment planning, relative to standard three-dimensional (3D) PET/CT, was examined. Methods and Materials: Ten patients with non-small-cell lung cancer had sequential 3D and 4D [{sup 18}F]fluorodeoxyglucose PET/CT scans in the treatment position prior to radiation therapy. The gross tumor volume and involved lymph nodes were contoured on the PET scan by use of three different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; a technique with a constant threshold of standardized uptake value (SUV) greater than 2.5; and an automatic segmentation technique. For each technique, the tumor volume was defined on the 3D scan (VOL3D) and on the 4D scan (VOL4D) by combining the volume defined on each of the five breathing phases individually. The range of tumor motion and the location of each lesion were also recorded, and their influence on the differences observed between VOL3D and VOL4D was investigated. Results: We identified and analyzed 22 distinct lesions, including 9 primary tumors and 13 mediastinal lymph nodes. Mean VOL4D was larger than mean VOL3D with all three techniques, and the difference was statistically significant (p < 0.01). The range of tumor motion and the location of the tumor affected the magnitude of the difference. For one case, all three tumor definition techniques identified volume of moderate uptake of approximately 1 mL in the hilar region on the 4D scan (SUV maximum, 3.3) but not on the 3D scan (SUV maximum, 2.3). Conclusions: In comparison to 3D PET, 4D PET may better define the full physiologic extent of moving tumors and improve radiation treatment planning for lung tumors. In addition, reduction of blurring from free-breathing images may reveal additional information regarding regional disease.

  11. A Japanese nationwide survey on the FDG-PET scans for dementia. Analysis on the predicted costs and benefits of FDG-PET for early diagnosis of Alzheimer

    International Nuclear Information System (INIS)

    Senda, Michio; Ouchi, Yasuomi; Ishii, Kazunari

    2003-01-01

    A nation-wide survey was carried out on the FDG-PET scans for the diagnosis of dementia by the FDG-PET Working Group organized by both the Japan Radioisotope Association and the Japanese Society of Nuclear Medicine. A total of 406 case reports were presented by 15 PET centers for one year. The purpose of the PET scans included early diagnosis of Alzheimer-type Dementia (154 cases, group A) and differential diagnosis of degenerative dementia (144 cases, group B), which was achieved by the PET scan in most cases. The PET scan turned out to allow omitting cerebral blood flow (CBF)-SPECT scans. Since donepezil treatment of the Alzheimer patients prevents the progress of the disease and reduces the care cost, an economic evaluation was performed on the two-year projected cost and benefit of FDG-PET. The reduction of the total cost by incorporating PET into the protocol was predicted to be 61500 yen (group A) and 13700 yen (group B) per person. The increase of the quality adjusted life year (QALY) was predicted to be 0.0442 (group A) and 0.0137 (group B). Therefore, incorporation of PET into the clinical pass was shown to be an economically dominant. As the number of potential subjects for early diagnosis of dementia is estimated to be 9000 across the country every year, PET is expected to increase their quality of life equivalent to 398 intact persons per year while reducing the cost of health care by 554 million yen. (author)

  12. FDG-PET scan in assessing lymphomas and the application of Deauville Criteria

    International Nuclear Information System (INIS)

    Awan, U.E.K.; Siddiqui, N.; Muzaffar, N.; Farooqui, Z.S.

    2013-01-01

    To evaluate the role of Fluorine-18-fluorodexoyglucose Positron Emission Tomography (FDG-PET) scan in staging and its implications on the treatment of lymphoma, and to study the concordance between visual assessment and Deauville criteria for the interpretation of interim scans. Methods: The prospective single-arm experimental study was conducted at the Shaukat Khanum Memorial Cancer Hospital, Lahore, from May 2011 to October 2011. It comprised 53 newly diagnosed lymphoma patients who agreed to participate in the study. All patients underwent scans with contrast-enhanced computerised tomography at baseline. Treatment plan was formulated based on the final stage. Interim scans were acquired after 2 cycles of chemotherapy and were reported using visual criteria and compared with the 5-point Deauville criteria. Score of 1-3 was taken as disease-negative, while 4-5 was taken as disease-positive. SPSS 19 was used for statistical analysis. Results: Of the 53 patients, 35 (66%) had Hodgkin's Lymphoma, while 18 (34%) had Non-Hodgkin's Lymphoma. Scans resulted in disease upstaging in 4 (7.5%) patients, and detecting increased disease burden in 12 (23%). On interim scans, complete remission was achieved in 38 (71%) patients (Deauville score 1-3); 12 (23%) showed partial response (Deauville score 4-5); and 3 (6%) had progression. Kappa test was statistically significant (kappa 0.856; p <0.001). Conclusion: The positron emission tomography helped to upstage lymphoma and reflected increased disease burden. The Deauville criteria correlated very well with visual assessment criteria and can be applied in the patient population. (author)

  13. Comparison of absorbed dose of two protocols of tomographic scanning in PET/CT exams

    International Nuclear Information System (INIS)

    Paiva, F.G.

    2017-01-01

    Positron Emission Tomography (PET) associated with Computed Tomography (CT) allows the fusion of functional and anatomical images. When compared to other diagnostic techniques, PET-CT subjects patients to higher levels of radiation, because two modalities are used in a single exam. In this study, the doses absorbed in 19 patient organs from the tomographic scan were evaluated. Radiochromic films were correctly positioned in the Alderson anthropomorphic simulator, male version. For evaluation, two whole body scan protocols were compared. For evaluation, two whole body scan protocols were compared. An increase of up to 600% in the absorbed dose in the pituitary was observed when the protocols were compared, with the lowest observed increase of approximately 160% for the liver. It is concluded that the dose from CT in patients submitted to PET-CT scanning is higher in the protocol used for diagnosis. Considering the high cost of PET-CT exam, in many cases it is preferable that the CT examination is of diagnostic quality, and not only for anatomical mapping, an argument based on the Principle of Justification

  14. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients

    International Nuclear Information System (INIS)

    Berthelsen, A.K.; Holm, S.; Loft, A.; Klausen, T.L.; Andersen, F.; Hoejgaard, L.

    2005-01-01

    If the CT scan of a combined PET/CT study is performed as a full diagnostic quality CT scan including intravenous (IV) contrast agent, the quality of the joint PET/CT procedure is improved and a separate diagnostic CT scan can be avoided. CT with IV contrast can be used for PET attenuation correction, but this may result in a bias in the attenuation factors. The clinical significance of this bias has not been established. Our aim was to perform a prospective clinical study where each patient had CT performed with and without IV contrast agent to establish whether PET/CT with IV contrast can be used for PET attenuation without reducing the clinical value of the PET scan. A uniform phantom study was used to document that the PET acquisition itself is not significantly influenced by the presence of IV contrast medium. Then, 19 patients referred to PET/CT with IV contrast underwent CT scans without, and then with contrast agent, followed by an 18 F-fluorodeoxyglucose whole-body PET scan. The CT examinations were performed with identical parameters on a GE Discovery LS scanner. The PET data were reconstructed with attenuation correction based on the two CT data sets. A global comparison of standard uptake value (SUV) was performed, and SUVs in tumour, in non-tumour tissue and in the subclavian vein were calculated. Clinical evaluation of the number and location of lesions on all PET/CT scans was performed twice, blinded and in a different random order, by two independent nuclear medicine specialists. In all patients, the measured global SUV of PET images based on CT with IV contrast agent was higher than the global activity using non-contrast correction. The overall increase in the mean SUV (for two different conversion tables tested) was 4.5±2.3% and 1.6±0.5%, respectively. In 11/19 patients, focal uptake was identified corresponding to malignant tumours. Eight out of 11 tumours showed an increased SUV max (2.9±3.1%) on the PET images reconstructed using IV contrast

  15. Focal Colonic FDG Activity with PET/CT: Guidelines for Recommendation of Colonoscopy

    OpenAIRE

    Liu, Tianye; Behr, Spencer; Khan, Sana; Osterhoff, Robert; Aparici, Carina Mari

    2015-01-01

    Focal 18F-fluorodeoxyglucose (FDG) colonic activity can be incidentally seen in positron emission tomography/computed tomography (PET/CT) scans. Its clinical significance is still unclear. The purpose of this study was to assess the significance of focal FDG activity in PET/CT scans by correlating the imaging findings to colonoscopy results, and come up with some guidelines for recommendation of follow-up colonoscopy. A total of 133 patients who underwent both 18F-FDG PET/CT for different onc...

  16. PET-Probe: Evaluation of Technical Performance and Clinical Utility of a Handheld High-Energy Gamma Probe in Oncologic Surgery.

    Science.gov (United States)

    Gulec, Seza A; Daghighian, Farhad; Essner, Richard

    2016-12-01

    Positron emission tomography (PET) has become an invaluable part of patient evaluation in surgical oncology. PET is less than optimal for detecting lesions PET-positive lesions can be challenging as a result of difficulties in surgical exposure. We undertook this investigation to assess the utility of a handheld high-energy gamma probe (PET-Probe) for intraoperative identification of 18 F-deoxyglucose (FDG)-avid tumors. Forty patients underwent a diagnostic whole-body FDG-PET scan for consideration for surgical exploration and resection. Before surgery, all patients received an intravenous injection of 7 to 10 mCi of FDG. At surgery, the PET-Probe was used to determine absolute counts per second at the known tumor site(s) demonstrated by whole-body PET and at adjacent normal tissue (at least 4 cm away from tumor-bearing sites). Tumor-to-background ratios were calculated. Thirty-two patients (80%) underwent PET-Probe-guided surgery with therapeutic intent in a recurrent or metastatic disease setting. Eight patients underwent surgery for diagnostic exploration. Anatomical locations of the PET-identified lesions were neck and supraclavicular (n = 8), axilla (n = 5), groin and deep iliac (n = 4), trunk and extremity soft tissue (n = 3), abdominal and retroperitoneal (n = 19), and lung (n = 2). PET-Probe detected all PET-positive lesions. The PET-Probe was instrumental in localization of lesions in 15 patients that were not immediately apparent by surgical exploration. The PET-Probe identified all lesions demonstrated by PET scanning and, in selected cases, was useful in localizing FDG-avid disease not seen with conventional PET scanning.

  17. Quantitative accuracy of denoising techniques applied to dynamic 82Rb myocardial blood flow PET/CT scans

    DEFF Research Database (Denmark)

    Harms, Hans; Tolbod, Lars Poulsen; Bouchelouche, Kirsten

    with suspected ischemic heart disease underwent a dynamic 7 minute 82Rb scan under resting and adenosine induced hyperaemic conditions after injection of 1100 MBq of 82Rb on a GE Discovery 690 PET/CT. Dynamic images were filtered using HighlY constrained backPRojection (HYPR) and a Hotelling filter of which...... the latter was evaluated using a range of 4 to 7 included factors and for both 2D and 3D filtering. Data were analyzed using Cardiac VUer and obtained MBF values were compared with those obtained when no denoising of the dynamic data was performed. Results: Both HYPR and Hotelling denoising could...

  18. A scanning point source for quality control of FOV uniformity in GC-PET imaging

    International Nuclear Information System (INIS)

    Bergmann, H.; Minear, G.; Dobrozemsky, G.; Nowotny, R.; Koenig, B.

    2002-01-01

    Aim: PET imaging with coincidence cameras (GC-PET) requires additional quality control procedures to check the function of coincidence circuitry and detector zoning. In particular, the uniformity response over the field of view needs special attention since it is known that coincidence counting mode may suffer from non-uniformity effects not present in single photon mode. Materials and methods: An inexpensive linear scanner with a stepper motor and a digital interface to a PC with software allowing versatile scanning modes was developed. The scanner is used with a source holder containing a Sodium-22 point source. While moving the source along the axis of rotation of the GC-PET system, a tomographic acquisition takes place. The scan covers the full axial field of view of the 2-D or 3-D scatter frame. Depending on the acquisition software, point source scanning takes place continuously while only one projection is acquired or is done in step-and-shoot mode with the number of positions equal to the number of gantry steps. Special software was developed to analyse the resulting list mode acquisition files and to produce an image of the recorded coincidence events of each head. Results: Uniformity images of coincidence events were obtained after further correction for systematic sensitivity variations caused by acquisition geometry. The resulting images are analysed visually and by calculating NEMA uniformity indices as for a planar flood field. The method has been applied successfully to two different brands of GC-PET capable gamma cameras. Conclusion: Uniformity of GC-PET can be tested quickly and accurately with a routine QC procedure, using a Sodium-22 scanning point source and an inexpensive mechanical scanning device. The method can be used for both 2-D and 3-D acquisition modes and fills an important gap in the quality control system for GC-PET

  19. Spatially resolved regression analysis of pre-treatment FDG, FLT and Cu-ATSM PET from post-treatment FDG PET: an exploratory study

    Science.gov (United States)

    Bowen, Stephen R; Chappell, Richard J; Bentzen, Søren M; Deveau, Michael A; Forrest, Lisa J; Jeraj, Robert

    2012-01-01

    Purpose To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. Materials and methods Ten canine sinonasal cancer patients underwent PET/CT scans of [18F]FDG (FDGpre), [18F]FLT (FLTpre), and [61Cu]Cu-ATSM (Cu-ATSMpre). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at three months (FDGpost). Regression of standardized uptake values in baseline FDGpre, FLTpre and Cu-ATSMpre tumour voxels to those in FDGpost images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R2. Hypothesis testing of coefficients over the patient population was performed. Results Multivariate linear model fits of FDGpre to FDGpost were significantly positive over the population (FDGpost~0.17 FDGpre, p=0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p=0.01). Generalized-linear model fits related FDGpre to FDGpost by a linear power law (FDGpost~FDGpre0.93, pregression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent. PMID:22682748

  20. Histopathological correlation of 11C-choline PET scans for target volume definition in radical prostate radiotherapy

    International Nuclear Information System (INIS)

    Chang, Joe H.; Joon, Daryl Lim; Lee, Sze Ting; Gong, Sylvia J.; Scott, Andrew M.; Davis, Ian D.; Clouston, David; Bolton, Damien; Hamilton, Christopher S.; Khoo, Vincent

    2011-01-01

    Background and purpose: To evaluate the accuracy of 11 C-choline PET scans in defining dominant intraprostatic lesions (DILs) for radiotherapy target volume definition. Material and methods: Eight men with prostate cancer who had 11 C-choline PET scans prior to radical prostatectomy were studied. Several methods were used to contour the DIL on the PET scans: visual, PET Edge, Region Grow, absolute standardised uptake value (SUV) thresholds and percentage of maximum SUV thresholds. Prostatectomy specimens were sliced in the transverse plane and DILs were delineated on these by a pathologist. These were then compared with the PET scans. The accuracy of correlation was assessed by the Dice similarity coefficient (DSC) and the Youden index. Results: The contouring method resulting in both the highest DSC and the highest Youden index was 60% of the maximum SUV (SUV 60% ), with values of 0.64 and 0.51, respectively. However SUV 60% was not statistically significantly better than all of the other methods by either measure. Conclusions: Although not statistically significant, SUV 60% resulted in the best correlation between 11 C-choline PET and pathology amongst all the methods studied. The degree of correlation shown here is consistent with previous studies that have justified using imaging for DIL radiotherapy target volume definition.

  1. [18F]FDG PET/CT outperforms [18F]FDG PET/MRI in differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Vrachimis, Alexis; Wenning, Christian; Weckesser, Matthias; Stegger, Lars; Burg, Matthias Christian; Allkemper, Thomas; Schaefers, Michael

    2016-01-01

    To evaluate the diagnostic potential of PET/MRI with [ 18 F]FDG in comparison to PET/CT in patients with differentiated thyroid cancer suspected or known to have dedifferentiated. The study included 31 thyroidectomized and remnant-ablated patients who underwent a scheduled [ 18 F]FDG PET/CT scan and were then enrolled for a PET/MRI scan of the neck and thorax. The datasets (PET/CT, PET/MRI) were rated regarding lesion count, conspicuity, diameter and characterization. Standardized uptake values were determined for all [ 18 F]FDG-positive lesions. Histology, cytology, and examinations before and after treatment served as the standards of reference. Of 26 patients with a dedifferentiated tumour burden, 25 were correctly identified by both [ 18 F]FDG PET/CT and PET/MRI. Detection rates by PET/CT and PET/MRI were 97 % (113 of 116 lesions) and 85 % (99 of 113 lesions) for malignant lesions, and 100 % (48 of 48 lesions) and 77 % (37 of 48 lesions) for benign lesions, respectively. Lesion conspicuity was higher on PET/CT for both malignant and benign pulmonary lesions and in the overall rating for malignant lesions (p < 0.001). There was a difference between PET/CT and PET/MRI in overall evaluation of malignant lesions (p < 0.01) and detection of pulmonary metastases (p < 0.001). Surgical evaluation revealed three malignant lesions missed by both modalities. PET/MRI additionally failed to detect 14 pulmonary metastases and 11 benign lesions. In patients with thyroid cancer and suspected or known dedifferentiation, [ 18 F]FDG PET/MRI was inferior to low-dose [ 18 F]FDG PET/CT for the assessment of pulmonary status. However, for the assessment of cervical status, [ 18 F]FDG PET/MRI was equal to contrast-enhanced neck [ 18 F]FDG PET/CT. Therefore, [ 18 F]FDG PET/MRI combined with a low-dose CT scan of the thorax may provide an imaging solution when high-quality imaging is needed and high-energy CT is undesirable or the use of a contrast agent is contraindicated. (orig.)

  2. Role of FDG-PET scans in staging, response assessment, and follow-up care for non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cuaron, John [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Dunphy, Mark [Department of Nuclear Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Rimner, Andreas, E-mail: rimnera@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2013-01-03

    The integral role of positron-emission tomography (PET) using the glucose analog tracer fluorine-18 fluorodeoxyglucose (FDG) in the staging of non-small cell lung cancer (NSCLC) is well established. Evidence is emerging for the role of PET in response assessment to neoadjuvant therapy, combined-modality therapy, and early detection of recurrence. Here, we review the current literature on these aspects of PET in the management of NSCLC. FDG-PET, particularly integrated {sup 18}F-FDG-PET/CT, scans have become a standard test in the staging of local tumor extent, mediastinal lymph node involvement, and distant metastatic disease in NSCLC. {sup 18}F-FDG-PET sensitivity is generally superior to computed tomography (CT) scans alone. Local tumor extent and T stage can be more accurately determined with FDG-PET in certain cases, especially in areas of post-obstructive atelectasis or low CT density variation. FDG-PET sensitivity is decreased in tumors <1 cm, at least in part due to respiratory motion. False-negative results can occur in areas of low tumor burden, e.g., small lymph nodes or ground-glass opacities. {sup 18}F-FDG-PET-CT nodal staging is more accurate than CT alone, as hilar and mediastinal involvement is often detected first on {sup 18}F-FDG-PET scan when CT criteria for malignant involvement are not met. {sup 18}F-FDG-PET scans have widely replaced bone scintography for assessing distant metastases, except for the brain, which still warrants dedicated brain imaging. {sup 18}F-FDG uptake has also been shown to vary between histologies, with adenocarcinomas generally being less FDG avid than squamous cell carcinomas. {sup 18}F-FDG-PET scans are useful to detect recurrences, but are currently not recommended for routine follow-up. Typically, patients are followed with chest CT scans every 3–6 months, using {sup 18}F-FDG-PET to evaluate equivocal CT findings. As high {sup 18}F-FDG uptake can occur in infectious, inflammatory, and other non-neoplastic conditions

  3. Intrasubject correlation between static scan and distribution volume images for [11C]flumazenil PET

    International Nuclear Information System (INIS)

    Mishina, Masahiro; Senda, Michio; Kimura, Yuichi

    2000-01-01

    Accumulation of [ 11 C]flumazenil (FMZ) reflects central nervous system benzodiazepine receptor (BZR). We searched for the optimal time for a static PET scan with FMZ as semi-quantitative imaging of BZR distribution. In 10 normal subjects, a dynamic series of decay-corrected PET scans was performed for 60 minutes, and the arterial blood was sampled during the scan to measure radioactivity and labeled metabolites. We generated 13 kinds of ''static scan'' images from the dynamic scan in each subject, and analyzed the pixel correlation for these images versus distribution volume (DV) images. We also analyzed the time for the [ 11 C]FMZ in plasma and tissue to reach the equilibrium. The intra-subject pixel correlation demonstrated that the static scan'' images for the period centering around 30 minutes post-injection had the strongest linear correlation with the DV image. The ratio of radioactivity in the cortex to that in the plasma reached a peak at 40 minutes after injection. Considering the physical decay and patient burden, we conclude that the decay corrected static scan for [ 11 C]FMZ PET as semi-quantitative imaging of BZR distribution is to be optimally acquired from 20 to 40 minutes after injection. (author)

  4. Investigations with FDG-PET Scanning in Prostate Cancer Show Limited Value for Clinical Practice

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, Eeva [Univ. of Turku (Finland). Department of Oncology and Radiotherapy; Hogg, Annette; Binns, David; Hicks, Rodney [The Peter MacCallum Cancer Institute, East Melbourne, Vic (Australia). Dept. of Diagnostic Imaging; Frydenberg, Mark [Monash Medical Centre, Clayton, Vic (Australia)

    2002-09-01

    The aim of this study was to investigate FDG-PET (fluorodeoxyglucose positron emission tomography) imaging in the management of prostate cancer. Twenty-two patients were studied during different disease phases of prostate cancer, for staging or restaging to clarify specific clinical questions. FDG-PET was performed encompassing the thorax, abdomen and pelvis using the Penn PET 300H scanner. Scanning was begun 60 min after {sup 18}F fluorodeoxyglucose marker. Patients were catheterized and administered diuretics to minimize urinary activity. Information obtained with FDG-PET was concordant with findings from other investigations in 7/22 (32%) patients, discordant in 15/22 (68%) patients and equivalent in one patient (4%). PET indicated progressive disease in five patients with prostate-specific antigen (PSA) <4 ng/L. The impact on management of the patients was high in 46% of cases, low in 41% and for 14% there was no impact on management. The accuracy of FDG-PET was 72% (95% CI 50-89) as confirmed by invasive diagnostics/follow-up. FDG-PET can provide useful information and improve the clinician's decision on further management procedures in selected patients with low PSA and bone or lymph node changes. A negative PET scan in prostate cancer should be interpreted with caution.

  5. Prospective Comparison of F-18 Choline PET/CT Scan Versus Axial MRI for Detecting Bone Metastasis in Biochemically Relapsed Prostate Cancer Patients

    Directory of Open Access Journals (Sweden)

    Wouter Huysse

    2017-10-01

    Full Text Available We compared fluor-18 choline positron emission tomography/computed tomography (PET/CT and axial skeleton magnetic resonance imaging (MRI prospectively obtained for the detection of bone metastases in non-castrated patients with biochemically recurrent prostate cancer following primary treatment. PET/CT was performed 45 min post-injection of 3–4 MBq/kg F-18 methyl choline. MRI included T1- and fluid sensitive T2-weighted images of the spine and pelvis. Readers were initially blinded from other results and all scans underwent independent double reading. The best valuable comparator (BVC defined the metastatic status. On the basis of the BVC, 15 out of 64 patients presented with 24 bone metastases. On a patient level, the sensitivity and specificity of MRI and PET were not significantly different. On a lesion level, the sensitivity of MRI was significantly better compared to PET, and the specificity did not differ significantly. In conclusion, axial MRI is an interesting screening tool for the detection of bone metastases because of its low probability of false negative results. However, F-18 choline PET is a valuable addition as it can overrule false positive MRI results and detect non-axial metastases.

  6. Early interim 18F-FDG PET in Hodgkin's lymphoma: evaluation on 304 patients

    International Nuclear Information System (INIS)

    Zinzani, Pier Luigi; Stefoni, Vittorio; Broccoli, Alessandro; Argnani, Lisa; Baccarani, Michele; Rigacci, Luigi; Puccini, Benedetta; Castagnoli, Antonio; Vaggelli, Luca; Zanoni, Lucia; Fanti, Stefano

    2012-01-01

    The use of early (interim) PET restaging during first-line therapy of Hodgkin's lymphoma (HL) in clinical practice has considerably increased because of its ability to provide early recognition of treatment failure allowing patients to be transferred to more intensive treatment regimens. Between June 1997 and June 2009, 304 patients with newly diagnosed HL (147 early stage and 157 advanced stage) were treated with the ABVD regimen at two Italian institutions. Patients underwent PET staging and restaging at baseline, after two cycles of therapy and at the end of the treatment. Of the 304 patients, 53 showed a positive interim PET scan and of these only 13 (24.5%) achieved continuous complete remission (CCR), whereas 251 patients showed a negative PET scan and of these 231 (92%) achieved CCR. Comparison between interim PET-positive and interim PET-negative patients indicated a significant association between PET findings and 9-year progression-free survival and 9-year overall survival, with a median follow-up of 31 months. Among the early-stage patients, 19 had a positive interim PET scan and only 4 (21%) achieved CCR; among the 128 patients with a negative interim PET scan, 122 (97.6%) achieved CCR. Among the advanced-stage patients, 34 showed a persistently positive PET scan with only 9 (26.4%) achieving CCR, whereas 123 showed a negative interim PET scan with 109 (88.6%) achieving CCR. Our results demonstrate the role of an early PET scan as a significant step forward in the management of patients with early-stage or advanced-stage HL. (orig.)

  7. Clinical evaluation of TOF versus non-TOF on PET artifacts in simultaneous PET/MR: a dual centre experience

    Energy Technology Data Exchange (ETDEWEB)

    Voert, Edwin E.G.W. ter [University Hospital Zurich, Department of Nuclear Medicine, Zurich (Switzerland); University of Zurich, Zurich (Switzerland); Veit-Haibach, Patrick [University Hospital Zurich, Department of Nuclear Medicine, Zurich (Switzerland); University of Zurich, Zurich (Switzerland); University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); Ahn, Sangtae [GE Global Research, Niskayuna, NY (United States); Wiesinger, Florian [GE Global Research, Muenchen (Germany); Khalighi, M.M.; Delso, Gaspar [GE Healthcare, Waukesha, WI (United States); Levin, Craig S. [Stanford University, Department of Radiology, Molecular Imaging Program at Stanford, Stanford, CA (United States); Iagaru, Andrei H. [Stanford University, Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford, CA (United States); Zaharchuk, Greg [Stanford University, Department of Radiology, Neuroradiology, Stanford, CA (United States); Huellner, Martin [University Hospital Zurich, Department of Nuclear Medicine, Zurich (Switzerland); University of Zurich, Zurich (Switzerland); University Hospital Zurich, Department of Neuroradiology, Zurich (Switzerland)

    2017-07-15

    Our objective was to determine clinically the value of time-of-flight (TOF) information in reducing PET artifacts and improving PET image quality and accuracy in simultaneous TOF PET/MR scanning. A total 65 patients who underwent a comparative scan in a simultaneous TOF PET/MR scanner were included. TOF and non-TOF PET images were reconstructed, clinically examined, compared and scored. PET imaging artifacts were categorized as large or small implant-related artifacts, as dental implant-related artifacts, and as implant-unrelated artifacts. Differences in image quality, especially those related to (implant) artifacts, were assessed using a scale ranging from 0 (no artifact) to 4 (severe artifact). A total of 87 image artifacts were found and evaluated. Four patients had large and eight patients small implant-related artifacts, 27 patients had dental implants/fillings, and 48 patients had implant-unrelated artifacts. The average score was 1.14 ± 0.82 for non-TOF PET images and 0.53 ± 0.66 for TOF images (p < 0.01) indicating that artifacts were less noticeable when TOF information was included. Our study indicates that PET image artifacts are significantly mitigated with integration of TOF information in simultaneous PET/MR. The impact is predominantly seen in patients with significant artifacts due to metal implants. (orig.)

  8. Standardised uptake values from PET/CT images: comparison with conventional attenuation-corrected PET

    International Nuclear Information System (INIS)

    Souvatzoglou, M.; Ziegler, S.I.; Martinez, M.J.; Dzewas, G.; Schwaiger, M.; Bengel, F.; Busch, R.

    2007-01-01

    In PET/CT, CT-derived attenuation factors may influence standardised uptake values (SUVs) in tumour lesions and organs when compared with stand-alone PET. Therefore, we compared PET/CT-derived SUVs intra-individually in various organs and tumour lesions with stand-alone PET-derived SUVs. Thirty-five patients with known or suspected cancer were prospectively included. Sixteen patients underwent FDG PET using an ECAT HR+scanner, and subsequently a second scan using a Biograph Sensation 16PET/CT scanner. Nineteen patients were scanned in the reverse order. All images were reconstructed with an iterative algorithm (OSEM). Suspected lesions were grouped as paradiaphragmatic versus distant from the diaphragm. Mean and maximum SUVs were also calculated for brain, lung, liver, spleen and vertebral bone. The attenuation coefficients (μ values) used for correction of emission data (bone, soft tissue, lung) in the two data sets were determined. A body phantom containing six hot spheres and one cold cylinder was measured using the same protocol as in patients. Forty-six lesions were identified. There was a significant correlation of maximum and mean SUVs derived from PET and PET/CT for 14 paradiaphragmatic lesions (r=0.97 respectively; p<0.001 respectively) and for 32 lesions located distant from the diaphragm (r=0.87 and r=0.89 respectively; p<0.001 respectively). No significant differences were observed in the SUVs calculated with PET and PET/CT in the lesions or in the organs. In the phantom, radioactivity concentration in spheres calculated from PET and from PET/CT correlated significantly (r=0.99; p<0.001). SUVs of cancer lesions and normal organs were comparable between PET and PET/CT, supporting the usefulness of PET/CT-derived SUVs for quantification of tumour metabolism. (orig.)

  9. Comparison of clinical efficacy of second look operation and FDG-PET scan in patients with ovarian cancer

    International Nuclear Information System (INIS)

    Ryu, Sang Young

    1999-12-01

    This study is to investigate whether FDG-PET scan can substitute for second look operation in patients with ovarian cancer showing complete response with chemotherapy. From Jan. 1999 to Oct. 1999, 10 patients with advanced ovarian cancer who showed clinical complete response with 6 cycles of combination chemotherapy were registered in KCCH. These patients showed no residual tumors in conventional radiologic imaging studies (CT or MRI), normal tumor marker, no evidence of disease by physical examination. PET scans and second look operation were performed in 10 patients with advanced ovarian cancer (3 patients with stage IIc, 2 patients with stage IIIb, 5 patients with IIIc), who showed complete response with cytoreductive surgery and 6 cycles of post-operative adjuvant cisplatin-based combination chemotherapy. Median age of patients was 45 years, and serous cystadenocarcinoma was most common histologic type. None showed active lesion in pelvis and abdomen with FDG-PET scan (SUV; > 3.5 kg/ml), and I patient showed active lesion in lung field. On second look operations, 5 patients (50%) showed positive result on multiple blind biopsy. The patient with active lesion on FDG-PET scan in lung field confirmed to have metastatic lesions by chest CT scan. In conclusion, FDG-PET scan is not useful for detection of small ovarian cancer lesions in pelvis and abdomen, and cannot substitute for second look operation to determine pathologic complete response

  10. Comparison of clinical efficacy of second look operation and FDG-PET scan in patients with ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sang Young

    1999-12-01

    This study is to investigate whether FDG-PET scan can substitute for second look operation in patients with ovarian cancer showing complete response with chemotherapy. From Jan. 1999 to Oct. 1999, 10 patients with advanced ovarian cancer who showed clinical complete response with 6 cycles of combination chemotherapy were registered in KCCH. These patients showed no residual tumors in conventional radiologic imaging studies (CT or MRI), normal tumor marker, no evidence of disease by physical examination. PET scans and second look operation were performed in 10 patients with advanced ovarian cancer (3 patients with stage IIc, 2 patients with stage IIIb, 5 patients with IIIc), who showed complete response with cytoreductive surgery and 6 cycles of post-operative adjuvant cisplatin-based combination chemotherapy. Median age of patients was 45 years, and serous cystadenocarcinoma was most common histologic type. None showed active lesion in pelvis and abdomen with FDG-PET scan (SUV; > 3.5 kg/ml), and I patient showed active lesion in lung field. On second look operations, 5 patients (50%) showed positive result on multiple blind biopsy. The patient with active lesion on FDG-PET scan in lung field confirmed to have metastatic lesions by chest CT scan. In conclusion, FDG-PET scan is not useful for detection of small ovarian cancer lesions in pelvis and abdomen, and cannot substitute for second look operation to determine pathologic complete response.

  11. Comparison of 18F-FDG PET to CT scan in the detection of recurrent colorectal carcinoma - an ROC analysis

    International Nuclear Information System (INIS)

    Scott, A.M.; Akhurst, T.; Berlangieri, S.U.; Fitt, G.; Schelleman, T.; Jones, R.; Hannah, A.; Tochon-Danguy, H.

    2000-01-01

    Full text: This study examined 43 scans performed in 40 patients from a group of 93 prospectively enrolled in a trial examining the utility of 18 F-FDG PET in patients with potentially resectable recurrent colorectal cancer. All patients had PET and CT scans prior to surgery, where a total of 84 anatomical regions were biopsied, and 364 regions examined by the surgeons. All PET and CT scans were viewed blinded to clinical and imaging data. The scans were interpreted according to a five-point confidence scale to enable an ROC analysis to be performed. An assessment of the impact of PET over CT in patients was also made. Of the 43 cases PET and CT were concordant in 24 (56%). There were 16 cases where PET added additional diagnostic information to the benefit of the patient (37%), and three (7%) where PET alone would have lead to a potentially negative outcome. The majority of cases where PET performed better were in cases with extrahepatic disease. CT was more sensitive in the detection of pulmonary nodules, although the specificity of CT was less than PET. In conclusion, 18 F-FDG PET performed significantly better than CT both in terms of a regional analysis as well as a patient by patient basis. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  12. When are false-positive and false-negative 18F'FDG PET scans really false?

    International Nuclear Information System (INIS)

    Binns, D.S.; Hicks, R.J.; Fawcett, M.E.

    1999-01-01

    Full text: A 61-year-old male presented with locally advanced squamous cell carcinoma of the base of tongue. In the absence of wider metastatic disease on conventional staging, he was enrolled in a phase I, dose escalation chemoradiotherapy trial. In this study, therapeutic response to radiotherapy combined with cisplatin and a chemotherapeutic agent which specifically targets hypoxic cells (tirapazamine) was evaluated with serial 18 F-FDG PET scans. Baseline 18 F-FDG PET confirmed locally advanced disease, although a previously undetected lower cervical lymph node was identified and included in the radiotherapy portal. Whole-body PET revealed a small metabolically active area adjacent to the right hemidiaphragm. Respiratory gated, high-resolution helical CT failed to find structural evidence of disease and, as a result, the patient was enrolled in the 7 week therapy regime on the assumption that the PET finding was a false-positive result. Repeat 18 F-FDG PET scans at the middle, end and 12 weeks post-treatment showed excellent therapeutic response in the head and neck which was discordant with clinical and CT findings, and resolution of the metabolically active chest lesion. Despite the negative PET scan, persistent clinical and CT evidence of a residual tumour mass suggested a false-negative result and resulted in a neck lymph node dissection. This showed no evidence of malignant cells. Five months following treatment, the patient presented with pleural effusion at the base on the right lung. Subsequent CT scanning showed a small pleural lesion at the site of initial 18 F-FDG uptake. Biopsy confirmed metastatic disease. The apparent transient resolution of 18 F-FDG uptake in the pleural lesion with treatment presumably reflected a combination of reduced metabolic activity and size due to the partial, but not complete, cytotoxic effects of cisplatin. In conclusion, this case emphasizes the importance of pathological review and clinical follow-up in reconciling

  13. PET Scans Obtained for Evaluation of Cognitive Dysfunction

    Science.gov (United States)

    Silverman, Daniel H. S.; Mosconi, Lisa; Ercoli, Linda; Chen, W; Small, Gary W.

    2015-01-01

    The degree of intactness of human cognitive functioning for a given individual spans a wide spectrum, ranging from normal to severely demented. The differential diagnosis for the causes of impairment along that spectrum is also wide, and often difficult to distinguish clinically, which has led to an increasing role for neuroimaging tools in that evaluation. The most frequent causes of dementia are neurodegenerative disorders, Alzheimer's disease being the most prevalent among them, and they produce significant alterations in brain metabolism with devastating neuropathologic, economic, social and clinical consequences. These alterations are detectable through positron emission tomography (PET), even in their earliest stages. The most commonly performed PET studies of the brain are carried out with [18F]fluorodeoxyglucose (FDG) as the imaged radiopharmaceutical. Such scans have demonstrated diagnostic and prognostic utility in evaluating patients with cognitive impairment, and in distinguishing among primary neurodegenerative disorders and other etiologies for cognitive decline. In addition to focusing upon the effects on cerebral metabolism examined with FDG PET, some other changes occurring in the brains of cognitively impaired patients assessable with other radiotracers will be considered. As preventive and disease-modifying treatments are developed, early detection of accurately diagnosed disease processes facilitated by the use of PET has the potential to substantially impact upon the enormous human toll exacted by these diseases. PMID:18514081

  14. {sup 18}F-F.D.G. PET for staging and monitoring of solitary plasmocytomas;La TEP au {sup 18}F-FDG dans le diagnostic et le suivi evolutif des plasmocytomes solitaires

    Energy Technology Data Exchange (ETDEWEB)

    Adib, S.; Robua, D.; Huglo, D.; Steinling, M. [CHU de Lille, rue Michel-Polonovski, Service de medecine nucleaire, hopital Claude-Huriez, 59 - Lille (France); Robua, D.; Leleu, X. [CHU de Lille, rue Michel-Polonovski, Service des maladies du sang, hopital Claude-Huriez, 59 - Lille (France)

    2010-02-15

    Aim: To assess the role of [{sup 18}F]F.D.G.-PET in solitary plasmocytomas with regards to staging, therapeutic follow-up and monitoring. Patients and methods. Twenty consecutive patients were included in the present study when following conditions were met: (1) solitary plasmocytomas histologically confirmed (bone, n = 16; extramedullary, n = 4); (2) [{sup 18}F]F.D.G.-PET scan from July 2004 to April 2009. The clinical follow-up was over than 2 years for 13 patients. Ten patients underwent a post-therapy PET scan. PET scans were visually analysed. Results. PET scan enabled confirmation of all main lesions (sensitivity: 100%) and also detected infra-clinical lesions in eight cases. Follow-up for more than 2 years showed a progression disease into myeloma in five from six cases (83%) with infra clinical lesions at the baseline PET scan. Among 10 patients who underwent post-therapeutic PET scan, six experienced a complete response at the main lesion site and four experienced a partial response. Conclusion: F.D.G.-PET may play an important role in plasmocytomas staging and enables detection of smaller lesions (otherwise undetected). (authors)

  15. PET scan perfusion imaging in the Prader-Willi syndrome: new insights into the psychiatric and social disturbances

    International Nuclear Information System (INIS)

    Mantoulan, C.; Payoux, P.; Mantoulan, C.; Diene, G.; Glattard, M.; Molinas, C.; Tauber, M.; Payoux, P.; Sevely, A.; Glattard, M.; Roge, B.; Molinas, C.; Tauber, M.; Zilbovicius, M.; Celsis, P.; Celsis, P.

    2011-01-01

    The Prader-Willi syndrome (PWS), a rare multisystem genetic disease, leads to severe disabilities, such as morbid obesity, endocrine dysfunctions, psychiatric disorders, and social disturbances. We explored the whole brain of patients with PWS to detect abnormalities that might explain the behavioral and social disturbances, as well as the psychiatric disorders of these patients. Nine patients with PWS (six males, three females; mean age 16.4 years) underwent a positron emission tomography (PET) scan with H(2)(15)O as a tracer to measure regional cerebral blood flow (rCBF). The images were compared with those acquired from nine controls (six males, three females; mean age 21.2 years). A morphologic magnetic resonance imaging (MRI) was also performed in PWS patients, and their cognitive and behavioral skills were assessed with Wechsler Intelligence Scale for Children III and the Child Behavior Check List (CBCL). The MRI images showed no evident anatomic abnormalities, whereas PET scans revealed hypo-perfused brain regions in PWS patients compared with controls, particularly in the anterior cingulum and superior temporal regions. We observed a significant relationship (P≤0.05) between rCBF in the hypo-perfused regions and CBCL scores. The functional consequences of these perfusion abnormalities in specific brain regions might explain the behavioral and social problems observed in these individuals. (authors)

  16. The use of 18F-fluoride and 18F-FDG PET scans to assess fracture healing in a rat femur model

    International Nuclear Information System (INIS)

    Hsu, W.K.; Feeley, B.T.; Krenek, L.; Stout, D.B.; Chatziioannou, A.F.; Lieberman, J.R.

    2007-01-01

    Currently available diagnostic techniques can be unreliable in the diagnosis of delayed fracture healing in certain clinical situations, which can lead to increased complication rates and costs to the health care system. This study sought to determine the utility of positron emission tomography (PET) scanning with 18 F-fluoride ion, which localizes in regions of high osteoblastic activity, and 18 F-fluorodeoxyglucose (FDG), an indicator of cellular glucose metabolism, in assessing bone healing in a rat femur fracture model. Fractures were created in the femurs of immunocompetent rats. Animals in group I had a fracture produced via a manual three-point bending technique. Group II animals underwent a femoral osteotomy with placement of a 2-mm silastic spacer at the fracture site. Fracture healing was assessed with plain radiographs, 18 F-fluoride, and 18 F-FDG PET scans at 1, 2, 3, and 4-week time points after surgery. Femoral specimens were harvested for histologic analysis and manual testing of torsional and bending strength 4 weeks after surgery. All fractures in group I revealed abundant callus formation and bone healing, while none of the nonunion femurs were healed via assessment with manual palpation, radiographic, and histologic evaluation at the 4-week time point. 18 F-fluoride PET images of group I femurs at successive 1-week intervals revealed progressively increased signal uptake at the union site during fracture repair. In contrast, minimal tracer uptake was seen at the fracture sites in group II at all time points after surgery. Data analysis revealed statistically significant differences in mean signal intensity between groups I and II at each weekly interval. No significant differences between the two groups were seen using 18 F-FDG PET imaging at any time point. This study suggests that 18 F-fluoride PET imaging, which is an indicator of osteoblastic activity in vivo, can identify fracture nonunions at an early time point and may have a role in the

  17. The use of 18F-fluoride and 18F-FDG PET scans to assess fracture healing in a rat femur model

    Science.gov (United States)

    Hsu, W. K.; Feeley, B. T.; Krenek, L.; Stout, D. B.; Chatziioannou, A. F.; Lieberman, J. R.

    2011-01-01

    Purpose Currently available diagnostic techniques can be unreliable in the diagnosis of delayed fracture healing in certain clinical situations, which can lead to increased complication rates and costs to the health care system. This study sought to determine the utility of positron emission tomography (PET) scanning with 18F-fluoride ion, which localizes in regions of high osteoblastic activity, and 18F-fluorodeoxyglucose (FDG), an indicator of cellular glucose metabolism, in assessing bone healing in a rat femur fracture model. Methods Fractures were created in the femurs of immuno-competent rats. Animals in group I had a fracture produced via a manual three-point bending technique. Group II animals underwent a femoral osteotomy with placement of a 2-mm silastic spacer at the fracture site. Fracture healing was assessed with plain radiographs, 18F-fluoride, and 18F-FDG PET scans at 1, 2, 3, and 4-week time points after surgery. Femoral specimens were harvested for histologic analysis and manual testing of torsional and bending strength 4 weeks after surgery. Results All fractures in group I revealed abundant callus formation and bone healing, while none of the nonunion femurs were healed via assessment with manual palpation, radiographic, and histologic evaluation at the 4-week time point. 18F-fluoride PET images of group I femurs at successive 1-week intervals revealed progressively increased signal uptake at the union site during fracture repair. In contrast, minimal tracer uptake was seen at the fracture sites in group II at all time points after surgery. Data analysis revealed statistically significant differences in mean signal intensity between groups I and II at each weekly interval. No significant differences between the two groups were seen using 18F-FDG PET imaging at any time point. Conclusion This study suggests that 18F-fluoride PET imaging, which is an indicator of osteoblastic activity in vivo, can identify fracture nonunions at an early time point

  18. Radiation dose to radiosensitive organs in PET/CT myocardial perfusion examination using versatile optical fibre

    Science.gov (United States)

    Salasiah, M.; Nordin, A. J.; Fathinul Fikri, A. S.; Hishar, H.; Tamchek, N.; Taiman, K.; Ahmad Bazli, A. K.; Abdul-Rashid, H. A.; Mahdiraji, G. A.; Mizanur, R.; Noor, Noramaliza M.

    2013-05-01

    Cardiac positron emission tomography (PET) provides a precise method in order to diagnose obstructive coronary artery disease (CAD), compared to single photon emission tomography (SPECT). PET is suitable for obese and patients who underwent pharmacologic stress procedures. It has the ability to evaluate multivessel coronary artery disease by recording changes in left ventricular function from rest to peak stress and quantifying myocardial perfusion (in mL/min/g of tissue). However, the radiation dose to the radiosensitive organs has become crucial issues in the Positron Emission Tomography/Computed Tomography(PET/CT) scanning procedure. The objective of this study was to estimate radiation dose to radiosensitive organs of patients who underwent PET/CT myocardial perfusion examination at Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia in one month period using versatile optical fibres (Ge-B-doped Flat Fibre) and LiF (TLD-100 chips). All stress and rest paired myocardial perfusion PET/CT scans will be performed with the use of Rubidium-82 (82Rb). The optic fibres were loaded into plastic capsules and attached to patient's eyes, thyroid and breasts prior to the infusion of 82Rb, to accommodate the ten cases for the rest and stress PET scans. The results were compared with established thermoluminescence material, TLD-100 chips. The result shows that radiation dose given by TLD-100 and Germanium-Boron-doped Flat Fiber (Ge-B-doped Flat Fiber) for these five organs were comparable to each other where the p>0.05. For CT scans,thyroid received the highest dose compared to other organs. Meanwhile, for PET scans, breasts received the highest dose.

  19. Role of 18F FDG PET scan to localize tumor in patients of oncogenic osteomalacia

    International Nuclear Information System (INIS)

    Malhotra, Gaurav; Mukta, K.; Asopa, V.; Varsha, J.; Vijaya, S.; Shah, Nalini S.; Padmavathy, M.

    2010-01-01

    Full text: Oncogenic osteomalacia is a rare paraneoplastic syndrome of renal phosphate wasting which is usually caused by phosphaturic mesenchymal tumors. Conventional radiologic techniques usually fail to detect these small, slow growing neoplasms located at unusual sites. The objective of this study was to evaluate the role of 18 F FDG PET imaging in patients of oncogenic osteomalacia. Materials and Methods: Fifteen patients (8 males and 7 females) (mean age: 38.5 ± 12.2 years) with clinical and biochemical evidence of oncogenic osteomalacia were subjected to 'total' whole body 18 F FDG PET scan including both limbs and skull views. The images were reconstructed and the final output was displayed as per the standard institution protocol. Results: 18 F FDG PET imaging localized suspicious hypermetabolic foci of SUVmax ranging from 1.4 to 3.8 (Mean ± S.D.: 2.39 ± 0.63) suggesting presence of occult tumor in 11 of 15 patients. The suspected foci were localized in lower limbs in ten patients and in the petrous temporal region of skull in 1 patient. FDG localized tumors were histopathologically correlated in 6 patients who underwent surgical biopsy/excision after correlative radiological investigations. Four of these patients were cured after surgical excision while partial surgical excision/biopsy was performed in two patients. Conclusions: 18 F FDG PET imaging is a promising technique for detection of occult tumors in patients of oncogenic osteomalacia. It is mandatory to include limbs in the field as these tumors are common in limbs and may be easily missed. Preoperative localization increases odds for cure after surgical removal of tumor

  20. FDG PET/CT for therapeutic response monitoring in multi-site non-respiratory tuberculosis

    International Nuclear Information System (INIS)

    Geng Tian; Yong Xiao; Bin Chen; Jun Xia; Hong Guan; Qunyi Deng

    2010-01-01

    Background: Tuberculosis (TB) can produce positive signals during 18 F-fluorodeoxyglucose positron emission/computed tomography (FDG PET/CT) scanning. Until now, there has been no better method than clinical assessment to evaluate the therapeutic response of non-respiratory TB (NRTB). Purpose: To retrospectively assess the ability of FDG PET/CT to evaluate the response to anti-TB treatment in patients with NRTB. Material and Methods: Three patients with multi-site NRTB underwent repeat PET/CT scans during anti-TB treatment. Changes in maximal standard uptake value (SUVmax) of the TB lesions on PET/CT images were analyzed between two scans. Initial PET/CT scans were performed before the start of anti-TB treatment, and later scans were performed after completion of the treatment. Results: Patient 1, a 63-year-old female, and patient 2, a 50-year-old male, were diagnosed as multi-site NRTB by biopsy. Patient 3, a 37-year-old male was diagnosed clinically. These patients demonstrated multiple FDG-avid lesions in whole body on initial PET/CT images. The highest SUVmax of patient 1, 2, and 3 were 13.6, 17.7, and 13.9 separately. After completion of the treatment, all positive signals of patient 1, 2, and 3 decreased to undetectable value on repeated PET/CT scans with intervals of 318 days, 258 days, and 182 days separately. Conclusion: FDG PET/CT scan may be useful for monitoring responses to anti-TB treatment in patients with NRTB

  1. Omental deposits surveillance in gynecological malignancies at first setting follow up: 18F-FDG PET/CT compared to CT

    OpenAIRE

    Tamer W. Kassem

    2017-01-01

    Objective: The aim of this study was to compare the diagnostic performance of positron emission tomography/computed tomography (PET/CT) scan and CT scan in follow up of proven gynecological malignancies omental deposits in first setting follow up after treatment. Patients and methods: 60 female patients having proven omental deposits from gynecological malignancies underwent PET/CT examination following a preset protocol as baseline study. 34 cases of them had a second PET/CT examination f...

  2. Fluorodeoxyglucose-positron emission tomography scan-positive recurrent papillary thyroid cancer and the prognosis and implications for surgical management

    Directory of Open Access Journals (Sweden)

    Schreinemakers Jennifer MJ

    2012-09-01

    Full Text Available Abstract Background To compare outcomes for patients with recurrent or persistent papillary thyroid cancer (PTC who had metastatic tumors that were fluorodeoxyglucose-positron emission tomography (FDG-PET positive or negative, and to determine whether the FDG-PET scan findings changed the outcome of medical and surgical management. Methods From a prospective thyroid cancer database, we retrospectively identified patients with recurrent or persistent PTC and reviewed data on demographics, initial stage, location and extent of persistent or recurrent disease, clinical management, disease-free survival and outcome. We further identified subsets of patients who had an FDG-PET scan or an FDG-PET/CT scan and whole-body radioactive iodine scans and categorized them by whether they had one or more FDG-PET-avid (PET-positive lesions or PET-negative lesions. The medical and surgical treatments and outcome of these patients were compared. Results Between 1984 and 2008, 41 of 141 patients who had recurrent or persistent PTC underwent FDG-PET (n = 11 or FDG-PET/CT scans (n = 30; 22 patients (54% had one or more PET-positive lesion(s, 17 (41% had PET-negative lesions, and two had indeterminate lesions. Most PET-positive lesions were located in the neck (55%. Patients who had a PET-positive lesion had a significantly higher TNM stage (P = 0.01, higher age (P = 0.03, and higher thyroglobulin (P = 0.024. Only patients who had PET-positive lesions died (5/22 vs. 0/17 for PET-negative lesions; P = 0.04. In two of the seven patients who underwent surgical resection of their PET-positive lesions, loco-regional control was obtained without evidence of residual disease. Conclusion Patients with recurrent or persistent PTC and FDG-PET-positive lesions have a worse prognosis. In some patients loco-regional control can be obtained without evidence of residual disease by reoperation if the lesion is localized in the neck or mediastinum.

  3. Imaging of hypoxia with 18F-FAZA PET in patients with locally advanced non-small cell lung cancer treated with definitive chemoradiotherapy

    International Nuclear Information System (INIS)

    Trinkaus, Mateya E.; Rischin, Danny; Blum, Rob

    2013-01-01

    For many cancers, tumour hypoxia is an adverse prognostic factor, and increases chemoradiation resistance; its importance in non-small cell lung cancer (NSCLC) is unproven. This study evaluated tumoural hypoxia using fluoroazomycin arabinoside ( 18 F-FAZA) positron emission tomography (PET) scans among patients with locoregionally advanced NSCLC treated with definitive chemoradiation. Patients with stage IIIA-IIIB NSCLC underwent 18 F-FAZA PET scans and 18 F-2-deoxyglucose (FDG)-PET scans within 4 weeks of commencing and 8 weeks following conventionally-fractionated concurrent platinum-based chemoradiation (60Gy). Intra-lesional hypoxic volumes of the primary and nodal masses were compared with FDG-PET metabolic volumes. Baseline tumoural hypoxia was correlated with disease free survival (DFS). Seventeen patients underwent pre-treatment 18 F-FAZA PET and FDG-PET scans. Intra-lesional hypoxia was identified on 11 scans (65%). Baseline lesional hypoxic volumes were consistently smaller than FDG-PET volumes (P=0.012). There was no statistical difference between the mean FDG-PET volumes in patients with or without baseline hypoxia (P=0.38). Eight patients with baseline hypoxia had post treatment 18 F-FAZA scans and 6 of these (75%) had resolution of imageable hypoxia following chemoradiation. The DFS was not significantly different between the hypoxic or non-hypoxic groups (median 0.8 years and 1.3 years respectively, P=0.42). Intra-lesional hypoxia, as detected by 18 F-FAZA PET, was present in 65% of patients with locally-advanced NSCLC and resolved in the majority of patients following chemoradiation. Larger studies are required to evaluate the prognostic significance of the presence and resolution of hypoxia assessed by PET in NSCLC.

  4. False Positive Uptake in Bilateral Gynecomastia on 68Ga-PSMA PET/CT Scan.

    Science.gov (United States)

    Sasikumar, Arun; Joy, Ajith; Nair, Bindu P; Pillai, M R A; Madhavan, Jayaprakash

    2017-09-01

    A 66-year-old man on hormonal therapy with prostate cancer was referred for Ga-PSMA PET/CT scan for biochemical recurrence. Ga-PSMA PET/CT scan detected moderate heterogeneous tracer concentration in bilateral breast parenchyma, in addition to the abnormal tracer concentration in enlarged prostate gland, right external iliac lymph node, and sclerotic lesion in L4 vertebra. On clinical examination, he was found to have bilateral gynecomastia. Abnormal concentration of Ga-PSMA in breast cancer is now well known, and in this context, it is important to know that tracer localization can occur in gynecomastia as well, as evidenced in this case.

  5. Effect of motion-induced PET-CT misalignment on cardiac function and myocardial blood flow measured using dynamic 15O-water PET

    DEFF Research Database (Denmark)

    Lubberink, Mark; Ebrahimi, M; Harms, Hans

    -CT misalignment on MBF, transmural MBF (MBFt), perfusable tissue fraction (PTF), cardiac output (CO), stroke volume (SV) and left-ventricular ejection fraction (LVEF) based on dynamic 15O-water scans. Methods: 10 patients underwent 6 min PET scans after injection of 400 MBq 15O-water at rest and during adenosine......Aim: Motion-induced PET-CT misalignment artifacts are common in myocardial blood flow (MBF) measurements with 82Rb and 13N-ammonia. For 15O-water, MBF is based on the clearance rate rather than uptake of the tracer. The clearance rate is determined by the shape of the time-activity curve, not its...... amplitude, and is thus not affected by attenuation correction errors. Hence, misalignment is hypothesized not to affect 15O-water-based MBF to any large extent, but it may affect cardiac function measures derived from 15O-water scans. The aim of the present work was to assess the effect of PET...

  6. Sequential 123I-iododexetimide scans in temporal lobe epilepsy: comparison with neuroimaging scans (MR imaging and 18F-FDG PET imaging)

    International Nuclear Information System (INIS)

    Mohamed, Armin; Eberl, Stefan; Henderson, David; Beveridge, Scott; Constable, Chris; Fulham, Michael J.; Kassiou, Michael; Zaman, Aysha; Lo, Sing Kai

    2005-01-01

    Muscarinic acetylcholine receptors (mAChRs) play an important role in the generation of seizures. Single-photon emission computed tomography (SPECT) with 123 I-iododexetimide (IDEX) depicts tracer uptake by mAChRs. Our aims were to: (a) determine the optimum time for interictal IDEX SPECT imaging; (b) determine the accuracy of IDEX scans in the localisation of seizure foci when compared with video EEG and MR imaging in patients with temporal lobe epilepsy (TLE); (c) characterise the distribution of IDEX binding in the temporal lobes and (d) compare IDEX SPECT and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in identifying seizure foci. We performed sequential scans using IDEX SPECT imaging at 0, 3, 6 and 24 h in 12 consecutive patients with refractory TLE undergoing assessment for epilepsy surgery. Visual and region of interest analyses of the mesial, lateral and polar regions of the temporal lobes were used to compare IDEX SPECT, FDG PET and MR imaging in seizure onset localisation. The 6-h IDEX scan (92%; κ=0.83, p=0.003) was superior to the 0-h (36%; κ=0.01, p>0.05), 3-h (55%; κ=0.13, p>0.05) and 24-h IDEX scans in identifying the temporal lobe of seizure origin. The 6-h IDEX scan correctly predicted the temporal lobe of seizure origin in two patients who required intracranial EEG recordings to define the seizure onset. Reduced ligand binding was most marked at the temporal pole and mesial temporal structures. IDEX SPECT was superior to interictal FDG PET (75%; κ=0.66, p=0.023) in seizure onset localisation. MR imaging was non-localising in two patients in whom it was normal and in another patient in whom there was bilateral symmetrical hippocampal atrophy. The 6-h IDEX SPECT scan is a viable alternative to FDG PET imaging in seizure onset localisation in TLE. (orig.)

  7. [{sup 18}F]FDG PET/CT outperforms [{sup 18}F]FDG PET/MRI in differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vrachimis, Alexis; Wenning, Christian; Weckesser, Matthias; Stegger, Lars [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Burg, Matthias Christian; Allkemper, Thomas [University Hospital Muenster, Department of Clinical Radiology, Muenster (Germany); Schaefers, Michael [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Westfaelische Wilhelms University Muenster, European Institute for Molecular Imaging, Muenster (Germany)

    2016-02-15

    To evaluate the diagnostic potential of PET/MRI with [{sup 18}F]FDG in comparison to PET/CT in patients with differentiated thyroid cancer suspected or known to have dedifferentiated. The study included 31 thyroidectomized and remnant-ablated patients who underwent a scheduled [{sup 18}F]FDG PET/CT scan and were then enrolled for a PET/MRI scan of the neck and thorax. The datasets (PET/CT, PET/MRI) were rated regarding lesion count, conspicuity, diameter and characterization. Standardized uptake values were determined for all [{sup 18}F]FDG-positive lesions. Histology, cytology, and examinations before and after treatment served as the standards of reference. Of 26 patients with a dedifferentiated tumour burden, 25 were correctly identified by both [{sup 18}F]FDG PET/CT and PET/MRI. Detection rates by PET/CT and PET/MRI were 97 % (113 of 116 lesions) and 85 % (99 of 113 lesions) for malignant lesions, and 100 % (48 of 48 lesions) and 77 % (37 of 48 lesions) for benign lesions, respectively. Lesion conspicuity was higher on PET/CT for both malignant and benign pulmonary lesions and in the overall rating for malignant lesions (p < 0.001). There was a difference between PET/CT and PET/MRI in overall evaluation of malignant lesions (p < 0.01) and detection of pulmonary metastases (p < 0.001). Surgical evaluation revealed three malignant lesions missed by both modalities. PET/MRI additionally failed to detect 14 pulmonary metastases and 11 benign lesions. In patients with thyroid cancer and suspected or known dedifferentiation, [{sup 18}F]FDG PET/MRI was inferior to low-dose [{sup 18}F]FDG PET/CT for the assessment of pulmonary status. However, for the assessment of cervical status, [{sup 18}F]FDG PET/MRI was equal to contrast-enhanced neck [{sup 18}F]FDG PET/CT. Therefore, [{sup 18}F]FDG PET/MRI combined with a low-dose CT scan of the thorax may provide an imaging solution when high-quality imaging is needed and high-energy CT is undesirable or the use of a contrast

  8. Early Detection of Brain Pathology Suggestive of Early AD Using Objective Evaluation of FDG-PET Scans

    Directory of Open Access Journals (Sweden)

    James C. Patterson

    2011-01-01

    Full Text Available The need for early detection of AD becomes critical as disease-modifying agents near the marketplace. Here, we present results from a study focused on improvement in detection of metabolic deficits related to neurodegenerative changes consistent with possible early AD with statistical evaluation of FDG-PET brain images. We followed 31 subjects at high risk or diagnosed with MCI/AD for 3 years. 15 met criteria for diagnosis of MCI, and five met criteria for AD. FDG-PET scans were completed at initiation and termination of the study. PET scans were read clinically and also evaluated objectively using Statistical Parametric Mapping (SPM. Using standard clinical evaluation of the FDG-PET scans, 11 subjects were detected, while 18 were detected using SPM evaluation. These preliminary results indicate that objective analyses may improve detection; however, early detection in at-risk normal subjects remains tentative. Several FDA-approved software packages are available that use objective analyses, thus the capacity exists for wider use of this method for MCI/AD.

  9. SU-F-I-57: Evaluate and Optimize PET Acquisition Overlap in 18F-FDG Oncology Wholebody PET/CT: Can We Scan PET Faster?

    International Nuclear Information System (INIS)

    Zhang, J; Natwa, M; Hall, NC; Knopp, MV; Knopp, MU; Zhang, B; Tung, C

    2016-01-01

    Purpose: The longer patient has to remain on the table during PET imaging, the higher the likelihood of motion artifacts due to patient discomfort. This study was to investigate and optimize PET acquisition overlap in 18F-FDG oncology wholebody PET/CT to speed up PET acquisition and improve patient comfort. Methods: Wholebody 18F-FDG PET/CT of phantoms, 8 pre-clinical patients (beagles) and 5 clinical oncology patients were performed in 90s/bed on a time-of-flight Gemini TF 64 system. Imaging of phantoms and beagles was acquired with reduced PET overlaps (40%, 33%, 27%, 20%, 13% and no overlap) in addition to the system default (53%). In human studies, 1 or 2 reduced overlaps from the listed options were used to acquire PET/CT sweeps right after the default standard of care imaging. Image quality was blindly reviewed using visual scoring criteria and quantitative SUV assessment. NEMA PET sensitivity was performed under different overlaps. Results: All PET exams demonstrated no significant impact on the visual grades for overlaps >20%. Blinded reviews assigned the best visual scores to PET using overlaps 53%–27%. Reducing overlap to 27% for oncology patients (12-bed) saved an average of ∼40% acquisition time (11min) compared to using the default overlap (18min). No significant SUV variances were found when reducing overlap to half of default for cerebellum, lung, heart, aorta, liver, fat, muscle, bone marrow, thighs and target lesions (p>0.05), except expected variability in urinary system. Conclusion: This study demonstrated by combined phantom, pre-clinical and clinical PET/CT scans that PET acquisition overlap in axial of today’s systems can be reduced and optimized. It showed that a reduction of PET acquisition overlap to 27% (half of system default) can be implemented to reduce table time by ∼40% to improve patient comfort and minimize potential motion artifacts, without prominently degrading image quality or compromising PET quantification.

  10. SU-F-I-57: Evaluate and Optimize PET Acquisition Overlap in 18F-FDG Oncology Wholebody PET/CT: Can We Scan PET Faster?

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J; Natwa, M; Hall, NC; Knopp, MV [The Ohio State University, Columbus, OH (United States); Knopp, MU [Pepperdine University, Malibu, CA (United States); Zhang, B; Tung, C [Philips Healthcare, Highland Heights, OH (United States)

    2016-06-15

    Purpose: The longer patient has to remain on the table during PET imaging, the higher the likelihood of motion artifacts due to patient discomfort. This study was to investigate and optimize PET acquisition overlap in 18F-FDG oncology wholebody PET/CT to speed up PET acquisition and improve patient comfort. Methods: Wholebody 18F-FDG PET/CT of phantoms, 8 pre-clinical patients (beagles) and 5 clinical oncology patients were performed in 90s/bed on a time-of-flight Gemini TF 64 system. Imaging of phantoms and beagles was acquired with reduced PET overlaps (40%, 33%, 27%, 20%, 13% and no overlap) in addition to the system default (53%). In human studies, 1 or 2 reduced overlaps from the listed options were used to acquire PET/CT sweeps right after the default standard of care imaging. Image quality was blindly reviewed using visual scoring criteria and quantitative SUV assessment. NEMA PET sensitivity was performed under different overlaps. Results: All PET exams demonstrated no significant impact on the visual grades for overlaps >20%. Blinded reviews assigned the best visual scores to PET using overlaps 53%–27%. Reducing overlap to 27% for oncology patients (12-bed) saved an average of ∼40% acquisition time (11min) compared to using the default overlap (18min). No significant SUV variances were found when reducing overlap to half of default for cerebellum, lung, heart, aorta, liver, fat, muscle, bone marrow, thighs and target lesions (p>0.05), except expected variability in urinary system. Conclusion: This study demonstrated by combined phantom, pre-clinical and clinical PET/CT scans that PET acquisition overlap in axial of today’s systems can be reduced and optimized. It showed that a reduction of PET acquisition overlap to 27% (half of system default) can be implemented to reduce table time by ∼40% to improve patient comfort and minimize potential motion artifacts, without prominently degrading image quality or compromising PET quantification.

  11. Bone position emission tomography with or without CT Is more accurate than bone scan for detection of bone metastasis

    International Nuclear Information System (INIS)

    Lee, Soo Jin; Lee, Wom Woo; Kim, Sang Eun

    2013-01-01

    Na1 8F bone positron emission tomography (bone PET) is a new imaging modality which is useful for the evaluation of bone diseases. Here, we compared the diagnostic accuracies between bone PET and bone scan for the detection of bone metastasis (BM). Sixteen cancer patients (M:F = 10:6, mean age = 60 ± 12 years) who underwent both bone PET and bone scan were analyzed. Bone PET was conducted 30 minutes after the injection of 370 MBq Na1 8F , and a bone scan was performed 3 hours after the injection of 1295 MBq 9 9mT c-hydroxymethylene diphosphonate. In the patient-based analysis (8 patients with BM and 8 without BM), the sensitivities of bone PET (100% 8/8) and bone scan (87.5% = 7/8) were not significantly different (p > 0.05), whereas the specificity of bone PET (87.5% = 7/8) was significantly greater than that of the bone scan (25% = 2/8) (p 8F bone PET is more accurate than bone scan for BM evaluation.

  12. 3D quantification of soil structure and functioning based on PET and CT scanning techniques

    DEFF Research Database (Denmark)

    Garbout, Amin

    This thesis explores the potential of PET and CT scanning techniques to quantify and visualize soil structure, root development, and soil/plant interactions. At the investigated scale, these non-invasive and nondestructive techniques have some obvious advantages compared with most other techniques....... The processed measurements show some expected and a few unexpected effects (or lack of effects) on different characteristics of soil structure. The combination of CT and PET scanning in an air plant soil controller system revealed some very interesting research possibilities. Interactions between soil structure...

  13. Potential for PET scanning as an aid to heat transfer modeling

    International Nuclear Information System (INIS)

    Samulski, T.V.; Harris, C.; Winget, J.M.; Dewhirst, M.W.

    1987-01-01

    Positron Emission Tomography (PET) using /sup 68/Ga labelled microspheres (15μ diam.) for quantitative imaging of perfusion is being investigated for its potential to aid in verification of parameter estimation techniques. Such techniques have been used in bioheat transfer modeling where direct measurement of perfusion has not been possible. Perfusion is needed, to utilize bioheat transfer to predict temperatures between measured points during hyperthermia therapy. A preliminary study showing that PET could be used for verification of parameter estimation was done by heating a melanoma in a dog in which multiple thermometry catheters were placed in a central plane. Microspheres were injected at the end of a one hour heat treatment session before power down. CT and PET images of the same plane were aligned so that relative counts/pixel in 2 cm regions of interest of the PET image were measured along several catheter tracks. In all tracks measured an inverse correlation was shown between relative perfusion and temperature along the catheter during thermal steady state. These data strongly imply that PET scans obtained in the manner described bear relevance to bioheat transfer and for verification of perfusion in heated tissues as estimated by heat transfer modeling

  14. Automatic extraction of myocardial mass and volumes using parametric images from dynamic nongated PET

    DEFF Research Database (Denmark)

    Harms, Hendrik Johannes; Hansson, Nils Henrik Stubkjær; Tolbod, Lars Poulsen

    2016-01-01

    Dynamic cardiac positron emission tomography (PET) is used to quantify molecular processes in vivo. However, measurements of left-ventricular (LV) mass and volumes require electrocardiogram (ECG)-gated PET data. The aim of this study was to explore the feasibility of measuring LV geometry using non......-gated dynamic cardiac PET. METHODS: Thirty-five patients with aortic-valve stenosis and 10 healthy controls (HC) underwent a 27-min 11C-acetate PET/CT scan and cardiac magnetic resonance imaging (CMR). HC were scanned twice to assess repeatability. Parametric images of uptake rate K1 and the blood pool were......LV and WT only and an overestimation for LVEF at lower values. Intra- and inter-observer correlations were >0.95 for all PET measurements. PET repeatability accuracy in HC was comparable to CMR. CONCLUSION: LV mass and volumes are accurately and automatically generated from dynamic 11C-acetate PET without...

  15. Strategies to reduce radiation dose in cardiac PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tung Hsin; Wu, Nien-Yun [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Wang, Shyh-Jen [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Wu, Jay [Institute of Radiological science, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Mok, Greta S.P. [Department of Electrical and Electronics Engineering, Faculty of Science and Technology, University of Macau, Macau (China); Yang, Ching-Ching, E-mail: g39220003@yahoo.com.tw [Department of Radiological Technology, Tzu Chi College of Technology, 880, Sec.2, Chien-kuo Rd. Hualien 970, Taiwan (China); Huang, Tzung-Chi, E-mail: tzungchi.huang@mail.cmu.edu.tw [Department of Biomedical Imaging and Radiological Science, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan (China)

    2011-08-21

    Background: Our aim was to investigate CT dose reduction strategies on a hybrid PET/CT scanner for cardiac applications. Materials: Image quality and dose estimation of different CT scanning protocols for CT coronary angiography (CTCA), and CT-based attenuation correction for PET imaging were investigated. Fifteen patients underwent CTCA, perfusion PET imaging at rest and under stress, and FDG PET for myocardial viability. These patients were divided into three groups based on the CTCA technique performed: retrospectively gated helical (RGH), ECG tube current modulation (ETCM), and prospective gated axial (PGA) acquisitions. All emission images were corrected for photon attenuation using CT images obtained by default setting and an ultra-low dose CT (ULDCT) scan. Results: Radiation dose in RGH technique was 22.2{+-}4.0 mSv. It was reduced to 10.95{+-}0.82 and 4.13{+-}0.31 mSv using ETCM and PGA techniques, respectively. Radiation dose in CT transmission scan was reduced by 96.5% (from 4.53{+-}0.5 to 0.16{+-}0.01 mSv) when applying ULDCT as compared to the default CT. No significant difference in terms of image quality was found among various protocols. Conclusion: The proposed CT scanning strategies, i.e. ETCM or PGA for CTCA and ULDCT for PET attenuation correction, could reduce radiation dose up to 47% without degrading imaging quality in an integrated cardiac PET/CT coronary artery examination.

  16. 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT scans as diagnostic tools in focal congenital hyperinsulinism

    DEFF Research Database (Denmark)

    Christiansen, Charlotte Dahl; Petersen, Henrik; Nielsen, Anne Lerberg

    2018-01-01

    (68Ga-DOTANOC) PET/CT as diagnostic tools in focal CHI. Methods: PET/CT scans of children with CHI admitted to Odense University Hospital between August 2005 and June 2016 were retrospectively evaluated visually and by their maximal standardized uptake values (SUVmax) by two independent examiners......, blinded for clinical, surgical and pathological data. Pancreatic histology was used as the gold standard. For patients without surgery, the genetic profile served as the gold standard. Results: Fifty-five CHI patients were examined by PET/CT (18F-DOPA n = 53, 68Ga-DOTANOC n = 18). Surgery was performed...... in 34 patients, no surgery in 21 patients. Fifty-one patients had a classifiable outcome, either by histology (n = 33, 22 focal lesions, 11 non-focal) or by genetics (n = 18, all non-focal). The predictive performance of 18F-DOPA PET/CT to identify focal CHI was identical by visual- and cut...

  17. The Cost-Utility Analysis of PET-Scan in Diagnosis and Treatment of Non-Small Cell Lung Carcinoma in Iran

    International Nuclear Information System (INIS)

    Akbari Sari, Ali; Ravaghi, Hamid; Mobinizadeh, Mohammadreza; Sarvari, Sima

    2013-01-01

    PET scan is a non-invasive, complex and expensive medical imaging technology that is normally used for the diagnosis and treatment of various diseases including lung cancer. The purpose of this study is to assess the cost effectiveness of this technology in the diagnosis and treatment of non- small cell lung carcinoma (NSCLC) in Iran. The main electronic databases including The Cochrane Library and Medline were searched to identify available evidence about the performance and effectiveness of technology. A standard decision tree model with seven strategies was used to perform the economic evaluation. Retrieved studies and expert opinion were used to estimate the cost of each treatment strategy in Iran. The costs were divided into three categories including capital costs (depreciation costs of buildings and equipment), staff costs and other expenses (including cost of consumables, running and maintenance costs). The costs were estimated in both IR-Rials and US-Dollars with an exchange rate of 10.000 IR Rials per one US Dollar according to the exchange rate in 2008. The total annual running cost of a PET scan was about 8850 to 13000 million Rials, (0.9 to 1.3 million US$). The average cost of performing a PET scan varied between 3 and 4.5 million Rials (300 to 450US$). The strategies 3 (mediastinoscopy alone) and 7 (mediastinoscopy after PET scan) were more cost-effective than other strategies, especially when the result of the CT-scan performed before PET scan was negative. The technical performance of PET scan is significantly higher than similar technologies for staging and treatment of NSCLC. In addition, it might slightly improve the treatment process and lead to a small level of increase in the quality adjusted life year (QALY) gained by these patients making it cost-effective for the treatment of NSCLC

  18. The Cost-Utility Analysis of PET-Scan in Diagnosis and Treatment of Non-Small Cell Lung Carcinoma in Iran.

    Science.gov (United States)

    Akbari Sari, Ali; Ravaghi, Hamid; Mobinizadeh, Mohammadreza; Sarvari, Sima

    2013-06-01

    PET scan is a non-invasive, complex and expensive medical imaging technology that is normally used for the diagnosis and treatment of various diseases including lung cancer. The purpose of this study is to assess the cost effectiveness of this technology in the diagnosis and treatment of non- small cell lung carcinoma (NSCLC) in Iran. The main electronic databases including The Cochrane Library and Medline were searched to identify available evidence about the performance and effectiveness of technology. A standard decision tree model with seven strategies was used to perform the economic evaluation. Retrieved studies and expert opinion were used to estimate the cost of each treatment strategy in Iran. The costs were divided into three categories including capital costs (depreciation costs of buildings and equipment), staff costs and other expenses (including cost of consumables, running and maintenance costs). The costs were estimated in both IR-Rials and US-Dollars with an exchange rate of 10.000 IR Rials per one US Dollar according to the exchange rate in 2008. The total annual running cost of a PET scan was about 8850 to 13000 million Rials, (0.9 to 1.3 million US$). The average cost of performing a PET scan varied between 3 and 4.5 million Rials (300 to 450US$). The strategies 3 (mediastinoscopy alone) and 7 (mediastinoscopy after PET scan) were more cost-effective than other strategies, especially when the result of the CT-scan performed before PET scan was negative. The technical performance of PET scan is significantly higher than similar technologies for staging and treatment of NSCLC. In addition, it might slightly improve the treatment process and lead to a small level of increase in the quality adjusted life year (QALY) gained by these patients making it cost-effective for the treatment of NSCLC.

  19. Imaging with 124I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT?

    International Nuclear Information System (INIS)

    Binse, I.; Poeppel, T.D.; Ruhlmann, M.; Gomez, B.; Bockisch, A.; Rosenbaum-Krumme, S.J.; Umutlu, L.

    2016-01-01

    The aim of this study was to compare integrated PET/CT and PET/MRI for their usefulness in detecting and categorizing cervical iodine-positive lesions in patients with differentiated thyroid cancer using 124 I as tracer. The study group comprised 65 patients at high risk of iodine-positive metastasis who underwent PET/CT (low-dose CT scan, PET acquisition time 2 min; PET/CT 2 ) followed by PET/MRI of the neck 24 h after 124 I administration. PET images from both modalities were analysed for the numbers of tracer-positive lesions. Two different acquisition times were used for the comparisons, one matching the PET/CT 2 acquisition time (2 min, PET/MRI 2 ) and the other covering the whole MRI scan time (30 min, PET/MRI 30 ). Iodine-positive lesions were categorized as metastasis, thyroid remnant or inconclusive according to their location on the PET/CT images. Morphological information provided by MRI was considered for evaluation of lesions on PET/MRI and for volume information. PET/MRI 2 detected significantly more iodine-positive metastases and thyroid remnants than PET/CT 2 (72 vs. 60, p = 0.002, and 100 vs. 80, p = 0.001, respectively), but the numbers of patients with at least one tumour lesion identified were not significantly different (21/65 vs. 17/65 patients). PET/MRI 30 tended to detect more PET-positive metastases than PET/MRI 2 (88 vs. 72), but the difference was not significant (p = 0.07). Of 21 lesions classified as inconclusive on PET/CT, 5 were assigned to metastasis or thyroid remnant when evaluated by PET/MRI. Volume information was available in 34 % of iodine-positive metastases and 2 % of thyroid remnants on PET/MRI. PET/MRI of the neck was found to be superior to PET/CT in detecting iodine-positive lesions. This was attributed to the higher sensitivity of the PET component, Although helpful in some cases, we found no substantial advantage of PET/MRI over PET/CT in categorizing iodine-positive lesions as either metastasis or thyroid remnant

  20. FDG PET and CT in locally advanced adenocarcinomas of the distal oesophagus. Clinical relevance of a discordant PET finding

    International Nuclear Information System (INIS)

    Stahl, A.; Wieder, H.; Schwaiger, M.; Weber, W.A.; Stollfuss, J.; Ott, K.; Fink, U.

    2005-01-01

    Aim: the incidence of adenocarcinomas of the distal oesophagus (ADE) has dramatically increased in Western countries. The clinical importance of a FDG PET finding discordant with CT was determined in patients with locally advanced ADE. In addition, tumour standardized uptake values (SUV) were correlated with patient survival. Patients, methods: 40 consecutive patients were analyzed retrospectively. All patients underwent an attenuation corrected FDG PET scan (neck, chest, abdomen) and contrast enhanced helical CT of the chest and abdomen. PET and CT scans were reviewed independently and concomitantly with respect to metastases in predefined lymph node sites and organs. Any discordance between PET and CT was assessed for clinical relevance. Clinical relevance was defined as a change in the overall therapeutic concept (curative vs. palliative). Follow-up imaging and histological evaluation served as the gold standard. Mean tumour SUVs were determined by 1.5 cm regions of interest placed over the tumour's maximum. Results: when read independently from the CT scan FDG PET indicated a clinically relevant change in tumour stage in 9/40 patients (23%) and a non-relevant change in 11/40 patients (28%). PET was correct in 5/9 patients (56%) with clinically relevant discordances. In 4/9 patients PET was incorrect (3 false positive due to suspicion of MI-lymph nodes or lung metastases, 1 false negative in disseminated liver metastases). With concomitant reading, PET indicated a clinically relevant change in tumour stage in 6/40 patients (15%) and a non-relevant change in 5/40 patients (13%). PET was correct in 5/6 patients (83%) with clinically relevant discordances. The patient with disseminated liver disease remained the single false negative. Overall, the benefit from PET was based on its higher diagnostic accuracy at organ sites. Tumour SUV did not correlate with patient survival. Conclusion: about half of discordances between FDG PET and CT are clinically relevant

  1. Imaging with {sup 124}I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT?

    Energy Technology Data Exchange (ETDEWEB)

    Binse, I.; Poeppel, T.D.; Ruhlmann, M.; Gomez, B.; Bockisch, A.; Rosenbaum-Krumme, S.J. [University of Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, Essen (Germany); Umutlu, L. [University of Duisburg-Essen, Medical Faculty, Department of Radiology, Essen (Germany)

    2016-06-15

    The aim of this study was to compare integrated PET/CT and PET/MRI for their usefulness in detecting and categorizing cervical iodine-positive lesions in patients with differentiated thyroid cancer using {sup 124}I as tracer. The study group comprised 65 patients at high risk of iodine-positive metastasis who underwent PET/CT (low-dose CT scan, PET acquisition time 2 min; PET/CT{sub 2}) followed by PET/MRI of the neck 24 h after {sup 124}I administration. PET images from both modalities were analysed for the numbers of tracer-positive lesions. Two different acquisition times were used for the comparisons, one matching the PET/CT{sub 2} acquisition time (2 min, PET/MRI{sub 2}) and the other covering the whole MRI scan time (30 min, PET/MRI{sub 30}). Iodine-positive lesions were categorized as metastasis, thyroid remnant or inconclusive according to their location on the PET/CT images. Morphological information provided by MRI was considered for evaluation of lesions on PET/MRI and for volume information. PET/MRI{sub 2} detected significantly more iodine-positive metastases and thyroid remnants than PET/CT{sub 2} (72 vs. 60, p = 0.002, and 100 vs. 80, p = 0.001, respectively), but the numbers of patients with at least one tumour lesion identified were not significantly different (21/65 vs. 17/65 patients). PET/MRI{sub 30} tended to detect more PET-positive metastases than PET/MRI{sub 2} (88 vs. 72), but the difference was not significant (p = 0.07). Of 21 lesions classified as inconclusive on PET/CT, 5 were assigned to metastasis or thyroid remnant when evaluated by PET/MRI. Volume information was available in 34 % of iodine-positive metastases and 2 % of thyroid remnants on PET/MRI. PET/MRI of the neck was found to be superior to PET/CT in detecting iodine-positive lesions. This was attributed to the higher sensitivity of the PET component, Although helpful in some cases, we found no substantial advantage of PET/MRI over PET/CT in categorizing iodine

  2. Adaptive statistical iterative reconstruction technology in the application of PET/CT whole body scans

    International Nuclear Information System (INIS)

    Xin Jun; Zhao Zhoushe; Li Hong; Lu Zhe; Wu Wenkai; Guo Qiyong

    2013-01-01

    Objective: To improve image quality of low dose CT in whole body PET/CT using adaptive statistical iterative reconstruction (ASiR) technology. Methods: Twice CT scans were performed with GE water model,scan parameters were: 120 kV, 120 and 300 mA respectively. In addition, 30 subjects treated with PET/CT were selected randomly, whole body PET/CT were performed after 18 F-FDG injection of 3.70 MBq/kg, Sharp IR+time of flight + VUE Point HD technology were used for 1.5 min/bed in PET; CT of spiral scan was performed under 120 kV using automatic exposure control technology (30-210 mA, noise index 25). Model and patients whole body CT images were reconstructed with conventional and 40% ASiR methods respectively, and the CT attenuation value and noise index were measured. Results: Research of model and clinical showed that standard deviation of ASiR method in model CT was 33.0% lower than the conventional CT reconstruction method (t =27.76, P<0.01), standard deviation of CT in normal tissues (brain, lung, mediastinum, liver and vertebral body) and lesions (brain, lung, mediastinum, liver and vertebral body) reduced by 21.08% (t =23.35, P<0.01) and 24.43% (t =16.15, P<0.01) respectively, especially for normal liver tissue and liver lesions, standard deviations of CT were reduced by 51.33% (t=34.21, P<0.0) and 49.54% (t=15.21, P<0.01) respectively. Conclusion: ASiR reconstruction method was significantly reduced the noise of low dose CT image and improved the quality of CT image in whole body PET/CT, which seems more suitable for quantitative analysis and clinical applications. (authors)

  3. Simple pulmonary eosinophilia evaluated by means of FDG PET: the findings of 14 cases

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Jung; Lee, Kyung Won [Seoul National University Bundang Hospital, Bundang (Korea, Republic of); Kim, Hyae Young; Lee, Joo Hyuk; Kim, Eun A; Kim, Seok Ki; Kang, Keon Wook [National Cancer Center, Seoul (Korea, Republic of)

    2005-12-15

    We wanted to describe the findings of simple pulmonary eosinophilia with using 18 fluorodeoxyglucose (FDG) positron emission tomography (PET). We analysed the findings of 14 patients who underwent thoracic computed tomography (CT) and PET, and then they were subsequently proven to have simple pulmonary eosinophilia. PET studies were performed in four patients with malignancy to evaluate for cancer metastasis, and PET scans were also done in 10 healthy subjects who underwent volunteer cancer screening. The PET scans were evaluated by using the maximum standardized uptake values (SUVs). The subjects' CT findings also were reviewed and correlated with the PET findings. A total of 42 nodules were detected on the CT scans. There were single nodules in three patients and multiple nodules in 11 patients (mean number of nodules: 3, range: 1-10, mean diameter: 9.5 mm {+-} 4.7). Twelve of 42 (28.6%) nodules showed FDG uptake and their mean maximum SUV was 2.5 {+-} 1.6 (range: 0.6-5.3). Five of six solid nodules showed FDG uptake (2.2 {+-} 1.1, range: 0.9-3.6), six of 11 semisolid nodules showed FDG uptake (3.1 {+-} 1.8, range: 0.6-5.3) and one of 25 pure ground-glass opacity nodule showed a maximum SUV of 0.8. The maximum SUVs of seven nodules in five patients were greater than 2.5. The maximum SUVs were significantly different according to the nodule types ({rho} < 0.001). Simple pulmonary eosinophilia commonly causes an increase in FDG uptake. Therefore, correlation of the PET findings with the CT findings or the peripheral eosinophil counts can help physicians arrive at the correct diagnosis of simple pulmonary eosinophilia.

  4. Sequential {sup 123}I-iododexetimide scans in temporal lobe epilepsy: comparison with neuroimaging scans (MR imaging and {sup 18}F-FDG PET imaging)

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Armin [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); Royal Prince Alfred Hospital, Comprehensive Epilepsy Service, Camperdown, NSW (Australia); University of Sydney, Faculty of Medicine, Sydney, NSW (Australia); Eberl, Stefan; Henderson, David; Beveridge, Scott; Constable, Chris [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); Fulham, Michael J. [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); Kassiou, Michael [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); University of Sydney, Department of Pharmacology, Sydney, NSW (Australia); Zaman, Aysha [University of Sydney, Faculty of Medicine, Sydney, NSW (Australia); Lo, Sing Kai [University of Sydney, Institute of International Health, Sydney, NSW (Australia)

    2005-02-01

    Muscarinic acetylcholine receptors (mAChRs) play an important role in the generation of seizures. Single-photon emission computed tomography (SPECT) with {sup 123}I-iododexetimide (IDEX) depicts tracer uptake by mAChRs. Our aims were to: (a) determine the optimum time for interictal IDEX SPECT imaging; (b) determine the accuracy of IDEX scans in the localisation of seizure foci when compared with video EEG and MR imaging in patients with temporal lobe epilepsy (TLE); (c) characterise the distribution of IDEX binding in the temporal lobes and (d) compare IDEX SPECT and {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in identifying seizure foci. We performed sequential scans using IDEX SPECT imaging at 0, 3, 6 and 24 h in 12 consecutive patients with refractory TLE undergoing assessment for epilepsy surgery. Visual and region of interest analyses of the mesial, lateral and polar regions of the temporal lobes were used to compare IDEX SPECT, FDG PET and MR imaging in seizure onset localisation. The 6-h IDEX scan (92%; {kappa}=0.83, p=0.003) was superior to the 0-h (36%; {kappa}=0.01, p>0.05), 3-h (55%; {kappa}=0.13, p>0.05) and 24-h IDEX scans in identifying the temporal lobe of seizure origin. The 6-h IDEX scan correctly predicted the temporal lobe of seizure origin in two patients who required intracranial EEG recordings to define the seizure onset. Reduced ligand binding was most marked at the temporal pole and mesial temporal structures. IDEX SPECT was superior to interictal FDG PET (75%; {kappa}=0.66, p=0.023) in seizure onset localisation. MR imaging was non-localising in two patients in whom it was normal and in another patient in whom there was bilateral symmetrical hippocampal atrophy. The 6-h IDEX SPECT scan is a viable alternative to FDG PET imaging in seizure onset localisation in TLE. (orig.)

  5. Triage of Limited Versus Extensive Disease on 18F-FDG PET/CT Scan in Small Cell lung Cancer

    Directory of Open Access Journals (Sweden)

    Saima Riaz

    2017-06-01

    Full Text Available Objective(s: Small cell lung cancer (SCLC is an aggressive neuroendocrine carcinoma, which accounts for 10-15% of pulmonary cancers and exhibits early metastatic spread. This study aimed to determine the added value of 18F-FDG PET/CT imaging in tumor, node, and metastasis (TNM staging of SCLC, compared to the conventional computed tomography (CT scan and its potential role as a prognosticator.Methods: This retrospective review was conducted on 23 patients, who were histopathologically diagnosed to have SCLC and referred for undergoing 18F-FDG PET/CT scanning during October 2009-December 2015. The rate of agreement between the CT and 18F-FDG PET/CT findings for TNM staging was calculated using the Cohen’s kappa (κ. The median follow-up time was eight months, ranging 27-3 months. The overall and disease-free survival rates were calculated based on the extent of disease.Results: 19 cases were male and four female with the mean age of 58±9 years. The 18F-FDG PET/CT identified limited and extensive diseases in 2 (8.7% and 21 (91.3% patients, respectively. In addition, the results of the Cohen’s kappa demonstrated a strong (κ=0.82, fair (κ=0.24, and poor (κ=0.12 agreement between the PET/CT and CT findings for determining tumor, node, and metastasis stages, respectively. The 18F-FDG PET/CT scans upstaged disease in 47% of the cases with visceral and osseous metastasis. The disease-free survival rates for the limited and extensive diseases were 100% and 23% within the 12-month follow-up. In addition, 8 (35% patients expired during the follow-up period.Conclusion: Improved nodal and metastatic disease identification highlights the role of 18F-FDG PET/CT scanning in initial staging of SCLC with prognostic implications.

  6. Brain metabolic changes in Hodgkin disease patients following diagnosis and during the disease course: An 18F-FDG PET/CT study.

    Science.gov (United States)

    Chiaravalloti, Agostino; Pagani, Marco; Cantonetti, Maria; DI Pietro, Barbara; Tavolozza, Mario; Travascio, Laura; DI Biagio, Daniele; Danieli, Roberta; Schillaci, Orazio

    2015-02-01

    The aim of the present study was to investigate brain glucose metabolism in patients with Hodgkin disease (HD) after diagnosis and during chemotherapy treatment. Following the administration of first-line doxorubicin, bleomycin, vinblastine and dacarbazine (ABVD) chemotherapy, 74 HD patients underwent 18 F-fluoro-2-deoxy-D-glucose ( 18 F-FDG) positron emission tomography (PET)/computed tomography brain scans, both baseline (PET0) and interim (PET2) at the Department of Biomedicine and Prevention, University of Rome Tor Vergata (Rome, Italy). Fifty-seven patients were further evaluated 15±6 days after four additional cycles (PET6). Furthermore, a control group (CG) of 40 chemotherapy-naïve subjects was enrolled. Differences in brain 18 F-FDG uptake between the CG, PET0, PET2 and PET6 scans were analyzed using statistical parametric mapping. Compared with the PET0 and CG scans, the PET2 scan demonstrated a higher metabolic activity in Brodmann area (BA) 39, and a metabolic reduction in BA 11 bilaterally and in left BA 32. All of these changes disappeared at PET6. The results of the present study indicate that ABVD chemotherapy has a limited impact on brain metabolism.

  7. PET-CT in the evaluation of metastatic breast cancer

    International Nuclear Information System (INIS)

    Sullivan, A.M.; Fulham, M.J.

    2005-01-01

    A 44-year-old woman underwent two PET-CT scans for the evaluation of metastatic breast cancer. A radical left mastectomy with axillary dissection (1 of 43 nodes positive) followed by chemotherapy, was performed in 1998. She represented in October 2003 with a left supraclavicular fossa mass. This was confirmed to be recurrent breast cancer on FNAB. She was considered for a radical neck dissection and the surgeon requested a PET scan. Other imaging at this time included a normal bone scan and CT brain. CT neck/chest/abdomen/pelvis showed soft tissue thickening in the left lower neck. The PET-CT scan showed multiple glucose avid lesions in the sternum, mediastinum and neck lymph nodes as well as a small lesion in the proximal left femur consistent with extensive metastatic disease. Surgery was cancelled and Femara chemotherapy commenced. Femara was stopped in March 2004 and the patient began alternative therapies. In October 2004 she presented to her surgeon with new back and chest pain. CT of the neck/chest/abdomen/pelvis showed a soft tissue mass in the upper sternum and a lymph node at the base of the neck highly suspicious for metastatic disease. There were also 2 suspicious lung nodules and a lesion in the proximal left femur reported as an osteoid osteoma. Wholebody PET-CT scans were performed on a Siemens LSO Biograph, 60mins after the injection of 350Mbq of Fl 8-Fag, with arms at the patient's side and head in the field-of-view. On both occasions the patient had to pay for the scan. On the 2004 PET-CT scan, the CT brain revealed multiple hyperdense lesions consistent with hemorrhagic metastases. In addition, there were innumerable glucose avid foci involving viscera, nodes and skeleton consistent with disseminated disease. Our case illustrates: (i) the value of PET in the management of metastatic breast cancer; (ii) the improved accuracy of PET-CT in delineating sites of disease; (iii) the issues of head movement in PET-CT and. (iv) the problem with lack of

  8. 18 F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients.

    Science.gov (United States)

    Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per; Højgaard, Liselotte; Roed, Henrik; Berthelsen, Anne K

    2018-03-01

    18 F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part of the radiotherapy planning. 'A major change of treatment strategy' was defined as either including more lesions in the gross tumour volume (GTV) distant from the primary tumour or a change in treatment modalities. The study includes 581 consecutive patients who underwent an FDG PET/CT scan for radiotherapy planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET-positive GTV (GTV-PET). For 63 of the patients (11%), the PET/CT simulation scans resulted in a major change in treatment strategy because of the additional diagnostic information. Changes were most frequently observed in patients with lung cancer (20%) or upper gastrointestinal cancer (12%). In 65% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change in treatment strategy in 11% of 581 patients. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  9. PET/MRI in head and neck cancer: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Platzek, Ivan; Laniado, Michael [Dresden University Hospital, Department of Radiology, Dresden (Germany); Beuthien-Baumann, Bettina [Dresden University Hospital, Department of Nuclear Medicine, Dresden (Germany); Schneider, Matthias [Dresden University Hospital, Oral and Maxillofacial Surgery, Dresden (Germany); Gudziol, Volker [Dresden University Hospital, Department of Otolaryngology, Dresden (Germany); Langner, Jens; Schramm, Georg; Hoff, Joerg van den [Institute of Bioinorganic and Radiopharmaceutical Chemistry, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Kotzerke, Joerg [Dresden University Hospital, Nuclear Medicine, Dresden (Germany)

    2013-01-15

    To evaluate the feasibility of PET/MRI (positron emission tomography/magnetic resonance imaging) with FDG ({sup 18}F-fluorodeoxyglucose) for initial staging of head and neck cancer. The study group comprised 20 patients (16 men, 4 women) aged between 52 and 81 years (median 64 years) with histologically proven squamous cell carcinoma of the head and neck region. The patients underwent a PET scan on a conventional scanner and a subsequent PET/MRI examination on a whole-body hybrid system. FDG was administered intravenously prior to the conventional PET scan (267-395 MBq FDG, 348 MBq on average). The maximum standardized uptake values (SUV{sub max}) of the tumour and of both cerebellar hemispheres were determined for both PET datasets. The numbers of lymph nodes with increased FDG uptake were compared between the two PET datasets. No MRI-induced artefacts where observed in the PET images. The tumour was detected by PET/MRI in 17 of the 20 patients, by PET in 16 and by MRI in 14. The PET/MRI examination yielded significantly higher SUV{sub max} than the conventional PET scanner for both the tumour (p < 0.0001) and the cerebellum (p = 0.0009). The number of lymph nodes with increased FDG uptake detected using the PET dataset from the PET/MRI system was significantly higher the number detected by the stand-alone PET system (64 vs. 39, p = 0.001). The current study demonstrated that PET/MRI of the whole head and neck region is feasible with a whole-body PET/MRI system without impairment of PET or MR image quality. (orig.)

  10. Prediction of neoadjuvant radiation chemotherapy response and survival using pretreatment [{sup 18}F]FDG PET/CT scans in locally advanced rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Ji-In; Ha, Seunggyun; Kim, Sang Eun [Seoul National University Bundang Hospital, Department of Nuclear Medicine, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Kang, Sung-Bum; Oh, Heung-Kwon [Seoul National University Bundang Hospital, Department of Surgery, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Lee, Keun-Wook [Seoul National University Bundang Hospital, Department of Internal Medicine, Seongnam (Korea, Republic of); Lee, Hye-Seung [Seoul National University Bundang Hospital, Department of Pathology, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Kim, Jae-Sung [Seoul National University Bundang Hospital, Department of Radiation Oncology, Seongnam (Korea, Republic of); Lee, Ho-Young [Seoul National University Bundang Hospital, Department of Nuclear Medicine, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of)

    2016-03-15

    The aim of this study was to investigate metabolic and textural parameters from pretreatment [{sup 18}F]FDG PET/CT scans for the prediction of neoadjuvant radiation chemotherapy response and 3-year disease-free survival (DFS) in patients with locally advanced rectal cancer (LARC). We performed a retrospective review of 74 patients diagnosed with LARC who were initially examined with [{sup 18}F]FDG PET/CT, and who underwent neoadjuvant radiation chemotherapy followed by complete resection. The standardized uptake value (mean, peak, and maximum), metabolic volume (MV), and total lesion glycolysis of rectal cancer lesions were calculated using the isocontour method with various thresholds. Using three-dimensional textural analysis, about 50 textural features were calculated for PET images. Response to neoadjuvant radiation chemotherapy, as assessed by histological tumour regression grading (TRG) after surgery and 3-year DFS, was evaluated using univariate/multivariate binary logistic regression and univariate/multivariate Cox regression analyses. MVs calculated using the thresholds mean standardized uptake value of the liver + two standard deviations (SDs), and mean standard uptake of the liver + three SDs were significantly associated with TRG. Textural parameters from histogram-based and co-occurrence analysis were significantly associated with TRG. However, multivariate analysis revealed that none of these parameters had any significance. On the other hand, MV calculated using various thresholds was significantly associated with 3-year DFS, and MV calculated using a higher threshold tended to be more strongly associated with 3-year DFS. In addition, textural parameters including kurtosis of the absolute gradient (GrKurtosis) were significantly associated with 3-year DFS. Multivariate analysis revealed that GrKurtosis could be a prognostic factor for 3-year DFS. Metabolic and textural parameters from initial [{sup 18}F]FDG PET/CT scans could be indexes to assess

  11. Assessment of cerebral P-glycoprotein expression and function with PET by combined [11C]inhibitor and [11C]substrate scans in rats

    International Nuclear Information System (INIS)

    Müllauer, Julia; Karch, Rudolf; Bankstahl, Jens P.; Bankstahl, Marion; Stanek, Johann; Wanek, Thomas; Mairinger, Severin; Müller, Markus; Löscher, Wolfgang; Langer, Oliver; Kuntner, Claudia

    2013-01-01

    Introduction: The adenosine triphosphate-binding cassette (ABC) transporter P-glycoprotein (Pgp) protects the brain from accumulation of lipophilic compounds by active efflux transport across the blood–brain barrier. Changes in Pgp function/expression may occur in neurological disorders, such as epilepsy, Alzheimer’s or Parkinson’s disease. In this work we investigated the suitability of the radiolabeled Pgp inhibitors [ 11 C]elacridar and [ 11 C]tariquidar to visualize Pgp density in rat brain with PET. Methods: Rats underwent a first PET scan with [ 11 C]elacridar (n = 5) or [ 11 C]tariquidar (n = 6) followed by a second scan with the Pgp substrate (R)-[ 11 C]verapamil after administration of unlabeled tariquidar at a dose which half-maximally inhibits cerebral Pgp (3 mg/kg). Compartmental modeling using an arterial input function and Logan graphical analysis were used to estimate rate constants and volumes of distribution (V T ) of radiotracers in different brain regions. Results: Brain PET signals of [ 11 C]elacridar and [ 11 C]tariquidar were very low (∼ 0.5 standardized uptake value, SUV). There was a significant negative correlation between V T and K 1 (i.e. influx rate constant from plasma into brain) values of [ 11 C]elacridar or [ 11 C]tariquidar and V T and K 1 values of (R)-[ 11 C]verapamil in different brain regions which was consistent with binding of [ 11 C]inhibitors to Pgp and efflux of (R)-[ 11 C]verapamil by Pgp. Conclusion: The small Pgp binding signals obtained with [ 11 C]elacridar and [ 11 C]tariquidar limit the applicability of these tracers to measure cerebral Pgp density. PET tracers with higher (i.e. subnanomolar) binding affinities will be needed to visualize the low density of Pgp in brain

  12. Role of FDG-PET and PET/CT in the diagnosis of prolonged febrile states

    International Nuclear Information System (INIS)

    Jaruskova, M.; Belohlavek, O.

    2006-01-01

    The role of FDG-PET and PET/CT in patients whose main symptom is prolonged fever has not yet been defined. We addressed this topic in a retrospective study. A total of 124 patients (referred between May 2001 and December 2004) with fever of unknown origin or prolonged fever due to a suspected infection of a joint or vascular prosthesis were included in the study. The patients underwent either FDG-PET or FDG-PET/CT scanning. Sixty-seven patients had a negative focal FDG-PET finding; in this group the method was regarded as unhelpful in determining a diagnosis, and no further investigation was pursued. We tried to obtain clinical confirmation for all patients with positive PET findings. Fifty-seven (46%) patients had positive FDG-PET findings. In six of them no further clinical information was available. Fifty-one patients with positive PET findings and 118 patients in total were subsequently evaluated. Systemic connective tissue disease was confirmed in 17 patients, lymphoma in three patients, inflammatory bowel disease in two patients, vascular prosthesis infection in seven patients, infection of a hip or knee replacement in seven patients, mycotic aneurysm in two patients, abscess in four patients and AIDS in one patient. In eight (16%) patients the finding was falsely positive. FDG-PET or PET/CT contributed to establishing a final diagnosis in 84% of the 51 patients with positive PET findings and in 36% of all 118 evaluated patients with prolonged fever. (orig.)

  13. Fibroelastic pseudotumor elastofibroma dorsi detected by 18F-FDG PET/CT scan and by postherapy radioiodine SPECT/CT.

    Science.gov (United States)

    Oporto, M; Cepa, F; Orta, N; Rubí, S; Navalón, H; Peña, C

    Radioiodine uptake in the thyroid tissue, metastasis of differentiated thyroid cancer (DTC), and in other tissues, depends on the expression of sodium-iodide symporter (NIS). Vascular permeability, effusions, inflammation, and other mechanisms may also play a role in the accumulation of radioactive iodine. A 63-year-old woman underwent radioiodine therapy, as well as a post-therapy whole-body scan, as she was suspected of having lung metastasis from thyroid carcinoma. The scan not only showed uptake at the lung metastasis but also a faint diffuse bilateral uptake in the posterior thorax. On SPECT/CT this uptake was located in a known Elastofibroma Dorsi (ED) previously diagnosed by contrast CT and viewed in a FDG PET/CT. The radioiodine uptake in ED, especially if typical, is not a diagnostic problem in SPECT/CT study, but can be misleading in a study limited to a few planar images, particularly if the uptake occurs asymmetrically, or ED is located in a unsuspected area. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  14. Neurolymphomatosis detected by 18F-FDG PET/CT scan - a case report

    International Nuclear Information System (INIS)

    Czepczynski, R.; Guzikowska-Ruszkowska, I.; Sowinski, J.

    2008-01-01

    Lymphoma involvement of the peripheral nerves is a rare clinical presentation of non-Hodgkin lymphoma. We report the case of a 59-year-old woman with the defect of peripheral motor neuron admitted for PET/CT scan. The scan disclosed increased 18 F-FDG activity along the brachial and lumbar plexuses together with very intense 18 F-FDG uptake in the cervical lymph node masses. The diagnosis, based on the subsequent histopathologic lymph node examination, was diffuse large B-cell lymphoma. (authors)

  15. Assessing the kidney function parameters glomerular filtration rate and effective renal plasma flow with dynamic FDG-PET/MRI in healthy subjects.

    Science.gov (United States)

    Geist, Barbara K; Baltzer, Pascal; Fueger, Barbara; Hamboeck, Martina; Nakuz, Thomas; Papp, Laszlo; Rasul, Sazan; Sundar, Lalith Kumar Shiyam; Hacker, Marcus; Staudenherz, Anton

    2018-05-09

    A method was developed to assess the kidney parameters glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) from 2-deoxy-2-[ 18 F]fluoro-D-glucose (FDG) concentration behavior in kidneys, measured with positron emission tomography (PET) scans. Twenty-four healthy adult subjects prospectively underwent dynamic simultaneous PET/magnetic resonance imaging (MRI) examination. Time activity curves (TACs) were obtained from the dynamic PET series, with the guidance of MR information. Patlak analysis was performed to determine the GFR, and based on integrals, ERPF was calculated. Results were compared to intra-individually obtained reference values determined from venous blood samples. Total kidney GFR and ERPF as estimated by dynamic PET/MRI were highly correlated to their reference values (r = 0.88/p dynamic FDG PET/MRI scans in healthy kidneys. This has advantages for patients getting a routine scan, where additional examinations for kidney function estimation could be avoided. Further studies are required for transferring this PET/MRI method to PET/CT applications.

  16. {sup 11}C-Choline PET/CT for restaging prostate cancer. Results from 4,426 scans in a single-centre patient series

    Energy Technology Data Exchange (ETDEWEB)

    Graziani, Tiziano; Ceci, Francesco; Polverari, Giulia; Lima, Giacomo Maria; Lodi, Filippo; Fanti, Stefano [S. Orsola-Malpighi Hospital, University of Bologna, Service of Nuclear Medicine, Bologna (Italy); Castellucci, Paolo [S. Orsola-Malpighi Hospital, University of Bologna, Service of Nuclear Medicine, Bologna (Italy); Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, UO Medicina Nucleare, Bologna (Italy); Morganti, Alessio Giuseppe [S. Orsola-Malpighi Hospital, University of Bologna, Department of Radiotherapy, Bologna (Italy); Ardizzoni, Andrea [S. Orsola-Malpighi Hospital, University of Bologna, Department of Oncology, Bologna (Italy); Schiavina, Riccardo [S. Orsola-Malpighi Hospital, University of Bologna, Department of Urology, Bologna (Italy)

    2016-10-15

    To evaluate {sup 11}C-choline PET/CT as a diagnostic tool for restaging prostate cancer (PCa), in a large, homogeneous and clinically relevant population of patients with biochemical recurrence (BCR) of PCa after primary therapy. The secondary aim was to assess the best timing for performing {sup 11}C-choline PET/CT during BCR. We retrospectively analysed 9,632 {sup 11}C-choline PET/CT scans performed in our institution for restaging PCa from January 2007 to June 2015. The inclusion criteria were: (1) proven PCa radically treated with radical prostatectomy (RP) or with primary external beam radiotherapy (EBRT); (2) PSA serum values available; (3) proven BCR (PSA >0.2 ng/mL after RP or PSA >2 ng/mL above the nadir after primary EBRT with rising PSA levels). Finally, 3,203 patients with recurrent PCa matching all the inclusion criteria were retrospectively enrolled and 4,426 scans were analysed. Overall, 52.8 % of the {sup 11}C-choline PET/CT scans (2,337/4,426) and 54.8 % of the patients (1,755/3,203) were positive. In 29.4 % of the scans, at least one distant finding was observed. The mean and median PSA values were, respectively, 4.9 and 2.1 ng/mL at the time of the scan (range 0.2 - 50 ng/mL). In our series, 995 scans were performed in patients with PSA levels between 1 and 2 ng/mL. In this subpopulation the positivity rate in the 995 scans was 44.7 %, with an incidence of distant findings of 19.2 % and an incidence of oligometastatic disease (one to three lesions) of 37.7 %. The absolute PSA value at the time of the scan and ongoing androgen deprivation therapy were associated with an increased probability of a positive {sup 11}C-choline PET/CT scan (p < 0.0001). In the ROC analysis, a PSA value of 1.16 ng/mL was the optimal cut-off value. In patients with a PSA value <1.16 ng/mL, 26.8 % of 1,426 {sup 11}C-choline PET/CT scans were positive, with oligometastatic disease in 84.7 % of positive scans. In a large cohort of patients, the feasibility of {sup 11}C

  17. Automated measurement of uptake in cerebellum, liver, and aortic arch in full-body FDG PET/CT scans.

    Science.gov (United States)

    Bauer, Christian; Sun, Shanhui; Sun, Wenqing; Otis, Justin; Wallace, Audrey; Smith, Brian J; Sunderland, John J; Graham, Michael M; Sonka, Milan; Buatti, John M; Beichel, Reinhard R

    2012-06-01

    The purpose of this work was to develop and validate fully automated methods for uptake measurement of cerebellum, liver, and aortic arch in full-body PET/CT scans. Such measurements are of interest in the context of uptake normalization for quantitative assessment of metabolic activity and/or automated image quality control. Cerebellum, liver, and aortic arch regions were segmented with different automated approaches. Cerebella were segmented in PET volumes by means of a robust active shape model (ASM) based method. For liver segmentation, a largest possible hyperellipsoid was fitted to the liver in PET scans. The aortic arch was first segmented in CT images of a PET/CT scan by a tubular structure analysis approach, and the segmented result was then mapped to the corresponding PET scan. For each of the segmented structures, the average standardized uptake value (SUV) was calculated. To generate an independent reference standard for method validation, expert image analysts were asked to segment several cross sections of each of the three structures in 134 F-18 fluorodeoxyglucose (FDG) PET/CT scans. For each case, the true average SUV was estimated by utilizing statistical models and served as the independent reference standard. For automated aorta and liver SUV measurements, no statistically significant scale or shift differences were observed between automated results and the independent standard. In the case of the cerebellum, the scale and shift were not significantly different, if measured in the same cross sections that were utilized for generating the reference. In contrast, automated results were scaled 5% lower on average although not shifted, if FDG uptake was calculated from the whole segmented cerebellum volume. The estimated reduction in total SUV measurement error ranged between 54.7% and 99.2%, and the reduction was found to be statistically significant for cerebellum and aortic arch. With the proposed methods, the authors have demonstrated that

  18. Conventional 3D staging PET/CT in CT simulation for lung cancer: impact of rigid and deformable target volume alignments for radiotherapy treatment planning.

    Science.gov (United States)

    Hanna, G G; Van Sörnsen De Koste, J R; Carson, K J; O'Sullivan, J M; Hounsell, A R; Senan, S

    2011-10-01

    Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans. 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTV(CT)) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice's similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan. When the GTV(CT) delineated on the staging scan after both rigid registration and deformation was compared with the GTV(CT)on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p = 0.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration. No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.

  19. Estimation of radiation dose to patients from 18 FDG whole body PET/CT investigations using dynamic PET scan protocol

    Directory of Open Access Journals (Sweden)

    Aruna Kaushik

    2015-01-01

    Full Text Available Background & objectives: There is a growing concern over the radiation exposure of patients from undergoing 18FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography/computed tomography whole body investigations. The aim of the present study was to study the kinetics of 18FDG distributions and estimate the radiation dose received by patients undergoing 18FDG whole body PET/CT investigations. Methods: Dynamic PET scans in different regions of the body were performed in 49 patients so as to measure percentage uptake of 18FDG in brain, liver, spleen, adrenals, kidneys and stomach. The residence time in these organs was calculated and radiation dose was estimated using OLINDA software. The radiation dose from the CT component was computed using the software CT-Expo and measured using computed tomography dose index (CTDI phantom and ionization chamber. As per the clinical protocol, the patients were refrained from eating and drinking for a minimum period of 4 h prior to the study. Results: The estimated residence time in males was 0.196 h (brain, 0.09 h (liver, 0.007 h (spleen, 0.0006 h (adrenals, 0.013 h (kidneys and 0.005 h (stomach whereas it was 0.189 h (brain, 0.11 h (liver, 0.01 h (spleen, 0.0007 h (adrenals, 0.02 h (kidneys and 0.004 h (stomach in females. The effective dose was found to be 0.020 mSv/MBq in males and 0.025 mSv/MBq in females from internally administered 18FDG and 6.8 mSv in males and 7.9 mSv in females from the CT component. For an administered activity of 370 MBq of 18FDG, the effective dose from PET/CT investigations was estimated to be 14.2 mSv in males and 17.2 mSv in females. Interpretation & conclusions: The present results did not demonstrate significant difference in the kinetics of 18FDG distribution in male and female patients. The estimated PET/CT doses were found to be higher than many other conventional diagnostic radiology examinations suggesting that all efforts should be made to clinically justify and

  20. Estimation of radiation dose to patients from (18) FDG whole body PET/CT investigations using dynamic PET scan protocol.

    Science.gov (United States)

    Kaushik, Aruna; Jaimini, Abhinav; Tripathi, Madhavi; D'Souza, Maria; Sharma, Rajnish; Mondal, Anupam; Mishra, Anil K; Dwarakanath, Bilikere S

    2015-12-01

    There is a growing concern over the radiation exposure of patients from undergoing 18FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography/computed tomography) whole body investigations. The aim of the present study was to study the kinetics of 18FDG distributions and estimate the radiation dose received by patients undergoing 18FDG whole body PET/CT investigations. Dynamic PET scans in different regions of the body were performed in 49 patients so as to measure percentage uptake of 18FDG in brain, liver, spleen, adrenals, kidneys and stomach. The residence time in these organs was calculated and radiation dose was estimated using OLINDA software. The radiation dose from the CT component was computed using the software CT-Expo and measured using computed tomography dose index (CTDI) phantom and ionization chamber. As per the clinical protocol, the patients were refrained from eating and drinking for a minimum period of 4 h prior to the study. The estimated residence time in males was 0.196 h (brain), 0.09 h (liver), 0.007 h (spleen), 0.0006 h (adrenals), 0.013 h (kidneys) and 0.005 h (stomach) whereas it was 0.189 h (brain), 0.11 h (liver), 0.01 h (spleen), 0.0007 h (adrenals), 0.02 h (kidneys) and 0.004 h (stomach) in females. The effective dose was found to be 0.020 mSv/MBq in males and 0.025 mSv/MBq in females from internally administered 18FDG and 6.8 mSv in males and 7.9 mSv in females from the CT component. For an administered activity of 370 MBq of 18FDG, the effective dose from PET/CT investigations was estimated to be 14.2 mSv in males and 17.2 mSv in females. The present results did not demonstrate significant difference in the kinetics of 18FDG distribution in male and female patients. The estimated PET/CT doses were found to be higher than many other conventional diagnostic radiology examinations suggesting that all efforts should be made to clinically justify and carefully weigh the risk-benefit ratios prior to every 18FDG whole body PET

  1. The effectiveness of FDG PET/CT for evaluation of intracardiac mass and pericardiac lesions

    International Nuclear Information System (INIS)

    Hwang, H. S; Yun, M. J.; Lee, J. D

    2004-01-01

    Fluorodeoxyglucose positron emission tomography has been known to be useful in diagnosis and staging of malignancy. FDG PET has high sensitivity and easily detects malignant lesions that are missed and overlooked in anatomic imaging modality. We assessed the impact of FDG PET/CT compared to echocardiogram and enhanced CT scan. Five patients of intra- and pericardiac lesions were included in this study. All patients underwent PET/CT(GE Discovery ST), enhanced CT scan and echocardiogram. Two patients were non-small cell lung cancer, one of RV metastatic mass, the other of pericardial metastasis in RV region. One of melanoma with systemic metastases, had RA malignant masses. One of suspicious lung cancer and intracardiac mass, has proved to benign LA thrombosis. One of lymphoma showed suspicious cardiac mass, but revealed no abnormality in echocardiogram. FDG PET/CT is sensitive and useful method to detect intra- and pericardiac mass in patients with suspected malignancy. All patients except lymphoma were correctly diagnosed using FDG PET/ICT

  2. Utility of Amyloid and FDG-PET in Clinical Practice: Differences Between Secondary and Tertiary Care Memory Units.

    Science.gov (United States)

    Lage, Carmen; Suarez, Andrea Gonzalez; Pozueta, Ana; Riancho, Javier; Kazimierczak, Martha; Bravo, Maria; Jimenez Bonilla, Julio; de Arcocha Torres, Marıa; Quirce, Remedios; Banzo, Ignacio; Vazquez-Higuera, Jose Luis; Rabinovici, Gil D; Rodriguez-Rodriguez, Eloy; Sánchez-Juan, Pascual

    2018-04-27

    The clinical utility of amyloid positron emission tomography (PET) has not been fully established. Our aim was to evaluate the effect of amyloid imaging on clinical decision making in a secondary care unit and compare our results with a previous study in a tertiary center following the same methods. We reviewed retrospectively 151 cognitively impaired patients who underwent amyloid (Pittsburgh compound B [PiB]) PET and were evaluated clinically before and after the scan in a secondary care unit. One hundred and fifty concurrently underwent fluorodeoxyglucose (FDG)-PET. We assessed changes between the pre- and post-PET clinical diagnosis and Alzheimer's disease treatment plan. The association between PiB/FDG results and changes in management was evaluated using χ2 and multivariate logistic regression. Concordance between classification based on scan readings and baseline diagnosis was 66% for PiB and 47% for FDG. The primary diagnosis changed after PET in 17.2% of cases. When examined independently, discordant PiB and discordant FDG were both associated with diagnostic change (p PET due to a higher likelihood of diagnostic change. We found that changes in diagnosis after PET in our secondary center almost doubled those of our previous analysis of a tertiary unit (9% versus 17.2%). Our results offer some clues about the rational use of amyloid PET in a secondary care memory unit stressing its utility in mild cognitive impairment patients.

  3. FDG-PET/CT imaging in the management of HIV-associated multicentric Castleman's disease

    International Nuclear Information System (INIS)

    Barker, Rob; Kazmi, Fahrad; Stebbing, Justin; Chinn, Roger; Ngan, Sarah; Bower, Mark; Nelson, Mark; O'Doherty, Michael

    2009-01-01

    To evaluate the role of FDG-PET/CT scanning in the management of HIV-associated multicentric Castleman's disease (MCD) a rare lymphoproliferative disorder associated with infection by human herpesvirus 8 (HHV8). Nine patients with histologically confirmed MCD underwent fused FDG-PET/CT scans at initial MCD diagnosis (n = 3), at MCD relapse (n = 4), or during remission (n = 2). All seven patients with active MCD had markedly elevated plasma HHV8 viral loads, but the patients in remission had no HHV8 viraemia. The three patients with newly diagnosed MCD were not on antiretroviral therapy at the time of imaging, but the other six were all on fully suppressive antiretroviral regimens. In the seven patients with active MCD (newly diagnosed or relapse) 33/91 lymph node groups (36%) included radiologically enlarged nodes on the CT scan, whilst 57/91 lymph node groups (63%) showed enhanced FDG uptake on the PET scan. In scans from patients in remission, there were no enlarged lymph nodes on the CT scan but 3 lymph nodes (11%) demonstrated enhanced FDG uptake. The median SUV recorded for the seven patients with active MCD was 4.8 (range 2.6-9.3) which was significantly higher than the median value of 2.5 recorded for the patients in remission (Mann-Whitney U test, p = 0.011). Despite the small number of patients, in HIV-positive individuals with active MCD, FDG-PET scans more frequently detected abnormal uptake than CT scans detected enlarged lymph nodes. FDG-PET scanning has a useful role in the management of HIV-associated MCD in selecting appropriate sites for biopsy, and in staging and monitoring these lymphoproliferations. (orig.)

  4. Early PET/CT after radiofrequency ablation in colorectal cancer liver metastases: is it useful?

    Institute of Scientific and Technical Information of China (English)

    LIU Zhao-yu; CHANG Zhi-hui; LU Zai-ming; GUO Qi-yong

    2010-01-01

    Background Morphologic imaging after radiofrequency ablation (RFA) of liver metastases is hampered by an inflammatory response in the ablation margin, making the identification of local tumor progression (LTP) difficult. The aim of this study was to evaluate the efficacy of early 18F-FDG PET/CT scanning to monitor the effectiveness of RFA in colorectal liver metastases.Methods Twelve patients with 20 metastases were treated with RFA for colorectal liver metastases. They underwent PET/CT within 2 weeks before RFA and within 24 hours after RFA (so termed "early PET/CT"). PET/CT was repeated at 1, 3, and 6 months, and then every 6 months after ablation. The standard of reference was based on available clinical and radiological follow-up data.Results Early PET/CT revealed total photopenia in 16 RFA-treated metastases, which were found to be without residual tumor on the final PET/CT scan. Three RFA-treated metastases with focal uptake were identified as local tumor progression, which necessitated further treatment. One RFA-treated metastasis with rim-shaped uptake was regarded as inflammation. The results of the early PET/CT scanning were consistent with the findings of the final follow-up. Conclusions PET/CT performed within 24 hours after RFA can effectively detect whether residual tumor exists for colorectal cancer liver metastases. The results can guide further treatment, and may improve the efficacy of RFA.

  5. The use of PET/CT scanning technique for 3D visualization and quantification of real-time soil/plant interactions

    DEFF Research Database (Denmark)

    Garbout, Amin; Munkholm, Lars Juhl; Hansen, Søren Bechmann

    2012-01-01

    to assimilate 11CO2 for 90 min before PET scanning was initiated. We carried out PET scanning for 60 min. Subsequently, the aerial parts of the plant was cut off and the pot was rescanned using a micro-CT scanner to obtain more detailed information on structure of the root system and the growth medium structure...... of the sand. We found the highest concentration of 11C at the position of the main root. The PET images, at different time intervals, showed the translocation and metabolisation of photo-assimilates from top to root. Using the micro-CT scanner (voxel size of 90 μm), we were able to detect roots down to 100 mm...... demonstrated the simultaneous use of PET (positron emission tomography) and CT (X-ray computed tomography) to (a) non-destructively image a whole plant growing in sand, and (b) to link the observed morphology with recently assimilated C. The PET scanner was used to detect and visualize the location...

  6. Relationship Between the Elevated Muscle FDG Uptake in the Distal Upper Extremities on PET/CT Scan and Prescan Utilization of Mobile Devices in Young Patients.

    Science.gov (United States)

    Bai, Xia; Wang, Xuemei; Zhuang, Hongming

    2018-03-01

    It is common to notice increased FDG activity in the muscles of the forearms or hands on PET/CT images. The purpose of this study was to determine relationship between the prevalence of increased FDG activity in the forearms or hands and using mobile devices prior to the FDG PET/CT study. A total of 443 young patients with ages between 5 and 19 years who underwent FDG PET/CT scan were included in this retrospective analysis. All patients had FDG PET/CT with their arms within the field of views. The images were reviewed for elevated activity in the muscles of the distal upper extremities (DUEs), which include forearms and hands. The preimaging questionnaire/interview records regarding using mobile devices prior to FDG PET/CT were also reviewed and compared with the imaging findings. Most patients (72.0% [319/443]) used mobile devices more than 60 minutes in the period of 24 hours prior to the FDG PET/CT study. Elevated uptake in the muscles in the DUEs was observed in 38.6% (123/319) of these patients. In contrast, among 124 patients who did not use the mobile devices or used the mobile device minimally prior to the study, only 6.5% (8/124) of them had elevated FDG activity in the DUEs. The difference persisted following stratification analysis for sex, age, and serum glucose level in our patient population. Increased FDG uptake in the muscles of the DUEs in young patients is commonly seen in those who used mobile devices prior to PET/CT study. Recommendation should be considered to reduce using mobile devices prior to FDG PET/CT study in young patient population.

  7. Prostate-Specific Antigen and Prostate-Specific Antigen Velocity as Threshold Indicators in 11C-Acetate PET/CTAC Scanning for Prostate Cancer Recurrence

    Science.gov (United States)

    Dusing, Reginald W.; Peng, Warner; Lai, Sue-Min; Grado, Gordon L.; Holzbeierlein, Jeffrey M.; Thrasher, J. Brantley; Hill, Jacqueline; Van Veldhuizen, Peter J.

    2014-01-01

    Purpose The aim of this study was to identify which patient characteristics are associated with the highest likelihood of positive findings on 11C-acetate PET/computed tomography attenuation correction (CTAC) (PET/CTAC) scan when imaging for recurrent prostate cancer. Methods From 2007 to 2011, 250 11C-acetate PET/CTAC scans were performed at a single institution on patients with prostate cancer recurrence after surgery, brachytherapy, or external beam radiation. Of these patients, 120 met our inclusion criteria. Logistic regression analysis was used to examine the relationship between predictability of positive findings and patients’ characteristics, such as prostate-specific antigen (PSA) level at the time of scan, PSA kinetics, Gleason score, staging, and type of treatment before scan. Results In total, 68.3% of the 120 11C-acetate PET/CTAC scans were positive. The percentage of positive scans and PSA at the time of scanning and PSA velocity (PSAV) had positive correlations. The putative sensitivity and specificity were 86.6% and 65.8%, respectively, when a PSA level greater than 1.24 ng/mL was used as the threshold for scanning. The putative sensitivity and specificity were 74% and 75%, respectively, when a PSAV level greater than 1.32 ng/mL/y was used as the threshold. No significant associations were found between scan positivity and age, PSA doubling time, Gleason score, staging, or type of treatment before scanning. Conclusions This retrospective study suggests that threshold models of PSA greater than 1.24 ng/mL or PSAV greater than 1.32 ng/mL per year are independent predictors of positive findings in 11C-acetate PET/CTAC imaging of recurrent prostate cancer. PMID:25036021

  8. List-Mode PET Motion Correction Using Markerless Head Tracking: Proof-of-Concept With Scans of Human Subject

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sullivan, Jenna M.; Mulnix, Tim

    2013-01-01

    A custom designed markerless tracking system was demonstrated to be applicable for positron emission tomography (PET) brain imaging. Precise head motion registration is crucial for accurate motion correction (MC) in PET imaging. State-of-the-art tracking systems applied with PET brain imaging rely...... on markers attached to the patient's head. The marker attachment is the main weakness of these systems. A healthy volunteer participating in a cigarette smoking study to image dopamine release was scanned twice for 2 h with $^{11}{\\rm C}$-racolopride on the high resolution research tomograph (HRRT) PET...... in contrast recovery of small structures....

  9. Use of FDG PET/CT for investigation of febrile neutropenia: evaluation in high-risk cancer patients

    International Nuclear Information System (INIS)

    Guy, Stephen D.; Tramontana, Adrian R.; Worth, Leon J.; Thursky, Karin A.; Slavin, Monica A.; Lau, Eddie; Hicks, Rodney J.; Seymour, John F.

    2012-01-01

    Febrile neutropenia (FNP) is a frequent complication of cancer care and evaluation often fails to identify a cause. [ 18 F]FDG PET/CT has the potential to identify inflammatory and infectious foci, but its potential role as an investigation for persistent FNP has not previously been explored. The aim of this study was to prospectively evaluate the clinical utility of FDG PET/CT in patients with cancer and severe neutropenia and five or more days of persistent fever despite antibiotic therapy. Adult patients with a diagnosis of an underlying malignancy and persistent FNP (temperature ≥38 C and neutrophil count <500 cells/μl for 5 days) underwent FDG PET/CT as an adjunct to conventional evaluation and management. The study group comprised 20 patients with FNP who fulfilled the eligibility criteria and underwent FDG PET/CT in addition to conventional evaluation. The median neutrophil count on the day of the FDG PET/CT scan was 30 cells/μl (range 0-730 cells/μl). Conventional evaluation identified 14 distinct sites of infection, 13 (93 %) of which were also identified by FDG PET/CT, including all deep tissue infections. FDG PET/CT identified 9 additional likely infection sites, 8 of which were subsequently confirmed as ''true positives'' by further investigations. FDG PET/CT was deemed to be of 'high' clinical impact in 15 of the 20 patients (75 %). This study supports the utility of FDG PET/CT scanning in severely neutropenic patients with five or more days of fever. Further evaluation of the contribution of FDG PET/CT in the management of FNP across a range of underlying malignancies is required. (orig.)

  10. Use of FDG PET/CT for investigation of febrile neutropenia: evaluation in high-risk cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Guy, Stephen D.; Tramontana, Adrian R. [Western Health, Department of Infectious Diseases, Private Bag, Footscray, Victoria (Australia); University of Melbourne, Parkville, Victoria (Australia); Worth, Leon J.; Thursky, Karin A.; Slavin, Monica A. [University of Melbourne, Parkville, Victoria (Australia); Peter MacCallum Cancer Centre, Department of Infectious Diseases, Melbourne, Victoria (Australia); Lau, Eddie; Hicks, Rodney J. [University of Melbourne, Parkville, Victoria (Australia); Peter MacCallum Cancer Centre, Centre for Cancer Imaging, Melbourne, Victoria (Australia); Seymour, John F. [University of Melbourne, Parkville, Victoria (Australia); Peter MacCallum Cancer Centre, Department of Haematology, Melbourne, Victoria (Australia)

    2012-08-15

    Febrile neutropenia (FNP) is a frequent complication of cancer care and evaluation often fails to identify a cause. [{sup 18} F]FDG PET/CT has the potential to identify inflammatory and infectious foci, but its potential role as an investigation for persistent FNP has not previously been explored. The aim of this study was to prospectively evaluate the clinical utility of FDG PET/CT in patients with cancer and severe neutropenia and five or more days of persistent fever despite antibiotic therapy. Adult patients with a diagnosis of an underlying malignancy and persistent FNP (temperature {>=}38 C and neutrophil count <500 cells/{mu}l for 5 days) underwent FDG PET/CT as an adjunct to conventional evaluation and management. The study group comprised 20 patients with FNP who fulfilled the eligibility criteria and underwent FDG PET/CT in addition to conventional evaluation. The median neutrophil count on the day of the FDG PET/CT scan was 30 cells/{mu}l (range 0-730 cells/{mu}l). Conventional evaluation identified 14 distinct sites of infection, 13 (93 %) of which were also identified by FDG PET/CT, including all deep tissue infections. FDG PET/CT identified 9 additional likely infection sites, 8 of which were subsequently confirmed as ''true positives'' by further investigations. FDG PET/CT was deemed to be of 'high' clinical impact in 15 of the 20 patients (75 %). This study supports the utility of FDG PET/CT scanning in severely neutropenic patients with five or more days of fever. Further evaluation of the contribution of FDG PET/CT in the management of FNP across a range of underlying malignancies is required. (orig.)

  11. Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok, E-mail: aljymittal@yahoo.co.in [Department of Chemistry, Maulana Azad National Institute of Technology (A Deemed University), Bhopal 462051 (India); Soni, R.K.; Dutt, Krishna; Singh, Swati [Department of Chemistry, Ch. Charan Singh University, Meerut 250004 (India)

    2010-06-15

    Polyethylene terephthalate (PET) waste flakes were degraded with aqueous methylamine and aqueous ammonia, respectively at room temperature in the presence and absence of quaternary ammonium salt as a catalyst for different periods of time. The aminolysed and ammonolysed PET samples were investigated for the surface morphology with the help of scanning electron micrograph (SEM). It shows that the semi-crystalline PET waste samples reduce to monodisperse rods before fully degradation to the end products. The presence of the catalyst provides site for degradation of PET waste and enhances the rate of degradation. The SEM shows early developments of fissures in comparison to the one in absence of quaternary ammonium salt used as catalyst.

  12. Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis

    International Nuclear Information System (INIS)

    Mittal, Alok; Soni, R.K.; Dutt, Krishna; Singh, Swati

    2010-01-01

    Polyethylene terephthalate (PET) waste flakes were degraded with aqueous methylamine and aqueous ammonia, respectively at room temperature in the presence and absence of quaternary ammonium salt as a catalyst for different periods of time. The aminolysed and ammonolysed PET samples were investigated for the surface morphology with the help of scanning electron micrograph (SEM). It shows that the semi-crystalline PET waste samples reduce to monodisperse rods before fully degradation to the end products. The presence of the catalyst provides site for degradation of PET waste and enhances the rate of degradation. The SEM shows early developments of fissures in comparison to the one in absence of quaternary ammonium salt used as catalyst.

  13. Detection of recurrent colorectal carcinoma with 18F-FDG positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Scott, A.M.; Berlangieri, S.U.; Zalcberg, J.; Fox, R.; Cebon, J.; McLeish, A.; Thomas, D.; Chan, G.; Tochon-Danguy, H.; Egan, G.F.; McKay, W.J.

    1998-01-01

    Full text: The appropriate surgical management of recurrent colorectal carcinoma is dependent on the accurate detection of possible primary site recurrence and distant spread of disease. The aim of this study was therefore to evaluate the clinical accuracy of 18 F-FDG PET in detecting recurrent colorectal carcinoma. Over a 12-month period we have performed 21 studies in 17 patients (12 M: 5 F, age range 52-73 y) with known or suspected recurrent colorectal carcinoma. All patients underwent PET imaging of the abdomen and pelvis, or whole body imaging, with a whole body PET scanner (Siemens 951/R) following injection of 400 MBq of 18 F-FDG. All PET studies were interpreted with full knowledge of CT findings, and results were compared to subsequent surgical findings, biopsy or follow-up by conventional imaging methods (e.g. CT scan). Of the 21 studies performed, 18 (86%) had abnormal sites of 18 F-FDG uptake; all sites were subsequently confirmed as recurrent colorectal carcinoma. PET identified a total of 30 sites of disease in the pelvis (n = 4), abdomen (n =10), liver (n = 6), thorax (n = 9) and abdominal surgical scar (n 1), and was false negative in one lung lesion. CT scan correctly identified 14 sites as recurrent tumour; 9/12 patients (pts) with equivocal changes on CT scan had recurrent disease identified by PET. In 10 pts with elevated serum CEA but negative or equivocal CT scans, PET correctly identified 8 pts with proven recurrent disease. Previously unsuspected disease was found at six sites by PET. Lesions as small as 1.2 cm proven at surgery were identified with PET. In conclusion, this study shows 18 F-FDG PET to be a promising method for accurate detection of recurrent colorectal carcinoma

  14. Target Volume Delineation in Oropharyngeal Cancer: Impact of PET, MRI, and Physical Examination

    International Nuclear Information System (INIS)

    Thiagarajan, Anuradha; Caria, Nicola; Schöder, Heiko; Iyer, N. Gopalakrishna; Wolden, Suzanne; Wong, Richard J.; Sherman, Eric; Fury, Matthew G.; Lee, Nancy

    2012-01-01

    Introduction: Sole utilization of computed tomography (CT) scans in gross tumor volume (GTV) delineation for head-and-neck cancers is subject to inaccuracies. This study aims to evaluate contributions of magnetic resonance imaging (MRI), positron emission tomography (PET), and physical examination (PE) to GTV delineation in oropharyngeal cancer (OPC). Methods: Forty-one patients with OPC were studied. All underwent contrast-enhanced CT simulation scans (CECTs) that were registered with pretreatment PETs and MRIs. For each patient, three sets of primary and nodal GTV were contoured. First, reference GTVs (GTVref) were contoured by the treating radiation oncologist (RO) using CT, MRI, PET, and PE findings. Additional GTVs were created using fused CT/PET scans (GTVctpet) and CT/MRI scans (GTVctmr) by two other ROs blinded to GTVref. To compare GTVs, concordance indices (CI) were calculated by dividing the respective overlap volumes by overall volumes. To evaluate the contribution of PE, composite GTVs derived from CT, MRI, and PET (GTVctpetmr) were compared with GTVref. Results: For primary tumors, GTVref was significantly larger than GTVctpet and GTVctmr (p 0.75), indicating that although the modalities were complementary, the added benefit was small in the context of CECTs. In addition, PE did not aid greatly in nodal GTV delineation. Conclusion: PET and MRI are complementary and combined use is ideal. However, the low CI (ctpetmr vs. ref) particularly for primary tumors underscores the limitations of defining GTVs using imaging alone. PE is invaluable and must be incorporated.

  15. FDG-PET/CT in autosomal dominant polycystic kidney disease patients with suspected cyst infection.

    Science.gov (United States)

    Pijl, Jordy Pieter; Glaudemans, Andor W J M; Slart, Riemer H J A; Kwee, Thomas Christian

    2018-04-13

    Purpose: To determine the value of 18 F-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET)/computed tomography (CT) for diagnosing renal or hepatic cyst infection in patients with autosomal dominant polycystic kidney disease (ADPKD). Methods: This retrospective single-center study included all patients with ADPKD who underwent FDG-PET/CT because of suspected cyst infection between 2010 and 2017. Results: Thirty FDG-PET/CT scans of thirty individual patients were included, of which 19 were positive for cyst infection. According to a previously established clinical and biochemical reference standard, FDG-PET/CT achieved sensitivity of 88.9%, specificity of 75.0%, positive predictive value of 84.2%, and negative predictive value of 81.8% for the diagnosis of cyst infection. In 5 cases, FDG-PET/CT suggested a different pathologic process that explained the symptoms, including pneumonia ( n = 1), generalized peritonitis ( n = 1), pancreatitis ( n = 1), colitis ( n = 1), and cholangitis ( n = 1). Total duration of hospital stay and duration between FDG-PET/CT scan and hospital discharge of patients with an FDG-PET/CT scan positive for cyst infection were significantly longer than those with a negative scan ( P = 0.005 and P = 0.009, respectively). Creatinine levels were significantly higher in patients with an FDG-PET/CT scan positive for cyst infection than in patients with a negative scan ( P = 0.015). Other comparisons of clinical parameters (age, gender, presence of fever (>38.5°C) for more than 3 days, abdominal pain, history of solid organ transplantation and nephrectomy, immune status), laboratory values (C-reactive protein level (CRP), leukocyte count, estimated glomerular filtration rate), and microbiologic results (blood and urine cultures) were not significantly different ( P = 0.13-1.00) between FDG-PET/CT-positive and -negative patients. Conclusion: FDG-PET/CT is a useful and recommendable (upfront) imaging modality for the evaluation of

  16. Self-reported fatigue common among optimally treated HIV patients: no correlation with cerebral FDG-PET scanning abnormalities

    DEFF Research Database (Denmark)

    Andersen, Ase B; Law, Ian; Ostrowski, Sisse R

    2006-01-01

    patients (n = 95), known to be HIV positive for 5 years, on anti-retroviral therapy for a minimum of 3 years and with CD4 counts above 0.2 x 10(9) cells/l, completed a validated fatigue inventory, and plasma was analysed for pro-inflammatory markers including tumour necrosis factor-alpha, interleukin 6......-PET) scanning. RESULTS: Fifteen percent suffered from severe fatigue, but no association with pro-inflammatory markers was found. About 50% of the FDG-PET-scanned patients showed minor abnormalities in the relative cerebral metabolic rate of glucose. These abnormalities were not associated with fatigue...

  17. Pulmonary drug toxicity. FDG-PET findings in patients with lymphoma

    International Nuclear Information System (INIS)

    Kazama, Toshiki; Faria, S.C.; Macapinlac, H.A.; Uchida, Yoshitaka; Ito, Hisao

    2008-01-01

    The objective of this study was to evaluate the prevalence and positron emission tomography (PET) imaging features of pulmonary drug toxicity in patients with lymphoma during or just following chemotherapy. A total of 677 PET scans on 460 patients with lymphoma (351 non-Hodgkin's lymphoma, 92 Hodgkin's disease, and 17 both Hodgkin's and non-Hodgkin's lymphoma) were performed for the evaluation of chemotherapy response. In 51 patients, abnormal accumulation on both sides of the chest was reported. A review of medical records, 18 fluorodeoxyglucose ( 18 FDG)-PET scans, and chest computed tomography (CT) was performed, and cases with probable drug toxicity were identified. Inclusion criteria of probable drug toxicity were abnormal but symmetrical FDG accumulation in both lungs seen during or just following the completion of chemotherapy, the abnormal accumulation or corresponding abnormal CT findings resolved on subsequent studies, exclusion of clinical diagnosis of pneumonia, radiation pneumonitis, or lymphoma involvement. In 10 patients (six men and four women, average age 47.3), 2.2% of cases, probable drug toxicity was identified. In all 10 cases, diffuse and subpleural-dominant FDG accumulation was seen on FDG-PET scans, and scattered or diffuse ground-glass opacities were observed on chest CT. Four patients reported symptoms, and six patients did not report any symptoms. Diffuse and peripheral-dominant FDG accumulation in the lung, which may represent pulmonary drug toxicity, was not uncommon in patients with lymphoma who underwent chemotherapy. FDG-PET scan might be able to detect pulmonary drug toxicity in asymptomatic patients. (author)

  18. 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma

    Directory of Open Access Journals (Sweden)

    Ambrosini Valentina

    2007-06-01

    Full Text Available Abstract Background Multiple Myeloma (MM is a B cell neoplasm causing lytic or osteopenic bone abnormalities. Whole body skeletal survey (WBSS, Magnetic resonance (MR and 18F-FDG PET/CT are imaging techniques routinely used for the evaluation of bone involvement in MM patients. Aim As MM bone lesions may present low 18F-FDG uptake; the aim of this study was to assess the possible added value and limitations of 11C-Choline to that of 18F-FDG PET/CT in patients affected with MM. Methods Ten patients affected with MM underwent a standard 11C-Choline PET/CT and an 18F-FDG PET/CT within one week. The results of the two scans were compared in terms of number, sites and SUVmax of lesions. Results Four patients (40% had a negative concordant 11C-Choline and 18F-FDG PET/CT scans. Two patients (20% had a positive 11C-Choline and 18F-FDG PET/CT scans that identified the same number and sites of bone lesions. The remaining four patients (40% had a positive 11C-Choline and 18F-FDG PET/CT scan, but the two exams identified different number of lesions. Choline showed a mean SUVmax of 5 while FDG showed a mean SUVmax of 3.8 (P = 0.042. Overall, 11C-Choline PET/CT scans detected 37 bone lesions and 18F-FDG PET/CT scans detected 22 bone lesions but the difference was not significant (P = 0.8. Conclusion According to these preliminary data, 11C-Choline PET/CT appears to be more sensitive than 18F-FDG PET/CT for the detection of bony myelomatous lesions. If these data are confirmed in larger series of patients, 11C-Choline may be considered a more appropriate functional imaging in association with MRI for MM bone staging.

  19. PET/CT colonography in patients with colorectal polyps: a feasibility study

    International Nuclear Information System (INIS)

    Mainenti, Pier P.; Pace, Leonardo; Salvatore, Marco; Salvatore, Barbara; D'Antonio, Dario; Bucci, Luigi; De Falco, Teresa; De Palma, Giovanni D.; D'Armiento, Francesco P.

    2007-01-01

    To examine: (1) the feasibility of PET/CT colonography (PET/CTc) in patients with colorectal polyps; (2) the impact of metabolic information on CTc interpretation and, conversely, the impact of morphological information on PET characterisation of focal colorectal uptake. Ten patients with colorectal polyps underwent PET/CTc, followed within 3 h by therapeutic conventional colonoscopy (CC). A radiologist and a nuclear medicine physician analysed the PET/CTc images. The agreement of morphological and metabolic information in the colon and rectum was evaluated. The sensitivity and specificity of PET, CT and PET/CT were calculated for colorectal polyps. Seventeen polypoid lesions were identified at CC: six≤5 mm, six between 6 and 9 mm, and five ≥10 mm (four hyperplastic polyps, 11 tubular adenomas, one adenocarcinoma and one submucosal lipoma). A total of 20 scans (supine and prone) were performed in the ten patients: the agreement of morphological and metabolic information was excellent in 17 scans, good in two and moderate in one. PET/CTc showed a sensitivity of 91% for lesions ≥6 mm and a specificity of 100%. The metabolic information did not disclose any further polyps missed on CTc. The morphological information permitted correct classification of all eight instances of focal radiotracer uptake. PET/CTc is a feasible study. Adding a colonographic protocol to PET/CT images seems to allow correct characterisation of all cases of colorectal focal radiotracer uptake. The metabolic information does not seem to increase the accuracy of CTc. (orig.)

  20. Clinical importance of re-interpretation of PET/CT scanning in patients referred to a tertiary care medical centre

    DEFF Research Database (Denmark)

    Löfgren, Johan; Loft, Annika; Barbosa de Lima, Vinicius Araújo

    2017-01-01

    had an external F-18-FDG PET/CT scan were included. Only information that had been available at the time of the initial reading at the external hospital was available at re-interpretation. Teams with one radiologist and one nuclear medicine physician working side by side performed the re......PURPOSE: To evaluate, in a controlled prospective manner with double-blind read, whether there are differences in interpretations of PET/CT scans at our tertiary medical centre, Rigshospitalet, compared to the external hospitals. METHODS: Ninety consecutive patients referred to our department who...

  1. 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT scans as diagnostic tools in focal congenital hyperinsulinism: a blinded evaluation.

    Science.gov (United States)

    Christiansen, Charlotte Dahl; Petersen, Henrik; Nielsen, Anne Lerberg; Detlefsen, Sönke; Brusgaard, Klaus; Rasmussen, Lars; Melikyan, Maria; Ekström, Klas; Globa, Evgenia; Rasmussen, Annett Helleskov; Hovendal, Claus; Christesen, Henrik Thybo

    2018-02-01

    Focal congenital hyperinsulinism (CHI) is curable by surgery, which is why identification of the focal lesion is crucial. We aimed to determine the use of 18F-fluoro-dihydroxyphenylalanine (18F-DOPA) PET/CT vs. 68Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic-acid-1-Nal3-octreotide (68Ga-DOTANOC) PET/CT as diagnostic tools in focal CHI. PET/CT scans of children with CHI admitted to Odense University Hospital between August 2005 and June 2016 were retrospectively evaluated visually and by their maximal standardized uptake values (SUV max ) by two independent examiners, blinded for clinical, surgical and pathological data. Pancreatic histology was used as the gold standard. For patients without surgery, the genetic profile served as the gold standard. Fifty-five CHI patients were examined by PET/CT (18F-DOPA n = 53, 68Ga-DOTANOC n = 18). Surgery was performed in 34 patients, no surgery in 21 patients. Fifty-one patients had a classifiable outcome, either by histology (n = 33, 22 focal lesions, 11 non-focal) or by genetics (n = 18, all non-focal). The predictive performance of 18F-DOPA PET/CT to identify focal CHI was identical by visual- and cut-off-based evaluation: sensitivity (95% CI) of 1 (0.85-1); specificity of 0.96 (0.82-0.99). The optimal 18F-DOPA PET SUV max ratio cut-off was 1.44 and the optimal 68Ga-DOTANOC PET SUV max cut-off was 6.77 g/ml. The area under the receiver operating curve was 0.98 (0.93-1) for 18F-DOPA PET vs. 0.71 (0.43-0.95) for 68Ga-DOTANOC PET (p PET/CT and 68Ga-DOTANOC PET/CT, respectively. 18F-DOPA PET/CT was excellent in predicting focal CHI and superior compared to 68Ga-DOTANOC PET/CT. Further use of 68GA-DOTANOC PET/CT in predicting focal CHI is discouraged.

  2. Hybrid FDG-PET/MR compared to FDG-PET/CT in adult lymphoma patients.

    Science.gov (United States)

    Atkinson, Wendy; Catana, Ciprian; Abramson, Jeremy S; Arabasz, Grae; McDermott, Shanaugh; Catalano, Onofrio; Muse, Victorine; Blake, Michael A; Barnes, Jeffrey; Shelly, Martin; Hochberg, Ephraim; Rosen, Bruce R; Guimaraes, Alexander R

    2016-07-01

    The goal of this study is to evaluate the diagnostic performance of simultaneous FDG-PET/MR including diffusion compared to FDG-PET/CT in patients with lymphoma. Eighteen patients with a confirmed diagnosis of non-Hodgkin's (NHL) or Hodgkin's lymphoma (HL) underwent an IRB-approved, single-injection/dual-imaging protocol consisting of a clinical FDG-PET/CT and subsequent FDG-PET/MR scan. PET images from both modalities were reconstructed iteratively. Attenuation correction was performed using low-dose CT data for PET/CT and Dixon-MR sequences for PET/MR. Diffusion-weighted imaging was performed. SUVmax was measured and compared between modalities and the apparent diffusion coefficient (ADC) using ROI analysis by an experienced radiologist using OsiriX. Strength of correlation between variables was measured using the Pearson correlation coefficient (r p). Of the 18 patients included in this study, 5 had HL and 13 had NHL. The median age was 51 ± 14.8 years. Sixty-five FDG-avid lesions were identified. All FDG-avid lesions were visible with comparable contrast, and therefore initial and follow-up staging was identical between both examinations. SUVmax from FDG-PET/MR [(mean ± sem) (21.3 ± 2.07)] vs. FDG-PET/CT (mean 23.2 ± 2.8) demonstrated a strongly positive correlation [r s = 0.95 (0.94, 0.99); p < 0.0001]. There was no correlation found between ADCmin and SUVmax from FDG-PET/MR [r = 0.17(-0.07, 0.66); p = 0.09]. FDG-PET/MR offers an equivalent whole-body staging examination as compared with PET/CT with an improved radiation safety profile in lymphoma patients. Correlation of ADC to SUVmax was weak, understating their lack of equivalence, but not undermining their potential synergy and differing importance.

  3. FDG PET/CT imaging of desmoplastic small round cell tumor: findings at staging, during treatment and at follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Ostermeier, Austin; Snyder, Scott E.; Shulkin, Barry L. [St. Jude Children' s Research Hospital, Department of Radiological Sciences, MS 220, Memphis, TN (United States); McCarville, M.B. [St. Jude Children' s Research Hospital, Department of Radiological Sciences, MS 220, Memphis, TN (United States); College of Medicine, University of Tennessee Health Science Center, Department of Radiology, Memphis, TN (United States); Navid, Fariba [St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Pediatrics, College of Medicine, Memphis, TN (United States)

    2015-08-15

    Desmoplastic small round cell tumor (DSRCT) is a very uncommon soft-tissue tumor of children and young adults. It has an aggressive course with generally poor survival. In general the assessment of tumor burden and response has relied upon CT or MRI. However these tumors are often metabolically active and can be evaluated using FDG PET/CT imaging. The purpose of this study was to determine the metabolic activity of desmoplastic small round cell tumors using FDG PET/CT imaging and the potential utility of FDG PET/CT in this disease. Eight patients (seven male, one female; ages 2-20 years, median 11 years) with confirmed DSRCT underwent 82 positron emission tomography/computed tomography (PET/CT) scans. PET/CT was used for initial staging (seven patients, eight scans), monitoring response to therapy (eight patients, 37 scans) and for surveillance of DSRCT recurrence (six patients, 37 scans). Each scan performed at diagnosis showed abnormally elevated uptake in the primary tumor. Five patients had abdominal pelvic involvement, and two of those also had thoracic disease. Six patients whose scans showed no abnormal sites of uptake at the end of therapy have had progression-free survivals of 2-10 years. One patient whose scan continued to show uptake during treatment died of disease 1.3 years from diagnosis. Another patient with persistent uptake remained in treatment 3 years after initial diagnosis. One surveillance scan identified recurrent disease. FDG PET/CT identified elevated metabolic activity in each patient studied. Despite our small sample size, FDG PET/CT scans appear useful for the management of patients with DSCRT. Patients whose studies become negative during or following treatment may have a prolonged remission. (orig.)

  4. Comparison of absorbed dose of two protocols of tomographic scanning in PET/CT exams; Comparação da dose absorvida de dois protocolos de varredura tomográfica em exame de PET-CT

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, F.G., E-mail: fgpaiva92@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Santana, P.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Medicina; Mourão Filho, A.P. [Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Positron Emission Tomography (PET) associated with Computed Tomography (CT) allows the fusion of functional and anatomical images. When compared to other diagnostic techniques, PET-CT subjects patients to higher levels of radiation, because two modalities are used in a single exam. In this study, the doses absorbed in 19 patient organs from the tomographic scan were evaluated. Radiochromic films were correctly positioned in the Alderson anthropomorphic simulator, male version. For evaluation, two whole body scan protocols were compared. For evaluation, two whole body scan protocols were compared. An increase of up to 600% in the absorbed dose in the pituitary was observed when the protocols were compared, with the lowest observed increase of approximately 160% for the liver. It is concluded that the dose from CT in patients submitted to PET-CT scanning is higher in the protocol used for diagnosis. Considering the high cost of PET-CT exam, in many cases it is preferable that the CT examination is of diagnostic quality, and not only for anatomical mapping, an argument based on the Principle of Justification.

  5. Impact of Renal Failure on F18-FDG PET/CT Scans.

    Science.gov (United States)

    Kode, Vishwajit; Karsch, Holly; Osman, Medhat M; Muzaffar, Razi

    2017-01-01

    The current guidelines for 2-deoxy-2-[18F]fluoro-d-glucose PET/CT scanning do not address potential inaccuracies that may arise due to patients with renal failure. We report a retrospective analysis of standard uptake values (SUVs) in patients with and without renal failure in order to warrant a protocol adjustment. Patients were matched based on age, gender, and BMI all of which are potential effectors on observed SUV. Thirty patients were selected with clinically diagnosed renal failure, of which 12 were on dialysis. All 30 patients had age, gender, and BMI control matches. Blood urea nitrogen and creatinine levels were measured within 1 month of the scan to assess renal failure. PET/CT scans for both the renal failure patients and controls were performed 60 min after FDG injection. SUVs were measured by placing circular regions of interest in the right hepatic lobe (LSUV) and left psoas muscle (PSUV). For the 30 renal failure patients, the mean LSUV was 2.77 (SD = 0.57) and PSUV was 1.43 (SD = 0.30) while the controls had mean LSUV 2.74 (SD = 0.50) and PSUV 1.42 (SD = 0.37). The SUVs from both the liver and psoas muscle were not significantly different between the renal failure patients and the normal controls with p values >0.05. In addition, dialysis and gender also had no effect on SUVs. Our data suggest that renal failure patients do not require an adjustment in protocol and the standard protocol times should remain.

  6. Early static {sup 18}F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Nathalie L.; Winkelmann, Isabel; Wenter, Vera; Mille, Erik; Todica, Andrei; Brendel, Matthias; Bartenstein, Peter [Ludwig-Maximilians-University Munich, Department of Nuclear Medicine, Munich (Germany); Suchorska, Bogdana; Tonn, Joerg-Christian [Ludwig-Maximilians-University Munich, Department of Neurosurgery, Munich (Germany); Schmid-Tannwald, Christine [Ludwig-Maximilians-University Munich, Institute for Clinical Radiology, Munich (Germany); La Fougere, Christian [University of Tuebingen, Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Tuebingen (Germany)

    2016-06-15

    Current guidelines for glioma imaging by positron emission tomography (PET) using the amino acid analogue O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine ({sup 18}F-FET) recommend image acquisition from 20-40 min post injection (p.i.). The maximal tumour-to-background evaluation (TBR{sub max}) obtained in these summation images does not enable reliable differentiation between low and high grade glioma (LGG and HGG), which, however, can be achieved by dynamic {sup 18}F-FET-PET. We investigated the accuracy of tumour grading using TBR{sub max} values at different earlier time points after tracer injection. Three hundred and fourteen patients with histologically proven primary diagnosis of glioma (131 LGG, 183 HGG) who had undergone 40-min dynamic {sup 18}F-FET-PET scans were retrospectively evaluated. TBR{sub max} was assessed in the standard 20-40 min summation images, as well as in summation images from 0-10 min, 5-15 min, 5-20 min, and 15-30 min p.i., and kinetic analysis was performed. TBR{sub max} values and kinetic analysis were correlated with histological classification. ROC analyses were performed for each time frame and sensitivity, specificity, and accuracy were assessed. TBR{sub max} values in the earlier summation images were significantly better for tumour grading (P < 0.001) when compared to standard 20-40 min scans, with best results for the early 5-15 min scan. This was due to higher TBR{sub max} in the HGG (3.9 vs. 3.3; p < 0.001), while TBR{sub max} remained nearly stable in the LGG (2.2 vs. 2.1). Overall, accuracy increased from 70 % in the 20-40 min analysis to 77 % in the 5-15 min images, but did not reach the accuracy of dynamic analysis (80 %). Early TBR{sub max} assessment (5-15 min p.i.) is more accurate for the differentiation between LGG and HGG than the standard static scan (20-40 min p.i.) mainly caused by the characteristic high {sup 18}F-FET uptake of HGG in the initial phase. Therefore, when dynamic {sup 18}F-FET-PET cannot be performed

  7. FDG-PET/CT imaging in the management of HIV-associated multicentric Castleman's disease

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Rob; Kazmi, Fahrad; Stebbing, Justin; Chinn, Roger [Imperial College School of Medicine, The Chelsea and Westminster Hospital, Department of Radiology, London (United Kingdom); Ngan, Sarah; Bower, Mark [Imperial College School of Medicine, The Chelsea and Westminster Hospital, Department of Oncology, London (United Kingdom); Nelson, Mark [Imperial College School of Medicine, The Chelsea and Westminster Hospital, Department of HIV Medicine, London (United Kingdom); O' Doherty, Michael [St. Thomas' Hospital, Clinical PET Centre, Guys and St. Thomas Hospital Trust, London (United Kingdom)

    2009-04-15

    To evaluate the role of FDG-PET/CT scanning in the management of HIV-associated multicentric Castleman's disease (MCD) a rare lymphoproliferative disorder associated with infection by human herpesvirus 8 (HHV8). Nine patients with histologically confirmed MCD underwent fused FDG-PET/CT scans at initial MCD diagnosis (n = 3), at MCD relapse (n = 4), or during remission (n = 2). All seven patients with active MCD had markedly elevated plasma HHV8 viral loads, but the patients in remission had no HHV8 viraemia. The three patients with newly diagnosed MCD were not on antiretroviral therapy at the time of imaging, but the other six were all on fully suppressive antiretroviral regimens. In the seven patients with active MCD (newly diagnosed or relapse) 33/91 lymph node groups (36%) included radiologically enlarged nodes on the CT scan, whilst 57/91 lymph node groups (63%) showed enhanced FDG uptake on the PET scan. In scans from patients in remission, there were no enlarged lymph nodes on the CT scan but 3 lymph nodes (11%) demonstrated enhanced FDG uptake. The median SUV recorded for the seven patients with active MCD was 4.8 (range 2.6-9.3) which was significantly higher than the median value of 2.5 recorded for the patients in remission (Mann-Whitney U test, p = 0.011). Despite the small number of patients, in HIV-positive individuals with active MCD, FDG-PET scans more frequently detected abnormal uptake than CT scans detected enlarged lymph nodes. FDG-PET scanning has a useful role in the management of HIV-associated MCD in selecting appropriate sites for biopsy, and in staging and monitoring these lymphoproliferations. (orig.)

  8. FDG-PET/CT detection of very early breast cancer in women with breast microcalcification lesions found in mammography screening

    International Nuclear Information System (INIS)

    Peng, Nang-Jing; Chou, Chen-Pin; Pan, Huay-Ben; Chang, Tsung-Hsien; Hu, Chin; Chiu, Yu-Li; Fu, Ting-Ying; Chang, Hong-Tai

    2015-01-01

    To assess the efficacy of positron emission tomography/computed tomography with the glucose analogue 2-[ 18 F]fluoro-2-deoxy-D-glucose (FDG-PET/CT) in Taiwanese women with early breast cancer detected by mammography screening. Dual-time-point imaging of whole-body supine and breast prone scans using FDG-PET/CT were performed sequentially in the pre-operative stage. A total of 11,849 patients underwent screening mammography, of whom 1,209 (10.2%) displayed positive results. After further investigation, 54 patients underwent FDG-PET/CT. Post-operative pathology examinations revealed malignancies in 26 lesions, including invasive breast cancer in 11 cases and non-invasive breast cancer in 15 cases, as well as benign disease in 30 lesions. The FDG-PET/CT findings from the whole-body scans were positive for 9 of 11 invasive breast cancers (81.8%) and 3 of 15 non-invasive cancers (20%), and they were negative for all benign lesions. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of FDG-PET/CT with whole-body supine imaging were 46.2%, 100%, 100% and 68.2%, respectively. Breast prone imaging revealed another patient with ductal carcinoma in situ, increasing the sensitivity to 50%. Importantly, positive PET findings were significantly correlated with tumour histology (P = 0.006), tumour size (P = 0.039) and Ki-67 expression (P = 0.011). FDG-PET/CT with whole-body scanning demonstrated high sensitivity to invasive breast cancer, limited sensitivity to non-invasive breast cancer, and high specificity for breast cancer. FDG-PET/CT might be useful for differentiating tumour invasiveness. However, the good PPV but poor NPV do not allow the physician to discard the biopsy.

  9. Selective Nodal Irradiation on Basis of 18FDG-PET Scans in Limited-Disease Small-Cell Lung Cancer: A Prospective Study

    International Nuclear Information System (INIS)

    Loon, Judith van; De Ruysscher, Dirk; Wanders, Rinus; Boersma, Liesbeth; Simons, Jean; Oellers, Michel; Dingemans, Anne-Marie C.; Hochstenbag, Monique; Bootsma, Gerben; Geraedts, Wiel; Pitz, Cordula; Teule, Jaap; Rhami, Ali; Thimister, Willy; Snoep, Gabriel; Dehing-Oberije, Cary; Lambin, Philippe

    2010-01-01

    Purpose: To evaluate the results of selective nodal irradiation on basis of 18 F-deoxyglucose positron emission tomography (PET) scans in patients with limited-disease small-cell lung cancer (LD-SCLC) on isolated nodal failure. Methods and Materials: A prospective study was performed of 60 patients with LD-SCLC. Radiotherapy was given to a dose of 45 Gy in twice-daily fractions of 1.5 Gy, concurrent with carboplatin and etoposide chemotherapy. Only the primary tumor and the mediastinal lymph nodes involved on the pretreatment PET scan were irradiated. A chest computed tomography (CT) scan was performed 3 months after radiotherapy completion and every 6 months thereafter. Results: A difference was seen in the involved nodal stations between the pretreatment 18 F-deoxyglucose PET scans and computed tomography scans in 30% of patients (95% confidence interval, 20-43%). Of the 60 patients, 39 (65%; 95% confidence interval [CI], 52-76%) developed a recurrence; 2 patients (3%, 95% CI, 1-11%) experienced isolated regional failure. The median actuarial overall survival was 19 months (95% CI, 17-21). The median actuarial progression-free survival was 14 months (95% CI, 12-16). 12% (95% CI, 6-22%) of patients experienced acute Grade 3 (Common Terminology Criteria for Adverse Events, version 3.0) esophagitis. Conclusion: PET-based selective nodal irradiation for LD-SCLC resulted in a low rate of isolated nodal failures (3%), with a low percentage of acute esophagitis. These findings are in contrast to those from our prospective study of CT-based selective nodal irradiation, which resulted in an unexpectedly high percentage of isolated nodal failures (11%). Because of the low rate of isolated nodal failures and toxicity, we believe that our data support the use of PET-based SNI for LD-SCLC.

  10. Application of PET and PET/CT imaging for cancer screening

    International Nuclear Information System (INIS)

    Chen Yenkung; Hu Fenglan; Shen Yehyou; Liao, A.C.; Hung, T.Z.; Su, Chentau; Chen Liangkuang

    2004-01-01

    The aim of this study was to evaluate the potential application of 18F-fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) and PET/CT for cancer screening in asymptomatic individuals. Methods: The subjects consisted of 3631 physical check up examinees (1947 men, 1684 women; mean age ±SD, 52.1±8.2 y) with non-specific medical histories. Whole-body FDG PET (or PET/CT), ultrasound and tumor markers were performed on all patients. Focal hypermetabolic areas with intensities equal to or exceeding the level of FDG uptake in the brain and bladder were considered abnormal and interpreted as neoplasia. Follow-up periods were longer than one year. Results: Among the 3631 FDG PET (including 1687 PET/CT), ultrasound and tumor markers examinations, malignant tumors were discovered in 47 examinees (1.29%). PET findings were true-positive in 38 of the 47 cancers (80.9%). In addition, 32 of the 47 cancers were performed with the PET-CT scan. PET detected cancer lesions in 28 of the 32 examinees. However, the CT detected cancer lesions in only 15 of 32 examinees. Conclusion: The sensitivity of FDG PET in the detection of a wide variety of cancers is high. Most cancer can be detected with FDG PET in a resectable stage. CT of the PET/CT for localization and characteristics of the lesion shows an increased specificity of the PET scan. Using ultrasound and tumor markers may complement the PET scan in cancer screening for hepatic and urologic neoplasms. (authors)

  11. Reduction of motion artifacts for PET imaging by respiratory correlated dynamic scanning

    International Nuclear Information System (INIS)

    Chuang, K.-S.; Chen, T.-J.; Chang, C.-C.; Wu, J.; Chen, S.; Wu, L.-C.; Liu, R.-S.

    2006-01-01

    Organ motion caused by respiration is a major challenge in positron emission tomography (PET) imaging. This work proposes a technique to reduce smearing in PET imaging caused by respiratory motion. Dynamic scanning at 1 frame/s is used. A point source, used as a marker, is attached to the object's abdomen during the scan. The source position in the projection view moves with respiratory motion and can be used to represent the respiratory phase within the time interval in which each frame data are acquired. One hundred and twenty frames are obtained for each study. The range of the positions of the marker is divided into four groups, representing different respiratory phases. The frames in which the organ positions (phases) are the same summed to produce a static sub-sinogram. Each sub-sinogram then undergoes regular image reconstruction to yield a motion-free image. The technique is applied to one volunteer under both free and coached breathing conditions. A parameter called the volume reduction factor is adopted to evaluate the effectiveness of this motion-reduction technique. The preliminary results indicate that the proposed technique effectively reduces motion artifacts in the image. Coached breathing yields better results than free breathing condition. The advantages of this method are that (1) the scanning time remains the same; (2) free breathing is allowed during the acquisition of the image; and (3) no user intervention is required

  12. 18F-FDG PET/CT for early detection of embolism and metastatic infection in patients with infective endocarditis

    International Nuclear Information System (INIS)

    Riet, Jelle van; Gheysens, Olivier; Mortelmans, Luc; Hill, Evelyn E.; Herregods, Marie-Christine; Dymarkowski, Steven; Herijgers, Paul; Peetermans, Willy E.

    2010-01-01

    In the acute setting of endocarditis it is very important to assess both the vegetation itself, as well as potential life-threatening complications, in order to decide whether antibiotic therapy will be sufficient or urgent surgery is indicated. A single whole-body scan investigating inflammatory changes could be very helpful to achieve a swift and efficient assessment. In this study we assessed whether 18 F-FDG can be used to detect and localize peripheral embolism or distant infection. Twenty-four patients with 25 episodes of endocarditis, enrolled between March 2006 and February 2008, underwent 18 F-FDG PET/CT imaging on a dedicated PET/CT scanner. PET/CT imaging revealed a focus of peripheral embolization and/or metastatic infection in 11 episodes (44%). One episode had a positive PET/CT scan result for both embolism and metastatic infection. PET/CT detected seven positive cases (28%) in which there was no clinical suspicion. Valve involvement of endocarditis was seen only in three patients (12%). PET/CT may be an important diagnostic tool for tracing peripheral embolism and metastatic infection in the acute setting of infective endocarditis, since a PET/CT scan detected a clinically occult focus in nearly one third of episodes. (orig.)

  13. 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT scans as diagnostic tools in focal congenital hyperinsulinism. A blinded evaluation

    International Nuclear Information System (INIS)

    Dahl Christiansen, Charlotte; Helleskov Rasmussen, Annett; Petersen, Henrik; Lerberg Nielsen, Anne; Detlefsen, Soenke; Brusgaard, Klaus; Rasmussen, Lars; Hovendal, Claus; Melikyan, Maria; Ekstroem, Klas; Globa, Evgenia; Christesen, Henrik Thybo

    2018-01-01

    Focal congenital hyperinsulinism (CHI) is curable by surgery, which is why identification of the focal lesion is crucial. We aimed to determine the use of 18F-fluoro-dihydroxyphenylalanine (18F-DOPA) PET/CT vs. 68Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic-acid-1-Nal3 -octreotide (68Ga-DOTANOC) PET/CT as diagnostic tools in focal CHI. PET/CT scans of children with CHI admitted to Odense University Hospital between August 2005 and June 2016 were retrospectively evaluated visually and by their maximal standardized uptake values (SUV max ) by two independent examiners, blinded for clinical, surgical and pathological data. Pancreatic histology was used as the gold standard. For patients without surgery, the genetic profile served as the gold standard. Fifty-five CHI patients were examined by PET/CT (18F-DOPA n = 53, 68Ga-DOTANOC n = 18). Surgery was performed in 34 patients, no surgery in 21 patients. Fifty-one patients had a classifiable outcome, either by histology (n = 33, 22 focal lesions, 11 non-focal) or by genetics (n = 18, all non-focal). The predictive performance of 18F-DOPA PET/CT to identify focal CHI was identical by visual- and cut-off-based evaluation: sensitivity (95% CI) of 1 (0.85-1); specificity of 0.96 (0.82-0.99). The optimal 18F-DOPA PET SUV max ratio cut-off was 1.44 and the optimal 68Ga-DOTANOC PET SUV max cut-off was 6.77 g/ml. The area under the receiver operating curve was 0.98 (0.93-1) for 18F-DOPA PET vs. 0.71 (0.43-0.95) for 68Ga-DOTANOC PET (p < 0.03). In patients subjected to surgery, localization of the focal lesion was correct in 91%, and 100%, by 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT, respectively. 18F-DOPA PET/CT was excellent in predicting focal CHI and superior compared to 68Ga-DOTANOC PET/CT. Further use of 68GA-DOTANOC PET/CT in predicting focal CHI is discouraged. (orig.)

  14. 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT scans as diagnostic tools in focal congenital hyperinsulinism. A blinded evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dahl Christiansen, Charlotte; Helleskov Rasmussen, Annett [Hans Christian Andersen Children' s Hospital, Odense University Hospital, Odense (Denmark); University of Southern Denmark, Department of Clinical Research, Odense (Denmark); Petersen, Henrik; Lerberg Nielsen, Anne [Odense University Hospital, Department of Nuclear Medicine, Odense (Denmark); Detlefsen, Soenke [University of Southern Denmark, Department of Clinical Research, Odense (Denmark); Odense University Hospital, Department of Pathology, Odense (Denmark); Brusgaard, Klaus [Odense University Hospital, Department of Clinical Genetics, Odense (Denmark); Rasmussen, Lars; Hovendal, Claus [Odense University Hospital, Department of Abdominal Surgery, Odense (Denmark); Melikyan, Maria [Endocrine Research Centre, Moscow (Russian Federation); Ekstroem, Klas [Karolinska Hospital, Astrid Lindgren Children' s Hospital, Stockholm (Sweden); Globa, Evgenia [MOH of Ukraine, Ukrainian Center of Endocrine Surgery, Endocrine Organs and Tissue Transplantation, Kyiv (Ukraine); Christesen, Henrik Thybo [Hans Christian Andersen Children' s Hospital, Odense University Hospital, Odense (Denmark); University of Southern Denmark, Department of Clinical Research, Odense (Denmark); Odense University Hospital, Odense Pancreas Center (OPAC), Odense (Denmark); Odense University Hospital, Department of Paediatrics, Odense C (Denmark)

    2018-02-15

    Focal congenital hyperinsulinism (CHI) is curable by surgery, which is why identification of the focal lesion is crucial. We aimed to determine the use of 18F-fluoro-dihydroxyphenylalanine (18F-DOPA) PET/CT vs. 68Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic-acid-1-Nal3 -octreotide (68Ga-DOTANOC) PET/CT as diagnostic tools in focal CHI. PET/CT scans of children with CHI admitted to Odense University Hospital between August 2005 and June 2016 were retrospectively evaluated visually and by their maximal standardized uptake values (SUV{sub max}) by two independent examiners, blinded for clinical, surgical and pathological data. Pancreatic histology was used as the gold standard. For patients without surgery, the genetic profile served as the gold standard. Fifty-five CHI patients were examined by PET/CT (18F-DOPA n = 53, 68Ga-DOTANOC n = 18). Surgery was performed in 34 patients, no surgery in 21 patients. Fifty-one patients had a classifiable outcome, either by histology (n = 33, 22 focal lesions, 11 non-focal) or by genetics (n = 18, all non-focal). The predictive performance of 18F-DOPA PET/CT to identify focal CHI was identical by visual- and cut-off-based evaluation: sensitivity (95% CI) of 1 (0.85-1); specificity of 0.96 (0.82-0.99). The optimal 18F-DOPA PET SUV{sub max} ratio cut-off was 1.44 and the optimal 68Ga-DOTANOC PET SUV{sub max} cut-off was 6.77 g/ml. The area under the receiver operating curve was 0.98 (0.93-1) for 18F-DOPA PET vs. 0.71 (0.43-0.95) for 68Ga-DOTANOC PET (p < 0.03). In patients subjected to surgery, localization of the focal lesion was correct in 91%, and 100%, by 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT, respectively. 18F-DOPA PET/CT was excellent in predicting focal CHI and superior compared to 68Ga-DOTANOC PET/CT. Further use of 68GA-DOTANOC PET/CT in predicting focal CHI is discouraged. (orig.)

  15. Flutriciclamide (18F-GE180) PET: First-in-Human PET Study of Novel Third-Generation In Vivo Marker of Human Translocator Protein.

    Science.gov (United States)

    Fan, Zhen; Calsolaro, Valeria; Atkinson, Rebecca A; Femminella, Grazia D; Waldman, Adam; Buckley, Christopher; Trigg, William; Brooks, David J; Hinz, Rainer; Edison, Paul

    2016-11-01

    Neuroinflammation is associated with neurodegenerative disease. PET radioligands targeting the 18-kDa translocator protein (TSPO) have been used as in vivo markers of neuroinflammation, but there is an urgent need for novel probes with improved signal-to-noise ratio. Flutriciclamide ( 18 F-GE180) is a recently developed third-generation TSPO ligand. In this first study, we evaluated the optimum scan duration and kinetic modeling strategies for 18 F-GE180 PET in (older) healthy controls. Ten healthy controls, 6 TSPO high-affinity binders, and 4 mixed-affinity binders were recruited. All subjects underwent detailed neuropsychologic tests, MRI, and a 210-min 18 F-GE180 dynamic PET/CT scan using metabolite-corrected arterial plasma input function. We evaluated 5 different kinetic models: irreversible and reversible 2-tissue-compartment models, a reversible 1-tissue model, and 2 models with an extra irreversible vascular compartment. The minimal scan duration was established using 210-min scan data. The feasibility of generating parametric maps was also investigated using graphical analysis. 18 F-GE180 concentration was higher in plasma than in whole blood during the entire scan duration. The volume of distribution (V T ) was 0.17 in high-affinity binders and 0.12 in mixed-affinity binders using the kinetic model. The model that best represented brain 18 F-GE180 kinetics across regions was the reversible 2-tissue-compartment model (2TCM4k), and 90 min resulted as the optimum scan length required to obtain stable estimates. Logan graphical analysis with arterial input function gave a V T highly consistent with V T in the kinetic model, which could be used for voxelwise analysis. We report for the first time, to our knowledge, the kinetic properties of the novel third-generation TSPO PET ligand 18 F-GE180 in humans: 2TCM4k is the optimal method to quantify the brain uptake, 90 min is the optimal scan length, and the Logan approach could be used to generate parametric maps

  16. Disease progression in AIDS on PET fluorodeoxyglucose, CT and MR brain images

    International Nuclear Information System (INIS)

    Verma, R.C.; Bennett, L.; Gan, M.; Kloumehr, F.; Mathisen, G.; Jones, F.D.; Wasterlain, C.; Mandelkern, M.; Ropchan, J.; Blahd, W.; Yaghmal, I.

    1990-01-01

    This paper correlates changes in the brain demonstrated on F-18 fluorodeoxyglucose (FDG) positron emission tomographic (PET) scans and CT or MR images with disease severity in patients with acquired immunodeficiency syndrome (AIDS). Data from 30 patients who tested positive for human immunodeficiency virus (HIV) who were at various stages of AIDS, and who had undergone FDG PET, CT, and/or MR imaging were reviewed retrospectively. The average CD4 lymphocyte counts, an indicator of disease severity in AIDS, in 25 symptomatic (group I) and five healthy seropositive (group II) subjects were 300 and 694 cells/mm 3 , respectively. Cortical atrophy was present on CT and/or MR imaging in 92% in group I and only 20% in group II. Of the 17 patients in group I who underwent PET scans 11 demonstrated an elevated basal ganglia to frontal cortex (BG/FC) ratio of FDG uptake; only one of the four in group II had this finding

  17. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients

    DEFF Research Database (Denmark)

    Berthelsen, A K; Holm, S; Loft, A

    2005-01-01

    PURPOSE: If the CT scan of a combined PET/CT study is performed as a full diagnostic quality CT scan including intravenous (IV) contrast agent, the quality of the joint PET/CT procedure is improved and a separate diagnostic CT scan can be avoided. CT with IV contrast can be used for PET attenuation...... correction, but this may result in a bias in the attenuation factors. The clinical significance of this bias has not been established. Our aim was to perform a prospective clinical study where each patient had CT performed with and without IV contrast agent to establish whether PET/CT with IV contrast can...... scans without, and then with contrast agent, followed by an 18F-fluorodeoxyglucose whole-body PET scan. The CT examinations were performed with identical parameters on a GE Discovery LS scanner. The PET data were reconstructed with attenuation correction based on the two CT data sets. A global...

  18. Practical use and implementation of PET in children in a hospital PET centre

    DEFF Research Database (Denmark)

    Borgwardt, Lise; Larsen, Helle Jung; Pedersen, Kate

    2003-01-01

    Children are not just small adults-they differ in their psychology, normal physiology and pathophysiology, and various aspects should be considered when planning a positron emission tomography (PET) scan in a child. PET in children is a growing area, and this article describes the practical use...... and implementation of PET in children in a hospital PET centre. It is intended to be of use to nuclear medicine departments implementing or starting to implement PET scans in children. Topics covered are: dealing with children, dosimetry, organisation within the department and relations with other departments......, preparation of the child (provision of information to the child and parents and the fasting procedure), the imaging procedure (resting, tracer injection, positioning, sedation and bladder emptying) and pitfalls in the interpretation of PET scans in children, including experiences with telemedicine....

  19. Practical use and implementation of PET in children in a hospital PET centre

    International Nuclear Information System (INIS)

    Borgwardt, Lise; Larsen, Helle Jung; Pedersen, Kate; Hoejgaard, Liselotte

    2003-01-01

    Children are not just small adults - they differ in their psychology, normal physiology and pathophysiology, and various aspects should be considered when planning a positron emission tomography (PET) scan in a child. PET in children is a growing area, and this article describes the practical use and implementation of PET in children in a hospital PET centre. It is intended to be of use to nuclear medicine departments implementing or starting to implement PET scans in children. Topics covered are: dealing with children, dosimetry, organisation within the department and relations with other departments, preparation of the child (provision of information to the child and parents and the fasting procedure), the imaging procedure (resting, tracer injection, positioning, sedation and bladder emptying) and pitfalls in the interpretation of PET scans in children, including experiences with telemedicine. (orig.)

  20. Practical use and implementation of PET in children in a hospital PET centre

    Energy Technology Data Exchange (ETDEWEB)

    Borgwardt, Lise; Larsen, Helle Jung; Pedersen, Kate; Hoejgaard, Liselotte [Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen (Denmark)

    2003-10-01

    Children are not just small adults - they differ in their psychology, normal physiology and pathophysiology, and various aspects should be considered when planning a positron emission tomography (PET) scan in a child. PET in children is a growing area, and this article describes the practical use and implementation of PET in children in a hospital PET centre. It is intended to be of use to nuclear medicine departments implementing or starting to implement PET scans in children. Topics covered are: dealing with children, dosimetry, organisation within the department and relations with other departments, preparation of the child (provision of information to the child and parents and the fasting procedure), the imaging procedure (resting, tracer injection, positioning, sedation and bladder emptying) and pitfalls in the interpretation of PET scans in children, including experiences with telemedicine. (orig.)

  1. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans

    International Nuclear Information System (INIS)

    Freedman, Nanette M.T.; Sundaram, Senthil K.; Kurdziel, Karen; Carrasquillo, Jorge A.; Whatley, Millie; Carson, Joann M.; Sellers, David; Libutti, Steven K.; Yang, James C.; Bacharach, Stephen L.

    2003-01-01

    The standardized uptake value (SUV) and the slope of the Patlak plot (K) have both been proposed as indices to monitor the progress of disease during cancer therapy. Although a good correlation has been reported between SUV and K, they are not equivalent, and may not be equally affected by metabolic changes occurring during disease progression or therapy. We wished to compare changes in tumor SUV with changes in K during serial positron emission tomography (PET) scans for monitoring therapy. Thirteen patients enrolled in a protocol to treat renal cell carcinoma metastases were studied. Serial dynamic fluorodeoxyglucose (FDG) PET scans and computed tomography (CT) and magnetic resonance (MR) scans were performed once prior to treatment, once at 36±2 days after the start of treatment, and (in 7/13 subjects, 16/27 lesions) a third time at 92±9 days after the start of treatment. This resulted in a total of 33 scans, and 70 tumor Patlak and SUV values (one value for each lesion at each time point). SUV and K were measured over one to four predefined tumors/patient at each time point. The input function was obtained from regions of interest over the heart, combined, if necessary, with late blood samples. Over all tumors and scans, SUV and K correlated well (r=0.97, P<0.0001). However, change in SUV with treatment over all tumor scan pairs was much less well correlated with the corresponding change in K (r=0.73, P<0.0001). The absolute difference in % change was outside the 95% confidence limits expected from previous variability studies in 6 of 43 pairs of tumor scans, and greater than 50% in 2 of 43 tumor scan pairs. In four of the six cases, the two indices predicted opposing therapeutic outcomes. Similar results were obtained for SUV normalized by body weight or body surface area and for SUVs using mean or maximum count. Changes in CT and MR tumor cross-product dimensions correlated poorly with each other (r=0.47, P=NS), and so could not be used to determine the

  2. {sup 18}F-FDG PET/CT for early detection of embolism and metastatic infection in patients with infective endocarditis

    Energy Technology Data Exchange (ETDEWEB)

    Riet, Jelle van; Gheysens, Olivier; Mortelmans, Luc [University Hospital KU Leuven, Department of Nuclear Medicine, Leuven (Belgium); Hill, Evelyn E.; Herregods, Marie-Christine [University Hospital KU Leuven, Department of Cardiology, Leuven (Belgium); Dymarkowski, Steven [University Hospital KU Leuven, Department of Radiology, Leuven (Belgium); Herijgers, Paul [University Hospital KU Leuven, Department of Cardiac Surgery, Leuven (Belgium); Peetermans, Willy E. [University Hospital KU Leuven, Department of Internal Medicine, Leuven (Belgium)

    2010-06-15

    In the acute setting of endocarditis it is very important to assess both the vegetation itself, as well as potential life-threatening complications, in order to decide whether antibiotic therapy will be sufficient or urgent surgery is indicated. A single whole-body scan investigating inflammatory changes could be very helpful to achieve a swift and efficient assessment. In this study we assessed whether {sup 18}F-FDG can be used to detect and localize peripheral embolism or distant infection. Twenty-four patients with 25 episodes of endocarditis, enrolled between March 2006 and February 2008, underwent {sup 18}F-FDG PET/CT imaging on a dedicated PET/CT scanner. PET/CT imaging revealed a focus of peripheral embolization and/or metastatic infection in 11 episodes (44%). One episode had a positive PET/CT scan result for both embolism and metastatic infection. PET/CT detected seven positive cases (28%) in which there was no clinical suspicion. Valve involvement of endocarditis was seen only in three patients (12%). PET/CT may be an important diagnostic tool for tracing peripheral embolism and metastatic infection in the acute setting of infective endocarditis, since a PET/CT scan detected a clinically occult focus in nearly one third of episodes. (orig.)

  3. F-18 FDG PET finding in autonomous thyroid nodules

    International Nuclear Information System (INIS)

    Park, Chan H.; Lee, Myoung Hoon; Yoon, Seek Nam; Hwang, Kyung Hoon

    2001-01-01

    F-18 FDG PET has become an important diagnostic imaging modality of various malignancies including thyroid cancer. Focal hypermetabolic lesion in the thyroid gland is usually considered malignant (Fig.1), although some benign lesions are also hypermetabolic. The aim of our poster presentation is to demonstrate F-18- FDG PET finding in autonomous thyroid nodules (ATN) and to avoid confusion in the interpretation of F-18-FDG PET performed for the evaluation of thyroid malignancy. Two patients with ATN (one with toxic and the other with nontoxic) underwent F-18-PET. ATN was proven by Tc-99m pertechnate thyroid scan (TS) and thyroid function tests (TFTs) were performed. First patient with ATN was asymptomatic and had a long history of thyroid nodule. Second patient was suffering from acute myelogenous leukemia (AML) and he was mildly thyrotoxic clinically and chemically. Gamma camera based F-18 FDG PET was performed utilizing Elscints Varicam (Haifa, Israel) one hour after IV administration of 111 MBq (3mCi) F-18 FDG. Patients were fasting more than 6 hours prior ot FDG injection. First patients was scanned the neck and second patient had scan of the whole trunk including neck for the evaluation of AML. Both nontoxic and toxic ATNs were hypermetabolic and it was impossible to differentiate benign from malignancy. Biopsy of nodule of the first patient and surgical removal of the nodule in the second patient was benign. Benign nontoxic and toxic ATNs are F-18 FDG avid. The reason for this is that ATN has increased glycolysis and iodide metabolism. Therefore, focal increased FDG uptake within the thyroid gland should be interpreted with TS and TFTs for an accurate diagnosis when F-18 FDG PET is used in the evaluation of thyroid malignancy

  4. Evaluation of the tumor registration error in biopsy procedures performed under real-time PET/CT guidance.

    Science.gov (United States)

    Fanchon, Louise M; Apte, Adytia; Schmidtlein, C Ross; Yorke, Ellen; Hu, Yu-Chi; Dogan, Snjezana; Hatt, Mathieu; Visvikis, Dimitris; Humm, John L; Solomon, Stephen B; Kirov, Assen S

    2017-10-01

    The purpose of this study is to quantify tumor displacement during real-time PET/CT guided biopsy and to investigate correlations between tumor displacement and false-negative results. 19 patients who underwent real-time 18 F-FDG PET-guided biopsy and were found positive for malignancy were included in this study under IRB approval. PET/CT images were acquired for all patients within minutes prior to biopsy to visualize the FDG-avid region and plan the needle insertion. The biopsy needle was inserted and a post-insertion CT scan was acquired. The two CT scans acquired before and after needle insertion were registered using a deformable image registration (DIR) algorithm. The DIR deformation vector field (DVF) was used to calculate the mean displacement between the pre-insertion and post-insertion CT scans for a region around the tip of the biopsy needle. For 12 patients one biopsy core from each was tracked during histopathological testing to investigate correlations of the mean displacement between the two CT scans and false-negative or true-positive biopsy results. For 11 patients, two PET scans were acquired; one at the beginning of the procedure, pre-needle insertion, and an additional one with the needle in place. The pre-insertion PET scan was corrected for intraprocedural motion by applying the DVF. The corrected PET was compared with the post-needle insertion PET to validate the correction method. The mean displacement of tissue around the needle between the pre-biopsy CT and the postneedle insertion CT was 5.1 mm (min = 1.1 mm, max = 10.9 mm and SD = 3.0 mm). For mean displacements larger than 7.2 mm, the biopsy cores gave false-negative results. Correcting pre-biopsy PET using the DVF improved the PET/CT registration in 8 of 11 cases. The DVF obtained from DIR of the CT scans can be used for evaluation and correction of the error in needle placement with respect to the FDG-avid area. Misregistration between the pre-biopsy PET and the CT acquired with the

  5. 68Ga-PSMA PET/CT in the evaluation of bone metastases in prostate cancer.

    Science.gov (United States)

    Sachpekidis, Christos; Bäumer, P; Kopka, K; Hadaschik, B A; Hohenfellner, M; Kopp-Schneider, A; Haberkorn, U; Dimitrakopoulou-Strauss, A

    2018-06-01

    The aims of this retrospective analysis were to compare 68 Ga-PSMA PET findings and low-dose CT findings (120 kV, 30 mA), and to obtain semiquantitative and quantitative 68 Ga-PSMA PET data in patients with prostate cancer (PC) bone metastases. In total, 152 PET/CT scans from 140 patients were evaluated. Of these patients, 30 had previously untreated primary PC, and 110 had biochemical relapse after treatment of primary PC. All patients underwent dynamic PET/CT scanning of the pelvis and lower abdomen as well as whole-body PET/CT with 68 Ga-PSMA-11. The PET/CT scans were analysed qualitatively (visually), semiquantitatively (SUV), and quantitatively based on a two-tissue compartment model and a noncompartmental approach leading to the extraction of the fractal dimension. Differences were considered significant for p values PET-positive and CT-positive, 65 were only 68 Ga-PSMA-positive, and 10 were only CT-positive. The Yang test showed that there were significantly more 68 Ga-PSMA PET-positive lesions than CT-positive lesions. Association analysis showed that PSA plasma levels were significantly correlated with several 68 Ga-PSMA-11-associated parameters in bone metastases, including the degree of tracer uptake (SUV average and SUV max ), its transport rate from plasma to the interstitial/intracellular compartment (K 1 ), its rate of binding to the PSMA receptor and its internalization (k 3 ), its influx rate (K i ), and its distribution heterogeneity. 68 Ga-PSMA PET/CT is a useful diagnostic tool in the detection of bone metastases in PC. 68 Ga-PSMA PET visualizes more bone metastases than low-dose CT. PSA plasma levels are significantly correlated with several 68 Ga-PSMA PET parameters.

  6. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans.

    Science.gov (United States)

    Lohmann, Philipp; Stoffels, Gabriele; Ceccon, Garry; Rapp, Marion; Sabel, Michael; Filss, Christian P; Kamp, Marcel A; Stegmayr, Carina; Neumaier, Bernd; Shah, Nadim J; Langen, Karl-Josef; Galldiks, Norbert

    2017-07-01

    We investigated the potential of textural feature analysis of O-(2-[ 18 F]fluoroethyl)-L-tyrosine ( 18 F-FET) PET to differentiate radiation injury from brain metastasis recurrence. Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic 18 F-FET PET. Tumour-to-brain ratios (TBRs) of 18 F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared. Diagnostic accuracy increased from 81 % for TBR mean alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBR max alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBR max . Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic 18 F-FET PET scans. • Textural feature analysis provides quantitative information about tumour heterogeneity • Textural features help improve discrimination between brain metastasis recurrence and radiation injury • Textural features might be helpful to further understand tumour heterogeneity • Analysis does not require a more time consuming dynamic PET acquisition.

  7. Preoperative F-18-FDG PET for the detection of metastatic cervical lymph nodes in recurrent papillary thyroid carcinoma patients with negative I-131 whole body scans

    International Nuclear Information System (INIS)

    Byun, Byung Hyun; Urn, Sang Moo; Cheon, Gi Jeong; Choi, Chang Woon; Lee, Byeong Cheol; Lee, Guk Haeng; Lee, Yong Sik; Shim, Youn Sang

    2007-01-01

    We evaluated the diagnostic performance of FDG-PET for the detection of metastatic cervical lymph nodes in recurrent papillary thyroid carcinoma patients with negative I-131 scan. All patients had total thyroidectomy and following I-131 ablation therapy. In the follow-up period, FDG-PET showed suspected cervical lymph nodes metastases and neck dissection was performed within 3 months after FDG-PET. It had shown for all patients the negative I-131 scan within 3 months before FDG-PET or negative I-131 scan during the period of cervical lymph nodes metastases suspected on the basis of FDG-PET, CT, or ultrasonography until the latest FDG-PET. Preoperative FDG-PET results were compared with the pathologic findings of lymph nodes specimens of 19 papillary thyroid carcinoma patients. Serum Tg, TSH, and Tg antibody levels at the time of latest I-131 scan were reviewed. The size of lymph node was measured by preoperative CT or ultrasonography. In 45 cervical lymph node groups dissected, 31 lymph node groups revealed metastasis. The sensitivity and specificity of FDG-PET for metastasis were 74.2% (23 of 31) and 50.0% (7 of 14), respectively. Except for patients with elevated Tg antibody levels, all patients showed the elevated serum Tg levels than normal limits at the TSH of =30uIU/ml. 8 lesions without suspected metastatic findings on FDG-PET revealed metastasis (false negative), and none of them exceeded 8mm in size (4 to 8mm, median= 6mm). On the other hand, 23 true positive lesions on FDG-PET were variable in size (6 to 17mm, median=9mm). FDG-PET is suitable for the detection of metastatic cervical lymph nodes in patients with recurrent papillary thyroid carcinoma. However, false positive or false negative should be considered according to the size of lymph node

  8. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase {sup 18}F-FET PET accuracy without dynamic scans

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Philipp; Stoffels, Gabriele; Stegmayr, Carina; Neumaier, Bernd [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); Ceccon, Garry [University of Cologne, Department of Neurology, Cologne (Germany); Rapp, Marion; Sabel, Michael; Kamp, Marcel A. [Heinrich Heine University Duesseldorf, Department of Neurosurgery, Duesseldorf (Germany); Filss, Christian P. [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); RWTH Aachen University Hospital, Department of Nuclear Medicine, Aachen (Germany); Shah, Nadim J. [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); RWTH Aachen University Hospital, Department of Neurology, Aachen (Germany); Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Department of Neurology, Juelich (Germany); Langen, Karl-Josef [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); RWTH Aachen University Hospital, Department of Nuclear Medicine, Aachen (Germany); Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Department of Neurology, Juelich (Germany); Galldiks, Norbert [Forschungszentrum Juelich, Institute of Neuroscience and Medicine, Juelich (Germany); University of Cologne, Department of Neurology, Cologne (Germany); University of Cologne, Center of Integrated Oncology (CIO), Cologne (Germany)

    2017-07-15

    We investigated the potential of textural feature analysis of O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine ({sup 18}F-FET) PET to differentiate radiation injury from brain metastasis recurrence. Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic {sup 18}F-FET PET. Tumour-to-brain ratios (TBRs) of {sup 18}F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared. Diagnostic accuracy increased from 81 % for TBR{sub mean} alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBR{sub max} alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBR{sub max}. Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic {sup 18}F-FET PET scans. (orig.)

  9. Value of the dual phase 18F-FDG PET/CT with oral diuretic in the diagnosis of bladder cancer before therapy

    International Nuclear Information System (INIS)

    Li Hongsheng; Wu Hubing; Wang Qiaoyu; Han Yanjiang; Wang Quanshi

    2014-01-01

    Background: PET with 18 F-FDG has been considered of limited value for the detection of bladder cancer because of the urinary excretion of the tracer. Purpose: To investigate the clinical value of dual phase 18 F-FDG PET/CT with oral diuretic in the diagnosis of bladder cancer. Methods: 107 patients with suspected bladder cancer were enrolled in the present study from May, 2003 to May, 2012. Each patient underwent the whole body 18 F-FDG PET/CT scans routinely. After that, all patients received the forced diuresis by orally administration of furosemide (40 mg) and drinking a lot of water. Two hours later, after several times of urination, the patients underwent an additional delayed pelvic PET/CT scans. The intravesical radioactivity was compared between the routine and delayed the scans and the visualization of the tumor was evaluated. The diagnostic efficacy was determined based on the pathological examinations and the clinical following-up. Results: With the forced diuresis, intravesical 18 F-FDG activity decreased significantly in 96.3% of the patients. The lesions on the wall of urinary bladder were visualized clearly in the delayed PET images, which weren't seen in the rout/ne PET images. 18 F-FDG PET/CT was positive in 75 patients who all then received the operation. 69 patients were diagnosed pathologically to have the bladder cancer and 6 patients to have benign diseases. 18 F-FDG PET/CT was negative in another 32 patients. Four patients of them were then diagnosed to be bladder cancer. Another 28 patients were clinically followed up more than 6 months and none of them was found to have bladder cancer. The sensitivity, specificity and accuracy of the dual phase PET/CT imaging for diagnosing the bladder cancer were 94.5%(69/73), 82.4%(28/34) and 90.7%(97/107), respectively. Conclusion: The forced diuresis using oral furosemide can significantly reduce the intravesical radioactivity and improve the detectability of 18 F-FDG PET/CT for the bladder cancer

  10. Combined early dynamic (18)F-FDG PET/CT and conventional whole-body (18)F-FDG PET/CT provide one-stop imaging for detecting hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Shao-Bo; Wu, Hu-Bing; Wang, Quan-Shi; Zhou, Wen-Lan; Tian, Ying; Li, Hong-Sheng; Ji, Yun-Hai; Lv, Liang

    2015-06-01

    It is widely accepted that conventional (18)F-FDG PET/CT (whole-body static (18)F-FDG PET/CT, WB (18)F-FDG PET/CT) has a low detection rate for hepatocellular carcinoma (HCC). We prospectively assessed the role of early dynamic (18)F-FDG PET/CT (ED (18)F-FDG PET/CT) and WB (18)F-FDG PET/CT in detecting HCC, and we quantified the added value of ED (18)F-FDG PET/CT to WB (18)F-FDG PET/CT. Twenty-two patients with 37 HCC tumors (HCCs) who underwent both a liver ED (18)F-FDG PET/CT (performed simultaneously with a 5.5 MBq/kg (18)F-FDG bolus injection and continued for 240 s) and a WB (18)F-FDG PET/CT were enrolled in the study. The WB (18)F-FDG PET/CT and ED (18)F-FDG PET/CT scans were positive in 56.7% (21/37) and 78.4% (29/37) HCCs, respectively (PPET/CT in conjunction with WB (18)F-FDG PET/CT (one-stop (18)F-FDG PET/CT) improved the positive detection rates of WB and ED (18)F-FDG PET/CT alone from 56.7% and 78.4% to 91.9% (34/37) (P0.05, respectively). One-stop (18)F-FDG PET/CT appears to be useful to improve WB (18)F-FDG PET/CT for HCC detection. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Direct comparison of FP-CIT SPECT and F-DOPA PET in patients with Parkinson's disease and healthy controls

    International Nuclear Information System (INIS)

    Eshuis, S.A.; Maguire, R.P.; Leenders, K.L.; Jager, P.L.; Jonkman, S.; Dierckx, R.A.

    2009-01-01

    Diagnosing Parkinson's disease (PD) on clinical grounds may be difficult, especially in the early stages of the disease. F-DOPA PET and FP-CIT SPECT scans are able to determine presynaptic dopaminergic activity in different ways. The aim of this study was to determine and compare the sensitivity and specificity of the two methods in the detection of striatal dopaminergic deficits in the same cohort of PD patients and healthy controls. Movement disorder specialists recruited 11 patients with early-stage PD and 17 patients with advanced PD. The patients underwent both an FP-CIT SPECT scan and an F-DOPA PET scan. In addition, 10 FP-CIT SPECT scans or 10 F-DOPA PET scans were performed in 20 healthy controls. A template with regions of interest was used to sample tracer activity of the caudate, putamen and a reference region in the brain. The outcome parameter was the striatooccipital ratio (SOR). Normal SOR values were determined in the controls. The sensitivity and specificity of both scanning methods were calculated. FP-CIT SPECT and F-DOPA PET scans were both able to discriminate PD patients from healthy controls. For the early phases of the disease, sensitivity and specificity of the contralateral striatal and putaminal uptake of FP-CIT and F-DOPA was 100%. When only caudate uptake was considered, the specificities were 100% and 90% for FP-CIT and F-DOPA, respectively, while the sensitivity was 91% for both scanning techniques. FP-CIT SPECT and F-DOPA PET scans are both able to diagnose presynaptic dopaminergic deficits in early phases of PD with excellent sensitivity and specificity. (orig.)

  12. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer?

    International Nuclear Information System (INIS)

    Schinagl, Dominic A.X.; Hoffmann, Aswin L.; Vogel, Wouter V.; Dalen, Jorn A. van; Verstappen, Suzan M.M.; Oyen, Wim J.G.; Kaanders, Johannes H.A.M.

    2009-01-01

    Background and purpose: The role of FDG-PET in radiotherapy target volume definition of the neck was evaluated by comparing eight methods of FDG-PET segmentation to the current CT-based practice of lymph node assessment in head-and-neck cancer patients. Materials and methods: Seventy-eight head-and-neck cancer patients underwent coregistered CT- and FDG-PET scans. Lymph nodes were classified as 'enlarged' if the shortest axial diameter on CT was ≥10 mm, and as 'marginally enlarged' if it was 7-10 mm. Subsequently, lymph nodes were assessed on FDG-PET applying eight segmentation methods: visual interpretation (PET VIS ), applying fixed thresholds at a standardized uptake value (SUV) of 2.5 and at 40% and 50% of the maximum signal intensity of the primary tumor (PET SUV , PET 40% , PET 50% ) and applying a variable threshold based on the signal-to-background ratio (PET SBR ). Finally, PET 40%N , PET 50%N and PET SBRN were acquired using the signal of the lymph node as the threshold reference. Results: Of 108 nodes classified as 'enlarged' on CT, 75% were also identified by PET VIS , 59% by PET 40% , 43% by PET 50% and 43% by PET SBR . Of 100 nodes classified as 'marginally enlarged', only a minority were visualized by FDG-PET. The respective numbers were 26%, 10%, 7% and 8% for PET VIS , PET 40% , PET 50% and PET SBR . PET 40%N , PET 50%N and PET SBRN , respectively, identified 66%, 82% and 96% of the PET VIS -positive nodes. Conclusions: Many lymph nodes that are enlarged and considered metastatic by standard CT-based criteria appear to be negative on FDG-PET scan. Alternately, a small proportion of marginally enlarged nodes are positive on FDG-PET scan. However, the results are largely dependent on the PET segmentation tool used, and until proper validation FDG-PET is not recommended for target volume definition of metastatic lymph nodes in routine practice.

  13. Speeding up PET/MR for cancer staging of children and young adults

    Energy Technology Data Exchange (ETDEWEB)

    Aghighi, Maryam; Pisani, Laura Jean; Sun, Ziyan; Klenk, Christopher; Madnawat, Himani; Owen, Daniel; Quon, Andrew; Moseley, Michael; Daldrup-Link, Heike E. [Stanford University, Department of Radiology, Molecular Imaging Program at Stanford, Stanford, CA (United States); Fineman, Sandra Luna [Stanford University, Department of Pediatrics, Lucile Packard Children' s Hospital, Stanford, CA (United States); Advani, Ranjana [Stanford University, Department of Medicine, Stanford Hospital, Stanford, CA (United States); Von Eyben, Rie [Stanford University, Department of Radiation and Oncology, Stanford, CA (United States)

    2016-12-15

    Combining {sup 18}F-FDG PET with whole-body MR for paediatric cancer staging is practically feasible if imaging protocols can be streamlined. We compared {sup 18}F-FDG PET/STIR with accelerated {sup 18}F-FDG PET/FSPGR for whole-body tumour imaging in children and young adults. Thirty-three children and young adults (17.5 ± 5.5 years, range 10-30) with malignant lymphoma or sarcoma underwent a {sup 18}F-FDG PET staging examination, followed by ferumoxytol-enhanced STIR and FSPGR whole-body MR. {sup 18}F-FDG PET scans were fused with MR data and the number and location of tumours on each integrated examination were determined. Histopathology and follow-up imaging served as standard of reference. The agreement of each MR sequence with the reference and whole-body imaging times were compared using Cohen's kappa coefficient and Student's t-test, respectively. Comparing {sup 18}F-FDG PET/FSPGR to {sup 18}F-FDG PET/STIR, sensitivities were 99.3 % for both, specificities were statistically equivalent, 99.8 versus 99.9 %, and the agreement with the reference based on Cohen's kappa coefficient was also statistically equivalent, 0.989 versus 0.992. However, the total scan-time for accelerated FSPGR of 19.8 ± 5.3 minutes was significantly shorter compared to 29.0 ± 7.6 minutes for STIR (p = 0.001). F-FDG PET/FSPGR demonstrated equivalent sensitivities and specificities for cancer staging compared to {sup 18}F-FDG PET/STIR, but could be acquired with shorter acquisition time. (orig.)

  14. Impact of {sup 18}F-FDG PET/CT on the management of adrenocortical carcinoma: analysis of 106 patients

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Satoshi; Macapinlac, Homer A.; Chuang, Hubert H. [The University of Texas MD Anderson Cancer Center, Department of Nuclear Medicine, Houston, TX (United States); Balachandran, Aparna [The University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Houston, TX (United States); Habra, Mouhammed Amir [The University of Texas MD Anderson Cancer Center, Department of Endocrine Neoplasia and Hormonal Disorders, Houston, TX (United States); Phan, Alexandria T. [The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Houston, TX (United States); Bassett, Roland L. [The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, TX (United States)

    2014-11-15

    Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy. Limited data are available about on value of {sup 18}F-FDG PET/CT in ACC. We evaluated the impact of PET/CT on the management of ACC. We performed a retrospective review in patients with ACC who had undergone PET/CT. The impact of PET/CT on the management plan was evaluated by comparing the findings on PET/CT to the findings on contrast-enhanced CT. The sensitivity, specificity, and accuracy of each form of imaging were calculated. The correlations between PET/CT parameters, including maximum standardized uptake value (SUV{sub max}), total lesion glycolysis, and decline in SUV{sub max} after chemotherapy, and clinical outcome were evaluated. Included in the analysis were 106 patients with 180 PET/CT scans. Of the 106 patients, 7 underwent PET/CT only for initial staging, 84 underwent PET/CT only for restaging, and 15 underwent PET/CT for both initial staging and restaging. PET/CT changed the management plan in 1 of 22 patients (5 %) at initial staging and 9 of 99 patients (9 %) at restaging. In 5 of the patients in whom PET/CT changed the management plan, PET/CT showed response to chemotherapy but contrast-enhanced CT showed stable disease. Sensitivity, specificity, and accuracy were 100 %, 100 %, and 100 % for PET/CT at initial staging; 92.6 %, 100 %, and 96.4 % for CT at initial staging; 98.4 %, 100 %, and 99.5 % for PET/CT at restaging; and 96.8 %, 98.6 %, and 98.0 % for CT at restaging, respectively. No PET/CT parameters were associated with survival at either initial diagnosis or recurrence. PET/CT findings could substantially change the management plan in a small proportion of patients with ACC. Although lesion detection was similar between PET/CT and CT, PET/CT may be preferred for chemotherapeutic response assessment because it may predict response before anatomic changes are detected on CT. (orig.)

  15. PET/MRI and PET/CT in advanced gynaecological tumours: initial experience and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Marcelo A.; Schulthess, Gustav von; Veit-Haibach, Patrick [University Hospital Zurich, Department Medical Radiology, Nuclear Medicine, Zurich (Switzerland); University Hospital Zurich, Department Medical Radiology, Diagnostic and Interventional Radiology, Zurich (Switzerland); University of Zurich, Zurich (Switzerland); Kubik-Huch, Rahel A.; Freiwald-Chilla, Bianka [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); Hauser, Nik [Kantonsspital Baden AG, Department of Gynaecology, Baden (Switzerland); Froehlich, Johannes M. [Guerbet AG, Zurich (Switzerland)

    2015-08-15

    To compare the diagnostic accuracy of PET/MRI and PET/CT for staging and re-staging advanced gynaecological cancer patients as well as identify the potential benefits of each method in such a population. Twenty-six patients with suspicious or proven advanced gynaecological cancer (12 ovarian, seven cervical, one vulvar and four endometrial tumours, one uterine metastasis, and one primary peritoneal cancer) underwent whole-body imaging with a sequential trimodality PET/CT/MR system. Images were analysed regarding primary tumour detection and delineation, loco-regional lymph node staging, and abdominal/extra-abdominal distant metastasis detection (last only by PET/CT). Eighteen (69.2 %) patients underwent PET/MRI for primary staging and eight patients (30.8 %) for re-staging their gynaecological malignancies. For primary tumour delineation, PET/MRI accuracy was statistically superior to PET/CT (p < 0.001). Among the different types of cancer, PET/MRI presented better tumour delineation mainly for cervical (6/7) and endometrial (2/3) cancers. PET/MRI for local evaluation as well as PET/CT for extra-abdominal metastases had therapeutic consequences in three and one patients, respectively. PET/CT detected 12 extra-abdominal distant metastases in 26 patients. PET/MRI is superior to PET/CT for primary tumour delineation. No differences were found in detection of regional lymph node involvement and abdominal metastases detection. (orig.)

  16. Automatic extraction of forward stroke volume using dynamic 11C-acetate PET/CT

    DEFF Research Database (Denmark)

    Harms, Hans; Tolbod, Lars Poulsen; Hansson, Nils Henrik

    Objectives: Dynamic PET with 11C-acetate can be used to quantify myocardial blood flow and oxidative metabolism, the latter of which is used to calculate myocardial external efficiency (MEE). Calculation of MEE requires forward stroke volume (FSV) data. FSV is affected by cardiac loading conditions......, potentially introducing bias if measured with a separate modality. The aim of this study was to develop and validate methods for automatically extracting FSV directly from the dynamic PET used for measuring oxidative metabolism. Methods: 16 subjects underwent a dynamic 27 min PET scan on a Siemens Biograph...... TruePoint 64 PET/CT scanner after bolus injection of 399±27 MBq of 11C-acetate. The LV-aortic time-activity curve (TAC) was extracted automatically from dynamic PET data using cluster analysis. The first-pass peak was derived by automatic extrapolation of the down-slope of the TAC. FSV...

  17. Evaluation of Dixon Sequence on Hybrid PET/MR Compared with Contrast-Enhanced PET/CT for PET-Positive Lesions

    International Nuclear Information System (INIS)

    Jeong, Ju Hye; Cho, Ihn Ho; Kong, Eun Jung; Chun, Kyung Ah

    2014-01-01

    Hybrid positron emission tomography and magnetic resonance (PET/MR) imaging performs a two-point Dixon MR sequence for attenuation correction. However, MR data in hybrid PET/MR should provide anatomic and morphologic information as well as an attenuation map. We evaluated the Dixon sequence of hybrid PET/MR for anatomic correlation of PET-positive lesions compared with contrast-enhanced PET/computed tomography (CT) in patients with oncologic diseases. Twelve patients underwent a single injection, dual imaging protocol. PET/CT was performed with an intravenous contrast agent (85±13 min after 18 F-FDG injection of 403± 45 MBq) and then (125±19 min after injection) PET/MR was performed. Attenuation correction and anatomic allocation of PET were performed using contrast-enhanced CT for PET/CT and Dixon MR sequence for hybrid PET/MR. The Dixon MR sequence and contrast-enhanced CT were compared for anatomic correlation of PET-positive lesions (scoring scale ranging from 0 to 3 for visual ratings). Additionally, standardized uptake values (SUVs) for the detected lesions were assessed for quantitative comparison. Both hybrid PET/MR and contrast-enhanced PET/CT identified 55 lesions with increased FDG uptake in ten patients. In total, 28 lymph nodes, 11 bone lesions, 3 dermal nodules, 3 pleural thickening lesions, 2 thyroid nodules, 1 pancreas, 1 liver, 1 ovary, 1 uterus, 1 breast, 1 soft tissue and 2 lung lesions were present. The best performance was observed for anatomic correlation of PET findings by the contrast-enhanced CT scans (contrast-enhanced CT, 2.64± 0.70; in-phase, 1.29±1.01; opposed-phase, 1.29±1.15; water-weighted, 1.71±1.07; fat weighted, 0.56±1.03). A significant difference was observed between the scores obtained from the contrast-enhanced CT and all four coregistered Dixon MR images. Quantitative evaluation revealed a high correlation between the SUVs measured with hybrid PET/MR (SUVmean, 2.63±1.62; SUVmax, 4.30±2.88) and contrast-enhanced PET

  18. Evaluation of Dixon Sequence on Hybrid PET/MR Compared with Contrast-Enhanced PET/CT for PET-Positive Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ju Hye; Cho, Ihn Ho; Kong, Eun Jung; Chun, Kyung Ah [Yeungnam Univ. Hospital, Daegu (Korea, Republic of)

    2014-03-15

    Hybrid positron emission tomography and magnetic resonance (PET/MR) imaging performs a two-point Dixon MR sequence for attenuation correction. However, MR data in hybrid PET/MR should provide anatomic and morphologic information as well as an attenuation map. We evaluated the Dixon sequence of hybrid PET/MR for anatomic correlation of PET-positive lesions compared with contrast-enhanced PET/computed tomography (CT) in patients with oncologic diseases. Twelve patients underwent a single injection, dual imaging protocol. PET/CT was performed with an intravenous contrast agent (85±13 min after {sup 18}F-FDG injection of 403± 45 MBq) and then (125±19 min after injection) PET/MR was performed. Attenuation correction and anatomic allocation of PET were performed using contrast-enhanced CT for PET/CT and Dixon MR sequence for hybrid PET/MR. The Dixon MR sequence and contrast-enhanced CT were compared for anatomic correlation of PET-positive lesions (scoring scale ranging from 0 to 3 for visual ratings). Additionally, standardized uptake values (SUVs) for the detected lesions were assessed for quantitative comparison. Both hybrid PET/MR and contrast-enhanced PET/CT identified 55 lesions with increased FDG uptake in ten patients. In total, 28 lymph nodes, 11 bone lesions, 3 dermal nodules, 3 pleural thickening lesions, 2 thyroid nodules, 1 pancreas, 1 liver, 1 ovary, 1 uterus, 1 breast, 1 soft tissue and 2 lung lesions were present. The best performance was observed for anatomic correlation of PET findings by the contrast-enhanced CT scans (contrast-enhanced CT, 2.64± 0.70; in-phase, 1.29±1.01; opposed-phase, 1.29±1.15; water-weighted, 1.71±1.07; fat weighted, 0.56±1.03). A significant difference was observed between the scores obtained from the contrast-enhanced CT and all four coregistered Dixon MR images. Quantitative evaluation revealed a high correlation between the SUVs measured with hybrid PET/MR (SUVmean, 2.63±1.62; SUVmax, 4.30±2.88) and contrast

  19. Deep-inspiration breath-hold PET/CT versus free breathing PET/CT and respiratory gating PET for reference. Evaluation in 95 patients with lung cancer

    International Nuclear Information System (INIS)

    Kawano, Tsuyoshi; Ohtake, Eiji; Inoue, Tomio

    2011-01-01

    The objective of this study was to define the factors that correlate with differences in maximum standardized uptake value (SUV max ) in deep-inspiration breath-hold (DIBH) and free breathing (FB) positron emission tomography (PET)/CT admixed with respiratory gating (RG) PET for reference. Patients (n=95) with pulmonary lesions were evaluated at one facility over 33 months. After undergoing whole-body PET/CT, a RG PET and FB PET/CT scans were obtained, followed by a DIBH PET/CT scan. All scans were recorded using a list-mode dynamic collection method with respiratory gating. The RG PET was reconstructed using phase gating without attenuation correction; the FB PET was reconstructed from the RG PET sinogram datasets with attenuation correction. Respiratory motion distance, breathing cycle speed, and waveform of RG PET were recorded. The SUV max of FB PET/CT and DIBH PET/CT were recorded: the percent difference in SUV max between the FB and DIBH scans was defined as the %BH-index. The %BH-index was significantly higher for lesions in the lower lung area than in the upper lung area. Respiratory motion distance was significantly higher in the lower lung area than in the upper lung area. A significant relationship was observed between the %BH-index and respiratory motion distance. Waveforms without steady end-expiration tended to show a high %BH-index. Significant inverse relationships were observed between %BH-index and cycle speed, and between respiratory motion distance and cycle speed. Decrease in SUV max of FB PET/CT was due to tumor size, distribution of lower lung, long respiratory movement at slow breathing cycle speeds, and respiratory waveforms without steady end-expiration. (author)

  20. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion.

    Science.gov (United States)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Herfarth, Klaus; Debus, Jürgen; Parodi, Katia

    2016-02-01

    Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolved (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the clinical potential.

  1. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion

    International Nuclear Information System (INIS)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Herfarth, Klaus; Debus, Jürgen; Richter, Daniel; Parodi, Katia

    2016-01-01

    Purpose: Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Methods: Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolved (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results: Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. Conclusions: The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the

  2. Clinical evaluation of PET image quality as a function of acquisition time in a new TOF-PET/MR compared to TOF-PET/CT - initial results

    International Nuclear Information System (INIS)

    Zeimpekis, Konstantinos; Huellner, Martin; De Galiza Barbosa, Felipe; Ter Voert, Edwin; Davison, Helen; Delso, Gaspar; Veit-Haibach, Patrick

    2015-01-01

    The recently available integrated PET/MR imaging can offer significant additional advances in clinical imaging. The purpose of this study was to compare the PET performance between a PET/CT scanner and an integrated TOF-PET/MR scanner concerning image quality parameters and quantification in terms of SUV as a function of acquisition time (a surrogate of dose). Five brain and five whole body patients were included in the study. The PET/CT scan was used as a reference and the PET/MR acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts and noise were evaluated. SUV measurements were taken in the liver and in white matter to compare quantification. Quantitative evaluation showed good correlation between PET/CT and PET/MR brain SUVs. Liver correlation was lower, with uptake underestimation in PET/MR, partially justified by bio-redistribution. The clinical evaluation showed that PET/MR offers higher image quality and sharpness with lower levels of noise and artefacts compared to PET/CT with reduced acquisition times for whole body scans, while for brain scans there is no significant difference. The PET-component of the TOF-PET/MR showed higher image quality compared to PET/CT as tested with reduced imaging times. However, these results account mainly for body imaging, while no significant difference were found in brain imaging. This overall higher image quality suggests that the acquisition time or injected activity can be reduced by at least 37% on the PET/MR scanner.

  3. Clinical evaluation of PET image quality as a function of acquisition time in a new TOF-PET/MR compared to TOF-PET/CT - initial results

    Energy Technology Data Exchange (ETDEWEB)

    Zeimpekis, Konstantinos; Huellner, Martin; De Galiza Barbosa, Felipe; Ter Voert, Edwin; Davison, Helen; Delso, Gaspar; Veit-Haibach, Patrick [Nuclear Medicine, University Hospital Zurich (Switzerland)

    2015-05-18

    The recently available integrated PET/MR imaging can offer significant additional advances in clinical imaging. The purpose of this study was to compare the PET performance between a PET/CT scanner and an integrated TOF-PET/MR scanner concerning image quality parameters and quantification in terms of SUV as a function of acquisition time (a surrogate of dose). Five brain and five whole body patients were included in the study. The PET/CT scan was used as a reference and the PET/MR acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts and noise were evaluated. SUV measurements were taken in the liver and in white matter to compare quantification. Quantitative evaluation showed good correlation between PET/CT and PET/MR brain SUVs. Liver correlation was lower, with uptake underestimation in PET/MR, partially justified by bio-redistribution. The clinical evaluation showed that PET/MR offers higher image quality and sharpness with lower levels of noise and artefacts compared to PET/CT with reduced acquisition times for whole body scans, while for brain scans there is no significant difference. The PET-component of the TOF-PET/MR showed higher image quality compared to PET/CT as tested with reduced imaging times. However, these results account mainly for body imaging, while no significant difference were found in brain imaging. This overall higher image quality suggests that the acquisition time or injected activity can be reduced by at least 37% on the PET/MR scanner.

  4. Value of {sup 11}C-choline PET and PET/CT in patients with suspected prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Scher, Bernhard; Albinger, Wolfram; Tiling, Reinhold; Gildehaus, Franz-Josef; Dresel, Stefan [University of Munich, Department of Nuclear Medicine, Munich (Germany); Seitz, Michael [University of Munich, Department of Urology, Munich (Germany); Scherr, Michael; Becker, Hans-Christoph [University of Munich, Department of Radiology, Munich (Germany); Souvatzogluou, Michael; Wester, Hans-Juergen [Technical University of Munich, Department of Nuclear Medicine, Munich (Germany)

    2007-01-15

    The value and limitations of {sup 11}C-choline PET and PET/CT for the detection of prostate cancer remain controversial. The aim of this study was to investigate the diagnostic efficacy of {sup 11}C-choline PET and PET/CT in a large group of patients with suspected prostate cancer. Fifty-eight patients with clinical suspicion of prostate cancer underwent {sup 11}C-choline PET (25/58, Siemens ECAT Exact HR+) or PET/CT (33/58, Philips Gemini) scanning. On average, 500 MBq of {sup 11}C-choline was administered intravenously. Studies were interpreted by raters blinded to clinical information and other diagnostic procedures. Qualitative image analysis as well as semiquantitative SUV measurement was carried out. The reference standard was histopathological examination of resection specimens or biopsy. Prevalence of prostate cancer in this selected patient population was 63.8% (37/58). {sup 11}C-choline PET and PET/CT showed a sensitivity of 86.5% (32/37) and a specificity of 61.9% (13/21) in the detection of the primary malignancy. With regard to metastatic spread, PET showed a per-patient sensitivity of 81.8% (9/11) and produced no false positive findings. Based on our findings, differentiation between benign prostatic changes, such as benign prostatic hyperplasia or prostatitis, and prostate cancer is feasible in the majority of cases when image interpretation is primarily based on qualitative characteristics. SUV{sub max} may serve as guidance. False positive findings may occur due to an overlap of {sup 11}C-choline uptake between benign and malignant processes. By providing functional information regarding both the primary malignancy and its metastases, {sup 11}C-choline PET may prove to be a useful method for staging prostate cancer. (orig.)

  5. Focal Colonic FDG Activity with PET/CT: Guidelines for Recommendation of Colonoscopy

    International Nuclear Information System (INIS)

    Liu, Tianye; Behr, Spencer; Khan, Sana; Osterhoff, Robert; Aparici, Carina Mari

    2015-01-01

    Focal 18 F-fluorodeoxyglucose (FDG) colonic activity can be incidentally seen in positron emission tomography/computed tomography (PET/CT) scans. Its clinical significance is still unclear. The purpose of this study was to assess the significance of focal FDG activity in PET/CT scans by correlating the imaging findings to colonoscopy results, and come up with some guidelines for recommendation of follow-up colonoscopy. A total of 133 patients who underwent both 18 F-FDG PET/CT for different oncological indications and colonoscopy within 3 months were retrospectively studied. Imaging, colonoscopy and pathology results were analyzed. Of the 133 FDG-PET/CT scans, 109/133 (82%) did not show focal colonic FDG activity, and 24/133 (18%) did. Of the 109/133 PET/CTs without focal colonic FDG activity, 109/109 (100%) did not have evidence of colon cancer after colonoscopy and histology. Of the 24/133 PET/CTs with focal colonic FDG activity, 10/24 (42%) had pathologic confirmation of colon cancer and 14/24 (58%) did not have evidence of colon cancer after colonoscopy and histological analysis. Sensitivity was 10/10 (100%), specificity 109/123 (89%), positive predictive value (PPV) 10/24 (42%) and negative predictive value (NPV) 109/109 (100%). Incidental focal 18 FDG activity in PET/CT imaging shows a high sensitivity, specificity and NPV for malignancy, with a not so high PPV of 42%. Although some people would argue that a 42% chance of malignancy justifies colonoscopy, this maybe is not possible in all cases. However, the high sensitivity of the test does not allow these studies to be overlooked. We provide our recommendations as per when to send patients with focal FDG colonic activity to have further characterization with colonoscopy

  6. PET/CT comparing 68Ga-DOTATATE and other radiopharmaceuticals and in comparison with CT/MRI for the localization of sporadic metastatic pheochromocytoma and paraganglioma

    International Nuclear Information System (INIS)

    Janssen, Ingo; Chen, Clara C.; Millo, Corina M.; Herscovitch, Peter; Ling, Alexander; Taieb, David; Lin, Frank I.; Adams, Karen T.; Wolf, Katherine I.; Pacak, Karel; Fojo, Antonio T.; Buchmann, Inga; Kebebew, Electron

    2016-01-01

    Pheochromocytomas/paragangliomas (PPGLs) and their metastases are tumors that predominantly express somatostatin receptor 2 (SSR2). 68 Ga-DOTA(0)-Tyr(3)-octreotate ( 68 Ga-DOTATATE) is a PET radiopharmaceutical with both high and selective affinity for SSRs. The purpose of this study was to evaluate the utility of 68 Ga-DOTATATE in comparison with other specific and nonspecific radiopharmaceuticals recommended in the current guidelines for the localization of metastatic sporadic PPGL by PET/CT. This prospective study included 22 patients (15 men, 7 women; aged 50.0 ± 13.9 years) with confirmed metastatic PPGL, a negative family history for PPGL, and negative genetic testing, who underwent 68 Ga-DOTATATE, 18 F-fluoro-2-deoxy-D-glucose ( 18 F-FDG) PET/CT, and CT/MRI. Only 12 patients underwent an additional 18 F-fluorodihydroxyphenylalanine ( 18 F-FDOPA) PET/CT scan and only 11 patients underwent an additional 18 F-fluorodopamine ( 18 F-FDA) PET/CT scan. The rates of detection of metastatic lesions were compared among all the imaging studies. A composite of all functional and anatomical imaging studies served as the imaging comparator. 68 Ga-DOTATATE PET/CT showed a lesion-based detection rate of 97.6 % (95 % confidence interval, CI, 95.8 - 98.7 %). 18 F-FDG PET/CT, 18 F-FDOPA PET/CT, 18 F-FDA PET/CT, and CT/MRI showed detection rates of 49.2 % (CI 44.5 - 53.6 %; p < 0.01), 74.8 % (CI 69.0 - 79.9 %; p < 0.01), 77.7 % (CI 71.5 - 82.8 %; p < 0.01), and 81.6 % (CI 77.8 - 84.8 %; p < 0.01), respectively. The results of this study demonstrate the superiority of 68 Ga-DOTATATE PET/CT in the localization of sporadic metastatic PPGLs compared to all other functional and anatomical imaging modalities, and suggest modification of future guidelines towards this new imaging modality. (orig.)

  7. Value of surveillance {sup 18}F FDG PET/CT in colorectal cancer:comparison with conventional imaging studies

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun Kyoung; Yoo, Ie Ryung; Park, Hye Lim; Choi, Hyun Su; Han, Eun Ji; Kim, Sung Hoon; Chung, Soo Kyo; O, Joo Hyun [The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2012-09-15

    To assess the value of PET/CT for detecting local or distant recurrence in patients who undergo surgery for colorectal cancer (CRC)and to compare the accuracy of PET/CT to that of conventional imaging studies (CIS). Tumor surveillance PET/CT scans done between March 2005 and December 2009 of disease free patients after surgery with or without adjuvant chemotherapy for CRC were retrospectively studied. CIS (serial enhanced CT from lung base to pelvis and plain chest radiograph)were performed within 1 month of PET/CT. We excluded patients with distant metastasis on initial staging, a known recurrent tumor, and a lack of follow up imaging. The final diagnosis was based on at least 6 months of follow up with colonoscopy, biopsy, and serial imaging studies in combination with carcinoembryonic antigen levels. A total of 262 PET/CT scans of 245 patients were included. Local and distant recurrences were detected in 27 cases (10.3%). On case based analysis, the overall sensitivity, specificity, and accuracy were 100, 97.0, and 97.3% for PET/CT and 85.1, 97.0, and 95.8% for CIS, respectively. On lesion based analysis, PET/CT detected more lesions compared to CIS in local recurrence and lung metastasis. PET/CT and CIS detected the same number of lesions in abdominal lymph nodes, hepatic metastasis, and peritoneal carcinomatosis. PET/CT detected two more metachronous tumors than did CIS in the lung and thyroid gland. PET/CT detected more recurrences in patients who underwent surgery for CRC than did CIS and had the additional advantage of evaluating the entire body during a single scan.

  8. 13N-ammonia myocardial perfusion imaging with a PET/CT scanner: impact on clinical decision making and cost-effectiveness

    International Nuclear Information System (INIS)

    Siegrist, Patrick T.; Husmann, Lars; Knabenhans, Martina; Gaemperli, Oliver; Valenta, Ines; Hoefflinghaus, Tobias; Scheffel, Hans; Stolzmann, Paul; Alkadhi, Hatem; Kaufmann, Philipp A.

    2008-01-01

    The purpose of the study is to determine the impact of 13 N-ammonia positron emission tomography (PET) myocardial perfusion imaging (MPI) on clinical decision making and its cost-effectiveness. One hundred consecutive patients (28 women, 72 men; mean age 60.9 ± 12.0 years; range 24-85 years) underwent 13 N-ammonia PET scanning (and computed tomography, used only for attenuation correction) to assess myocardial perfusion in patients with known (n = 79) or suspected (n = 8) coronary artery disease (CAD), or for suspected small-vessel disease (SVD; n = 13). Before PET, the referring physician was asked to determine patient treatment if PET would not be available. Four weeks later, PET patient management was reassessed for each patient individually. Before PET management strategies would have been: diagnostic angiography (62 of 100 patients), diagnostic angiography and percutaneous coronary intervention (PCI; 6 of 100), coronary artery bypass grafting (CABG; 3 of 100), transplantation (1 of 100), or conservative medical treatment (28 of 100). After PET scanning, treatment strategies were altered in 78 patients leading to: diagnostic angiography (0 of 100), PCI (20 of 100), CABG (3 of 100), transplantation (1 of 100), or conservative medical treatment (76 of 100). Patient management followed the recommendations of PET findings in 97% of the cases. Cost-effectiveness analysis revealed lower costs of EUR206/patient as a result of PET scanning. In a population with a high prevalence of known CAD, PET is cost-effective and has an important impact on patient management. (orig.)

  9. Clinical Evaluation of PET Image Quality as a Function of Acquisition Time in a New TOF-PET/MRI Compared to TOF-PET/CT--Initial Results.

    Science.gov (United States)

    Zeimpekis, Konstantinos G; Barbosa, Felipe; Hüllner, Martin; ter Voert, Edwin; Davison, Helen; Veit-Haibach, Patrick; Delso, Gaspar

    2015-10-01

    The purpose of this study was to compare only the performance of the PET component between a TOF-PET/CT (henceforth noted as PET/CT) scanner and an integrated TOF-PET/MRI (henceforth noted as PET/MRI) scanner concerning image quality parameters and quantification in terms of standardized uptake value (SUV) as a function of acquisition time (a surrogate of dose). The CT and MR image quality were not assessed, and that is beyond the scope of this study. Five brain and five whole-body patients were included in the study. The PET/CT scan was used as a reference and the PET/MRI acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of the emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts, and noise were evaluated. SUV measurements were taken in the liver and in the white matter to compare quantification. Quantitative evaluation showed strong correlation between PET/CT and PET/MRI brain SUVs. Liver correlation was good, however, with lower uptake estimation in PET/MRI, partially justified by bio-redistribution. The clinical evaluation showed that PET/MRI offers higher image quality and sharpness with lower levels of noise and artifacts compared to PET/CT with reduced acquisition times for whole-body scans while for brain scans there is no significant difference. The TOF-PET/MRI showed higher image quality compared to TOF-PET/CT as tested with reduced imaging times. However, this result accounts mainly for body imaging, while no significant differences were found in brain imaging.

  10. Automatic extraction of forward stroke volume using dynamic PET/CT: a dual-tracer and dual-scanner validation in patients with heart valve disease.

    Science.gov (United States)

    Harms, Hendrik Johannes; Tolbod, Lars Poulsen; Hansson, Nils Henrik Stubkjær; Kero, Tanja; Orndahl, Lovisa Holm; Kim, Won Yong; Bjerner, Tomas; Bouchelouche, Kirsten; Wiggers, Henrik; Frøkiær, Jørgen; Sörensen, Jens

    2015-12-01

    The aim of this study was to develop and validate an automated method for extracting forward stroke volume (FSV) using indicator dilution theory directly from dynamic positron emission tomography (PET) studies for two different tracers and scanners. 35 subjects underwent a dynamic (11)C-acetate PET scan on a Siemens Biograph TruePoint-64 PET/CT (scanner I). In addition, 10 subjects underwent both dynamic (15)O-water PET and (11)C-acetate PET scans on a GE Discovery-ST PET/CT (scanner II). The left ventricular (LV)-aortic time-activity curve (TAC) was extracted automatically from PET data using cluster analysis. The first-pass peak was isolated by automatic extrapolation of the downslope of the TAC. FSV was calculated as the injected dose divided by the product of heart rate and the area under the curve of the first-pass peak. Gold standard FSV was measured using phase-contrast cardiovascular magnetic resonance (CMR). FSVPET correlated highly with FSVCMR (r = 0.87, slope = 0.90 for scanner I, r = 0.87, slope = 1.65, and r = 0.85, slope = 1.69 for scanner II for (15)O-water and (11)C-acetate, respectively) although a systematic bias was observed for both scanners (p dynamic PET/CT and cluster analysis. Results are almost identical for (11)C-acetate and (15)O-water. A scanner-dependent bias was observed, and a scanner calibration factor is required for multi-scanner studies. Generalization of the method to other tracers and scanners requires further validation.

  11. Compliance with PET acquisition protocols for therapeutic monitoring of erlotinib therapy in an international trial for patients with non-small cell lung cancer

    International Nuclear Information System (INIS)

    Binns, David S.; Callahan, Jason; Mileshkin, Linda; Pirzkall, Andrea; Yu, Wei; Fine, Bernard M.; Conti, Peter; Scott, Andrew M.; Macfarlane, David; Hicks, Rodney J.

    2011-01-01

    The Response Evaluation Criteria in Solid Tumors (RECIST) are widely used but have recognized limitations. Molecular imaging assessments, including changes in 18 F-deoxyglucose (FDG) or 18 F-deoxythymidine (FLT) uptake by positron emission tomography (PET), may provide earlier, more robust evaluation of treatment efficacy. A prospective trial evaluated on-treatment changes in FDG and FLT PET imaging among patients with relapsed or recurrent non-small cell lung cancer treated with erlotinib to assess the relationship between PET-evaluated response and clinical outcomes. We describe an audit of compliance with the study imaging charter, to establish the feasibility of achieving methodological consistency in a multicentre setting. Patients underwent PET scans at baseline and approximately day 14 and day 56 of treatment (n = 73, 66 and 51 studies, and n = 73, 63 and 50 studies for FDG PET and FLT PET, respectively). Blood glucose levels were within the target range for all FDG PET scans. Charter-specified uptake times were achieved in 86% (63/73) and 89% (65/73) of baseline FDG and FLT scans, respectively. On-treatment scans were less consistent: 72% (84/117) and 68% (77/113), respectively, achieved the target of ±5 min of baseline uptake time. However, 96% (112/117) and 94% (106/113) of FDG and FLT PET studies, respectively, were within ±15 min. Bland-Altman analysis of intra-individual hepatic average standardized uptake value (SUV ave ), to assess reproducibility, showed only a small difference in physiological uptake (-0.006 ± 0.224 in 118 follow-up FDG scans and 0.09 ± 0.81 in 111 follow-up FLT scans). It is possible to achieve high reproducibility of scan acquisition methodology, provided that strict imaging compliance guidelines are mandated in the study protocol. (orig.)

  12. Compliance with PET acquisition protocols for therapeutic monitoring of erlotinib therapy in an international trial for patients with non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Binns, David S.; Callahan, Jason; Mileshkin, Linda [The Peter MacCallum Cancer Centre, Melbourne (Australia); Pirzkall, Andrea; Yu, Wei; Fine, Bernard M. [Genentech, Inc., South San Francisco, CA (United States); Conti, Peter [University of Southern California Kenneth Norris Medical Center, Los Angeles, CA (United States); Scott, Andrew M. [The University of Melbourne and The Austin Hospital, Centre for PET, and Ludwig Institute for Cancer Research, Victoria (Australia); Macfarlane, David [Queensland PET Service, Royal Brisbane and Women' s Hospital, Brisbane (Australia); Hicks, Rodney J. [The University of Melbourne and The Peter MacCallum Cancer Centre, Departments of Medicine and Radiology, East Melbourne, VIC (Australia); The Peter MacCallum Cancer Centre, Melbourne (Australia)

    2011-04-15

    The Response Evaluation Criteria in Solid Tumors (RECIST) are widely used but have recognized limitations. Molecular imaging assessments, including changes in {sup 18}F-deoxyglucose (FDG) or {sup 18}F-deoxythymidine (FLT) uptake by positron emission tomography (PET), may provide earlier, more robust evaluation of treatment efficacy. A prospective trial evaluated on-treatment changes in FDG and FLT PET imaging among patients with relapsed or recurrent non-small cell lung cancer treated with erlotinib to assess the relationship between PET-evaluated response and clinical outcomes. We describe an audit of compliance with the study imaging charter, to establish the feasibility of achieving methodological consistency in a multicentre setting. Patients underwent PET scans at baseline and approximately day 14 and day 56 of treatment (n = 73, 66 and 51 studies, and n = 73, 63 and 50 studies for FDG PET and FLT PET, respectively). Blood glucose levels were within the target range for all FDG PET scans. Charter-specified uptake times were achieved in 86% (63/73) and 89% (65/73) of baseline FDG and FLT scans, respectively. On-treatment scans were less consistent: 72% (84/117) and 68% (77/113), respectively, achieved the target of {+-}5 min of baseline uptake time. However, 96% (112/117) and 94% (106/113) of FDG and FLT PET studies, respectively, were within {+-}15 min. Bland-Altman analysis of intra-individual hepatic average standardized uptake value (SUV{sub ave}), to assess reproducibility, showed only a small difference in physiological uptake (-0.006 {+-} 0.224 in 118 follow-up FDG scans and 0.09 {+-} 0.81 in 111 follow-up FLT scans). It is possible to achieve high reproducibility of scan acquisition methodology, provided that strict imaging compliance guidelines are mandated in the study protocol. (orig.)

  13. PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma

    International Nuclear Information System (INIS)

    Nariai, Tadashi; Ishiwata, Kiichi; Kimura, Yuichi; Inaji, Motoki; Momose, Toshiya; Yamamoto, Tetsuya; Matsumura, Akira; Ishii, Kenji; Ohno, Kikuo

    2009-01-01

    Introduction: To plan the optimal BNCT for patients with malignant cerebral glioma, estimation of the ratio of boron concentration in tumor tissue against that in the surrounding normal brain (T/N ratio of boron) is important. We report a positron emission tomography (PET) imaging method to estimate T/N ratio of tissue boron concentration based on pharmacokinetic analysis of amino acid probes. Methods: Twelve patients with cerebral malignant glioma underwent 60 min dynamic PET scanning of brain after bolus injection of 18 F-borono-phenyl-alanine (FBPA) with timed arterial blood sampling. Using kinetic parameter obtained by this scan, T/N ratio of boron concentration elicited by one-hour constant infusion of BPA, as performed in BNCT, was simulated on Runge-Kutta algorithm. 11 C-methionine (MET) PET scan, which is commonly used in worldwide PET center as brain tumor imaging tool, was also performed on the same day to compare the image characteristics of FBPA and that of MET. Result: PET glioma images obtained with FBPA and MET are almost identical in all patients by visual inspection. Estimated T/N ratio of tissue boron concentration after one-hour constant infusion of BPA, T/N ratio of FBPA on static condition, and T/N ratio of MET on static condition showed significant linear correlation between each other. Conclusion: T/N ratio of boron concentration that is obtained by constant infusion of BPA during BNCT can be estimated by FBPA PET scan. This ratio can also be estimated by MET-PET imaging. As MET-PET study is available in many clinical PET center, selection of candidates for BNCT may be possible by MET-PET images. Accurate planning of BNCT may be performed by static images of FBPA PET. Use of PET imaging with amino acid probes may contribute very much to establish an appropriate application of BNCT for patients with malignant glioma.

  14. Improved detection of localized prostate cancer using co-registered MRI and {sup 11}C-acetate PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Jambor, Ivan, E-mail: ivjamb@utu.fi [Department of Diagnostic Radiology, University of Turku, Turku (Finland); 2nd Department of Radiology, Comenius University and St. Elisabeth Oncology Institute, Bratislava (Slovakia); Turku PET Centre, University of Turku, Turku (Finland); Borra, Ronald, E-mail: ronald.borra@tyks.fi [Department of Diagnostic Radiology, University of Turku, Turku (Finland); Turku PET Centre, University of Turku, Turku (Finland); Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku (Finland); Kemppainen, Jukka, E-mail: Jukka.Kemppainen@tyks.fi [Turku PET Centre, University of Turku, Turku (Finland); Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku (Finland); Lepomaeki, Virva, E-mail: Virva.Lepomaki@tyks.fi [Turku PET Centre, University of Turku, Turku (Finland); Parkkola, Riitta, E-mail: Riitta.Parkkola@tyks.fi [Department of Diagnostic Radiology, University of Turku, Turku (Finland); Turku PET Centre, University of Turku, Turku (Finland); Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku (Finland); Dean, Kirsti, E-mail: Kirsti.Dean@tyks.fi [Department of Diagnostic Radiology, University of Turku, Turku (Finland); Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku (Finland); Alanen, Kalle, E-mail: Kalle.Alanen@tyks.fi [Department of Pathology, Turku University Hospital, Turku (Finland); Arponen, Eveliina, E-mail: Eveliina.Arponen@utu.fi [Turku PET Centre, University of Turku, Turku (Finland); Nurmi, Martti, E-mail: Martti.Nurmi@tyks.fi [Department of Surgery, Division of Urology, Turku University Hospital, Turku (Finland); Aronen, Hannu J., E-mail: Hannu.Aronen@tyks.fi [Department of Diagnostic Radiology, University of Turku, Turku (Finland); Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku (Finland); and others

    2012-11-15

    Objectives: We aimed to study the ability of contrast enhanced MRI at 1.5 T and {sup 11}C-acetate PET/CT, both individually and using fused data, to detect localized prostate cancer. Methods: Thirty-six men with untreated prostate cancer and negative for metastatic disease on pelvic CT and bone scan were prospectively enrolled. A pelvic {sup 11}C-acetate PET/CT scan was performed in all patients, and a contrast enhanced MRI scan in 33 patients (6 examinations using both endorectal coil and surface coils, and 27 examinations using surface coils only). After the imaging studies 10 patients underwent prostatectomy and 26 were treated by image guided external beam radiation treatment. Image fusion of co-registered PET and MRI data was performed based on anatomical landmarks visible on CT and MRI using an advanced in-house developed software package. PET/CT, MRI and fused PET/MRI data were evaluated visually and compared with biopsy findings on a lobar level, while a sextant approach was used for patients undergoing prostatectomy. Results: When using biopsy samples as method of reference, the sensitivity, specificity and accuracy for visual detection of prostate cancer on a lobar level by contrast enhanced MRI was 85%, 37%, 73% and that of {sup 11}C-acetate PET/CT 88%, 41%, 74%, respectively. Fusion of PET with MRI data increased sensitivity, specificity and accuracy to 90%, 72% and 85%, respectively. Conclusions: Fusion of sequentially obtained PET/CT and MRI data for the localization of prostate cancer is feasible and superior to the performance of each individual modality alone.

  15. Peritoneal Super Scan on 18F - FDG PET-CT in a Patient of Burkitt's Lymphoma.

    Science.gov (United States)

    Roy, Shambo Guha; Parida, Girish Kumar; Tripathy, Sarthak; Singhal, Abhinav; Shamim, Shamim Ahmed; Tripathi, Madhavi

    2017-01-01

    Peritoneal lymphomatosis is seen less frequently, but when seen, it is mostly associated with aggressive variants of malignancies. FDG uptake has been reported in peritoneal lymphomatosis both in DLBCL and Burkitt's lymphoma. We report a case of Burkitt's lymphoma with involvement of entire peritoneum, which looks like a "peritoneal super scan" on FDG PET-CT.

  16. Quantitative myocardial blood flow imaging with integrated time-of-flight PET-MR.

    Science.gov (United States)

    Kero, Tanja; Nordström, Jonny; Harms, Hendrik J; Sörensen, Jens; Ahlström, Håkan; Lubberink, Mark

    2017-12-01

    The use of integrated PET-MR offers new opportunities for comprehensive assessment of cardiac morphology and function. However, little is known on the quantitative accuracy of cardiac PET imaging with integrated time-of-flight PET-MR. The aim of the present work was to validate the GE Signa PET-MR scanner for quantitative cardiac PET perfusion imaging. Eleven patients (nine male; mean age 59 years; range 46-74 years) with known or suspected coronary artery disease underwent 15 O-water PET scans at rest and during adenosine-induced hyperaemia on a GE Discovery ST PET-CT and a GE Signa PET-MR scanner. PET-MR images were reconstructed using settings recommended by the manufacturer, including time-of-flight (TOF). Data were analysed semi-automatically using Cardiac VUer software, resulting in both parametric myocardial blood flow (MBF) images and segment-based MBF values. Correlation and agreement between PET-CT-based and PET-MR-based MBF values for all three coronary artery territories were assessed using regression analysis and intra-class correlation coefficients (ICC). In addition to the cardiac PET-MR reconstruction protocol as recommended by the manufacturer, comparisons were made using a PET-CT resolution-matched reconstruction protocol both without and with TOF to assess the effect of time-of-flight and reconstruction parameters on quantitative MBF values. Stress MBF data from one patient was excluded due to movement during the PET-CT scanning. Mean MBF values at rest and stress were (0.92 ± 0.12) and (2.74 ± 1.37) mL/g/min for PET-CT and (0.90 ± 0.23) and (2.65 ± 1.15) mL/g/min for PET-MR (p = 0.33 and p = 0.74). ICC between PET-CT-based and PET-MR-based regional MBF was 0.98. Image quality was improved with PET-MR as compared to PET-CT. ICC between PET-MR-based regional MBF with and without TOF and using different filter and reconstruction settings was 1.00. PET-MR-based MBF values correlated well with PET-CT-based MBF values and

  17. F-FDG PET/CT (PET/CT) influences management in patients with known or suspected pancreatic cancer

    International Nuclear Information System (INIS)

    Barber, Thomas W.; Kalff, Victor; Cherk, Martin H.; Yap, Kenneth SK.; Evans, Peter; Kelly, Michael J.

    2009-01-01

    Full text: Objective: To assess the impact on clinical management of PET/CT in patients with known or suspected pancreatic cancer. Methods: Between April 2006 and September 2008,25 PET/CT scans were performed using a dedicated PET/CT (22 scans) or a coincidence hybrid PET/CT camera (3 scans) in 23 patients with known or suspected pancreatic cancer. 17 scans were performed for initial evaluation and 8 for restaging of disease. The pre-PET/CT management plan and for intent were prospectively recorded in all cases. The post-PET/CT management plan was determined from the medical record and for discussions with treating clinicians. The impact of PET/CT on management was classified as High, Medium, Low or None, defined using ANZAPNM PET data collection project criteria. Follow-up was used to reconcile any discordance between PET/CT and conventional imaging. Results: Overall, PET/CT management impact was classified as high (n equal 7), medium (n equal 4), low (n equal 10) or none (n equal 4). Impact was either high or medium in l l/25 patients (44%) (95% confidence interval; 24 - 64%). Impact was high in 4/17 patients imaged for initial evaluation, predominantly by clarifying equivocal lesions on conventional imaging. In restaged patients, PET/CT impact was high in 3/8, and it correctly modified disease extent in 5/8. In the 16 discordant studies, PET/CT assessment was correct in 10, conventional imaging in 4 and there was insufficient information in 2. Conclusion: PET/CT has high or medium management impact in 44% of patients imaged for known or suspected pancreatic cancer, more commonly during restaging. Discordant PET/CT results were usually correct.

  18. Quantitative Analysis of Torso FDG-PET Scans by Using Anatomical Standardization of Normal Cases from Thorough Physical Examinations.

    Directory of Open Access Journals (Sweden)

    Takeshi Hara

    Full Text Available Understanding of standardized uptake value (SUV of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET depends on the background accumulations of glucose because the SUV often varies the status of patients. The purpose of this study was to develop a new method for quantitative analysis of SUV of FDG-PET scan images. The method included an anatomical standardization and a statistical comparison with normal cases by using Z-score that are often used in SPM or 3D-SSP approach for brain function analysis. Our scheme consisted of two approaches, which included the construction of a normal model and the determination of the SUV scores as Z-score index for measuring the abnormality of an FDG-PET scan image. To construct the normal torso model, all of the normal images were registered into one shape, which indicated the normal range of SUV at all voxels. The image deformation process consisted of a whole body rigid registration of shoulder to bladder region and liver registration and a non-linear registration of body surface by using the thin-plate spline technique. In order to validate usefulness of our method, we segment suspicious regions on FDG-PET images manually, and obtained the Z-scores of the regions based on the corresponding voxels that stores the mean and the standard deviations from the normal model. We collected 243 (143 males and 100 females normal cases to construct the normal model. We also extracted 432 abnormal spots from 63 abnormal cases (73 cancer lesions to validate the Z-scores. The Z-scores of 417 out of 432 abnormal spots were higher than 2.0, which statistically indicated the severity of the spots. In conclusions, the Z-scores obtained by our computerized scheme with anatomical standardization of torso region would be useful for visualization and detection of subtle lesions on FDG-PET scan images even when the SUV may not clearly show an abnormality.

  19. Multiphase CT scanning and different intravenous contrast media concentrations in combined F-18-FDG PET/CT: Effect on quantitative and clinical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rebiere, Marilou, E-mail: Marilou.Rebiere@rwth-aachen.de [Department of Nuclear Medicine, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52057 Aachen (Germany); Verburg, Frederik A., E-mail: fverburg@ukaachen.de [Department of Nuclear Medicine, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52057 Aachen (Germany); Department of Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, 6202 AZ Maastricht (Netherlands); Palmowski, Moritz, E-mail: mpalmowski@ukaachen.de [Department of Nuclear Medicine, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52057 Aachen (Germany); Department of Radiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52057 Aachen (Germany); Department of Experimental Molecular Imaging, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52057 Aachen (Germany); Krohn, Thomas, E-mail: tkrohn@ukaachen.de [Department of Nuclear Medicine, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52057 Aachen (Germany); Pietsch, Hubertus, E-mail: hubertus.pietsch@bayer.com [Contrast Media Research, Bayer Pharma AG, Muellerstr. 178, 13353 Berlin (Germany); Kuhl, Christiane K., E-mail: ckuhl@ukaachen.de [Department of Radiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52057 Aachen (Germany); Mottaghy, Felix M., E-mail: fmottaghy@ukaachen.de [Department of Nuclear Medicine, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52057 Aachen (Germany); Department of Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, 6202 AZ Maastricht (Netherlands); Behrendt, Florian F., E-mail: fbehrendt@ukaachen.de [Department of Nuclear Medicine, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52057 Aachen (Germany)

    2012-08-15

    Purpose: To evaluate the influence of multiphase CT scanning and different intravenous contrast media on contrast enhancement, attenuation correction and image quality in combined PET/CT. Material and methods: 140 patients were prospectively enrolled for F-18-FDG-PET/CT including a low-dose unenhanced, arterial and venous contrast enhanced CT. The first (second) 70 patients, received contrast medium with 370 (300) mg iodine/ml. The iodine delivery rate (1.3 mg/s) and total iodine load (44.4 g) were identical for both groups. Contrast enhancement and maximum and mean standardized FDG uptake values (SUVmax and SUVmean) were determined for the un-enhanced, arterial and venous PET/CT at multiple anatomic sites and PET reconstructions were visually evaluated. Results: Arterial contrast enhancement was significantly higher for the 300 mg/ml contrast medium compared to 370 mg I/ml at all anatomic sites. Venous enhancement was not different between the two contrast media. SUVmean and SUVmax were significantly higher for the contrast enhanced compared to the non-enhanced PET/CT at all anatomic sites (all P < 0.001). Tracer uptake was significantly higher in the arterial than in the venous PET/CT in the arteries using both contrast media (all P < 0.001). No differences in tracer uptake were found between the contrast media (all P > 0.05). Visual assessment revealed no relevant differences between the different PET reconstructions. Conclusions: There is no relevant qualitative influence on the PET scan from the use of different intravenous contrast media in its various phases in combined multiphase PET/CT. For quantitative analysis of tracer uptake it is required to use an identical PET/CT protocol.

  20. Comparison of CT and 18F-FDG PET for Detecting Peritoneal Metastasis on the Preoperative Evaluation for Gastric Carcinoma

    International Nuclear Information System (INIS)

    Lim, Joon Seok; Kim, Myeong Jin; Yun, Mi jin

    2006-01-01

    The aim of our study was to compare the accuracy of CT and 18 F-FDG PET for detecting peritoneal metastasis in patients with gastric carcinoma. One-hundred-twelve patients who underwent a histologic confirmative exam or treatment (laparotomy, n = 107; diagnostic laparoscopy, n = 4; peritoneal washing cytology, n = 1) were retrospectively enrolled. All the patients underwent CT and 18 F-FDG PET scanning for their preoperative evaluation. The sensitivities, specificities and accuracies of CT and 18 FFDG PET imaging for the detection of peritoneal metastasis were calculated and then compared using Fisher's exact probability test (p 18 F-FDG PET imaging for detecting peritoneal metastasis. Based on the original preoperative reports, CT and 18 F-FDG PET showed sensitivities of 76.5% and 35.3% (p = 0.037), specificities of 91.6% and 98.9% (p = 0.035), respectively, and equal accuracies of 89.3% (p = 1.0). The receptor operating characteristics curve analysis showed a significantly higher diagnostic performance for CT (Az 0.878) than for PET (Az = 0.686) (p 0.004). The interobserver agreement for detecting peritoneal metastasis was good (κ value = 0.684) for CT and moderate ((κ value = 0.460) for PET. For the detection of peritoneal metastasis, CT was more sensitive and showed a higher diagnostic performance than PET, although CT had a relatively lower specificity than did PET

  1. External radioactive markers for PET data-driven respiratory gating in positron emission tomography.

    Science.gov (United States)

    Büther, Florian; Ernst, Iris; Hamill, James; Eich, Hans T; Schober, Otmar; Schäfers, Michael; Schäfers, Klaus P

    2013-04-01

    Respiratory gating is an established approach to overcoming respiration-induced image artefacts in PET. Of special interest in this respect are raw PET data-driven gating methods which do not require additional hardware to acquire respiratory signals during the scan. However, these methods rely heavily on the quality of the acquired PET data (statistical properties, data contrast, etc.). We therefore combined external radioactive markers with data-driven respiratory gating in PET/CT. The feasibility and accuracy of this approach was studied for [(18)F]FDG PET/CT imaging in patients with malignant liver and lung lesions. PET data from 30 patients with abdominal or thoracic [(18)F]FDG-positive lesions (primary tumours or metastases) were included in this prospective study. The patients underwent a 10-min list-mode PET scan with a single bed position following a standard clinical whole-body [(18)F]FDG PET/CT scan. During this scan, one to three radioactive point sources (either (22)Na or (18)F, 50-100 kBq) in a dedicated holder were attached the patient's abdomen. The list mode data acquired were retrospectively analysed for respiratory signals using established data-driven gating approaches and additionally by tracking the motion of the point sources in sinogram space. Gated reconstructions were examined qualitatively, in terms of the amount of respiratory displacement and in respect of changes in local image intensity in the gated images. The presence of the external markers did not affect whole-body PET/CT image quality. Tracking of the markers led to characteristic respiratory curves in all patients. Applying these curves for gated reconstructions resulted in images in which motion was well resolved. Quantitatively, the performance of the external marker-based approach was similar to that of the best intrinsic data-driven methods. Overall, the gain in measured tumour uptake from the nongated to the gated images indicating successful removal of respiratory motion

  2. FDG-PET-based radiotherapy planning in lung cancer. Optimum breathing protocol and patient positioning - an intraindividual comparison; FDG-PET-basierte Bestrahlungsplanung von nicht kleinzelligen Bronchialkarzinomen. Optimales Atemprotokoll und Patientenpositionierung - ein intraindividueller Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Grgic, A.; Schaefer-Schuler, A.; Kirsch, C.M.; Hellwig, D. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Nuklearmedizin; Nestle, U. [Universitaetsklinikum Freiburg (Germany). Klinik fuer Strahlenheilkunde; Kremp, S. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Strahlentherapie und Radioonkologie

    2008-12-15

    FDG-PET and PET / CT is increasingly used for radiotherapy (RT) planning in non-small-cell lung carcinoma (NSCLC). The planning process is often based on separately-acquired FDG-PET / CT and planning CT. We compared intraindividual differences between PET acquired in diagnostic and radiotherapy treatment position coregistered with planning CTs acquired using different breathing protocols. Sixteen patients with NSCLC underwent two PET acquisitions (diagnostic position-D-PET, radiotherapy position-RT-PET) and three planning-CT acquisitions (expiration-EXP, inspiration-INS, mid-breathhold-MID) on the same day. All scans were rigidly coregistered resulting in six fused datasets: D-INS, D-EXP, D-MID, RT-INS, RT-EXP and RT-MID. Fusion accuracy was assessed by three readers at eight anatomical landmarks: lung apices, aortic arch, heart, spine, sternum, carina, diaphragm and tumor using an alignment score ranging from 1 (no alignment) to 5 (exact alignment). RT-PET showed better alignment with any CT than D-PET (p < 0.001). With regard to breathing, RT-MID showed the best mean alignment score (3.7 {+-} 1.0) followed by RT-EXP (3.5 {+-} 0.9) and RT-INS (3.0 {+-} 0.8), all differences being significant (p < 0.001). Comparing the alignment scores with regard to anatomical landmarks, the largest deviations were found at diaphragm, heart and apices. Overall, there was a fair agreement (? = 0.48; p < 0.001) among the three readers. Significantly better fusion of PET and planning-CT can be reached with PET acquired in RT-position. The best intraindividual fusion results are obtained with the planning-CT performed during mid-breathhold. Our data justify the acquisition of a separate planning-PET in RT-treatment position if only a diagnostic PET-scan is available. (orig.)

  3. Role of whole body positron emission tomography/computed tomography scan with 18F-fluorodeoxyglucose in patients with biopsy proven tumor metastases from unknown primary site

    International Nuclear Information System (INIS)

    Pelosi, E.; Pennone, M.; Deandreis, D.; Bisi, G.

    2006-01-01

    Aim: The aim of this study was to evaluate the role of whole body PET/CT scan with 1 8F -fluorodeoxyglucose (FDG) in the detection of the primary tumor in patients with metastatic cancer from unknown primary origin (CUP syndrome). Methods: Sixty-eight consecutive patients, with CUP syndrome (39 lymph nodes, 29 visceral biopsy proven tumor metastases), underwent a whole-body FDG-PET/CT study. All enrolled patients were unsuccessfully studied, within the previous month, with physical examination, laboratory tests and conventional diagnostic procedures. All the pathological findings identified at PET/CT scan and suspected for primaries, were further investigated. After PET study, the minimum follow-up period for the inclusion in the studied population was 3 months. Results: The primary tumor site was correctly identified by FDG-PET/CT in 24 patients (24/68, 35.3%): long (0-9). rino/oro-pharynx (n=6), pancreas (n=5), colon (n=2). uterus (n=2). In 5 cases, FDG-PET scan did not identify a primary pathological focus, which was subsequently detected by other diagnostic methods within 3 months. In 39 patients (39168, 57.4%), the primary tumor site was not localized. However, in 9 of them, FDG-PET/CT scan identified further unexpected metastases, modifying the stage of disease. Overall, the following oncological treatment was influenced by the PET scan, in a total of 33 patients (33/68, 48.5%). Conclusion: Our data strongly support the diagnostic contribution of whole body FDG-PET/CT scan in the evaluation of patients with CUP syndrome and suggest its use in an early phase of the diagnostic iter to optimize patient management

  4. Comparison of the prognostic values of {sup 68}Ga-DOTANOC PET/CT and {sup 18}F-FDG PET/CT in patients with well-differentiated neuroendocrine tumor

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Punit; Naswa, Niraj; Kc, Sudhir Suman; Yadav, Yashwant; Kumar, Rakesh; Bal, Chandrasekhar [All India Institute of Medical Sciences, Department of Nuclear Medicine, Ansari Nagar, New Delhi (India); Alvarado, Luis Andres; Dwivedi, Alok Kumar [Texas Tech University Health Sciences Center, Division of Biostatistics and Epidemiology, El Paso, TX (United States); Ammini, Ariachery C. [All India Institute of Medical Sciences, Department of Endocrinology and Metabolism, New Delhi (India)

    2014-12-15

    To determine the prognostic value of {sup 68}Ga-DOTANOC PET/CT in patients with well-differentiated neuroendocrine tumor (NET), and to compare the prognostic value with that of {sup 18}F-FDG PET/CT and other conventional clinicopathological prognostic factors. Data from 37 consecutive patients (age 46.6 ± 13.5 years, 51 % men) with well-differentiated NET who underwent {sup 68}Ga-DOTANOC PET/CT and {sup 18}F-FDG PET/CT were analyzed. All patients underwent a baseline visit with laboratory and radiological examinations. Clinical and imaging follow-up was performed in all patients. Progression-free survival (PFS) was measured from the date of the first PET/CT scan to the first documentation of progression of disease. {sup 68}Ga-DOTANOC PET/CT was positive in 37 of the 37 patients and {sup 18}F-FDG PET/CT was positive in 21. During follow-up 10 patients (27 %) showed progression of disease and 27 (73 %) showed no progression (24 stable disease, 3 partial response). The median follow-up was 25 months (range 2 - 52 months). Among the variables evaluated none was significantly different between the progressive disease and nonprogressive disease groups, with only SUVmax on {sup 68}Ga-DOTANOC PET/CT being borderline significant (P = 0.073). In the univariate analysis for PFS outcome, SUVmax on {sup 68}Ga-DOTANOC PET/CT (HR 0.122, 95 % CI 0.019 - 0.779; P = 0.026) and histopathological tumor grade (HR 4.238, 95 % CI 1.058 - 16.976; P = 0.041) were found to be associated with PFS. Other factors including age, sex, primary site, Ki-67 index, TNM stage, {sup 18}F-FDG PET/CT status (positive/negative), SUVmax on {sup 18}F-FDG PET/CT and type of treatment were not significant. In multivariable analysis, only SUVmax on {sup 68}Ga-DOTANOC PET/CT was found to be an independent positive predictor of PFS (HR 0.122, 95 % CI 0.019 - 0.779; P = 0.026). SUVmax measured on {sup 68}Ga-DOTANOC PET/CT is an independent, positive prognostic factor in patients with well-differentiated NET and

  5. Role of 18F-FDG PET/CT in the diagnosis of infective endocarditis in patients with an implanted cardiac device: a prospective study

    International Nuclear Information System (INIS)

    Graziosi, Maddalena; Lorenzini, Massimiliano; Diemberger, Igor; Pasquale, Ferdinando; Ziacchi, Matteo; Biffi, Mauro; Martignani, Cristian; Boriani, Giuseppe; Rapezzi, Claudio; Nanni, Cristina; Bonfiglioli, Rachele; Fanti, Stefano; Bartoletti, Michele; Tumietto, Fabio; Viale, Pier Luigi

    2014-01-01

    Infective endocarditis (IE) is widely underdiagnosed or diagnosed after a major delay. The diagnosis is currently based on the modified DUKE criteria, where the only validated imaging technique is echocardiography, and remains challenging especially in patients with an implantable cardiac device. The aim of this study was to assess the incremental diagnostic role of 18 F-FDG PET/CT in patients with an implanted cardiac device and suspected IE. We prospectively analysed 27 consecutive patients with an implantable device evaluated for suspected device-related IE between January 2011 and June 2013. The diagnostic probability of IE was defined at presentation according to the modified DUKE criteria. PET/CT was performed as soon as possible following the clinical suspicion of IE. Patients then underwent medical or surgical treatment based on the overall clinical evaluation. During follow-up, we considered: lead cultures in patients who underwent extraction, direct inspection and lead cultures in those who underwent surgery, and a clinical/instrumental reevaluation after at least 6 months in patients who received antimicrobial treatment or had an alternative diagnosis and were not treated for IE. After the follow-up period, the diagnosis was systematically reviewed by the multidisciplinary team using the modified DUKE criteria and considering the new findings. Among the ten patients with a positive PET/CT scan, seven received a final diagnosis of ''definite IE'', one of ''possible IE'' and two of ''IE rejected''. Among the 17 patients with a negative PET/CT scan, four were false-negative and received a final diagnosis of definite IE. These patients underwent PET/CT after having started antibiotic therapy (≥48 h) or had a technically suboptimal examination. In patients with a cardiac device, PET/CT increases the diagnostic accuracy of the modified Duke criteria for IE, particularly in the subset of patients with possible IE in whom it may help the clinician manage a

  6. Effect of different pneumoperitoneum pressure on stress state in patients underwent gynecological laparoscopy

    Directory of Open Access Journals (Sweden)

    Ai-Yun Shen

    2016-10-01

    Full Text Available Objective: To observe the effect of different CO2 pneumoperitoneum pressure on the stress state in patients underwent gynecological laparoscopy. Methods: A total of 90 patients who were admitted in our hospital from February, 2015 to October, 2015 for gynecological laparoscopy were included in the study and divided into groups A, B, and C according to different CO2 pneumoperitoneum pressure. The changes of HR, BP, and PetCO2 during the operation process in the three groups were recorded. The changes of stress indicators before operation (T0, 30 min during operation (T1, and 12 h after operation (T2 were compared. Results: The difference of HR, BP, and PetCO2 levels before operation among the three groups was not statistically significant (P>0.05. HR, BP, and PetCO2 levels 30 min after pneumoperitoneum were significantly elevated when compared with before operation (P0.05. PetCO2 level 30 min after pneumoperitoneum in group B was significantly higher than that in group A (P0.05. Conclusions: Low pneumoperitoneum pressure has a small effect on the stress state in patients underwent gynecological laparoscopy, will not affect the surgical operation, and can obtain a preferable muscular relaxation and vision field; therefore, it can be selected in preference.

  7. TU-C-12A-12: Differentiating Bone Lesions and Degenerative Joint Disease in NaF PET/CT Scans Using Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Perk, T; Bradshaw, T; Muzahir, S; Jeraj, R [University of Wisconsin, Madison, Wisconsin (United States); Meyer, E [Case Western Reserve University School of Medicine, Cleveland, Ohio (United States)

    2014-06-15

    Purpose: [F-18]NaF PET can be used to image bone metastases; however, tracer uptake in degenerative joint disease (DJD) often appears similar to metastases. This study aims to develop and compare different machine learning algorithms to automatically identify regions of [F-18]NaF scans that correspond to DJD. Methods: 10 metastatic prostate cancer patients received whole body [F-18]NaF PET/CT scans prior to treatment. Image segmentation resulted in 852 ROIs, 69 of which were identified by a nuclear medicine physician as DJD. For all ROIs, various PET and CT textural features were computed. ROIs were divided into training and testing sets used to train eight different machine learning classifiers. Classifiers were evaluated based on receiver operating characteristics area under the curve (AUC), sensitivity, specificity, and positive predictive value (PPV). We also assessed the added value of including CT features in addition to PET features for training classifiers. Results: The training set consisted of 37 DJD ROIs with 475 non-DJD ROIs, and the testing set consisted of 32 DJD ROIs with 308 non-DJD ROIs. Of all classifiers, generalized linear models (GLM), decision forests (DF), and support vector machines (SVM) had the best performance. AUCs of GLM (0.929), DF (0.921), and SVM (0.889) were significantly higher than the other models (p<0.001). GLM and DF, overall, had the best sensitivity, specificity, and PPV, and gave a significantly better performance (p<0.01) than all other models. PET/CT GLM classifiers had higher AUC than just PET or just CT. GLMs built using PET/CT information had superior or comparable sensitivities, specificities and PPVs to just PET or just CT. Conclusion: Machine learning algorithms trained with PET/CT features were able to identify some cases of DJD. GLM outperformed the other classification algorithms. Using PET and CT information together was shown to be superior to using PET or CT features alone. Research supported by the Prostate

  8. TU-C-12A-12: Differentiating Bone Lesions and Degenerative Joint Disease in NaF PET/CT Scans Using Machine Learning

    International Nuclear Information System (INIS)

    Perk, T; Bradshaw, T; Muzahir, S; Jeraj, R; Meyer, E

    2014-01-01

    Purpose: [F-18]NaF PET can be used to image bone metastases; however, tracer uptake in degenerative joint disease (DJD) often appears similar to metastases. This study aims to develop and compare different machine learning algorithms to automatically identify regions of [F-18]NaF scans that correspond to DJD. Methods: 10 metastatic prostate cancer patients received whole body [F-18]NaF PET/CT scans prior to treatment. Image segmentation resulted in 852 ROIs, 69 of which were identified by a nuclear medicine physician as DJD. For all ROIs, various PET and CT textural features were computed. ROIs were divided into training and testing sets used to train eight different machine learning classifiers. Classifiers were evaluated based on receiver operating characteristics area under the curve (AUC), sensitivity, specificity, and positive predictive value (PPV). We also assessed the added value of including CT features in addition to PET features for training classifiers. Results: The training set consisted of 37 DJD ROIs with 475 non-DJD ROIs, and the testing set consisted of 32 DJD ROIs with 308 non-DJD ROIs. Of all classifiers, generalized linear models (GLM), decision forests (DF), and support vector machines (SVM) had the best performance. AUCs of GLM (0.929), DF (0.921), and SVM (0.889) were significantly higher than the other models (p<0.001). GLM and DF, overall, had the best sensitivity, specificity, and PPV, and gave a significantly better performance (p<0.01) than all other models. PET/CT GLM classifiers had higher AUC than just PET or just CT. GLMs built using PET/CT information had superior or comparable sensitivities, specificities and PPVs to just PET or just CT. Conclusion: Machine learning algorithms trained with PET/CT features were able to identify some cases of DJD. GLM outperformed the other classification algorithms. Using PET and CT information together was shown to be superior to using PET or CT features alone. Research supported by the Prostate

  9. Evaluation of 68Ga-DOTATOC PET/MRI for whole-body staging of neuroendocrine tumours in comparison with 68Ga-DOTATOC PET/CT.

    Science.gov (United States)

    Sawicki, Lino M; Deuschl, Cornelius; Beiderwellen, Karsten; Ruhlmann, Verena; Poeppel, Thorsten D; Heusch, Philipp; Lahner, Harald; Führer, Dagmar; Bockisch, Andreas; Herrmann, Ken; Forsting, Michael; Antoch, Gerald; Umutlu, Lale

    2017-10-01

    To compare the diagnostic performance of 68 Ga-DOTATOC PET/MRI and 68 Ga-DOTATOC PET/CT in the whole-body staging of patients with neuroendocrine tumours (NET). Thirty patients with histopathologically confirmed NET underwent PET/CT and PET/MRI in a single-injection protocol. PET/CT and PET/MRI scans were prospectively evaluated with regard to lesion count, localization, nature (NET/non-NET), and conspicuity (four-point scale). Histopathology and follow-up imaging served as the reference standards. The proportions of NET and non-NET lesions rated correctly were compared using McNemar's chi-squared test. The Wilcoxon test was used to assess differences in SUVmax and lesion conspicuity. The correlation between the SUVmax for the same lesions from each modality was analysed using Pearson's correlation coefficient (r). According to the reference standard, there were 197 lesions (142 NET, 55 non-NET). Lesion-based analysis showed a higher proportion of correctly rated NET lesions on PET/MRI than on PET/CT (90.8% vs. 86.7%, p = 0.031), whereas on PET/CT there was a higher proportion of correctly rated non-NET lesions (94.5% vs. 83.6%, p = 0.031). SUVmax was strongly correlated (r = 0.86; p PET/MRI (both p PET/MRI yielded a higher proportion of correctly rated NET lesions and should be regarded as a valuable alternative to 68 Ga-DOTATOC PET/CT in whole-body staging of NET patients. • 68 Ga-DOTATOC PET/MRI correctly identified more NET lesions than 68 Ga-DOTATOC PET/CT. • 68 Ga-DOTATOC PET/MRI provides better NET lesion conspicuity than 68 Ga-DOTATOC PET/CT. • SUVmax values from the two modalities are strongly correlated and do not differ significantly.

  10. Performance evaluation of a high resolution dedicated breast PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    García Hernández, Trinitat, E-mail: mtrinitat@eresa.com; Vicedo González, Aurora; Brualla González, Luis; Granero Cabañero, Domingo [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Ferrer Rebolleda, Jose; Sánchez Jurado, Raúl; Puig Cozar Santiago, Maria del [Department of Nuclear Medicine, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Roselló Ferrando, Joan [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Department of Physiology, University of Valencia, Valencia 46010 (Spain)

    2016-05-15

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ({sup 18}F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) were simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good

  11. Performance evaluation of a high resolution dedicated breast PET scanner

    International Nuclear Information System (INIS)

    García Hernández, Trinitat; Vicedo González, Aurora; Brualla González, Luis; Granero Cabañero, Domingo; Ferrer Rebolleda, Jose; Sánchez Jurado, Raúl; Puig Cozar Santiago, Maria del; Roselló Ferrando, Joan

    2016-01-01

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ("1"8F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) were simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good performance

  12. Semiautomated analysis of small-animal PET data.

    Science.gov (United States)

    Kesner, Adam L; Dahlbom, Magnus; Huang, Sung-Cheng; Hsueh, Wei-Ann; Pio, Betty S; Czernin, Johannes; Kreissl, Michael; Wu, Hsiao-Ming; Silverman, Daniel H S

    2006-07-01

    The objective of the work reported here was to develop and test automated methods to calculate biodistribution of PET tracers using small-animal PET images. After developing software that uses visually distinguishable organs and other landmarks on a scan to semiautomatically coregister a digital mouse phantom with a small-animal PET scan, we elastically transformed the phantom to conform to those landmarks in 9 simulated scans and in 18 actual PET scans acquired of 9 mice. Tracer concentrations were automatically calculated in 22 regions of interest (ROIs) reflecting the whole body and 21 individual organs. To assess the accuracy of this approach, we compared the software-measured activities in the ROIs of simulated PET scans with the known activities, and we compared the software-measured activities in the ROIs of real PET scans both with manually established ROI activities in original scan data and with actual radioactivity content in immediately harvested tissues of imaged animals. PET/atlas coregistrations were successfully generated with minimal end-user input, allowing rapid quantification of 22 separate tissue ROIs. The simulated scan analysis found the method to be robust with respect to the overall size and shape of individual animal scans, with average activity values for all organs tested falling within the range of 98% +/- 3% of the organ activity measured in the unstretched phantom scan. Standardized uptake values (SUVs) measured from actual PET scans using this semiautomated method correlated reasonably well with radioactivity content measured in harvested organs (median r = 0.94) and compared favorably with conventional SUV correlations with harvested organ data (median r = 0.825). A semiautomated analytic approach involving coregistration of scan-derived images with atlas-type images can be used in small-animal whole-body radiotracer studies to estimate radioactivity concentrations in organs. This approach is rapid and less labor intensive than are

  13. FDG PET and PET/CT : EANM procedure guidelines for tumour PET imaging: version 1.0

    NARCIS (Netherlands)

    Boellaard, Ronald; O'Doherty, Mike J.; Weber, Wolfgang A.; Mottaghy, Felix M.; Lonsdale, Markus N.; Stroobants, Sigrid G.; Oyen, Wim J. G.; Kotzerke, Joerg; Hoekstra, Otto S.; Pruim, Jan; Marsden, Paul K.; Tatsch, Klaus; Hoekstra, Corneline J.; Visser, Eric P.; Arends, Bertjan; Verzijlbergen, Fred J.; Zijlstra, Josee M.; Comans, Emile F. I.; Lammertsma, Adriaan A.; Paans, Anne M.; Willemsen, Antoon T.; Beyer, Thomas; Bockisch, Andreas; Schaefer-Prokop, Cornelia; Delbeke, Dominique; Baum, Richard P.; Chiti, Arturo; Krause, Bernd J.

    The aim of this guideline is to provide a minimum standard for the acquisition and interpretation of PET and PET/CT scans with [18F]-fluorodeoxyglucose (FDG). This guideline will therefore address general information about [18F]-fluorodeoxyglucose (FDG) positron emission tomography-computed

  14. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0

    NARCIS (Netherlands)

    Boellaard, Ronald; O'Doherty, Mike J.; Weber, Wolfgang A.; Mottaghy, Felix M.; Lonsdale, Markus N.; Stroobants, Sigrid G.; Oyen, Wim J. G.; Kotzerke, Joerg; Hoekstra, Otto S.; Pruim, Jan; Marsden, Paul K.; Tatsch, Klaus; Hoekstra, Corneline J.; Visser, Eric P.; Arends, Bertjan; Verzijlbergen, Fred J.; Zijlstra, Josee M.; Comans, Emile F. I.; Lammertsma, Adriaan A.; Paans, Anne M.; Willemsen, Antoon T.; Beyer, Thomas; Bockisch, Andreas; Schaefer-Prokop, Cornelia; Delbeke, Dominique; Baum, Richard P.; Chiti, Arturo; Krause, Bernd J.

    2010-01-01

    The aim of this guideline is to provide a minimum standard for the acquisition and interpretation of PET and PET/CT scans with [18F]-fluorodeoxyglucose (FDG). This guideline will therefore address general information about[18F]-fluorodeoxyglucose (FDG) positron emission tomography-computed

  15. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0

    NARCIS (Netherlands)

    Boellaard, R.; O'Doherty, M.J.; Weber, W.A.; Mottaghy, F.M.; Lonsdale, M.N.; Stroobants, S.G.; Oyen, W.J.G.; Kotzerke, J.; Hoekstra, O.S.; Pruim, J.; Marsden, P.K.; Tatsch, K.; Hoekstra, C.J.; Visser, E.P.; Arends, B.; Verzijlbergen, F.J.; Zijlstra, J.M.; Comans, E.F.I.; Lammertsma, A.A.; Paans, A.M.; Willemsen, A.T.; Beyer, T.; Bockisch, A.; Schaefer-Prokop, C.; Delbeke, D.; Baum, R.P.; Chiti, A.; Krause, B.J.

    2010-01-01

    The aim of this guideline is to provide a minimum standard for the acquisition and interpretation of PET and PET/CT scans with [18F]-fluorodeoxyglucose (FDG). This guideline will therefore address general information about [18F]-fluorodeoxyglucose (FDG) positron emission tomography-computed

  16. Clinical Usefulness of F-18 FDG PET/CT in papillary thyroid cancer with negative radioiodine scan and elevated thyroglobulin level or positive anti-thyroglobulin antibody

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Su Jung; Jung, Kyung Pyo; Lee, Sun Seong; Park, Yun Soo; Lee, Seok Mo [Dept. of Nuclear Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of); Bae, Sang Kyun [Dept. of Nuclear Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2016-06-15

    Elevated thyroglobulin (Tg) levels, along with a negative radioiodine scan, present a clinical problem for the diagnosis of recurrence in papillary thyroid cancer (PTC) patients. The purpose of this study was to assess (1) the usefulness of 18F-fluorodeoxyglucose (F-18 FDG) positron emission tomography (PET)/computed tomography (CT) for PTC patients with negative diagnostic radioiodine scan and elevated serum Tg level or positive anti-thyroglobulin antibody (TgAb), and (2) the effect of endogenous thyroid stimulating hormone (TSH) stimulation (ETS) on detecting recurrence in these circumstances. Eighty-four patients with negative diagnostic radioiodine scan and elevated serum Tg or positive TgAb under ETS were included. Correlation with clinicopathological features and recurrence, detectability of FDG PET/CT and cut-off value of serum Tg for recurrence in PTC patients with these circumstance were assessed. In addition, detectability of F-18 FDG PET/CT under ETS and suppression were compared. In Cox regression analysis, only serum Tg level was significantly associated with recurrence (P<0.001, HR  = 1.13; 95 % CI, 1.061–1.208). The cut-off level of Tg was 21.5 ng/mL (AUC, 0.919; P < 0.001) for discriminating the recurrence in the patients with positive PET/CT finding. The sensitivity, specificity, PPV, NPV, and accuracy of F-18 FDG PET/CT for detecting recurrence were 64 %, 94 %, 86 %, 81 %, and 83 %. In the analysis of F-18 FDG PET/CT under ETS, the sensitivity, specificity, PPV, NPV and accuracy was 64 %, 94 %, 88 %, 81 % and 83 %. Those under TSH suppression were 67 %, 92 %, 80 %, 85 % and 83 %. F-18 FDG PET/CT, although less sensitive, showed high specificity, PPV, NPV, and accuracy and therefore can be useful for the patients with negative diagnostic radioiodine scan and elevated serum Tg or positive TgAb. In addition, FDG PET/CT under ETS does not seem to have an additive role in detecting recurrence in these patients.

  17. FDG PET/MR for lymph node staging in head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Platzek, Ivan, E-mail: ivan.platzek@uniklinikum-dresden.de [Dresden University Hospital, Department of Radiology, Fetscherstr. 74, 01307 Dresden (Germany); Beuthien-Baumann, Bettina, E-mail: bettina.beuthien-baumann3@uniklinikum-dresden.de [Dresden University Hospital, Department of Nuclear Medicine, Fetscherstr. 74, 01307 Dresden (Germany); Schneider, Matthias, E-mail: m.schneider@mkgdresden.de [Dresden University Hospital, Department of Oral and Maxillofacial Surgery, Fetscherstr. 74, 01307 Dresden (Germany); Gudziol, Volker, E-mail: volker.gudziol@uniklinikum-dresden.de [Dresden University Hospital, Department of Otolaryngology, Fetscherstr. 74, 01307 Dresden (Germany); Kitzler, Hagen H., E-mail: hagen.kitzler@uniklinikum-dresden.de [Dresden University Hospital, Department of Neuroradiology, Fetscherstr. 74, 01307 Dresden (Germany); Maus, Jens, E-mail: j.maus@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Schramm, Georg, E-mail: g.schramm@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Popp, Manuel, E-mail: manuel.popp@praxisklinik-dresden.de [Dresden University Hospital, Department of Nuclear Medicine, Fetscherstr. 74, 01307 Dresden (Germany); Laniado, Michael, E-mail: michael.laniado@uniklinikum-dresden.de [Dresden University Hospital, Department of Radiology, Fetscherstr. 74, 01307 Dresden (Germany); Kotzerke, Jörg, E-mail: Joerg.Kotzerke@uniklinikum-dresden.de [Dresden University Hospital, Department of Nuclear Medicine, Fetscherstr. 74, 01307 Dresden (Germany); Hoff, Jörg van den, E-mail: j.van_den_hoff@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr. 400, 01328 Dresden (Germany)

    2014-07-15

    Objective: To assess the diagnostic value of PET/MR (positron emission tomography/magnetic resonance imaging) with FDG (18F-fluorodeoxyglucose) for lymph node staging in head and neck cancer. Materials and methods: This prospective study was approved by the local ethics committee; all patients signed informed consent. Thirty-eight patients with squamous cell carcinoma of the head and neck region underwent a PET scan on a conventional scanner and a subsequent PET/MR on a whole-body hybrid system after a single intravenous injection of FDG. The accuracy of PET, MR and PET/MR for lymph node metastases were compared using receiver operating characteristic (ROC) analysis. Histology served as the reference standard. Results: Metastatic disease was confirmed in 16 (42.1%) of 38 patients and 38 (9.7%) of 391 dissected lymph node levels. There were no significant differences between PET/MR, MR and PET and MR (p > 0.05) regarding accuracy for cervical metastatic disease. Based on lymph node levels, sensitivity and specificity for metastatic involvement were 65.8% and 97.2% for MR, 86.8% and 97.0% for PET and 89.5% and 95.2% for PET/MR. Conclusions: In head and neck cancer, FDG PET/MR does not significantly improve accuracy for cervical lymph node metastases in comparison to MR or PET.

  18. Evaluation of 68Ga-DOTATOC PET/MRI for whole-body staging of neuroendocrine tumours in comparison with 68Ga-DOTATOC PET/CT

    International Nuclear Information System (INIS)

    Sawicki, Lino M.; Deuschl, Cornelius; Beiderwellen, Karsten; Forsting, Michael; Umutlu, Lale; Ruhlmann, Verena; Poeppel, Thorsten D.; Bockisch, Andreas; Herrmann, Ken; Heusch, Philipp; Antoch, Gerald; Lahner, Harald; Fuehrer, Dagmar

    2017-01-01

    To compare the diagnostic performance of 68 Ga-DOTATOC PET/MRI and 68 Ga-DOTATOC PET/CT in the whole-body staging of patients with neuroendocrine tumours (NET). Thirty patients with histopathologically confirmed NET underwent PET/CT and PET/MRI in a single-injection protocol. PET/CT and PET/MRI scans were prospectively evaluated with regard to lesion count, localization, nature (NET/non-NET), and conspicuity (four-point scale). Histopathology and follow-up imaging served as the reference standards. The proportions of NET and non-NET lesions rated correctly were compared using McNemar's chi-squared test. The Wilcoxon test was used to assess differences in SUVmax and lesion conspicuity. The correlation between the SUVmax for the same lesions from each modality was analysed using Pearson's correlation coefficient (r). According to the reference standard, there were 197 lesions (142 NET, 55 non-NET). Lesion-based analysis showed a higher proportion of correctly rated NET lesions on PET/MRI than on PET/CT (90.8% vs. 86.7%, p = 0.031), whereas on PET/CT there was a higher proportion of correctly rated non-NET lesions (94.5% vs. 83.6%, p = 0.031). SUVmax was strongly correlated (r = 0.86; p < 0.001) and did not differ significantly (p = 0.35) between the modalities. Overall conspicuity and NET lesion conspicuity were higher on PET/MRI (both p < 0.01). Ga-DOTATOC PET/MRI yielded a higher proportion of correctly rated NET lesions and should be regarded as a valuable alternative to 68 Ga-DOTATOC PET/CT in whole-body staging of NET patients. (orig.)

  19. Role of {sup 18}F-FDG PET/CT in the diagnosis of infective endocarditis in patients with an implanted cardiac device: a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Graziosi, Maddalena; Lorenzini, Massimiliano; Diemberger, Igor; Pasquale, Ferdinando; Ziacchi, Matteo; Biffi, Mauro; Martignani, Cristian; Boriani, Giuseppe; Rapezzi, Claudio [Alma Mater-University of Bologna, and S. Orsola-Malpighi Hospital, Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Bologna (Italy); Nanni, Cristina; Bonfiglioli, Rachele; Fanti, Stefano [Alma Mater-University of Bologna, and S. Orsola-Malpighi Hospital, Nuclear Medicine Unit, Department of Experimental, Diagnostic and Specialty Medicine, Bologna (Italy); Bartoletti, Michele; Tumietto, Fabio; Viale, Pier Luigi [Alma Mater-University of Bologna, and S. Orsola-Malpighi Hospital, Infectious Diseases Unit, Department of Medical and Surgical Sciences, Bologna (Italy)

    2014-08-15

    Infective endocarditis (IE) is widely underdiagnosed or diagnosed after a major delay. The diagnosis is currently based on the modified DUKE criteria, where the only validated imaging technique is echocardiography, and remains challenging especially in patients with an implantable cardiac device. The aim of this study was to assess the incremental diagnostic role of {sup 18}F-FDG PET/CT in patients with an implanted cardiac device and suspected IE. We prospectively analysed 27 consecutive patients with an implantable device evaluated for suspected device-related IE between January 2011 and June 2013. The diagnostic probability of IE was defined at presentation according to the modified DUKE criteria. PET/CT was performed as soon as possible following the clinical suspicion of IE. Patients then underwent medical or surgical treatment based on the overall clinical evaluation. During follow-up, we considered: lead cultures in patients who underwent extraction, direct inspection and lead cultures in those who underwent surgery, and a clinical/instrumental reevaluation after at least 6 months in patients who received antimicrobial treatment or had an alternative diagnosis and were not treated for IE. After the follow-up period, the diagnosis was systematically reviewed by the multidisciplinary team using the modified DUKE criteria and considering the new findings. Among the ten patients with a positive PET/CT scan, seven received a final diagnosis of ''definite IE'', one of ''possible IE'' and two of ''IE rejected''. Among the 17 patients with a negative PET/CT scan, four were false-negative and received a final diagnosis of definite IE. These patients underwent PET/CT after having started antibiotic therapy (≥48 h) or had a technically suboptimal examination. In patients with a cardiac device, PET/CT increases the diagnostic accuracy of the modified Duke criteria for IE, particularly in the subset of

  20. Diffuse and diffuse-plus-focal uptake in the thyroid gland identified by using FDG-PET. Prevalence of thyroid cancer and Hashimoto's thyroiditis

    International Nuclear Information System (INIS)

    Kurata, Seiji; Ishibashi, Masatoshi; Hiromatsu, Yuji; Kaida, Hayato; Miyake, Ikuyo; Uchida, Masafumi; Hayabuchi, Naofumi

    2007-01-01

    The objective of this study was to investigate and evaluate the prevalence of incidental thyroid diffuse and diffuse-plus-focal fluorine-18 fluorodeoxyglucose (FDG) uptake in healthy subjects who underwent cancer screening on positron emission tomography (PET) scan, and also to evaluate the prevalence of thyroid cancer and Hashimoto's thyroiditis. We carried out a retrospective review of 1626 subjects who underwent PET scanning at our institution. Diffuse uptake was defined as FDG uptake in the whole thyroid gland, whereas diffuse-plus-focal uptake was defined as a thyroid lesion with both diffuse uptake and focal FDG uptake. The maximum standardized uptake value of the thyroid lesions was recorded and reviewed. In each selected subject with positive thyroid FDG uptake, serum thyroid-stimulating hormone, thyroid hormone, and thyroid antibodies were measured. Fine needle aspiration cytology was performed on patients with a definite nodule using ultrasonography. Twenty-nine subjects (1.78%) were identified as having either diffuse FDG uptake (n=25, 1.53%) or diffuse-plus-focal FDG uptake (n=4, 0.24%). All subjects with diffuse FDG uptake were diagnosed as having Hashimoto's thyroiditis. In 1 of the 25 subjects with diffuse FDG uptake and two of the four with diffuse-plus-focal FDG uptake, histopathologic diagnosis showed papillary thyroid carcinoma associated with Hashimoto's thyroiditis. However, PET scan did not detect papillary carcinoma associated with Hashimoto's thyroiditis in one of the three subjects. Our results suggest that although diffuse FDG uptake usually indicates Hashimoto's thyroiditis, the risk of thyroid cancer must be recognized in both diffuse FDG uptake and diffuse-plus-focal FDG uptake on PET scan. (author)

  1. A comparison of high dose Ga-67 SPECT and FDG PET imaging in malignant melanoma

    International Nuclear Information System (INIS)

    Kaliff, V.; Hicks, R.J.; Binns, D.S.; Henderson, M.A.; Ainslie, J.; Jenner, D.A.

    1998-01-01

    Full text: Ga-67 imaging for tumour localisation lost favour in the 1970's. With improvement in technology and use of higher doses, it has now found an important role in lymphoma. A similar phenomenon may be possible in the staging of melanoma. This study therefore compares high dose (370 MBq) Ga-67 imaging using a day 5 and 7 whole-body and comprehensive SPECT protocol, with (100 MBq) F-18 fluorodeoxyglucose (FDG) imaging using positron emission tomography (PET): a technique recently shown to be highly accurate in this condition. 85 patients; 46 males, mean age 52+17 yrs: range 22-83 yrs, underwent both studies within 9±16 days (max-91 days). Scans were judged as positive (+ve), negative (-ve) or equivocal (EQ) for local, regional and distant disease. Clinical follow-up resolved discordant scan findings. PET and Ga-67 results were concordant in 61 (70%) patients (19 with +ve, 37 -ve and 5 EQ scans). None of the 9 ps with one EQ and one eye scan had disease on follow-up. Follow-up was available in 4/5 patients with discordantly +ve (3 patients) or more extensive Ga-67 abnormality: 3 patients had disease confirmed, 1 patient false +ve (asymmetric lung hilum). Follow-up was available in 9/10 patients with discordantly +ve (3 patients) or more extensive PET abnormality: 4 patients had confirmed disease, l pt false +ve (bladder diverticulum). A further 4 patients had second primaries (2 rectal carcinomas, 1 plasmacytoma, 1 basal cell carcinoma). High dose Ga-67 scanning incorporating SPECT appears to be a reasonable alternative to FDG PET for screening patients with melanoma. In this series PET's main advantages were in the detection of other occult tumours, greater patient convenience and lower radiation dosimetry

  2. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0

    DEFF Research Database (Denmark)

    Boellaard, Ronald; O'Doherty, Mike J; Weber, Wolfgang A

    2010-01-01

    The aim of this guideline is to provide a minimum standard for the acquisition and interpretation of PET and PET/CT scans with [18F]-fluorodeoxyglucose (FDG). This guideline will therefore address general information about[18F]-fluorodeoxyglucose (FDG) positron emission tomography-computed tomogr...

  3. Dynamic 68Ga-DOTATOC PET/CT and static image in NET patients. Correlation of parameters during PRRT.

    Science.gov (United States)

    Van Binnebeek, Sofie; Koole, Michel; Terwinghe, Christelle; Baete, Kristof; Vanbilloen, Bert; Haustermans, Karine; Clement, Paul M; Bogaerts, Kris; Verbruggen, Alfons; Nackaerts, Kris; Van Cutsem, Eric; Verslype, Chris; Mottaghy, Felix M; Deroose, Christophe M

    2016-06-28

    To investigate the relationship between the dynamic parameters (Ki) and static image-derived parameters of 68Ga-DOTATOC-PET, to determine which static parameter best reflects underlying somatostatin-receptor-expression (SSR) levels on neuroendocrine tumours (NETs). 20 patients with metastasized NETs underwent a dynamic and static 68Ga-DOTATOC-PET before PRRT and at 7 and 40 weeks after the first administration of 90Y-DOTATOC (in total 4 cycles were planned); 175 lesions were defined and analyzed on the dynamic as well as static scans. Quantitative analysis was performed using the software PMOD. One to five target lesions per patient were chosen and delineated manually on the baseline dynamic scan and further, on the corresponding static 68Ga-DOTATOC-PET and the dynamic and static 68Ga-DOTATOC-PET at the other time-points; SUVmax and SUVmean of the lesions was assessed on the other six scans. The input function was retrieved from the abdominal aorta on the images. Further on, Ki was calculated using the Patlak-Plot. At last, 5 reference regions for normalization of SUVtumour were delineated on the static scans resulting in 5 ratios (SUVratio). SUVmax and SUVmean of the tumoural lesions on the dynamic 68Ga-DOTATOC-PET had a very strong correlation with the corresponding parameters in the static scan (R²: 0.94 and 0.95 respectively). SUVmax, SUVmean and Ki of the lesions showed a good linear correlation; the SUVratios correlated poorly with Ki. A significantly better correlation was noticed between Ki and SUVtumour(max and mean) (p dynamic parameter Ki correlates best with the absolute SUVtumour, SUVtumour best reflects underlying SSR-levels in NETs.

  4. Evaluation of radiation dose and image quality of CT scan for whole-body pediatric PET/CT: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ching-Ching, E-mail: cyang@tccn.edu.tw [Department of Medical Imaging and Radiological Sciences, Tzu-Chi College of Technology, 970, Hualien, Taiwan (China); Liu, Shu-Hsin [Department of Nuclear Medicine, Buddhist Tzu-Chi General Hospital, 970, Hualien, Taiwan and Department of Medical Imaging and Radiological Sciences, Tzu-Chi College of Technology, 970, Hualien, Taiwan (China); Mok, Greta S. P. [Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau (China); Wu, Tung-Hsin [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 112, Taipei, Taiwan (China)

    2014-09-15

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate risk estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.

  5. Methods for Motion Correction Evaluation Using 18F-FDG Human Brain Scans on a High-Resolution PET Scanner

    DEFF Research Database (Denmark)

    Keller, Sune H.; Sibomana, Merence; Olesen, Oline Vinter

    2012-01-01

    Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias in the reconstr......Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias...... in the reconstructed emission images. The purpose of this work was the development of quality control (QC) methods for MC procedures based on external motion tracking (EMT) for human scanning using an optical motion tracking system. Methods: Two scans with minor motion and 5 with major motion (as reported...... (automated image registration) software. The following 3 QC methods were used to evaluate the EMT and AIR MC: a method using the ratio between 2 regions of interest with gray matter voxels (GM) and white matter voxels (WM), called GM/WM; mutual information; and cross correlation. Results: The results...

  6. Incremental diagnostic utility of gastric distension FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, Pierre-Yves [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Brest University Hospital, Department of Nuclear Medicine, Brest (France); Duong, Cuong P.; Cabalag, Carlos S. [Peter MacCallum Cancer Centre, Department of Surgical Oncology, East Melbourne, VIC (Australia); Parameswaran, Bimal K.; Callahan, Jason [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); Hicks, Rodney J. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); The University of Melbourne, Parkville (Australia)

    2016-04-15

    To assess the diagnostic utility of gastric distension (GD) FDG PET/CT in both patients with known gastric malignancy and those not known to have gastric malignancy but with incidental focal FDG uptake in the stomach. This retrospective analysis included 88 patients who underwent FDG PET/CT following GD with hyoscine N-butylbromide (Buscopan registered) and water ingestion as part of routine clinical evaluation between 2004 and 2014. FDG PET/CT scans before and after GD were reported blinded to the patient clinical details in 49 patients undergoing pretreatment staging of gastric malignancy and 39 patients who underwent GD following incidental suspicious gastric uptake. The PET findings were validated by a composite clinical standard. In the 49 patients undergoing pretreatment staging of gastric malignancy, GD improved PET detection of the primary tumour (from 80 % to 90 %). PET evaluation of tumour extent was concordant with endoscopic/surgical reports in 31 % (interpreter 1) and 45 % (interpreter 2) using pre-GD images and 73 % and 76 % using GD images. Interobserver agreement also improved with GD (κ = 0.29 to 0.69). Metabolic and morphological quantitative analysis demonstrated a major impact of GD in normal gastric wall but no significant effect in tumour, except a minor increase in SUV related to a delayed acquisition time. The tumour to normal stomach SUVmax ratio increased from 3.8 ± 2.9 to 9.2 ± 8.6 (mean ± SD) with GD (p < 0.0001), facilitating detection and improved assessment of the primary tumour. In 25 (64 %) of the 39 patients with incidental suspicious gastric uptake, acquisition after GD correctly excluded a malignant process. In 10 (71 %) of the remaining 14 patients with persistent suspicious FDG uptake despite GD, malignancy was confirmed and in 3 (21 %) an active but benign pathology was diagnosed. GD is a simple way to improve local staging with FDG PET in patients with gastric malignancy. In the setting of incidental suspicious gastric

  7. Incremental diagnostic utility of gastric distension FDG PET/CT

    International Nuclear Information System (INIS)

    Le Roux, Pierre-Yves; Duong, Cuong P.; Cabalag, Carlos S.; Parameswaran, Bimal K.; Callahan, Jason; Hicks, Rodney J.

    2016-01-01

    To assess the diagnostic utility of gastric distension (GD) FDG PET/CT in both patients with known gastric malignancy and those not known to have gastric malignancy but with incidental focal FDG uptake in the stomach. This retrospective analysis included 88 patients who underwent FDG PET/CT following GD with hyoscine N-butylbromide (Buscopan registered) and water ingestion as part of routine clinical evaluation between 2004 and 2014. FDG PET/CT scans before and after GD were reported blinded to the patient clinical details in 49 patients undergoing pretreatment staging of gastric malignancy and 39 patients who underwent GD following incidental suspicious gastric uptake. The PET findings were validated by a composite clinical standard. In the 49 patients undergoing pretreatment staging of gastric malignancy, GD improved PET detection of the primary tumour (from 80 % to 90 %). PET evaluation of tumour extent was concordant with endoscopic/surgical reports in 31 % (interpreter 1) and 45 % (interpreter 2) using pre-GD images and 73 % and 76 % using GD images. Interobserver agreement also improved with GD (κ = 0.29 to 0.69). Metabolic and morphological quantitative analysis demonstrated a major impact of GD in normal gastric wall but no significant effect in tumour, except a minor increase in SUV related to a delayed acquisition time. The tumour to normal stomach SUVmax ratio increased from 3.8 ± 2.9 to 9.2 ± 8.6 (mean ± SD) with GD (p < 0.0001), facilitating detection and improved assessment of the primary tumour. In 25 (64 %) of the 39 patients with incidental suspicious gastric uptake, acquisition after GD correctly excluded a malignant process. In 10 (71 %) of the remaining 14 patients with persistent suspicious FDG uptake despite GD, malignancy was confirmed and in 3 (21 %) an active but benign pathology was diagnosed. GD is a simple way to improve local staging with FDG PET in patients with gastric malignancy. In the setting of incidental suspicious gastric

  8. PET/CT for staging and follow-up of pediatric nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Cheuk, Daniel K.L. [St Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States); The University of Hong Kong, Department of Paediatrics and Adolescent Medicine, Pokfulam (China); Sabin, Noah D.; Hossain, Moinul; Krasin, Matthew J.; Shulkin, Barry L. [St Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States); Wozniak, Amy [St Jude Children' s Research Hospital, Department of Biostatistics, Memphis, TN (United States); Naik, Mihir [St Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States); University of Texas Health Science Center, Department of Radiation Oncology, San Antonio, TX (United States); Rodriguez-Galindo, Carlos [St Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States); Hematology/Oncology, Dana-Farber Cancer Institute, Boston, MA (United States)

    2012-07-15

    While FDG PET/CT for the evaluation of nasopharyngeal carcinoma (NPC) in adult patients has documented advantages and disadvantages compared with conventional imaging, to our knowledge, no studies of FDG PET/CT for the evaluation of NPC in pediatric patients have been performed. In this investigation, we studied the utility of FDG PET/CT in children with NPC. The study group comprised 18 children with biopsy-proven NPC who underwent FDG PET/CT and MRI (total 38 pairs of images). All baseline and follow-up FDG PET/CT and MRI studies were independently reviewed for restaging of disease. The concordance between FDG PET/CT and MRI in T, N, and overall staging was 29%, 64%, and 43%, respectively. Compared with MRI, FDG PET/CT yielded lower T and overall staging and showed less cervical and retropharyngeal lymphadenopathy. The concordance between follow-up FDG PET/CT and MRI was 79% overall and 100% 9 months after therapy. In patients who achieved complete remission, FDG PET/CT showed disease clearance 3-6 months earlier than MRI. There were no false-positive or false-negative FDG PET/CT scans during follow-up. FDG PET/CT may underestimate tumor extent and regional lymphadenopathy compared with MRI at the time of diagnosis, but it helps to detect metastases and clarify ambiguous findings. FDG PET/CT is sensitive and specific for follow-up and enables earlier determination of disease remission. FDG PET/CT is a valuable imaging modality for the evaluation and monitoring of NPC in pediatric patients. (orig.)

  9. The clinical utility of FDG PET/CT among solid organ transplant recipients suspected of malignancy or infection

    International Nuclear Information System (INIS)

    Wareham, Neval E.; Lundgren, J.D.; Cunha-Bang, C. da; Sengeloev, H.; Gustafsson, F.; Iversen, M.; Johannesen, H.H.; Kjaer, A.; Fischer, B.M.; Rasmussen, A.; Soerensen, S.S.

    2017-01-01

    Solid organ transplant (SOT) recipients are at high risk of developing infections and malignancies. 18 F-FDG PET/CT may enable timely detection of these diseases and help to ensure early intervention. We aimed to describe the clinical utility of FDG PET/CT in consecutive, diagnostic unresolved SOT recipients transplanted from January 2004 to May 2015. Recipients with a post-transplant FDG PET/CT performed as part of diagnostic work-up were included. Detailed chart reviews were done to extract relevant clinical information and determine the final diagnosis related to the FDG PET/CT. Based on a priori defined criteria and the final diagnosis, results from each scan were classified as true or false, and diagnostic values determined. Among the 1,814 recipients in the cohort, 145 had an FDG PET/CT performed; 122 under the indication of diagnostically unresolved symptoms with a suspicion of malignancy or infection. The remaining (N = 23) had an FDG PET/CT to follow-up on a known disease or to stage a known malignancy. The 122 recipients underwent a total of 133 FDG PET/CT scans performed for a suspected malignancy (66 %) or an infection (34 %). Sensitivity, specificity, and positive and negative predictive values of the FDG PET/CT in diagnosing these conditions were 97, 84, 87, and 96 %, respectively. FDG PET/CT is an accurate diagnostic tool for the work-up of diagnostic unresolved SOT recipients suspected of malignancy or infection. The high sensitivity and NPV underlines the potential usefulness of PET/CT for excluding malignancy or focal infections in this often complex clinical situation. (orig.)

  10. PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma

    Energy Technology Data Exchange (ETDEWEB)

    Nariai, Tadashi [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan)], E-mail: nariai.nsrg@tmd.ac.jp; Ishiwata, Kiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Nakacho, Itabashi-ku, Tokyo (Japan); Kimura, Yuichi [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba (Japan); Inaji, Motoki; Momose, Toshiya [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan); Yamamoto, Tetsuya; Matsumura, Akira [Department of Neurosurgery, University of Tsukuba, Tennodai, Tsukuba, Igaraki (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Nakacho, Itabashi-ku, Tokyo (Japan); Ohno, Kikuo [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan)

    2009-07-15

    Introduction: To plan the optimal BNCT for patients with malignant cerebral glioma, estimation of the ratio of boron concentration in tumor tissue against that in the surrounding normal brain (T/N ratio of boron) is important. We report a positron emission tomography (PET) imaging method to estimate T/N ratio of tissue boron concentration based on pharmacokinetic analysis of amino acid probes. Methods: Twelve patients with cerebral malignant glioma underwent 60 min dynamic PET scanning of brain after bolus injection of {sup 18}F-borono-phenyl-alanine (FBPA) with timed arterial blood sampling. Using kinetic parameter obtained by this scan, T/N ratio of boron concentration elicited by one-hour constant infusion of BPA, as performed in BNCT, was simulated on Runge-Kutta algorithm. {sup 11}C-methionine (MET) PET scan, which is commonly used in worldwide PET center as brain tumor imaging tool, was also performed on the same day to compare the image characteristics of FBPA and that of MET. Result: PET glioma images obtained with FBPA and MET are almost identical in all patients by visual inspection. Estimated T/N ratio of tissue boron concentration after one-hour constant infusion of BPA, T/N ratio of FBPA on static condition, and T/N ratio of MET on static condition showed significant linear correlation between each other. Conclusion: T/N ratio of boron concentration that is obtained by constant infusion of BPA during BNCT can be estimated by FBPA PET scan. This ratio can also be estimated by MET-PET imaging. As MET-PET study is available in many clinical PET center, selection of candidates for BNCT may be possible by MET-PET images. Accurate planning of BNCT may be performed by static images of FBPA PET. Use of PET imaging with amino acid probes may contribute very much to establish an appropriate application of BNCT for patients with malignant glioma.

  11. 18F-FDG PET/CT in detection of gynecomastia in patients with hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Hsin-Yi; Jeng, Long-Bin; Lin, Ming-Chia; Chao, Chih-Hao; Lin, Wan-Yu; Kao, Chia-Hung

    2013-01-01

    We retrospectively investigate the prevalence of gynecomastia as false-positive 2-[18F]fluoro-2-deoxy-d-glucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) imaging in patients with hepatocellular carcinoma (HCC). Among the 127 male HCC patients who underwent 18F-FDG PET/CT scan, the 18FDG uptakes at the bilateral breasts in 9 patients with gynecomastia were recorded as standard uptake value (SUVmax) and the visual interpretation in both early and delayed images. The mean early SUVmax was 1.58/1.57 (right/left breast) in nine gynecomastia patients. The three patients with early visual score of 3 had higher early SUVmaxs. Gynecomastia is a possible cause of false-positive uptake on 18F-FDG PET/CT images. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. A Case of Acute Q Fever Hepatitis Diagnosed by F-18 FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Beak, Sora [Hallym Univ. College of Medicine, Seoul (Korea, Republic of); Oh, Minyoung; Lee, Sand-Oh; Yu, Eunsil; Ryu Jin-Sook [Univ. of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2012-06-15

    A 53-year-old man with fever of unknown origin underwent F-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT) as a workup for a fever of unknown origin. On presentation, he complained of fever, chills, and myalgia. The F-18 FDG PET/CT scan showed diffusely increased uptake of the liver with mild hepatomegaly. A liver biopsy then revealed fibrin-ring granulomas typically seen in Q fever. The patient was later serologically diagnosed as having acute Q fever as the titers for C. IgM and IgG were 64:1 and -16:1, respectively. He recovered completely following administration of doxycycline. This indicates that F-18 FDG PET/CT may be helpful for identifying hepatic involvement in Q fever as a cause of fever of unknown origin.

  13. Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients—Current state of image quality

    International Nuclear Information System (INIS)

    Schwenzer, N.F.; Stegger, L.; Bisdas, S.; Schraml, C.; Kolb, A.; Boss, A.; Müller, M.

    2012-01-01

    Objectives: The present work illustrates the current state of image quality and diagnostic accuracy in a new hybrid BrainPET/MR. Materials and methods: 50 patients with intracranial masses, head and upper neck tumors or neurodegenerative diseases were examined with a hybrid BrainPET/MR consisting of a conventional 3T MR system and an MR-compatible PET insert. Directly before PET/MR, all patients underwent a PET/CT examination with either [ 18 F]-FDG, [ 11 C]-methionine or [ 68 Ga]-DOTATOC. In addition to anatomical MR scans, functional sequences were performed including diffusion tensor imaging (DTI), arterial spin labeling (ASL) and proton-spectroscopy. Image quality score of MR imaging was evaluated using a 4-point-scale. PET data quality was assessed by evaluating FDG-uptake and tumor delineation with [ 11 C]-methionine and [ 68 Ga]-DOTATOC. FDG uptake quantification accuracy was evaluated by means of ROI analysis (right and left frontal and temporo-occipital lobes). The asymmetry indices and ratios between frontal and occipital ROIs were compared. Results: In 45/50 patients, PET/MR examination was successful. Visual analysis revealed a diagnostic image quality of anatomical MR imaging (mean quality score T2 FSE: 1.27 ± 0.54; FLAIR: 1.38 ± 0.61). ASL and proton-spectroscopy was possible in all cases. In DTI, dental artifacts lead to one non-diagnostic dataset (mean quality score DTI: 1.32 ± 0.69; ASL: 1.10 ± 0.31). PET datasets of PET/MR and PET/CT offered comparable tumor delineation with [ 11 C]-methionine; additional lesions were found in 2/8 [ 68 Ga]-DOTATOC-PET in the PET/MR. Mean asymmetry index revealed a high accordance between PET/MR and PET/CT (1.5 ± 2.2% vs. 0.9 ± 3.6%; mean ratio (frontal/parieto-occipital) 0.93 ± 0.08 vs. 0.96 ± 0.05), respectively. Conclusions: The hybrid BrainPET/MR allows for molecular, anatomical and functional imaging with uncompromised MR image quality and a high accordance of PET results between PET/MR and PET

  14. Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients-Current state of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, N.F., E-mail: nina.schwenzer@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Stegger, L., E-mail: stegger@gmx.net [Department of Nuclear Medicine and European Institute for Molecular Imaging, University of Muenster, Muenster (Germany); Bisdas, S., E-mail: sbisdas@gmail.com [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Schraml, C., E-mail: christina.schraml@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de [Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Boss, A., E-mail: Andreas.Boss@usz.ch [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Institute of Diagnostic and Interventional Radiology, University Hospital Zuerich, Zuerich (Switzerland); Mueller, M., E-mail: mark.mueller@med.uni-tuebingen.de [Department of Nuclear Medicine, Eberhard-Karls University Tuebingen, Tuebingen (Germany); and others

    2012-11-15

    Objectives: The present work illustrates the current state of image quality and diagnostic accuracy in a new hybrid BrainPET/MR. Materials and methods: 50 patients with intracranial masses, head and upper neck tumors or neurodegenerative diseases were examined with a hybrid BrainPET/MR consisting of a conventional 3T MR system and an MR-compatible PET insert. Directly before PET/MR, all patients underwent a PET/CT examination with either [{sup 18}F]-FDG, [{sup 11}C]-methionine or [{sup 68}Ga]-DOTATOC. In addition to anatomical MR scans, functional sequences were performed including diffusion tensor imaging (DTI), arterial spin labeling (ASL) and proton-spectroscopy. Image quality score of MR imaging was evaluated using a 4-point-scale. PET data quality was assessed by evaluating FDG-uptake and tumor delineation with [{sup 11}C]-methionine and [{sup 68}Ga]-DOTATOC. FDG uptake quantification accuracy was evaluated by means of ROI analysis (right and left frontal and temporo-occipital lobes). The asymmetry indices and ratios between frontal and occipital ROIs were compared. Results: In 45/50 patients, PET/MR examination was successful. Visual analysis revealed a diagnostic image quality of anatomical MR imaging (mean quality score T2 FSE: 1.27 {+-} 0.54; FLAIR: 1.38 {+-} 0.61). ASL and proton-spectroscopy was possible in all cases. In DTI, dental artifacts lead to one non-diagnostic dataset (mean quality score DTI: 1.32 {+-} 0.69; ASL: 1.10 {+-} 0.31). PET datasets of PET/MR and PET/CT offered comparable tumor delineation with [{sup 11}C]-methionine; additional lesions were found in 2/8 [{sup 68}Ga]-DOTATOC-PET in the PET/MR. Mean asymmetry index revealed a high accordance between PET/MR and PET/CT (1.5 {+-} 2.2% vs. 0.9 {+-} 3.6%; mean ratio (frontal/parieto-occipital) 0.93 {+-} 0.08 vs. 0.96 {+-} 0.05), respectively. Conclusions: The hybrid BrainPET/MR allows for molecular, anatomical and functional imaging with uncompromised MR image quality and a high accordance

  15. Value of FDG-PET scans of non-demented patients in predicting rates of future cognitive and functional decline

    International Nuclear Information System (INIS)

    Torosyan, Nare; Mason, Kelsey; Dahlbom, Magnus; Silverman, Daniel H.S.

    2017-01-01

    The aim of this study was to examine the value of fluorodeoxyglucose (FDG) positron emission tomography (PET) in predicting subsequent rates of functional and cognitive decline among subjects considered cognitively normal (CN) or clinically diagnosed with mild cognitive impairment (MCI). Analyses of 276 subjects, 92 CN subjects and 184 with MCI, who were enrolled in the Alzheimer's Disease Neuroimaging Initiative, were conducted. Functional decline was assessed using scores on the Functional Activities Questionnaire (FAQ) obtained over a period of 36 months, while cognitive decline was determined using the Alzheimer's disease Assessment Scale-Cognitive subscale (ADAS-Cog) and Mini-Mental State Examination (MMSE) scores. PET images were analyzed using clinically routine brain quantification software. A dementia prognosis index (DPI), derived from a ratio of uptake values in regions of interest known to be hypometabolic in Alzheimer's disease to regions known to be stable, was generated for each baseline FDG-PET scan. The DPI was correlated with change in scores on the neuropsychological examinations to examine the predictive value of baseline FDG-PET. DPI powerfully predicted rate of functional decline among MCI patients (t = 5.75, p < 1.0E-8) and pooled N + MCI patient groups (t = 7.02, p < 1.0E-11). Rate of cognitive decline on MMSE was also predicted by the DPI among MCI (t = 6.96, p < 1.0E-10) and pooled N + MCI (t = 8.78, p < 5.0E-16). Rate of cognitive decline on ADAS-cog was powerfully predicted by the DPI alone among N (p < 0.001), MCI (t = 6.46, p < 1.0E-9) and for pooled N + MCI (t = 8.85, p = 1.1E-16). These findings suggest that an index, derivable from automated regional analysis of brain PET scans, can be used to help predict rates of functional and cognitive deterioration in the years following baseline PET. (orig.)

  16. Value of FDG-PET scans of non-demented patients in predicting rates of future cognitive and functional decline

    Energy Technology Data Exchange (ETDEWEB)

    Torosyan, Nare; Mason, Kelsey; Dahlbom, Magnus; Silverman, Daniel H.S. [David Geffen School of Medicine at the University of California Los Angeles, Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States); Collaboration: the Alzheimer' sDisease Neuroimaging Initiative

    2017-08-15

    The aim of this study was to examine the value of fluorodeoxyglucose (FDG) positron emission tomography (PET) in predicting subsequent rates of functional and cognitive decline among subjects considered cognitively normal (CN) or clinically diagnosed with mild cognitive impairment (MCI). Analyses of 276 subjects, 92 CN subjects and 184 with MCI, who were enrolled in the Alzheimer's Disease Neuroimaging Initiative, were conducted. Functional decline was assessed using scores on the Functional Activities Questionnaire (FAQ) obtained over a period of 36 months, while cognitive decline was determined using the Alzheimer's disease Assessment Scale-Cognitive subscale (ADAS-Cog) and Mini-Mental State Examination (MMSE) scores. PET images were analyzed using clinically routine brain quantification software. A dementia prognosis index (DPI), derived from a ratio of uptake values in regions of interest known to be hypometabolic in Alzheimer's disease to regions known to be stable, was generated for each baseline FDG-PET scan. The DPI was correlated with change in scores on the neuropsychological examinations to examine the predictive value of baseline FDG-PET. DPI powerfully predicted rate of functional decline among MCI patients (t = 5.75, p < 1.0E-8) and pooled N + MCI patient groups (t = 7.02, p < 1.0E-11). Rate of cognitive decline on MMSE was also predicted by the DPI among MCI (t = 6.96, p < 1.0E-10) and pooled N + MCI (t = 8.78, p < 5.0E-16). Rate of cognitive decline on ADAS-cog was powerfully predicted by the DPI alone among N (p < 0.001), MCI (t = 6.46, p < 1.0E-9) and for pooled N + MCI (t = 8.85, p = 1.1E-16). These findings suggest that an index, derivable from automated regional analysis of brain PET scans, can be used to help predict rates of functional and cognitive deterioration in the years following baseline PET. (orig.)

  17. Liver kinetics of glucose analogs measured in pigs by PET: importance of dual-input blood sampling

    DEFF Research Database (Denmark)

    Munk, O L; Bass, L; Roelsgaard, K

    2001-01-01

    -input functions were very similar. CONCLUSION: Compartmental analysis of MG and FDG kinetics using dynamic PET data requires measurements of dual-input activity concentrations. Using the dual-input function, physiologically reasonable parameter estimates of K1, k2, and Vp were obtained, whereas the use......Metabolic processes studied by PET are quantified traditionally using compartmental models, which relate the time course of the tracer concentration in tissue to that in arterial blood. For liver studies, the use of arterial input may, however, cause systematic errors to the estimated kinetic...... parameters, because of ignorance of the dual blood supply from the hepatic artery and the portal vein to the liver. METHODS: Six pigs underwent PET after [15O]carbon monoxide inhalation, 3-O-[11C]methylglucose (MG) injection, and [18F]FDG injection. For the glucose scans, PET data were acquired for 90 min...

  18. Prospective evaluation of 18F-FACBC PET/CT and PET/MRI versus multiparametric MRI in intermediate- to high-risk prostate cancer patients (FLUCIPRO trial).

    Science.gov (United States)

    Jambor, Ivan; Kuisma, Anna; Kähkönen, Esa; Kemppainen, Jukka; Merisaari, Harri; Eskola, Olli; Teuho, Jarmo; Perez, Ileana Montoya; Pesola, Marko; Aronen, Hannu J; Boström, Peter J; Taimen, Pekka; Minn, Heikki

    2018-03-01

    The purpose of this study was to evaluate 18 F-FACBC PET/CT, PET/MRI, and multiparametric MRI (mpMRI) in detection of primary prostate cancer (PCa). Twenty-six men with histologically confirmed PCa underwent PET/CT immediately after injection of 369 ± 10 MBq 18 F-FACBC (fluciclovine) followed by PET/MRI started 55 ± 7 min from injection. Maximum standardized uptake values (SUV max ) were measured for both hybrid PET acquisitions. A separate mpMRI was acquired within a week of the PET scans. Logan plots were used to calculate volume of distribution (V T ). The presence of PCa was estimated in 12 regions with radical prostatectomy findings as ground truth. For each imaging modality, area under the curve (AUC) for detection of PCa was determined to predict diagnostic performance. The clinical trial registration number is NCT02002455. In the visual analysis, 164/312 (53%) regions contained PCa, and 41 tumor foci were identified. PET/CT demonstrated the highest sensitivity at 87% while its specificity was low at 56%. The AUC of both PET/MRI and mpMRI significantly (p PET/CT while no differences were detected between PET/MRI and mpMRI. SUV max and V T of Gleason score (GS) >3 + 4 tumors were significantly (p PET/CT and PET/MRI demonstrated true-positive findings in only 1/7 patients with metastatic lymph nodes. Quantitative 18 F-FACBC imaging significantly correlated with GS but failed to outperform MRI in lesion detection. 18 F-FACBC may assist in targeted biopsies in the setting of hybrid imaging with MRI.

  19. Evaluation of {sup 68}Ga-DOTATOC PET/MRI for whole-body staging of neuroendocrine tumours in comparison with {sup 68}Ga-DOTATOC PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Sawicki, Lino M. [University Dusseldorf, Department of Diagnostic and Interventional Radiology, Medical Faculty, Dusseldorf (Germany); University Duisburg-Essen, Department of Nuclear Medicine, Medical Faculty, Essen (Germany); Deuschl, Cornelius; Beiderwellen, Karsten; Forsting, Michael; Umutlu, Lale [University Duisburg-Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Medical Faculty, Essen (Germany); Ruhlmann, Verena; Poeppel, Thorsten D.; Bockisch, Andreas; Herrmann, Ken [University Duisburg-Essen, Department of Nuclear Medicine, Medical Faculty, Essen (Germany); Heusch, Philipp; Antoch, Gerald [University Dusseldorf, Department of Diagnostic and Interventional Radiology, Medical Faculty, Dusseldorf (Germany); Lahner, Harald; Fuehrer, Dagmar [University Duisburg-Essen, Department of Endocrinology and Metabolism, Endocrine Tumour Center at WTZ and ENETS Center of Excellence, Medical Faculty, Essen (Germany); Endocrine Tumour Center at WTZ and ENETS Center of Excellence, Essen (Germany)

    2017-10-15

    To compare the diagnostic performance of {sup 68}Ga-DOTATOC PET/MRI and {sup 68}Ga-DOTATOC PET/CT in the whole-body staging of patients with neuroendocrine tumours (NET). Thirty patients with histopathologically confirmed NET underwent PET/CT and PET/MRI in a single-injection protocol. PET/CT and PET/MRI scans were prospectively evaluated with regard to lesion count, localization, nature (NET/non-NET), and conspicuity (four-point scale). Histopathology and follow-up imaging served as the reference standards. The proportions of NET and non-NET lesions rated correctly were compared using McNemar's chi-squared test. The Wilcoxon test was used to assess differences in SUVmax and lesion conspicuity. The correlation between the SUVmax for the same lesions from each modality was analysed using Pearson's correlation coefficient (r). According to the reference standard, there were 197 lesions (142 NET, 55 non-NET). Lesion-based analysis showed a higher proportion of correctly rated NET lesions on PET/MRI than on PET/CT (90.8% vs. 86.7%, p = 0.031), whereas on PET/CT there was a higher proportion of correctly rated non-NET lesions (94.5% vs. 83.6%, p = 0.031). SUVmax was strongly correlated (r = 0.86; p < 0.001) and did not differ significantly (p = 0.35) between the modalities. Overall conspicuity and NET lesion conspicuity were higher on PET/MRI (both p < 0.01). Ga-DOTATOC PET/MRI yielded a higher proportion of correctly rated NET lesions and should be regarded as a valuable alternative to {sup 68}Ga-DOTATOC PET/CT in whole-body staging of NET patients. (orig.)

  20. Bone metabolic activity in hyperostosis cranialis interna measured with 18F-fluoride PET

    International Nuclear Information System (INIS)

    Waterval, Jerome J.; Dongen, Thijs M.A. van; Stokroos, Robert J.; Manni, Johannes J.; Teule, Jaap G.J.; Kemerink, Gerrit J.; Brans, Boudewijn; Nieman, Fred H.M.

    2011-01-01

    18 F-Fluoride PET/CT is a relatively undervalued diagnostic test to measure bone metabolism in bone diseases. Hyperostosis cranialis interna (HCI) is a (hereditary) bone disease characterised by endosteal hyperostosis and osteosclerosis of the skull and the skull base. Bone overgrowth causes entrapment and dysfunction of several cranial nerves. The aim of this study is to compare standardised uptake values (SUVs) at different sites in order to quantify bone metabolism in the affected anatomical regions in HCI patients. Nine affected family members, seven non-affected family members and nine non-HCI non-family members underwent 18 F-fluoride PET/CT scans. SUVs were systematically measured in the different regions of interest: frontal bone, sphenoid bone, petrous bone and clivus. Moreover, the average 18 F-fluoride uptake in the entire skull was measured by assessing the uptake in axial slides. Visual assessment of the PET scans of affected individuals was performed to discover the process of disturbed bone metabolism in HCI. 18 F-Fluoride uptake is statistically significantly higher in the sphenoid bone and clivus regions of affected family members. Visual assessment of the scans of HCI patients is relevant in detecting disease severity and the pattern of disturbed bone metabolism throughout life. 18 F-Fluoride PET/CT is useful in quantifying the metabolic activity in HCI and provides information about the process of disturbed bone metabolism in this specific disorder. Limitations are a narrow window between normal and pathological activity and the influence of age. This study emphasises that 18 F-fluoride PET/CT may also be a promising diagnostic tool for other metabolic bone disorders, even those with an indolent course. (orig.)

  1. Utility of {sup 18}F-fluoroestradiol ({sup 18}F-FES) PET/CT imaging as a pharmacodynamic marker in patients with refractory estrogen receptor-positive solid tumors receiving Z-endoxifen therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Frank I. [National Cancer Institute, NIH, Cancer Imaging Program, Bethesda, MD (United States); National Cancer Institute, Molecular Imaging Program, Bethesda, MD (United States); Gonzalez, E.M.; Kurdziel, K.A.; Ton, A.; Turkbey, B.; Choyke, P.L.; Lindenberg, M.L. [National Cancer Institute, Molecular Imaging Program, Bethesda, MD (United States); Kummar, S.; Do, K.; Collins, J.M.; Doroshow, J.H. [National Cancer Institute, Division of Cancer Treatment and Diagnosis and Center for Cancer Research, Bethesda, MD (United States); Shih, J. [National Cancer Institute, NIH, Biometric Research Program, Bethesda, MD (United States); Adler, S. [Leidos Biomedical Research, Inc., Clinical Research Directorate/Clinical Monitoring Research Program, Frederick, MD (United States); Jacobs, P.M. [National Cancer Institute, NIH, Cancer Imaging Program, Bethesda, MD (United States); Bhattacharyya, S. [Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD (United States); Chen, A.P. [National Cancer Institute, Early Clinical Trials Development Program, DCTD, Bethesda, MD (United States)

    2017-03-15

    Z-endoxifen is the most potent of the metabolites of tamoxifen, and has the potential to be more effective than tamoxifen because it bypasses potential drug resistance mechanisms attributable to patient variability in the expression of the hepatic microsomal enzyme CYP2D6. {sup 18}F-FES is a positron emission tomography (PET) imaging agent which selectively binds to estrogen receptor alpha (ER-α) and has been used for non-invasive in vivo assessment of ER activity in tumors. This study utilizes {sup 18}F-FES PET imaging as a pharmacodynamic biomarker in patients with ER+ tumors treated with Z-endoxifen. Fifteen patients were recruited from a parent therapeutic trial of Z-endoxifen and underwent imaging with {sup 18}F-FES PET at baseline. Eight had positive lesions on the baseline scan and underwent follow-up imaging with {sup 18}F-FES 1-5 days post administration of Z-endoxifen. Statistically significant changes (p = 0.0078) in standard uptake value (SUV)-Max were observed between the baseline and follow-up scans as early as 1 day post drug administration. F-FES PET imaging could serve as a pharmacodynamic biomarker for patients treated with ER-directed therapy. (orig.)

  2. Added Diagnostic Value of 11C-PiB-PET in Memory Clinic Patients with Uncertain Diagnosis

    Directory of Open Access Journals (Sweden)

    K.S. Frederiksen

    2012-12-01

    Full Text Available Introduction: The added diagnostic value of 11C-PiB-PET for the assessment of the accumulation of cortical beta-amyloid in memory clinic patients with uncertain diagnosis remains undetermined. Methods: All patients who underwent PiB-PET at the Copenhagen Memory Clinic between March 2008 and November 2011 were included in this uncontrolled, retrospective study. The standard diagnostic evaluation program included physical and neurological examination, cognitive and functional assessment, a cranial CT or MRI, functional imaging and cerebrospinal fluid sampling. Based on anonymized case reports, three experienced clinicians reached a consensus diagnosis and rated their confidence in the diagnosis before and after disclosure of PiB-PET ratings. PiB-PET scans were rated as either positive or negative. Results: A total of 57 patients (17 females, 30 males; age 65.7 years, range 44.2–82.6 were included in the study. Twenty-seven had a positive PiB-PET scan. At the first diagnostic evaluation, 16 patients were given a clinical Alheimer’s disease diagnosis (14 PiB positive. Of the 57 patients, 13 (23% were diagnostically reclassified after PiB-PET ratings were disclosed. The clinicians’ overall confidence in their diagnosis increased in 28 (49% patients. Conclusion: PiB-PET adds to the specialist clinical evaluation and other supplemental diagnostic investigations in the diagnostic classification of patients with uncertain diagnosis in a specialized memory clinic.

  3. Fever of unknown origin: prospective comparison of diagnostic value of 18F-FDG PET and 111In-granulocyte scintigraphy

    DEFF Research Database (Denmark)

    Kjaer, Andreas; Lebech, Anne-Mette; Eigtved, Annika

    2004-01-01

    The diagnostic work-up in patients with fever of unknown origin (FUO) is often challenging and frequently includes nuclear medicine procedures. Whereas a role for leucocyte or granulocyte scintigraphy in FUO is generally accepted, a possible role of fluorine-18 fluorodeoxyglucose (FDG) positron...... emission tomography (PET) in these patients remains to be established. To study this, we compared prospectively, on a head-to-head basis, the diagnostic value of FDG-PET and indium-111 granulocyte scintigraphy in patients with FUO. Nineteen patients with FUO underwent both FDG-PET and (111)In......-granulocyte scintigraphy within 1 week. FDG-PET scans and granulocyte scintigrams were reviewed by different doctors who were blinded to the result of the other investigation. The diagnostic values of FDG-PET and granulocyte scintigraphy were evaluated with regard to identification of a focal infectious...

  4. Rapid dual-injection single-scan 13N-ammonia PET for quantification of rest and stress myocardial blood flows

    International Nuclear Information System (INIS)

    Rust, T C; DiBella, E V R; McGann, C J; Christian, P E; Hoffman, J M; Kadrmas, D J

    2006-01-01

    Quantification of myocardial blood flows at rest and stress using 13 N-ammonia PET is an established method; however, current techniques require a waiting period of about 1 h between scans. The objective of this study was to test a rapid dual-injection single-scan approach, where 13 N-ammonia injections are administered 10 min apart during rest and adenosine stress. Dynamic PET data were acquired in six human subjects using imaging protocols that provided separate single-injection scans as gold standards. Rest and stress data were combined to emulate rapid dual-injection data so that the underlying activity from each injection was known exactly. Regional blood flow estimates were computed from the dual-injection data using two methods: background subtraction and combined modelling. The rapid dual-injection approach provided blood flow estimates very similar to the conventional single-injection standards. Rest blood flow estimates were affected very little by the dual-injection approach, and stress estimates correlated strongly with separate single-injection values (r = 0.998, mean absolute difference = 0.06 ml min -1 g -1 ). An actual rapid dual-injection scan was successfully acquired in one subject and further demonstrates feasibility of the method. This study with a limited dataset demonstrates that blood flow quantification can be obtained in only 20 min by the rapid dual-injection approach with accuracy similar to that of conventional separate rest and stress scans. The rapid dual-injection approach merits further development and additional evaluation for potential clinical use

  5. Metabolic liver function in humans measured by 2-(18)F-fluoro-2-deoxy-D-galactose PET/CT-reproducibility and clinical potential

    DEFF Research Database (Denmark)

    Bak-Fredslund, Kirstine P; Lykke Eriksen, Peter; Munk, Ole L

    2017-01-01

    Background: PET/CT with the radioactively labelled galactose analogue 2-18F-fluoro-2-deoxy-D-galactose (18F-FDGal) can be used to quantify the hepatic metabolic function and visualise regional metabolic heterogeneity. We determined the day-to-day variation in humans with and without liver disease....... Furthermore, we examined whether the standardised uptake value (SUV) of 18F-FDGal from static scans can substitute the hepatic systemic clearance of 18F- FDGal (Kmet, mL blood/min/mL liver tissue/) quantified from dynamic scans as measure of metabolic function. Four patients with cirrhosis and six healthy...... subjects underwent two 18F-FDGal PET/CT scans within a median interval of 15 days for determination of day-to-day variation. The correlation between Kmet and SUV was examined using scan data and measured arterial blood concentrations of 18F-FDGal (blood samples) from 14 subjects from previous studies...

  6. Initial clinical results of simultaneous {sup 18}F-FDG PET/MRI in comparison to {sup 18}F-FDG PET/CT in patients with head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kubiessa, K.; Gawlitza, M.; Kuehn, A.; Fuchs, J.; Kahn, T.; Stumpp, P. [University Hospital of Leipzig, Department of Diagnostic and Interventional Radiology, Leipzig (Germany); Purz, S.; Steinhoff, K.G.; Sabri, O.; Kluge, R. [University Hospital of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Boehm, A. [University Hospital of Leipzig, ENT Department, Leipzig (Germany)

    2014-04-15

    The aim of this study was to evaluate the diagnostic capability of simultaneous {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/MRI compared to {sup 18}F-FDG PET/CT as well as their single components in head and neck cancer patients. In a prospective study 17 patients underwent {sup 18}F-FDG PET/CT for staging or follow-up and an additional {sup 18}F-FDG PET/MRI scan with whole-body imaging and dedicated examination of the neck. MRI, CT and PET images as well as PET/MRI and PET/CT examinations were evaluated independently and in a blinded fashion by two reader groups. Results were compared with the reference standard (final diagnosis determined in consensus using all available data including histology and follow-up). Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. A total of 23 malignant tumours were found with the reference standard. PET/CT showed a sensitivity of 82.7 %, a specificity of 87.3 %, a PPV of 73.2 % and a NPV of 92.4 %. Corresponding values for PET/MRI were 80.5, 88.2, 75.6 and 92.5 %. No statistically significant difference in diagnostic capability could be found between PET/CT and PET/MRI. Evaluation of the PET part from PET/CT revealed highest sensitivity of 95.7 %, and MRI showed best specificity of 96.4 %. There was a high inter-rater agreement in all modalities (Cohen's kappa 0.61-0.82). PET/MRI of patients with head and neck cancer yielded good diagnostic capability, similar to PET/CT. Further studies on larger cohorts to prove these first results seem justified. (orig.)

  7. The utility of PET/CT in staging and assessment of treatment response of naso pharyngeal cancer

    International Nuclear Information System (INIS)

    Law, Alastair; Peters, L.J.; Dutu, Gaelle; Rischin, Danny; Lau, Eddie; Drummond, Elizabeth; Corry, June

    2011-01-01

    Full text: The aim of this study was to evaluate the impact of positron emission tomography/computerised tomography (PET/CT) as an adjunct to conventional imaging (CI) in the management of nasopharyngeal cancer (NPC) both for initial staging and assessment of post-treatment response. Methods: All NPC cases referred to the Peter MacCallum Centre for Metabolic Imaging between January 2002 and December 2007 were identified, In patients undergoing initial staging, any differences between the pre PET/CT management plan based on CI and that following performance of the PET/CT scan were noted. Clinical impact was scored using the Centre's published criteria: 'high' if PET /CT changed the primary treatment modality or intent, 'medium' if treatment modality was unchanged but the radiotherapy technique or dose was altered, and 'low' if there was no change in treatment modality or intent. Patients undergoing PET/CT following definitive treatment were scored according to whether or not they achieved a complete metabolic response. Results: Forty-eight patients underwent a staging PET/CT. The clinical impact was high in 8%, medium in 25% and low in 66% of patients. Twenty-one patients were scanned for post-treatment response. PET/CT was less frequently equivocal than MRI (3 vs 8/21). A complete metabolic response on PET /CT was associated with a 93% negative predictive value for subsequent recurrence. Conclusion: PET /CT is a valuable staging tool for the detection of occult metastatic disease and defining the extent of neck nodal disease, Pos treatment, a complete metabolic response on PET /CT has a very high negative predictive value with fewer equivocal results than MRI.

  8. Performance of integrated FDG-PET/contrast-enhanced CT in the staging and restaging of colorectal cancer: Comparison with PET and enhanced CT

    International Nuclear Information System (INIS)

    Dirisamer, Albert; Halpern, Benjamin S.; Floery, Daniel; Wolf, Florian; Beheshti, Mohsen; Mayerhoefer, Marius E.; Langsteger, Werner

    2010-01-01

    Objective: The purpose of this study was to assess the diagnostic value of PET/CT as a one step examination in patients with colorectal cancer. Therefore we proved whether diagnostic PET/CT adds information over PET or contrast-enhanced CT alone for staging or restaging of patients with colorectal cancer. Methods: Seventy-three patients (46 males and 27 females; age range: 50-81 years; mean age: 67 years) with known colorectal cancer underwent 18F-FDG-PET/CT for staging or restaging. Results: Of the 73 patients 26 patients underwent PET/CT for staging and 47 for restaging. 266 metastases could be detected in 60 patients. Contrast-enhanced PET/CT had a lesion-based sensitivity of 100%, contrast-enhanced CT of 91% and PET of 85%. PET/CT identified 2 lesions as false positive. PET/CT could also reach a patient-based sensitivity of 100%, which was superior to contrast-enhanced CT and PET. Conclusion: Our study clearly demonstrated the added value of contrast-enhanced PET/CT in staging and restaging patients with colorectal cancer over CT and PET alone.

  9. Estimation of absorbed dose of radiosensitive organs and effective sose in patients underwent abdominopelvic spiral CT scan using impact CT patient dosimetry

    Directory of Open Access Journals (Sweden)

    Ayoub Amirnia

    2017-05-01

    Full Text Available Background: Due to the presence of radiosensitive organs in the abdominopelvic region and increasing the number of requests for CT scan examinations, concerns about increasing radiation doses in patients has been greatly elevated. Therefore, the goal of this study was to determine the absorbed dose of radiosensitive organs and the effective dose in patients underwent abdominopelvic CT scan using ImPACT CT patient dosimetry Calculator (version 1.0.4, Imaging Performance Assessment on Computed Tomography, www.impactscan.org. Methods: This prospective cross-sectional study was conducted in Imam Reza Hospital from November to February 2015 February 2015 in the Imam Reza Hospital, in Urmia, Iran. The demographic and dosimetric information of 100 patients who underwent abdominopelvic CT scan in a 6-slice CT scanner were obtained through the data collection forms. The demographic data of the patients included age, weight, gender, and BMI. The dosimetric parameters included pitch value, CT dose volume index (CTDIvol, dose-length product (DLP, tube voltage, tube current, exposure time, collimation size, scan length, and scan time. To determine the absorbed dose of radiosensitive organs and also the effective dose in patients, ImPACT CT patient dosimetry calculator was used. Results: The results of this study demonstrated that the mean and standard deviation (SD of patients' effective dose in abdominopelvic CT scan was 4.927±0.164 mSv. The bladder in both genders had the greatest mean organ dose, which was 64.71±17.15 mGy for men and 77.56±18.48 mGy for women (P<0.001. Conclusion: The effective dose values of this examination are in the same range as previous studies, as well as International Commission on Radiological Protection (ICRP recommendations. However, the radiation dose from CT scan has the largest contribution to the medical imaging. According to the ALARA principle, it is recommended that the scan parameters, especially mAs, should be

  10. Influence of scan duration on the accuracy of {beta}-amyloid PET with florbetaben in patients with Alzheimer's disease and healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Tiepolt, Solveig; Barthel, Henryk; Butzke, Daniel; Hesse, Swen; Patt, Marianne; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Gertz, Hermann-Josef [University of Leipzig, Department of Psychiatry, Leipzig (Germany); Reininger, Cornelia [Bayer Pharma AG, Global Clinical Development, Berlin (Germany)

    2013-02-15

    Florbetaben is a {beta}-amyloid-targeted PET tracer with significant potential for augmenting the toolbox in the clinical diagnosis of Alzheimer's disease (AD). In dementia imaging, shortening of scan duration may simplify future clinical use. The aim of this retrospective study was to investigate the effect of scan duration on diagnostic accuracy. PET scans obtained from 25 AD patients and 25 healthy volunteers (HVs) were analysed. In each subject, scans of three different durations (5, 10 and 20 min; all starting 90 min after injection) were obtained, randomized, and visually assessed by three experts blinded to the subject's identity and group affiliation. Presence/absence of {beta}-amyloid and diagnostic confidence (0-100 %) were scored, and 10 % of the scans were re-read. Further, randomly selected datasets of ten AD patients and ten HVs were quantified using an established VOI-based approach and using a voxel-based approach. The sensitivity and specificity of the blinded read were 80 % and 96 %, respectively, for all scan durations. Diagnostic confidence was high (97 {+-} 6 %, 97 {+-} 6 % and 95 {+-} 8 % for the 20-min, 10-min and 5-min scans, respectively; n.s.), as was interreader agreement (kappa{sub 20} {sub min} = 0.94, kappa{sub 10} {sub min} = 0.94, kappa{sub 5} {sub min} = 0.89; n.s.). Intrareader agreement was highest for the 20-min scan (kappa = 1.00) and lower for the 10-min scan (kappa = 0.71) and 5-min scan (kappa = 0.80; p = 0.002 and 0.003 vs. the 20-min scan). For all scan durations, composite SUVRs (Cohen's d effect size 4.5, 3.9 and 4.8 for the 5-min, 10-min and 20-min scans; p < 0.0001 each) and individual brain volumes affected by {beta}-amyloid (Cohen's d effect size 1.6, 1.8 and 2.0 for the 5-min, 10-min and 20-min scans; p < 0.005 each) were significantly higher in AD patients than in HVs. Reduction in scan duration did not relevantly affect the accuracy of florbetaben PET scans in discriminating between AD patients

  11. PET/CT imaging in head and neck tumors

    International Nuclear Information System (INIS)

    Roedel, R.; Palmedo, H.; Reichmann, K.; Reinhardt, M.J.; Biersack, H.J.; Straehler-Pohl, H.J.; Jaeger, U.

    2004-01-01

    To evaluate the usefulness of combined PET/CT examinations for detection of malignant tumors and their metastases in head and neck oncology. 51 patients received whole body scans on a dual modality PET/CT system. CT was performed without i.v. contrast. The results were compared concerning the diagnostic impact of native CT scan on FDG-PET images and the additional value of fused imaging. From 153 lesions were 97 classified as malignant on CT and 136 on FDG/PET images, as suspicious for malignancy in 33 on CT and 7 on FDG-PET and as benign in 23 on CT and 10 on FDG-PET. With combined PET/CT all primary and recurrent tumors could be found, the detection rate in patients with unknown primary tumors was 45%. Compared to PET or CT alone the sensitivity, specifity and accuracy could be significantly improved by means of combined PET/CT. Fused PET/CT imaging with [F18]-FDG and native CT-scanning enables accurate diagnosis in 93% of lesions and 90% of patients with head and neck oncology. (orig.) [de

  12. Pilot Study for the Prediction of Response to Radiotherapy Using [18F]Fluorothymidine PET in Nasopharyngeal Cancer: Comparison with [18F]FDG PET

    International Nuclear Information System (INIS)

    Baek, So Ra; Chae, Sun Young; Kim, Hye Ok; Lee, Sang Wook; Oh, Seung Jun; Im, Ki Chun; Moon, Dae Hyuk; Kim, Jae Seung; Ryu, Jin Sook

    2009-01-01

    This study was performed to know whether [ 18 F]Fluorothymidine (FLT) positron emission tomography (PET) can be used to monitor early response to radiotherapy in comparison with [ 18 F]Fluorodeoxyglucose (FDG) PET, and to establish the optimal imaging time for prediction of therapy response. Two patients with nasopharyngeal cancer underwent serial FLT PET and FDG PET before and during radiotherapy. Three on-treatment FLT and FDG PET scans were performed on 1 week, 2 weeks and 3 weeks (at each time of 10 Gy, 20 Gy and 30 Gy delivered). The peak standardized uptake values (SUV peak ) of primary tumors were measured on FLT and FDG PET. Then, percent changes of SUV peak after therapy were calculated. In two patients, baseline values of SUV peak on FDT PET were higher than those on FLT PET (FLT vs FDG; 3.7 vs 5.0, and 5.7 vs 15.0). In patient 1, FLT SUV peak showed 78%, 78% and 84% of decrease on 1 week, 2 and 3 weeks after treatment, whereas FDG SUV peak showed 18%, 52% and 66% of decrease, respectively. In patient 2, FLT SUV peak showed 75%, 75% and 68% of decrease, whereas FDG SUV peak showed 51%, 49% and 58% of decrease, respectively. Both patients reached to complete remission after radiotherapy. After radiotherapy, the decrease of FLT tumor uptake preceded the decrease of FDG tumor uptake in patients with nasopharyngeal cancer, and 1 week after therapy may be appropriate time for the assessment of early response. FLT PET might be more useful than FDG PET for monitoring early response to radiotherapy

  13. Spectrum of neurocognitive dysfunction in Indian population on FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Sharma, Rajnish; Tripathi, Madhavi; D’Souza, Maria M; Jaimini, Abhinav; Varshney, Raunak; Panwar, Puja; Kaushik, Aruna; Saw, Sanjeev; Seher, Romana; Pandey, Santosh; Singh, Dinesh; Solanki, Yachna; Mishra, Anil K; Mondal, Anupam; Tripathi, RP

    2011-01-01

    A variety of neurodegenerative disorders produce significant abnormal brain function which can be detected using fluorodeoxyglucose positron emission tomography (FDG PET) scan even when structural changes are not detected on CT or MRI Scan. A study was undertaken at our institute to evaluate the FDG PET/CT findings in Indian population suffering from mild cognitive impairment (MCI), Alzheimer's disease (AD), fronto-temporal dementia (FTD), dementia with lewy body disease (DLBD) and other miscellaneous causes of dementia. 117 subjects having neurocognitive deficits and 36 normals were included in our study. All patients underwent a detailed history and clinical examination. This was followed by a mini mental state examination. Subsequently an FDG brain PET scan and an MRI were done. In the patient population included in our study group 36 were normal, 39 had MCI, 40 had AD, 14 had FTD, and 13 had DLBD and 11 dementia due to other miscellaneous causes. MCI patients showed primarily reduced tracer uptake in the mesio-temporal cortex. AD patients showed reduced tracer concentration in temporo-parietal lobes, while patients with advanced diseases showed frontal lobe disease additionally. In subjects of FTD, reduced radiotracer uptake in the fronto-temporal lobes was noted. In addition, FTD patients also showed basal ganglia defects. In contrast the DLBD patients showed globally reduced FDG uptake including severely affecting the occipital cortices. In the current study the F18-FDG PET scans have been shown to be highly useful in the diagnosis of various neurocognitive disorders of the brain. AD was found to be the most common dementia in the Indian population followed by MCI. Diffuse Lewy body disease, FTD and other miscellaneous categories of dementia had a near similar incidence

  14. FDG-PET/CT in the evaluation of anal carcinoma

    International Nuclear Information System (INIS)

    Cotter, Shane E.; Grigsby, Perry W.; Siegel, Barry A.

    2006-01-01

    Purpose: Surgical staging and treatment of anal carcinoma has been replaced by noninvasive staging studies and combined modality therapy. In this study, we compare computed tomography (CT) and physical examination to [ 18 F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography (FDG-PET/CT) in the staging of carcinoma of the anal canal, with special emphasis on determination of spread to inguinal lymph nodes. Methods and Materials: Between July 2003 and July 2005, 41 consecutive patients with biopsy-proved anal carcinoma underwent a complete staging evaluation including physical examination, CT, and 2-FDG-PET/CT. Patients ranged in age from 30 to 89 years. Nine men were HIV-positive. Treatment was with standard Nigro regimen. Results: [ 18 F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography (FDG-PET/CT) detected 91% of nonexcised primary tumors, whereas CT visualized 59%. FDG-PET/CT detected abnormal uptake in pelvic nodes of 5 patients with normal pelvic CT scans. FDG-PET/CT detected abnormal nodes in 20% of groins that were normal by CT, and in 23% without abnormality on physical examination. Furthermore, 17% of groins negative by both CT and physical examination showed abnormal uptake on FDG-PET/CT. HIV-positive patients had an increased frequency of PET-positive lymph nodes. Conclusion: [ 18 F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography detects the primary tumor more often than CT. FDG-PET/CT detects substantially more abnormal inguinal lymph nodes than are identified by standard clinical staging with CT and physical examination

  15. Clinical usefulness of PET in the management of oral cancer. Comparison between FDG-PET and MET-PET

    International Nuclear Information System (INIS)

    Kitagawa, Yoshimasa; Saitoh, Masaaki; Nakamura, Mikiko

    2007-01-01

    Inductive chemoradiotherapy has played an important role in preserving organs and functions in patients with oral squamous cell carcinoma (SCC). To determine whether a reduced form of surgery should be performed after chemoradiotherapy, accurate evaluation of residual tumor cells is essential. We investigated the clinical value of positron emission tomography with 18 F labeled fluorodeoxyglucose (FDG-PET) in the management of oral SCCs. Forty-five patients underwent two FDG-PET studies, one prior to and one at 6 weeks after the chemoradiotherapy. Pretreatment FDG-PET was useful in predicting the response to treatment. Posttreatment FDG-PET could evaluate residual viable cells and prognosis. Organ preservation may be feasible based on PET evaluation. Hence FDG-PET is a valuable tool in the treatment of oral cancer. 11 C-Methionine (MET) is another promising tracer for PET that can be used to assess metabolic demand for amino acids in cancer cells. A MET-PET and FDG-PET study was performed during the same period to investigate diagnostic accuracy in 40 oral malignancies. Sensitivity and positive predictive value of MET-PET were 95% and 100%, respectively, and were comparable with those of FDG-PET. Further study is required to determine the diagnostic significance of MET-PET in evaluating response to chemoradiotherapy. (author)

  16. Influence of scanning time window on the binding potentials of dopamine transporter in the brain of healthy volunteers with 11C-CFT PET imaging

    International Nuclear Information System (INIS)

    Qiu Chun; Zuo Chuantao; Zhang Zhengwei; Wu Ping; Zhang Huiwei; Guan Yihui

    2013-01-01

    Objective: To find the optimal scanning time window and then set up the normal binding potentials (BPs) of 2β-carbomethoxy-3β-(4-fluorophenyl)-(N- 11 C-methyl) tropane ( 11 C-CFT) DAT PET/CT imaging. Methods: Thirty-one healthy volunteers (20 males, 11 females, average age: (55.7±2.3) years), who all gave written informed consent, were divided into three age and gender-matched groups according to block randomization. Each group underwent static PET/CT scan in different time windows from 40-60 min, 60-80 min to 80-100 min after 11 C-CFT injection. To determine the best scanning time window, the ratios of caudate and putamen of all volunteers were analyzed using automatic ROI method (caudate (putamen)/parieto-occipital cotex-1) and compared by one-way analysis of variance and the least significant difference (LSD) t test. The ratio of the same area between different age-groups and gender-groups was compared with independent two-sample t test. Results: Ratios of left caudate (2.08±0.06, 1.75±0.07 and 1.77±0.12 respectively), right anterior putamen (2.33±0.06, 1.95±0.09 and 2.08±0.12 respectively) and bilateral posterior putamen (left: 1.88±0.66, 1.55±0.88 and 1.72±0.09; right: 1.98±0.07, 1.61±0.09 and 1.69±0.12) were all different in three time windows (F=3.588, 3.345, 4.479, 3.557, all P<0.05). There were significant differences in ratios of left caudate, right anterior and bilateral posterior putamen between 40-60 min and the 60-80 min (all P<0.05), as well as the ratios of left caudate between 40-60 min and the 80-100 min group (P<0.05). While no valid differences in ratios of those areas were shown between the groups of 60-80 min and 80-100 min scanning time window (all P>0.05). DAT densities in right and left side of caudate, anterior and posterior putamen were significantly lower in the group over 60 years of age than those under 60 years (t=-3.260, -3.090, -3.270, -3.190, -2.270, -3.110, all P<0.05), but were not different between gender

  17. Non-small-cell lung cancer resectability: diagnostic value of PET/MR

    International Nuclear Information System (INIS)

    Fraioli, Francesco; Menezes, Leon; Kayani, Irfan; Syed, Rizwan; O'Meara, Celia; Barnes, Anna; Bomanji, Jamshed B.; Punwani, Shonit; Groves, Ashley M.; Screaton, Nicholas J.; Janes, Samuel M.; Win, Thida; Zaccagna, Fulvio

    2015-01-01

    To assess the diagnostic performance of PET/MR in patients with non-small-cell lung cancer. Fifty consecutive consenting patients who underwent routine 18 F-FDG PET/CT for potentially radically treatable lung cancer following a staging CT scan were recruited for PET/MR imaging on the same day. Two experienced readers, unaware of the results with the other modalities, interpreted the PET/MR images independently. Discordances were resolved in consensus. PET/MR TNM staging was compared to surgical staging from thoracotomy as the reference standard in 33 patients. In the remaining 17 nonsurgical patients, TNM was determined based on histology from biopsy, imaging results (CT and PET/CT) and follow-up. ROC curve analysis was used to assess accuracy, sensitivity and specificity of the PET/MR in assessing the surgical resectability of primary tumour. The kappa statistic was used to assess interobserver agreement in the PET/MR TNM staging. Two different readers, without knowledge of the PET/MR findings, subsequently separately reviewed the PET/CT images for TNM staging. The generalized kappa statistic was used to determine intermodality agreement between PET/CT and PET/MR for TNM staging. ROC curve analysis showed that PET/MR had a specificity of 92.3 % and a sensitivity of 97.3 % in the determination of resectability with an AUC of 0.95. Interobserver agreement in PET/MR reading ranged from substantial to perfect between the two readers (Cohen's kappa 0.646 - 1) for T stage, N stage and M stage. Intermodality agreement between PET/CT and PET/MR ranged from substantial to almost perfect for T stage, N stage and M stage (Cohen's kappa 0.627 - 0.823). In lung cancer patients PET/MR appears to be a robust technique for preoperative staging. (orig.)

  18. Automatic Extraction of Myocardial Mass and Volume Using Parametric Images from Dynamic Nongated PET.

    Science.gov (United States)

    Harms, Hendrik Johannes; Stubkjær Hansson, Nils Henrik; Tolbod, Lars Poulsen; Kim, Won Yong; Jakobsen, Steen; Bouchelouche, Kirsten; Wiggers, Henrik; Frøkiaer, Jørgen; Sörensen, Jens

    2016-09-01

    Dynamic cardiac PET is used to quantify molecular processes in vivo. However, measurements of left ventricular (LV) mass and volume require electrocardiogram-gated PET data. The aim of this study was to explore the feasibility of measuring LV geometry using nongated dynamic cardiac PET. Thirty-five patients with aortic-valve stenosis and 10 healthy controls underwent a 27-min (11)C-acetate PET/CT scan and cardiac MRI (CMR). The controls were scanned twice to assess repeatability. Parametric images of uptake rate K1 and the blood pool were generated from nongated dynamic data. Using software-based structure recognition, the LV wall was automatically segmented from K1 images to derive functional assessments of LV mass (mLV) and wall thickness. End-systolic and end-diastolic volumes were calculated using blood pool images and applied to obtain stroke volume and LV ejection fraction (LVEF). PET measurements were compared with CMR. High, linear correlations were found for LV mass (r = 0.95), end-systolic volume (r = 0.93), and end-diastolic volume (r = 0.90), and slightly lower correlations were found for stroke volume (r = 0.74), LVEF (r = 0.81), and thickness (r = 0.78). Bland-Altman analyses showed significant differences for mLV and thickness only and an overestimation for LVEF at lower values. Intra- and interobserver correlations were greater than 0.95 for all PET measurements. PET repeatability accuracy in the controls was comparable to CMR. LV mass and volume are accurately and automatically generated from dynamic (11)C-acetate PET without electrocardiogram gating. This method can be incorporated in a standard routine without any additional workload and can, in theory, be extended to other PET tracers. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. Is Necessary Attenuation Correction for Cat Brain PET?

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Jae Sung; Park, Min Hyun; Im, Ki Chun; Oh, Seung Ha; Lee, Dong Soo; Moon, Dae Hyuk

    2007-01-01

    Photon attenuation and scatter corrections (AC and SC) were necessary for quantification of human PET. However, there is no consensus on whether AC and SC are necessary for the cat brain PET imaging. Since post-injection transmission (TX) PET scans are not permitted or provided to microPET scanner users at present, additional time for performing TX scan and awaiting FDG uptake is required for attenuation and scatter corrections. Increasing probability of subject movement and possible biological effect of long term anesthesia would be the problem in additional TX scan. The aim of this study was to examine the effect of AC and SC for the quantification of cat brain PET data

  20. The clinical utility of FDG PET/CT among solid organ transplant recipients suspected of malignancy or infection

    Energy Technology Data Exchange (ETDEWEB)

    Wareham, Neval E.; Lundgren, J.D. [Rigshospitalet, Centre for Health and Infectious Disease Research (CHIP), Department of Infectious Diseases, Copenhagen (Denmark); Cunha-Bang, C. da; Sengeloev, H. [Rigshospitalet, Department of Haematology, Copenhagen (Denmark); Gustafsson, F.; Iversen, M. [Rigshospitalet, Department of Cardiology, Copenhagen (Denmark); Johannesen, H.H.; Kjaer, A.; Fischer, B.M. [Rigshospitalet, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen (Denmark); Rasmussen, A. [Rigshospitalet, Department of Surgical Gastroenterology, Copenhagen (Denmark); Soerensen, S.S. [Rigshospitalet, Department of Nephrology, Copenhagen (Denmark)

    2017-03-15

    Solid organ transplant (SOT) recipients are at high risk of developing infections and malignancies. {sup 18}F-FDG PET/CT may enable timely detection of these diseases and help to ensure early intervention. We aimed to describe the clinical utility of FDG PET/CT in consecutive, diagnostic unresolved SOT recipients transplanted from January 2004 to May 2015. Recipients with a post-transplant FDG PET/CT performed as part of diagnostic work-up were included. Detailed chart reviews were done to extract relevant clinical information and determine the final diagnosis related to the FDG PET/CT. Based on a priori defined criteria and the final diagnosis, results from each scan were classified as true or false, and diagnostic values determined. Among the 1,814 recipients in the cohort, 145 had an FDG PET/CT performed; 122 under the indication of diagnostically unresolved symptoms with a suspicion of malignancy or infection. The remaining (N = 23) had an FDG PET/CT to follow-up on a known disease or to stage a known malignancy. The 122 recipients underwent a total of 133 FDG PET/CT scans performed for a suspected malignancy (66 %) or an infection (34 %). Sensitivity, specificity, and positive and negative predictive values of the FDG PET/CT in diagnosing these conditions were 97, 84, 87, and 96 %, respectively. FDG PET/CT is an accurate diagnostic tool for the work-up of diagnostic unresolved SOT recipients suspected of malignancy or infection. The high sensitivity and NPV underlines the potential usefulness of PET/CT for excluding malignancy or focal infections in this often complex clinical situation. (orig.)

  1. Scanning multiple mice in a small-animal PET scanner: Influence on image quality

    International Nuclear Information System (INIS)

    Siepel, Francoise J.; Lier, Monique G.J.T.B. van; Chen Mu; Disselhorst, Jonathan A.; Meeuwis, Antoi P.W.; Oyen, Wim J.G.; Boerman, Otto C.; Visser, Eric P.

    2010-01-01

    To achieve high throughput in small-animal positron emission tomography (PET), it may be advantageous to scan more than one animal in the scanner's field of view (FOV) at the same time. However, due to the additional activity and increase of Poisson noise, additional attenuating mass, extra photon scattering, and radial or axial displacement of the animals, a deterioration of image quality can be expected. In this study, the NEMA NU 4-2008 image quality (NU4IQ) phantom and up to three FDG-filled cylindrical 'mouse phantoms' were positioned in the FOV of the Siemens Inveon small-animal PET scanner to simulate scans with multiple mice. Five geometrical configurations were examined. In one configuration, the NU4IQ phantom was scanned separately and placed in the center of the FOV (1C). In two configurations, a mouse phantom was added with both phantoms displaced radially (2R) or axially (2A). In two other configurations, the NU4IQ phantom was scanned along with three mouse phantoms with all phantoms displaced radially (4R), or in a combination of radial and axial displacement (2R2A). Images were reconstructed using ordered subset expectation maximization in 2 dimensions (OSEM2D) and maximum a posteriori (MAP) reconstruction. Image quality parameters were obtained according to the NEMA NU 4-2008 guidelines. Optimum image quality was obtained for the 1C geometry. Image noise increased by the addition of phantoms and was the largest for the 4R configuration. Spatial resolution, reflected in the recovery coefficients for the FDG-filled rods, deteriorated by radial displacement of the NU4IQ phantom (2R, 2R2A, and 4R), most strongly for OSEM2D, and to a smaller extent for MAP reconstructions. Photon scatter, as indicated by the spill-over ratios in the non-radioactive water- and air-filled compartments, increased by the addition of phantoms, most strongly for the 4R configuration. Application of scatter correction substantially lowered the spill-over ratios, but caused an

  2. {sup 89}Zr-Onartuzumab PET imaging of c-MET receptor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pool, Martin; Kol, Arjan; Giesen, Danique; Vries, Elisabeth G.E. de [University of Groningen, Department of Medical Oncology, University Medical Center Groningen, Groningen (Netherlands); Terwisscha van Scheltinga, Anton G.T. [University of Groningen, Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen (Netherlands); Lub-de Hooge, Marjolijn N. [University of Groningen, Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen (Netherlands); University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands)

    2017-08-15

    c-MET and its ligand hepatocyte growth factor are often dysregulated in human cancers. Dynamic changes in c-MET expression occur and might predict drug efficacy or emergence of resistance. Noninvasive visualization of c-MET dynamics could therefore potentially guide c-MET-directed therapies. We investigated the feasibility of {sup 89}Zr-labelled one-armed c-MET antibody onartuzumab PET for detecting relevant changes in c-MET levels induced by c-MET-mediated epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib resistance or heat shock protein-90 (HSP90) inhibitor NVP-AUY-922 treatment in human non-small-cell lung cancer (NSCLC) xenografts. In vitro membrane c-MET levels were determined by flow cytometry. HCC827ErlRes, an erlotinib-resistant clone with c-MET upregulation, was generated from the exon-19 EGFR-mutant human NSCLC cell line HCC827. Mice bearing HCC827 and HCC827ErlRes tumours in opposite flanks underwent {sup 89}Zr-onartuzumab PET scans. The HCC827-xenografted mice underwent {sup 89}Zr-onartuzumab PET scans before treatment and while receiving biweekly intraperitoneal injections of 100 mg/kg NVP-AUY-922 or vehicle. Ex vivo, tumour c-MET immunohistochemistry was correlated with the imaging results. In vitro, membrane c-MET was upregulated in HCC827ErlRes tumours by 213 ± 44% in relation to the level in HCC827 tumours, while c-MET was downregulated by 69 ± 9% in HCC827 tumours following treatment with NVP-AUY-922. In vivo, {sup 89}Zr-onartuzumab uptake was 26% higher (P < 0.05) in erlotinib-resistant HCC827ErlRes than in HCC827 xenografts, while HCC827 tumour uptake was 33% lower (P < 0.001) following NVP-AUY-922 treatment. The results show that {sup 89}Zr-onartuzumab PET effectively discriminates relevant changes in c-MET levels and could potentially be used clinically to monitor c-MET status. (orig.)

  3. Feasibility of simultaneous PET/MR of the carotid artery: first clinical experience and comparison to PET/CT

    DEFF Research Database (Denmark)

    Ripa, Rasmus Sejersten; Knudsen, Andreas; Hag, Anne Mette Fisker

    2013-01-01

    The study aimed at comparing PET/MR to PET/CT for imaging the carotid arteries in patients with known increased risk of atherosclerosis. Six HIV-positive men underwent sequential PET/MR and PET/CT of the carotid arteries after injection of 400 MBq of 18F-FDG. PET/MR was performed a median of 131......) indicating that the luminal 18F-FDG content had minimal influence on the values. The study shows for the first time that simultaneous PET/MR of the carotid arteries is feasible in patients with increased risk of atherosclerosis. Quantification of 18F-FDG uptake correlated well between PET/MR and PET...

  4. Optimization of input parameters of supra-threshold stochastic resonance image processing algorithm for the detection of abdomino-pelvic tumors on PET/CT scan

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Saroha, Kartik; Patel, C.D.; Bal, C.S.; Kumar, Rakesh

    2016-01-01

    Administration of diuretics increases the urine output to clear radioactive urine from kidneys and bladder. Hence post-diuretic pelvic PET/CT scan enhances the probability of detection of abdomino-pelvic tumor. However, it causes discomfort in patients and has some side effects also. Application of supra threshold stochastic resonance (SSR) image processing algorithm on Pre-diuretic PET/CT scan may also increase the probability of detection of these tumors. Amount of noise and threshold are two variable parameters that effect the final image quality. This study was conducted to investigate the effect of these two variable parameters on the detection of abdomen-pelvic tumor

  5. Indeterminate findings on oncologic PET/CT: What difference dose PET/MRI make?

    Energy Technology Data Exchange (ETDEWEB)

    Fraum, Tyler J.; Fowler, Kathryn J.; McConathy, Jonathan; Dehdashti, Farokh [Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis (United States)

    2016-12-15

    Positron emission tomography/computed tomography (PET/CT) with 2-deoxy-2-[{sup 18}F]fluoro-D-glucose (FDG) has become the standard of care for the initial staging and subsequent treatment response assessment of many different malignancies. Despite this success, PET/CT is often supplemented by MRI to improve assessment of local tumor invasion and to facilitate detection of lesions in organs with high background FDG uptake. Consequently, PET/MRI has the potential to expand the clinical value of PET examinations by increasing reader certainty and reducing the need for subsequent imaging. This study evaluates the ability of FDG-PET/MRI to clarify findings initially deemed indeterminate on clinical FDG-PET/CT studies. A total of 190 oncology patients underwent whole-body PET/CT, immediately followed by PET/MRI utilizing the same FDG administration. Each PET/CT was interpreted by our institution's nuclear medicine service as a standard-of-care clinical examination. Review of these PET/CT reports identified 31 patients (16 %) with indeterminate findings. Two readers evaluated all 31 PET/CT studies, followed by the corresponding PET/MRI studies. A consensus was reached for each case, and changes in interpretation directly resulting from PET/MRI review were recorded. Interpretations were then correlated with follow-up imaging, pathology results, and other diagnostic studies. In 18 of 31 cases with indeterminate findings on PET/CT, PET/MRI resulted in a more definitive interpretation by facilitating the differentiation of infection/inflammation from malignancy (15/18), the accurate localization of FDG-avid lesions (2/18), and the characterization of incidental non-FDG-avid solid organ lesions (1/18). Explanations for improved reader certainty with PET/MRI included the superior soft tissue contrast of MRI and the ability to assess cellular density with diffusion-weighted imaging. The majority (12/18) of such cases had an appropriate standard of reference; in all 12 cases

  6. Indeterminate findings on oncologic PET/CT: What difference dose PET/MRI make?

    International Nuclear Information System (INIS)

    Fraum, Tyler J.; Fowler, Kathryn J.; McConathy, Jonathan; Dehdashti, Farokh

    2016-01-01

    Positron emission tomography/computed tomography (PET/CT) with 2-deoxy-2-["1"8F]fluoro-D-glucose (FDG) has become the standard of care for the initial staging and subsequent treatment response assessment of many different malignancies. Despite this success, PET/CT is often supplemented by MRI to improve assessment of local tumor invasion and to facilitate detection of lesions in organs with high background FDG uptake. Consequently, PET/MRI has the potential to expand the clinical value of PET examinations by increasing reader certainty and reducing the need for subsequent imaging. This study evaluates the ability of FDG-PET/MRI to clarify findings initially deemed indeterminate on clinical FDG-PET/CT studies. A total of 190 oncology patients underwent whole-body PET/CT, immediately followed by PET/MRI utilizing the same FDG administration. Each PET/CT was interpreted by our institution's nuclear medicine service as a standard-of-care clinical examination. Review of these PET/CT reports identified 31 patients (16 %) with indeterminate findings. Two readers evaluated all 31 PET/CT studies, followed by the corresponding PET/MRI studies. A consensus was reached for each case, and changes in interpretation directly resulting from PET/MRI review were recorded. Interpretations were then correlated with follow-up imaging, pathology results, and other diagnostic studies. In 18 of 31 cases with indeterminate findings on PET/CT, PET/MRI resulted in a more definitive interpretation by facilitating the differentiation of infection/inflammation from malignancy (15/18), the accurate localization of FDG-avid lesions (2/18), and the characterization of incidental non-FDG-avid solid organ lesions (1/18). Explanations for improved reader certainty with PET/MRI included the superior soft tissue contrast of MRI and the ability to assess cellular density with diffusion-weighted imaging. The majority (12/18) of such cases had an appropriate standard of reference; in all 12 cases, the

  7. Comparison of standardized uptake values measured on 18F-NaF PET/CT scans using three different tube current intensities

    OpenAIRE

    Agnes Araujo Valadares; Paulo Schiavom Duarte; Eduardo Bechtloff Woellner; George Barberio Coura-Filho; Marcelo Tatit Sapienza; Carlos Alberto Buchpiguel

    2015-01-01

    Objective: To analyze standardized uptake values (SUVs) using three different tube current intensities for attenuation correction on 18FNaF PET/CT scans. Materials and Methods: A total of 254 18F-NaF PET/CT studies were analyzed using 10, 20 and 30 mAs. The SUVs were calculated in volumes of interest (VOIs) drawn on three skeletal regions, namely, right proximal humeral diaphysis (RH), right proximal femoral diaphysis (RF), and first lumbar vertebra (LV1) in a total of 712 VOIs. The analyses ...

  8. F-18 FDG Uptake in an Eosinophilic Liver Abscess Mimicking Hepatic Metastasis on PET/CT Images

    International Nuclear Information System (INIS)

    Sohn, Myung Hee; Jeong, Hwan Jeong; Lim, Seok Tae; Kim, Dong Wook; Yin, Chang Yeol

    2008-01-01

    A 61-year-old man had a F-18 FDG PET/CT scan for evaluation of a common bile duct cancer identified on CT. The PET/CT image showed a hypermetabolic mass in the common bile duct, and a focal area of increased F-18 FDG uptake in segment IV of the liver, which corresponded to a hypoattenuated lesion on non-enhanced CT, and was consistent with hepatic metastasis. The patient underwent choledochojejunostomy with hepatic resection, and pathologic findings were compatible with an eosinophilic abscess in the liver. This case demonstrates that F-18 FDG uptake by an eosinophilic abscess can mimic hepatic metastasis in a patient with a malignancy

  9. F-18 FDG Uptake in an Eosinophilic Liver Abscess Mimicking Hepatic Metastasis on PET/CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Myung Hee; Jeong, Hwan Jeong; Lim, Seok Tae; Kim, Dong Wook; Yin, Chang Yeol [Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2008-06-15

    A 61-year-old man had a F-18 FDG PET/CT scan for evaluation of a common bile duct cancer identified on CT. The PET/CT image showed a hypermetabolic mass in the common bile duct, and a focal area of increased F-18 FDG uptake in segment IV of the liver, which corresponded to a hypoattenuated lesion on non-enhanced CT, and was consistent with hepatic metastasis. The patient underwent choledochojejunostomy with hepatic resection, and pathologic findings were compatible with an eosinophilic abscess in the liver. This case demonstrates that F-18 FDG uptake by an eosinophilic abscess can mimic hepatic metastasis in a patient with a malignancy.

  10. Role of FDG-PET scan in the management of pediatric mature B cell non-Hodgkin’s lymphoma. CCHE experience

    OpenAIRE

    Abdel Rahman, Hany; Sedky, Mohamed; Hamoda, Asmaa; Raafat, Tarek; Youssef, Ayda; Omar, Walid; Hassanein, Omneya; Moussa, Emad

    2016-01-01

    Aim of work: To evaluate the sensitivity (Se), specificity (Sp), and predictive values (PV) of PET scan during management of pediatric mature B cell non-Hodgkin’s lymphoma (NHL) in comparison with conventional computed tomography (CT) scan. Patients and methods: A retrospective study enrolled on pediatric NHL patients at Children Cancer Hospital Egypt (CCHE) during the period from July 2007 to the end of June 2013. Results: For 115 pediatric patients diagnosed with mature B cell NHL, 15...

  11. Comparison of [18 F]FDG PET/CT and MRI in the diagnosis of active osteomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Demirev, Anastas; Mottaghy, Felix [University Hospital of Maastricht, Department of Nuclear Medicine, Maastricht (Netherlands); Weijers, Rene [University Hospital of Maastricht, Department of Radiology, Maastricht (Netherlands); Geurts, Jan; Walenkamp, Geert [University Hospital of Maastricht, Department of Orthopedic Surgery, Maastricht (Netherlands); Brans, Boudewijn [University Hospital of Maastricht, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Centre, Department of Nuclear Medicine, PO Box 5800, Maastricht (Netherlands)

    2014-05-15

    In diagnosing osteomyelitis (OM) both MRI and [18 F]FDG PET-CT proved to be accurate modalities. In anticipation of the advent of hybrid PET/MRI scanners we analyzed our patient group to give direction to future imaging strategies in patients with suspected OM. In this retrospective study all patients of a tertiary referral center who underwent both an MRI and a PET for the diagnosis of OM were included. The results of those scans were evaluated using patient's histology, microbiological findings, and clinical/radiological follow-up. Additionally, ROC curve analysis of the SUVmax and the SUVmax ratio on the PET scans was performed. Two imaging strategies were simulated: first MRI followed by PET, or vice versa. Twenty-seven localizations in 26 patients were included. Both MRI and PET were shown to be accurate in our patients for the qualitative detection of OM. A cut-off value for the SUVmax of 3 gave optimal results (a specificity of 90 % with a sensitivity of 88 %). The SUVmax ratio gave a worse performance. The two simulated imaging strategies showed no difference in the final diagnosis in 20 out of 27 cases. Remarkably, 6 equivocal cases were all correctly diagnosed by the second modality, i.e., PET or MRI. Both MRI and [18 F]FDG PET were accurate in diagnosing OM in a tertiary referral hospital population. Simulation of imaging strategies showed that a combined sequential strategy was optimal. It seems preferable to use MRI as a primary imaging tool for uncomplicated unifocal cases, whereas in cases with (possible) multifocal disease or a contraindication for MRI, PET is preferred. This combined sequential strategy looks promising, but needs to be confirmed in a larger prospective study. (orig.)

  12. Evaluation of ECG-gated [(11)C]acetate PET for measuring left ventricular volumes, mass, and myocardial external efficiency.

    Science.gov (United States)

    Hansson, Nils Henrik; Tolbod, Lars; Harms, Johannes; Wiggers, Henrik; Kim, Won Yong; Hansen, Esben; Zaremba, Tomas; Frøkiær, Jørgen; Jakobsen, Steen; Sørensen, Jens

    2016-08-01

    Noninvasive estimation of myocardial external efficiency (MEE) requires measurements of left ventricular (LV) oxygen consumption with [(11)C]acetate PET in addition to LV stroke volume and mass with cardiovascular magnetic resonance (CMR). Measuring LV geometry directly from ECG-gated [(11)C]acetate PET might enable MEE evaluation from a single PET scan. Therefore, we sought to establish the accuracy of measuring LV volumes, mass, and MEE directly from ECG-gated [(11)C]acetate PET. Thirty-five subjects with aortic valve stenosis underwent ECG-gated [(11)C]acetate PET and CMR. List mode PET data were rebinned into 16-bin ECG-gated uptake images before measuring LV volumes and mass using commercial software and compared to CMR. Dynamic datasets were used for calculation of mean LV oxygen consumption and MEE. LV mass, volumes, and ejection fraction measured by CMR and PET correlated strongly (r = 0.86-0.92, P PET (P PET-based MEE, corrected for bias, correlated fairly with PET/CMR-based MEE (r = 0.60, P PET-based MEE bias was strongly associated with LV wall thickness. Although analysis-related improvements in accuracy are recommended, LV geometry estimated from ECG-gated [(11)C]acetate PET correlate excellently with CMR and can indeed be used to evaluate MEE.

  13. {sup 18}F-FDG PET/CT evaluation of children and young adults with suspected spinal fusion hardware infection

    Energy Technology Data Exchange (ETDEWEB)

    Bagrosky, Brian M. [University of Colorado School of Medicine, Department of Pediatric Radiology, Children' s Hospital Colorado, 12123 E. 16th Ave., Box 125, Aurora, CO (United States); University of Colorado School of Medicine, Department of Radiology, Division of Nuclear Medicine, Aurora, CO (United States); Hayes, Kari L.; Fenton, Laura Z. [University of Colorado School of Medicine, Department of Pediatric Radiology, Children' s Hospital Colorado, 12123 E. 16th Ave., Box 125, Aurora, CO (United States); Koo, Phillip J. [University of Colorado School of Medicine, Department of Radiology, Division of Nuclear Medicine, Aurora, CO (United States)

    2013-08-15

    Evaluation of the child with spinal fusion hardware and concern for infection is challenging because of hardware artifact with standard imaging (CT and MRI) and difficult physical examination. Studies using {sup 18}F-FDG PET/CT combine the benefit of functional imaging with anatomical localization. To discuss a case series of children and young adults with spinal fusion hardware and clinical concern for hardware infection. These people underwent FDG PET/CT imaging to determine the site of infection. We performed a retrospective review of whole-body FDG PET/CT scans at a tertiary children's hospital from December 2009 to January 2012 in children and young adults with spinal hardware and suspected hardware infection. The PET/CT scan findings were correlated with pertinent clinical information including laboratory values of inflammatory markers, postoperative notes and pathology results to evaluate the diagnostic accuracy of FDG PET/CT. An exempt status for this retrospective review was approved by the Institution Review Board. Twenty-five FDG PET/CT scans were performed in 20 patients. Spinal fusion hardware infection was confirmed surgically and pathologically in six patients. The most common FDG PET/CT finding in patients with hardware infection was increased FDG uptake in the soft tissue and bone immediately adjacent to the posterior spinal fusion rods at multiple contiguous vertebral levels. Noninfectious hardware complications were diagnosed in ten patients and proved surgically in four. Alternative sources of infection were diagnosed by FDG PET/CT in seven patients (five with pneumonia, one with pyonephrosis and one with superficial wound infections). FDG PET/CT is helpful in evaluation of children and young adults with concern for spinal hardware infection. Noninfectious hardware complications and alternative sources of infection, including pneumonia and pyonephrosis, can be diagnosed. FDG PET/CT should be the first-line cross-sectional imaging study in

  14. Prospective evaluation of {sup 18}F-FACBC PET/CT and PET/MRI versus multiparametric MRI in intermediate- to high-risk prostate cancer patients (FLUCIPRO trial)

    Energy Technology Data Exchange (ETDEWEB)

    Jambor, Ivan [University of Turku, Department of Diagnostic Radiology, Turku (Finland); University of Massachusetts Medical School - Baystate, Department of Radiology, Springfield, MA (United States); Turku PET Centre, Turku (Finland); Kuisma, Anna [Turku University Hospital, Department of Oncology and Radiotherapy, Turku (Finland); Kaehkoenen, Esa; Bostroem, Peter J. [Turku University Hospital, Department of Urology, Turku (Finland); Kemppainen, Jukka [Turku PET Centre, Turku (Finland); Turku University Hospital, Department of Clinical Physiology and Nuclear Medicine, Turku (Finland); Merisaari, Harri [University of Turku, Department of Diagnostic Radiology, Turku (Finland); Turku PET Centre, Turku (Finland); University of Turku, Department of Information Technology, Turku (Finland); Eskola, Olli; Teuho, Jarmo [Turku PET Centre, Turku (Finland); Montoya Perez, Ileana [University of Turku, Department of Diagnostic Radiology, Turku (Finland); University of Turku, Department of Information Technology, Turku (Finland); Turku University Hospital, Medical Imaging Centre of Southwest Finland, Turku (Finland); Pesola, Marko [University of Turku, Department of Diagnostic Radiology, Turku (Finland); Aronen, Hannu J. [University of Turku, Department of Diagnostic Radiology, Turku (Finland); Turku University Hospital, Medical Imaging Centre of Southwest Finland, Turku (Finland); Taimen, Pekka [University of Turku and Turku University Hospital, Department of Pathology, Turku (Finland); Minn, Heikki [Turku PET Centre, Turku (Finland); Turku University Hospital, Department of Oncology and Radiotherapy, Turku (Finland)

    2018-03-15

    The purpose of this study was to evaluate {sup 18}F-FACBC PET/CT, PET/MRI, and multiparametric MRI (mpMRI) in detection of primary prostate cancer (PCa). Twenty-six men with histologically confirmed PCa underwent PET/CT immediately after injection of 369 ± 10 MBq {sup 18}F-FACBC (fluciclovine) followed by PET/MRI started 55 ± 7 min from injection. Maximum standardized uptake values (SUV{sub max}) were measured for both hybrid PET acquisitions. A separate mpMRI was acquired within a week of the PET scans. Logan plots were used to calculate volume of distribution (V{sub T}). The presence of PCa was estimated in 12 regions with radical prostatectomy findings as ground truth. For each imaging modality, area under the curve (AUC) for detection of PCa was determined to predict diagnostic performance. The clinical trial registration number is NCT02002455. In the visual analysis, 164/312 (53%) regions contained PCa, and 41 tumor foci were identified. PET/CT demonstrated the highest sensitivity at 87% while its specificity was low at 56%. The AUC of both PET/MRI and mpMRI significantly (p < 0.01) outperformed that of PET/CT while no differences were detected between PET/MRI and mpMRI. SUV{sub max} and V{sub T} of Gleason score (GS) >3 + 4 tumors were significantly (p < 0.05) higher than those for GS 3 + 3 and benign hyperplasia. A total of 442 lymph nodes were evaluable for staging, and PET/CT and PET/MRI demonstrated true-positive findings in only 1/7 patients with metastatic lymph nodes. Quantitative {sup 18}F-FACBC imaging significantly correlated with GS but failed to outperform MRI in lesion detection. {sup 18}F-FACBC may assist in targeted biopsies in the setting of hybrid imaging with MRI. (orig.)

  15. Multimodal correlation of dynamic [18F]-AV-1451 perfusion PET and neuronal hypometabolism in [18F]-FDG PET.

    Science.gov (United States)

    Hammes, Jochen; Leuwer, Isabel; Bischof, Gérard N; Drzezga, Alexander; van Eimeren, Thilo

    2017-12-01

    Cerebral glucose metabolism measured with [18F]-FDG PET is a well established marker of neuronal dysfunction in neurodegeneration. The tau-protein tracer [18F]-AV-1451 PET is currently under evaluation and shows promising results. Here, we assess the feasibility of early perfusion imaging with AV-1451 as a substite for FDG PET in assessing neuronal injury. Twenty patients with suspected neurodegeneration underwent FDG and early phase AV-1451 PET imaging. Ten one-minute timeframes were acquired after application of 200 MBq AV-1451. FDG images were acquired on a different date according to clinical protocol. Early AV-1451 timeframes were coregistered to individual FDG-scans and spatially normalized. Voxel-wise intermodal correlations were calculated on within-subject level for every possible time window. The window with highest pooled correlation was considered optimal. Z-transformed deviation maps (ZMs) were created from both FDG and early AV-1451 images, comparing against FDG images of healthy controls. Regional patterns and extent of perfusion deficits were highly comparable to metabolic deficits. Best results were observed in a time window from 60 to 360 s (r = 0.86). Correlation strength ranged from r = 0.96 (subcortical gray matter) to 0.83 (frontal lobe) in regional analysis. ZMs of early AV-1451 and FDG images were highly similar. Perfusion imaging with AV-1451 is a valid biomarker for assessment of neuronal dysfunction in neurodegenerative diseases. Radiation exposure and complexity of the diagnostic workup could be reduced significantly by routine acquisition of early AV-1451 images, sparing additional FDG PET.

  16. Multimodal correlation of dynamic [18F]-AV-1451 perfusion PET and neuronal hypometabolism in [18F]-FDG PET

    International Nuclear Information System (INIS)

    Hammes, Jochen; Leuwer, Isabel; Bischof, Gerard N.; Drzezga, Alexander; Eimeren, Thilo van

    2017-01-01

    Cerebral glucose metabolism measured with [18F]-FDG PET is a well established marker of neuronal dysfunction in neurodegeneration. The tau-protein tracer [18F]-AV-1451 PET is currently under evaluation and shows promising results. Here, we assess the feasibility of early perfusion imaging with AV-1451 as a substite for FDG PET in assessing neuronal injury. Twenty patients with suspected neurodegeneration underwent FDG and early phase AV-1451 PET imaging. Ten one-minute timeframes were acquired after application of 200 MBq AV-1451. FDG images were acquired on a different date according to clinical protocol. Early AV-1451 timeframes were coregistered to individual FDG-scans and spatially normalized. Voxel-wise intermodal correlations were calculated on within-subject level for every possible time window. The window with highest pooled correlation was considered optimal. Z-transformed deviation maps (ZMs) were created from both FDG and early AV-1451 images, comparing against FDG images of healthy controls. Regional patterns and extent of perfusion deficits were highly comparable to metabolic deficits. Best results were observed in a time window from 60 to 360 s (r = 0.86). Correlation strength ranged from r = 0.96 (subcortical gray matter) to 0.83 (frontal lobe) in regional analysis. ZMs of early AV-1451 and FDG images were highly similar. Perfusion imaging with AV-1451 is a valid biomarker for assessment of neuronal dysfunction in neurodegenerative diseases. Radiation exposure and complexity of the diagnostic workup could be reduced significantly by routine acquisition of early AV-1451 images, sparing additional FDG PET. (orig.)

  17. Unexpected finding of elevated glucose uptake in fibrous dysplasia mimicking malignancy: contradicting metabolism and morphology in combined PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Stegger, Lars; Weckesser, Matthias [University Hospital of Muenster, Department of Nuclear Medicine (Germany); Juergens, Kai U.; Wormanns, Dag [University Hospital of Muenster, Department of Clinical Radiology (Germany); Kliesch, Sabine [University Hospital of Muenster, Department of Urology (Germany)

    2007-07-15

    Fibrous dysplasia is a common benign disorder of bone in which fibro-osseous tissue replaces bone spongiosa. Lesions have a typical appearance on computed tomography (CT) images and regularly show a markedly increased uptake in bone scintigraphy using {sup 99m}Tc-labelled methylene diphosphonate ({sup 99m}Tc-MDP) as radiotracer. The glucose avidity of these lesions depicted by positron emission tomography (PET) using the radiolabelled glucose derivative {sup 18}F-fluoro-2-deoxy-glucose (FDG) is less well known since FDG-PET does not have a role in the assessment of this disease. However, single cases have been reported in which fibrous dysplasia was present in patients undergoing FDG-PET scanning for oncological reasons, and no significant FDG uptake was observed for lesions identified as fibrous dysplasia. We report on a 24-year-old man with known fibrous dysplasia who underwent combined FDG-PET/CT scanning because of suspected recurrence of testicular cancer. In contrast to prior reports, a markedly elevated uptake of FDG was seen in numerous locations that were identified as fibrous dysplasia by CT. Based on this result, we conclude that fibrous dysplasia may mimick malignancy in FDG-PET and that coregistered CT may help to resolve these equivocal findings. (orig.)

  18. Evaluation of pulmonary lesions with 18FDG CoDo PET: comparison with CT, MRI and clinical findings

    International Nuclear Information System (INIS)

    Kim, Su Zy; Park, Chan Hee; Han, Myung Ho; Hwang, Sung Chul; Lee, Chul Joo; Pai, Moon Sun

    1998-01-01

    Dual-head gamma camera coincidence (PET) is one of the recent approaches to overcome the problems of the dedicated PET scans such as high cost and limited availability. The purpose of this study was to evaluate the accuracy of 18 FDG coincidence detection (CoDe) PET in differentiating benign from malignant lesions and staging malignancy. Thirty-one patients with pulmonary lesions underwent 18 FDG CoDe PET. Patients were prepared for the study by overnight fasting. The images were acquired at about 1 hr postinjection of 3-10 mCi 18 FDG intravenously using dual head gamma camera (Elscint, Varicam) equipped with 5/8 inch thick NaI crystal. The images were analyzed visually. Pathologic proof of diagnosis was obtained by aspiration biopsy in 24 patients and by operation in 7 patients. Among 25 patients with pathologically proven malignant lesions ( 11 adenocarcinoma, 3 non-small cell lung cancer, 5 squamous cell cancer, 4 small cell lung cancer, 1 invasive thymoma and 1 adenosquamous cell cancer), 18 FDG CoDe PET could not detect only 1 lesion which was adenocarcinoma of less than 1 cm in size. In seven patients underwent lobectomy, 6 CoDe PET studies agreed with pathologic results. Whereas only 3 of 7 patients CT findings agreed with pathologic findings. However, 6 patients with benign lesions also showed positive FDG uptake. The false positive pathologies were due to tuberculosis, pneumonia, and granulomatous changes due to silicosis. 18 FDG CoDe PET was sensitive in the evaluation of lung lesions but was not specific for malignancy. 18 FDG CoDe PET was more sensitive than CT in nodal staging in limited number of patients studied thus far

  19. Early response of patients undergoing concurrent chemoradiotherapy for cervical cancer. A comparison of PET/CT and MRI

    International Nuclear Information System (INIS)

    Lee, Jeong-Eun; Huh, Seung-Jae; Nam, Heerim; Ju, Sang-Gyu

    2013-01-01

    The objective of this study was to investigate the efficacy of positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) for early response evaluation of cervical cancer patients undergoing concurrent chemoradiotherapy (CCRT). Fifty-two patients were prospectively enrolled in the study. The pathologic findings were squamous cell carcinoma in 47 patients and adenocarcinoma in 5 patients. All patients underwent PET/CT and MRI scans before, during and within 1 month after completion of CCRT. The percent change in tumor volume during and after CCRT based on PET/CT and MRI images was compared. There were significant differences (p<0.001) between the initial tumor volume and tumor volume during and after CCRT as measured by both PET/CT and MRI. During CCRT, the percent volume reduction based on PET/CT images was significantly greater than the percent volume reduction calculated from MRI images (p=0.024). However, after the completion of CCRT, no significant differences were found in volume reduction as calculated based on PET/CT versus MRI images (p=0.289). The percent volume reduction of adenocarcinomas was significantly smaller than that of squamous cell carcinomas based on both PET/CT (p=0.041) and MRI images (p<0.001). Significant decreases in tumor volume were observed during and after CCRT in patients with cervical cancer. Tumor volume reduction on PET/CT images was greater than that on MRI images during CCRT. We suggest that early PET/CT as well as MRI scans could be taken during CCRT to evaluate tumor response and allow personalized treatment of cervical cancer. (author)

  20. Comparative analysis of PET/CT and PET/MR image characteristics of head and neck squamous cell carcinoma%对比分析头颈部鳞状细胞癌PET/CT与PET/MR特征

    Institute of Scientific and Technical Information of China (English)

    白乐; 程勇; 唐勇进; 凌雪英

    2017-01-01

    Objective To investigate PET/CT and PET/MR characteristics of head and neck squamous cell carcinoma (HNSCC).Methods Totally 40 patients with HNSCC underwent whole body 18F-FDG PET/CT and MR scans of head and neck before anti-tumor treatment.PET positive lesions of HNSCC,including primary lesions and lymph nodes were evaluated by 2 radiologists independently.Then the imaging quality,fusion quality,lesion conspicuity and lesion characteristics were assessed based on PET/CT,PET/MR T1WI and PET/MR T2WI.Results Ninety PET positive lesions in all 40patients were evaluated,including 40 primary lesions and 50 lymph nodes.Similar imaging quality and fusion quality of PET/CT,PET/MR T1WI and PET/MR T2WI were obtained without statistical difference (both P>0.05).For the lesion conspicuity,PET/MR T1WI and PET/MR T2WI demonstrated significantly better than PET/CT in positive primary lesions and lymph nodes (all P<0.05).For the characteristics of positive primary lesions,PET/MR T2WI provided more information than PET/CT in 29 lesions,equal to PET/CT in 4 lesions,and less than PET/CT in 7 lesions.Conclusion The application of PET/MR in HNSCC is feasible,being superior to PET/CT in indication of lesions in head and neck area.%目的 探讨头颈部鳞状细胞癌(HNSCC)的PET/CT及PET/MR特征.方法 纳入未经抗肿瘤治疗的头颈部鳞状细胞癌患者40例,所有患者均接受PET/CT及头颈部MR检查.由2名观察者独立观察PET阳性病灶,包括阳性原发灶及阳性淋巴结;并对PET/CT、PET/MR T1WI及PET/MR T2WI的图像质量、融合准确度、病灶清晰度、病灶特征等进行评分.分析2名观察者间的一致性.结果 40例患者共90个PET阳性病灶,包括阳性原发灶40个、阳性淋巴结50个.PET/CT、PET/MR T1WI及PET/MR T2WI在图像质量及融合准确度方面差异均无统计学意义(P均>0.05);在显示阳性原发灶及阳性淋巴结的清晰度方面,PET/MR T1WI及PET/MR T2WI均优于PET/CT(P均<0.05).40个阳性原发灶中,PET

  1. Diuretic 18F-FDG PET/CT imaging for detection and locoregional staging of urinary bladder cancer: prospective evaluation of a novel technique

    International Nuclear Information System (INIS)

    Nayak, Brusabhanu; Dogra, Prem Nath; Naswa, Niraj; Kumar, Rakesh

    2013-01-01

    Positron emission tomography/computed tomography (PET/CT) with 18 F-fluorodeoxyglucose (FDG) has been used with limited success in the past in primary diagnosis and locoregional staging of urinary bladder cancer, mainly because of the pharmacokinetics of renal excretion of 18 F-FDG. In the present prospective study, we have evaluated the potential application of diuretic 18 F-FDG PET/CT in improving detection and locoregional staging of urinary bladder tumours. Twenty-five patients suspected of having primary carcinoma of the urinary bladder were evaluated prospectively for diagnosis and staging. All of these 25 patients underwent conventional contrast-enhanced computed tomography (CECT) of the abdomen/pelvis and whole-body diuretic 18 F-FDG PET/CT. In addition, pelvic PET/CT images were obtained using the special technique of forced diuresis using intravenous furosemide (20-40 mg). Of the 25 patients, 10 underwent radical cystectomy and 15 underwent transurethral resection of the bladder tumour (TURBT). Results of CECT and diuretic 18 F-FDG PET/CT were compared considering histopathology as a reference standard. Of the 25 patients, CECT detected a primary tumour in 23 (sensitivity 92 %), while 18 F-FDG PET/CT was positive in 24 patients (sensitivity 96 %). Mean size and maximum standardized uptake value of the bladder tumours were 3.33 cm (range 1.6-6.2) and 5.3 (range 1.3-11.7), respectively. Of the 25 patients, only 10 patients underwent radical cystectomy based on disease status on TURBT. Among those ten patients, nine had locoregional metastases. Among the nine patients who had positive lymph nodes for metastasis on histopathology, CECT and PET/CT scan had a sensitivity of 44 and 78 %, respectively. 18 F-FDG PET/CT was found to be superior to CECT in the detection of the primary tumour and locoregional staging (p 18 F-FDG PET/CT is highly sensitive and specific and plays an important role in improving detection of the primary tumour and locoregional staging of

  2. Adapting MR-BrainPET scans for comparison with conventional PET: experiences with dynamic FET-PET in brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Philipp; Herzog, Hans; Kops, Elena Rota; Stoffels, Gabriele; Filss, Christian [Institute of Neuroscience and Medicine (INM-3,-4,-5), Forschungszentrum Juelich, Juelich (Germany); Galldiks, Norbert [Institute of Neuroscience and Medicine (INM-3,-4,-5), Forschungszentrum Juelich, Juelich (Germany); Department of Neurology, University of Cologne, Cologne (Germany); Coenen, Heinrich H; Shah, N Jon; Langen, Karl-Josef [Institute of Neuroscience and Medicine (INM-3,-4,-5), Forschungszentrum Juelich, Juelich (Germany)

    2014-07-29

    Imaging results from subsequent measurements (preclinical 3T MR-BrainPET, HR+) are compared. O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine (FET) may exhibit non-uniform tracer uptake in gliomas. The aim was to analyse and adapt the physical properties of the scanners and study variations of biological tumour volume (BTV) in early and late FET-PET.

  3. Role of Pre-therapeutic 18F-FDG PET/CT in Guiding the Treatment Strategy and Predicting Prognosis in Patients with Esophageal Carcinoma

    Directory of Open Access Journals (Sweden)

    Teik Hin Tan

    2016-07-01

    Full Text Available Objective(s: The present study aimed to evaluate the role of pretherapeutic 18fluorine-fluorodeoxyglucose positron emission tomographycomputed tomography (18F-FDG PET-CT and maximum standardized uptake value (SUVmax in guiding the treatment strategy and predicting the prognosis of esophageal carcinoma, using the survival data of thepatients.Methods: The present retrospective, cohort study was performed on 40 consecutive patients with esophageal carcinoma (confirmed by endoscopic biopsy, who underwent pre-operative 18F-FDG PET-CTstaging between January 2009 and June 2014. All the patients underwent contrast-enhanced CT and non-contrasted 18F-FDG PET-CT evaluations.The patients were followed-up over 12 months to assess the changes in therapeutic strategies. Survival analysis was done considering the primary tumor SUVmax, using the Kaplan–Meier product-limit method.Results: In a total of 40 patients, 18F-FDG PET-CT scan led to changes in disease stage in 26n (65.0% cases, with upstaging and downstaging reported in 10n (25.0% and 16n (40.0% patients, respectively. The management strategy changed from palliative to curative in 10 out of 24 patients and from curative to palliative in 7 out of 16 cases. Based on the18F-FDG PET-CT scan alone, the median survival of patients in the palliative group was 4.0n (95 % CI 3.0-5.0 months, whereas the median survival in the curative group has not been reached, based on the 12-month followup.Selection of treatment strategy on the basis of 18F-FDG PET/CT alone was significantly associated with the survival outcomes at nine months (P=0.03 and marginally significant at 12 months (P=0.05. On the basisof SUVmax, the relation between survival and SUVmax was not statistically significant.Conclusion: 18F-FDG PET/CT scan had a significant impact on stage stratification and subsequently, selection of a stage-specific treatment approach and the overall survival outcome in patients with esophageal carcinoma. However, pre

  4. Radiotherapy volume delineation using 18F-FDG-PET/CT modifies gross node volume in patients with oesophageal cancer.

    Science.gov (United States)

    Jimenez-Jimenez, E; Mateos, P; Aymar, N; Roncero, R; Ortiz, I; Gimenez, M; Pardo, J; Salinas, J; Sabater, S

    2018-05-02

    Evidence supporting the use of 18F-FDG-PET/CT in the segmentation process of oesophageal cancer for radiotherapy planning is limited. Our aim was to compare the volumes and tumour lengths defined by fused PET/CT vs. CT simulation. Twenty-nine patients were analyzed. All patients underwent a single PET/CT simulation scan. Two separate GTVs were defined: one based on CT data alone and another based on fused PET/CT data. Volume sizes for both data sets were compared and the spatial overlap was assessed by the Dice similarity coefficient (DSC). The gross tumour volume (GTVtumour) and maximum tumour diameter were greater by PET/CT, and length of primary tumour was greater by CT, but differences were not statistically significant. However, the gross node volume (GTVnode) was significantly greater by PET/CT. The DSC analysis showed excellent agreement for GTVtumour, 0.72, but was very low for GTVnode, 0.25. Our study shows that the volume definition by PET/CT and CT data differs. CT simulation, without taking into account PET/CT information, might leave cancer-involved nodes out of the radiotherapy-delineated volumes.

  5. Bone metabolic activity in hyperostosis cranialis interna measured with {sup 18}F-fluoride PET

    Energy Technology Data Exchange (ETDEWEB)

    Waterval, Jerome J.; Dongen, Thijs M.A. van; Stokroos, Robert J.; Manni, Johannes J. [Maastricht University Medical Center, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht (Netherlands); Teule, Jaap G.J.; Kemerink, Gerrit J.; Brans, Boudewijn [Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Nieman, Fred H.M. [Maastricht University Medical Center, Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht (Netherlands)

    2011-05-15

    {sup 18}F-Fluoride PET/CT is a relatively undervalued diagnostic test to measure bone metabolism in bone diseases. Hyperostosis cranialis interna (HCI) is a (hereditary) bone disease characterised by endosteal hyperostosis and osteosclerosis of the skull and the skull base. Bone overgrowth causes entrapment and dysfunction of several cranial nerves. The aim of this study is to compare standardised uptake values (SUVs) at different sites in order to quantify bone metabolism in the affected anatomical regions in HCI patients. Nine affected family members, seven non-affected family members and nine non-HCI non-family members underwent {sup 18}F-fluoride PET/CT scans. SUVs were systematically measured in the different regions of interest: frontal bone, sphenoid bone, petrous bone and clivus. Moreover, the average {sup 18}F-fluoride uptake in the entire skull was measured by assessing the uptake in axial slides. Visual assessment of the PET scans of affected individuals was performed to discover the process of disturbed bone metabolism in HCI. {sup 18}F-Fluoride uptake is statistically significantly higher in the sphenoid bone and clivus regions of affected family members. Visual assessment of the scans of HCI patients is relevant in detecting disease severity and the pattern of disturbed bone metabolism throughout life. {sup 18}F-Fluoride PET/CT is useful in quantifying the metabolic activity in HCI and provides information about the process of disturbed bone metabolism in this specific disorder. Limitations are a narrow window between normal and pathological activity and the influence of age. This study emphasises that {sup 18}F-fluoride PET/CT may also be a promising diagnostic tool for other metabolic bone disorders, even those with an indolent course. (orig.)

  6. Interim FDG-PET Scan in Hodgkin's Lymphoma: Hopes and Caveats

    Directory of Open Access Journals (Sweden)

    M. André

    2011-01-01

    Full Text Available FDG-PET has recently emerged as an important tool for the management of Hodgkins lymphoma. Although its use for initial staging and response evaluation at the end of treatment is well established, the place of interim PET for response assessment and subsequent treatment tailoring is still quite controversial. The use of interim PET after a few cycles of chemotherapy may allow treatment reduction for good responders, leading to lesser treatment toxicities as well as early treatment adaptation for bad responders with a potential higher chance for cure. Interpretation of interim PET is a rapidly moving field. Actually, visual interpretation is preferred over quantitative interpretation in this situation. The notion of minimal residual uptake emerged for faint persisting FDG uptake, but has evolved during the recent years. Guidelines using mediastinum and liver as references have been proposed at the expert meeting in Deauville 2009. Actually, several trials are ongoing both for localised and advanced disease to evaluate the FDG-PET potential for early treatment monitoring and tailoring. Until the results of these prospective randomized trials become available, treatment changes according to the interim PET results should remain inappropriate and limited to well-conducted clinical trials.

  7. 18F-FDG SPECT/CT in the diagnosis of differentiated thyroid carcinoma with elevated thyroglobulin and negative iodine-131 scans

    International Nuclear Information System (INIS)

    Ma, C.; Wu, Z.; Wang, H.; Wang, X.; Shao, M.; Zhao, L.; Jiawei, X.

    2015-01-01

    Aim of the present study was to investigate the usefulness of 18 F-FDG SPECT/CT in differentiated thyroid cancer (DTC) with elevated serum thyroglobulin (Tg) but negative iodine-131 scan. This retrospective review of patients with DTC recurrence who had 18 F-FDG SPECT/CT and 18 F-FDG PET/CT for elevated serum Tg but negative iodine-131 scan (March 2007-October 2012). After total thyroidectomy followed by radioiodine ablation, 86 consecutive patients with elevated Tg levels underwent 18 F-FDG SPECT/CT or 18 F-FDG PET/CT. Of these, 45 patients had 18 F-FDG SPECT/CT, the other 41 patients had 18 F-FDG PET/CT 3-4 weeks after thyroid hormone withdrawal. The results of 18 F-FDG PET/CT and SPECT/CT were correlated with patient follow-up information, which included the results from subsequent imaging modalities such as neck ultrasound, MRI and CT, Tg levels, and histologic examination of surgical specimens. The diagnostic accuracy of the two imaging modalities was evaluated. In 18 F-FDG SPECT/CT scans, 24 (24/45) patients had positive findings, 22 true positive in 24 patients, false positive in 2 patients, true-negative and false-negative in 6, 15 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG SPECT/CT were 59.5%, 75% and 62.2%, respectively. Twenty six patients had positive findings on 18 F-FDG PET/CT scans, 23 true positive in 26 (26/41) patients, false positive in 3 patients, true-negative and false-negative in 9, 6 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG PET/CT were 79.3%, 81.8% and 78.1%, respectively. Clinical management changed for 13 (29%) of 45 patients by 18 F-FDG SPECT/CT, 14 (34%) of 41 patients by 18F-FDG PET/CT including surgery, radiation therapy, or multi kinase inhibitor. Based on the retrospective analysis of 86 patients, 18F-FDG SPECT/CT has lower sensitivity in the diagnosis of DTC recurrence with elevated Tg and negative iodine-131scan to 18F-FDG PET/CT. The clinical

  8. Predicting location of recurrence using FDG, FLT, and Cu-ATSM PET in canine sinonasal tumors treated with radiotherapy

    International Nuclear Information System (INIS)

    Bradshaw, Tyler; Jeraj, Robert; Fu, Rau; Zhu, Jun; Bowen, Stephen; Forrest, Lisa

    2015-01-01

    Dose painting relies on the ability of functional imaging to identify resistant tumor subvolumes to be targeted for additional boosting. This work assessed the ability of FDG, FLT, and Cu-ATSM PET imaging to predict the locations of residual FDG PET in canine tumors following radiotherapy. Nineteen canines with spontaneous sinonasal tumors underwent PET/CT imaging with radiotracers FDG, FLT, and Cu-ATSM prior to hypofractionated radiotherapy. Therapy consisted of 10 fractions of 4.2 Gy to the sinonasal cavity with or without an integrated boost of 0.8 Gy to the GTV. Patients had an additional FLT PET/CT scan after fraction 2, a Cu-ATSM PET/CT scan after fraction 3, and follow-up FDG PET/CT scans after radiotherapy. Following image registration, simple and multiple linear and logistic voxel regressions were performed to assess how well pre- and mid-treatment PET imaging predicted post-treatment FDG uptake. R 2 and pseudo R 2 were used to assess the goodness of fits. For simple linear regression models, regression coefficients for all pre- and mid-treatment PET images were significantly positive across the population (P < 0.05). However, there was large variability among patients in goodness of fits: R 2 ranged from 0.00 to 0.85, with a median of 0.12. Results for logistic regression models were similar. Multiple linear regression models resulted in better fits (median R 2 = 0.31), but there was still large variability between patients in R 2 . The R 2 from regression models for different predictor variables were highly correlated across patients (R ≈ 0.8), indicating tumors that were poorly predicted with one tracer were also poorly predicted by other tracers. In conclusion, the high inter-patient variability in goodness of fits indicates that PET was able to predict locations of residual tumor in some patients, but not others. This suggests not all patients would be good candidates for dose painting based on a single biological target. (paper)

  9. Diuretic {sup 18}F-FDG PET/CT imaging for detection and locoregional staging of urinary bladder cancer: prospective evaluation of a novel technique

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Brusabhanu; Dogra, Prem Nath [All India Institute of Medical Sciences, Department of Urology, New Delhi (India); Naswa, Niraj [All India Institute of Medical Sciences, Department of Nuclear Medicine, New Delhi (India); Kumar, Rakesh [All India Institute of Medical Sciences, Department of Nuclear Medicine, New Delhi (India); New Delhi (India)

    2013-03-15

    Positron emission tomography/computed tomography (PET/CT) with {sup 18}F-fluorodeoxyglucose (FDG) has been used with limited success in the past in primary diagnosis and locoregional staging of urinary bladder cancer, mainly because of the pharmacokinetics of renal excretion of {sup 18}F-FDG. In the present prospective study, we have evaluated the potential application of diuretic {sup 18}F-FDG PET/CT in improving detection and locoregional staging of urinary bladder tumours. Twenty-five patients suspected of having primary carcinoma of the urinary bladder were evaluated prospectively for diagnosis and staging. All of these 25 patients underwent conventional contrast-enhanced computed tomography (CECT) of the abdomen/pelvis and whole-body diuretic {sup 18}F-FDG PET/CT. In addition, pelvic PET/CT images were obtained using the special technique of forced diuresis using intravenous furosemide (20-40 mg). Of the 25 patients, 10 underwent radical cystectomy and 15 underwent transurethral resection of the bladder tumour (TURBT). Results of CECT and diuretic {sup 18}F-FDG PET/CT were compared considering histopathology as a reference standard. Of the 25 patients, CECT detected a primary tumour in 23 (sensitivity 92 %), while {sup 18}F-FDG PET/CT was positive in 24 patients (sensitivity 96 %). Mean size and maximum standardized uptake value of the bladder tumours were 3.33 cm (range 1.6-6.2) and 5.3 (range 1.3-11.7), respectively. Of the 25 patients, only 10 patients underwent radical cystectomy based on disease status on TURBT. Among those ten patients, nine had locoregional metastases. Among the nine patients who had positive lymph nodes for metastasis on histopathology, CECT and PET/CT scan had a sensitivity of 44 and 78 %, respectively. {sup 18}F-FDG PET/CT was found to be superior to CECT in the detection of the primary tumour and locoregional staging (p < 0.05). Diuretic {sup 18}F-FDG PET/CT is highly sensitive and specific and plays an important role in improving

  10. Target volume definition for {sup 18}F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Ursula; Schaefer-Schuler, Andrea; Hellwig, Dirk; Kirsch, Carl-Martin [Saarland University Medical Centre, Department of Nuclear Medicine, Homburg/Saar (Germany); Kremp, Stephanie; Ruebe, Christian [Saarland University Medical Centre, Department of Radio-oncology, Homburg/Saar (Germany); Groeschel, Andreas [Saarland University Medical Centre, Department of Pneumology, Homburg/Saar (Germany)

    2007-04-15

    FDG PET is increasingly used in radiotherapy planning. Recently, we demonstrated substantial differences in target volumes when applying different methods of FDG-based contouring in primary lung tumours (Nestle et al., J Nucl Med 2005;46:1342-8). This paper focusses on FDG-positive mediastinal lymph nodes (LN{sub PET}). In our institution, 51 NSCLC patients who were candidates for radiotherapy prospectively underwent staging FDG PET followed by a thoracic PET scan in the treatment position and a planning CT. Eleven of them had 32 distinguishable non-confluent mediastinal or hilar nodal FDG accumulations (LN{sub PET}). For these, sets of gross tumour volumes (GTVs) were generated at both acquisition times by four different PET-based contouring methods (visual: GTV{sub vis}; 40% SUV{sub max}: GTV{sub 40}; SUV=2.5: GTV{sub 2.5}; target/background (T/B) algorithm: GTV{sub bg}). All differences concerning GTV sizes were within the range of the resolution of the PET system. The detectability and technical delineability of the GTVs were significantly better in the late scans (e.g. p = 0.02 for diagnostic application of SUV{sub max} = 2.5; p = 0.0001 for technical delineability by GTV{sub 2.5}; p = 0.003 by GTV{sub 40}), favouring the GTV{sub bg} method owing to satisfactory overall applicability and independence of GTVs from acquisition time. Compared with CT, the majority of PET-based GTVs were larger, probably owing to resolution effects, with a possible influence of lesion movements. For nodal GTVs, different methods of contouring did not lead to clinically relevant differences in volumes. However, there were significant differences in technical delineability, especially after early acquisition. Overall, our data favour a late acquisition of FDG PET scans for radiotherapy planning, and the use of a T/B algorithm for GTV contouring. (orig.)

  11. qPET - a quantitative extension of the Deauville scale to assess response in interim FDG-PET scans in lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Hasenclever, Dirk [University of Leipzig, Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig (Germany); Kurch, Lars; Georgi, Thomas; Sabri, Osama; Kluge, Regine [University Hospital Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Mauz-Koerholz, Christine; Koerholz, Dieter [University Hospital Halle, Department of Pediatrics, Halle (Germany); Elsner, Andreas [Hermes Medical Solutions AB, Stockholm (Sweden); Wallace, Hamish [Royal Hospital for Sick Children, Edinburgh, Scotland (United Kingdom); Landman-Parker, Judith [Hopital d' Enfants Armand Trousseau, Paris (France); Moryl-Bujakowska, Angelina [Jagiellonian University Medical College, Department of Pediatric Oncology and Hematology, Polish-American Institute of Pediatrics, Krakow (Poland); Cepelova, Michaela [Department of Pediatric Hematology and Oncology, Faculty Hospital Motol, Prague (Czech Republic); Karlen, Jonas [Karolinska University Hospital, Pediatric Cancer Unit, Astrid Lindgrens Childrens Hospital, Stockholm (Sweden); Alvarez Fernandez-Teijeiro, Ana [University Hospital Virgen Macarena Avda, Department of Pediatric Oncology and Hematology, Sevilla (Spain); Attarbaschi, Andishe [Medical University of Vienna, Department of Pediatric Hematology and Oncology, St. Anna Children' s Hospital, Vienna (Austria); Fossaa, Alexander [Department of Medical Oncology and Radiotherapy, Rikshospitalet - Radiumhospitalet HF, Oslo (Norway); Pears, Jane [Our Lady' s Children' s Hospital, Crumlin, Dublin (Ireland); Hraskova, Andrea [University Children' s Hospital, Clinic of Pediatric Oncology, Bratislava (Slovakia); Bergstraesser, Eva [University Children' s Hospital, Department Oncology, Zurich (Switzerland); Beishuizen, Auke [MC - Sophia Children' s Hospital, Department of Pediatric Oncology/Hematology, Rotterdam (Netherlands); Uyttebroeck, Anne [University Hospitals of Leuven, Department of Pediatric Hemato-Oncology, Leuven (Belgium); Schomerus, Eckhard [University of Odense (OUH), Department of Pediatric Oncology and Hematology, H. C. Andersen Children' s Hospital, Odense (Denmark)

    2014-07-15

    Interim FDG-PET is used for treatment tailoring in lymphoma. Deauville response criteria consist of five ordinal categories based on visual comparison of residual tumor uptake to physiological reference uptakes. However, PET-response is a continuum and visual assessments can be distorted by optical illusions. With a novel semi-automatic quantification tool we eliminate optical illusions and extend the Deauville score to a continuous scale. SUV{sub peak} of residual tumors and average uptake of the liver is measured with standardized volumes of interest. The qPET value is the quotient of these measurements. Deauville scores and qPET-values were determined in 898 pediatric Hodgkin's lymphoma patients after two OEPA chemotherapy cycles. Deauville categories translate to thresholds on the qPET scale: Categories 3, 4, 5 correspond to qPET values of 0.95, 1.3 and 2.0, respectively. The distribution of qPET values is unimodal with a peak representing metabolically normal responses and a tail of clearly abnormal outliers. In our patients, the peak is at qPET = 0.95 coinciding with the border between Deauville 2 and 3. qPET cut values of 1.3 or 2 (determined by fitting mixture models) select abnormal metabolic responses with high sensitivity, respectively, specificity. qPET methodology provides semi-automatic quantification for interim FDG-PET response in lymphoma extending ordinal Deauville scoring to a continuous scale. Deauville categories correspond to certain qPET cut values. Thresholds between normal and abnormal response can be derived from the qPET-distribution without need for follow-up data. In our patients, qPET < 1.3 excludes abnormal response with high sensitivity. (orig.)

  12. qPET - a quantitative extension of the Deauville scale to assess response in interim FDG-PET scans in lymphoma

    International Nuclear Information System (INIS)

    Hasenclever, Dirk; Kurch, Lars; Georgi, Thomas; Sabri, Osama; Kluge, Regine; Mauz-Koerholz, Christine; Koerholz, Dieter; Elsner, Andreas; Wallace, Hamish; Landman-Parker, Judith; Moryl-Bujakowska, Angelina; Cepelova, Michaela; Karlen, Jonas; Alvarez Fernandez-Teijeiro, Ana; Attarbaschi, Andishe; Fossaa, Alexander; Pears, Jane; Hraskova, Andrea; Bergstraesser, Eva; Beishuizen, Auke; Uyttebroeck, Anne; Schomerus, Eckhard

    2014-01-01

    Interim FDG-PET is used for treatment tailoring in lymphoma. Deauville response criteria consist of five ordinal categories based on visual comparison of residual tumor uptake to physiological reference uptakes. However, PET-response is a continuum and visual assessments can be distorted by optical illusions. With a novel semi-automatic quantification tool we eliminate optical illusions and extend the Deauville score to a continuous scale. SUV peak of residual tumors and average uptake of the liver is measured with standardized volumes of interest. The qPET value is the quotient of these measurements. Deauville scores and qPET-values were determined in 898 pediatric Hodgkin's lymphoma patients after two OEPA chemotherapy cycles. Deauville categories translate to thresholds on the qPET scale: Categories 3, 4, 5 correspond to qPET values of 0.95, 1.3 and 2.0, respectively. The distribution of qPET values is unimodal with a peak representing metabolically normal responses and a tail of clearly abnormal outliers. In our patients, the peak is at qPET = 0.95 coinciding with the border between Deauville 2 and 3. qPET cut values of 1.3 or 2 (determined by fitting mixture models) select abnormal metabolic responses with high sensitivity, respectively, specificity. qPET methodology provides semi-automatic quantification for interim FDG-PET response in lymphoma extending ordinal Deauville scoring to a continuous scale. Deauville categories correspond to certain qPET cut values. Thresholds between normal and abnormal response can be derived from the qPET-distribution without need for follow-up data. In our patients, qPET < 1.3 excludes abnormal response with high sensitivity. (orig.)

  13. Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lois, Cristina [University of Santiago de Compostela, Department of Particle Physics, Santiago de Compostela (Spain); Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela (Spain); Imaging Science Institute, Tuebingen (Germany); Bezrukov, Ilja [Eberhard Karls University, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Department of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany); Max Plank Institute for Intelligent Systems, Department of Empirical Inference, Tuebingen (Germany); Schmidt, Holger [Eberhard Karls University, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Department of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany); Eberhard Karls University, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); Schwenzer, Nina; Werner, Matthias K. [Eberhard Karls University, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); Kupferschlaeger, Juergen [Eberhard Karls University, Nuclear Medicine, Department of Radiology, Tuebingen (Germany); Beyer, Thomas [Imaging Science Institute, Tuebingen (Germany); cmi-experts GmbH, Zuerich (Switzerland)

    2012-11-15

    Clinical PET/MR acquisition protocols entail the use of MR contrast agents (MRCA) that could potentially affect PET quantification following MR-based attenuation correction (AC). We assessed the effect of oral and intravenous (IV) MRCA on PET quantification in PET/MR imaging. We employed two MRCA: Lumirem {sup registered} (oral) and Gadovist {sup registered} (IV). First, we determined their reference PET attenuation values using a PET transmission scan (ECAT-EXACT HR+, Siemens) and a CT scan (PET/CT Biograph 16 HI-REZ, Siemens). Second, we evaluated the attenuation of PET signals in the presence of MRCA. Phantoms were filled with clinically relevant concentrations of MRCA in a background of water and {sup 18}F-fluoride, and imaged using a PET/CT scanner (Biograph 16 HI-REZ, Siemens) and a PET/MR scanner (Biograph mMR, Siemens). Third, we investigated the effect of clinically relevant volumes of MRCA on MR-based AC using human pilot data: a patient study employing Gadovist {sup registered} (IV) and a volunteer study employing two different oral MRCA (Lumirem {sup registered} and pineapple juice). MR-based attenuation maps were calculated following Dixon-based fat-water segmentation and an external atlas-based and pattern recognition (AT and PR) algorithm. IV and oral MRCA in clinically relevant concentrations were found to have PET attenuation values similar to those of water. The phantom experiments showed that under clinical conditions IV and oral MRCA did not yield additional attenuation of PET emission signals. Patient scans showed that PET attenuation maps are not biased after the administration of IV MRCA but may be biased, however, after ingestion of iron oxide-based oral MRCA when segmentation-based AC algorithms are used. Alternative AC algorithms, such as AT and PR, or alternative oral contrast agents, such as pineapple juice, can yield unbiased attenuation maps. In clinical PET/MR scenarios MRCA are not expected to lead to markedly increased attenuation

  14. An evaluation of the predictive value of mid-treatment 18F-FDG-PET/CT scans in pediatric lymphomas and undefined criteria of abnormality in quantitative analysis.

    Science.gov (United States)

    Zhu, Hongyun J; Halkar, Raghuveer; Alavi, Abass; Goris, Michael L

    2013-01-01

    Our purpose was to evaluate quantitative mid-treatment fluorine-18-fluorodeoxyglucose (18F-FDG) PET/CT scans in predicting the quantitative result of the end of treatment 18F-FDG PET/CT scan. With approval of Emory's Institutional Review Board, data were extracted from 273 existing 18F-FDG PET/CT scans of 143 pediatric patients performed for evaluation of lymphoma. The inclusion criteria were the availability of an initial staging scan (D0) and a mid-treatment scan after 1 to 3 cycles of chemotherapy (D1) and a post-treatment scan (D2). Absolute and relative changed of D1 compared to D0 were measured and their values in predicting D3 values were determined. Analysis was performed on a lesion basis (N=78) in 18 patients with an average of 4.3 lesions per patients. Results showed that the predictive value depended on the value selected as significant for the predictors (D1 SUV and D1 %SUV), and on the limit between negative and positive selected for the predicted value D2 SUV. If the maximum SUV3.0, the positive predictive value of D1>4 was 100%. In that way outcome was predictable with absolute certainty in as many as 71% of the lesions with a single limit for D1 and D2. In conclusion, in this limited retrospective study the positive predictive value of the mid-treatment scan, was high for the post-treatment result for patient and lesion response seen on D2.

  15. [68Ga]DOTATATE PET/MRI and [18F]FDG PET/CT are complementary and superior to diffusion-weighted MR imaging for radioactive-iodine-refractory differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Vrachimis, Alexis; Stegger, Lars; Wenning, Christian; Noto, Benjamin; Konnert, Julia Renate; Riemann, Burkhard; Weckesser, Matthias; Burg, Matthias Christian; Allkemper, Thomas; Heindel, Walter; Schaefers, Michael

    2016-01-01

    The purpose of this study was to determine whether [ 68 Ga]DOTATATE PET/MRI with diffusion-weighted imaging (DWI) can replace or complement [ 18 F]FDG PET/CT in patients with radioactive-iodine (RAI)-refractory differentiated thyroid cancer (DTC). The study population comprised 12 patients with elevated thyroglobulin and a negative RAI scan after thyroidectomy and RAI remnant ablation who underwent both [ 18 F]FDG PET/CT and [ 68 Ga]DOTATATE PET/MRI within 8 weeks of each other. The presence of recurrent cancer was evaluated on a per-patient, per-organ and per-lesion basis. Histology, and prior and follow-up examinations served as the standard of reference. Recurrent or metastatic tumour was confirmed in 11 of the 12 patients. [ 68 Ga]DOTATATE PET(/MRI) correctly identified the tumour burden in all 11 patients, whereas in one patient local relapse was missed by [ 18 F]FDG PET/CT. In the lesion-based analysis, overall lesion detection rates were 79/85 (93 %), 69/85 (81 %) and 27/82 (33 %) for [ 18 F]FDG PET/CT, [ 68 Ga]DOTATATE PET/MRI and DWI, respectively. [ 18 F]FDG PET(/CT) was superior to [ 68 Ga]DOTATATE PET(/MRI) in the overall evaluation and in the detection of pulmonary metastases. In the detection of extrapulmonary metastases, [ 68 Ga]DOTATATE PET(/MRI) showed a higher sensitivity than [ 18 F]FDG PET(/CT), at the cost of lower specificity. DWI achieved only poor sensitivity and was significantly inferior to [ 18 F]FDG PET in the lesion-based evaluation in the detection of both extrapulmonary and pulmonary metastases. [ 18 F]FDG PET/CT was more sensitive than [ 68 Ga]DOTATATE PET/MRI in the evaluation of RAI-refractory DTC, mostly because of its excellent ability to detect lung metastases. In the evaluation of extrapulmonary lesions, [ 68 Ga]DOTATATE PET(/MRI) was more sensitive and [ 18 F]FDG PET(/CT) more specific. Furthermore, DWI did not provide additional information and cannot replace [ 18 F]FDG PET for postoperative monitoring of patients with

  16. Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants

    International Nuclear Information System (INIS)

    Goerres, Gerhard W.; Hany, Thomas F.; Kamel, Ehab; Schulthess von, Gustav K.; Buck, Alfred

    2002-01-01

    Germanium-68 based attenuation correction (PET Ge68 ) is performed in positron emission tomography (PET) imaging for quantitative measurements. With the recent introduction of combined in-line PET/CT scanners, CT data can be used for attenuation correction. Since dental implants can cause artefacts in CT images, CT-based attenuation correction (PET CT ) may induce artefacts in PET images. The purpose of this study was to evaluate the influence of dental metallic artwork on the quality of PET images by comparing non-corrected images and images attenuation corrected by PET Ge68 and PET CT . Imaging was performed on a novel in-line PET/CT system using a 40-mAs scan for PET CT in 41 consecutive patients with high suspicion of malignant or inflammatory disease. In 17 patients, additional PET Ge68 images were acquired in the same imaging session. Visual analysis of fluorine-18 fluorodeoxyglucose (FDG) distribution in several regions of the head and neck was scored on a 4-point scale in comparison with normal grey matter of the brain in the corresponding PET images. In addition, artefacts adjacent to dental metallic artwork were evaluated. A significant difference in image quality scoring was found only for the lips and the tip of the nose, which appeared darker on non-corrected than on corrected PET images. In 33 patients, artefacts were seen on CT, and in 28 of these patients, artefacts were also seen on PET imaging. In eight patients without implants, artefacts were seen neither on CT nor on PET images. Direct comparison of PET Ge68 and PET CT images showed a different appearance of artefacts in 3 of 17 patients. Malignant lesions were equally well visible using both transmission correction methods. Dental implants, non-removable bridgework etc. can cause artefacts in attenuation-corrected images using either a conventional 68 Ge transmission source or the CT scan obtained with a combined PET/CT camera. We recommend that the non-attenuation-corrected PET images also be

  17. SU-F-I-31: Reproducibility of An Automatic Exposure Control Technique in the Low-Dose CT Scan of Cardiac PET/CT Exams

    Energy Technology Data Exchange (ETDEWEB)

    Park, M; Rosica, D; Agarwal, V; Di Carli, M; Dorbala, S [Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: Two separate low-dose CT scans are usually performed for attenuation correction of rest and stress N-13 ammonia PET/CT myocardial perfusion imaging (PET/CT). We utilize an automatic exposure control (AEC) technique to reduce CT radiation dose while maintaining perfusion image quality. Our goal is to assess the reproducibility of displayed CT dose index (CTDI) on same-day repeat CT scans (CT1 and CT2). Methods: Retrospectively, we reviewed CT images of PET/CT studies performed on the same day. Low-dose CT utilized AEC technique based on tube current modulation called Smart-mA. The scan parameters were 64 × 0.625mm collimation, 5mm slice thickness, 0.984 pitch, 1-sec rotation time, 120 kVp, and noise index 50 with a range of 10–200 mA. The scan length matched with PET field of view (FOV) with the heart near the middle of axial FOV. We identified the reference slice number (RS) for an anatomical landmark (carina) and used it to estimate axial shift between two CTs. For patient size, we measured an effective diameter on the reference slice. The effect of patient positioning to CTDI was evaluated using the table height. We calculated the absolute percent difference of the CTDI (%diff) for estimation of the reproducibility. Results: The study included 168 adults with an average body-mass index of 31.72 ± 9.10 (kg/m{sup 2}) and effective diameter was 32.72 ± 4.60 cm. The average CTDI was 1.95 ± 1.40 mGy for CT1 and 1.97 ± 1.42mGy for CT2. The mean %diff was 7.8 ± 6.8%. Linear regression analysis showed a significant correlation between the table height and %diff CTDI. (r=0.82, p<0.001) Conclusion: We have shown for the first time in human subjects, using two same-day CT images, that the AEC technique in low-dose CT is reproducible within 10% and significantly depends on the patient centering.

  18. [{sup 18}F]Flutemetamol amyloid-beta PET imaging compared with [{sup 11}C]PIB across the spectrum of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Hatashita, Shizuo; Yamasaki, Hidetomo [Shonan-Atsugi Hospital, Neurology, PET Center, Atsugi (Japan); Suzuki, Yutaka; Wakebe, Daichi; Hayakawa, Hideki [Shonan-Atsugi Hospital, Radiology, PET Center, Atsugi (Japan); Tanaka, Kumiko [Shonan-Atsugi Hospital, Pharmacology, PET Center, Atsugi (Japan)

    2014-02-15

    The aim was to identify the amyloid beta (Aβ) deposition by positron emission tomography (PET) imaging with the {sup 18}F-labeled Pittsburgh compound B (PIB) derivative [{sup 18}F]flutemetamol (FMM) across a spectrum of Alzheimer's disease (AD) and to compare Aβ deposition between [{sup 18}F]FMM and [{sup 11}C]PIB PET imaging. The study included 36 patients with AD, 68 subjects with mild cognitive impairment (MCI), 41 older healthy controls (HC) (aged ≥56), 11 young HC (aged ≤45), and 10 transitional HC (aged 46-55). All 166 subjects underwent 30-min static [{sup 18}F]FMM PET 85 min after injection, 60-min dynamic [{sup 11}C]PIB PET, and cognitive testing. [{sup 18}F]FMM scans were assessed visually, and standardized uptake value ratios (SUVR) were defined quantitatively in regions of interest identified on coregistered MRI (cerebellar cortex as a reference region). The PIB distribution volume ratios (DVR) were determined in the same regions. Of 36 AD patients, 35 had positive scans, while 36 of 41 older HC subjects had negative scans. [{sup 18}F]FMM scans had a sensitivity of 97.2 % and specificity of 85.3 % in distinguishing AD patients from older HC subjects, and a specificity of 100 % for young and transitional HC subjects. The [{sup 11}C]PIB scan had the same results. Interreader agreement was excellent (kappa score = 0.81). The cortical FMM SUVR in AD patients was significantly greater than in older HC subjects (1.76 ± 0.23 vs 1.30 ± 0.26, p < 0.01). Of the MCI patients, 68 had a bimodal distribution of SUVR, and 29 of them (42.6 %) had positive scans. Cortical FMM SUVR values were strongly correlated with PIB DVR (r = 0.94, n = 145, p < 0.001). [{sup 18}F]FMM PET imaging detects Aβ deposition in patients along the continuum from normal cognitive status to dementia of AD and discriminates AD patients from HC subjects, similar to [{sup 11}C]PIB PET. (orig.)

  19. Multimodal correlation of dynamic [{sup 18}F]-AV-1451 perfusion PET and neuronal hypometabolism in [{sup 18}F]-FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Hammes, Jochen; Leuwer, Isabel [University Hospital Cologne, Multimodal Neuroimaging Group, Department of Nuclear Medicine, Cologne (Germany); Bischof, Gerard N. [University Hospital Cologne, Multimodal Neuroimaging Group, Department of Nuclear Medicine, Cologne (Germany); INM-3, Research Center Juelich, Juelich (Germany); Drzezga, Alexander [University Hospital Cologne, Multimodal Neuroimaging Group, Department of Nuclear Medicine, Cologne (Germany); German Center for Neurodegeneration (DZNE), Berlin (Germany); Eimeren, Thilo van [University Hospital Cologne, Multimodal Neuroimaging Group, Department of Nuclear Medicine, Cologne (Germany); INM-3, Research Center Juelich, Juelich (Germany); German Center for Neurodegeneration (DZNE), Berlin (Germany)

    2017-12-15

    Cerebral glucose metabolism measured with [18F]-FDG PET is a well established marker of neuronal dysfunction in neurodegeneration. The tau-protein tracer [18F]-AV-1451 PET is currently under evaluation and shows promising results. Here, we assess the feasibility of early perfusion imaging with AV-1451 as a substite for FDG PET in assessing neuronal injury. Twenty patients with suspected neurodegeneration underwent FDG and early phase AV-1451 PET imaging. Ten one-minute timeframes were acquired after application of 200 MBq AV-1451. FDG images were acquired on a different date according to clinical protocol. Early AV-1451 timeframes were coregistered to individual FDG-scans and spatially normalized. Voxel-wise intermodal correlations were calculated on within-subject level for every possible time window. The window with highest pooled correlation was considered optimal. Z-transformed deviation maps (ZMs) were created from both FDG and early AV-1451 images, comparing against FDG images of healthy controls. Regional patterns and extent of perfusion deficits were highly comparable to metabolic deficits. Best results were observed in a time window from 60 to 360 s (r = 0.86). Correlation strength ranged from r = 0.96 (subcortical gray matter) to 0.83 (frontal lobe) in regional analysis. ZMs of early AV-1451 and FDG images were highly similar. Perfusion imaging with AV-1451 is a valid biomarker for assessment of neuronal dysfunction in neurodegenerative diseases. Radiation exposure and complexity of the diagnostic workup could be reduced significantly by routine acquisition of early AV-1451 images, sparing additional FDG PET. (orig.)

  20. Computed tomography automatic exposure control techniques in 18F-FDG oncology PET-CT scanning.

    Science.gov (United States)

    Iball, Gareth R; Tout, Deborah

    2014-04-01

    Computed tomography (CT) automatic exposure control (AEC) systems are now used in all modern PET-CT scanners. A collaborative study was undertaken to compare AEC techniques of the three major PET-CT manufacturers for fluorine-18 fluorodeoxyglucose half-body oncology imaging. An audit of 70 patients was performed for half-body CT scans taken on a GE Discovery 690, Philips Gemini TF and Siemens Biograph mCT (all 64-slice CT). Patient demographic and dose information was recorded and image noise was calculated as the SD of Hounsfield units in the liver. A direct comparison of the AEC systems was made by scanning a Rando phantom on all three systems for a range of AEC settings. The variation in dose and image quality with patient weight was significantly different for all three systems, with the GE system showing the largest variation in dose with weight and Philips the least. Image noise varied with patient weight in Philips and Siemens systems but was constant for all weights in GE. The z-axis mA profiles from the Rando phantom demonstrate that these differences are caused by the nature of the tube current modulation techniques applied. The mA profiles varied considerably according to the AEC settings used. CT AEC techniques from the three manufacturers yield significantly different tube current modulation patterns and hence deliver different doses and levels of image quality across a range of patient weights. Users should be aware of how their system works and of steps that could be taken to optimize imaging protocols.

  1. Reproducibility of functional volume and activity concentration in 18F-FDG PET/CT of liver metastases in colorectal cancer.

    Science.gov (United States)

    Heijmen, Linda; de Geus-Oei, Lioe-Fee; de Wilt, Johannes H W; Visvikis, Dimitris; Hatt, Mathieu; Visser, Eric P; Bussink, Johan; Punt, Cornelis J A; Oyen, Wim J G; van Laarhoven, Hanneke W M

    2012-12-01

    Several studies showed potential for monitoring response to systemic therapy in metastatic colorectal cancer patients with (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Before (18)F-FDG PET can be implemented for response evaluation the repeatability should be known. This study was performed to assess the magnitude of the changes in standardized uptake value (SUV), volume and total lesion glycolysis (TLG) in colorectal liver metastases and validate the biological basis of (18)F-FDG PET in colorectal liver metastases. Twenty patients scheduled for liver metastasectomy underwent two (18)F-FDG PET scans within 1 week. Bland-Altman analysis was performed to assess repeatability of SUV(max), SUV(mean), volume and TLG. Tumours were delineated using an adaptive threshold method (PET(SBR)) and a semiautomatic fuzzy locally adaptive Bayesian (FLAB) delineation method. Coefficient of repeatability of SUV(max) and SUV(mean) were ∼39 and ∼31 %, respectively, independent of the delineation method used and image reconstruction parameters. However, repeatability was worse in recently treated patients. The FLAB delineation method improved the repeatability of the volume and TLG measurements compared to PET(SBR), from coefficients of repeatability of over 85 % to 45 % and 57 % for volume and TLG, respectively. Glucose transporter 1 (GLUT1) expression correlated to the SUV(mean). Vascularity (CD34 expression) and tumour hypoxia (carbonic anhydrase IX expression) did not correlate with (18)F-FDG PET parameters. In conclusion, repeatability of SUV(mean) and SUV(max) was mainly affected by preceding systemic therapy. The repeatability of tumour volume and TLG could be improved using more advanced and robust delineation approaches such as FLAB, which is recommended when (18)F-FDG PET is utilized for volume or TLG measurements. Improvement of repeatability of PET measurements, for instance by dynamic PET scanning protocols, is probably necessary to effectively

  2. Reproducibility of functional volume and activity concentration in 18F-FDG PET/CT of liver metastases in colorectal cancer

    International Nuclear Information System (INIS)

    Heijmen, Linda; Geus-Oei, Lioe-Fee de; Visser, Eric P.; Oyen, Wim J.G.; Wilt, Johannes H.W. de; Visvikis, Dimitris; Hatt, Mathieu; Bussink, Johan; Punt, Cornelis J.A.; Laarhoven, Hanneke W.M. van

    2012-01-01

    Several studies showed potential for monitoring response to systemic therapy in metastatic colorectal cancer patients with 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Before 18 F-FDG PET can be implemented for response evaluation the repeatability should be known. This study was performed to assess the magnitude of the changes in standardized uptake value (SUV), volume and total lesion glycolysis (TLG) in colorectal liver metastases and validate the biological basis of 18 F-FDG PET in colorectal liver metastases. Twenty patients scheduled for liver metastasectomy underwent two 18 F-FDG PET scans within 1 week. Bland-Altman analysis was performed to assess repeatability of SUV max , SUV mean , volume and TLG. Tumours were delineated using an adaptive threshold method (PET SBR ) and a semiautomatic fuzzy locally adaptive Bayesian (FLAB) delineation method. Coefficient of repeatability of SUV max and SUV mean were ∝39 and ∝31 %, respectively, independent of the delineation method used and image reconstruction parameters. However, repeatability was worse in recently treated patients. The FLAB delineation method improved the repeatability of the volume and TLG measurements compared to PET SBR , from coefficients of repeatability of over 85 % to 45 % and 57 % for volume and TLG, respectively. Glucose transporter 1 (GLUT1) expression correlated to the SUV mean . Vascularity (CD34 expression) and tumour hypoxia (carbonic anhydrase IX expression) did not correlate with 18 F-FDG PET parameters. In conclusion, repeatability of SUV mean and SUV max was mainly affected by preceding systemic therapy. The repeatability of tumour volume and TLG could be improved using more advanced and robust delineation approaches such as FLAB, which is recommended when 18 F-FDG PET is utilized for volume or TLG measurements. Improvement of repeatability of PET measurements, for instance by dynamic PET scanning protocols, is probably necessary to effectively use PET for

  3. Head motion evaluation and correction for PET scans with 18F-FDG in the Japanese Alzheimer's disease neuroimaging initiative (J-ADNI) multi-center study.

    Science.gov (United States)

    Ikari, Yasuhiko; Nishio, Tomoyuki; Makishi, Yoko; Miya, Yukari; Ito, Kengo; Koeppe, Robert A; Senda, Michio

    2012-08-01

    Head motion during 30-min (six 5-min frames) brain PET scans starting 30 min post-injection of FDG was evaluated together with the effect of post hoc motion correction between frames in J-ADNI multicenter study carried out in 24 PET centers on a total of 172 subjects consisting of 81 normal subjects, 55 mild cognitive impairment (MCI) and 36 mild Alzheimer's disease (AD) patients. Based on the magnitude of the between-frame co-registration parameters, the scans were classified into six levels (A-F) of motion degree. The effect of motion and its correction was evaluated using between-frame variation of the regional FDG uptake values on ROIs placed over cerebral cortical areas. Although AD patients tended to present larger motion (motion level E or F in 22 % of the subjects) than MCI (3 %) and normal (4 %) subjects, unignorable motion was observed in a small number of subjects in the latter groups as well. The between-frame coefficient of variation (SD/mean) was 0.5 % in the frontal, 0.6 % in the parietal and 1.8 % in the posterior cingulate ROI for the scans of motion level 1. The respective values were 1.5, 1.4, and 3.6 % for the scans of motion level F, but reduced by the motion correction to 0.5, 0.4 and 0.8 %, respectively. The motion correction changed the ROI value for the posterior cingulate cortex by 11.6 % in the case of severest motion. Substantial head motion occurs in a fraction of subjects in a multicenter setup which includes PET centers lacking sufficient experience in imaging demented patients. A simple frame-by-frame co-registration technique that can be applied to any PET camera model is effective in correcting for motion and improving quantitative capability.

  4. PET scan and radiation protection

    International Nuclear Information System (INIS)

    Montoya, F.; Lahmi, A.; Rousseau, A.

    2006-01-01

    The purpose was the optimization of the radiation protection during examinations with 18 F-FDG, The immediate validation by the D.G.S.N.R., the results of dosimetry (h.p.10 = 12 μ sievert (average value/ technician / day for 6 patients) demonstrate the efficiency of the implemented means. From the very beginning, the installation of a PET-scanner requires a multidisciplinary conception. This essential thought contributes to an optimal radiation protection of the entire personnel of the service. (N.C.)

  5. Combined Modality Treatment for PET-Positive Non-Hodgkin Lymphoma: Favorable Outcomes of Combined Modality Treatment for Patients With Non-Hodgkin Lymphoma and Positive Interim or Postchemotherapy FDG-PET

    Energy Technology Data Exchange (ETDEWEB)

    Halasz, Lia M. [Harvard Radiation Oncology Program, Boston, Massachusetts (United States); Jacene, Heather A. [Department of Imaging, Dana-Farber Cancer Institute, and Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Catalano, Paul J. [Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Van den Abbeele, Annick D. [Department of Imaging, Dana-Farber Cancer Institute, and Department of Radiology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); LaCasce, Ann [Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Mauch, Peter M. [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Ng, Andrea K., E-mail: ang@lroc.harvard.edu [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, Massachusetts (United States)

    2012-08-01

    Purpose: To evaluate outcomes of patients treated for aggressive non-Hodgkin lymphoma (NHL) with combined modality therapy based on [{sup 18}F]fluoro-2-deoxy-2-D-glucose positron emission tomography (FDG-PET) response. Methods and Materials: We studied 59 patients with aggressive NHL, who received chemotherapy and radiation therapy (RT) from 2001 to 2008. Among them, 83% of patients had stage I/II disease. Patients with B-cell lymphoma received R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone)-based chemotherapy, and 1 patient with anaplastic lymphoma kinase-negative anaplastic T-cell lymphoma received CHOP therapy. Interim and postchemotherapy FDG-PET or FDG-PET/computed tomography (CT) scans were performed for restaging. All patients received consolidated involved-field RT. Median RT dose was 36 Gy (range, 28.8-50 Gy). Progression-free survival (PFS) and local control (LC) rates were calculated with and without a negative interim or postchemotherapy FDG-PET scan. Results: Median follow-up was 46.5 months. Thirty-nine patients had negative FDG-PET results by the end of chemotherapy, including 12 patients who had a negative interim FDG-PET scan and no postchemotherapy PET. Twenty patients were FDG-PET-positive, including 7 patients with positive interim FDG-PET and no postchemotherapy FDG-PET scans. The 3-year actuarial PFS rates for patients with negative versus positive FDG-PET scans were 97% and 90%, respectively. The 3-year actuarial LC rates for patients with negative versus positive FDG-PET scans were 100% and 90%, respectively. Conclusions: Patients who had a positive interim or postchemotherapy FDG-PET had a PFS rate of 90% at 3 years after combined modality treatment, suggesting that a large proportion of these patients can be cured with consolidated RT.

  6. Diagnosis of recurrent prostate cancer with PET/CT imaging using the gastrin-releasing peptide receptor antagonist {sup 68}Ga-RM2: Preliminary results in patients with negative or inconclusive [{sup 18}F]Fluoroethylcholine-PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Wieser, Gesche; Bartholomae, Mark [University of Freiburg, Department of Nuclear Medicine, Medical Center -Faculty of Medicine, Freiburg (Germany); Popp, Ilinca; Grosu, Anca-Ligia [University of Freiburg, Department of Radiation Oncology, Medical Center - Faculty of Medicine, Freiburg (Germany); Christian Rischke, H. [University of Freiburg, Department of Nuclear Medicine, Medical Center -Faculty of Medicine, Freiburg (Germany); University of Freiburg, Department of Radiation Oncology, Medical Center - Faculty of Medicine, Freiburg (Germany); Drendel, Vanessa [University of Freiburg, Institute for Pathology, Faculty of Medicine, Freiburg (Germany); Weber, Wolfgang A. [Memorial Sloan Kettering Cancer Center, Molecular Imaging and Therapy Service, New York, NY (United States); Mansi, Rosalba [University Hospital Basel, Division of Radiological Chemistry, Basel (Switzerland); Wetterauer, Ulrich; Schultze-Seemann, Wolfgang; Jilg, Cordula Annette [University of Freiburg, Department of Urology, Medical Center -Faculty of Medicine, Freiburg (Germany); Meyer, Philipp T. [University of Freiburg, Department of Nuclear Medicine, Medical Center -Faculty of Medicine, Freiburg (Germany); Partner Site Freiburg, German Cancer Consortium (DKTK), Freiburg (Germany)

    2017-08-15

    [{sup 18}F]fluoroethylcholine ({sup 18}FECH) has been shown to be a valuable PET-tracer in recurrent prostate cancer (PCa), but still has limited accuracy. RM2 is a gastrin-releasing peptide receptor (GRPr) antagonist that binds to GRPr on PCa cells. Recent studies suggest that GRPr imaging with PET/CT is a promising technique for staging and restaging of PCa. We explore the value of GRPr-PET using the {sup 68}Ga-labeled GRPr antagonist RM2 in a selected population of patients with biochemically recurrent PCa and a negative/inconclusive {sup 18}FECH-PET/CT. In this retrospective study 16 men with biochemical PCa relapse and negative (n = 14) or inconclusive (n = 2) {sup 18}FECH-PET/CT underwent whole-body {sup 68}Ga-RM2-PET/CT. Mean time from {sup 18}FECH-PET/CT to {sup 68}Ga-RM2-PET/CT was 6.1 ± 6.8 months. Primary therapies in these patients were radical prostatectomy (n = 13; 81.3%) or radiotherapy (n = 3; 18.7%). 14/16 patients (87.5%) had already undergone salvage therapies because of biochemical relapse prior to {sup 68}Ga-RM2-PET/CT imaging. Mean ± SD PSA at {sup 68}Ga-RM2-PET/CT was 19.4 ± 53.5 ng/ml (range 1.06-226.4 ng/ml). {sup 68}Ga-RM2-PET/CT showed at least one region with focal pathological uptake in 10/16 patients (62.5%), being suggestive of local relapse (n = 4), lymph node metastases (LNM; n = 4), bone metastases (n = 1) and lung metastasis with hilar LNM (n = 1). Seven of ten positive {sup 68}Ga-RM2 scans were positively confirmed by surgical resection and histology of the lesions (n = 2), by response to site-directed therapies (n = 2) or by further imaging (n = 3). Patients with a positive {sup 68}Ga-RM2-scan showed a significantly higher median PSA (6.8 ng/ml, IQR 10.2 ng/ml) value than those with a negative scan (1.5 ng/ml, IQR 3.1 ng/ml; p = 0.016). Gleason scores or concomitant antihormonal therapy had no apparent impact on the detection of recurrent disease. Even in this highly selected population of patients with known biochemical

  7. Hospice Admission and Survival After 18F-Fluoride PET Performed for Evaluation of Osseous Metastatic Disease in the National Oncologic PET Registry.

    Science.gov (United States)

    Gareen, Ilana F; Hillner, Bruce E; Hanna, Lucy; Makineni, Rajesh; Duan, Fenghai; Shields, Anthony F; Subramaniam, Rathan M; Siegel, Barry A

    2018-03-01

    We have previously reported that PET using 18 F-fluoride (NaF PET) for assessment of osseous metastatic disease was associated with substantial changes in intended management in Medicare beneficiaries participating in the National Oncologic PET Registry (NOPR). Here, we use Medicare administrative data to examine the association between NaF PET results and hospice claims within 180 d and 1-y survival. Methods: We classified NOPR NaF PET results linked to Medicare claims by imaging indication (initial staging [IS]; detection of suspected first osseous metastasis [FOM]; suspected progression of osseous metastasis [POM]; or treatment monitoring [TM]) and type of cancer (prostate, lung, breast, or other). Results were classified as definitely positive scan findings versus probably positive scan findings versus negative scan findings for osseous metastasis for IS and FOM; more extensive disease versus no change or less extensive disease for POM; and worse prognosis versus no change or better prognosis for TM, based on the postscan assessment. Our study included 21,167 scans obtained from 2011 to 2014 of consenting NOPR participants aged 65 y or older. Results: The relative risk of hospice claims within 180 d of a NaF PET scan was 2.0-7.5 times higher for patients with evidence of new or progressing osseous metastasis than for those without, depending on indication and cancer type (all P PET scan results are highly associated with subsequent hospice claims and, ultimately, with patient survival. NaF PET provides important information on the presence of osseous metastasis and prognosis to assist patients and their physicians when making decisions on whether to select palliative care and transition to hospice or whether to continue treatment. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  8. Simultaneous emission and transmission scanning in positron emission tomography

    International Nuclear Information System (INIS)

    Satoh, Tomohiko; Tanaka, Kazumi; Kitamura, Keishi; Amano, Masaharu; Miura, Shuichi

    2001-01-01

    Examination by PET (positron emission tomography) scanning, following the dosage of 2-deoxy- 18 F fluoro-D-glucose (FDG), is positively utilized for the diagnosis of cancers, rather than for the purpose of studies. This is because the examination by FDG-PET (PET scanning following the dosage of FDG) ensures higher efficiency in discrimination of cancers, than conventional CT and PET. The method of whole body scanning by PET scanning following the dosage of FDG is effectively utilized not only for discrimination cancers, but also for determining the degree of malignancy of tumors and evaluating the methods of treatment of cancers. In conventional methods for examining the degree of malignancy of tumors and evaluating the methods of cancer treatment, it is necessary to correct for the gamma-ray attenuation, which requires a longer time for examination, increasing the physical and psychological pains of the patients. We have installed the simultaneous emission and transmission scanning capability into the HEADTOME-V of the Shimadzu SET-2000W Series positron emission tomographic scanning instruments, to establish an instrument that permits FDG-PET whole body scanning in actual clinical fields, with minimized physical and psychological pains of patients concerned, yet ensuring an outstandingly high examination efficiency. This report also presents some data obtained by this newly developed instrument and those obtained in practical applications. (author)

  9. F.D.G.-PET scanning in managing patients with lymphoma

    International Nuclear Information System (INIS)

    Bodet-Milin, C.; Kraeber-Bodere, F.; Salaun, P.Y.; Crespin, C.; Vuillez, J.P.; Kraeber-Bodere, F.

    2009-01-01

    The place of positron emission tomography (PET) in the evaluation of diffuse at big cells B lymphomas and hodgkin lymphomas is validated. The clinical impact of the PET registered in end of therapy development is indisputable. recommendations must be followed for images interpretation. The PET is strongly recommended during the first evaluation of the disease because it is a reference examination that makes easy the interpretation at the end of the therapy and allows to evaluate the extension of the disease with a sensitivity and a specificity superior to the computerized tomography. the prognosis value of intermediate evaluations appears certain in the diffuse at big cells B lymphomas and the hodgkin lymphomas but the impact of an early therapy change induced by PET is still to determine. The criteria of interpretation of early evaluations are to standardize. for the other types of lymphomas, the PET can have an interest to confirm the the localized stages, especially for the follicular lymphomas and direct the biopsy for a patient ill of a low range lymphoma suspect of aggressive change. (N.C.)

  10. Ultra-low dose CT attenuation correction for PET/CT

    International Nuclear Information System (INIS)

    Xia Ting; Kinahan, Paul E; Alessio, Adam M; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren

    2012-01-01

    A challenge for positron emission tomography/computed tomography (PET/CT) quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently available, lowest dose CT techniques, extended duration cine CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging. (paper)

  11. Ultra-low dose CT attenuation correction for PET/CT

    Science.gov (United States)

    Xia, Ting; Alessio, Adam M.; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren; Kinahan, Paul E.

    2012-01-01

    A challenge for PET/CT quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently-available, lowest dose CT techniques, extended duration CINE CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. Methods We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. Results CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. Conclusion When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging. PMID:22156174

  12. Treatment response evaluation with 18F-FDG PET/CT and 18F-NaF PET/CT in multiple myeloma patients undergoing high-dose chemotherapy and autologous stem cell transplantation.

    Science.gov (United States)

    Sachpekidis, Christos; Hillengass, J; Goldschmidt, H; Wagner, B; Haberkorn, U; Kopka, K; Dimitrakopoulou-Strauss, A

    2017-01-01

    The aim of this study was to assess the combined use of the radiotracers 18 F-FDG and 18 F-NaF in treatment response evaluation of a group of multiple myeloma (MM) patients undergoing high-dose chemotherapy (HDT) followed by autologous stem cell transplantation (ASCT) by means of static (whole-body) and dynamic PET/CT (dPET/CT). Thirty-four patients with primary, previously untreated MM scheduled for treatment with HDT followed by ASCT were enrolled in the study. All patients underwent PET/CT scanning with 18 F-FDG and 18 F-NaF before and after therapy. Treatment response by means of PET/CT was assessed according to the European Organization for Research and Treatment of Cancer (EORTC) 1999 criteria. The evaluation of dPET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modelling and a non-compartmental approach leading to the extraction of fractal dimension (FD). An analysis was possible in 29 patients: three with clinical complete response (CR) and 26 with non-CR (13 patients near complete response-nCR, four patients very good partial response-VGPR, nine patients partial response-PR). After treatment, 18 F-FDG PET/CT was negative in 14/29 patients and positive in 15/29 patients, showing a sensitivity of 57.5 % and a specificity of 100 %. According to the EORTC 1999 criteria, 18 F-FDG PET/CT-based treatment response revealed CR in 14 patients ( 18 F-FDG PET/CT CR), PR in 11 patients ( 18 F-FDG PET/CT PR) and progressive disease in four patients ( 18 F-FDG PET/CT PD). In terms of 18 F-NaF PET/CT, 4/29 patients (13.8 %) had a negative baseline scan, thus failed to depict MM. Regarding the patients for which a direct lesion-to-lesion comparison was feasible, 18 F-NaF PET/CT depicted 56 of the 129 18 F-FDG positive lesions (43 %). Follow-up 18 F-NaF PET/CT showed persistence of 81.5 % of the baseline 18 F-NaF positive MM lesions after treatment, despite the fact that 64

  13. An experimental phantom study of the effect of gadolinium-based MR contrast agents on PET attenuation coefficients and PET quantification in PET-MR imaging: application to cardiac studies.

    Science.gov (United States)

    O' Doherty, Jim; Schleyer, Paul

    2017-12-01

    Simultaneous cardiac perfusion studies are an increasing trend in PET-MR imaging. During dynamic PET imaging, the introduction of gadolinium-based MR contrast agents (GBCA) at high concentrations during a dual injection of GBCA and PET radiotracer may cause increased attenuation effects of the PET signal, and thus errors in quantification of PET images. We thus aimed to calculate the change in linear attenuation coefficient (LAC) of a mixture of PET radiotracer and increasing concentrations of GBCA in solution and furthermore, to investigate if this change in LAC produced a measurable effect on the image-based PET activity concentration when attenuation corrected by three different AC strategies. We performed simultaneous PET-MR imaging of a phantom in a static scenario using a fixed activity of 40 MBq [18 F]-NaF, water, and an increasing GBCA concentration from 0 to 66 mM (based on an assumed maximum possible concentration of GBCA in the left ventricle in a clinical study). This simulated a range of clinical concentrations of GBCA. We investigated two methods to calculate the LAC of the solution mixture at 511 keV: (1) a mathematical mixture rule and (2) CT imaging of each concentration step and subsequent conversion to LAC at 511 keV. This comparison showed that the ranges of LAC produced by both methods are equivalent with an increase in LAC of the mixed solution of approximately 2% over the range of 0-66 mM. We then employed three different attenuation correction methods to the PET data: (1) each PET scan at a specific millimolar concentration of GBCA corrected by its corresponding CT scan, (2) each PET scan corrected by a CT scan with no GBCA present (i.e., at 0 mM GBCA), and (3) a manually generated attenuation map, whereby all CT voxels in the phantom at 0 mM were replaced by LAC = 0.1 cm -1 . All attenuation correction methods (1-3) were accurate to the true measured activity concentration within 5%, and there were no trends in image

  14. Colorectal cancer staging: comparison of whole-body PET/CT and PET/MR.

    Science.gov (United States)

    Catalano, Onofrio A; Coutinho, Artur M; Sahani, Dushyant V; Vangel, Mark G; Gee, Michael S; Hahn, Peter F; Witzel, Thomas; Soricelli, Andrea; Salvatore, Marco; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce R; Gervais, Debra

    2017-04-01

    Correct staging is imperative for colorectal cancer (CRC) since it influences both prognosis and management. Several imaging methods are used for this purpose, with variable performance. Positron emission tomography-magnetic resonance (PET/MR) is an innovative imaging technique recently employed for clinical application. The present study was undertaken to compare the staging accuracy of whole-body positron emission tomography-computed tomography (PET/CT) with whole-body PET/MR in patients with both newly diagnosed and treated colorectal cancer. Twenty-six patients, who underwent same day whole-body (WB) PET/CT and WB-PET/MR, were evaluated. PET/CT and PET/MR studies were interpreted by consensus by a radiologist and a nuclear medicine physician. Correlations with prior imaging and follow-up studies were used as the reference standard. Correct staging was compared between methods using McNemar's Chi square test. The two methods were in agreement and correct for 18/26 (69%) patients, and in agreement and incorrect for one patient (3.8%). PET/MR and PET/CT stages for the remaining 7/26 patients (27%) were discordant, with PET/MR staging being correct in all seven cases. PET/MR significantly outperformed PET/CT overall for accurate staging (P = 0.02). PET/MR outperformed PET/CT in CRC staging. PET/MR might allow accurate local and distant staging of CRC patients during both at the time of diagnosis and during follow-up.

  15. PET Imaging Stability Measurements During Simultaneous Pulsing of Aggressive MR Sequences on the SIGNA PET/MR System.

    Science.gov (United States)

    Deller, Timothy W; Khalighi, Mohammad Mehdi; Jansen, Floris P; Glover, Gary H

    2018-01-01

    The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68 Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68 Ge line source in the scatter phantom was stable within the range of 40.4%-40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count

  16. Primary mediastinal large B-cell lymphoma: Clinical features, prognostic factors and survival with RCHOP in Arab patients in the PET scan era

    Directory of Open Access Journals (Sweden)

    Salem Al Shemmari

    2014-01-01

    Full Text Available Objective: PMBCL is a distinct type of nonhodgkins lymphoma with specific clinicopathological features. To clarify clinical features, treatment alternatives and outcomes, we evaluated 28 Arab patients treated with chemotherapy or radiotherapy between 2006 and 2011. Patients and Methods: PMBCL lymphoma patients identified according to WHO classification and treated at KCCC between 2006 and 2011 were included in this study. Demographic and clinical data are presented as means or medians. Overall survival was estimated using the Kaplan-Meier method. Survival rates were compared using the log-rank test. A P < 0.05 was considered significant. Results: The median age of the patients was 31 years and the male to female ratio was 2:1. Majority of the patients (75% presented with stage I/II disease. Most had features of local extension like pleural effusion (18% and SVCO (39%. Only 11% of the patients had bone marrow involvement at presentation. 96% of the patients required biopsy from the mediastinal mass either by image guided core biopsy (75% or by surgical biopsy. Most patients were treated by RCHOP and involved field radiotherapy. Patients with positive PET scan after RCHOP chemotherapy received salvage chemotherapy and BEAM autologous marrow transplant. The five year OS for the entire group was 85% while the PFS was 73%. Patients who had PET scan for response evaluation had better OS [P = 0.013] and PFS [P = 0.039] when compared with those patients who received only radiotherapy based on CT scan evaluation. Conclusion: PMBCL is a specific lymphoma entity seen in the young with good survival. The role of PET scan for response evaluation and the type of consolidation therapy needs to be further clarified

  17. Dynamic PET scanning and compartmental model analysis to determine cellular level radiotracer distribution in vivo

    International Nuclear Information System (INIS)

    Smith, G.T.; Hubner, K.F.; Goodman, M.M.; Stubbs, J.B.

    1992-01-01

    Positron emission tomography (PET) has been used to measure tissue radiotracer concentration in vivo. Radiochemical distribution can be determined with compartmental model analysis. A two compartment model describes the kinetics of N-13 ammonia ( 13 NH 3 ) in the myocardium. The model consists of a vascular space, Q 1 and a space for 13 NH 3 bound within the tissue, Q 2 . Differential equations for the model can be written: X(t) = AX(t) + BU( t), Y(t)= CX(t)+ DU(t) (1) where X(t) is a column vector [Q 1 (t); Q 2 (t)], U(t) is the arterial input activity measured from the left ventricular blood pool, and Y(t) is the measured tissue activity using PET. Matrices A, B, C, and D are dependent on physiological parameters describing the kinetics of 13 NH 3 in the myocardium. Estimated parameter matrices in Equation 1 have been validated in dog experiments by measuring myocardial perfusion with dynamic PET scanning and intravenous injection of 13 NH 3 . Tracer concentrations for each compartment can be calculated by direct integration of Equation 1. If the cellular level distribution of each compartment is known, the concentration of tracer within the intracellular and extracellular space can be determined. Applications of this type of modeling include parameter estimation for measurement of physiological processes, organ level dosimetry, and determination of cellular radiotracer distribution

  18. FDG small animal PET permits early detection of malignant cells in a xenograft murine model

    International Nuclear Information System (INIS)

    Nanni, Cristina; Spinelli, Antonello; Trespidi, Silvia; Ambrosini, Valentina; Castellucci, Paolo; Farsad, Mohsen; Franchi, Roberto; Fanti, Stefano; Leo, Korinne di; Tonelli, Roberto; Pession, Andrea; Pettinato, Cinzia; Rubello, Domenico

    2007-01-01

    The administration of new anticancer drugs in animal models is the first step from in vitro to in vivo pre-clinical protocols. At this stage it is crucial to ensure that cells are in the logarithmic phase of growth and to avoid vascular impairment, which can cause inhomogeneous distribution of the drug within the tumour and thus lead to bias in the final analysis of efficacy. In subcutaneous xenograft murine models, positivity for cancer is visually recognisable 2-3 weeks after inoculation, when a certain amount of necrosis is usually already present. The aim of this study was to evaluate the accuracy of FDG small animal PET for the early detection of malignant masses in a xenograft murine model of human rhabdomyosarcoma. A second goal was to analyse the metabolic behaviour of this xenograft tumour over time. We studied 23 nude mice, in which 7 x 10 6 rhabdomyosarcoma cells (RH-30 cell line) were injected in the dorsal subcutaneous tissues. Each animal underwent four FDG PET scans (GE, eXplore Vista DR) under gas anaesthesia. The animals were studied 2, 5, 14 and 20 days after inoculation. We administered 20 MBq of FDG via the tail vein. Uptake time was 60 min, and acquisition time, 20 min. Images were reconstructed with OSEM 2D iterative reconstruction and the target to background ratio (TBR) was calculated for each tumour. Normal subcutaneous tissue had a TBR of 0.3. Necrosis was diagnosed when one or more cold areas were present within the mass. All the animals were sacrificed and histology was available to verify PET results. PET results were concordant with the findings of necropsy and histology in all cases. The incidence of the tumour was 69.6% (16/23 animals); seven animals did not develop a malignant mass. Ten of the 23 animals had a positive PET scan 2 days after inoculation. Nine of these ten animals developed a tumour; the remaining animal became negative, at the third scan. The positive predictive value of the early PET scan was 90% (9/10 animals

  19. Calculation of left ventricular volumes and ejection fraction from dynamic cardiac-gated 15O-water PET/CT: 5D-PET.

    Science.gov (United States)

    Nordström, Jonny; Kero, Tanja; Harms, Hendrik Johannes; Widström, Charles; Flachskampf, Frank A; Sörensen, Jens; Lubberink, Mark

    2017-11-14

    Quantitative measurement of myocardial blood flow (MBF) is of increasing interest in the clinical assessment of patients with suspected coronary artery disease (CAD). 15 O-water positron emission tomography (PET) is considered the gold standard for non-invasive MBF measurements. However, calculation of left ventricular (LV) volumes and ejection fraction (EF) is not possible from standard 15 O-water uptake images. The purpose of the present work was to investigate the possibility of calculating LV volumes and LVEF from cardiac-gated parametric blood volume (V B ) 15 O-water images and from first pass (FP) images. Sixteen patients with mitral or aortic regurgitation underwent an eight-gate dynamic cardiac-gated 15 O-water PET/CT scan and cardiac MRI. V B and FP images were generated for each gate. Calculations of end-systolic volume (ESV), end-diastolic volume (EDV), stroke volume (SV) and LVEF were performed with automatic segmentation of V B and FP images, using commercially available software. LV volumes and LVEF were calculated with surface-, count-, and volume-based methods, and the results were compared with gold standard MRI. Using V B images, high correlations between PET and MRI ESV (r = 0.89, p  0.86, p dynamic 15 O-water PET is feasible and shows good correlation with MRI. However, the analysis method is laborious, and future work is needed for more automation to make the method more easily applicable in a clinical setting.

  20. Prognostic value of metabolic parameters and clinical impact of {sup 18}F-fluorocholine PET/CT in biochemical recurrent prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Colombie, M.; Bailly, C.; Rusu, D.; Rousseau, N. [Institut de Cancerologie de l' Ouest Rene Gauducheau, Nuclear Medicine, 44805 Nantes-St Herblain Cedex (France); Campion, L. [ICO Cancer Center, Statistics, Saint-Herblain (France); Nantes University, Nantes-Angers Cancer Research Center, INSERM U892-CNRS UMR 6299, Nantes (France); Rousseau, T. [Urologic Clinic Nantes-Atlantis, Saint Herblain (France); Mathieu, C. [University Hospital, Nuclear Medicine, Nantes (France); Ferrer, L. [ICO Cancer Center, Physics, Saint-Herblain (France); Kraeber-Bodere, F. [Institut de Cancerologie de l' Ouest Rene Gauducheau, Nuclear Medicine, 44805 Nantes-St Herblain Cedex (France); University Hospital, Nuclear Medicine, Nantes (France); Nantes University, Nantes-Angers Cancer Research Center, INSERM U892-CNRS UMR 6299, Nantes (France); Rousseau, C. [Institut de Cancerologie de l' Ouest Rene Gauducheau, Nuclear Medicine, 44805 Nantes-St Herblain Cedex (France); Nantes University, Nantes-Angers Cancer Research Center, INSERM U892-CNRS UMR 6299, Nantes (France)

    2015-11-15

    To evaluate the therapeutic impact of {sup 18}F-fluorocholine (FCH) PET/CT in biochemical recurrent prostate cancer (PC) and to investigate the value of quantitative FCH PET/CT parameters in predicting progression-free survival (PFS). This retrospective study included 172 consecutive patients with PC who underwent FCH PET/CT for biochemical recurrence. Mean rising PSA was 10.7 ± 35.0 ng/ml. Patients with positive FCH PET were classified into three groups: those with uptake only in the prostatic bed, those with locoregional disease, and those with distant metastases. Referring physicians were asked to indicate the hypothetical therapeutic strategy with and without the FCH PET/CT results. Clinical variables and PET parameters including SUVmax, SUVpeak, SUVmean, total lesion choline kinase activity (TLCKA) and standardized added metabolic activity (SAM) were recorded and a multivariate analysis was performed to determine the factors independently predicting PFS. In 137 of the 172 patients, the FCH PET/CT scan was positive, and of these, 29.9 % (41/137) had prostatic recurrence, 42.3 % (58/137) had pelvic lymph node recurrence with or without prostatic recurrence, and 27.7 % (38/137) had distant metastases. The FCH PET/CT result led to a change in treatment plan in 43.6 % (75/172) of the 172 patients. Treatment was changed in 49.6 % (68/137) of those with a positive FCH PET/CT scan and in 20 % (7/35) of those with a negative FCH PET/CT scan. After a median follow-up of 29.3 months (95 % CI 18.9 - 45.9 months), according to multivariate analysis age <70 years, SAM ≥23 and SUVmean ≥3 were parameters independently predicting PFS. A nomogram constructed using the three parameters showed 49 months of PFS in patients with the best scores (0 or 1) and only 11 months in patients with a poor score (score 3). This study indicates that a positive FCH PET result in PC patients with biochemical recurrence predicts a shorter PFS and confirms the major impact of the FCH PET

  1. Evaluation of pulmonary lesions with {sup 18}FDG CoDo PET: comparison with CT, MRI and clinical findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Zy; Park, Chan Hee; Han, Myung Ho; Hwang, Sung Chul; Lee, Chul Joo; Pai, Moon Sun [College of Medicine, Ajou Univ., Suwon (Korea, Republic of)

    1998-07-01

    Dual-head gamma camera coincidence (PET) is one of the recent approaches to overcome the problems of the dedicated PET scans such as high cost and limited availability. The purpose of this study was to evaluate the accuracy of {sup 18}FDG coincidence detection (CoDe) PET in differentiating benign from malignant lesions and staging malignancy. Thirty-one patients with pulmonary lesions underwent {sup 18}FDG CoDe PET. Patients were prepared for the study by overnight fasting. The images were acquired at about 1 hr postinjection of 3-10 mCi {sup 18}FDG intravenously using dual head gamma camera (Elscint, Varicam) equipped with 5/8 inch thick NaI crystal. The images were analyzed visually. Pathologic proof of diagnosis was obtained by aspiration biopsy in 24 patients and by operation in 7 patients. Among 25 patients with pathologically proven malignant lesions ( 11 adenocarcinoma, 3 non-small cell lung cancer, 5 squamous cell cancer, 4 small cell lung cancer, 1 invasive thymoma and 1 adenosquamous cell cancer), {sup 18}FDG CoDe PET could not detect only 1 lesion which was adenocarcinoma of less than 1 cm in size. In seven patients underwent lobectomy, 6 CoDe PET studies agreed with pathologic results. Whereas only 3 of 7 patients CT findings agreed with pathologic findings. However, 6 patients with benign lesions also showed positive FDG uptake. The false positive pathologies were due to tuberculosis, pneumonia, and granulomatous changes due to silicosis. {sup 18}FDG CoDe PET was sensitive in the evaluation of lung lesions but was not specific for malignancy. {sup 18}FDG CoDe PET was more sensitive than CT in nodal staging in limited number of patients studied thus far.

  2. Comparison of PET/CT with Sequential PET/MRI Using an MR-Compatible Mobile PET System.

    Science.gov (United States)

    Nakamoto, Ryusuke; Nakamoto, Yuji; Ishimori, Takayoshi; Fushimi, Yasutaka; Kido, Aki; Togashi, Kaori

    2018-05-01

    The current study tested a newly developed flexible PET (fxPET) scanner prototype. This fxPET system involves dual arc-shaped detectors based on silicon photomultipliers that are designed to fit existing MRI devices, allowing us to obtain fused PET and MR images by sequential PET and MR scanning. This prospective study sought to evaluate the image quality, lesion detection rate, and quantitative values of fxPET in comparison with conventional whole-body (WB) PET and to assess the accuracy of registration. Methods: Seventeen patients with suspected or known malignant tumors were analyzed. Approximately 1 h after intravenous injection of 18 F-FDG, WB PET/CT was performed, followed by fxPET and MRI. For reconstruction of fxPET images, MRI-based attenuation correction was applied. The quality of fxPET images was visually assessed, and the number of detected lesions was compared between the 2 imaging methods. SUV max and maximum average SUV within a 1 cm 3 spheric volume (SUV peak ) of lesions were also compared. In addition, the magnitude of misregistration between fxPET and MR images was evaluated. Results: The image quality of fxPET was acceptable for diagnosis of malignant tumors. There was no significant difference in detectability of malignant lesions between fxPET and WB PET ( P > 0.05). However, the fxPET system did not exhibit superior performance to the WB PET system. There were strong positive correlations between the 2 imaging modalities in SUV max (ρ = 0.88) and SUV peak (ρ = 0.81). SUV max and SUV peak measured with fxPET were approximately 1.1-fold greater than measured with WB PET. The average misregistration between fxPET and MR images was 5.5 ± 3.4 mm. Conclusion: Our preliminary data indicate that running an fxPET scanner near an existing MRI system provides visually and quantitatively acceptable fused PET/MR images for diagnosis of malignant lesions. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  3. [Increased glucose uptake by seborrheic keratosis on PET scan].

    Science.gov (United States)

    Merklen-Djafri, C; Truntzer, P; Hassler, S; Cribier, B

    2017-05-01

    Positron emission tomography (PET) is an examination based upon the uptake of a radioactive tracer by hypermetabolic cells. It is primarily used in tandem with tomodensitometry (PET-TDM) for cancer staging because of its high sensitivity and specificity for the detection of metastases. However, unusually high uptake may occur with benign tumours, including skin tumours. Herein, we report an extremely rare case of pathological uptake levels resulting from seborrhoeic keratosis. A 55-year-old male patient with oesophageal squamous-cell carcinoma was referred to us following the discovery of an area of high marker uptake following PET-TDM and corresponding to a pigmented skin lesion. No other areas of suspect high uptake were seen. The lesion was surgically excised and histological examination indicated seborrhoeic keratosis. The histological appearance was that of standard seborrhoeic keratosis without any notable mitotic activity. PET-TDM is an examination that enables diagnosis of malignancy. However, rare cases have been described of increased marker uptake by benign cutaneous tumours such as histiocytofibroma, pilomatricoma and condyloma. To date, there have only been only very few cases of increased uptake due to seborrhoeic keratosis. This extremely unusual case of increased glucose uptake in PET-TDM due to seborrhoeic keratosis confirms that the hypermetabolic activity detected by this examination is not necessarily synonymous with malignancy and that confirmation by clinical and histological findings is essential. The reasons for increased metabolic activity within such benign tumours are not known. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Comparison of CT and PET/CT for biopsy guidance in oncological patients

    Energy Technology Data Exchange (ETDEWEB)

    Cerci, Juliano J.; Bogoni, Mateos; Cunha Pereira, Carlos; Cerci, Rodrigo J.; Krauzer, Cassiano; Vicente Vitola, Joao [Quanta - Diagnostico e Terapia, Curitiba, PR (Brazil); Tabacchi, Elena; Fanti, Stefano [University Hospital S. Orsola-Malpighi, Nuclear Medicine Department, Bologna (Italy); Delbeke, Dominique [Vanderbilt University, Nashville, TN (United States); Giacometti Sakamoto, Danielle [Byori - Laboratorio de Patologia, Curitiba (Brazil)

    2017-08-15

    To compare FDG PET/CT and CT for the guidance of percutaneous biopsies with histological confirmation of lesions. We prospectively evaluated 323 patients of whom 181 underwent FDG PET/CT-guided biopsy (total 188 biopsies) and 142 underwent CT-guided biopsy (total 146 biopsies). Biopsies were performed using the same PET/CT scanner with a fluoroscopic imaging system. Technical feasibility, clinical success and complication rates in the two groups were evaluated. Of the 188 biopsies with PET/CT guidance, 182 (96.8%) were successful with conclusive tissue samples obtained and of the 146 biopsies with CT guidance, 137 (93.8%) were successful. Therefore, 6 of 188 biopsies (3.1%) with PET/CT guidance and 9 of 146 (6.1%) with CT guidance were inconclusive (p = 0.19). Due to inconclusive histological results, 4 of the 188 lesions (2.1%) were rebiopsied with PET/CT guidance and 3 of 146 lesions (2.0%) were rebiopsied with CT guidance. Histology demonstrated that 142 of 188 lesions (75.5%) were malignant, and 40 (21.2%) were benign in the PET/CT-guided group, while 89 of 146 lesions (60.9%) were malignant and 48 (32.8%) were benign in the CT-guided group (p = 0.004 and 0.01, respectively). Patients with a histological diagnosis of benign lesion had no recurrence of disease with a minimum of 6 months follow-up. Of the 188 PET/CT-guided biopsies, 6 (3.1%) were repeat biopsies due to a previous nondiagnostic CT-guided biopsy performed in a different diagnostic centre. The interval between the two biopsies was less than a month in all cases. Histology revealed five malignant lesions and one benign lesion among these. The complication rate in the PET/CT-guided biopsy group was 12.7% (24 of 188), while in the CT-guided group, was 9.5% (14 of 146, p = 0.26). Therefore, there was no significant difference in complication rates between PET/CT and CT guidance. PET/CT-guided biopsy is already known to be a feasible and accurate method in the diagnostic work-up of suspected malignant

  5. Comparison of CT and PET/CT for biopsy guidance in oncological patients

    International Nuclear Information System (INIS)

    Cerci, Juliano J.; Bogoni, Mateos; Cunha Pereira, Carlos; Cerci, Rodrigo J.; Krauzer, Cassiano; Vicente Vitola, Joao; Tabacchi, Elena; Fanti, Stefano; Delbeke, Dominique; Giacometti Sakamoto, Danielle

    2017-01-01

    To compare FDG PET/CT and CT for the guidance of percutaneous biopsies with histological confirmation of lesions. We prospectively evaluated 323 patients of whom 181 underwent FDG PET/CT-guided biopsy (total 188 biopsies) and 142 underwent CT-guided biopsy (total 146 biopsies). Biopsies were performed using the same PET/CT scanner with a fluoroscopic imaging system. Technical feasibility, clinical success and complication rates in the two groups were evaluated. Of the 188 biopsies with PET/CT guidance, 182 (96.8%) were successful with conclusive tissue samples obtained and of the 146 biopsies with CT guidance, 137 (93.8%) were successful. Therefore, 6 of 188 biopsies (3.1%) with PET/CT guidance and 9 of 146 (6.1%) with CT guidance were inconclusive (p = 0.19). Due to inconclusive histological results, 4 of the 188 lesions (2.1%) were rebiopsied with PET/CT guidance and 3 of 146 lesions (2.0%) were rebiopsied with CT guidance. Histology demonstrated that 142 of 188 lesions (75.5%) were malignant, and 40 (21.2%) were benign in the PET/CT-guided group, while 89 of 146 lesions (60.9%) were malignant and 48 (32.8%) were benign in the CT-guided group (p = 0.004 and 0.01, respectively). Patients with a histological diagnosis of benign lesion had no recurrence of disease with a minimum of 6 months follow-up. Of the 188 PET/CT-guided biopsies, 6 (3.1%) were repeat biopsies due to a previous nondiagnostic CT-guided biopsy performed in a different diagnostic centre. The interval between the two biopsies was less than a month in all cases. Histology revealed five malignant lesions and one benign lesion among these. The complication rate in the PET/CT-guided biopsy group was 12.7% (24 of 188), while in the CT-guided group, was 9.5% (14 of 146, p = 0.26). Therefore, there was no significant difference in complication rates between PET/CT and CT guidance. PET/CT-guided biopsy is already known to be a feasible and accurate method in the diagnostic work-up of suspected malignant

  6. 18F-FDG hybrid PET in patients with suspected spondylitis

    International Nuclear Information System (INIS)

    Gratz, S.; Behr, T.M.; Behe, M.; Doerner, J.; Fischer, U.; Grabbe, E.; Altenvoerde, G.; Meller, J.; Becker, W.

    2002-01-01

    This study investigated the value of fluorine-18 2'-deoxy-2-fluoro-D-glucose (FDG) imaging with a double-headed gamma camera operated in coincidence (hybrid PET) detection mode in patients with suspected spondylitis. Comparison was made with conventional nuclear medicine imaging modalities and magnetic resonance imaging (MRI). Sixteen patients with suspected spondylitis (nine male, seven female, mean age 59 years) prospectively underwent FDG hybrid PET (296 MBq) and MRI. For intra-individual comparison, the patients were also imaged with technetium-99m methylene diphosphonate (MDP) (555 MBq) (n=13) and/or gallium-67 citrate (185 MBq) (n=11). For FDG hybrid PET, two or three transverse scans were performed. Ratios of infected (target) to non-infected (background) (T/B) vertebral bodies were calculated. MR images were obtained of the region of interest. Patients found positive for spondylitis with MRI and/or FDG hybrid PET underwent surgical intervention and histological grading of the individual infected foci. Twelve out of 16 patients were found to be positive for spondylitis. Independent of the grade of infection and the location in the spine, all known infected vertebrae (n=23, 9 thoracic, 12 lumbar, 2 sacral) were detected by FDG hybrid PET. T/B ratios higher than 1.45±0.05 (at 1 h p.i.) were indicative of infectious disease, whereas ratios below this value were found in cases of degenerative change. FDG hybrid PET was superior to MRI in patients who had a history of surgery and suffered from a high-grade infection in combination with paravertebral abscess formation (n=2; further computed tomography was needed) and in those with low-grade spondylitis (n=2, no oedema) or discitis (n=2, mild oedema). False-positive 67 Ga citrate images (n=5: 2 spondylodiscitis, 1 aortitis, 1 pleuritis, 1 pulmonary tuberculosis) and 99m Tc-MDP SPET (n=4: 1 osteoporosis, 2 spondylodiscitis, 1 fracture) were equally well detected by FDG hybrid PET and MRI. No diagnostic problems

  7. 68Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumours

    International Nuclear Information System (INIS)

    Ambrosini, Valentina; Nanni, Cristina; Castellucci, Paolo; Allegri, Vincenzo; Montini, Giancarlo; Franchi, Roberto; Zompatori, Maurizio; Campana, Davide; Tomassetti, Paola; Rubello, Domenico; Fanti, Stefano

    2010-01-01

    To retrospectively evaluate the sensitivity, specificity and accuracy of 68 Ga-DOTA-NOC PET/CT and CT alone for the evaluation of bone metastasis in patients with neuroendocrine tumour (NET). From among patients with NET who underwent 68 Ga-DOTA-NOC PET/CT between April 2006 and November 2008 in our centre, 223 were included in the study. Criteria for inclusion were pathological confirmation of NET and a follow-up period of at least 10 months. PET and CT images were retrospectively reviewed by two nuclear medicine specialists and two radiologists, respectively, without knowledge of the patient history or the findings of other imaging modalities. PET data were compared with the CT findings. Interobserver agreement was evaluated in terms of the kappa score. Clinical and imaging follow-up were used as the standard of reference to evaluate the PET findings. PET was performed for staging (49/223), unknown primary tumour detection (24/223), restaging (32/223), restaging before radioimmunotherapy (1/223), evaluation during therapy (12/223), equivocal findings on conventional imaging (4/223 at the bone level; 61/223 at sites other than bone), and follow-up (40/223). A very high interobserver agreement was observed. CT detected at least one bone lesion in only 35 of 44 patients with a positive PET scan. In particular, PET showed more lesions in 20/35 patients, a lower number of lesions in 8/35, and the same number in 7/35. The characteristics of the lesions (sclerotic, lytic, mixed) on the basis of the CT report did not influence PET reading. PET revealed the presence of at least one bone metastasis in nine patients with a negative CT scan. Considering patients with a negative PET scan (179), CT showed equivocal findings at the bone level in three (single small sclerotic abnormality in two at the spine level, and bilateral small sclerotic abnormalities in the humeri, femurs and scapula). Clinical follow-up confirmed the PET findings in all patients; thus there were no false

  8. [Usefulness of (18)FDG PET-CT scan as a diagnostic tool of fever of unknown origin].

    Science.gov (United States)

    García-Gómez, Francisco Javier; Acevedo-Báñez, Irene; Martínez-Castillo, Rubén; García-Gutiérrez, Manuel; Tirado-Hospital, Juan Luis; Borrego-Dorado, Isabel

    2015-07-20

    Classic fever of unknown origin (FUO) is defined as the presence of fever greater than 38.3°C of at least 3 weeks with an uncertain diagnosis. Identification of the etiology is crucial in guiding further diagnostic procedures and subsequent patient management. The aim of this study was to evaluate the role of fluorine-18 fluorodeoxyglucose ((18)F-FDG) positron emission tomography combined with computed tomography (PET/CT) in the diagnostic orientation of FUO. An observational retrospective study was performed, including 30 consecutive patients who had been studied between March 2010 and September 2013. Twenty-six out of 30 patients (86.67%) had a definitive diagnosis after pathologic confirmation in 15 cases, microbiological findings in one patient and clinical and radiological follow-up in 10 patients (mean: 16.38 months). Among the positive scans, malignancy (n=10), inflammatory (n=8), infectious (n=4) and miscellaneous causes (n=1) were identified. (18)F-FDG PET/CT had a diagnostic accuracy of 90.00%, sensitivity of 88.46% (95% confidence interval [95% CI] 76-101), specificity of 100.00% (95% CI 100-100), positive predictive values of 100.00% (95% CI100-100) and negative predictive value of 57.14% (95% CI 20-91). (18)F-FDG PET/CT provided useful for the etiologic diagnosis of FUO, with high sensitivity and specificity. (18)F-FDG PET/CT has an incremental morphological and functional value, especially indicating the best biopsy site. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  9. PET-CT in endocrinology

    International Nuclear Information System (INIS)

    Parysow, O.; Jager, V.; Racioppi, S.; Mollerach, A.M.; Collaud, C.; Arma, I.

    2008-01-01

    PET/CT scans have reached an important place in the evaluation of endocrine tumors. The metabolic marker 18F-FDG is the most widespread over the world, and, for the time being, it is the only one available in our country. The limitations of this technique in Endocrinology include high differentiation and low aggressiveness of most endocrine tumors, and low detection rate for low cellularity and/or small lesions. Indications for PET/CT scan in these tumors should be precise, due to the fact that not all of these lesions are significantly glucose-avid and to extract the maximum diagnostic efficacy of this modality to achieve the optimum diagnostic accuracy. The most important indication is DTC with high Tg levels and negative 131-Iodine scans. It is advisable to indicate a PET/CT scan in patients with Tg > 10 ng/ml and stimulated TSH (endogenous or exogenous). The aim is to locate recurrences and metastases in order to remove them, either surgically or by any other therapy alternative to 131 I. Due to higher uptake in more aggressive lesions, this study has a high prognostic value. In patients with high Tg levels, negative 131 I scan, and abnormal FDG uptake, the practitioner must act more aggressively in order to remove the pathologic foci, while with a negative FDG -PET scan, the conduct can be expectant, with periodic follow-up. The introduction of other positron-emitting tracers like 124-Iodine, is likely to yield superior quality images and provide better diagnoses. FDG has a limited efficiency in neuroendocrine tumors, unless they show a significant level of dedifferentiation. The scan is indicated in MTC, when calcitonin levels are above 1000 pg/ml, in order to locate the tumor sites. With the introduction of more specific positron-emitting radiopharmaceuticals, such as 18F-DOPA, 68Ga DOTA, 11C methomidate, 11C-hydroxytryptophan and others, it will be possible to study the metabolic-molecular behavior of these tumors with a more accurate approach. (author) [es

  10. Treatment response evaluation with {sup 18}F-FDG PET/CT and {sup 18}F-NaF PET/CT in multiple myeloma patients undergoing high-dose chemotherapy and autologous stem cell transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Sachpekidis, Christos [German Cancer Research Center (DKFZ), Medical PET Group-Biological Imaging, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); University of Bern, Department of Nuclear Medicine, Inselspital, Bern University Hospital, Bern (Switzerland); Hillengass, J.; Wagner, B. [University Hospital Heidelberg, Department of Internal Medicine V, Heidelberg (Germany); Goldschmidt, H. [University Hospital Heidelberg, Department of Internal Medicine V, Heidelberg (Germany); National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg (Germany); Haberkorn, U. [German Cancer Research Center (DKFZ), Medical PET Group-Biological Imaging, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); University of Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); Kopka, K. [German Cancer Research Center (DKFZ), Department of Radiopharmaceutical Chemistry, Heidelberg (Germany); Dimitrakopoulou-Strauss, A. [German Cancer Research Center (DKFZ), Medical PET Group-Biological Imaging, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany)

    2017-01-15

    The aim of this study was to assess the combined use of the radiotracers {sup 18}F-FDG and {sup 18}F-NaF in treatment response evaluation of a group of multiple myeloma (MM) patients undergoing high-dose chemotherapy (HDT) followed by autologous stem cell transplantation (ASCT) by means of static (whole-body) and dynamic PET/CT (dPET/CT). Thirty-four patients with primary, previously untreated MM scheduled for treatment with HDT followed by ASCT were enrolled in the study. All patients underwent PET/CT scanning with {sup 18}F-FDG and {sup 18}F-NaF before and after therapy. Treatment response by means of PET/CT was assessed according to the European Organization for Research and Treatment of Cancer (EORTC) 1999 criteria. The evaluation of dPET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modelling and a non-compartmental approach leading to the extraction of fractal dimension (FD). An analysis was possible in 29 patients: three with clinical complete response (CR) and 26 with non-CR (13 patients near complete response-nCR, four patients very good partial response-VGPR, nine patients partial response-PR). After treatment, {sup 18}F-FDG PET/CT was negative in 14/29 patients and positive in 15/29 patients, showing a sensitivity of 57.5 % and a specificity of 100 %. According to the EORTC 1999 criteria, {sup 18}F-FDG PET/CT-based treatment response revealed CR in 14 patients ({sup 18}F-FDG PET/CT CR), PR in 11 patients ({sup 18}F-FDG PET/CT PR) and progressive disease in four patients ({sup 18}F-FDG PET/CT PD). In terms of {sup 18}F-NaF PET/CT, 4/29 patients (13.8 %) had a negative baseline scan, thus failed to depict MM. Regarding the patients for which a direct lesion-to-lesion comparison was feasible, {sup 18}F-NaF PET/CT depicted 56 of the 129 {sup 18}F-FDG positive lesions (43 %). Follow-up {sup 18}F-NaF PET/CT showed persistence of 81.5 % of the baseline {sup 18}F

  11. Interpretation criteria for FDG PET/CT in multiple myeloma (IMPeTUs): final results. IMPeTUs (Italian myeloma criteria for PET USe).

    Science.gov (United States)

    Nanni, Cristina; Versari, Annibale; Chauvie, Stephane; Bertone, Elisa; Bianchi, Andrea; Rensi, Marco; Bellò, Marilena; Gallamini, Andrea; Patriarca, Francesca; Gay, Francesca; Gamberi, Barbara; Ghedini, Pietro; Cavo, Michele; Fanti, Stefano; Zamagni, Elena

    2018-05-01

    ᅟ: FDG PET/CT ( 18 F-fluoro-deoxy-glucose positron emission tomography/computed tomography) is a useful tool to image multiple myeloma (MM). However, simple and reproducible reporting criteria are still lacking and there is the need for harmonization. Recently, a group of Italian nuclear medicine experts defined new visual descriptive criteria (Italian Myeloma criteria for Pet Use: IMPeTUs) to standardize FDG PET/CT evaluation in MM patients. The aim of this study was to assess IMPeTUs reproducibility on a large prospective cohort of MM patients. Patients affected by symptomatic MM who had performed an FDG PET/CT at baseline (PET0), after induction (PET-AI), and the end of treatment (PET-EoT) were prospectively enrolled in a multicenter trial (EMN02)(NCT01910987; MMY3033). After anonymization, PET images were uploaded in the web platform WIDEN® and hence distributed to five expert nuclear medicine reviewers for a blinded independent central review according to the IMPeTUs criteria. Consensus among reviewers was measured by the percentage of agreement and the Krippendorff's alpha. Furthermore, on a patient-based analysis, the concordance among all the reviewers in terms of positivity or negativity of the FDG PET/CT scan was tested for different thresholds of positivity (Deauville score (DS 2, 3, 4, 5) for the main parameters (bone marrow, focal score, extra-medullary disease). Eighty-six patients (211 FDG PET/CT scans) were included in this analysis. Median patient age was 58 years (range, 35-66 years), 45% were male, 15% of them were in stage ISS (International Staging System) III, and 42% had high-risk cytogenetics. The percentage agreement was superior to 75% for all the time points, reaching 100% of agreement in assessing the presence skull lesions after therapy. Comparable results were obtained when the agreement analysis was performed using the Krippendorff's alpha coefficient, either in every single time point of scanning (PET0, PET-AI or PET-EoT) or

  12. FDG PET/CT in cancer

    DEFF Research Database (Denmark)

    Petersen, Henrik; Holdgaard, Paw Christian; Madsen, Poul Henning

    2016-01-01

    PURPOSE: The Region of Southern Denmark (RSD), covering 1.2 of Denmark's 5.6 million inhabitants, established a task force to (1) retrieve literature evidence for the clinical use of positron emission tomography (PET)/CT and provide consequent recommendations and further to (2) compare the actual...... use of PET/CT in the RSD with these recommendations. This article summarizes the results. METHODS: A Work Group appointed a professional Subgroup which made Clinician Groups conduct literature reviews on six selected cancers responsible for 5,768 (62.6 %) of 9,213 PET/CT scans in the RSD in 2012...... use of PET/CT and literature-based recommendations was high in the first five mentioned cancers in that 96.2 % of scans were made for grade A or B indications versus only 22.2 % in gynaecological cancers. CONCLUSION: Evidence-based usefulness was reported in five of six selected cancers; evidence...

  13. FDG PET in monitoring response to neoadjuvant chemoradiotherapy in patients with locally advanced non-small lung carcinoma

    International Nuclear Information System (INIS)

    Berlangieri, S. U.; Lee, S. T.; Chan, A. M.; Mitchell, P. L.; Knight, S. R.; Feigen, M. M.; Scott, A. M.

    2009-01-01

    Full text:Aim: The aim of our study was to correlate 18F-FDG PET response to neoadjuvant chemoradiotherapy with histopathology in patients with locally advanced non-small cell lung carcinoma. Methods: All patients with stage III NSCLC planned for surgery following induction chemotherpay and/or radiotherapy who underwent pre- and post-treatment FDG-PET between 2004 and 2007 were retrospectively reviewed. The PET scans were performed according to standard protocol. The clinical FDG-PET TNM stage was correlated with the histopathology of the surgical specimens. Results: There were 9 patients (6 M :3 F ), median age 59.7 years (range 49 to 73 years). Post-treatment FDG-PET correctly predicted mediastinal pathological N stage in 8/9 patients, with one patient having microsopic disease in two nodes. The post-treatment FDG-PET correctly predicted pathological T stage in 7/9 patients, with 2 patients having small volume T4 disease not detected by PET. Post-treatment FDG-PET correctly downstaged 4 patients. Of the 5 patients, incorrectly staged on the post-treatment FDG-PET, one patient had microscopic pN 2 disease, 2 had pN 1 disease, and 2 had pT 4 disease. Conclusion: Post-treatment FDG-PET is predictive of pathological nodal stage within the mediastinum in patients with locally advanced NSCLC treated with neoadjuvant chemoradiotherapy. FDG-PET does not detect microscopic or small volume disease, nor is it able to define the boundaries of mediastinal tissue invasion.

  14. Use of the CT component of PET-CT to improve PET-MR registration: demonstration in soft-tissue sarcoma

    International Nuclear Information System (INIS)

    Somer, Edward J; Benatar, Nigel A; O'Doherty, Michael J; Smith, Mike A; Marsden, Paul K

    2007-01-01

    We have investigated improvements to PET-MR image registration offered by PET-CT scanning. Ten subjects with suspected soft-tissue sarcomas were scanned with an in-line PET-CT and a clinical MR scanner. PET to CT, CT to MR and PET to MR image registrations were performed using a rigid-body external marker technique and rigid and non-rigid voxel-similarity algorithms. PET-MR registration was also performed using transformations derived from the registration of CT to MR. The external marker technique gave fiducial registration errors of 2.1 mm, 5.1 mm and 5.3 mm for PET-CT, PET-MR and CT-MR registration. Target registration errors were 3.9 mm, 9.0 mm and 9.3 mm, respectively. Voxel-based algorithms were evaluated by measuring the distance between corresponding fiducials after registration. Registration errors of 6.4 mm, 14.5 mm and 9.5 mm, respectively, for PET-CT, PET-MR and CT-MR were observed for rigid-body registration while non-rigid registration gave errors of 6.8 mm, 16.3 mm and 7.6 mm for the same modality combinations. The application of rigid and non-rigid CT to MR transformations to accompanying PET data gives significantly reduced PET-MR errors of 10.0 mm and 8.5 mm, respectively. Visual comparison by two independent observers confirmed the improvement over direct PET-MR registration. We conclude that PET-MR registration can be more accurately and reliably achieved using the hybrid technique described than through direct rigid-body registration of PET to MR

  15. The impact of the PET/CT in comparison with the same day contrast enhanced CT in breast cancer management

    International Nuclear Information System (INIS)

    Piperkova, E.; Raphael, B.; Altinyay, M.; Castellon, I.; Libes, R.; Abdel-Dayem, H.

    2006-01-01

    Full text: The aim of this study is to evaluate the impact of 18F-fluorodeoxyglucose FDG positron emission tomography with fused computerized tomography (PET/CT) in comparison with the same day contrast enhanced CT (CE-CT) in the breast cancer (BC) management. 68 studies in 48 BC patients, 8 for initial and 60 for restaging disease, after surgery, radiation/chemotherapy, for radiation therapy planning or evaluating treatment response were included. All patients underwent whole body PET/CT for diagnostic purposes followed by CE-CT diagnostic scans of selected body regions. PET/CT was performed approximately 90 minutes following 10-15 mCi of 18F-FDG on a GE Discovery PET/CT system. CT part acquired with low dose X-ray for localization and attenuation correction. The CE-CT was performed according to departmental protocol. Out of a total of 235 lesions in 68 PET/CT and CE-CT studies, 189 were concordant between PET/CT and CE-CT. However, there were 46 discordant lesions, which were verified by either follow-up or biopsy. PET/CT correctly identified 25 (True Positive-TP). CE-CT identified 2 TP lesions missed by PET/CT (False negative): one liver metastasis with necrosis, which is a known non-avid FDG, the other was a missed abdominal metastatic node, which did not change staging or treatment. PET/CT incorrectly identified 2 lesions (False Positive) while CE-CT incorrectly identified 17 FP. For evaluating treatment response in 40 follow up studies PET/CT reported complete response in 15, partial response in 11, stable disease in 2, progression in 5, and free of disease following surgery - in 7. The CE-CT described progression of the disease in 1 PET/CT true negative study and no progression in 2 TP PET/CT studies. In this study, PET/CT played more important role than CECT scans alone and provided an impact on the management of BC patients

  16. Validating PET segmentation of thoracic lesions-is 4D PET necessary?

    DEFF Research Database (Denmark)

    Nielsen, M. S.; Carl, J.

    2017-01-01

    Respiratory-induced motions are prone to degrade the positron emission tomography (PET) signal with the consequent loss of image information and unreliable segmentations. This phantom study aims to assess the discrepancies relative to stationary PET segmentations, of widely used semiautomatic PET...... segmentation methods on heterogeneous target lesions influenced by motion during image acquisition. Three target lesions included dual F-18 Fluoro-deoxy-glucose (FDG) tracer concentrations as high-and low tracer activities relative to the background. Four different tracer concentration arrangements were...... segmented using three SUV threshold methods (Max40%, SUV40% and 2.5SUV) and a gradient based method (GradientSeg). Segmentations in static 3D-PET scans (PETsta) specified the reference conditions for the individual segmentation methods, target lesions and tracer concentrations. The motion included PET...

  17. Use of PET and PET/CT for Radiation Therapy Planning: IAEA expert report 2006-2007

    International Nuclear Information System (INIS)

    MacManus, Michael; Nestle, Ursula; Rosenzweig, Kenneth E.; Carrio, Ignasi; Messa, Cristina; Belohlavek, Otakar; Danna, Massimo; Inoue, Tomio; Deniaud-Alexandre, Elizabeth; Schipani, Stefano; Watanabe, Naoyuki; Dondi, Maurizio; Jeremic, Branislav

    2009-01-01

    Positron Emission Tomography (PET) is a significant advance in cancer imaging with great potential for optimizing radiation therapy (RT) treatment planning and thereby improving outcomes for patients. The use of PET and PET/CT in RT planning was reviewed by an international panel. The International Atomic Energy Agency (IAEA) organized two synchronized and overlapping consultants' meetings with experts from different regions of the world in Vienna in July 2006. Nine experts and three IAEA staff evaluated the available data on the use of PET in RT planning, and considered practical methods for integrating it into routine practice. For RT planning, 18 F fluorodeoxyglucose (FDG) was the most valuable pharmaceutical. Numerous studies supported the routine use of FDG-PET for RT target volume determination in non-small cell lung cancer (NSCLC). There was also evidence for utility of PET in head and neck cancers, lymphoma and in esophageal cancers, with promising preliminary data in many other cancers. The best available approach employs integrated PET/CT images, acquired on a dual scanner in the radiotherapy treatment position after administration of tracer according to a standardized protocol, with careful optimization of images within the RT planning system and carefully considered rules for contouring tumor volumes. PET scans that are not recent or were acquired without proper patient positioning should be repeated for RT planning. PET will play an increasing valuable role in RT planning for a wide range of cancers. When requesting PET scans, physicians should be aware of their potential role in RT planning.

  18. [F-18]FDG imaging of head and neck tumors: comparison of hybrid PET, dedicated PET and CT

    International Nuclear Information System (INIS)

    Dresel, S.; Brinkbaeumer, K.; Schmid, R.; Poepperl, G.; Hahn, K.; Szeimies, U.

    2001-01-01

    Aim: Aim of the study was to evaluate [F-18]FDG imaging of head and neck tumors using a Hybrid-PET device of the 2nd or 3rd generation. Examinations were compared to dedicated PET and Spiral-CT. Methods: 54 patients suffering from head and neck tumors were examined using dedicated PET and Hybrid-PET after injection of 185-350 MBq [F-18]FDG. Examinations were carried out on the dedicated PET first followed by a scan on the Hybrid-PET. Dedicated PET was acquired in 3D mode, Hybrid-PET was performed in list mode using an axial filter. Reconstruction of data was performed iteratively on both, dedicated PET and Hybrid-PET. All patients received a CT scan in multislice technique. All finding have been verified by the goldstandard histology or in case of negative histology by follow up. Results: Using dedicated PET the primary or recurrent lesion was correctly diagnosed in 47/48 patients, using Hybrid-PET in 46/48 patients and using CT in 25/48 patients. Metastatic disease in cervical lymph nodes was diagnosed in 17/18 patients with dedicated PET, in 16/18 patients with Hybrid-PET and in 15/18 with CT. False positive results with regard to lymph node metastasis were seen with one patient for dedicated PET and Hybrid-PET, respectively, and with 18 patients for CT. In a total of 11 patients unknown metastastic lesions were seen with dedicated PET and with Hybrid-PET elsewhere in the body. Additional malignant disease other than the head and neck tumor was found in 4 patients. Conclusion: Using Hybrid-PET for [F-18]FDG imaging reveals a loss of sensitivity and specificity of about 1-5% as compared to dedicated PET in head and neck tumors. [F-18]FDG PET with both, dedicated PET and Hybrid-PET is superior to CT in the diagnosis of primary or recurrent lesions as well as in the assessment of lymph node involvement. (orig.) [de

  19. Clinical study of 18F-FDG PET/CT whole-body imaging in disseminated carcinoma of unknown primary site

    International Nuclear Information System (INIS)

    Wang Guohui; Liang Peiyan; Cai Yanjun; Zhang Weiguang; Xie Chuanmiao; Wu Peihong

    2008-01-01

    Objective: Carcinoma of unknown primary (CUP) is not uncommon in usual clinical settings. They are, by definition, those cases with clinically suspected primary malignancy but not revealed by conventional investigation. The aim of this study was to investigate the efficacy of whole-body 18 F-fluoro- deoxyglucose (FDG) PET/CT in detecting a primary neoplasm for these patients. Methods: A totle of 150 patients with retrievable records from 169 CUP patients were selected within a group of consecutive 2589 patients from Jan. 2006 to Jun. 2007. All cases underwent whole-body FDG PET/CT scan. The final diagnoses were confirmed by pathologic results, other imaging modalities or clinical follow-up. Results: Among 150 patients, primary tumor sites were successfully detected by whole-body 18 F-FDG PET/CT scan in 70 cases (46.7%), of which 52 were pathologically confirmed and 18 by clinical follow-up. And 38 cases (54.3%) were lung cancer, 8 (11.4%) were nasopharyngeal carcinoma, 13 (18.6%) in digestive sys- tem, and 11 (15.7%) in other systems. Three clinically suspected CUP cases with negative 18 F-FDG PET/ CT were subsequently confirmed of benign processes by clinical follow-up. Six patients were wrongly diagnosed by 18 F-FDG PET/CT, and 15 patients did not have a confirmed diagnosis by the end of research. The primary cause of malignancy after 18 F-FDG PET/CT remained obscure in 56 patients, only 3 of whom be- came known during the course of clinical follow-up (nasopharyngeal bladder and esophageal carcinoma). Conclusion: 18 F-FDG PET/CT whole-body imaging plays an important role in patients with metastatic CUP. (authors)

  20. FDG PET-CT findings of extra-thoracic sarcoid are associated with cardiac sarcoid: A rationale for using FGD PET-CT for cardiac sarcoid evaluation.

    Science.gov (United States)

    Patel, Darshan C; Gunasekaran, Senthil S; Goettl, Christopher; Sweiss, Nadera J; Lu, Yang

    2017-07-05

    This retrospective study investigates the relationship between cardiac and extra-thoracic sarcoid findings on FDG PET-CT using a 72-hour pretest high-fat, high-protein, and very low-carbohydrate (HFHPVLC) diet. A total of 196 consecutive FDG PET-CT scans with 72-hour HFHPVLC diet preparation were performed between December 2014 and December 2015 in known sarcoid patients. Of these scans, 5 were excluded for non-adherence to diet preparation or underlying cancer. Cardiac and extra-thoracic sarcoid lesions were categorized and measured for radiotracer uptake. A total of 188 patients had 191 eligible FDG PET/CT scans (3 follow-up scans), of which there were 20 (10%) positive, 6 indeterminate (3%), and 165 (86%) negative for CS. Among the 20 scans positive for CS, 8 (40%) had findings of both cardiac and extra-thoracic sarcoid. Our study shows that 40% of CS patients also have FDG PET-CT findings of extra-thoracic sarcoid. This makes an intriguing case for FDG PET-CT use with pretest diet prep over cardiac MRI (CMR) for cardiac sarcoid evaluation, given that CMR is likely to overlook these extra-thoracic sites of disease.

  1. Utility of [18F]FSPG PET to Image Hepatocellular Carcinoma: First Clinical Evaluation in a US Population.

    Science.gov (United States)

    Kavanaugh, Gina; Williams, Jason; Morris, Andrew Scott; Nickels, Michael L; Walker, Ronald; Koglin, Norman; Stephens, Andrew W; Washington, M Kay; Geevarghese, Sunil K; Liu, Qi; Ayers, Dan; Shyr, Yu; Manning, H Charles

    2016-12-01

    Non-invasive imaging is central to hepatocellular carcinoma (HCC) diagnosis; however, conventional modalities are limited by smaller tumors and other chronic diseases that are often present in patients with HCC, such as cirrhosis. This pilot study evaluated the feasibility of (4S)-4-(3-[ 18 F]fluoropropyl)-L-glutamic acid ([ 18 F]FSPG) positron emission tomography (PET)/X-ray computed tomography (CT) to image HCC. [ 18 F]FSPG PET/CT was compared to standard-of-care (SOC) magnetic resonance imaging (MRI) and CT, and [ 11 C]acetate PET/CT, commonly used in this setting. We report the largest cohort of HCC patients imaged to date with [ 18 F]FSPG PET/CT and present the first comparison to [ 11 C]acetate PET/CT and SOC imaging. This study represents the first in a US HCC population, which is distinguished by different underlying comorbidities than non-US populations. x C- transporter RNA and protein levels were evaluated in HCC and matched liver samples from The Cancer Genome Atlas (n = 16) and a tissue microarray (n = 83). Eleven HCC patients who underwent prior MRI or CT scans were imaged by [ 18 F]FSPG PET/CT, with seven patients also imaged with [ 11 C]acetate PET/CT. x C- transporter RNA and protein levels were elevated in HCC samples compared to background liver. Over 50 % of low-grade HCCs and ~70 % of high-grade tumors exceeded background liver protein expression. [ 18 F]FSPG PET/CT demonstrated a detection rate of 75 %. [ 18 F]FSPG PET/CT also identified an HCC devoid of typical MRI enhancement pattern. Patients scanned with [ 18 F]FSPG and [ 11 C]acetate PET/CT exhibited a 90 and 70 % detection rate, respectively. In dually positive tumors, [ 18 F]FSPG accumulation consistently resulted in significantly greater tumor-to-liver background ratios compared with [ 11 C]acetate PET/CT. [ 18 F]FSPG PET/CT is a promising modality for HCC imaging, and larger studies are warranted to examine [ 18 F]FSPG PET/CT impact on diagnosis and management of HCC. [ 18 F

  2. Reproducibility of automated simplified voxel-based analysis of PET amyloid ligand [11C]PIB uptake using 30-min scanning data

    International Nuclear Information System (INIS)

    Aalto, Sargo; Scheinin, Noora M.; Naagren, Kjell; Rinne, Juha O.; Kemppainen, Nina M.; Kailajaervi, Marita; Leinonen, Mika; Scheinin, Mika

    2009-01-01

    Positron emission tomography (PET) with 11 C-labelled Pittsburgh compound B ([ 11 C]PIB) enables the quantitation of β-amyloid accumulation in the brain of patients with Alzheimer's disease (AD). Voxel-based image analysis techniques conducted in a standard brain space provide an objective, rapid and fully automated method to analyze [ 11 C]PIB PET data. The purpose of this study was to evaluate both region- and voxel-level reproducibility of automated and simplified [ 11 C]PIB quantitation when using only 30 min of imaging data. Six AD patients and four healthy controls were scanned twice with an average interval of 6 weeks. To evaluate the feasibility of short scanning (convenient for AD patients), [ 11 C]PIB uptake was quantitated using 30 min of imaging data (60 to 90 min after tracer injection) for region-to-cerebellum ratio calculations. To evaluate the reproducibility, a test-retest design was used to derive absolute variability (VAR) estimates and intraclass correlation coefficients at both region-of-interest (ROI) and voxel level. The reproducibility both at the region level (VAR 0.9-5.5%) and at the voxel level (VAR 4.2-6.4%) was good to excellent. Based on the variability estimates obtained, power calculations indicated that 90% power to obtain statistically significant difference can be achieved using a sample size of five subjects per group when a 15% change from baseline (increase or decrease) in [ 11 C]PIB accumulation in the frontal cortex is anticipated in one group compared to no change in another group. Our results showed that an automated analysis method based on an efficient scanning protocol provides reproducible results for [ 11 C]PIB uptake and appears suitable for PET studies aiming at the quantitation of amyloid accumulation in the brain of AD patients for the evaluation of progression and treatment effects. (orig.)

  3. Initial staging of Hodgkin's disease: role of contrast-enhanced 18F FDG PET/CT.

    Science.gov (United States)

    Chiaravalloti, Agostino; Danieli, Roberta; Caracciolo, Cristiana Ragano; Travascio, Laura; Cantonetti, Maria; Gallamini, Andrea; Guazzaroni, Manlio; Orlacchio, Antonio; Simonetti, Giovanni; Schillaci, Orazio

    2014-08-01

    The objective of this study was to compare the diagnostic accuracy of positron emission tomography/low-dose computed tomography (PET/ldCT) versus the same technique implemented by contrast-enhanced computed tomography (ceCT) in staging Hodgkin's disease (HD).Forty patients (18 men and 22 women, mean age 30 ± 9.6) with biopsy-proven HD underwent a PET/ldCT study for initial staging including an unenhanced low-dose computed tomography for attenuation correction with positron emission tomography acquisition and a ceCT, performed at the end of the PET/ldCT scan, in the same exam session. A detailed datasheet was generated for illness locations for separate imaging modality comparison and then merged in order to compare the separate imaging method results (PET/ldCT and ceCT) versus merged results positron emission tomography/contrast-enhanced computed tomography (PET/ceCT). The nodal and extranodal lesions detected by each technique were then compared with follow-up data that served as the reference standard.No significant differences were found at staging between PET/ldCT and PET/ceCT in our series. One hundred and eighty four stations of nodal involvement have been found with no differences in both modalities. Extranodal involvement was identified in 26 sites by PET/ldCT and in 28 by PET/ceCT. We did not find significant differences concerning the stage (Ann Arbor).Our study shows a good concordance and conjunction between PET/ldCT and ceCT in both nodal and extranodal sites in the initial staging of HD, suggesting that PET/ldCT could suffice in most of these patients.

  4. Preliminary results on the role of PET/CT in initial staging, restaging, and management of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Malamitsi, J. [Department of PET/CT, Diagnostic and Therapeutic Center of Athens, Hygeia, Athens (Greece): Department of Medical Physics, Medical School, University of Athens (Greece)]. E-mail: j.malamitsi@yahoo.gr; Valotassiou, B. [Department of PET/CT, Diagnostic and Therapeutic Center of Athens, Hygeia, Athens (Greece); Iliadis, K. [Thoracic Surgical Department, Diagnostic and Therapeutic Center of Athens, Hygeia, Athens (Greece); Kosmidis, P. [2nd Medical Oncology Department, Diagnostic and Therapeutic Center of Athens, Hygeia, Athens (Greece); Laspas, F. [Department of PET/CT, Diagnostic and Therapeutic Center of Athens, Hygeia, Athens (Greece); Vasilaki, M. [Oncologist, Diagnostic and Therapeutic Center of Athens, Hygeia, Athens (Greece); Pipini, E. [Thoracic Medicine Clinic, Diagnostic and Therapeutic Center of Athens, Hygeia, Athens (Greece); Petounis, A. [1st Internal Medicine and Oncology Department, Diagnostic and Therapeutic Center of Athens, Hygeia, Athens (Greece); Gogou, L. [Department of PET/CT, Diagnostic and Therapeutic Center of Athens, Hygeia, Athens (Greece); Pagou, M. [Department of PET/CT, Diagnostic and Therapeutic Center of Athens, Hygeia, Athens (Greece); Dalianis, K. [Department of PET/CT, Diagnostic and Therapeutic Center of Athens, Hygeia, Athens (Greece); Efthimiadou, R. [Department of PET/CT, Diagnostic and Therapeutic Center of Athens, Hygeia, Athens (Greece); Andreou, J. [Department of PET/CT, Diagnostic and Therapeutic Center of Athens, Hygeia, Athens (Greece)

    2006-12-20

    Aim: To determine true-positive and true-negative rates of PET/CT studies in the staging of lung cancer as compared with conventional imaging (CT and bone scan and occasionally MRI) and the impact of PET/CT on the treatment strategy in patients with lung cancer. Materials and method: Twenty patients (21 studies) with known or suspected lung cancer (14 patients with non-small-cell lung cancer (NSCLC), three patients with small-cell lung cancer (SCLC), three patients with solitary pulmonary nodule underwent initial staging (seven studies) or restaging (14 studies) with combined FDG PET and CT scans on a PET/CT tomograph. PET/CT images were evaluated separately by two nuclear medicine physicians and two radiologists specialized on PET, CT, and MRI. Histology results and a more than 6 months follow-up served as the reference standards. Results: Accurate diagnosis was achieved on 16 studies. Site-by-site analysis gave the following results: 16 true-positive sites (seven on histology, nine on >6 months follow-up), six true-negative sites (two on histology, four on >6 months follow-up). On PET/CT, six patients were correctly down-staged, three patients were correctly upstaged and seven patients were diagnosed correctly as being on the same stage (2/7 with increase of extent of disease, 5/7 with the same extent of disease). One patient was falsely upstaged and three patients were falsely down-staged. On the basis of PET/CT results, change of management was induced in six patients, while in 14 patients there was no change induced. In five cases PET/CT was partially accurate: on site-by-site analysis, four sites proved true positive (on histology), one site false positive (on histology), and four sites false negative (one on histology, three on >6 months follow-up). Conclusion: In our early experience, PET/CT contributed significantly to correct staging and management of patients with lung cancer.

  5. Preliminary results on the role of PET/CT in initial staging, restaging, and management of lung cancer

    International Nuclear Information System (INIS)

    Malamitsi, J.; Valotassiou, B.; Iliadis, K.; Kosmidis, P.; Laspas, F.; Vasilaki, M.; Pipini, E.; Petounis, A.; Gogou, L.; Pagou, M.; Dalianis, K.; Efthimiadou, R.; Andreou, J.

    2006-01-01

    Aim: To determine true-positive and true-negative rates of PET/CT studies in the staging of lung cancer as compared with conventional imaging (CT and bone scan and occasionally MRI) and the impact of PET/CT on the treatment strategy in patients with lung cancer. Materials and method: Twenty patients (21 studies) with known or suspected lung cancer (14 patients with non-small-cell lung cancer (NSCLC), three patients with small-cell lung cancer (SCLC), three patients with solitary pulmonary nodule underwent initial staging (seven studies) or restaging (14 studies) with combined FDG PET and CT scans on a PET/CT tomograph. PET/CT images were evaluated separately by two nuclear medicine physicians and two radiologists specialized on PET, CT, and MRI. Histology results and a more than 6 months follow-up served as the reference standards. Results: Accurate diagnosis was achieved on 16 studies. Site-by-site analysis gave the following results: 16 true-positive sites (seven on histology, nine on >6 months follow-up), six true-negative sites (two on histology, four on >6 months follow-up). On PET/CT, six patients were correctly down-staged, three patients were correctly upstaged and seven patients were diagnosed correctly as being on the same stage (2/7 with increase of extent of disease, 5/7 with the same extent of disease). One patient was falsely upstaged and three patients were falsely down-staged. On the basis of PET/CT results, change of management was induced in six patients, while in 14 patients there was no change induced. In five cases PET/CT was partially accurate: on site-by-site analysis, four sites proved true positive (on histology), one site false positive (on histology), and four sites false negative (one on histology, three on >6 months follow-up). Conclusion: In our early experience, PET/CT contributed significantly to correct staging and management of patients with lung cancer

  6. 18F-FDG PET/CT in the characterization and surgical decision concerning adrenal masses: a prospective multicentre evaluation

    International Nuclear Information System (INIS)

    Ansquer, Catherine; Scigliano, Sonia; Mirallie, Eric; Taieb, David; Brunaud, Laurent; Sebag, Frederic; Leux, Christophe; Drui, Delphine; Dupas, Benoit; Renaudin, Karine; Kraeber-Bodere, Francoise

    2010-01-01

    This prospective multicentre study assesses the usefulness of FDG PET/CT in characterizing and making the therapeutic decision concerning adrenal tumours that are suspicious or indeterminate in nature after conventional examinations (CE). Seventy-eight patients (37 men, 41 women, 81 adrenal lesions) underwent FDG PET/CT after CE including CT scan, biological tests and optionally 131 I-metaiodobenzylguanidine (MIBG) and/or 131 I-norcholesterol scans. FDG adrenal uptake exceeding that of the liver was considered positive. PET results were not decisive. Surgery was discussed when at least one of the following criteria was found during CE: size >3 cm, spontaneous attenuation value >10 HU, heterogeneous aspect, abnormal MIBG or norcholesterol scan or hormonal hypersecretion. Following the gold standard (histology analysis or ≥9 months follow-up), 49 lesions potentially qualified for surgery (malignant = 27, benign secreting = 22) and 32 benign non-secreting lesions did not. PET was negative in 97% of non-surgical lesions and positive in 73% of potentially surgical ones which included all the malignant lesions, except 3 renal cell metastases, and 12 of 22 benign secreting lesions. The negative predictive value for malignancy was 93% (41/44) and positive predictive value for detecting surgical lesions was 97% (36/37). A high FDG uptake (maximum standardized uptake value ≥ 10) was highly predictive of malignancy. Adrenal FDG uptake is a good indicator of malignancy and/or of secreting lesions and should lead one to discuss surgery. If there is no prior history of poorly FDG-avid cancer, the absence of FDG uptake should avoid unnecessary removal of benign adrenal lesions. (orig.)

  7. Development of PET in Latin America. Experience of the first PET-Cyclotron Center

    International Nuclear Information System (INIS)

    Tutor, C.A.; Frias, L.

    2002-01-01

    Aim: Describe the experience of the first PET-Cyclotron Center in Latin America. Demonstrate the viability of running a PET Center in Argentina despite the economic crisis. Materials and Methods: For this study, we used a UGM/GE Quest 250 PET scan, a RDS 112 cyclotron and a Radiosynthesis Laboratory installed at the (FUESMEN) Nuclear Medicine School Foundation, located in Mendoza City, in the middle-west of Argentina. From January 1999 to March 2002, 741 studies were obtained, 731 were 18 FluorDeoxyGlucose-PET studies and 10 phantoms for calibration purposes. We used acquisition and imaging processing standard protocols, as well as research protocols designed according to the pathology under investigation. To better correlate anatomical and functional images, we used fusion techniques with (CT) Computed Tomography in some (WB) whole-body PET scans. Results: A total of 731 patients were retrospectively analyzed and classified according to statistics variables such as: 1-sex: 317 women and 414 men, 2-type of scan: 439 WB cases, 267 brain studies and 25 cardiac. From this data we divided them as PET indications and resulted in 17 cases as healthy volunteers, 422 oncological cases, 267 neurological studies and 25 cardiac for myocardial viability. According to the origin they were classified as patients coming from Mendoza 544, Buenos Aires 112, other argentine provinces 60 and foreign (Chile, Brazil and Uruguay) 15 cases. In terms of billing, 181 studies were done free of charge, 95 under research protocols were also done free of charge and 451 were charged. Conclusion: Not only the economical and political factors play an important role limiting the advances of PET Imaging in Latin America, but also the lack of a neighboring cyclotron that circumscribe many hospitals to have access to the radiopharmaceutical agent. FUESMEN was established in 1991 by three governmental entities: the (CONEA) National Commission of Atomic Energy, the (UNC) National University of Cuyo and

  8. 18F-FDG accumulation in the oral cavity is associated with periodontal disease and apical periodontitis. An initial demonstration on PET/CT

    International Nuclear Information System (INIS)

    Shimamoto, Hiroaki; Kakimoto, Naoya; Murakami, Shumei; Furukawa, Souhei; Tatsumi, Mitsuaki; Shimosegawa, Eku; Hatazawa, Jun; Hamada, Seiki

    2008-01-01

    The objective of this study was to prospectively investigate the relationship between high accumulation of 2-deoxy-2-[ 18 F] fluoro-D-glucose (FDG) in the oral cavity and dental infections on positron emission tomography/computed tomography (PET/CT). FDG-PET/CT scans of 103 patients who underwent a health screening were evaluated. The dental examination was performed prior to each PET/CT scan, and dental infections were assessed. Dental infections were classified into six blocks. The severity of dental caries was classified into five grades, and periodontal disease and apical periodontitis were classified into three grades. Two radiologists classified the PET images in the same manner as the dental examination. They evaluated the intensity of FDG uptake by a four-point visual PET image score for each block. The comparison of the dental examination, as a gold standard, and the visual PET image score was performed on a patient or block basis. On a patient-based analysis, 21 of 103 patients (20.4%) showed PET positive findings in the oral cavity; 18 of the 21 patients (85.7%) had dental infections. On a block-based analysis, 25 of 605 blocks (4.1%) showed PET positive findings in the oral cavity; 22 of the 25 blocks (88.0%) had dental infections. On a detailed block-based analysis, a significant difference was observed between the presence of periodontal disease, or apical periodontitis and the positivity of the visual PET image findings (P<0.01). Their severity correlated with the visual PET image score (P<0.05). Periodontal disease or apical periodontitis, but not dental caries, caused FDG accumulation in the oral cavity. This finding should be taken into account when a head and neck FDG-PET study is interpreted. (author)

  9. Automatic delineation of brain regions on MRI and PET images from the pig

    DEFF Research Database (Denmark)

    Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M

    2018-01-01

    : Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. NEW METHOD: A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer....... RESULTS: MRI and [11C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same...... the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [11C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames...

  10. Characterizing IgG4-related disease with 18F-FDG PET/CT: a prospective cohort study

    International Nuclear Information System (INIS)

    Zhang, Jingjing; Ma, Yanru; Niu, Na; Wang, Xinwei; Li, Fang; Zhu, Zhaohui; Chen, Hua; Lin, Wei; Zhang, Fengchun; Zhang, Wen; Xiao, Yu; Liang, Zhiyong

    2014-01-01

    IgG4-related disease (IgG4-RD) is an increasingly recognized clinicopathological disorder with immune-mediated inflammatory lesions mimicking malignancies. A cohort study was prospectively designed to investigate the value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in characterizing IgG4-RD. Thirty-five patients diagnosed with IgG4-RD according to the consensus criteria were enrolled with informed consent. All patients underwent baseline 18 F-FDG PET/CT evaluation. Among them, 29 patients underwent a second 18 F-FDG PET/CT scan after 2 to 4 weeks of steroid-based therapy. All 35 patients were found with 18 F-FDG-avid hypermetabolic lesion(s); 97.1 % (34/35) of these patients showed multi-organ involvement. Among the 35 patients, 71.4 % (25/35) patients were found with more organ involvement on 18 F-FDG PET/CT than conventional evaluations including physical examination, ultrasonography, and computed tomography (CT). 18 F-FDG PET/CT demonstrated specific image characteristics and pattern of IgG4-RD, including diffusely elevated 18 F-FDG uptake in the pancreas and salivary glands, patchy lesions in the retroperitoneal region and vascular wall, and multi-organ involvement that cannot be interpreted as metastasis. Comprehensive understanding of all involvement aided the biopsy-site selection in seven patients and the recanalization of ureteral obstruction in five patients. After 2 to 4 weeks of steroid-based therapy at 40 mg to 50 mg prednisone per day, 72.4 % (21/29) of the patients showed complete remission, whereas the others exhibited > 81.8 % decrease in 18 F-FDG uptake. F-FDG PET/CT is a useful tool for assessing organ involvement, monitoring therapeutic response, and guiding interventional treatment of IgG4-RD. The image pattern is suggested to be updated into the consensus diagnostic criteria for IgG4-RD. (orig.)

  11. Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Arens, Anne I.J.; Grootjans, Willem; Oyen, Wim J.G.; Visser, Eric P. [Radboud University Medical Center, Department of Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); Troost, Esther G.C. [Radboud University Medical Center, Department of Radiation Oncology, Nijmegen (Netherlands); Maastricht University Medical Centre, MAASTRO clinic, GROW School for Oncology and Developmental Biology, Maastricht (Netherlands); Hoeben, Bianca A.W.; Bussink, Johan; Kaanders, Johannes H.A.M. [Radboud University Medical Center, Department of Radiation Oncology, Nijmegen (Netherlands); Lee, John A.; Gregoire, Vincent [St-Luc University Hospital, Department of Radiation Oncology, Universite Catholique de Louvain, Brussels (Belgium); Hatt, Mathieu; Visvikis, Dimitris [Laboratoire de Traitement de l' Information Medicale (LaTIM), INSERM UMR1101, Brest (France)

    2014-05-15

    Radiotherapy of head and neck cancer induces changes in tumour cell proliferation during treatment, which can be depicted by the PET tracer {sup 18}F-fluorothymidine (FLT). In this study, three advanced semiautomatic PET segmentation methods for delineation of the proliferative tumour volume (PV) before and during (chemo)radiotherapy were compared and related to clinical outcome. The study group comprised 46 patients with 48 squamous cell carcinomas of the head and neck, treated with accelerated (chemo)radiotherapy, who underwent FLT PET/CT prior to treatment and in the 2nd and 4th week of therapy. Primary gross tumour volumes were visually delineated on CT images (GTV{sub CT}). PVs were visually determined on all PET scans (PV{sub VIS}). The following semiautomatic segmentation methods were applied to sequential PET scans: background-subtracted relative-threshold level (PV{sub RTL}), a gradient-based method using the watershed transform algorithm and hierarchical clustering analysis (PV{sub W} and {sub C}), and a fuzzy locally adaptive Bayesian algorithm (PV{sub FLAB}). Pretreatment PV{sub VIS} correlated best with PV{sub FLAB} and GTV{sub CT}. Correlations with PV{sub RTL} and PV{sub W} and {sub C} were weaker although statistically significant. During treatment, the PV{sub VIS}, PV{sub W} and {sub C} and PV{sub FLAB} significant decreased over time with the steepest decline over time for PV{sub FLAB}. Among these advanced segmentation methods, PV{sub FLAB} was the most robust in segmenting volumes in the third scan (67 % of tumours as compared to 40 % for PV{sub W} and {sub C} and 27 % for PV{sub RTL}). A decrease in PV{sub FLAB} above the median between the pretreatment scan and the scan obtained in the 4th week was associated with better disease-free survival (4 years 90 % versus 53 %). In patients with head and neck cancer, FLAB proved to be the best performing method for segmentation of the PV on repeat FLT PET/CT scans during (chemo)radiotherapy. This may

  12. Feasibility of simultaneous PET/MR of the carotid artery

    DEFF Research Database (Denmark)

    Ripa, Rasmus S; Knudsen, Andreas; Hag, Anne Mette F

    2013-01-01

    The study aimed at comparing PET/MR to PET/CT for imaging the carotid arteries in patients with known increased risk of atherosclerosis. Six HIV-positive men underwent sequential PET/MR and PET/CT of the carotid arteries after injection of 400 MBq of (18)F-FDG. PET/MR was performed a median of 131......) indicating that the luminal (18)F-FDG content had minimal influence on the values. The study shows for the first time that simultaneous PET/MR of the carotid arteries is feasible in patients with increased risk of atherosclerosis. Quantification of (18)F-FDG uptake correlated well between PET/MR and PET...

  13. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine

    International Nuclear Information System (INIS)

    Becherer, Alexander; Karanikas, Georgios; Szabo, Monica; Zettinig, Georg; Wadsak, Wolfgang; Kletter, Kurt; Asenbaum, Susanne; Marosi, Christine; Henk, Christine; Wunderbaldinger, Patrick; Czech, Thomas

    2003-01-01

    Imaging of amino acid transport in brain tumours is more sensitive than fluorine-18 2-fluoro-deoxyglucose positron emission tomography (PET). The most frequently used tracer in this field is carbon-11 methionine (MET), which is unavailable for PET centres without a cyclotron because of its short half-life. The purpose of this study was to evaluate the performance of 3,4-dihydroxy-6-[ 18 F]fluoro-phenylalanine (FDOPA) in this setting, in comparison with MET. Twenty patients with known supratentorial brain lesions were referred for PET scans with FDOPA and MET. The diagnoses were 18 primary brain tumours, one metastasis and one non-neoplastic cerebral lesion. All 20 patients underwent PET with FDOPA (100 MBq, 20 min p.i.), and 19 of them also had PET scans with MET (800 MBq, 20 min p.i.). In all but one patient a histological diagnosis was available. In 15 subjects, histology was known from previous surgical interventions; in five of these patients, as well as in four previously untreated patients, histology was obtained after PET. In one untreated patient, confirmation of PET was possible solely by correlation with MRI; a histological diagnosis became available 10 months later. MET and FDOPA images matched in all patients and showed all lesions as hot spots with higher uptake than in the contralateral brain. Standardised uptake value ratios, tumour/contralateral side (mean±SD), were 2.05±0.91 for MET and 2.04±0.53 for FDOPA (NS). The benign lesion, which biopsy revealed to be a focal demyelination, was false positive, showing increased uptake of MET and FDOPA. We conclude that FDOPA is accurate as a surrogate for MET in imaging amino acid transport in malignant cerebral lesions for the purpose of visualisation of vital tumour tissue. It combines the good physical properties of 18 F with the pharmacological properties of MET and might therefore be a valuable PET radiopharmaceutical in brain tumour imaging. (orig.)

  14. Impact of PET/CT system, reconstruction protocol, data analysis method, and repositioning on PET/CT precision: An experimental evaluation using an oncology and brain phantom.

    Science.gov (United States)

    Mansor, Syahir; Pfaehler, Elisabeth; Heijtel, Dennis; Lodge, Martin A; Boellaard, Ronald; Yaqub, Maqsood

    2017-12-01

    In longitudinal oncological and brain PET/CT studies, it is important to understand the repeatability of quantitative PET metrics in order to assess change in tracer uptake. The present studies were performed in order to assess precision as function of PET/CT system, reconstruction protocol, analysis method, scan duration (or image noise), and repositioning in the field of view. Multiple (repeated) scans have been performed using a NEMA image quality (IQ) phantom and a 3D Hoffman brain phantom filled with 18 F solutions on two systems. Studies were performed with and without randomly (PET/CT, especially in the case of smaller spheres (PET metrics depends on the combination of reconstruction protocol, data analysis methods and scan duration (scan statistics). Moreover, precision was also affected by phantom repositioning but its impact depended on the data analysis method in combination with the reconstructed voxel size (tissue fraction effect). This study suggests that for oncological PET studies the use of SUV peak may be preferred over SUV max because SUV peak is less sensitive to patient repositioning/tumor sampling. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury

    DEFF Research Database (Denmark)

    Madsen, Karine; Hesby, Sara; Poulsen, Ingrid

    2017-01-01

    BACKGROUND: Loss of consciousness has been shown to reduce cerebral metabolic rates of glucose (CMRglc) measured by brain [(18)F]FDG-PET. Measurements of regional metabolic patterns by normalization to global cerebral metabolism or cerebellum may underestimate widespread reductions. NEW METHOD......: The aim of this study was to compare quantification methods of whole brain glucose metabolism, including whole brain [18F]FDG uptake normalized to uptake in cerebellum, normalized to injected activity, normalized to plasma tracer concentration, and two methods for estimating CMRglc. Six patients suffering...... from severe traumatic brain injury (TBI) and ten healthy controls (HC) underwent a 10min static [(18)F]FDG-PET scan and venous blood sampling. RESULTS: Except from normalizing to cerebellum, all quantification methods found significant lower level of whole brain glucose metabolism of 25-33% in TBI...

  16. FDG-PET/ceCT is useful to predict recurrence of Pseudomyxoma peritonei

    International Nuclear Information System (INIS)

    Dubreuil, Julien; Skanjeti, Andrea; Giammarile, Francesco; Rousset, Pascal; Bakrin, Naoual; Passot, Guillaume; Isaac, Sylvie; Glehen, Olivier

    2016-01-01

    Pseudomyxoma peritonei (PMP) is a rare peritoneal neoplasm originating from appendicular tumours. There is no consolidated data available in the literature about the precise role of [ 18 F] fluorodesoxy-D-glucose Positron Emission Tomography / contrast enhanced Computed Tomography (FDG-PET/ceCT). The aim of this study was to evaluate the correlation between preoperative FDG-PET/ceCT (qualitative and semi-quantitative assessment) and progression free survival (PFS) of patients treated for PMP. All patients scheduled for PMP treatment by cytoreductive unicentric surgery, intraperitoneal chemotherapy (HIPEC), and who underwent a FDG-PET/ceCT between February 2008 and January 2014, were included. No previous treatment was performed (except biopsy or appendectomy). FDG-PET/ceCT was interpreted by two nuclear physicians in consensus. Positive FDG-PET/ceCT scans were further labelled in diffuse disease and poly/mono focal disease. SUVmax was measured based on post-operative reports. The Peritoneal Cancer Index (PCI) and Completeness of CytoReduction Score (CCR) were assessed after surgery. Fifty-six patients were included in this study, with a mean age of 56-years-old and a mean follow-up of 29.3 months. SUVmax, with a cut-off at 2.02, was predictive for the PFS on multivariate analysis. No differences were observed between diffuse disease and focal disease on PFS for progression free survival, PCI, and SUVmax (p = 0.1). Post-operative CCR was not significantly correlated with SUVmax or FDG-PET/ceCT qualitative assessment. SUVmax on preoperative FDG-PET/ceCT was an independent predictive factor for PFS in PMP. Further studies are needed to explore if FDG-PET/ceCT could potentially predict post-operative CCR. (orig.)

  17. FDG-PET status following chemoradiotherapy provides high management impact and powerful prognostic stratification in oesophageal cancer

    International Nuclear Information System (INIS)

    Duong, Cuong P.; Thomas, Robert J.S.; Hicks, Rodney J.; Drummond, Elizabeth; Weih, LeAnn; Leong, Trevor; Michael, Michael

    2006-01-01

    The purpose of this study was to evaluate the impact of FDG-PET following chemoradiotherapy (CRT) on treatment planning and survival in patients with oesophageal cancer (OC). Fifty-three consecutive OC patients had a post-treatment PET scan to evaluate tumour response to CRT prior to possible surgery. Baseline pre-CRT PET was performed in 33 patients. Prospectively recorded post-CRT management plans were compared with post-PET treatment. High impact was defined as a change in treatment intent or modality. Survival was analysed using the Kaplan-Meier product limit method and Cox proportional hazards regression model. After completion of CRT, 23/53 patients (43%) achieved complete metabolic response (CMR), as compared with only four (8%) with complete response on computed tomography. High PET impact was observed in 19 patients (36%). CMR was strongly predictive of survival (p<0.008) on multivariate analysis. CMR patients in whom resection was not performed had comparable survival to those (CMR and non-CMR) who underwent resection. The use of post-treatment FDG-PET for assessment of tumour response after CRT changed the clinical management of more than one-third of OC patients. CMR status as assessed by PET powerfully stratified prognosis. Even in the absence of a baseline study, normalisation of uptake at all sites of known tumoral involvement carries a good medium-term prognosis. (orig.)

  18. Low-dose respiratory-gated PET/CT: based on 30 mA tube current

    International Nuclear Information System (INIS)

    Wu Ping; Li Sijin; Zhang Yanlan; Hao Xinzhong; Qin Zhixing; Yan Min; Cheng Pengliang; Wu Zhifang

    2013-01-01

    Objective: To establish a low-dose but image-comparable respiratory-gated PET/CT (RG PET/CT) protocol based on 30 mA tube current plus other improved scanning parameters, such as the tube current, the number of respiratory phase and length of breathing cycle. Methods: Twenty-six patients with 18 F-FDG-intaking lung nodules underwent one-bed standard-dose PET/CT (120 mA, 2 min/bed) and low dose RG PET/CT (30 mA, 6 respiratory phases, 1 min/phase). The radiation dose and image quality were analyzed subsequently with signal to noise ratio (SNR) for PET and the homogeneity, noise level for CT in the water phantom respectively. Otherwise the CT images were both visual evaluated by two experienced doctors. In addition, different respiratory cycle was simulated to observe its relation with radiation dose. Results: The effective dose of low-dose RG PET/CT was 4.88∼7.69 mSv [mean (5.68±0.83) mSv]. The PET SNR showed no significance between groups. The homogeneity of 30 mA is good (< 5 HU), although noise level was high, the visual character like lobulation, speculation of lung nodule was superior in some respiratory phases. The radiation dose was positively correlated with respiratory cycle. Conclusions: The performance of low-dose RG PET/CT was comparable to those of standard-dose PET/CT based on a protocol with 30 mA tube current, 6 respiratory phases and breathing state of eupnoea. It produced a much lower radiation exposure and the image quality was enough for clinical use such as delineation of tumor active target, characterization and staging of lung nodules, etc. (authors)

  19. Corpus luteum mimics a pelvic lesion on FDG PET in women of childbearing age

    International Nuclear Information System (INIS)

    Kang, K.W.; Sim, J.S.

    2002-01-01

    Objectives: To find out the nature of incidental single pelvic lesion on F-18 FDG PET scan in the women of childbearing age, further investigation were done. Methods: Three women who had a single round hypermetabolic lesion in the pelvic cavity on FDG PET were further investigated through follow up PET scan or MRI scan. The purposes of PET scan were routine follow up of breast cancer after surgery and adjuvant chemotherapy for a patient and cancer screening for two women. The ages were 39, 45, and 48 years old respectively. The last menstrual periods (LMP) were 21, 22 and 24 days before PET examinations. The size and peak SUVs (standard uptake values) of lesions are presented. Results: The lesion in pelvic cavity disappeared in a patients with breast cancer on a follow up PET scan 2 months and 1 week later. The lesions in two women were proved to be corpus luteum cysts on MRI examination on the same day of PET examination. Conclusion: Single pelvic lesion in women of childbearing age should be ruled out a normal corpus luteum cyst. Also, schedule of PET imaging should be adjusted according to her menstrual period

  20. Initial evaluation of a practical PET respiratory motion correction method in clinical simultaneous PET/MRI

    International Nuclear Information System (INIS)

    Manber, Richard; Thielemans, Kris; Hutton, Brian; Barnes, Anna; Ourselin, Sebastien; Arridge, Simon; O’Meara, Celia; Atkinson, David

    2014-01-01

    Respiratory motion during PET acquisitions can cause image artefacts, with sharpness and tracer quantification adversely affected due to count ‘smearing’. Motion correction by registration of PET gates becomes increasingly difficult with shorter scan times and less counts. The advent of simultaneous PET/MRI scanners allows the use of high spatial resolution MRI to capture motion states during respiration [1, 2]. In this work, we use a respiratory signal derived from the PET list-mode data [3, ], with no requirement for an external device or MR sequence modifications.

  1. Initial Experience With Simultaneous 18F-FDG PET/MRI in the Evaluation of Cardiac Sarcoidosis and Myocarditis.

    Science.gov (United States)

    Hanneman, Kate; Kadoch, Michael; Guo, Henry H; Jamali, Mehran; Quon, Andrew; Iagaru, Andrei; Herfkens, Robert

    2017-07-01

    The purpose of this study was to compare combined PET/MRI with PET/CT and cardiac MRI in the evaluation of cardiac sarcoidosis and myocarditis. Ten patients (4 men and 6 women; 56.1 ± 9.6 years old) were prospectively enrolled for evaluation of suspected cardiac sarcoidosis or myocarditis. Written informed consent was obtained. Following administration of 9.9 ± 0.9 mCi F-FDG, patients underwent standard cardiac PET/CT followed by combined PET/MRI using a simultaneous 3-T scanner. Cardiac MRI sequences included ECG-triggered cine SSFP, T2-weighted, and late gadolinium-enhanced imaging. Myocardial involvement was assessed with separate analysis of combined PET/MRI, PET/CT, and cardiac MRI data using dedicated postprocessing software. Estimates of radiation dose were derived from the applied doses of F-FDG and CT protocol parameters. Imaging was acquired with a delay from F-FDG injection of 90.2 ± 27.4 minutes for PET/CT and 207.7 ± 40.3 minutes for PET/MRI. Total scan time for PET/MRI was significantly longer than for PET/CT (81.4 ± 14.8 vs 12.0 minutes, P PET/MRI compared with PET/CT (6.9 ± 0.6 vs 8.2 ± 1.1 mSv, P = 0.007). There was no significant difference in the number of positive cases identified between combined PET/MRI (n = 10 [100%]), PET/CT (n = 6 [60%]), and cardiac MRI (n = 8 [80%]), P = 0.091. Simultaneous cardiac PET/MRI is feasible in the evaluation of cardiac sarcoidosis and myocarditis achieving diagnostic image quality.

  2. Three-phase 18F-fluorocholine PET/CT in the evaluation of prostate cancer recurrence

    International Nuclear Information System (INIS)

    Steiner, C.; Zaidi, H.; Wissmeyer, M.; Berrebi, O.; Ratib, O.; Miralbell, R.; Buchegger, F.; University Hospital of Lausanne

    2009-01-01

    Contribution of 3-phase 18 F-fluorocholine PET/CT in suspected prostate cancer recurrence at early rise of PSA. Retrospective analysis was performed in 47 patients after initial treatment with radiotherapy (n = 30) or surgery (n 17). Following CT, 10 minutes list-mode PET acquisition was done over the prostate bed after injection of 300 MBq of 18 F-fluorocholine. Three timeframes of 3 minutes each were reconstructed for analysis. All patients underwent subsequent whole body PET/CT. Delayed pelvic PET/CT was obtained in 36 patients. PET/CT was interpreted visually by two observers and SUV max determined for suspicious lesions. Biopsies were obtained from 13 patients. Biopsies confirmed the presence of cancer in 11 of 13 patients with positive PET for a total of 15 local recurrences in which average SUV max increased during 14 minutes post injection and marginally decreased in delayed scanning. Conversely inguinal lymph nodes with mild to moderate metabolic activity on PET showed a clearly different pattern with decreasing SUV max on dynamic images. Three-phase PET/CT contributed to the diagnostic assessment of 10 of 47 patients with biological evidence of recurrence of cancer. It notably allowed the discrimination of confounding blood pool or urinary activity from suspicious hyperactivities. PET/CT was positive in all patients with PSA ≥ 2 ng/ml (n 34) and in 4/13 patients presenting PSA values 18 F-fluorocholine 3-phase PET/CT showed a progressively increasing SUV max in biopsy confirmed cancer lesions up to 14 minutes post injection while decreasing in inguinal lymph nodes interpreted as benign. Furthermore, it was very useful in differentiating local recurrences from confounding blood pool and urinary activity. (orig.)

  3. Clinical significance of MRI/18F-FDG PET fusion imaging of the spinal cord in patients with cervical compressive myelopathy

    International Nuclear Information System (INIS)

    Uchida, Kenzo; Nakajima, Hideaki; Watanabe, Shuji; Yoshida, Ai; Baba, Hisatoshi; Okazawa, Hidehiko; Kimura, Hirohiko; Kudo, Takashi

    2012-01-01

    18 F-FDG PET is used to investigate the metabolic activity of neural tissue. MRI is used to visualize morphological changes, but the relationship between intramedullary signal changes and clinical outcome remains controversial. The present study was designed to evaluate the use of 3-D MRI/ 18 F-FDG PET fusion imaging for defining intramedullary signal changes on MRI scans and local glucose metabolic rate measured on 18 F-FDG PET scans in relation to clinical outcome and prognosis. We studied 24 patients undergoing decompressive surgery for cervical compressive myelopathy. All patients underwent 3-D MRI and 18 F-FDG PET before surgery. Quantitative analysis of intramedullary signal changes on MRI scans included calculation of the signal intensity ratio (SIR) as the ratio between the increased lesional signal intensity and the signal intensity at the level of the C7/T1 disc. Using an Advantage workstation, the same slices of cervical 3-D MRI and 18 F-FDG PET images were fused. On the fused images, the maximal count of the lesion was adopted as the standardized uptake value (SUV max ). In a similar manner to SIR, the SUV ratio (SUVR) was also calculated. Neurological assessment was conducted using the Japanese Orthopedic Association (JOA) scoring system for cervical myelopathy. The SIR on T1-weighted (T1-W) images, but not SIR on T2-W images, was significantly correlated with preoperative JOA score and postoperative neurological improvement. Lesion SUV max was significantly correlated with SIR on T1-W images, but not with SIR on T2-W images, and also with postoperative neurological outcome. The SUVR correlated better than SIR on T1-W images and lesion SUV max with neurological improvement. Longer symptom duration was correlated negatively with SIR on T1-W images, positively with SIR on T2-W images, and negatively with SUV max . Our results suggest that low-intensity signal on T1-W images, but not on T2-W images, is correlated with a poor postoperative neurological

  4. PET/MR Imaging in Gynecologic Oncology.

    Science.gov (United States)

    Ohliger, Michael A; Hope, Thomas A; Chapman, Jocelyn S; Chen, Lee-May; Behr, Spencer C; Poder, Liina

    2017-08-01

    MR imaging and PET using 2-Deoxy-2-[ 18 F]fluoroglucose (FDG) are both useful in the evaluation of gynecologic malignancies. MR imaging is superior for local staging of disease whereas fludeoxyglucose FDG PET is superior for detecting distant metastases. Integrated PET/MR imaging scanners have great promise for gynecologic malignancies by combining the advantages of each modality into a single scan. This article reviews the technology behind PET/MR imaging acquisitions and technical challenges relevant to imaging the pelvis. A dedicated PET/MR imaging protocol; the roles of PET and MR imaging in cervical, endometrial, and ovarian cancers; and future directions for PET/MR imaging are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Calculation of left ventricular volumes and ejection fraction from dynamic cardiac-gated 15O-water PET/CT: 5D-PET

    Directory of Open Access Journals (Sweden)

    Jonny Nordström

    2017-11-01

    Full Text Available Abstract Background Quantitative measurement of myocardial blood flow (MBF is of increasing interest in the clinical assessment of patients with suspected coronary artery disease (CAD. 15O-water positron emission tomography (PET is considered the gold standard for non-invasive MBF measurements. However, calculation of left ventricular (LV volumes and ejection fraction (EF is not possible from standard 15O-water uptake images. The purpose of the present work was to investigate the possibility of calculating LV volumes and LVEF from cardiac-gated parametric blood volume (V B 15O-water images and from first pass (FP images. Sixteen patients with mitral or aortic regurgitation underwent an eight-gate dynamic cardiac-gated 15O-water PET/CT scan and cardiac MRI. V B and FP images were generated for each gate. Calculations of end-systolic volume (ESV, end-diastolic volume (EDV, stroke volume (SV and LVEF were performed with automatic segmentation of V B and FP images, using commercially available software. LV volumes and LVEF were calculated with surface-, count-, and volume-based methods, and the results were compared with gold standard MRI. Results Using V B images, high correlations between PET and MRI ESV (r = 0.89, p  0.86, p < 0.001. Conclusion Calculation of LV volumes and LVEF from dynamic 15O-water PET is feasible and shows good correlation with MRI. However, the analysis method is laborious, and future work is needed for more automation to make the method more easily applicable in a clinical setting.

  6. Low-dose non-enhanced CT versus full-dose contrast-enhanced CT in integrated PET/CT studies for the diagnosis of uterine cancer recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Kazuhiro [Institute of Biomedical Research and Innovation, Department of PET Diagnosis, Kobe (Japan); Kobe University Graduate School of Medicine, Department of Radiology, Kobe (Japan); Suzuki, Kayo [Institute of Biomedical Research and Innovation, Department of PET Diagnosis, Kobe (Japan); Nakamoto, Yuji [Kyoto University Hospital, Department of Diagnostic Radiology, Kyoto (Japan); Onishi, Yumiko; Sakamoto, Setsu; Sugimura, Kazuro [Kobe University Graduate School of Medicine, Department of Radiology, Kobe (Japan); Senda, Michio [Institute of Biomedical Research and Innovation, Department of Molecular Imaging, Kobe (Japan); Kita, Masato [Kobe City Medical Center General Hospital, Department of Obstetrics and Gynecology, Kobe (Japan)

    2010-08-15

    To evaluate low-dose non-enhanced CT (ldCT) and full-dose contrast-enhanced CT (ceCT) in integrated {sup 18}F-fluorodeoxyglucose (FDG) PET/CT studies for restaging of uterine cancer. A group of 100 women who had undergone treatment for uterine cervical (n=55) or endometrial cancer (n=45) underwent a conventional PET/CT scans with ldCT, and then a ceCT scan. Two observers retrospectively reviewed and interpreted the PET/ldCT and PET/ceCT images in consensus using a three-point grading scale (negative, equivocal, or positive) per patient and per lesion. Final diagnoses were obtained by histopathological examination, or clinical follow-up for at least 6 months. Patient-based analysis showed that the sensitivity, specificity and accuracy of PET/ceCT were 90% (27/30), 97% (68/70) and 95% (95/100), respectively, whereas those of PET/ldCT were 83% (25/30), 94% (66/70) and 91% (91/100), respectively. Sensitivity, specificity and accuracy did not significantly differ between two methods (McNemar test, p=0.48, p=0.48, and p=0.13, respectively). There were 52 sites of lesion recurrence: 12 pelvic lymph node (LN), 11 local recurrence, 8 peritoneum, 7 abdominal LN, 5 lung, 3 supraclavicular LN, 3 liver, 2 mediastinal LN, and 1 muscle and bone. The grading results for the 52 sites of recurrence were: negative 5, equivocal 0 and positive 47 for PET/ceCT, and negative 5, equivocal 4 and positive 43 for PET/ldCT, respectively. Four equivocal regions by PET/ldCT (local recurrence, pelvic LN metastasis, liver metastasis and muscle metastasis) were correctly interpreted as positive by PET/ceCT. PET/ceCT is an accurate imaging modality for the assessment of uterine cancer recurrence. Its use reduces the frequency of equivocal interpretations. (orig.)

  7. Tariquidar-induced P-glycoprotein inhibition at the rat blood-brain barrier studied with (R)-11C-verapamil and PET.

    Science.gov (United States)

    Bankstahl, Jens P; Kuntner, Claudia; Abrahim, Aiman; Karch, Rudolf; Stanek, Johann; Wanek, Thomas; Wadsak, Wolfgang; Kletter, Kurt; Müller, Markus; Löscher, Wolfgang; Langer, Oliver

    2008-08-01

    The multidrug efflux transporter P-glycoprotein (P-gp) is expressed in high concentrations at the blood-brain barrier (BBB) and is believed to be implicated in resistance to central nervous system drugs. We used small-animal PET and (R)-11C-verapamil together with tariquidar, a new-generation P-gp modulator, to study the functional activity of P-gp at the BBB of rats. To enable a comparison with human PET data, we performed kinetic modeling to estimate the rate constants of radiotracer transport across the rat BBB. A group of 7 Wistar Unilever rats underwent paired (R)-11C-verapamil PET scans at an interval of 3 h: 1 baseline scan and 1 scan after intravenous injection of tariquidar (15 mg/kg, n = 5) or vehicle (n = 2). After tariquidar administration, the distribution volume (DV) of (R)-11C-verapamil was 12-fold higher than baseline (3.68 +/- 0.81 vs. 0.30 +/- 0.08; P = 0.0007, paired t test), whereas the DVs were essentially the same when only vehicle was administered. The increase in DV could be attributed mainly to an increased influx rate constant (K1) of (R)-11C-verapamil into the brain, which was about 8-fold higher after tariquidar. A dose-response assessment with tariquidar provided an estimated half-maximum effect dose of 8.4 +/- 9.5 mg/kg. Our data demonstrate that (R)-11C-verapamil PET combined with tariquidar administration is a promising approach to measure P-gp function at the BBB.

  8. Low-dose computed tomography scans with automatic exposure control for patients of different ages undergoing cardiac PET/CT and SPECT/CT.

    Science.gov (United States)

    Yang, Ching-Ching; Yang, Bang-Hung; Tu, Chun-Yuan; Wu, Tung-Hsin; Liu, Shu-Hsin

    2017-06-01

    This study aimed to evaluate the efficacy of automatic exposure control (AEC) in order to optimize low-dose computed tomography (CT) protocols for patients of different ages undergoing cardiac PET/CT and single-photon emission computed tomography/computed tomography (SPECT/CT). One PET/CT and one SPECT/CT were used to acquire CT images for four anthropomorphic phantoms representative of 1-year-old, 5-year-old and 10-year-old children and an adult. For the hybrid systems investigated in this study, the radiation dose and image quality of cardiac CT scans performed with AEC activated depend mainly on the selection of a predefined image quality index. Multiple linear regression methods were used to analyse image data from anthropomorphic phantom studies to investigate the effects of body size and predefined image quality index on CT radiation dose in cardiac PET/CT and SPECT/CT scans. The regression relationships have a coefficient of determination larger than 0.9, indicating a good fit to the data. According to the regression models, low-dose protocols using the AEC technique were optimized for patients of different ages. In comparison with the standard protocol with AEC activated for adult cardiac examinations used in our clinical routine practice, the optimized paediatric protocols in PET/CT allow 32.2, 63.7 and 79.2% CT dose reductions for anthropomorphic phantoms simulating 10-year-old, 5-year-old and 1-year-old children, respectively. The corresponding results for cardiac SPECT/CT are 8.4, 51.5 and 72.7%. AEC is a practical way to reduce CT radiation dose in cardiac PET/CT and SPECT/CT, but the AEC settings should be determined properly for optimal effect. Our results show that AEC does not eliminate the need for paediatric protocols and CT examinations using the AEC technique should be optimized for paediatric patients to reduce the radiation dose as low as reasonably achievable.

  9. Diagnostic and prognostic value of 18F-FDG PET/CT in recurrent germinal tumor carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Alongi, Pierpaolo [IRCSS San Raffaele Scientific Institute, Nuclear Medicine Department, Milan (Italy); San Raffaele G. Giglio Institute, Department of Radiological Sciences, Nuclear Medicine Unit, Cefalu (Italy); Evangelista, Laura [Veneto Institute of Oncology IOV - IRCCS, Nuclear Medicine and Molecular Imaging Unit, Padua (Italy); Caobelli, Federico [Basel University Hospital, Department of Nuclear Medicine, Basel (Switzerland); Spallino, Marianna [University of Milano-Bicocca, Milan (Italy); Gianolli, Luigi; Picchio, Maria [IRCSS San Raffaele Scientific Institute, Nuclear Medicine Department, Milan (Italy); Midiri, Massimo [San Raffaele G. Giglio Institute, Department of Radiological Sciences, Nuclear Medicine Unit, Cefalu (Italy); University of Palermo, Department of Radiology, DIBIMED, Palermo (Italy)

    2018-01-15

    The aim of this bicentric retrospective study was to assess the diagnostic performance, the prognostic value, the incremental prognostic value and the impact on therapeutic management of {sup 18}F-FDG PET/CT in patients with suspected recurrent germinal cell testicular carcinoma (GCT). From the databases of two centers including 31,500 {sup 18}F-FDG PET/CT oncological studies, 114 patients affected by GCT were evaluated in a retrospective study. All 114 patients underwent {sup 18}F-FDG PET/CT for suspected recurrent disease. Diagnostic performance of visually interpreted {sup 18}F-FDG PET/CT and potential impact on the treatment decision were assessed using histology (17 patients), other diagnostic imaging modalities (i.e., contrast enhanced CT in 89 patients and MRI in 15) and clinical follow-up (114 patients) as reference. Progression-free survival (PFS) and overall survival (OS) rates were computed by means of Kaplan-Meier survival analysis. The progression rate (Hazard Ratio-HR) was determined using univariate Cox regression analysis by considering various clinical variables. Recurrent GCT was confirmed in 47 of 52 patients with pathological {sup 18}F-FDG PET/CT findings, by means of histology in 18 patients and by other diagnostic imaging modalities/follow-up in 29. Sensitivity, specificity, accuracy, positive and negative likelihood ratio (LR+ and LR-, respectively), pre-test Odds-ratio and post-test Odds-ratio of {sup 18}FDG PET/CT were 86.8%, 90.2%, 88.4%, 8.85, 0.14, 0.85, 8.85, respectively.{sup 18}F-FDG PET/CT impacted significantly on therapeutic management in 26/114 (23%) cases (from palliative to curative in 12 patients, from ''wait and watch'' to new chemotherapy in six patients and the ''wait-and-watch'' approach in eight patients with unremarkable findings). At 2 and 5-year follow-up, PFS was significantly longer in patients with a negative than a pathological {sup 18}F-FDG PET/CT scan (98% and 95% vs 48% and

  10. Diagnostic and prognostic value of 18F-FDG PET/CT in recurrent germinal tumor carcinoma.

    Science.gov (United States)

    Alongi, Pierpaolo; Evangelista, Laura; Caobelli, Federico; Spallino, Marianna; Gianolli, Luigi; Midiri, Massimo; Picchio, Maria

    2018-01-01

    The aim of this bicentric retrospective study was to assess the diagnostic performance, the prognostic value, the incremental prognostic value and the impact on therapeutic management of 18 F-FDG PET/CT in patients with suspected recurrent germinal cell testicular carcinoma (GCT). From the databases of two centers including 31,500 18 F-FDG PET/CT oncological studies, 114 patients affected by GCT were evaluated in a retrospective study. All 114 patients underwent 18 F-FDG PET/CT for suspected recurrent disease. Diagnostic performance of visually interpreted 18 F-FDG PET/CT and potential impact on the treatment decision were assessed using histology (17 patients), other diagnostic imaging modalities (i.e., contrast enhanced CT in 89 patients and MRI in 15) and clinical follow-up (114 patients) as reference. Progression-free survival (PFS) and overall survival (OS) rates were computed by means of Kaplan-Meier survival analysis. The progression rate (Hazard Ratio-HR) was determined using univariate Cox regression analysis by considering various clinical variables. Recurrent GCT was confirmed in 47 of 52 patients with pathological 18 F-FDG PET/CT findings, by means of histology in 18 patients and by other diagnostic imaging modalities/follow-up in 29. Sensitivity, specificity, accuracy, positive and negative likelihood ratio (LR+ and LR-, respectively), pre-test Odds-ratio and post-test Odds-ratio of 18 FDG PET/CT were 86.8%, 90.2%, 88.4%, 8.85, 0.14, 0.85, 8.85, respectively. 18 F-FDG PET/CT impacted significantly on therapeutic management in 26/114 (23%) cases (from palliative to curative in 12 patients, from "wait and watch" to new chemotherapy in six patients and the "wait-and-watch" approach in eight patients with unremarkable findings). At 2 and 5-year follow-up, PFS was significantly longer in patients with a negative than a pathological 18 F-FDG PET/CT scan (98% and 95% vs 48% and 38%, respectively; p = 0.02). An unremarkable scan was associated also with a

  11. Diagnostic and prognostic value of 18F-FDG PET/CT in recurrent germinal tumor carcinoma

    International Nuclear Information System (INIS)

    Alongi, Pierpaolo; Evangelista, Laura; Caobelli, Federico; Spallino, Marianna; Gianolli, Luigi; Picchio, Maria; Midiri, Massimo

    2018-01-01

    The aim of this bicentric retrospective study was to assess the diagnostic performance, the prognostic value, the incremental prognostic value and the impact on therapeutic management of 18 F-FDG PET/CT in patients with suspected recurrent germinal cell testicular carcinoma (GCT). From the databases of two centers including 31,500 18 F-FDG PET/CT oncological studies, 114 patients affected by GCT were evaluated in a retrospective study. All 114 patients underwent 18 F-FDG PET/CT for suspected recurrent disease. Diagnostic performance of visually interpreted 18 F-FDG PET/CT and potential impact on the treatment decision were assessed using histology (17 patients), other diagnostic imaging modalities (i.e., contrast enhanced CT in 89 patients and MRI in 15) and clinical follow-up (114 patients) as reference. Progression-free survival (PFS) and overall survival (OS) rates were computed by means of Kaplan-Meier survival analysis. The progression rate (Hazard Ratio-HR) was determined using univariate Cox regression analysis by considering various clinical variables. Recurrent GCT was confirmed in 47 of 52 patients with pathological 18 F-FDG PET/CT findings, by means of histology in 18 patients and by other diagnostic imaging modalities/follow-up in 29. Sensitivity, specificity, accuracy, positive and negative likelihood ratio (LR+ and LR-, respectively), pre-test Odds-ratio and post-test Odds-ratio of 18 FDG PET/CT were 86.8%, 90.2%, 88.4%, 8.85, 0.14, 0.85, 8.85, respectively. 18 F-FDG PET/CT impacted significantly on therapeutic management in 26/114 (23%) cases (from palliative to curative in 12 patients, from ''wait and watch'' to new chemotherapy in six patients and the ''wait-and-watch'' approach in eight patients with unremarkable findings). At 2 and 5-year follow-up, PFS was significantly longer in patients with a negative than a pathological 18 F-FDG PET/CT scan (98% and 95% vs 48% and 38%, respectively; p = 0.02). An

  12. Integrating respiratory-gated PET-based target volume delineation in liver SBRT planning, a pilot study

    International Nuclear Information System (INIS)

    Riou, Olivier; Thariat, Juliette; Serrano, Benjamin; Azria, David; Paulmier, Benoit; Villeneuve, Remy; Fenoglietto, Pascal; Artenie, Antonella; Ortholan, Cécile; Faraggi, Marc

    2014-01-01

    To assess the feasibility and benefit of integrating four-dimensional (4D) Positron Emission Tomography (PET) – computed tomography (CT) for liver stereotactic body radiation therapy (SBRT) planning. 8 patients with 14 metastases were accrued in the study. They all underwent a non-gated PET and a 4D PET centered on the liver. The same CT scan was used for attenuation correction, registration, and considered the planning CT for SBRT planning. Six PET phases were reconstructed for each 4D PET. By applying an individualized threshold to the 4D PET, a Biological Internal Target Volume (BITV) was generated for each lesion. A gated Planning Target Volume (PTVg) was created by adding 3 mm to account for set-up margins. This volume was compared to a manual Planning Target Volume (PTV) delineated with the help of a semi-automatic Biological Target Volume (BTV) obtained from the non-gated exam. A 5 mm radial and a 10 mm craniocaudal margins were applied to account for tumor motion and set-up margins to create the PTV. One undiagnosed liver metastasis was discovered thanks to the 4D PET. The semi-automatic BTV were significantly smaller than the BITV (p = 0.0031). However, after applying adapted margins, 4D PET allowed a statistically significant decrease in the PTVg as compared to the PTV (p = 0.0052). In comparison to non-gated PET, 4D PET may better define the respiratory movements of liver targets and improve SBRT planning for liver metastases. Furthermore, non respiratory-gated PET exams can both misdiagnose liver metastases and underestimate the real internal target volumes

  13. 68Ga-PSMA-11 Dynamic PET/CT Imaging in Primary Prostate Cancer.

    Science.gov (United States)

    Sachpekidis, Christos; Kopka, Klaus; Eder, Matthias; Hadaschik, Boris A; Freitag, Martin T; Pan, Leyun; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2016-11-01

    The aim of our study is to assess the pharmacokinetics and biodistribution of Ga-PSMA-11 in patients suffering from primary prostate cancer (PC) by means of dynamic and whole-body PET/CT. Twenty-four patients with primary, previously untreated PC were enrolled in the study. All patients underwent dynamic PET/CT (dPET/CT) scanning of the pelvis and whole-body PET/CT studies with Ga-PSMA-11. The evaluation of dPET/CT studies was based on qualitative evaluation, SUV calculation, and quantitative analysis based on two-tissue compartment modeling and a noncompartmental approach leading to the extraction of fractal dimension (FD). A total of 23/24 patients (95.8%) were Ga-PSMA-11 positive. In 9/24 patients (37.5%), metastatic lesions were detected. PC-associated lesions demonstrated the following mean values: SUVaverage = 14.3, SUVmax = 23.4, K1 = 0.24 (1/min), k3 = 0.34 (1/min), influx = 0.15 (1/min), and FD = 1.27. The parameters SUVaverage, SUVmax, k3, influx, and FD derived from PC-associated lesions were significantly higher than respective values derived from reference prostate tissue. Time-activity curves derived from PC-associated lesions revealed an increasing Ga-PSMA-11 accumulation during dynamic PET acquisition. Correlation analysis revealed a moderate but significant correlation between PSA levels and SUVaverage (r = 0.60) and SUVmax (r = 0.57), and a weak but significant correlation between Gleason score and SUVaverage (r = 0.33) and SUVmax (r = 0.28). Ga-PSMA-11 PET/CT confirmed its capacity in detecting primary PC with a detection rate of 95.8%. Dynamic PET/CT studies of the pelvis revealed an increase in tracer uptake in PC-associated lesions during the 60 minutes of dynamic PET acquisition, a finding with potential applications in anti-PSMA approaches.

  14. Using positron emission tomography (PET) response criteria in solid tumours (PERCIST) 1.0 for evaluation of 2'-deoxy-2'-[18F] fluoro-D-glucose-PET/CT scans to predict survival early during treatment of locally advanced non-small cell lung cancer (NSCLC).

    Science.gov (United States)

    Fledelius, Joan; Khalil, Azza Ahmed; Hjorthaug, Karin; Frøkiaer, Jørgen

    2016-04-01

    The demand for early-response evaluation with 2'-deoxy-2'-[18F] fluoro-D-glucose (F-18-FDG) positron emission tomography combined with whole body CT (PET/CT) is rapidly growing. This study was initiated to evaluate the applicability of the PET response criteria in solid tumours (PERCIST 1.0) for response evaluation. We performed a retrospective study of 21 patients with locally advanced non-small cell lung cancer (NSCLC), who had undergone both a baseline and a follow-up F-18-FDG-PET/CT scan during their treatments. The scans were performed at our institution in the period September 2009 and March 2011 and were analysed visually and according to PERCIST 1.0 by one board-certified nuclear medicine physician. The response was compared with overall survival (OS) and progression-free survival (PFS). The variation in key parameters affecting the F-18-FDG uptake was assessed. A kappa of 0.94 corresponding to an almost perfect agreement was found for the comparison of the visual evaluation with PERCIST. Patients with partial metabolic response and stable metabolic disease (as evaluated by PERCIST 1.0) had statistically significant longer median time to progression: 8.4 months (confidence interval (CI) 5.1-11.8 months) as compared with 2.7 months (CI 0-5.6 months) in patients classified with progression. The variation in uptake time between baseline and follow-up scans was more than the recommended 15 min in 48% of patients. PERCIST 1.0 is readily implementable and highly comparable with visual evaluation of response using early F-18-FDG-PET/CT scanning for locally advanced NSCLC patients. In spite of variations in parameters affecting F-18-FDG uptake, evaluation of F-18-FDG-PET/CT during treatment with PERCIST 1.0 is shown to separate non-responders from responders, each with statistically significant differences in both OS and PFS. © 2015 The Royal Australian and New Zealand College of Radiologists.

  15. PET/MRI in the Presence of Metal Implants: Completion of the Attenuation Map from PET Emission Data.

    Science.gov (United States)

    Fuin, Niccolo; Pedemonte, Stefano; Catalano, Onofrio A; Izquierdo-Garcia, David; Soricelli, Andrea; Salvatore, Marco; Heberlein, Keith; Hooker, Jacob M; Van Leemput, Koen; Catana, Ciprian

    2017-05-01

    We present a novel technique for accurate whole-body attenuation correction in the presence of metallic endoprosthesis, on integrated non-time-of-flight (non-TOF) PET/MRI scanners. The proposed implant PET-based attenuation map completion (IPAC) method performs a joint reconstruction of radioactivity and attenuation from the emission data to determine the position, shape, and linear attenuation coefficient (LAC) of metallic implants. Methods: The initial estimate of the attenuation map was obtained using the MR Dixon method currently available on the Siemens Biograph mMR scanner. The attenuation coefficients in the area of the MR image subjected to metal susceptibility artifacts are then reconstructed from the PET emission data using the IPAC algorithm. The method was tested on 11 subjects presenting 13 different metallic implants, who underwent CT and PET/MR scans. Relative mean LACs and Dice similarity coefficients were calculated to determine the accuracy of the reconstructed attenuation values and the shape of the metal implant, respectively. The reconstructed PET images were compared with those obtained using the reference CT-based approach and the Dixon-based method. Absolute relative change (aRC) images were generated in each case, and voxel-based analyses were performed. Results: The error in implant LAC estimation, using the proposed IPAC algorithm, was 15.7% ± 7.8%, which was significantly smaller than the Dixon- (100%) and CT- (39%) derived values. A mean Dice similarity coefficient of 73% ± 9% was obtained when comparing the IPAC- with the CT-derived implant shape. The voxel-based analysis of the reconstructed PET images revealed quantification errors (aRC) of 13.2% ± 22.1% for the IPAC- with respect to CT-corrected images. The Dixon-based method performed substantially worse, with a mean aRC of 23.1% ± 38.4%. Conclusion: We have presented a non-TOF emission-based approach for estimating the attenuation map in the presence of metallic implants, to

  16. Evaluation of PET and MR datasets in integrated 18F-FDG PET/MRI: A comparison of different MR sequences for whole-body restaging of breast cancer patients

    International Nuclear Information System (INIS)

    Grueneisen, Johannes; Sawicki, Lino Morris; Wetter, Axel; Kirchner, Julian; Kinner, Sonja; Aktas, Bahriye; Forsting, Michael; Ruhlmann, Verena; Umutlu, Lale

    2017-01-01

    Objectives: To investigate the diagnostic value of different MR sequences and 18F-FDG PET data for whole-body restaging of breast cancer patients utilizing PET/MRI. Methods: A total of 36 patients with suspected tumor recurrence of breast cancer based on clinical follow-up or abnormal findings in follow-up examinations (e.g. CT, MRI) were prospectively enrolled in this study. All patients underwent a PET/CT and subsequently an additional PET/MR scan. Two readers were instructed to identify the occurrence of a tumor relapse in subsequent MR and PET/MR readings, utilizing different MR sequence constellations for each session. The diagnostic confidence for the determination of a malignant or benign lesion was qualitatively rated (3-point ordinal scale) for each lesion in the different reading sessions and the lesion conspicuity (4-point ordinal scale) for the three different MR sequences was additionally evaluated. Results: Tumor recurrence was present in 25/36 (69%) patients. All three PET/MRI readings showed a significantly higher accuracy as well as higher confidence levels for the detection of recurrent breast cancer lesions when compared to MRI alone (p < 0.05). Furthermore, all three PET/MR sequence constellations showed comparable diagnostic accuracy for the identification of a breast cancer recurrence (p > 0.05), yet the highest confidence levels were obtained, when all three MR sequences were used for image interpretation. Moreover, contrast-enhanced T1-weighted VIBE imaging showed significantly higher values for the delineation of malignant and benign lesions when compared to T2 w HASTE and diffusion-weighted imaging. Conclusion: Integrated PET/MRI provides superior restaging of breast cancer patients over MRI alone. Facing the need for appropriate and efficient whole-body PET/MR protocols, our results show the feasibility of fast and morphologically adequate PET/MR protocols. However, considering an equivalent accuracy for the detection of breast cancer

  17. Evaluation of PET and MR datasets in integrated 18F-FDG PET/MRI: A comparison of different MR sequences for whole-body restaging of breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Grueneisen, Johannes, E-mail: Johannes.grueneisen@uk-essen.de [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen (Germany); Sawicki, Lino Morris [Department of Diagnostic and Interventional Radiology, University Hospital, Dusseldorf, University of Dusseldorf, D-40225 Dusseldorf (Germany); Wetter, Axel [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen (Germany); Kirchner, Julian [Department of Diagnostic and Interventional Radiology, University Hospital, Dusseldorf, University of Dusseldorf, D-40225 Dusseldorf (Germany); Kinner, Sonja [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen (Germany); Aktas, Bahriye [Department of Obstetrics and Gynecology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen (Germany); Forsting, Michael [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen (Germany); Ruhlmann, Verena [Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen (Germany); Umutlu, Lale [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen (Germany)

    2017-04-15

    Objectives: To investigate the diagnostic value of different MR sequences and 18F-FDG PET data for whole-body restaging of breast cancer patients utilizing PET/MRI. Methods: A total of 36 patients with suspected tumor recurrence of breast cancer based on clinical follow-up or abnormal findings in follow-up examinations (e.g. CT, MRI) were prospectively enrolled in this study. All patients underwent a PET/CT and subsequently an additional PET/MR scan. Two readers were instructed to identify the occurrence of a tumor relapse in subsequent MR and PET/MR readings, utilizing different MR sequence constellations for each session. The diagnostic confidence for the determination of a malignant or benign lesion was qualitatively rated (3-point ordinal scale) for each lesion in the different reading sessions and the lesion conspicuity (4-point ordinal scale) for the three different MR sequences was additionally evaluated. Results: Tumor recurrence was present in 25/36 (69%) patients. All three PET/MRI readings showed a significantly higher accuracy as well as higher confidence levels for the detection of recurrent breast cancer lesions when compared to MRI alone (p < 0.05). Furthermore, all three PET/MR sequence constellations showed comparable diagnostic accuracy for the identification of a breast cancer recurrence (p > 0.05), yet the highest confidence levels were obtained, when all three MR sequences were used for image interpretation. Moreover, contrast-enhanced T1-weighted VIBE imaging showed significantly higher values for the delineation of malignant and benign lesions when compared to T2 w HASTE and diffusion-weighted imaging. Conclusion: Integrated PET/MRI provides superior restaging of breast cancer patients over MRI alone. Facing the need for appropriate and efficient whole-body PET/MR protocols, our results show the feasibility of fast and morphologically adequate PET/MR protocols. However, considering an equivalent accuracy for the detection of breast cancer

  18. The Role of 18F-FDG PET/CT in Assessing Therapy Response in Cervix Cancer after Concurrent Chemoradiation Therapy

    International Nuclear Information System (INIS)

    Choi, Jiyoun; Kim, Hyun Jeong; Jeong, Yong Hyu; Lee, Jaehoon; Cho, Arthur; Yun, Mijin; Lee, Jong Doo; Kim, Yong Bae; Kim, Young Tae; Kang, Won Jun

    2014-01-01

    To determine whether persisting cervical fluorodeoxyglucose (FDG) uptake after concurrent chemoradiotherapy (CCRT) for cervical cancer can reflect residual malignancy. F-FDG PET/CT was performed before and after CCRT in 136 patients with cervical cancer. The maximum and mean standardized uptake values (SUVmax and SUVmean) were recorded from PET/CT scans performed pre- and post-treatment. SUVs were correlated with treatment response after CCRT. Final treatment response was determined by MRI and further follow-up PET/CT. One hundred four of 136 patients underwent pelvic MRI, and 32 of 136 patients underwent further follow-up PET/CT. Patients were classified into two categories: patients with residual tumor or patients without residual tumor (complete responder). Preand post-treatment serum squamous cell carcinoma antigen (SCC) levels were also recorded for comparison. The optimal cutoff value of SUVmax for predicting residual cervical tumor was determined using receiver-operating characteristic (ROC) analysis. Of 136 patients, 124 showed complete response on further follow-up studies and 12 were confirmed to have residual tumor. The post-treatment SUVmax and pre-/posttreatment SUVmean of complete responders were significantly lower than those of patients with residual tumor: 2.5±0.8 and 7.2±4.2/1.9±0.7 for complete responders and 5.7±2.6 and 12.8±6.9/3.7±0.7 for patients with residual tumor (p 18 F-FDG PET/CT after CCRT for cervical cancer may be caused by residual tumor or post-therapy inflammation. A higher cutoff SUVmax than conventional criteria for cervical cancer in post-CCRT PET/CT might help to detect residual tumor

  19. A PET [18F]altanserin study of 5-HT2A receptor binding in the human brain and responses to painful heat stimulation

    DEFF Research Database (Denmark)

    Kupers, Ronny Clement Florent; Frokjaer, Vibe G; Naert, Arne

    2009-01-01

    There is a large body of evidence that serotonin [5-hydroxytryptamine (5-HT)] plays an important role in the transmission and regulation of pain. Here we used positron emission tomography (PET) to study the relationship between baseline 5-HT(2A) binding in the brain and responses to noxious heat...... stimulation in a group of young healthy volunteers. Twenty-one healthy subjects underwent PET scanning with the 5-HT(2A) antagonist, [(18)F]altanserin. In addition, participants underwent a battery of pain tests using noxious heat stimulation to assess pain threshold, pain tolerance and response to short......-lasting phasic and long-lasting (7-minute) tonic painful stimulation. Significant positive correlations were found between tonic pain ratings and [(18)F]altanserin binding in orbitofrontal (r=0.66; p=0.005), medial inferior frontal (r=0.60; p=0.014), primary sensory-motor (r=0.61; p=0.012) and posterior...

  20. Evaluation of cat brain infarction model using microPET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. J.; Lee, D. S.; Kim, J. H.; Hwang, D. W.; Jung, J. G.; Lee, M. C [College of Medicine, Seoul National University, Seoul (Korea, Republic of); Lim, S. M [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-07-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advance of microPET scanner, it is possible to image small animals. However, the image quality was not so much satisfactory as human image. As cats have relatively large sized brain, cat brain imaging was superior to mice or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCl. A burr hole was made at 1cm right lateral to the bregma. Collagenase type IV 10 ul was injected using 30G needle for 5 minutes to establish the infarction model. F-18 FDG microPET (Concorde Microsystems Inc., Knoxville. TN) scans were performed 1. 11 and 32 days after the infarction. In addition. 18F-FDG PET scans were performed using Gemini PET scanner (Philips medical systems. CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infraction lesion improved with time. An infarction lesion was also distinguishable in the Gemini PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using F-18 FDG microPET scanner.

  1. Evaluation of cat brain infarction model using microPET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Jin; Lee, Dong Soo; Kim, Yun Hui; Hwang, Do Won; Kim, Jin Su; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of); Lim, Sang Moo [Korea Institite of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-12-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advent of microPET scanner, it is possible to image small animals. However, the image quality was not good enough as human image. Due to larger brain, cat brain imaging was superior to mouse or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCI. A burr hole was made at 1 cm right lateral to the bregma. Collagenase type IV 10 {mu}l was injected using 30 G needle for 5 minutes to establish the infarction model. {sup 18}F-FDG microPET (Concorde Microsystems Inc., Knoxville, TN) scans were performed 1, 11 and 32 days after the infarction. In addition, {sup 18}F-FDG PET scans were performed using human PET scanner (Gemini, Philips medical systems, CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infarction lesion improved with time. An infarction lesion was also distinguishable in the human PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using {sup 18}F-FDG microPET scanner.

  2. Evaluation of cat brain infarction model using microPET

    International Nuclear Information System (INIS)

    Lee, J. J.; Lee, D. S.; Kim, J. H.; Hwang, D. W.; Jung, J. G.; Lee, M. C; Lim, S. M

    2004-01-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advance of microPET scanner, it is possible to image small animals. However, the image quality was not so much satisfactory as human image. As cats have relatively large sized brain, cat brain imaging was superior to mice or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCl. A burr hole was made at 1cm right lateral to the bregma. Collagenase type IV 10 ul was injected using 30G needle for 5 minutes to establish the infarction model. F-18 FDG microPET (Concorde Microsystems Inc., Knoxville. TN) scans were performed 1. 11 and 32 days after the infarction. In addition. 18F-FDG PET scans were performed using Gemini PET scanner (Philips medical systems. CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infraction lesion improved with time. An infarction lesion was also distinguishable in the Gemini PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using F-18 FDG microPET scanner

  3. Evaluation of cat brain infarction model using microPET

    International Nuclear Information System (INIS)

    Lee, Jong Jin; Lee, Dong Soo; Kim, Yun Hui; Hwang, Do Won; Kim, Jin Su; Chung, June Key; Lee, Myung Chul; Lim, Sang Moo

    2004-01-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advent of microPET scanner, it is possible to image small animals. However, the image quality was not good enough as human image. Due to larger brain, cat brain imaging was superior to mouse or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCI. A burr hole was made at 1 cm right lateral to the bregma. Collagenase type IV 10 μl was injected using 30 G needle for 5 minutes to establish the infarction model. 18 F-FDG microPET (Concorde Microsystems Inc., Knoxville, TN) scans were performed 1, 11 and 32 days after the infarction. In addition, 18 F-FDG PET scans were performed using human PET scanner (Gemini, Philips medical systems, CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infarction lesion improved with time. An infarction lesion was also distinguishable in the human PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using 18 F-FDG microPET scanner

  4. O-15-butanol PET activation study on declarative memory

    International Nuclear Information System (INIS)

    Krause, B.J.; Schmidt, D.; Mottaghy, F.M.; Mueller-Gaertner, H.W.; Forschungszentrum Juelich; Halsband, U.; Tellmann, L.; Herzog, H.

    1998-01-01

    Aim: In this study, neuroanatomical correlates of encoding and retrieval in paired associate learning were evaluated with positron emission tomography using auditorily presented highly imaginable words. Methods: Six right-handed normal male volunteers took part in the study. Each subject underwent six O-15-butanol PET scans. On each of the six trials the memory task began with the injection of a bolus of O-15-butanol. The subjects had to learn and retrieve twelve word pairs (highly imaginable words, not semantically related). The presentation of nonsense words served as reference condition. Results: Recall accuracy after 2-4 presentations was high during the PET measurement. In both encoding and retrieval we found anterior cingulate activation. We show bilateral dorsalateral prefrontal activation during the encoding of auditorily presented word pair associates, whereas retrieval led to left frontal activation. Furthermore, we demonstrate the importance of the precuneus in the retrieval of highly imaginable world-pair associates. Conclusion: Our results support the hypothesis of the presence of distributed widespread brain structures subserving episodic declarative memory. (orig.) [de

  5. Quantitative and Visual Assessments toward Potential Sub-mSv or Ultrafast FDG PET Using High-Sensitivity TOF PET in PET/MRI.

    Science.gov (United States)

    Behr, Spencer C; Bahroos, Emma; Hawkins, Randall A; Nardo, Lorenzo; Ravanfar, Vahid; Capbarat, Emily V; Seo, Youngho

    2018-06-01

    reduction in either injection dose for the same time or total scan time for the same injected dose. This "ultra-sensitivity" PET system provides a path to clinically acceptable extremely low-dose FDG PET studies (e.g., sub 1 mCi injection or sub-mSv effective dose) or PET studies as short as 1 min/bed (e.g., 6 min of total scan time) to cover whole body without compromising diagnostic performance.

  6. Demonstration of metabolic and cellular effects of portal vein ligation using multi-modal PET/MRI measurements in healthy rat liver.

    Directory of Open Access Journals (Sweden)

    András Fülöp

    Full Text Available OBJECTIVES: In the early recognition of portal vein ligation (PVL induced tumor progression, positron emission tomography and magnetic resonance imaging (PET/MRI could improve diagnostic accuracy of conventionally used methods. It is unknown how PVL affects metabolic patterns of tumor free hepatic tissues. The aim of this preliminary study is to evaluate the effect of PVL on glucose metabolism, using PET/MRI imaging in healthy rat liver. MATERIALS AND METHODS: Male Wistar rats (n=30 underwent PVL. 2-deoxy-2-(18Ffluoro-D-glucose (FDG PET/MRI imaging (nanoScan PET/MRI and morphological/histological examination were performed before (Day 0 and 1, 2, 3, and 7 days after PVL. Dynamic PET data were collected and the standardized uptake values (SUV for ligated and non-ligated liver lobes were calculated in relation to cardiac left ventricle (SUVVOI/SUVCLV and mean liver SUV (SUVVOI/SUVLiver. RESULTS: PVL induced atrophy of ligated lobes, while non-ligated liver tissue showed compensatory hypertrophy. Dynamic PET scan revealed altered FDG kinetics in both ligated and non-ligated liver lobes. SUVVOI/SUVCLV significantly increased in both groups of lobes, with a maximal value at the 2nd postoperative day and returned near to the baseline 7 days after the ligation. After PVL, ligated liver lobes showed significantly higher tracer uptake compared to the non-ligated lobes (significantly higher SUVVOI/SUVLiver values were observed at postoperative day 1, 2 and 3. The homogenous tracer biodistribution observed before PVL reappeared by 7th postoperative day. CONCLUSION: The observed alterations in FDG uptake dynamics should be taken into account during the assessment of PET data until the PVL induced atrophic and regenerative processes are completed.

  7. PET/CT in patients with hepatocellular carcinoma using [{sup 18}F]fluorocholine: preliminary comparison with [{sup 18}F]FDG PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, Jean-Noel; Gutman, Fabrice; Kerrou, Khaldoun; Grahek, Dany; Montravers, Francoise [Hopital Tenon, AP-HP, et Universite Pierre et Marie Curie, Department of Nuclear Medicine, Paris (France); Fartoux, Laetitia; Poupon, Raoul; Rosmorduc, Olivier [Hopital Saint-Antoine, AP-HP, et Universite Pierre et Marie Curie, Department of Hepatology, Paris (France); Grange, Jean-Didier [Hopital Tenon, AP-HP, et Universite Pierre et Marie Curie, Department of Hepatology, Paris (France); Ganne, Nathalie [Hopital Jean Verdier, AP-HP, Department of Hepatology, Bondy (France)

    2006-11-15

    The diagnostic accuracy of [{sup 18}F]fluorodeoxyglucose (FDG) PET is insufficient to characterise hepatocellular carcinoma (HCC) in liver masses and to diagnose all cases of recurrent HCC. HCC has been reported to take up [{sup 11}C]acetate, but routine use of this tracer is difficult. Choline is another tracer of lipid metabolism, present in large amounts in HCC. In a proof-of-concept study, we evaluated [{sup 18}F]fluorocholine (FCH) uptake by HCC and compared FCH PET/CT with FDG PET/CT. Twelve patients with newly diagnosed (n=8) or recurrent HCC (n=4) were prospectively enrolled. HCC was assessed by histology in eight cases and by American Association for the Study of Liver Diseases (AASLD) criteria in four cases. All patients underwent whole-body PET/CT 10 min after injection of 4 MBq/kg FCH. Within 1 week, 9 of the 12 patients also underwent whole-body FDG PET/CT 1 h after injection of 5 MBq/kg FDG. The per-patient analysis showed a detection rate of 12/12 using FCH PET/CT for both newly diagnosed and recurrent HCC. The median signal to noise ratio was 1.5{+-}0.38. There was a trend towards a higher FCH SUV{sub max} in well-differentiated HCC (15.6{+-}7.9 vs 11.9{+-}0.9, NS). Of the nine patients who underwent FCH and FDG PET/CT, all nine were positive with FCH whereas only five were positive with FDG. FCH provides a high detection rate for HCC, making it potentially useful in the initial evaluation of HCC or in the detection of recurrent disease. The favourable result of this proof-of-concept study opens the way to a phase III prospective study. (orig.)

  8. [18F]THK-5117 PET for assessing neurofibrillary pathology in Alzheimer's disease

    International Nuclear Information System (INIS)

    Harada, Ryuichi; Okamura, Nobuyuki; Furumoto, Shozo; Furukawa, Katsutoshi; Ishiki, Aiko; Tomita, Naoki; Arai, Hiroyuki; Hiraoka, Kotaro; Watanuki, Shoichi; Miyake, Masayasu; Matsuda, Rin; Inami, Akie; Tashiro, Manabu; Shidahara, Miho; Ishikawa, Yoichi; Tago, Tetsuro; Funaki, Yoshihito; Iwata, Ren; Yoshikawa, Takeo; Yanai, Kazuhiko; Kudo, Yukitsuka

    2015-01-01

    Visualization of the spatial distribution of neurofibrillary tangles would help in the diagnosis, prevention and treatment of dementia. The purpose of the study was to evaluate the clinical utility of [ 18 F]THK-5117 as a highly selective tau imaging radiotracer. We initially evaluated in vitro binding of [ 3 H]THK-5117 in post-mortem brain tissues from patients with Alzheimer's disease (AD). In clinical PET studies, [ 18 F]THK-5117 retention in eight patients with AD was compared with that in six healthy elderly controls. Ten subjects underwent an additional [ 11 C]PiB PET scan within 2 weeks. In post-mortem brain samples, THK-5117 bound selectively to neurofibrillary deposits, which differed from the binding target of PiB. In clinical PET studies, [ 18 F]THK-5117 binding in the temporal lobe clearly distinguished patients with AD from healthy elderly subjects. Compared with [ 11 C]PiB, [ 18 F]THK-5117 retention was higher in the medial temporal cortex. These findings suggest that [ 18 F]THK-5117 provides regional information on neurofibrillary pathology in living subjects. (orig.)

  9. Do carotid MR surface coils affect PET quantification in PET/MR imaging?

    International Nuclear Information System (INIS)

    Willemink, Martin J; Eldib, Mootaz; Leiner, Tim; Fayad, Zahi A; Mani, Venkatesh

    2015-01-01

    To evaluate the effect of surface coils for carotid MR imaging on PET quantification in a clinical simultaneous whole-body PET/MR scanner. A cylindrical phantom was filled with a homogeneous 2L water-FDG mixture at a starting dose of 301.2MBq. Clinical PET/MR and PET/CT systems were used to acquire PET-data without a coil (reference standard) and with two carotid MRI coils (Siemens Special Purpose 8-Channel and Machnet 4-Channel Phased Array). PET-signal attenuation was evaluated with Osirix using 51 (PET/MR) and 37 (PET/CT) circular ROIs. Mean and maximum standardized uptake values (SUVs) were quantified for each ROI. Furthermore, SUVs of PET/MR and PET/CT were compared. For validation, a patient was scanned with an injected dose of 407.7MBq on both a PET/CT and a PET/MR system without a coil and with both coils. PET/MR underestimations were -2.2% (Siemens) and -7.8% (Machnet) for SUVmean, and -1.2% (Siemens) and -3.3% (Machnet) for SUVmax, respectively. For PET/CT, underestimations were -1.3% (Siemens) and -1.4% (Machnet) for SUVmean and -0.5% (both Siemens and Machnet) for SUVmax, respectively using no coil data as reference. Except for PET/CT SUVmax values all differences were significant. SUVs differed significantly between PET/MR and PET/CT with SUVmean values of 0.51-0.55 for PET/MR and 0.68-0.69 for PET/CT, respectively. The patient examination showed that median SUVmean values measured in the carotid arteries decreased from 0.97 without a coil to 0.96 (Siemens) and 0.88 (Machnet). Carotid surface coils do affect attenuation correction in both PET/MR and PET/CT imaging. Furthermore, SUVs differed significantly between PET/MR and PET/CT.

  10. 18F-FDG PET in small-cell cervical cancer: a prospective study with long-term follow-up

    International Nuclear Information System (INIS)

    Chen, Min-Yu; Chou, Hung-Hsueh; Chen, Chao-Yu; Lai, Chyong-Huey; Chang, Ting-Chang; Liu, Feng-Yuan; Yen, Tzu-Chen; Lin, Gigin; Yang, Lan-Yan; Pan, Yu-Bin; Jung, Shih-Ming; Wu, Ren-Chin; Huang, Yi-Ting; Tsai, Jason Chien-Sheng

    2016-01-01

    Small-cell cervical cancer (SCCC) is rare and prone to metastasize. We conducted a prospective study to evaluate the role of 18 F-FDG PET in the management of this aggressive malignancy. Patients with untreated primary, histologically confirmed SCCC were enrolled. 18 F-FDG PET (or PET/CT) was performed immediately after MRI or CT, for primary staging, monitoring response to treatment or restaging when there was suspicion of recurrence. The clinical impact of PET was determined on a scan basis. A total of 25 patients were recruited and 43 PET scans were performed. The PET images were obtained for primary staging (25 patients), monitoring response (10 patients) and restaging when there was suspicion of recurrence (8 patients). The median follow-up time in event-free patients was 109.3 months (range 97.5 - 157.7 months). A positive impact of PET was found in 8 (18.6 %) of the 43 scans, which included detection of additional regions of distal lymph node (LN) metastasis (one primary staging scan, two restaging scans), bone metastasis (two primary staging scans, one monitoring response scan), and exclusion of false-positive lesions on MRI (one primary staging scan, one restaging scan). On the other hand, one negative impact was recorded as one false-positive lesion on a restaging PET scan. One positive impact was noted for monitoring response (bone metastasis). The impact of three scans was indeterminate. The positive impact of down-staging in avoiding overtreatment but finding additional distal LN (except one on restaging) or bone metastases had no beneficial effect on long-term survival. The results of this preliminary study suggest that PET is useful in the management of SCCC. PET could have more value in detecting occult metastases if future novel therapies are able to offer better control of extensive SCCC. (orig.)

  11. {sup 18}F-FDG PET/CT imaging versus dynamic contrast-enhanced CT for staging and prognosis of inflammatory breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Champion, Laurence; Edeline, Veronique; Giraudet, Anne-Laure; Wartski, Myriam [Service de Medecine Nucleaire, Saint-Cloud (France); Lerebours, Florence [Service d' Oncologie Medicale, Saint-Cloud (France); Cherel, Pascal [Institut Curie, Hopital Rene Huguenin, Service de Radiologie, Saint-Cloud (France); Bellet, Dominique [Service de Medecine Nucleaire, Saint-Cloud (France); Universite Paris Descartes, Pharmacologie Chimique et Genetique and Imagerie, Inserm U1022 CNRS UMR 8151, Faculte des sciences pharmaceutiques et biologiques, Paris (France); Alberini, Jean-Louis [Service de Medecine Nucleaire, Saint-Cloud (France); Universite Versailles Saint-Quentin, Faculte de medecine, Saint-Quentin-en-Yvelines (France)

    2013-08-15

    Inflammatory breast cancer (IBC) is the most aggressive type of breast cancer with a poor prognosis. Locoregional staging is based on dynamic contrast-enhanced (DCE) CT or MRI. The aim of this study was to compare the performances of FDG PET/CT and DCE CT in locoregional staging of IBC and to assess their respective prognostic values. The study group comprised 50 women (median age: 51 {+-} 11 years) followed in our institution for IBC who underwent FDG PET/CT and DCE CT scans (median interval 5 {+-} 9 days). CT enhancement parameters were net maximal enhancement, net early enhancement and perfusion. The PET/CT scans showed intense FDG uptake in all primary tumours. Concordance rate between PET/CT and DCE CT for breast tumour localization was 92 %. No significant correlation was found between SUVmax and CT enhancement parameters in primary tumours (p > 0.6). PET/CT and DCE CT results were poorly correlated for skin infiltration (kappa = 0.19). Ipsilateral foci of increased axillary FDG uptake were found in 47 patients (median SUV: 7.9 {+-} 5.4), whereas enlarged axillary lymph nodes were observed on DCE CT in 43 patients. Results for axillary node involvement were fairly well correlated (kappa = 0.55). Nineteen patients (38 %) were found to be metastatic on PET/CT scan with a significant shorter progression-free survival than patients without distant lesions (p = 0.01). In the primary tumour, no statistically significant difference was observed between high and moderate tumour FDG uptake on survival, using an SUVmax cut-off of 5 (p = 0.7 and 0.9), or between high and low tumour enhancement on DCE CT (p > 0.8). FDG PET/CT imaging provided additional information concerning locoregional involvement to that provided by DCE CT on and allowed detection of distant metastases in the same whole-body procedure. Tumour FDG uptake or CT enhancement parameters were not correlated and were not found to have any prognostic value. (orig.)

  12. Breast fibroadenoma with increased activity on 68Ga-DOTATATE PET/CT

    Science.gov (United States)

    Papadakis, Georgios Z.; Millo, Corina; Sadowski, Samira M.; Karantanas, Apostolos H.; Bagci, Ulas; Patronas, Nicholas J.

    2016-01-01

    Fibroadenoma is the most common benign breast tumor in women of reproductive age, carrying little to no risk of breast cancer development. We report on a case of a woman with history of neuroendocrine tumor (NET), who on follow-up imaging tests underwent whole-body PET/CT study using 68Ga-DOTATATE. The scan showed increased focal activity in the right breast, which was biopsied revealing a fibroadenoma. The presented data suggests cell surface over-expression of somatostatin receptors (SSTRs) by this benign breast tumor. Moreover, this finding emphasizes the need for cautious interpretation of 68Ga-DOTATATE avid breast lesions which could mimic malignancy in NET patients. PMID:27879489

  13. Breast Fibroadenoma With Increased Activity on 68Ga DOTATATE PET/CT.

    Science.gov (United States)

    Papadakis, Georgios Z; Millo, Corina; Sadowski, Samira M; Karantanas, Apostolos H; Bagci, Ulas; Patronas, Nicholas J

    2017-02-01

    Fibroadenoma is the most common benign breast tumor in women of reproductive age, carrying little to no risk of breast cancer development. We report on a case of a woman with history of neuroendocrine tumor who on follow-up imaging tests underwent whole-body PET/CT study using Ga DOTATATE. The scan showed increased focal activity in the right breast, which was biopsied revealing a fibroadenoma. The presented data suggests cell surface overexpression of somatostatin receptors by this benign breast tumor. Moreover, this finding emphasizes the need for cautious interpretation of Ga DOTATATE-avid breast lesions that could mimic malignancy in neuroendocrine tumor patients.

  14. 18F-FDG PET/CT在结直肠癌术后复发与转移诊断中的应用价值与CEA水平关系的研究%Relationship of the applied value of 18F-FDG PET/CT in postoperative relapse with metastasis of colorectal cancer and CEA levels during PET/CT scanning

    Institute of Scientific and Technical Information of China (English)

    于洪涛; 赵铭; 邢军; 靳宏星; 李耀平

    2013-01-01

      Objective: This work aimed to evaluate the relationship of the diagnostic value of PET/CT in patients with postopera-tive recurrent and metastatic colorectal cancer (CRC), as well as with different levels of carcino-embryonic antigen (CEA), during PET/CT scanning. Methods: Data of 75 patients (46 males and 29 females) with suspected recurrent and metastatic CRC were collected. The patients underwent PET/CT examination in Shanxi Provincial Tumor Hospital in Taiyuan. The differences of the PET/CT diagnos-tic values in CEA-positive and CEA-negative patients with recurrent CRC after surgery were retrospectively analyzed and compared. Results: Among the 75 CRC patients, 67 had recurrence and metastasis as confirmed by histopathological diagnosis or clinical fol-low-up data. By contrast, PET/CT examination results revealed 65 cases were true positive (a false positive foci was diagnosed in one of the patients), 8 were true negative, and 2 were false negative. Correspondingly, the sensitivity and degree of accuracy were 97.0%and 96.0%, respectively. The detection rates of PET/CT for the recurrence and metastases were 89.3% in the CEA-positive group and 82.1% in the CEA-negative group. No significant differences were observed between the two groups. Conclusion: CEA levels do not help improve the detection rate of PET/CT in the recurrence and metastasis of CRC. PET/CT imaging has high sensitivity and degree of accuracy in detecting recurrence and metastasis after colon cancer surgery. Therefore, this method is ideal for monitoring relapsed and metastatic foci of postoperative colon cancer cases.%  目的:评价18F-FDG PET/CT显像对结直肠癌患者术后复发与转移的诊断价值与PET/CT检查期间CEA水平之间的关系。方法:收集临床症状、血清CEA水平升高或CT等影像学检查怀疑复发,并因此行PET/CT检查的结直肠癌术后患者75例,其中男性46例,女性29例。回顾性分析比较PET/CT显像的诊断价值在结直肠癌术后患者CEA阳性组与阴性组中的差异。结果:PET

  15. Optimization for PET imaging based on phantom study and NECdensity

    International Nuclear Information System (INIS)

    Daisaki, Hiromitsu; Shimada, Naoki; Shinohara, Hiroyuki

    2012-01-01

    In consideration of the requirement for global standardization and quality control of PET imaging, the present studies gave an outline of phantom study to decide both scan and reconstruction parameters based on FDG-PET/CT procedure guideline in Japan, and optimization of scan duration based on NEC density was performed continuously. In the phantom study, scan and reconstruction parameters were decided by visual assessment and physical indexes (N 10mm , NEC phantom , Q H,10mm /N 10mm ) to visualize hot spot of 10 mm diameter with standardized uptake value (SUV)=4 explicitly. Simultaneously, Recovery Coefficient (RC) was evaluated to recognize that PET images had enough quantifiably. Scan durations were optimized by Body Mass Index (BMI) based on retrospective analysis of NEC density . Correlation between visual score in clinical FDG-PET images and NEC density fell after the optimization of scan duration. Both Inter-institution and inter-patient variability were decreased by performing the phantom study based on the procedure guideline and the optimization of scan duration based on NEC density which seem finally useful to practice highly precise examination and promote high-quality controlled study. (author)

  16. PET-CT–Guided Surveillance of Head and Neck Cancers

    Science.gov (United States)

    Patients with advanced squamous cell carcinoma of the head and neck who underwent PET-CT–guided surveillance had fewer operations but similar overall survival rates to those of patients who underwent planned neck dissection.

  17. [18F]FDG-PET scan in patients with fasting hyperglycemia

    International Nuclear Information System (INIS)

    BELOHLAVEK, Otakar; JARUSKOVA, Monika

    2016-01-01

    It is generally accepted that a non-fasting state reduces [18F]FDG-PET quality, but the significance of higher levels of fasting blood glucose has aroused some doubts over time. The aim of this work was to provide further evidence to clarify this issue and its impact on the handling of hyper glycemic patients in daily routine. Muscle and liver standardized uptake values (SUV) and their ratio, tumor SUV and the frequency of positive PET findings were retrospectively analyzed in 116 hyper glycemic (HG) patients (>11 mmol/L), in 116 patients with slightly elevated glycemia (SEG) (5.6-7.0 mmol/L) and in 116 normoglycemic (NG) patients (4.7 mmol/L). No significant difference was found in the muscle to liver ratio, in muscle SUV and in the frequency of positive PET findings among HG, SEG and NG patients. HG patients exhibited ~10% higher liver SUV in comparison to SEG and NG patients; a positive correlation (r=0.2849) was found between liver SUV and blood glucose levels. Significantly higher tumor SUV was present in SEG patients. We did not confirm that hyperglycemia in a fasting state negatively influences the diagnostic quality of [18F]FDG-PET. The positive correlation between liver SUV and blood glucose levels is clinically negligible and might be explained by increased fasting hepatic gluconeogenesis in diabetics. Our data encourage the performance of [18F]FDG-PET investigations under fasting conditions, regardless of the mild to medium elevation of fasting blood glucose level.

  18. Reproducibility of functional volume and activity concentration in {sup 18}F-FDG PET/CT of liver metastases in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Heijmen, Linda [Radboud University Medical Centre, Department of Medical Oncology 452, PO Box 9101, Nijmegen (Netherlands); Geus-Oei, Lioe-Fee de; Visser, Eric P.; Oyen, Wim J.G. [Radboud University Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Wilt, Johannes H.W. de [Radboud University Medical Centre, Department of Surgery, Nijmegen (Netherlands); Visvikis, Dimitris; Hatt, Mathieu [LaTIM, INSERM U1101, Brest (France); Bussink, Johan [Radboud University Medical Centre, Department of Radiation Oncology, Nijmegen (Netherlands); Punt, Cornelis J.A. [University of Amsterdam, Department of Medical Oncology, Academic Medical Centre, Amsterdam (Netherlands); Laarhoven, Hanneke W.M. van [Radboud University Medical Centre, Department of Medical Oncology 452, PO Box 9101, Nijmegen (Netherlands); University of Amsterdam, Department of Medical Oncology, Academic Medical Centre, Amsterdam (Netherlands)

    2012-12-15

    Several studies showed potential for monitoring response to systemic therapy in metastatic colorectal cancer patients with {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Before {sup 18}F-FDG PET can be implemented for response evaluation the repeatability should be known. This study was performed to assess the magnitude of the changes in standardized uptake value (SUV), volume and total lesion glycolysis (TLG) in colorectal liver metastases and validate the biological basis of {sup 18}F-FDG PET in colorectal liver metastases. Twenty patients scheduled for liver metastasectomy underwent two {sup 18}F-FDG PET scans within 1 week. Bland-Altman analysis was performed to assess repeatability of SUV{sub max}, SUV{sub mean}, volume and TLG. Tumours were delineated using an adaptive threshold method (PET{sub SBR}) and a semiautomatic fuzzy locally adaptive Bayesian (FLAB) delineation method. Coefficient of repeatability of SUV{sub max} and SUV{sub mean} were {proportional_to}39 and {proportional_to}31 %, respectively, independent of the delineation method used and image reconstruction parameters. However, repeatability was worse in recently treated patients. The FLAB delineation method improved the repeatability of the volume and TLG measurements compared to PET{sub SBR}, from coefficients of repeatability of over 85 % to 45 % and 57 % for volume and TLG, respectively. Glucose transporter 1 (GLUT1) expression correlated to the SUV{sub mean}. Vascularity (CD34 expression) and tumour hypoxia (carbonic anhydrase IX expression) did not correlate with {sup 18}F-FDG PET parameters. In conclusion, repeatability of SUV{sub mean} and SUV{sub max} was mainly affected by preceding systemic therapy. The repeatability of tumour volume and TLG could be improved using more advanced and robust delineation approaches such as FLAB, which is recommended when {sup 18}F-FDG PET is utilized for volume or TLG measurements. Improvement of repeatability of PET measurements

  19. Stability of FDG-PET Radiomics features - An integrated analysis of test-retest and inter-observer variability

    Energy Technology Data Exchange (ETDEWEB)

    Leijenaar, Ralph T. H.; Carvalho, Sara; Rios Velazquez, Emmanuel [Dept. of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht Univ. Medical Center, Maastricht (Netherlands)] [and others

    2013-10-15

    Purpose: Besides basic measurements as maximum standardized uptake value (SUV){sub max} or SUV{sub mean} derived from 18F-FDG positron emission tomography (PET) scans, more advanced quantitative imaging features (i.e. 'Radiomics' features) are increasingly investigated for treatment monitoring, outcome prediction, or as potential biomarkers. With these prospected applications of Radiomics features, it is a requisite that they provide robust and reliable measurements. The aim of our study was therefore to perform an integrated stability analysis of a large number of PET-derived features in non-small cell lung carcinoma (NSCLC), based on both a test-retest and an inter-observer setup. Methods: Eleven NSCLC patients were included in the test-retest cohort. Patients underwent repeated PET imaging within a one day interval, before any treatment was delivered. Lesions were delineated by applying a threshold of 50 % of the maximum uptake value within the tumor. Twenty-three NSCLC patients were included in the inter-observer cohort. Patients underwent a diagnostic whole body PET-computed tomography (CT). Lesions were manually delineated based on fused PET-CT, using a standardized clinical delineation protocol. Delineation was performed independently by five observers, blinded to each other. Fifteen first order statistics, 39 descriptors of intensity volume histograms, eight geometric features and 44 textural features were extracted. For every feature, test-retest and inter-observer stability was assessed with the intra-class correlation coefficient (ICC) and the coefficient of variability, normalized to mean and range. Similarity between test-retest and inter-observer stability rankings of features was assessed with Spear man's rank correlation coefficient. Results: Results showed that the majority of assessed features had both a high test-retest (71%) and inter-observer (91%) stability in terms of their ICC. Overall, features more stable in repeated PET

  20. Appropriate Use of FDG-PET for the Management of Cancer Patients

    International Nuclear Information System (INIS)

    2010-01-01

    The use of PET (positron emission tomography) has become the standard quality of care for optimal management of patients with cancer. The availability of the hybrid PET/CT (positron emission tomography/computed tomography) scanner has further improved the utility of PET scanning and provides additional benefits both to patients and to the health system. This publication addresses the important issue of appropriateness of the application of PET/CT procedures in different clinical scenarios for many cancers. It is a resource for specialists in nuclear medicine and oncology, and aims to make reliable information widely available to those Member States where PET programmes are still in their planning phase or where the use of PET scanning is limited.

  1. (18) F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients

    DEFF Research Database (Denmark)

    Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per

    2018-01-01

    BACKGROUND: (18) F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. AIM: To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part...... planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET......% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. CONCLUSION: Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change...

  2. In vivo imaging of brain androgen receptors in rats: a [18F]FDHT PET study

    International Nuclear Information System (INIS)

    Khayum, M.A.; Doorduin, J.; Antunes, I.F.; Kwizera, C.; Zijlma, R.; Boer, J.A. den; Dierckx, R.A.J.O.; Vries, E.F.J. de

    2015-01-01

    Introduction: Steroid hormones like androgens play an important role in the development and maintenance of several brain functions. Androgens can act through androgen receptors (AR) in the brain. This study aims to demonstrate the feasibility of positron emission tomography (PET) with 16β-[ 18 F]fluoro-5α-dihydrotestosterone ([ 18 F]FDHT) to image AR expression in the brain. Methods: Male Wistar rats were either orchiectomized to inhibit endogenous androgen production or underwent sham-surgery. Fifteen days after surgery, rats were subjected to a 90-min dynamic [ 18 F]FDHT PET scan with arterial blood sampling. In a subset of orchiectomized rats, 1 mg/kg dihydrotestosterone was co-injected with the tracer in order to saturate the AR. Plasma samples were analyzed for the presence of radioactive metabolites by radio-TLC. Pharmacokinetic modeling was performed to quantify brain kinetics of the tracer. After the PET scan, the animals were terminated for ex-vivo biodistribution. Results: PET imaging and ex vivo biodistribution studies showed low [ 18 F]FDHT uptake in all brain regions, except pituitary. [ 18 F]FDHT uptake in the surrounding cranial bones was high and increased over time. [ 18 F]FDHT was rapidly metabolized in rats. Metabolism was significantly faster in orchiectomized rats than in sham-orchiectomized rats. Quantitative analysis of PET data indicated substantial spill-over of activity from cranial bones into peripheral brain regions, which prevented further analysis of peripheral brain regions. Logan graphical analysis and kinetic modeling using 1- and 2-tissue compartment models showed reversible and homogenously distributed tracer uptake in central brain regions. [ 18 F]FDHT uptake in the brain could not be blocked by endogenous androgens or administration of dihydrotestosterone. Conclusion: The results of this study indicate that imaging of AR availability in rat brain with [ 18 F]FDHT PET is not feasible. The low AR expression in the brain, the

  3. Evaluation of PET and MR datasets in integrated 18F-FDG PET/MRI: A comparison of different MR sequences for whole-body restaging of breast cancer patients.

    Science.gov (United States)

    Grueneisen, Johannes; Sawicki, Lino Morris; Wetter, Axel; Kirchner, Julian; Kinner, Sonja; Aktas, Bahriye; Forsting, Michael; Ruhlmann, Verena; Umutlu, Lale

    2017-04-01

    To investigate the diagnostic value of different MR sequences and 18F-FDG PET data for whole-body restaging of breast cancer patients utilizing PET/MRI. A total of 36 patients with suspected tumor recurrence of breast cancer based on clinical follow-up or abnormal findings in follow-up examinations (e.g. CT, MRI) were prospectively enrolled in this study. All patients underwent a PET/CT and subsequently an additional PET/MR scan. Two readers were instructed to identify the occurrence of a tumor relapse in subsequent MR and PET/MR readings, utilizing different MR sequence constellations for each session. The diagnostic confidence for the determination of a malignant or benign lesion was qualitatively rated (3-point ordinal scale) for each lesion in the different reading sessions and the lesion conspicuity (4-point ordinal scale) for the three different MR sequences was additionally evaluated. Tumor recurrence was present in 25/36 (69%) patients. All three PET/MRI readings showed a significantly higher accuracy as well as higher confidence levels for the detection of recurrent breast cancer lesions when compared to MRI alone (psequence constellations showed comparable diagnostic accuracy for the identification of a breast cancer recurrence (p>0.05), yet the highest confidence levels were obtained, when all three MR sequences were used for image interpretation. Moreover, contrast-enhanced T1-weighted VIBE imaging showed significantly higher values for the delineation of malignant and benign lesions when compared to T2w HASTE and diffusion-weighted imaging. Integrated PET/MRI provides superior restaging of breast cancer patients over MRI alone. Facing the need for appropriate and efficient whole-body PET/MR protocols, our results show the feasibility of fast and morphologically adequate PET/MR protocols. However, considering an equivalent accuracy for the detection of breast cancer recurrences in the three PET/MR readings, the application of contrast-agent and the

  4. Comparison of PET and fMRI activation patterns during declarative memory processes

    International Nuclear Information System (INIS)

    Mottaghy, F.M.; Krause, B.J.; Schmidt, D.; Hautzel, H.; Mueller-Gaertner, H.-W.; Herzog, H.; Shah, N.J.; Halsband, U.

    2000-01-01

    Aim: In this study neuronal correlates of encoding and retrieval in paired association learning were compared using two different neuroimaging methods: Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Methods: 6 right-handed normal male volunteers took part in the study. Each subject underwent six 0-15-butanol PET scans and an fMRI study comprising four single epochs on a different day. The subjects had to learn and retrieve 12 word pairs which were visually presented (highly imaginable words, not semantically related). Results: Mean recall accuracy was 93% in the PET as well as in the fMRI experiment. During encoding and retrieval we found anterior cingulate cortex activation, and bilateral prefrontal cortex activation in both imaging modalities. Furthermore, we demonstrate the importance of the precuneus in episodic memory. With PET the results demonstrate frontopolar activations whereas fMRI fails to show activations in this area probably due to susceptibility artifacts. In fMRI we found additionally parahippocampal activation and due to the whole-brain coverage cerebellar activation during encoding. The distance between the center-of-mass activations in both modalities was 7.2±6.5 mm. Conclusion: There is a preponderance of commonalities in the activation patterns yielded with fMRI and PET. However, there are also important differences. The decision to choose one or the other neuroimaging modality should among other aspects depend on the study design (single subject vs. group study) and the task of interest. (orig.) [de

  5. PET Probe-Guided Surgery in Patients with Breast Cancer: Proposal for a Methodological Approach

    Science.gov (United States)

    ORSARIA, PAOLO; CHIARAVALLOTI, AGOSTINO; FIORENTINI, ALESSANDRO; PISTOLESE, CHIARA; VANNI, GIANLUCA; VITTORIA GRANAI, ALESSANDRA; VARVARAS, DIMITRIOS; DANIELI, ROBERTA; SCHILLACI, ORAZIO; PETRELLA, GIUSEPPE; CLAUDIO BUONOMO, ORESTE

    2017-01-01

    Background: Although it is valuable for detecting distant metastases, identifying recurrence, and evaluating responses to chemotherapy, the role of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography (18F-FDG PET/CT) in assessing locoregional nodal status for initial staging of breast cancer has not yet been well-defined in clinical practice. In the current report, we describe a new PET probe-based clinical approach, with evaluation of the technical performance of a handheld high-energy gamma probe for intraoperative localization of breast carcinomas, and evaluation of lymph node metastases during radio-guided oncological surgery. Patients and Methods: Three patients underwent a PET/CT scan immediately prior to surgery following the standard clinical protocol. Intraoperatively, tumors were localized and resected with the assistance of a hand-held gamma probe. PET-guided assessment of the presence or absence of regional nodal spread of malignancy was compared with the reference standard of histopathological examination. Results: In all three cases, perioperative 18F-FDG PET/CT imaging and intraoperative gamma probe detection verified complete resection of the hypermetabolic lesions and demonstrated no additional suspicious occult disease. Conclusion: This innovative approach demonstrates great promise for providing real-time access to metabolic and morphological tumor information that may lead to an optimal disease-tailored approach. In carefully selected indications, a PET probe can be a useful adjunct in surgical practice, but further trials with a larger number of patients need to be performed to verify these findings. PMID:28064227

  6. Noninvasive Evaluation of Metabolic Tumor Volume in Lewis Lung Carcinoma Tumor-Bearing C57BL/6 Mice with Micro-PET and the Radiotracers 18F-Alfatide and 18F-FDG: A Comparative Analysis.

    Directory of Open Access Journals (Sweden)

    Yu-Chun Wei

    Full Text Available To explore the value of a new simple lyophilized kit for labeling PRGD2 peptide (18F-ALF-NOTA-PRGD2, denoted as 18F-alfatide in the determination of metabolic tumor volume (MTV with micro-PET in lewis lung carcinoma (LLC tumor-bearing C57BL/6 mice verified by pathologic examination and compared with those using 18F-fluorodeoxyglucose (FDG PET.All LLC tumor-bearing C57BL/6 mice underwent two attenuation-corrected whole-body micro-PET scans with the radiotracers 18F-alfatide and 18F-FDG within two days. 18F-alfatide metabolic tumor volume (VRGD and 18F-FDG metabolic tumor volume (VFDG were manually delineated slice by slice on PET images. Pathologic tumor volume (VPath was measured in vitro after the xenografts were removed.A total of 37 mice with NSCLC xenografts were enrolled and 33 of them underwent 18F-alfatide PET, and 35 of them underwent 18F-FDG PET and all underwent pathological examination. The mean ± standard deviation of VPath, VRGD, and VFDG were 0.59±0.32 cm3 (range,0.13~1.64 cm3, 0.61±0.37 cm3 (range,0.15~1.86 cm3, and 1.24±0.53 cm3 (range,0.17~2.20 cm3, respectively. VPath vs. VRGD, VPath vs. VFDG, and VRGD vs. VFDG comparisons were t = -0.145, P = 0.885, t = -6.239, P<0.001, and t = -5.661, P<0.001, respectively. No significant difference was found between VPath and VRGD. VFDG was much larger than VRGD and VPath. VRGD seemed more approximate to the pathologic gross tumor volume. Furthermore, VPath was more strongly correlated with VRGD (R = 0.964,P<0.001 than with VFDG (R = 0.584,P<0.001.18F-alfatide PET provided a better estimation of gross tumor volume than 18F-FDG PET in LLC tumor-bearing C57BL/6 mice.

  7. 18F-FDG PET for assessment of therapy response and preoperative re-evaluation after neoadjuvant radio-chemotherapy in stage III non-small cell lung cancer

    International Nuclear Information System (INIS)

    Eschmann, Susanne M.; Reimold, Matthias; Bares, Roland; Friedel, Godehard; Paulsen, Frank; Hehr, Thomas; Budach, Wilfried; Langen, Heinz-Jakob

    2007-01-01

    The aim of this study was to evaluate FDG-PET for assessment of therapy response and for prediction of patient outcome after neo-adjuvant radio-chemotherapy (NARCT) of advanced non-small cell lung cancer (NSCLC). Seventy patients with histologically proven stage III NSCLC underwent FDG-PET investigations before and after NARCT. Changes in FDG uptake and PET findings after completion of NARCT were compared with (1) the histology of tumour samples obtained at surgery or repeat mediastinoscopy, and (2) treatment results in terms of achieved operability and long-term survival. The mean average FDG uptake of the primary tumours in the patient group decreased significantly during NARCT (p = 0.004). Sensitivity, specificity and overall accuracy of FDG-PET were 94.5%, 80% and 91%, respectively, for the detection of residual viable primary tumour, and 77%, 68% and 73%, respectively, for the presence of lymph node metastases. A negative PET scan or a reduction in the standardised uptake value (SUV) of more than 80% was the best predictive factor for a favourable outcome of further treatment. Progressive disease according to PET (new tumour manifestations or increasing SUV) was significantly correlated with an unfavourable outcome (p = 0.005). In this subgroup, survival of patients who underwent surgery was not significantly different from survival among those who did not undergo surgery, whereas for the whole patient group, complete tumour resection had a significant influence on outcome. FDG-PET is suitable to assess response to NARCT in patients with stage III NSCLC accurately. It was highly predictive for treatment outcome and patient survival. PET may be helpful in improving restaging after NARCT by allowing reliable assessment of residual tumour viability. (orig.)

  8. PET/CT and dedicated PET in breast cancer: Implications for classification, staging, and response monitoring

    NARCIS (Netherlands)

    Koolen, B.B.

    2013-01-01

    De PET-CT, een scan die gebruik maakt van radioactiviteit om tumoren in beeld te brengen, is een zinvol instrument voor beeldvorming van patiënten met borstkanker, met name van patiënten met een tumor groter dan drie centimeter of tumor-positieve lymfeklieren. De PET-CT is vooral van waarde voor de

  9. Brain tumour imaging with PET: a comparison between [{sup 18}F]fluorodopa and [{sup 11}C]methionine

    Energy Technology Data Exchange (ETDEWEB)

    Becherer, Alexander; Karanikas, Georgios; Szabo, Monica; Zettinig, Georg; Wadsak, Wolfgang; Kletter, Kurt [Department of Nuclear Medicine, Medical School, University of Vienna, Waehringer Guertel 18-20, 1090, Vienna (Austria); Asenbaum, Susanne [Department of Neurology, Medical School, University of Vienna, Vienna (Austria); Marosi, Christine [Department of Oncology, Medical School, University of Vienna, Vienna (Austria); Henk, Christine; Wunderbaldinger, Patrick [Department of Radiology, Medical School, University of Vienna, Vienna (Austria); Czech, Thomas [Department of Neurosurgery, Medical School, University of Vienna, Vienna (Austria)

    2003-11-01

    Imaging of amino acid transport in brain tumours is more sensitive than fluorine-18 2-fluoro-deoxyglucose positron emission tomography (PET). The most frequently used tracer in this field is carbon-11 methionine (MET), which is unavailable for PET centres without a cyclotron because of its short half-life. The purpose of this study was to evaluate the performance of 3,4-dihydroxy-6-[{sup 18}F]fluoro-phenylalanine (FDOPA) in this setting, in comparison with MET. Twenty patients with known supratentorial brain lesions were referred for PET scans with FDOPA and MET. The diagnoses were 18 primary brain tumours, one metastasis and one non-neoplastic cerebral lesion. All 20 patients underwent PET with FDOPA (100 MBq, 20 min p.i.), and 19 of them also had PET scans with MET (800 MBq, 20 min p.i.). In all but one patient a histological diagnosis was available. In 15 subjects, histology was known from previous surgical interventions; in five of these patients, as well as in four previously untreated patients, histology was obtained after PET. In one untreated patient, confirmation of PET was possible solely by correlation with MRI; a histological diagnosis became available 10 months later. MET and FDOPA images matched in all patients and showed all lesions as hot spots with higher uptake than in the contralateral brain. Standardised uptake value ratios, tumour/contralateral side (mean{+-}SD), were 2.05{+-}0.91 for MET and 2.04{+-}0.53 for FDOPA (NS). The benign lesion, which biopsy revealed to be a focal demyelination, was false positive, showing increased uptake of MET and FDOPA. We conclude that FDOPA is accurate as a surrogate for MET in imaging amino acid transport in malignant cerebral lesions for the purpose of visualisation of vital tumour tissue. It combines the good physical properties of {sup 18}F with the pharmacological properties of MET and might therefore be a valuable PET radiopharmaceutical in brain tumour imaging. (orig.)

  10. Dynamic observation by PET in epilepsy

    International Nuclear Information System (INIS)

    Shimizu, Hiroyuki; Ishijima, Buichi; Iio, Masaaki.

    1990-01-01

    Before the era when positron emission tomography (PET) has emerged, much controversy has existed concerning regional cerebral blood flow in partial epilepsy. In 1979, PET revealed that cerebral blood flow is decreased during the interictal period, but is remarkably increased in the intraictal phase. In this paper, historical process of dynamic observation in epilepsy is reviewed. Potential use and limitations of PET in the clinical setting are discussed in view of the scanning methods and the relationships between PET and electroencephalograms, magnetic resonance imaging, and surgical treatment. (N.K.) 106 refs

  11. {sup 18}F-FDG PET in small-cell cervical cancer: a prospective study with long-term follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Min-Yu; Chou, Hung-Hsueh; Chen, Chao-Yu; Lai, Chyong-Huey; Chang, Ting-Chang [Chang Gung Memorial Hospital and Chang Gung University, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Taoyuan (China); Chang Gung Memorial Hospital, Gynecologic Cancer Research Center, Taoyuan (China); Liu, Feng-Yuan; Yen, Tzu-Chen [Chang Gung Memorial Hospital and Chang Gung University, Department of Nuclear Medicine, Taoyuan (China); Chang Gung Memorial Hospital, Gynecologic Cancer Research Center, Taoyuan (China); Lin, Gigin [Chang Gung Memorial Hospital and Chang Gung University, Department of Medical Imaging and Intervention, Taoyuan (China); Chang Gung Memorial Hospital, Gynecologic Cancer Research Center, Taoyuan (China); Yang, Lan-Yan [Chang Gung Memorial Hospital and Chang Gung University, Biostatistics Unit, Clinical Trial Center, Taoyuan (China); Chang Gung Memorial Hospital, Gynecologic Cancer Research Center, Taoyuan (China); Pan, Yu-Bin [Chang Gung Memorial Hospital and Chang Gung University, Biostatistics Unit, Clinical Trial Center, Taoyuan (China); Jung, Shih-Ming; Wu, Ren-Chin [Chang Gung Memorial Hospital and Chang Gung University, Department of Pathology, Taoyuan (China); Chang Gung Memorial Hospital, Gynecologic Cancer Research Center, Taoyuan (China); Huang, Yi-Ting; Tsai, Jason Chien-Sheng [Chang Gung Memorial Hospital and Chang Gung University, Department of Radiation Oncology, Taoyuan (China); Chang Gung Memorial Hospital, Gynecologic Cancer Research Center, Taoyuan (China)

    2016-04-15

    Small-cell cervical cancer (SCCC) is rare and prone to metastasize. We conducted a prospective study to evaluate the role of {sup 18}F-FDG PET in the management of this aggressive malignancy. Patients with untreated primary, histologically confirmed SCCC were enrolled. {sup 18}F-FDG PET (or PET/CT) was performed immediately after MRI or CT, for primary staging, monitoring response to treatment or restaging when there was suspicion of recurrence. The clinical impact of PET was determined on a scan basis. A total of 25 patients were recruited and 43 PET scans were performed. The PET images were obtained for primary staging (25 patients), monitoring response (10 patients) and restaging when there was suspicion of recurrence (8 patients). The median follow-up time in event-free patients was 109.3 months (range 97.5 - 157.7 months). A positive impact of PET was found in 8 (18.6 %) of the 43 scans, which included detection of additional regions of distal lymph node (LN) metastasis (one primary staging scan, two restaging scans), bone metastasis (two primary staging scans, one monitoring response scan), and exclusion of false-positive lesions on MRI (one primary staging scan, one restaging scan). On the other hand, one negative impact was recorded as one false-positive lesion on a restaging PET scan. One positive impact was noted for monitoring response (bone metastasis). The impact of three scans was indeterminate. The positive impact of down-staging in avoiding overtreatment but finding additional distal LN (except one on restaging) or bone metastases had no beneficial effect on long-term survival. The results of this preliminary study suggest that PET is useful in the management of SCCC. PET could have more value in detecting occult metastases if future novel therapies are able to offer better control of extensive SCCC. (orig.)

  12. Positron emission tomography (PET) imaging of nicotine-induced dopamine release in squirrel monkeys using [18F]Fallypride.

    Science.gov (United States)

    Naylor, Jennifer E; Hiranita, Takato; Matazel, Katelin S; Zhang, Xuan; Paule, Merle G; Goodwin, Amy K

    2017-10-01

    Nicotine, the principal psychoactive tobacco constituent, is thought to produce its reinforcing effects via actions within the mesolimbic dopamine (DA) system. The objective of the current study was to examine the effect of nicotine on DA D 2 /D 3 receptor availability in the nonhuman primate brain with the use of the radioligand [ 18 F]fallypride and positron emission tomography (PET). Ten adult male squirrel monkeys were used in the current study. Each subject underwent two PET scans, one with an injection (IV) of saline and subsequently one with an injection of nicotine (0.032mg/kg). The DA D 2 /D 3 antagonist, [ 18 F]fallypride, was delivered IV at the beginning of each scan, and nicotine or saline was delivered at 45min into the scan. Regions of interest (ROI) were drawn on specific brain regions and these were used to quantify standard uptake values (SUVs). The SUV is defined as the average concentration of radioactivity in the ROI x body weight/injected dose. Using the cerebellum as a reference region, SUV ratios (SUV ROI /SUV cerebellum ) were calculated to compare saline and nicotine effects in each ROI. Two-way repeated ANOVA revealed a significant decrease of SUV ratios in both striatal and extrastriatal regions following an injection of nicotine during the PET scans. Like other drugs of abuse, these results indicate that nicotine administration may produce DA release, as suggested by the decrease in [ 18 F]fallypride signal in striatal regions. These findings from a nonhuman primate model provide further evidence that the mesolimbic DA system is affected by the use of products that contain nicotine. Published by Elsevier B.V.

  13. VII. Boettstein Colloquium: PET-Radiopharmaceuticals at PSI: achievement and future prospects

    International Nuclear Information System (INIS)

    Schubiger, P.A.; Beer, H.F.; Blaeuenstein, P.; Leenders, K.E.

    1993-01-01

    The three sessions of the 1993 Boettstein colloquium dealt with the following topics: - PET-radiopharmaceuticals, - PET-scanning: significance of tracer uptake, - clinical options using PET. 22 papers were presented. figs., refs

  14. VII. Boettstein Colloquium: PET-Radiopharmaceuticals at PSI: achievement and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Schubiger, P.A.; Beer, H.F.; Blaeuenstein, P.; Leenders, K.E.

    1993-12-31

    The three sessions of the 1993 Boettstein colloquium dealt with the following topics: - PET-radiopharmaceuticals, - PET-scanning: significance of tracer uptake, - clinical options using PET. 22 papers were presented. figs., refs.

  15. VII. Boettstein Colloquium: PET-Radiopharmaceuticals at PSI: achievement and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Schubiger, P A; Beer, H F; Blaeuenstein, P; Leenders, K E

    1994-12-31

    The three sessions of the 1993 Boettstein colloquium dealt with the following topics: - PET-radiopharmaceuticals, - PET-scanning: significance of tracer uptake, - clinical options using PET. 22 papers were presented. figs., refs.

  16. Simultaneous Hyperpolarized 13C-Pyruvate MRI and 18F-FDG PET (HyperPET) in 10 Dogs with Cancer

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam E; Larsen, Majbrit M E

    2015-01-01

    with biopsy-verified spontaneous malignant tumors were included for imaging. All dogs underwent a protocol of simultaneous (18)F-FDG PET, anatomic MR, and hyperpolarized dynamic nuclear polarization with (13)C-pyruvate imaging. The data were acquired using a combined clinical PET/MR imaging scanner. We found...... that combined (18)F-FDG PET and (13)C-pyruvate MRS imaging was possible in a single session of approximately 2 h. A continuous workflow was obtained with the injection of (18)F-FDG when the dogs was placed in the PET/MR scanner. (13)C-MRS dynamic acquisition demonstrated in an axial slab increased (13)C......With the introduction of combined PET/MR spectroscopic (MRS) imaging, it is now possible to directly and indirectly image the Warburg effect with hyperpolarized (13)C-pyruvate and (18)F-FDG PET imaging, respectively, via a technique we have named hyperPET. The main purpose of this present study...

  17. 18F-FPYBF-2, a new F-18 labelled amyloid imaging PET tracer: biodistribution and radiation dosimetry assessment of first-in-man 18F-FPYBF-2 PET imaging.

    Science.gov (United States)

    Nishii, Ryuichi; Higashi, Tatsuya; Kagawa, Shinya; Okuyama, Chio; Kishibe, Yoshihiko; Takahashi, Masaaki; Okina, Tomoko; Suzuki, Norio; Hasegawa, Hiroshi; Nagahama, Yasuhiro; Ishizu, Koichi; Oishi, Naoya; Kimura, Hiroyuki; Watanabe, Hiroyuki; Ono, Masahiro; Saji, Hideo; Yamauchi, Hiroshi

    2018-05-01

    Recently, a benzofuran derivative for the imaging of β-amyloid plaques, 5-(5-(2-(2-(2- 18 F-fluoroethoxy)ethoxy)ethoxy)benzofuran-2-yl)- N-methylpyridin-2-amine ( 18 F-FPYBF-2) has been validated as a tracer for amyloid imaging and it was found that 18 F-FPYBF-2 PET/CT is a useful and reliable diagnostic tool for the evaluation of AD (Higashi et al. Ann Nucl Med, https://doi.org/10.1007/s12149-018-1236-1 , 2018). The aim of this study was to assess the biodistribution and radiation dosimetry of diagnostic dosages of 18 F-FPYBF-2 in normal healthy volunteers as a first-in-man study. Four normal healthy volunteers (male: 3, female: 1; mean age: 40 ± 17; age range 25-56) were included and underwent 18 F-FPYBF-2 PET/CT study for the evaluation of radiation exposure and pharmacokinetics. A 10-min dynamic PET/CT scan of the body (chest and abdomen) was performed at 0-10 min and a 15-min whole-body static scan was performed six times after the injection of 18 F-FPYBF-2. After reconstructing PET and CT image data, individual organ time-activity curves were estimated by fitting volume of interest data from the dynamic scan and whole-body scans. The OLINDA/EXM version 2.0 software was used to determine the whole-body effective doses. Dynamic PET imaging demonstrated that the hepatobiliary and renal systems were the principal pathways of clearance of 18 F-FPYBF-2. High uptake in the liver and the gall bladder, the stomach, and the kidneys were demonstrated, followed by the intestines and the urinary bladder. The ED for the adult dosimetric model was estimated to be 8.48 ± 1.25 µSv/MBq. The higher absorbed doses were estimated for the liver (28.98 ± 12.49 and 36.21 ± 15.64 µGy/MBq), the brain (20.93 ± 4.56 and 23.05 ± 5.03µ Gy/MBq), the osteogenic cells (9.67 ± 1.67 and 10.29 ± 1.70 µGy/MBq), the small intestines (9.12 ± 2.61 and 11.12 ± 3.15 µGy/MBq), and the kidneys (7.81 ± 2.62 and 8.71 ± 2.90 µGy/MBq) for

  18. [Accuracy of attenuation coefficient obtained by 137Cs single-transmission scanning in PET: comparison with conventional germanium line source].

    Science.gov (United States)

    Matsumoto, Keiichi; Kitamura, Keishi; Mizuta, Tetsuro; Shimizu, Keiji; Murase, Kenya; Senda, Michio

    2006-02-20

    Transmission scanning can be successfully performed with a Cs-137 single-photon-emitting point source for three-dimensional PET imaging. This method was effective for postinjection transmission scanning because of differences in physical energy. However, scatter contamination in the transmission data lowers measured attenuation coefficients. The purpose of this study was to investigate the accuracy of the influence of object scattering by measuring the attenuation coefficients on the transmission images. We also compared the results with the conventional germanium line source method. Two different types of PET scanner, the SET-3000 G/X (Shimadzu Corp.) and ECAT EXACT HR(+) (Siemens/CTI) , were used. For the transmission scanning, the SET-3000 G/X and ECAT HR(+) were the Cs-137 point source and Ge-68/Ga-68 line source, respectively. With the SET-3000 G/X, we performed transmission measurement at two energy gate settings, the standard 600-800 keV as well as 500-800 keV. The energy gate setting of the ECAT HR(+) was 350-650 keV. The effects of scattering in a uniform phantom with different cross-sectional areas ranging from 201 cm(2) to 314 cm(2) to 628 cm(2) (apposition of the two 20 cm diameter phantoms) and 943 cm(2) (stacking of the three 20 cm diameter phantoms) were acquired without emission activity. First, we evaluated the attenuation coefficients of the two different types of transmission scanning using region of interest (ROI) analysis. In addition, we evaluated the attenuation coefficients with and without segmentation for Cs-137 transmission images using the same analysis. The segmentation method was a histogram-based soft-tissue segmentation process that can also be applied to reconstructed transmission images. In the Cs-137 experiment, the maximum underestimation was 3% without segmentation, which was reduced to less than 1% with segmentation at the center of the largest phantom. In the Ge-68/Ga-68 experiment, the difference in mean attenuation

  19. Accuracy of attenuation coefficient obtained by 137Cs single-transmission scanning in PET. Comparison with conventional germanium line source

    International Nuclear Information System (INIS)

    Matsumoto, Keiichi; Shimizu, Keiji; Senda, Michio; Kitamura, Keishi; Mizuta, Tetsuro; Murase, Kenya

    2006-01-01

    Transmission scanning can be successfully performed with a Cs-137 single-photon-emitting point source for three-dimensional PET imaging. This method was effective for postinjection transmission scanning because of differences in physical energy. However, scatter contamination in the transmission data lowers measured attenuation coefficients. The purpose of this study was to investigate the accuracy of the influence of object scattering by measuring the attenuation coefficients on the transmission images. We also compared the results with the conventional germanium line source method. Two different types of PET scanner, the SET-3000 G/X (Shimadzu Corp.) and ECAT EXACT HR + (Siemens/CTI), were used. For the transmission scanning, the SET-3000 G/X and ECAT HR + were the Cs-137 point source and Ge-68/Ga-68 line source, respectively. With the SET-3000 G/X, we performed transmission measurement at two energy gate settings, the standard 600-800 keV as well as 500-800 keV. The energy gate setting of the ECAT HR 2 + was 350-650 keV. The effects of scattering in a uniform phantom with different cross-sectional areas ranging from 201 cm 2 to 314 cm 2 to 628 cm 2 (apposition of the two 20 cm diameter phantoms) and 943 cm 2 (stacking of the three 20 cm diameter phantoms) were acquired without emission activity. First, we evaluated the attenuation coefficients of the two different types of transmission scanning using region of interest (ROI) analysis. In addition, we evaluated the attenuation coefficients with and without segmentation for Cs-137 transmission images using the same analysis. The segmentation method was a histogram-based soft-tissue segmentation process that can also be applied to reconstructed transmission images. In the Cs-137 experiment, the maximum underestimation was 3% without segmentation, which was reduced to less than 1% with segmentation at the center of the largest phantom. In the Ge-68/Ga-68 experiment, the difference in mean attenuation coefficients

  20. Clinical value of FDG PET/CT in the diagnosis of suspected recurrent ovarian cancer: is there an impact of FDG PET/CT on patient management?

    International Nuclear Information System (INIS)

    Bilici, Ahmet; Ustaalioglu, Bala Basak Oven; Seker, Mesut; Salepci, Taflan; Gumus, Mahmut; Canpolat, Nesrin; Tekinsoy, Bulent

    2010-01-01

    The aim of this study was to evaluate the clinical value of FDG PET/CT in patients with suspected ovarian cancer recurrence as compared with diagnostic CT, and to assess the impact of the results of FDG PET/CT on treatment planning. Included in this retrospective study were 60 patients with suspected recurrent ovarian cancer who had previously undergone primary debulking surgery and had been treated with adjuvant chemotherapy. Diagnostic CT and FDG PET/CT imaging were performed for all patients as clinically indicated. The changes in the clinical management of patients according to the results of FDG PET/CT were also analysed. FDG PET/CT was performed in 21 patients with a previously negative or indeterminate diagnostic CT scan, but an elevated CA-125 level, and provided a sensitivity of 95% in the detection of recurrent disease. FDG PET/CT revealed recurrent disease in 19 patients. In 17 of 60 patients, the indication for FDG PET/CT was an elevated CA-125 level and an abnormal diagnostic CT scan to localize accurately the extent of disease. FDG PET/CT scans correctly identified recurrent disease in 16 of the 17 patients, a sensitivity of 94.1%. Moreover, FDG PET/CT was performed in 18 patients with clinical symptoms of ovarian cancer recurrence, an abnormal diagnostic CT scan, but a normal CA-125 level. In this setting, FDG PET/CT correctly confirmed recurrent disease in seven patients providing a sensitivity of 100% in determining recurrence. In four patients, FDG PET/CT was carried out for the assessment of treatment response. Three of four scans were classified as true-negative indicating a complete response. In the other patient, FDG PET/CT identified progression of disease. In total, 45 (75%) of the 60 patients had recurrent disease, in 14 (31.1%) documented by histopathology and in 31 (68.9%) on clinical follow-up, while 15 (25%) had no evidence of recurrent disease. The overall sensitivity, specificity, accuracy, and positive and negative predictive value

  1. 18F-FDG PET as a single imaging modality in pediatric neuroblastoma. Comparison with abdomen CT and bone scintigraphy

    International Nuclear Information System (INIS)

    Choi, Yun Jung; Hwang, Hee Sung; Kim, Hyun Jeong; Jeong, Yong Hyu; Cho, Arthur; Lee, Jae Hoon; Yun, Mijin; Lee, Jong Doo; Kang, Won Jun

    2014-01-01

    The purpose of this study was to evaluate the diagnostic performance of 18 F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a single imaging agent in neuroblastoma in comparison with other imaging modalities. A total of 30 patients with pathologically proven neuroblastoma who underwent FDG PET for staging were enrolled. Diagnostic performance of FDG PET and abdomen CT was compared in detecting soft tissue lesions. FDG PET and bone scintigraphy (BS) were compared in bone metastases. Maximal standardized uptake value (SUVmax) of primary or recurrent lesions was calculated for quantitative analysis. Tumor FDG uptake was detected in 29 of 30 patients with primary neuroblastoma. On initial FDG PET, SUVmax of primary lesions were lower in early stage (I-II) than in late stage (III-IV) (3.03 vs. 5.45, respectively, p=0.019). FDG PET was superior to CT scan in detecting distant lymph nodes (23 vs. 18 from 23 lymph nodes). FDG PET showed higher accuracy to identify bone metastases than BS both on patient-based analyses (100 vs. 94.4% in sensitivity, 100 vs. 77.8% in specificity), and on lesion-based analyses (FDG PET: 203 lesions, BS: 86 lesions). Sensitivity and specificity of FDG PET to detect recurrence were 87.5% and 93.8, respectively. FDG PET was superior to CT in detecting distant LN metastasis and to BS in detecting skeletal metastasis in neuroblastoma. BS might be eliminated in the evaluation of neuroblastoma when FDG PET is performed. (author)

  2. SU-D-201-07: Exploring the Utility of 4D FDG-PET/CT Scans in Design of Radiation Therapy Planning Compared with 3D PET/CT: A Prospective Study

    International Nuclear Information System (INIS)

    Ma, C; Yin, Y

    2015-01-01

    Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using a constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors

  3. SU-D-201-07: Exploring the Utility of 4D FDG-PET/CT Scans in Design of Radiation Therapy Planning Compared with 3D PET/CT: A Prospective Study

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C; Yin, Y [Shandong Tumor Hospital, Jinan, Shandong Provice (China)

    2015-06-15

    Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using a constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors.

  4. Pulmonary aspergilloma: A rare differential diagnosis to lung cancer after positive FDG PET scan

    Directory of Open Access Journals (Sweden)

    Franziska Spycher

    2014-01-01

    Full Text Available Early diagnosis and treatment of lung cancer, one of the leading causes of cancer-related death, is important to improve morbidity and mortality. Therefore any suspect solitary pulmonary nodule should prompt the pursuit for a definitive histological diagnosis. We describe the case of a 55-years-old male ex-smoker, who was admitted to our hospital due to recurrent hemoptysis and dry cough. A CT scan showed an irregular nodule of increasing size (28 mm in diameter in the left lower lobe (LLL. A whole body PET-CT scan (643 MBq F-18 FDG i.v. was performed and confirmed an avid FDG uptake of the nodule in the LLL, highly suspicious of lung cancer, without any evidence of lymphogenic or hematogenic metastasis. Bronchoscopy was not diagnostic and due to severe adhesions after prior chest trauma and the central location of the nodule, a lobectomy of the LLL was performed. Surprisingly, histology showed a simple aspergilloma located in a circumscribed bronchiectasis with no evidence of malignancy. This is a report of an informative example of an aspergilloma, which presented with symptoms and radiological features of malignant lung cancer.

  5. Bone metastasis in patients with non-small cell lung cancer: The diagnostic role of F-18 FDG PET/CT

    International Nuclear Information System (INIS)

    Liu Ningbo; Ma Li; Zhou Wei; Pang Qingsong; Hu Man; Shi Fang; Fu Zheng; Li Minghuan; Yang Guoren; Yu Jinming

    2010-01-01

    Purpose: To evaluate the performance of F-18 FDG PET/CT in the detection of bone metastasis in non-small cell lung cancer (NSCLC) patients. Materials and methods: Three hundred and sixty-two consecutive NSCLC patients who underwent F-18 FDG PET/CT scanning were retrospectively analyzed. Each image of PET/CT, combined CT, and PET was performed at 10 separate areas and interpreted blindly and separately. The sensitivity, specificity and accuracy of F-18 FDG PET/CT, combined CT and F-18 FDG PET were calculated and the results were statistically analyzed. Results: Bone metastasis was confirmed in 82 patients with 331 positive segments based on the image findings and clinical follow-up. On patient-based analysis, the sensitivity of F-18 FDG PET/CT (93.9%) was significantly higher than those of combined CT (74.4%) and F-18 FDG PET (84.1%), respectively (p < 0.05). The overall specificity and accuracy of combined CT, F-18 FDG PET, and F-18 FDG PET/CT were 90.7%, 93.2%, 98.9% and 87.0%, 91.2%, and 97.8%, respectively (compared with PET/CT, p < 0.05). On segment-based analysis, the sensitivity of the three modalities were 79.5%, 94.3%, and 98.8%, respectively (compared with PET/CT, p < 0.05). The overall specificity and accuracy of the three modalities were 87.9%, 89.2%, 98.6% and 84.5%, 91.2%, 98.7%, respectively (compared with PET/CT, p < 0.05). Conclusion: F-18 FDG PET/CT is superior to F-18 FDG PET or combined CT in detecting bone metastasis of NSCLC patients because of the complementation of CT and PET. It is worth noting that the added value of F-18 FDG PET/CT may beneficially impact the clinical management of NSCLC.

  6. PET scanning of macrophages in patients with scleroderma fibrosing alveolitis

    Energy Technology Data Exchange (ETDEWEB)

    Branley, Howard M. [Imperial College London, Hammersmith Campus, London (United Kingdom)], E-mail: Howard.Branley@whittington.nhs.uk; Bois, Roland M. du; Wells, Athol U. [Royal Brompton Hospital, London (United Kingdom); Jones, Hazel A. [Imperial College London, Hammersmith Campus, London (United Kingdom)

    2008-11-15

    Rationale: Assessment of disease activity in fibrosing alveolitis due to systemic sclerosis (FASSc) is difficult without using invasive investigation. A repeatable noninvasive method of assessing disease at a cellular level such as with positron emission tomography (PET) could be of great value in evaluating high-resolution changes in the pathological process. Objectives: To investigate whether the level of inflammatory cell traffic and lung density in FASSc, imaged in vivo by PET, is different to controls and whether they are associated with changes in pulmonary function indices. Methods: We used PET to measure lung density and tissue uptake of {sup 11}C-[R]-PK11195, a ligand that binds to receptors found in abundance in macrophages. Fifteen patients with FASSc were compared to seven controls. Results: A trend of reduced uptake of {sup 11}C-[R]-PK11195 was observed in FASSc patients (P=.09) and correlated inversely with lung density (r=-.62; P<.05), which was significantly elevated in FASSc [0.35{+-}0.02 vs. 0.23{+-}0.02 g/cc (mean{+-}S.E.M.); P<.005]. Conclusion: These results demonstrate that inflammatory cell traffic and lung density can be imaged in vivo in FASSc using PET, and that this approach might be of potential value in understanding, in situ, components of pathogenesis that may have value for prognosis.

  7. PET scanning of macrophages in patients with scleroderma fibrosing alveolitis

    International Nuclear Information System (INIS)

    Branley, Howard M.; Bois, Roland M. du; Wells, Athol U.; Jones, Hazel A.

    2008-01-01

    Rationale: Assessment of disease activity in fibrosing alveolitis due to systemic sclerosis (FASSc) is difficult without using invasive investigation. A repeatable noninvasive method of assessing disease at a cellular level such as with positron emission tomography (PET) could be of great value in evaluating high-resolution changes in the pathological process. Objectives: To investigate whether the level of inflammatory cell traffic and lung density in FASSc, imaged in vivo by PET, is different to controls and whether they are associated with changes in pulmonary function indices. Methods: We used PET to measure lung density and tissue uptake of 11 C-[R]-PK11195, a ligand that binds to receptors found in abundance in macrophages. Fifteen patients with FASSc were compared to seven controls. Results: A trend of reduced uptake of 11 C-[R]-PK11195 was observed in FASSc patients (P=.09) and correlated inversely with lung density (r=-.62; P<.05), which was significantly elevated in FASSc [0.35±0.02 vs. 0.23±0.02 g/cc (mean±S.E.M.); P<.005]. Conclusion: These results demonstrate that inflammatory cell traffic and lung density can be imaged in vivo in FASSc using PET, and that this approach might be of potential value in understanding, in situ, components of pathogenesis that may have value for prognosis

  8. Establishing locoregional control of malignant pleural mesothelioma using high-dose radiotherapy and 18F-FDG PET/CT scan correlation

    International Nuclear Information System (INIS)

    Feigen, Malcolm; Lawford, Catherine; Churcher, Katheryn; Zupan, Eddy; Hamilton, Chris; Lee, Sze Ting; Scott, Andrew M.

    2011-01-01

    The management of malignant pleural mesothelioma represents one of the most challenging issues in oncology, as there is no proven long-term benefit from surgery, radiotherapy or chemotherapy alone or in combination. Locoregional progression remains the major cause of death, but radical surgical resection may produce major postoperative morbidity. While radical or postoperative radiotherapy using conventional techniques has resulted in severe toxicity with no impact on survival, recent advances in radiotherapy delivery may be more effective. We treated patients with locally advanced mesothelioma whose tumours had been sub optimally resected with high-dose three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT) to large volumes of one hemithorax, using CT and positron emission tomography (PET) scan-based treatment planning. Clinical outcomes were assessed by determining patterns of failure and metabolic changes in total glycolytic volume (TGV) between pre- and post-irradiation 18 F-FDG PET/CT scans and by recording acute and late toxicity grades. Fourteen patients were analysed with 40 PET scans performed before and up to 4.5 years after radiotherapy. Eleven patients had pleurectomy/decortications, one had an extrapleural pneumonectomy and two had no surgery. Four patients who received chemotherapy had all progressed prior to radiotherapy. After radiotherapy, the in-field local control rate was 71%. No progression occurred in two patients, one was salvaged with further radiotherapy to a new site, four recurred inside the irradiated volume all with concurrent distant metastases and the other seven had distant metastases only. The TGVs were reduced by an average of 67% (range 12–100%) after doses of 45 to 60 Gy to part or all of one hemithorax. There were no serious treatment-related toxicities. Median survival was 25 months from diagnosis and 17 months after starting radiotherapy. We have established that mesothelioma can be

  9. The preliminary study of 18F-FDG PET in diagnosis of Alzheimer's disease

    International Nuclear Information System (INIS)

    Ma, Y.; Zhang, X.; Le, D.

    2000-01-01

    To investigate the imaging characteristic and diagnostic criteria of 18F-FDG brain PET in detecting Alzheimer's disease (AD). The study included in 12 normal subject, 12 patients with AD, 6 patients with vascular dementia, 3 patients with Lewy body disease (LBD) and 2 patients with mixed dementia. The dementia severity was measured by ESD and MMSE. 12 cases had mild, 7 moderate and 4 severe dementia. 23 patients and 6 normal subjects underwent MR imaging of the brain. All participants fasted for at least 6 hours. 40 minutes after intravenous administration of 185-370 MBq 18F-FDG, 2D brain scan in 25 cases and 3D scan in 10 cases were performed using SIEMENS ECAT 47 scanner. The transaxial, coronal and sagittal images were then reconstructed by computer. At the same time, semiquantitative analysis was also applied to help evaluation using the ratio of mean radioactivity between cerebral lobe to cerebellum (Rcl/cb). In normal subjects PET scan showed clear images of cerebral cortex, basal ganglia, thalamus and cerebellum with symmetrical distribution of radioactivity. 22 of 23 patients were found to have decreased uptake of FDG in the brain. 20 patients had cerebral atrophy and it also appeared in 6 normal elder people. PET images for Alzheimer's disease were classified in 6 normal elder people. PET image for Alzheimer's 3 patterns: bilateral parietal hypo metabolism in 5 cases, bilateral temporo-parietal hypo metabolism in 4 cases and unilateral temporo-parietal hypo metabolism in 3 cases. The Rcl/cb of AD patents in parietal and temporal was significantly decreased than normal subjects (p<0.05). PET images for non-AD dementia were also classified 3 patterns: multiple and asymmetrical patch foci with decreased radioactivity in 8 cases, bilateral temporo-parietal with diffuse cortical hypo metabolism in 2 cases, and normal imaging in 1 case. The hypo metabolic involvement was accorded with severity of dementia. The more dementia had, the bigger hypometabloic region

  10. High Dose MicroCT Does Not Contribute Toward Improved MicroPET/CT Image Quantitative Accuracy and Can Limit Longitudinal Scanning of Small Animals

    Directory of Open Access Journals (Sweden)

    Wendy A. McDougald

    2017-10-01

    Full Text Available Obtaining accurate quantitative measurements in preclinical Positron Emission Tomography/Computed Tomography (PET/CT imaging is of paramount importance in biomedical research and helps supporting efficient translation of preclinical results to the clinic. The purpose of this study was two-fold: (1 to investigate the effects of different CT acquisition protocols on PET/CT image quality and data quantification; and (2 to evaluate the absorbed dose associated with varying CT parameters.Methods: An air/water quality control CT phantom, tissue equivalent material phantom, an in-house 3D printed phantom and an image quality PET/CT phantom were imaged using a Mediso nanoPET/CT scanner. Collected data was analyzed using PMOD software, VivoQuant software and National Electric Manufactures Association (NEMA software implemented by Mediso. Measured Hounsfield Unit (HU in collected CT images were compared to the known HU values and image noise was quantified. PET recovery coefficients (RC, uniformity and quantitative bias were also measured.Results: Only less than 2 and 1% of CT acquisition protocols yielded water HU values < −80 and air HU values < −840, respectively. Four out of 11 CT protocols resulted in more than 100 mGy absorbed dose. Different CT protocols did not impact PET uniformity and RC, and resulted in <4% overall bias relative to expected radioactive concentration.Conclusion: Preclinical CT protocols with increased exposure times can result in high absorbed doses to the small animals. These should be avoided, as they do not contributed toward improved microPET/CT image quantitative accuracy and could limit longitudinal scanning of small animals.

  11. Incremental clinical value of a dedicated RT planning FDG PET-CT over staging PET-CT in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Lin, P.; Som, S.; Vinod, S.; Lin, M.; Shon, I. H.

    2009-01-01

    Full text:Objectives: To evaluate whether FDG-PET performed for radiotherapy planning can detect disease progression, compared with staging PET. Methods: Thirteen patients underwent a planning PET-CT for curative RT ( R T-PET ) within eight weeks of a staging PET-CT for newly diagnosed NSCLC between 10/2007 and 1/2009. All studies were acquired on a Philips GXL PET-CT using the same protocols, except RT-PET is acquired on a RT flat bed. The images were interpreted by consensus readings of two physicians: location/number, visual grading (0-4:3> liver, 4>brain), max transverse diameter ( M ax D ) (tumour margin is delineated by a SUV threshold of 2.5) and max SUV of each lesion. Progressive disease (PD) is defined as >10% increase in max D. Results: RT-PET detected PD (primary or nodal) or new metastases in 8 pts (61%) (mean interval:30.2±14 days, range:7-54 days). For primary tumour, RT-PET detected PD in 5

  12. Implementation of true continuous bed motion in 2-D and 3-D whole-body PET scanning

    Science.gov (United States)

    Dahlbom, M.; Reed, J.; Young, J.

    2001-08-01

    True continuous axial bed motion has been implemented on a high-resolution positron emission tomography (PET) scanner for use in both two-dimensional (2-D) and three-dimensional (3-D) acquisition modes. This has been accomplished by modifications in the bed motion controller firmware and by acquiring data in list mode. The new bed controller firmware was shown to provide an accurate and constant bed speed down to 0.25 mm/s with a moderate patient weight load. The constant bed motion eliminates previously reported dead-time due to bed positioning when using small discrete bed steps. The continuous bed motion was tested on uniform phantoms, in 2-D and 3-D. As a result of the continuous axial motion, a uniform axial sensitivity is achieved. This was also reflected in the reconstructed images, which showed an improvement in axial image uniformity (1.4% for continuous sampling, 5.0% for discrete) as well as an improvement in %SD uniformity in comparison to conventional step-and-shoot acquisitions. The use of the continuous axial motion also provide slight improvements in 2-D emission and transmission scanning, resulting in an overall improved image quality in whole-body PET.

  13. PET/CT scanning guided intensity-modulated radiotherapy in treatment of recurrent ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xue-lian, E-mail: duxuelian23800@yahoo.com.cn [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Jiang, Tao, E-mail: melody23800@yahoo.com.cn [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Sheng, Xiu-gui, E-mail: jnsd2000@yahoo.cn [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Li, Qing-shui, E-mail: lqs1966@126.com [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Wang, Cong, E-mail: jnwc1981@hotmail.com [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Yu, Hao, E-mail: jnyh2200@sina.com [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China)

    2012-11-15

    Objective: This study was undertaken to evaluate the clinical contribution of positron emission tomography using {sup 18}F-fluorodeoxyglucose and integrated computer tomography (FDG-PET/CT) guided intensity-modulated radiotherapy (IMRT) for treatment of recurrent ovarian cancer. Materials and methods: Fifty-eight patients with recurrent ovarian cancer from 2003 to 2008 were retrospectively studied. In these patients, 28 received PET/CT guided IMRT (PET/CT-IMRT group), and 30 received CT guided IMRT (CT-IMRT group). Treatment plans, tumor response, toxicities and survival were evaluated. Results: Changes in GTV delineation were found in 10 (35.7%) patients based on PET-CT information compared with CT data, due to the incorporation of additional lymph node metastases and extension of the metastasis tumor. PET/CT guided IMRT improved tumor response compared to CT-IMRT group (CR: 64.3% vs. 46.7%, P = 0.021; PR: 25.0% vs. 13.3%, P = 0.036). The 3-year overall survival was significantly higher in the PET-CT/IMRT group than control (34.1% vs. 13.2%, P = 0.014). Conclusions: PET/CT guided IMRT in recurrent ovarian cancer patients improved the delineation of GTV and reduce the likelihood of geographic misses and therefore improve the clinical outcome.

  14. Evaluation of third treatment week as temporal window for assessing responsiveness on repeated FDG-PET-CT scans in Non-Small Cell Lung Cancer patients.

    Science.gov (United States)

    Lazzeroni, M; Uhrdin, J; Carvalho, S; van Elmpt, W; Lambin, P; Dasu, A; Wersäll, P; Toma-Dasu, I

    2018-02-01

    Early assessment of tumour response to treatment with repeated FDG-PET-CT imaging has potential for treatment adaptation but it is unclear what the optimal time window for this evaluation is. Previous studies indicate that changes in SUV mean and the effective radiosensitivity (α eff , accounting for uptake variations and accumulated dose until the second FDG-PET-CT scan) are predictive of 2-year overall survival (OS) when imaging is performed before radiotherapy and during the second week. This study aims to investigate if multiple FDG-PET-derived quantities determined during the third treatment week have stronger predictive power. Twenty-eight lung cancer patients were imaged with FDG-PET-CT before radiotherapy (PET1) and during the third week (PET2). SUV mean , SUV max , SUV peak , MTV41%-50% (Metabolic Tumour Volume), TLG41%-50% (Total Lesion Glycolysis) in PET1 and PET2 and their change (), as well as average α eff (α¯ eff ) and the negative fraction of α eff values [Formula: see text] ) were determined. Correlations were sought between FDG-PET-derived quantities and OS with ROC analysis. Neither SUV mean , SUV max , SUV peak in PET1 and PET2 (AUC = 0.5-0.6), nor their changes (AUC = 0.5-0.6) were significant for outcome prediction purposes. Lack of correlation with OS was also found for α¯ eff (AUC = 0.5) and [Formula: see text] (AUC = 0.5). Threshold-based quantities (MTV41%-50%, TLG41%-50%) and their changes had AUC = 0.5-0.7. P-values were in all cases ≫0.05. The poor OS predictive power of the quantities determined from repeated FDG-PET-CT images indicates that the third week of treatment might not be suitable for treatment response assessment. Comparatively, the second week during the treatment appears to be a better time window. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Unit Cost Analysis of PET-CT at an Apex Public Sector Health Care Institute in India.

    Science.gov (United States)

    Gajuryal, S H; Daga, A; Siddharth, V; Bal, C S; Satpathy, S

    2017-01-01

    PET/CT scan service is one of the capital intensive and revenue-generating centres of a tertiary care hospital. The cost associated with the provisioning of PET services is dependent upon the unit costs of the resources consumed. The study aims to determine the cost of providing PET/CT Scan services in a hospital. This descriptive and observational study was conducted in the Department of Nuclear Medicine at a tertiary apex teaching hospital in New Delhi, India in the year 2014-15. Traditional costing methodology was used for calculating the unit cost of PET/CT scan service. The cost was calculated under two heads that is capital and operating cost. Annualized cost of capital assets was calculated using methodology prescribed by WHO and operating costs was taken on an actual basis. Average number of PET/CT scan performed in a day is 30. The annual cost of providing PET/CT scan services was calculated to be 65,311,719 Indian Rupees (INR) (US$ 1,020,496), while the unit cost of PET scan was calculated to be 9625.92 INR (US$ 150). 3/4th cost was spent on machinery and equipment (75.3%) followed by healthcare personnel (11.37%), electricity (5%), consumables and supplies (4%) engineering maintenance (3.24%), building, furniture and HVAC capital cost (0.76%), and manifold cost (0.05%). Of the total cost, 76% was capital cost while the remaining was operating cost. Total cost for establishing PET/CT scan facility with cyclotron and chemistry module and PET/CT scan without cyclotron and chemistry module was calculated to be INR 610,873,517 (US$9944899) and 226,745,158 (US$3542893), respectively. (US$ 1=INR 64).

  16. Hypermetabolism of compensatory laryngeal muscles in unilateral vocal cord palsy: comparison study between speech and silence with normal subjects by co-registered PET-CT fusion images

    International Nuclear Information System (INIS)

    Pai, Moon Sun; Kim, Hyon Kyong; Kim, Han Su

    2006-01-01

    There are a few case report on asymmetric vocal cord uptake on FDG-PET in patients with unilateral vocal cord paralysis, which could be a potential pitfall in the interpretation of FDG-PET images. We evaluated the metabolic activity of laryngeal muscles of patients with unilateral vocal cord paralysis in comparison to normal controls during both speech and silence. Eleven patients with unilateral vocal cord palsy (thyroidectomy=7, lung cancer=1, other=3) and 12 normal controls underwent FDG-PET with usual protocol. They were divided into two groups respectively; one group read books aloud for 20 minutes (phonation group) and the other kept silence (non-phonation groups) after FDG injection. Recent neck CT scan were co-registered with FDG-PET to produce PET-CT fusion images to elaborate small laryngeal muscles. In patients with unilateral vocal cord palsy, contralateral non-paralyzed vocal cord showed hypermetabolism mainly on thyroarytenoid muscle, more intensely with phonation group (SUV=5.88±2.65) than with non-phonation group (SUV=2.30±0.39). Normal control subjects showed hypermetabolism (3.68± 0.96) in interarytenoid muscle and symmetric mild hypermetabolism in both lateral cricoarytenoid muscles in only phonation group. FDG-PET with fusion images using CT scan in patients with unilateral vocal cord paralysis showed hypermetabolism of contralateral non-paralyzed thyroarytedoid muscle, suggesting compensatory action during phonation. Phonation during FDG-PET study enhanced FDG uptake on different laryngeal muscles between patients with unilateral vocal cord paralysis and normal subjects

  17. Clinical impact of {sup 11}C-methionine PET on expected management of patients with brain neoplasm

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Tomohiko; Senda, Michio [Institution of Biomedical Research and Innovation, Division of Molecular imaging, Kobe (Japan); Sakamoto, Setsu [Kobe University Graduate School of Medicine, Department of Radiology, Kobe (Japan)

    2010-04-15

    We retrospectively examined the clinical efficacy of {sup 11}C-methionine positron emission tomography ({sup 11}C-MET PET) in patients with brain neoplasm, especially whether the {sup 11}C-MET PET changed the clinical management and whether the change was beneficial or detrimental. This study reviewed 89 {sup 11}C-MET PET scans for 80 patients (20 scans for initial diagnosis of brain tumor and 69 scans for differentiating tumor recurrence from radiation necrosis). Final diagnosis and the effect on the intended management were obtained from the questionnaire to the referring physicians or directly from the medical records. The diagnostic sensitivity, specificity, and accuracy for the {sup 11}C-MET PET were evaluated. Regarding the management impact, the rate of scans that caused changes in intended management was also evaluated. Moreover, the occurrence of scans having detrimental diagnostic impact (DDI) and beneficial diagnostic impact (BDI) were evaluated. Sensitivity, specificity, and accuracy of {sup 11}C-MET PET was 87.8, 80.0, and 85.9%. The intended management was changed in 50.0% of the scans. DDI and BDI were observed in 4.3 and 36.2% of the total relevant scans, respectively. {sup 11}C-MET PET can provide useful information in initial diagnosis and differentiating tumor recurrence from radiation necrosis. The intended management was changed in half of the scans. Since a few cases did not receive the requisite treatment due to false-negative results of {sup 11}C-MET PET, management decision should be made carefully, especially in the case of a negative scan. (orig.)

  18. Evaluation of a short dynamic 18F-fluoride PET/CT scanning method to assess bone metabolic activity in spinal orthopedics.

    Science.gov (United States)

    Peters, Marloes J M; Wierts, Roel; Jutten, Elisabeth M C; Halders, Servé G E A; Willems, Paul C P H; Brans, Boudewijn

    2015-11-01

    A complication after spinal fusion surgery is pseudarthrosis, but its radiological diagnosis is of limited value. (18)F-fluoride PET with its ability to assess bone metabolism activity could be of value. The goal of this study was to assess the clinical feasibility of calculating the static standardized uptake value (SUV) from a short dynamic scan without the use of blood sampling, thereby obtaining all dynamic and static parameters in a scan of only 30 min. This approach was tested on a retrospective patient population with persisting pain after spinal fusion surgery. In 16 patients, SUVs (SUV max, SUV mean) and kinetic parameters (K 1, k 2, k 3, v b, K i,NLR, K 1/k 2, k 3/(k 2 + k 3), K i,patlak) were derived from static and dynamic PET/CT scans of operated and control regions of the spine, after intravenous administration of 156-214 MBq (18)F-fluoride. Parameter differences between control and operated regions, as well as between pseudarthrosis and fused segments were evaluated. SUVmean at 30 and 60 min was calculated from kinetic parameters obtained from the dynamic data set (SUV mean,2TCM). Agreement between measured and calculated SUVs was evaluated through Bland-Altman plots. Overall, statistically significant differences between control and operated regions were observed for SUV max, SUV mean, K i,NLR, K i,patlak, K 1/k 2 and k 3/(k 2 + k 3). Diagnostic CT showed pseudarthrosis in 6/16 patients, while in 10/16 patients, segments were fused. Of all parameters, only those regarding the incorporation of bone [K i,NLR, K i,patlak, k 3/(k 2 + k 3)] differed statistically significant in the intervertebral disc space between the pseudarthrosis and fused patients group. The mean values of the patient-specific blood clearance rate [Formula: see text] differed statistically significant between the pseudarthrosis and the fusion group, with a p value of 0.011. This may correspond with the lack of statistical significance of the SUV values between pseudarthrosis and

  19. Combined 18F-NaF and 18F-FDG PET/CT in the Evaluation of Sarcoma Patients.

    Science.gov (United States)

    Jackson, Tatianie; Mosci, Camila; von Eyben, Rie; Mittra, Erik; Ganjoo, Kristen; Biswal, Sandip; Gambhir, Sanjiv Sam; Iagaru, Andrei

    2015-09-01

    The combined administration of F-NaF and F-FDG in a single PET/CT scan has the potential to improve patient convenience and cancer detection. Here we report the use of this approach for patients with sarcomas. This is a retrospective review of 21 patients (12 men, 9 women; age, 19-66 years) with biopsy-proven sarcomas who had separate F-NaF PET/CT, F-FDG PET/CT, and combined F-NaF/F-FDG PET/CT scans for evaluation of malignancy. Two board-certified nuclear medicine physicians and 1 board-certified musculoskeletal radiologist were randomly assigned to review the scans. Results were analyzed for sensitivity and specificity, using linear regression and receiver operating characteristics. A total of 13 patients had metastatic disease on F-NaF PET/CT, F-FDG PET/CT, and combined F-NaF/F-FDG PET/CT. Skeletal disease was more extensive on the F-NaF PET/CT scan than on the F-FDG PET/CT in 3 patients, whereas in 1 patient, F-FDG PET/CT showed skeletal disease and the F-NaF PET/CT was negative. Extraskeletal lesions were detected on both F-FDG and combined F-NaF/F-FDG PET/CT in 20 patients, with 1 discordant finding in the lung. The combined F-NaF/F-FDG PET/CT scan allows for accurate evaluation of sarcoma patients. Further evaluation of this proposed imaging modality is warranted to identify the most suitable clinical scenarios, including initial treatment strategy and evaluation of response to therapy.

  20. Breast cancer with low FDG uptake: Characterization by means of dual-time point FDG-PET/CT

    International Nuclear Information System (INIS)

    Zytoon, Ashraf Anas; Murakami, Koji; El-Kholy, Mohamed Ramdan; El-Shorbagy, Emad; Ebied, Osama

    2009-01-01

    Background: Malignant breast lesions usually are differentiated by FDG-PET with a semiquantitative FDG standardized uptake value (SUV) of 2.5. However, the frequency of breast cancer with an SUV of less than or equal to 2.5 is noteworthy, and often present diagnostic challenges. This study was undertaken to evaluate the accuracy of dual-time point FDG-PET/CT with FDG standardized uptake value (SUV) calculation in the characterization of such breast tumors. Methods: Forty-nine female patients with newly diagnosed breast cancer were found to have primary breast cancer with minimally increased FDG uptake and met the criteria for inclusion in this study by having borderline levels of increased FDG uptake (SUVmax less than or equal to 2.5) in the initial FDG-PET/CT images. Consequently, they underwent further delayed phase FDG-PET/CT scan for better evaluation of the disease. Results: Of the 49 cancer lesions; the majority were found to have rising or unvarying dual-time changes in SUVmax (75.5%). The median value of SUVmax increases by 25% between the early and delayed scan. The means ± S.D. of the SUVmax1, the SUVmax2, and the ΔSUVmax% were 1.2 ± 0.6%, 1.3 ± 0.9%, and 5.1 ± 22.4%, respectively. The receiver-operating-characteristic (ROC) analysis proved that the highest accuracy for characterization of malignant breast lesions was obtained when a ΔSUVmax% cut-off value 0.0% was used as criteria for malignant FDG uptake-change over time with sensitivity 75.5%, and false-positive rate 20.4%. Conclusion: These results suggested that dual-time FDG-PET/CT imaging with standardized uptake value (SUV) estimation can improve the accuracy of the test in the evaluation of breast cancer with low FDG uptake.

  1. Somatostatin receptor PET in neuroendocrine tumours: 68Ga-DOTA0,Tyr3-octreotide versus 68Ga-DOTA0-lanreotide

    International Nuclear Information System (INIS)

    Putzer, Daniel; Kroiss, Alexander; Waitz, Dietmar; Gabriel, Michael; Uprimny, Christian; Guggenberg, Elisabeth von; Decristoforo, Clemens; Warwitz, Boris; Virgolini, Irene Johanna; Traub-Weidinger, Tatjana; Widmann, Gerlig

    2013-01-01

    The aim of this study was to evaluate the impact of 68 Ga-labelled DOTA 0 -lanreotide ( 68 Ga-DOTA-LAN) on the diagnostic assessment of neuroendocrine tumour (NET) patients with low to moderate uptake on planar somatostatin receptor (SSTR) scintigraphy or 68 Ga-labelled DOTA 0 ,Tyr 3 -octreotide ( 68 Ga-DOTA-TOC) positron emission tomography (PET). Fifty-three patients with histologically confirmed NET and clinical signs of progressive disease, who had not qualified for peptide receptor radionuclide therapy (PRRT) on planar SSTR scintigraphy or 68 Ga-DOTA-TOC PET (n = 38) due to lack of tracer uptake, underwent 68 Ga-DOTA-LAN PET to evaluate a treatment option with 90 Y-labelled lanreotide according to the MAURITIUS trial. The included patients received 150 ± 30 MBq of each radiopharmaceutical intravenously. PET scans were acquired 60-90 min after intravenous bolus injection. Image results from both PET scans were compared head to head, focusing on the intensity of tracer uptake in terms of treatment decision. CT was used for morphologic correlation of tumour lesions. To further evaluate the binding affinities of each tracer, quantitative and qualitative values were calculated for target lesions. 68 Ga-DOTA-LAN and 68 Ga-DOTA-TOC both showed equivalent findings in 24/38 patients when fused PET/CT images were interpreted. The sensitivity, specificity and accuracy of 68 Ga-DOTA-LAN in comparison to CT were 0.63, 0.5 and 0.62 (n = 53; p 68 Ga-DOTA-TOC in comparison to CT 0.78, 0.5 and 0.76 (n = 38; p 68 Ga-DOTA-TOC showed a significantly higher maximum standardized uptake value (SUV max ) regarding the primary tumour in 25 patients (p 68 Ga-DOTA-LAN. Corresponding values of both PET scans for tumour and liver did not show any significant correlation. 68 Ga-DOTA-TOC revealed more tumour sites than 68 Ga-DOTA-LAN (106 vs 53). The tumour to background ratios for tumour and liver calculated from SUV max measurements were significantly higher for 68 Ga-DOTA-TOC than 68 Ga

  2. FDG-PET identification of intraperitoneal metastases

    International Nuclear Information System (INIS)

    Gamez, C.; Jimenez-Hoyuelam, J.M.; Rebollo, A.C.; Gonzalez, P.; Rico, J.M.; Alba, E.; Sacchetti, A.; Lopez-Rueda, B.

    2002-01-01

    Aim: Peritoneal metastases (PM) are usually from intra-abdominal primary neoplasms, such as carcinoma of the stomach, colon, ovary, and pancreas, or from intra-abdominal lymphoma. Metastases disseminate throughout the peritoneum in four ways: 1) direct spread along peritoneal ligaments, mesenteries and omenta; 2) via the flow of ascitis fluid. 3) lymphatic extension, and 4) embolic hematogenous spread. Although CT is quite specific in identifying PM it is not very sensitive, and peritoneal lavage or biopsy can be very useful but have sampling errors. This study assessed the clinical value of FDG-PET for the detection of PM of malignant diseases. Materials and Methods: 15 FDG-PET scans of patients referred for recurrence (mean age = 54 y/o, sex = 6M, 9F), with metabolic abnormalities suspicious findings of PM from carcinoma of the colon (7), ovary (3), lymphoma (2), pancreas (1), gastrointestinal stromal tumor (1) and melanoma (1) were reviewed. The whole-body studies were performed 50 min following the intravenous administration of 370 MBq of 18F-FDG, in a high resolution dedicated PET scanner (Advance, GEMS), with images reconstructed using a iterative algorithm with segmented attenuation correction. Visual interpretation and SUV values were correlated with CT/MRI findings and biopsy/follow-up. Results: Of the 15 patients, 7 showed <3 sites of focal uptake and 8 presented multiple foci or a diffuse hypermetabolism in the abdomen (SUVmax3.04-18.83 g/ml). 6 patients had biopsy confirmation by PET-directed surgery (6 proven PM, 0 negative biopsies). 11 FDG-PET scans had correspondence with the CT/MRI findings and 4 showed discrepancies (PET positive-CT/MRI negative in patients with isolated raising tumor markers levels or unsuspected PM). FDG-PET influenced the therapeutic management in 2 patients as presented multiple metastases leading them from surgery to chemotherapy. Conclusion: When used as a complementary imaging tool to the conventional work up, FDG-PET is

  3. Harmonizing SUVs in multicentre trials when using different generation PET systems: prospective validation in non-small cell lung cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Lasnon, Charline; Quak, Elske [Francois Baclesse Cancer Centre, Nuclear Medicine Department, Caen (France); Desmonts, Cedric [Caen University Hospital, Nuclear Medicine Department, Caen (France); Gervais, Radj; Do, Pascal; Dubos-Arvis, Catherine [Francois Baclesse Cancer Centre, Thoracic Oncology, Caen (France); Aide, Nicolas [Francois Baclesse Cancer Centre, Nuclear Medicine Department, Caen (France); Centre Francois Baclesse, Service de Medecine Nucleaire, Caen cedex 5 (France)

    2013-07-15

    We prospectively evaluated whether a strategy using point spread function (PSF) reconstruction for both diagnostic and quantitative analysis in non-small cell lung cancer (NSCLC) patients meets the European Association of Nuclear Medicine (EANM) guidelines for harmonization of quantitative values. The NEMA NU-2 phantom was used to determine the optimal filter to apply to PSF-reconstructed images in order to obtain recovery coefficients (RCs) fulfilling the EANM guidelines for tumour positron emission tomography (PET) imaging (PSF{sub EANM}). PET data of 52 consecutive NSCLC patients were reconstructed with unfiltered PSF reconstruction (PSF{sub allpass}), PSF{sub EANM} and with a conventional ordered subset expectation maximization (OSEM) algorithm known to meet EANM guidelines. To mimic a situation in which a patient would undergo pre- and post-therapy PET scans on different generation PET systems, standardized uptake values (SUVs) for OSEM reconstruction were compared to SUVs for PSF{sub EANM} and PSF{sub allpass} reconstruction. Overall, in 195 lesions, Bland-Altman analysis demonstrated that the mean ratio between PSF{sub EANM} and OSEM data was 1.03 [95 % confidence interval (CI) 0.94-1.12] and 1.02 (95 % CI 0.90-1.14) for SUV{sub max} and SUV{sub mean}, respectively. No difference was noticed when analysing lesions based on their size and location or on patient body habitus and image noise. Ten patients (84 lesions) underwent two PET scans for response monitoring. Using the European Organization for Research and Treatment of Cancer (EORTC) criteria, there was an almost perfect agreement between OSEM{sub PET1}/OSEM{sub PET2} (current standard) and OSEM{sub PET1}/PSF{sub EANM-PET2} or PSF{sub EANM-PET1}/OSEM{sub PET2} with kappa values of 0.95 (95 % CI 0.91-1.00) and 0.99 (95 % CI 0.96-1.00), respectively. The use of PSF{sub allpass} either for pre- or post-treatment (i.e. OSEM{sub PET1}/PSF{sub allpass-PET2} or PSF{sub allpass-PET1}/OSEM{sub PET2}) showed

  4. 4-D PET-MR with Volumetric Navigators and Compressed Sensing

    DEFF Research Database (Denmark)

    Pedemonte, Stefano; Catana, Ciprian; Van Leemput, Koen

    2015-01-01

    Hybrid PET-MR scanners acquire multi-modal signals simultaneously, eliminating the requirement of software alignment between the MR and PET imaging data. However, the acquisition of high-resolution MR and PET images requires long scanning times, therefore movement of the subject during the acquis...

  5. Evaluation of the response to preoperative chemotherapy with PET image in osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Dae Geun; Lee, Jong Seok; Kim, Sug Jun; Lee, Soo Yong

    1999-12-01

    F18 FDG PET scan has an advantage in evaluating the biologic status of the tumors. The purpose of this study is evaluate the role of PET scan in pre- and post chemotherapeutic osteosarcomas and correlate the findings with pathologic examination. Nine cases of osteosarcoma had biopsy and preoperative chemotherapy at our department. There were 4 distal femur, 4 proximal tibia and 1 distal ulna. All case had initial MRI and PET scan and these were repeated after 2 cycles of chemotherapy. Under PET image parameters such as VOI (volume of interest), total activity, degree of necrosis and T/N (tumor/normal tissue) ratio were analyzed. There was a significant correlation between the calculated necrosis in PET and observed one on pathologic specimen (r2=0.78, p<0.05). Cross correlation among identified variables revealed meaningful result between T/N ration and tumor necrosis (r2=0.45, p<0.05). As the T/N ratio decrease, so much more the tumor necrosis was. F18 FDG PET scan could get objective data such as volume, degree of necrosis and total activity and was also useful in estimating the contribution of chemotherapy in tumor necrosis over the innate necrosis before treatment.

  6. Evaluation of the response to preoperative chemotherapy with PET image in osteosarcoma

    International Nuclear Information System (INIS)

    Jeon, Dae Geun; Lee, Jong Seok; Kim, Sug Jun; Lee, Soo Yong

    1999-12-01

    F18 FDG PET scan has an advantage in evaluating the biologic status of the tumors. The purpose of this study is evaluate the role of PET scan in pre- and post chemotherapeutic osteosarcomas and correlate the findings with pathologic examination. Nine cases of osteosarcoma had biopsy and preoperative chemotherapy at our department. There were 4 distal femur, 4 proximal tibia and 1 distal ulna. All case had initial MRI and PET scan and these were repeated after 2 cycles of chemotherapy. Under PET image parameters such as VOI (volume of interest), total activity, degree of necrosis and T/N (tumor/normal tissue) ratio were analyzed. There was a significant correlation between the calculated necrosis in PET and observed one on pathologic specimen (r2=0.78, p<0.05). Cross correlation among identified variables revealed meaningful result between T/N ration and tumor necrosis (r2=0.45, p<0.05). As the T/N ratio decrease, so much more the tumor necrosis was. F18 FDG PET scan could get objective data such as volume, degree of necrosis and total activity and was also useful in estimating the contribution of chemotherapy in tumor necrosis over the innate necrosis before treatment

  7. Thoracic cavity definition for 3D PET/CT analysis and visualization.

    Science.gov (United States)

    Cheirsilp, Ronnarit; Bascom, Rebecca; Allen, Thomas W; Higgins, William E

    2015-07-01

    X-ray computed tomography (CT) and positron emission tomography (PET) serve as the standard imaging modalities for lung-cancer management. CT gives anatomical details on diagnostic regions of interest (ROIs), while PET gives highly specific functional information. During the lung-cancer management process, a patient receives a co-registered whole-body PET/CT scan pair and a dedicated high-resolution chest CT scan. With these data, multimodal PET/CT ROI information can be gleaned to facilitate disease management. Effective image segmentation of the thoracic cavity, however, is needed to focus attention on the central chest. We present an automatic method for thoracic cavity segmentation from 3D CT scans. We then demonstrate how the method facilitates 3D ROI localization and visualization in patient multimodal imaging studies. Our segmentation method draws upon digital topological and morphological operations, active-contour analysis, and key organ landmarks. Using a large patient database, the method showed high agreement to ground-truth regions, with a mean coverage=99.2% and leakage=0.52%. Furthermore, it enabled extremely fast computation. For PET/CT lesion analysis, the segmentation method reduced ROI search space by 97.7% for a whole-body scan, or nearly 3 times greater than that achieved by a lung mask. Despite this reduction, we achieved 100% true-positive ROI detection, while also reducing the false-positive (FP) detection rate by >5 times over that achieved with a lung mask. Finally, the method greatly improved PET/CT visualization by eliminating false PET-avid obscurations arising from the heart, bones, and liver. In particular, PET MIP views and fused PET/CT renderings depicted unprecedented clarity of the lesions and neighboring anatomical structures truly relevant to lung-cancer assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Fluorine-18-fluorodeoxyglucose positron emission tomography (PET) brain imaging patterns in patients with suspected X-linked dystonia parkinsonism (study in progress)

    International Nuclear Information System (INIS)

    Santiago, J.F.Y.; Fugoso, L.; Evidente, V.G.H.

    2004-01-01

    Objective: X-linked dystonia-parkinsonism (XDP or Lubag) is an adult-onset dystonia syndrome that afflicts mostly Filipino men from the island of Panay, Philippines.It starts focally and becomes generalized or multifocal after the first five years. Parkinsonism is commonly encountered as the initial symptom before the onset of dystonia. Patients may manifest a wide spectrum of movement disorders, including myoclonus, chorea, akathisia, ballism and myorhythmia. Diagnosis is based on the clinical presentation, and the establishment of an x-linked recessive pattern of inheritance and maternal roots from the Panay Islands. Neuroimaging in advanced cases have demonstrated caudate and putaminal atrophy. Previous studies using PET have shown selective reduction in normalized striatal glucose metabolism. The purpose of this study is to describe the FDG distribution using PET imaging in Filipino patients with suspected or confirmed Lubag in various stages of their disease in order to determine if FDG-PET can be used in the initial diagnosis and staging of the disease. Methods and results: All patients presenting to the Movement Disorders Center of St. Lukes Medical Center with dystonia and Parkinsonism symptoms with X-linked recessive inheritance pattern and maternal roots traceable to the Panay Islands were sent for a Brain FDG PET Scan. Seven male patients with various movement disorders (dysarthria, face dystonia, Parkinsonism, hemibalismus, involuntary movements and rest tremors) with duration of symptoms from 1 to 5 years underwent a PET scan. All patients had non visualized bilateral putamen, four had hypometabolic caudate nuclei, one had intense (hypermetabolic) caudate nuclei. CT scan and MRI did not show any findings which may explain the movement disorder symptoms. More patients are being collected and gene typing is planned for some patients. Conclusions: This small series of patients demonstrate that patients with the phenotypic characteristics of X

  9. Preparation of polymer blends from glycerol, fumaric acid and of poly(ethylene terephthalate) (PET) recycled; Preparacao de blendas polimericas a partir do glicerol, acido fumarico e do politereftalato de etileno (PET) pos consumo

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Marina A.O.; Guimaraes, Danilo H.; Brioude, Michel M.; Jose, Nadia M. [Instituto de Quimica, Universidade Federal da Bahia, Salvador, BA (Brazil); Prado, Luis A.S. de A. [Institut fuer Kunststoffe und Verbundwerkstoffe - Technische Universitaet Hamburg-Harburg, Hamburg (Germany)

    2011-07-01

    Polymer blends based on recycled poly(ethylene terephthalate) (PET) and poly(glycerol fumarate) polyesters were prepared in different PET concentrations. The PET powder was dispersed during the poly(glycerol fumarate) synthesis at 260 deg C. The resulting blends were characterized by X-ray diffraction. The thermal stability of the materials was evaluated by thermogravimetric analysis and differential scanning calorimetry. The morphology was studies by scanning electron microscopy. The blends were clearly immiscible. The possibility of (interfacial) compatibilization of the PET domains, caused by transesterification reactions between PET and glycerol were discussed. (author)

  10. Detection of bone metastases in breast cancer patients in the PET/CT era: Do we still need the bone scan?

    Science.gov (United States)

    Caglar, M; Kupik, O; Karabulut, E; Høilund-Carlsen, P F

    2016-01-01

    To examine the value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) for the detection of bone metastasis in breast cancer patients and assess whether whole body bone scan (BS) with (99m)Tc-methylene diphosphonate provides any additional information. Study group comprised 150 patients, mean age 52 years (range 27-85) with breast cancer, suspected of having bone metastases. All patients had undergone both FDG-PET/CT and BS with or without single photon emission tomography/computed tomography (SPECT/CT) within a period of 6 weeks. The final diagnosis of bone metastasis was established by histopathological findings, additional imaging, or clinical follow-up longer than 10 months. Cancer antigen 15-3 (CA15-3) and carcinoembryogenic antigen (CEA) were measured in all patients. Histologically 83%, 7% and 10% had infiltrating ductal, lobular and mixed carcinoma respectively. Confirmed bone metastases were present in 86 patients (57.3%) and absent in 64 (42.7%). Mean CA15-3 and CEA values in patients with bone metastases were 74.6ng/mL and 60.4U/mL respectively, compared to 21.3ng/mL and 3.2U/mL without metastases (p<0.001). The sensitivity of FDG-PET/CT for the detection of bone metastases was 97.6% compared to 89.5% with SPECT/CT. In 57 patients, FDG-PET/CT correctly identified additional pulmonary, hepatic, nodal and other soft tissue metastases, not detected by BS. Our findings suggest that FDG-PET/CT is superior to BS with or without SPECT/CT. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  11. FDG PET/CT appearance of local osteosarcoma recurrences in pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Susan E.; Gelfand, Michael J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Shulkin, Barry L.; McCarville, M.B. [St. Jude Children' s Research Hospital, Department of Diagnostic Imaging, Memphis, TN (United States)

    2017-12-15

    Osteosarcoma is the most common pediatric malignant bone tumor, frequently surgically managed with limb salvage rather than amputation. Local recurrences are seen in up to 9% of osteosarcoma patients, with CT and MRI imaging often limited by metal artifacts. To describe the [F-18]2-fluoro-2-deoxyglucose (FDG) PET/CT appearance of local osteosarcoma recurrences with correlation to findings on other imaging modalities. A retrospective review of pediatric osteosarcoma patients imaged with FDG PET/CT was performed in patients with pathologically proven local recurrences. FDG PET/CT findings were reviewed and correlated with available comparison imaging studies. Ten local osteosarcoma recurrences in eight pediatric osteosarcoma patients were imaged with FDG PET/CT. All eight patients had a local recurrence after limb salvage; two patients had a second local recurrence after amputation. All local recurrences were seen with FDG PET/CT, demonstrating solid (n=5) or peripheral/nodular (n=5) FDG uptake patterns. Maximum standard uptake values (SUVs) ranged from 3.0 to 15.7. In five recurrences imaged with FDG PET/CT and MRI, MRI was limited or nondiagnostic in three. In four recurrences imaged with FDG PET/CT and bone scan, the bone scan was negative in three. Local osteosarcoma recurrences are well visualized by FDG PET/CT, demonstrating either solid or peripheral/nodular FDG uptake with a wide range of maximum SUVs. FDG PET/CT demonstrates the full extent of local recurrences, while MRI can be limited by artifact from metallic hardware. PET/CT appears to be more sensitive than bone scan in detecting local osteosarcoma recurrences. (orig.)

  12. Distinguishing benign from malignant gallbladder wall thickening using FDG-PET

    International Nuclear Information System (INIS)

    Oe, Ai; Kawabe, Joji; Torii, Kenji

    2006-01-01

    Because thickening of the gallbladder wall is observed not only in patients with gallbladder cancer but also in those with benign diseases such as chronic cholecystitis and gallbladder adenomyosis, it is difficult to distinguish between benign and malignant gallbladder wall thickening by conventional techniques of diagnostic imaging such as computed tomography (CT), magnetic resonance imaging (MRI), and abdominal ultrasonography (US). In the present study, we attempted to distinguish between benign and malignant gallbladder wall thickening by means of fluorine-18-fluorodeoxyglucose (FDG)-Positron emission tomography (PET). FDG-PET was performed in 12 patients with gallbladder wall thickening detected by CT or US, to determine whether it was benign or malignant. Emission scans were taken, beginning 45 minutes after intravenous administration of FDG, and standardized uptake value (SUV) was calculated as an indicator of glucose metabolism. Of the 12 patients, 4 showed positive uptake of FDG in the gallbladder wall. Of these 4 patients, 3 had gallbladder cancer. The remaining one, who had chronic cholecystitis, had false-positive findings. The other 8 patients had negative uptake of FDG in the gallbladder wall. Two of these 8 underwent surgical resection, which yielded a diagnosis of chronic cholecystitis. The other 6 patients exhibited no sign of gallbladder malignancy and have been followed without active treatment. FDG-PET appears able to distinguish between benign and malignant gallbladder wall thickening. (author)

  13. Role of {sup 68}Ga-DOTATOC PET-CT in the diagnosis and staging of pancreatic neuroendocrine tumours

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rakesh; Sharma, Punit; Karunanithi, Sellam; Naswa, Niraj; Lata, Sneh; Malhotra, Arun [All India Institute of Medical Sciences, Department of Nuclear Medicine, New Delhi (India); Garg, Pramod [All India Institute of Medical Sciences, Department of Gastroenterology and Human Nutrition, New Delhi (India); Sharma, Raju; Thulkar, Sanjay [All India Institute of Medical Sciences, Department of Radiodiagnosis, New Delhi (India)

    2011-11-15

    The objective of the present study was to evaluate the role of {sup 68}Ga-DOTA(0)-Phe(1)-Tyr(3)-octreotide ({sup 68}Ga-DOTATOC) positron emission tomography computed tomography (PET-CT) for detection and staging of pancreatic neuroendocrine tumours (NETs). Twenty patients with clinically suspected and/or histopathologically proven pancreatic NET underwent {sup 68}Ga-DOTATOC PET-CT imaging for staging and /or localisation of primary lesion. They also underwent contrast enhanced CT (CECT) and 8 patients underwent {sup 18}F-FDG PET-CT. SUVmax of primary and metastatic lesions were measured. Results were verified with histopathology for primary tumour and with clinical follow up/MRI and /or biopsy for metastatic disease. Results of {sup 68}Ga-DOTATOC PET-CT were compared to CECT and {sup 18}F-FDG PET-CT. {sup 68}Ga-DOTATOC PET-CT correctly localised primary in all 20, CECT in 15 and {sup 18}F-FDG PET-CT in 2 patients. {sup 68}Ga-DOTATOC PET-CT demonstrated metastases in 13 patients, CECT in 7 and {sup 18}F-FDG PET-CT in 2. {sup 68}Ga-DOTATOC PET-CT emerged as the best investigation with 100% sensitivity and PPV for detecting primary tumour and metastatic disease. The detection rate of CECT was lower than {sup 68}Ga-DOTATOC PET-CT, both for primary tumour (20vs.15) or metastatic disease (13vs.7). {sup 18}F-FDG PET-CT performed poorly for primary and metastasis. Ga-DOTATOC PET-CT is a very useful imaging investigation for diagnosing and staging pancreatic NET. (orig.)

  14. Comparison of I-131 MIBG scintigrapy and F-18 FDG PET in neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Pai, M.; Lee, S.; Yoo, E [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2004-07-01

    The purpose of this preliminary study was to compare the utility of metaiodobenzylguanidine(MIBG) scintigraphy and F-18 FDG PET for the detection of primary and metastatic lesions of neuroblatoma. F-18 FDG PET and I-131 MIBG scan or SPECT were performed with in 1 month of each other in 4 patients (age: 4-5, all female) with known neuroblastoma after primary treatment. In 3 of 4 patients with confirmed neuroblastoma, FDG PET and MIBG scans were concordant for the presence or absence of diseased sites. In two cases, residual abdominal masses less than 1cm in which the X -ray computed tomography showed no change in tumor volume had a simultaneous negative uptake in both MIBG scan and FDG PET. In a patient with histologic evidence of bone marrow involvement, there was no skeletal uptake of both MIBG and FDG but Tc-99m HDP bone scan revealed disseminated bone marrow involvement, while a large mediastinal primary mass of this patient showed intense MIBG and FDG uptake. In one patient whose large abdominal mass of neuroblastoma failed to accumulate FDG, MIBG uptake in the tumor was intense. We concluded that FDG PET could reveal metabolic state of primary or residual neuroblastoma as much as MIBG in majority of our cases but it did not show any advantages over MIBG or even bone scan. FDG PET had an obvious defect in detection of residual viable disease in one patient. FDG PET may not replace MIBG or bone scan for evaluation of primary or metastatic disease of neuroblastoma in the diagnostic and staging procedure from INSS recommendation.

  15. Comparison of I-131 MIBG scintigrapy and F-18 FDG PET in neuroblastoma

    International Nuclear Information System (INIS)

    Pai, M.; Lee, S.; Yoo, E

    2004-01-01

    The purpose of this preliminary study was to compare the utility of metaiodobenzylguanidine(MIBG) scintigraphy and F-18 FDG PET for the detection of primary and metastatic lesions of neuroblatoma. F-18 FDG PET and I-131 MIBG scan or SPECT were performed with in 1 month of each other in 4 patients (age: 4-5, all female) with known neuroblastoma after primary treatment. In 3 of 4 patients with confirmed neuroblastoma, FDG PET and MIBG scans were concordant for the presence or absence of diseased sites. In two cases, residual abdominal masses less than 1cm in which the X -ray computed tomography showed no change in tumor volume had a simultaneous negative uptake in both MIBG scan and FDG PET. In a patient with histologic evidence of bone marrow involvement, there was no skeletal uptake of both MIBG and FDG but Tc-99m HDP bone scan revealed disseminated bone marrow involvement, while a large mediastinal primary mass of this patient showed intense MIBG and FDG uptake. In one patient whose large abdominal mass of neuroblastoma failed to accumulate FDG, MIBG uptake in the tumor was intense. We concluded that FDG PET could reveal metabolic state of primary or residual neuroblastoma as much as MIBG in majority of our cases but it did not show any advantages over MIBG or even bone scan. FDG PET had an obvious defect in detection of residual viable disease in one patient. FDG PET may not replace MIBG or bone scan for evaluation of primary or metastatic disease of neuroblastoma in the diagnostic and staging procedure from INSS recommendation

  16. Clinical significance of MRI/{sup 18}F-FDG PET fusion imaging of the spinal cord in patients with cervical compressive myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Kenzo; Nakajima, Hideaki; Watanabe, Shuji; Yoshida, Ai; Baba, Hisatoshi [University of Fukui, Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, Eiheiji, Fukui (Japan); Okazawa, Hidehiko [University of Fukui, Department of Biomedical Imaging Research Center, Eiheiji, Fukui (Japan); Kimura, Hirohiko [University of Fukui, Departments of Radiology, Faculty of Medical Sciences, Eiheiji, Fukui (Japan); Kudo, Takashi [Nagasaki University, Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki (Japan)

    2012-10-15

    {sup 18}F-FDG PET is used to investigate the metabolic activity of neural tissue. MRI is used to visualize morphological changes, but the relationship between intramedullary signal changes and clinical outcome remains controversial. The present study was designed to evaluate the use of 3-D MRI/{sup 18}F-FDG PET fusion imaging for defining intramedullary signal changes on MRI scans and local glucose metabolic rate measured on {sup 18}F-FDG PET scans in relation to clinical outcome and prognosis. We studied 24 patients undergoing decompressive surgery for cervical compressive myelopathy. All patients underwent 3-D MRI and {sup 18}F-FDG PET before surgery. Quantitative analysis of intramedullary signal changes on MRI scans included calculation of the signal intensity ratio (SIR) as the ratio between the increased lesional signal intensity and the signal intensity at the level of the C7/T1 disc. Using an Advantage workstation, the same slices of cervical 3-D MRI and {sup 18}F-FDG PET images were fused. On the fused images, the maximal count of the lesion was adopted as the standardized uptake value (SUV{sub max}). In a similar manner to SIR, the SUV ratio (SUVR) was also calculated. Neurological assessment was conducted using the Japanese Orthopedic Association (JOA) scoring system for cervical myelopathy. The SIR on T1-weighted (T1-W) images, but not SIR on T2-W images, was significantly correlated with preoperative JOA score and postoperative neurological improvement. Lesion SUV{sub max} was significantly correlated with SIR on T1-W images, but not with SIR on T2-W images, and also with postoperative neurological outcome. The SUVR correlated better than SIR on T1-W images and lesion SUV{sub max} with neurological improvement. Longer symptom duration was correlated negatively with SIR on T1-W images, positively with SIR on T2-W images, and negatively with SUV{sub max}. Our results suggest that low-intensity signal on T1-W images, but not on T2-W images, is correlated

  17. FDG-PET/CT in oncology. German guideline

    International Nuclear Information System (INIS)

    Krause, B.J.; Beyer, T.; Bockisch, A.; Delbeke, D.; Kotzerke, J.; Minkov, V.; Reiser, M.; Willich, N.

    2007-01-01

    FDG-PET/CT examinations combine metabolic and morphologic imaging within an integrated procedure. Over the past decade PET/CT imaging has gained wide clinical acceptance in the field of oncology. This FDG-PET/CT guideline focuses on indications, data acquisition and processing as well as documentation of FDG-PET/CT examinations in oncologic patients within a clinical and social context specific to Germany. Background information and definitions are followed by examples of clinical and research applications of FDG-PET/CT. Furthermore, protocols for CT scanning (low dose and contrast-enhanced CT) and PET emission imaging are discussed. Documentation and reporting of examinations are specified. Image interpretation criteria and sources of errors are discussed. Quality control for FDG and PET/CT-systems, qualification requirements of personnel as well as legal aspects are presented. (orig.)

  18. Breast hemangioma mimicking metastasis at PET-CT

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Sabas Carlos [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Fac. de Medicina; Silva, Jucelia Saraiva e [MedImagem, Teresina, PI (Brazil). Clinica Medica; Madeira, Eveline Brandao; Franca, Julio Cesar Queiroz de; Martins Filho, Sebastiao Nunes [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil)

    2011-11-15

    Breast hemangioma is a rare benign tumor that presents either absent or low {sup 18}F-fluoro-2-deoxy-D-glucose (FDG) uptake at positron emission tomography (PET). The authors report the case of a breast nodule pathologically compatible with hemangioma in a woman whose PET-scan has demonstrated increased FDG uptake (simulating a malignant tumor). A brief review of factors leading to false positive and false negative PET results is also undertaken. (author)

  19. 18F-FDOPA PET/MRI fusion in patients with primary/recurrent gliomas: Initial experience

    International Nuclear Information System (INIS)

    Ledezma, Carlos J.; Chen, Wei; Sai, Victor; Freitas, Bonnie; Cloughesy, Tim; Czernin, Johannes; Pope, Whitney

    2009-01-01

    Background and purpose: 18 F-FDOPA PET demonstrates higher sensitivity and specificity for gliomas than traditional [ 18 F] FDG PET imaging. However, PET provides limited anatomic localization. The purpose of this study was to determine whether 18 F-FDOPA PET/MRI fusion can provide precise anatomic localization of abnormal tracer uptake and how this activity corresponds to MR signal abnormality. Methods: Two groups of patients were analyzed. Group I consisted of 21 patients who underwent 18 F-FDOPA PET and MRI followed by craniotomy for tumor resection. Group II consisted of 70 patients with a pathological diagnosis of glioma that had 18 F-FDOPA PET and MRI but lacked additional pathologic follow-up. Fused 18 F-FDOPA PET and MRI images were analyzed for concordance and correlated with histopathologic data. Results: Fusion technology facilitated precise anatomical localization of 18 F-FDOPA activity. In group I, all 21 cases showed pathology-confirmed tumor. Of these, 18 F-FDOPA scans were positive in 9/10 (90%) previously unresected tumors, and 11/11 (100%) of recurrent tumors. Of the 70 patients in group II, concordance between MRI and 18 F-FDOPA was found in 49/54 (90.1%) of patients with sufficient follow-up; in the remaining 16 patients concordance could not be determined due to lack of follow-up. 18 F-FDOPA labeling was comparable in both high- and low-grade gliomas and identified both enhancing and non-enhancing tumor equally well. In some cases, 18 F-FDOPA activity preceded tumor detection on MRI. Conclusion: 18 F-FDOPA PET/MRI fusion provides precise anatomic localization of tracer uptake and labels enhancing and non-enhancing tumor well. In a small minority of cases, 18 F-FDOPA activity may identify tumor not visible on MRI.

  20. Application of PET in breast cancer

    International Nuclear Information System (INIS)

    Noh, Dong Young

    2002-01-01

    Positron emission tomography (PET) is an imaging method that employs radionuclide and tomography techniques. Since 1995, we applied PET not only to the diagnosis of breast cancer but also to the detection of abnormalities in the augmented breast and to the detection of metastasis. Until 2001, we evaluated 242 breast cases by PET at PET center of Seoul National University Hospital. Our group has reported serially at the international journals. In the firtst report, PET showed high sensitivity for detecting breast cancer, both the primary and axillary node metastasis. A total of 27 patients underwent breast operations based on PET results at Seoul National University Hospital from 1995 to 1996. The diagnostic accuracy of PET were 97% for the primary tumor mass and 96% for axillary lymph node metastasis. In case of the breast augmented, PET also showed excellent diagnostic results for primary breast cancer and axillary lymph node metastasis where mammography and ultrasound could not diagnose properly. PET also had outstanding results in the detection of recurrent or metastatic breast cancer(sensitivity 94%, specificity 80%, accuracy 89%). In addition, our study gave some evidence that PET could be applied further to evaluate the growth rate of tumors by measuring SUV, and finally to prognosticated the disease. PET could also be applied to evaluate the response after chemotherapy to measure its metabolic rate and size. In conclsion, PET is a highly sensitive, accurate diagnostic tool for breast cancer of primary lesion in various conditions including metastasis

  1. Can FDG-PET/CT replace blind bone marrow biopsy of the posterior iliac crest in Ewing sarcoma?

    International Nuclear Information System (INIS)

    Kasalak, Oemer; Glaudemans, Andor W.J.M.; Overbosch, Jelle; Kwee, Thomas C.; Jutte, Paul C.

    2018-01-01

    To determine and compare the value of 18 F-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT) to blind bone marrow biopsy (BMB) of the posterior iliac crest in detecting metastatic bone marrow involvement in newly diagnosed Ewing sarcoma. This retrospective study included 20 patients with newly diagnosed Ewing sarcoma who underwent pretreatment FDG-PET/CT and a total of 38 blind BMBs (two unilateral and 18 bilateral) of the posterior iliac crest. FDG-PET/CT scans were evaluated for bone marrow involvement, both in the posterior iliac crest and other sites, and compared to blind BMB results. FDG-PET/CT was positive for bone marrow involvement in 7/38 posterior iliac crests, whereas BMB was positive in 5/38 posterior iliac crests. FDG-PET/CT and BMB results in the posterior iliac crest agreed in 36/38 cases (94.7%, 95% confidence interval [CI]: 82.7-98.5%). On a patient level, FDG-PET/CT was positive for bone marrow involvement in 4/20 patients, whereas BMB of the posterior iliac crest was positive in 3/20 patients. On a patient level, FDG-PET/CT and BMB results agreed in 19/20 patients (95.0%, 95% CI: 76.4-99.1%). The only discrepancies between FDG-PET/CT and BMB were observed in two BMBs of one patient. Both BMBs in this patient were negative, whereas FDG-PET/CT indicated bilateral posterior iliac crest involvement and also extensive bone marrow involvement elsewhere. FDG-PET/CT appears to be a valuable method for metastatic bone marrow assessment in newly diagnosed Ewing sarcoma. The routine use of blind BMB of the posterior iliac crest should be reconsidered when FDG-PET/CT is available. (orig.)

  2. Can FDG-PET/CT replace blind bone marrow biopsy of the posterior iliac crest in Ewing sarcoma?

    Energy Technology Data Exchange (ETDEWEB)

    Kasalak, Oemer; Glaudemans, Andor W.J.M.; Overbosch, Jelle; Kwee, Thomas C. [University of Groningen, Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen (Netherlands); Jutte, Paul C. [University of Groningen, Department of Orthopedics, University Medical Center Groningen (Netherlands)

    2018-03-15

    To determine and compare the value of {sup 18}F-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT) to blind bone marrow biopsy (BMB) of the posterior iliac crest in detecting metastatic bone marrow involvement in newly diagnosed Ewing sarcoma. This retrospective study included 20 patients with newly diagnosed Ewing sarcoma who underwent pretreatment FDG-PET/CT and a total of 38 blind BMBs (two unilateral and 18 bilateral) of the posterior iliac crest. FDG-PET/CT scans were evaluated for bone marrow involvement, both in the posterior iliac crest and other sites, and compared to blind BMB results. FDG-PET/CT was positive for bone marrow involvement in 7/38 posterior iliac crests, whereas BMB was positive in 5/38 posterior iliac crests. FDG-PET/CT and BMB results in the posterior iliac crest agreed in 36/38 cases (94.7%, 95% confidence interval [CI]: 82.7-98.5%). On a patient level, FDG-PET/CT was positive for bone marrow involvement in 4/20 patients, whereas BMB of the posterior iliac crest was positive in 3/20 patients. On a patient level, FDG-PET/CT and BMB results agreed in 19/20 patients (95.0%, 95% CI: 76.4-99.1%). The only discrepancies between FDG-PET/CT and BMB were observed in two BMBs of one patient. Both BMBs in this patient were negative, whereas FDG-PET/CT indicated bilateral posterior iliac crest involvement and also extensive bone marrow involvement elsewhere. FDG-PET/CT appears to be a valuable method for metastatic bone marrow assessment in newly diagnosed Ewing sarcoma. The routine use of blind BMB of the posterior iliac crest should be reconsidered when FDG-PET/CT is available. (orig.)

  3. Comparison of [68Ga]Ga-PSMA-11 PET/CT with [18F]NaF PET/CT in the evaluation of bone metastases in metastatic prostate cancer patients prior to radionuclide therapy.

    Science.gov (United States)

    Uprimny, Christian; Svirydenka, Anna; Fritz, Josef; Kroiss, Alexander Stephan; Nilica, Bernhard; Decristoforo, Clemens; Haubner, Roland; von Guggenberg, Elisabeth; Buxbaum, Sabine; Horninger, Wolfgang; Virgolini, Irene Johanna

    2018-05-16

    The purpose of this study was to investigate the diagnostic performance of 68 Ga-PSMA-11 PET/CT in the evaluation of bone metastases in metastatic prostate cancer (PC) patients scheduled for radionuclide therapy in comparison to [ 18 F]sodium fluoride ( 18 F-NaF) PET/CT. Sixteen metastatic PC patients with known skeletal metastases, who underwent both 68 Ga-PSMA-11 PET/CT and 18 F-NaF PET/CT for assessment of metastatic burden prior to radionuclide therapy, were analysed retrospectively. The performance of both tracers was calculated on a lesion-based comparison. Intensity of tracer accumulation of pathologic bone lesions on 18 F-NaF PET and 68 Ga-PSMA-11 PET was measured with maximum standardized uptake values (SUV max ) and compared to background activity of normal bone. In addition, SUV max values of PET-positive bone lesions were analysed with respect to morphologic characteristics on CT. Bone metastases were either confirmed by CT or follow-up PET scan. In contrast to 468 PET-positive lesions suggestive of bone metastases on 18 F-NaF PET, only 351 of the lesions were also judged positive on 68 Ga-PSMA-11 PET (75.0%). Intensity of tracer accumulation of pathologic skeletal lesions was significantly higher on 18 F-NaF PET compared to 68 Ga-PSMA-11 PET, showing a median SUV max of 27.0 and 6.0, respectively (p PET, with a median SUV max of 1.0 in comparison to 2.7 on 18 F-NaF PET; however, tumour to background ratio was significantly higher on 18 F-NaF PET (9.8 versus 5.9 on 68 Ga-PSMA-11 PET; p = 0.042). Based on morphologic lesion characterisation on CT, 18 F-NaF PET revealed median SUV max values of 23.6 for osteosclerotic, 35.0 for osteolytic, and 19.0 for lesions not visible on CT, whereas on 68 Ga-PSMA-11 PET median SUV max values of 5.0 in osteosclerotic, 29.5 in osteolytic, and 7.5 in lesions not seen on CT were measured. Intensity of tracer accumulation between 18 F-NaF PET and 68 Ga-PSMA-11 PET was significantly higher in osteosclerotic (p PET

  4. Metabolically active tumour volume segmentation from dynamic [(18)F]FLT PET studies in non-small cell lung cancer.

    Science.gov (United States)

    Hoyng, Lieke L; Frings, Virginie; Hoekstra, Otto S; Kenny, Laura M; Aboagye, Eric O; Boellaard, Ronald

    2015-01-01

    Positron emission tomography (PET) with (18)F-3'-deoxy-3'-fluorothymidine ([(18)F]FLT) can be used to assess tumour proliferation. A kinetic-filtering (KF) classification algorithm has been suggested for segmentation of tumours in dynamic [(18)F]FLT PET data. The aim of the present study was to evaluate KF segmentation and its test-retest performance in [(18)F]FLT PET in non-small cell lung cancer (NSCLC) patients. Nine NSCLC patients underwent two 60-min dynamic [(18)F]FLT PET scans within 7 days prior to treatment. Dynamic scans were reconstructed with filtered back projection (FBP) as well as with ordered subsets expectation maximisation (OSEM). Twenty-eight lesions were identified by an experienced physician. Segmentation was performed using KF applied to the dynamic data set and a source-to-background corrected 50% threshold (A50%) was applied to the sum image of the last three frames (45- to 60-min p.i.). Furthermore, several adaptations of KF were tested. Both for KF and A50% test-retest (TRT) variability of metabolically active tumour volume and standard uptake value (SUV) were evaluated. KF performed better on OSEM- than on FBP-reconstructed PET images. The original KF implementation segmented 15 out of 28 lesions, whereas A50% segmented each lesion. Adapted KF versions, however, were able to segment 26 out of 28 lesions. In the best performing adapted versions, metabolically active tumour volume and SUV TRT variability was similar to those of A50%. KF misclassified certain tumour areas as vertebrae or liver tissue, which was shown to be related to heterogeneous [(18)F]FLT uptake areas within the tumour. For [(18)F]FLT PET studies in NSCLC patients, KF and A50% show comparable tumour volume segmentation performance. The KF method needs, however, a site-specific optimisation. The A50% is therefore a good alternative for tumour segmentation in NSCLC [(18)F]FLT PET studies in multicentre studies. Yet, it was observed that KF has the potential to subsegment

  5. Diagnostic value of [18F]-FDG PET/CT in children with fever of unknown origin or unexplained signs of inflammation

    International Nuclear Information System (INIS)

    Jasper, Niklas; Daebritz, Jan; Frosch, Michael; Foell, Dirk; Loeffler, Markus; Weckesser, Matthias

    2010-01-01

    Fever of unknown origin (FUO) and unexplained signs of inflammation are challenging medical problems especially in children and predominantly caused by infections, malignancies or noninfectious inflammatory diseases. The aim of this study was to assess the diagnostic value of 18 F-FDG PET and PET/CT in the diagnostic work-up in paediatric patients. In this retrospective study, 47 FDG PET and 30 PET/CT scans from 69 children (median age 8.1 years, range 0.2-18.1 years, 36 male, 33 female) were analysed. The diagnostic value of PET investigations in paediatric patients presenting with FUO (44 scans) or unexplained signs of inflammation without fever (33 scans) was analysed. A diagnosis in paediatric patients with FUO or unexplained signs of inflammation could be established in 32 patients (54%). Of all scans, 63 (82%) were abnormal, and of the total number of 77 PET and PET/CT scans 35 (45%) were clinically helpful. In patients with a final diagnosis, scans were found to have contributed to the diagnosis in 73%. Laboratory, demographic or clinical parameters of the children did not predict the usefulness of FDG PET scans. This is the first larger study demonstrating that FDG PET and PET/CT may be valuable diagnostic tools for the evaluation of children with FUO and unexplained signs of inflammation. Depicting inflammation in the whole body, while not being traumatic, it is attractive for use especially in children. The combination of PET with CT seems to be superior, since the site of inflammation can be localized more accurately. (orig.)

  6. Cognitive and functional patterns of nondemented subjects with equivocal visual amyloid PET findings

    International Nuclear Information System (INIS)

    Payoux, P.; Delrieu, J.; Gallini, A.; Cantet, C.; Voisin, T.; Gillette-Guyonnet, S.; Vellas, B.; Adel, D.; Salabert, A.S.; Hitzel, A.; Tafani, M.; Verbizier, D. de; Darcourt, J.; Fernandez, P.; Monteil, J.; Carrie, I.; Pontecorvo, M.; Andrieu, S.

    2015-01-01

    Despite good to excellent inter-reader agreement in the evaluation of amyloid load on PET scans in subjects with Alzheimer's disease, some equivocal findings have been reported in the literature. We aimed to describe the clinical characteristics of subjects with equivocal PET images. Nondemented subjects aged 70 years or more were enrolled from the MAPT trial. Cognitive and functional assessments were conducted at baseline, at 6 months, and annually for 3 years. During the follow-up period, 271 subjects had 18 F-AV45 PET scans. Images were visually assessed by three observers and classified as positive, negative or equivocal (if one observer disagreed). After debate, equivocal images were reclassified as positive (EP+) or negative (EP-). Scans were also classified by semiautomated quantitative analysis using mean amyloid uptake of cortical regions. We evaluated agreement among the observers, and between visual and quantitative assessments using kappa coefficients, and compared the clinical characteristics of the subjects according to their PET results. In 158 subjects (58.30 %) the PET scan was negative for amyloid, in 77 (28.41 %) the scan was positive and in 36 (13.28 %) the scan was equivocal. Agreement among the three observers was excellent (kappa 0.80). Subjects with equivocal images were more frequently men (58 % vs. 37 %) and exhibited intermediate scores on cognitive and functional scales between those of subjects with positive and negative scans. Amyloid load differed between the EP- and negative groups and between the EP+ and positive groups after reclassification. Equivocal amyloid PET images could represent a neuroimaging entity with intermediate amyloid load but without a specific neuropsychological pattern. Clinical follow-up to assess cognitive evolution in subjects with equivocal scans is needed. (orig.)

  7. Cognitive and functional patterns of nondemented subjects with equivocal visual amyloid PET findings

    Energy Technology Data Exchange (ETDEWEB)

    Payoux, P. [Purpan University Hospital, Department of Nuclear Medicine, CHU Toulouse, Toulouse (France); Inserm, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); INSERM U825, CHU Purpan, Toulouse Cedex (France); Delrieu, J. [Purpan University Hospital, Gerontopole, Department of Geriatrics, CHU Toulouse, Toulouse (France); INSERM UMR 1027, Toulouse (France); Gallini, A.; Cantet, C.; Voisin, T.; Gillette-Guyonnet, S.; Vellas, B. [Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); Purpan University Hospital, Gerontopole, Department of Geriatrics, CHU Toulouse, Toulouse (France); INSERM UMR 1027, Toulouse (France); Adel, D.; Salabert, A.S. [Inserm, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); Hitzel, A. [Purpan University Hospital, Department of Nuclear Medicine, CHU Toulouse, Toulouse (France); Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); Tafani, M. [Purpan University Hospital, Department of Nuclear Medicine, CHU Toulouse, Toulouse (France); Inserm, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); Verbizier, D. de [Montpellier University Hospital, Department of Nuclear Medicine, Montpellier (France); Darcourt, J. [Centre Antoine Lacassagne, Nuclear Medicine Department, Nice (France); University of Nice-Sophia Antipolis, Nice (France); Fernandez, P. [Pellegrin University Hospital Bordeaux, Nuclear Medicine Department, Bordeaux (France); University Bordeaux II, CNRS UMR 5287 - INCIA, Victor Segalen, Bordeaux (France); Monteil, J. [University Hospital, Department of Nuclear Medicine, Limoges (France); University of Limoges, Limoges (France); Carrie, I. [Purpan University Hospital, Gerontopole, Department of Geriatrics, CHU Toulouse, Toulouse (France); Pontecorvo, M. [Avid Radiopharmaceuticals, Philadelphia, PA (United States); Andrieu, S. [Universite de Toulouse, UPS, Imagerie Cerebrale et Handicaps Neurologiques, UMR 825, Toulouse (France); Purpan University Hospital, Gerontopole, Department of Geriatrics, CHU Toulouse, Toulouse (France); INSERM UMR 1027, Toulouse (France); CHU Toulouse, Department of Epidemiology and Public Health, Toulouse (France)

    2015-08-15

    Despite good to excellent inter-reader agreement in the evaluation of amyloid load on PET scans in subjects with Alzheimer's disease, some equivocal findings have been reported in the literature. We aimed to describe the clinical characteristics of subjects with equivocal PET images. Nondemented subjects aged 70 years or more were enrolled from the MAPT trial. Cognitive and functional assessments were conducted at baseline, at 6 months, and annually for 3 years. During the follow-up period, 271 subjects had {sup 18}F-AV45 PET scans. Images were visually assessed by three observers and classified as positive, negative or equivocal (if one observer disagreed). After debate, equivocal images were reclassified as positive (EP+) or negative (EP-). Scans were also classified by semiautomated quantitative analysis using mean amyloid uptake of cortical regions. We evaluated agreement among the observers, and between visual and quantitative assessments using kappa coefficients, and compared the clinical characteristics of the subjects according to their PET results. In 158 subjects (58.30 %) the PET scan was negative for amyloid, in 77 (28.41 %) the scan was positive and in 36 (13.28 %) the scan was equivocal. Agreement among the three observers was excellent (kappa 0.80). Subjects with equivocal images were more frequently men (58 % vs. 37 %) and exhibited intermediate scores on cognitive and functional scales between those of subjects with positive and negative scans. Amyloid load differed between the EP- and negative groups and between the EP+ and positive groups after reclassification. Equivocal amyloid PET images could represent a neuroimaging entity with intermediate amyloid load but without a specific neuropsychological pattern. Clinical follow-up to assess cognitive evolution in subjects with equivocal scans is needed. (orig.)

  8. PET with a dual-head coincidence gamma camera in head and neck cancer: A comparison with computed tomography and dedicated PET

    International Nuclear Information System (INIS)

    Zimny, M.

    2001-01-01

    Positron emission tomography with 18 F-fluoro-deoxyglucose (FDG PET) is a promising imaging tool for detecting and staging of primary or recurrent head and neck cancer. The aim of this study was to evaluate a dual-head gamma camera modified for coincidence detection (KGK-PET) in comparison to computed tomography (CT) and dedicated PET (dPET). 50 patients with known or suspected primary or recurrent head and neck cancer were enrolled. 32 patients underwent KGK-PET and dPET using a one-day protocol. The sensitivity for the detection of primary/ recurrent head and neck cancer for KGK-PET and CT was 80% and 54%, respectively, specificity was 73% and 82%, respectively. The sensitivity and specificity for the detection of lymph node metastases based on neck sides with KGK-PET was 71% (CT: 65%) and 88% (CT: 89%) respectively. In comparison to dPET, KGK-PET revealed concordant results in 32/32 patients with respect to primary tumor/recurrent disease and in 55/60 evaluated neck sides. All involved neck sides that were missed by KGK-PET were also negative with dPET. These results indicate that in patients with head and neck cancer KGK-PET reveals information, that are similar to dPET and complementary to CT. (orig.) [de

  9. (18)F-sodium fluoride PET/CT for the in vivo visualization of Mönckeberg's sclerosis in a diabetic patient.

    Science.gov (United States)

    Quirce, R; Martínez-Rodríguez, I; Banzo, I; de Arcocha-Torres, M; Jiménez-Bonilla, J F; Martínez-Amador, N; Ibáñez-Bravo, S; Ramos, L; Amado, J A; Carril, J M

    2015-01-01

    Diabetes is a major frequent cause of atherosclerosis vascular disease. Arterial calcification in diabetic patients is responsible for peripheral vascular involvement. Molecular imaging using (18)F-sodium fluoride ((18)F-NaF) positron emission tomography (PET)/computed tomography (CT) has been recently proposed as a marker to study the in vivo mineralization process in the atheroma plaque. A 69-year-old man with a history of type 2 diabetes and no clinical evidence of peripheral arterial disease underwent an (18)F-NaF PET/CT scan. A linear, well-defined (18)F-NaF uptake was detected along the femoral arteries. In addition, the CT component of the PET/CT identified an unsuspected "tram-track" calcification in his femoral arteries, suggestive of medial calcification (Mönckeberg's sclerosis). In other vascular territories, focal (18)F-NaF uptake was also detected in carotid and aorta atheroma plaques. Molecular imaging with (18)F-NaF PET/CT might provide new functional information about the in vivo vascular calcification process in diabetic patients. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  10. PET MRI Coregistration in Intractable Epilepsy and Gray Matter Heterotopia.

    Science.gov (United States)

    Seniaray, Nikhil; Jain, Anuj

    2017-03-01

    A 25-year-old woman with intractable seizures underwent FDG PET/MRI for seizure focus localization. MRI demonstrated bilateral carpetlike nodular subependymal gray matter and asymmetrical focal dilatation in the right temporal horn. PET/MRI showed increased FDG within subependymal gray matter with significant hypometabolism in right anterior temporal lobe. EEG and ictal semiology confirmed the right temporal seizure origin. This case highlights the importance of identification of gray matter heterotopia on FDG PET/MRI.

  11. SmartPET: Applying HPGe and pulse shape analysis to small-animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool (United Kingdom)], E-mail: rjc@ns.ph.liv.ac.uk; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G. [Department of Physics, University of Liverpool (United Kingdom); Hall, C.J.; Lazarus, I. [CCLRC Daresbury Laboratory, Warrington, Cheshire (United Kingdom); Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R.A. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia)

    2007-08-21

    The SmartPET project is the development of a prototype small-animal imaging system based on the use of Hyperpure Germanium (HPGe) detectors. The use of digital electronics and application of Pulse Shape Analysis (PSA) techniques provide fine spatial resolution, while the excellent intrinsic energy resolution of HPGe detectors makes the system ideal for multi-nuclide imaging. As a result, the SmartPET system has the potential to function as a dual modality imager, operating as a dual-head Positron Emission Tomography (PET) camera or in a Compton Camera configuration for Single Photon Emission Computed Tomography (SPECT) imaging. In this paper, we discuss how the use of simple PSA techniques greatly improves the position sensitivity of the detector yielding improved spatial resolution in reconstructed images. The PSA methods presented have been validated by comparison to data from high-precision scanning of the detectors. Results from this analysis are presented along with initial images from the SmartPET system, which demonstrates the impact of these techniques on PET images.

  12. Preparation of polymer blends from glycerol, fumaric acid and of poly(ethylene terephthalate) (PET) recycled

    International Nuclear Information System (INIS)

    Medeiros, Marina A.O.; Guimaraes, Danilo H.; Brioude, Michel M.; Jose, Nadia M.; Prado, Luis A.S. de A.

    2011-01-01

    Polymer blends based on recycled poly(ethylene terephthalate) (PET) and poly(glycerol fumarate) polyesters were prepared in different PET concentrations. The PET powder was dispersed during the poly(glycerol fumarate) synthesis at 260 deg C. The resulting blends were characterized by X-ray diffraction. The thermal stability of the materials was evaluated by thermogravimetric analysis and differential scanning calorimetry. The morphology was studies by scanning electron microscopy. The blends were clearly immiscible. The possibility of (interfacial) compatibilization of the PET domains, caused by transesterification reactions between PET and glycerol were discussed. (author)

  13. Clinical Significance of F 18 FP CIT Dual Time Point PET Imaging in Idiopathic Parkinson's Disease

    International Nuclear Information System (INIS)

    Oh, Jin Kyoung; Yoo, Ik Dong; Seo, Ye Young; Chung, Youg An; Yoo, Ie Ryung; Kim, Sung Hoon; Song, In Uk

    2011-01-01

    The purpose of this study was to investigate the diagnostic value of dual time point F 18 FP CIT PET imaging in idiopathic Parkinson's disease (PD). Twenty four patients with PD (mean age 69.6) and 18 healthy people (mean age 70.26) underwent two sequential PET/CT scans (dual time point imaging) at 90 and 210 min after F 18 FP CIT injection. Tracer activity of region of interest was measured in the caudate, putamen and a reference region in the brain from both time points. The outcome parameter was the striatooccipital ratio (SOR). Normal SOR values were obtained in the control group. The percent change in tracer activity between 90 and 210 min images was calculated. The SOR values and the percent change in tracer activity were compared between the patients and healthy control group. The SOR values for the caudate, anterior and posterior putamen at both 90 and 210 min images were significantly reduced in the patients with PD. The lowest P value was obtained for the anterior and posterior putamen (p<0.001) at both time points. There were significant differences of the percent change in tracer activity for the anterior and posterior putamen in the two groups (p=0.01) F 18 FP CIT PET scans at 90 and 210 min after injection are both able to diagnose PD. Therefore, the 90 min image by itself in sufficient for diagnosing PD.

  14. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections.

    Science.gov (United States)

    Gillman, Ashley; Smith, Jye; Thomas, Paul; Rose, Stephen; Dowson, Nicholas

    2017-12-01

    Patient motion is an important consideration in modern PET image reconstruction. Advances in PET technology mean motion has an increasingly important influence on resulting image quality. Motion-induced artifacts can have adverse effects on clinical outcomes, including missed diagnoses and oversized radiotherapy treatment volumes. This review aims to summarize the wide variety of motion correction techniques available in PET and combined PET/CT and PET/MR, with a focus on the latter. A general framework for the motion correction of PET images is presented, consisting of acquisition, modeling, and correction stages. Methods for measuring, modeling, and correcting motion and associated artifacts, both in literature and commercially available, are presented, and their relative merits are contrasted. Identified limitations of current methods include modeling of aperiodic and/or unpredictable motion, attaining adequate temporal resolution for motion correction in dynamic kinetic modeling acquisitions, and maintaining availability of the MR in PET/MR scans for diagnostic acquisitions. Finally, avenues for future investigation are discussed, with a focus on improvements that could improve PET image quality, and that are practical in the clinical environment. © 2017 American Association of Physicists in Medicine.

  15. [{sup 18}F]THK-5117 PET for assessing neurofibrillary pathology in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Ryuichi [Tohoku University, Division of Neuro-imaging, Institute of Development, Aging and Cancer, Sendai (Japan); Okamura, Nobuyuki [Tohoku University, Division of Neuro-imaging, Institute of Development, Aging and Cancer, Sendai (Japan); Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Furumoto, Shozo [Tohoku University, Frontier Research Institute for Interdisciplinary Science, Sendai (Japan); Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan); Furukawa, Katsutoshi; Ishiki, Aiko; Tomita, Naoki; Arai, Hiroyuki [Tohoku University, Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Sendai (Japan); Hiraoka, Kotaro; Watanuki, Shoichi; Miyake, Masayasu; Matsuda, Rin; Inami, Akie; Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai (Japan); Shidahara, Miho [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai (Japan); Tohoku University School of Medicine, Division of Medical Physics, Sendai (Japan); Ishikawa, Yoichi; Tago, Tetsuro; Funaki, Yoshihito; Iwata, Ren [Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan); Yoshikawa, Takeo; Yanai, Kazuhiko [Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Kudo, Yukitsuka [Tohoku University, Division of Neuro-imaging, Institute of Development, Aging and Cancer, Sendai (Japan); Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan)

    2015-03-20

    Visualization of the spatial distribution of neurofibrillary tangles would help in the diagnosis, prevention and treatment of dementia. The purpose of the study was to evaluate the clinical utility of [{sup 18}F]THK-5117 as a highly selective tau imaging radiotracer. We initially evaluated in vitro binding of [{sup 3}H]THK-5117 in post-mortem brain tissues from patients with Alzheimer's disease (AD). In clinical PET studies, [{sup 18}F]THK-5117 retention in eight patients with AD was compared with that in six healthy elderly controls. Ten subjects underwent an additional [{sup 11}C]PiB PET scan within 2 weeks. In post-mortem brain samples, THK-5117 bound selectively to neurofibrillary deposits, which differed from the binding target of PiB. In clinical PET studies, [{sup 18}F]THK-5117 binding in the temporal lobe clearly distinguished patients with AD from healthy elderly subjects. Compared with [{sup 11}C]PiB, [{sup 18}F]THK-5117 retention was higher in the medial temporal cortex. These findings suggest that [{sup 18}F]THK-5117 provides regional information on neurofibrillary pathology in living subjects. (orig.)

  16. Simultaneous functional imaging using fPET and fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Villien, Marjorie [CERMEP (France)

    2015-05-18

    Brain mapping of task-associated changes in metabolism with PET has been accomplished by subtracting scans acquired during two distinct static states. We have demonstrated that PET can provide truly dynamic information on cerebral energy metabolism using constant infusion of FDG and multiple stimuli in a single experiment. We demonstrate here that the functional PET (fPET-FDG) method accomplished simultaneously with fMRI, can enable the first direct comparisons in time, space and magnitude of hemodynamics and oxygen and glucose consumption. The imaging studies were performed on a 3T Tim-Trio MR scanner modified to support an MR-compatible BrainPET insert. Ten healthy subjects were included. The total PET acquisition and infusion time was 90 minutes. We did 3 blocks of right hand fingers tapping for 10 minutes at 30, 50 and 70 minutes after the beginning of the PET acquisition. ASL and BOLD imaging were acquired simultaneously during the motor paradigm. Changes in glucose utilization are easily observed as changes in the TAC slope of the PET data (FDG utilization rate) and in the derivative signal during motor stimuli in the activated voxels. PET and MRI (ASL, and BOLD) activations are largely colocalized but with very different statistical significance and temporal dynamic, especially in the ipsilateral side of the stimuli. This study demonstrated that motor activation can be measured dynamically during a single FDG PET scan. The complementary nature of fPET-FDG to fMRI capitalizes on the emerging technology of hybrid MR-PET scanners. fPET-FDG, combined with quantitative fMRI methods, allow us to simultaneously measure dynamic changes in glucose utilization and hemodynamic, addressing vital questions about neurovascular coupling.

  17. Simultaneous functional imaging using fPET and fMRI

    International Nuclear Information System (INIS)

    Villien, Marjorie

    2015-01-01

    Brain mapping of task-associated changes in metabolism with PET has been accomplished by subtracting scans acquired during two distinct static states. We have demonstrated that PET can provide truly dynamic information on cerebral energy metabolism using constant infusion of FDG and multiple stimuli in a single experiment. We demonstrate here that the functional PET (fPET-FDG) method accomplished simultaneously with fMRI, can enable the first direct comparisons in time, space and magnitude of hemodynamics and oxygen and glucose consumption. The imaging studies were performed on a 3T Tim-Trio MR scanner modified to support an MR-compatible BrainPET insert. Ten healthy subjects were included. The total PET acquisition and infusion time was 90 minutes. We did 3 blocks of right hand fingers tapping for 10 minutes at 30, 50 and 70 minutes after the beginning of the PET acquisition. ASL and BOLD imaging were acquired simultaneously during the motor paradigm. Changes in glucose utilization are easily observed as changes in the TAC slope of the PET data (FDG utilization rate) and in the derivative signal during motor stimuli in the activated voxels. PET and MRI (ASL, and BOLD) activations are largely colocalized but with very different statistical significance and temporal dynamic, especially in the ipsilateral side of the stimuli. This study demonstrated that motor activation can be measured dynamically during a single FDG PET scan. The complementary nature of fPET-FDG to fMRI capitalizes on the emerging technology of hybrid MR-PET scanners. fPET-FDG, combined with quantitative fMRI methods, allow us to simultaneously measure dynamic changes in glucose utilization and hemodynamic, addressing vital questions about neurovascular coupling.

  18. The application of 18F-FDG PET/CT for exploring the metastatic carcinoma of spleen

    International Nuclear Information System (INIS)

    Yu Dangfan; Guan Yihui; Zhao Jun; Zuo Chuantao; Lin Xiangtong; Dai Jiazhong

    2005-01-01

    Objective: To investigate the value of 18 F-fluorodeoxyglucose PET/CT for diagnosing the metastatic carcinoma of spleen. Methods: Retrospectively reviewed all the 8 cases with splenic metastases diagnosed by PET/CT, and compared the diagnostic result of PET/CT with that of CT alone, that of PET alone, that of B-ultrasonic scan and that of clinical information, all the diagnoses were refered to the confirmation by the clinical findings during follow-up. Results: All the 8 cases of splenic metastases diagnosed by PET/CT were proved by follow-up. PET revealed 6, CT revealed 4 and B-ultrasonic scan only 1. PET/CT did not miss either of the 2 splenic metastases had been diagnosed before PET/CT. Conclusions: PET/CT determined the location of the splenic metastases better than CT alone or PET alone did. PET/CT could increase the detection rate of splenic metastases. (authors)

  19. Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System

    Directory of Open Access Journals (Sweden)

    Martin L. Lassen

    2017-07-01

    Full Text Available The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic parameters as a function of PET system choice have been investigated. Five healthy volunteers underwent dynamic (R-[11C]verapamil imaging on the same day using a GE-Advance (PET-only and a Siemens Biograph mMR system (PET/MR. PET-emission data were reconstructed using a transmission-based attenuation correction (AC map (PET-only, whereas a standard MR-DIXON as well as a low-dose CT AC map was applied to PET/MR emission data. Kinetic modeling based on arterial blood sampling was performed using a 1-tissue-2-rate constant compartment model, yielding kinetic parameters (K1 and k2 and distribution volume (VT. Differences for parametric values obtained in the PET-only and the PET/MR systems were analyzed using a 2-way Analysis of Variance (ANOVA. Comparison of DIXON-based AC (PET/MR with emission data derived from the PET-only system revealed average inter-system differences of −33 ± 14% (p < 0.05 for the K1 parameter and −19 ± 9% (p < 0.05 for k2. Using a CT-based AC for PET/MR resulted in slightly lower systematic differences of −16 ± 18% for K1 and −9 ± 10% for k2. The average differences in VT were −18 ± 10% (p < 0.05 for DIXON- and −8 ± 13% for CT-based AC. Significant systematic differences were observed for kinetic parameters derived from emission data obtained from PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods.Clinical Trial Registration:www.clinicaltrialsregister.eu, identifier 2013-001724-19

  20. ViRPET--combination of virtual reality and PET brain imaging

    Science.gov (United States)

    Majewski, Stanislaw; Brefczynski-Lewis, Julie

    2017-05-23

    Various methods, systems and apparatus are provided for brain imaging during virtual reality stimulation. In one example, among others, a system for virtual ambulatory environment brain imaging includes a mobile brain imager configured to obtain positron emission tomography (PET) scans of a subject in motion, and a virtual reality (VR) system configured to provide one or more stimuli to the subject during the PET scans. In another example, a method for virtual ambulatory environment brain imaging includes providing stimulation to a subject through a virtual reality (VR) system; and obtaining a positron emission tomography (PET) scan of the subject while moving in response to the stimulation from the VR system. The mobile brain imager can be positioned on the subject with an array of imaging photodetector modules distributed about the head of the subject.