WorldWideScience

Sample records for underwater inspection robot

  1. Trajectory-tracking control of underwater inspection robot for nuclear reactor internals using Time Delay Control

    International Nuclear Information System (INIS)

    Park, Joon-Young; Cho, Byung-Hak; Lee, Jae-Kyung

    2009-01-01

    This paper addresses the trajectory control problem of an underwater inspection robot for nuclear reactor internals. From the viewpoint of control engineering, the trajectory control of the underwater robot is a difficult task due to its nonlinear dynamics, which includes various hydraulic forces such as buoyancy and hydrodynamic damping, the difference between the centres of gravity and buoyancy, and disturbances from a tether cable. To solve such problems, we applied Time Delay Control to the underwater robot. This control law has a very simple structure not requiring nonlinear plant dynamics, and was proven to be highly robust against nonlinearities, uncertainties and disturbances. We confirmed its effectiveness through experiments.

  2. Remote-Controlled Inspection Robot for Nuclear Facilities in Underwater Environment

    International Nuclear Information System (INIS)

    Yasuhiro Miwa; Syuichi Satoh; Naoya Hirose

    2002-01-01

    A remote-controlled inspection robot for nuclear facilities was developed. This is a underwater robot technology combined with inspection and flaw removal technologies. This report will describe the structure and performance of this robot. The inspection robot consists of two parts. The one is driving equipment, and the other is inspection and grinding units. It can swim in the tank, move around the tank wall, and stay on the inspection area. After that it starts inspection and flaw removal with a special grinding wheel. This technology had been developed to inspect some Radioactive Waste (RW) tanks in operating nuclear power plants. There are many RW tanks in these plants, which human workers can be hard to access because of a high level dose. This technology is too useful for inspection works of human-inaccessible areas. And also, in conventional inspection process, some worker go into the tank and set up scaffolding after full drainage and decontamination. It spends too much time for these preparations. If tank inspection and flaw removal can be performed in underwater, the outage period will be reduced. Remote-controlled process can be performed in underwater. This is the great advantage for plant owners. Since 1999 we have been applying this inspection robot to operating nuclear 11 facilities in Japan. (authors)

  3. Development and application of underwater robot vehicle for close inspection of spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J. S.; Park, B. S.; Song, T. G.; Kim, S. H.; Cho, M. W.; Ahn, S. H.; Lee, J. Y.; Oh, S. C.; Oh, W. J.; Shin, K. W.; Woo, D. H.; Kim, H. G.; Park, J. S

    1999-12-01

    The research and development efforts of the underwater robotic vehicle for inspection of spent fuels are focused on the development of an robotic vehicle which inspects spent fuels in the storage pool through remotely controlled actuation. For this purpose, a self balanced vehicle actuated by propellers is designed and fabricated, which consists of a radiation resistance camera, two illuminators, a pressure transducer and a manipulator. the algorithm for autonomous navigation is developed and its performance is tested at the swimming pool. The results of the underwater vehicle shows that the vehicle can easily navigate into the arbitrary directions while maintaining its balanced position. The camera provides a clear view of working environment by using the macro and zoom functions. The camera tilt device provides a wide field of view which is enough for monitoring the operation of manipulator. Also, the manipulator can pick up the dropped objects up to 4 kgf of weight. (author)

  4. Tracking the position of the underwater robot for nuclear reactor inspection

    International Nuclear Information System (INIS)

    Jeo, J. W.; Kim, C. H.; Seo, Y. C.; Choi, Y. S.; Kim, S. H.

    2003-01-01

    The tracking procedure of the underwater mobile robot moving and submerging ahead to nuclear reactor vessel for visual inspection, which is required to find the foreign objects such as loose parts, is described. The yellowish underwater robot body tends to present a big contrast to boron solute cold water of nuclear reactor vessel, tinged with indigo by the Cerenkov effect. In this paper, we have found and tracked the positions of underwater mobile robot using the two color information, yellow and indigo. From the horizontal and vertical profiles analysis of the color image, the blue, green, and the gray component have the inferior signal-to-noise characteristics compared to the red component. The center coordinates extraction procedures areas follows. The first step is to segment the underwater robot body to cold water with indigo background. From the RGB color components of the entire monitoring image taken with the color CCD camera, we have selected the red color component. In the selected red image, we extracted the positions of the underwater mobile robot using the following process sequences; binarization, labelling, and centroid extraction techniques. In the experiment carried out at the Youngkwang unit 5 nuclear reactor vessel, we have tracked the center positions of the underwater robot submerged near the cold leg and the hot leg way, which is fathomed to 10m deep in depth. When the position of the robot vehicle fluctuates between the previous and the current image frame due to the flickering noise and light source, installed temporally in the bottom of the reactor vessel, we adaptively adjusted the ROI window. Adding the ROI windows of the previous frame to the current frame, and then setting up the ROI window of the next image frame, we can robustly track the positions of the underwater robot and control the target position's divergence. From these facts, we can conclude that using the red component from color camera is more efficient tracking method

  5. Underwater robots

    CERN Document Server

    Antonelli, Gianluca

    2014-01-01

    This book, now at the third edition, addresses the main control aspects in underwater manipulation tasks. The mathematical model with significant impact on the control strategy is discussed. The problem of controlling a 6-degrees-of-freedoms autonomous underwater vehicle is deeply investigated and a survey of fault detection/tolerant strategies for unmanned underwater vehicles is provided. Inverse kinematics, dynamic and interaction control for underwater vehicle-manipulator systems are then discussed. The code used to generate most of the numerical simulations is made available and briefly discussed.       

  6. Robust controller with adaptation within the boundary layer: application to nuclear underwater inspection robot

    International Nuclear Information System (INIS)

    Park, Gee Yong; Yoon, Ji Sup; Hong, Dong Hee; Jeong, Jae Hoo

    2002-01-01

    In this paper, the robust control scheme with the improved control performance within the boundary layer is proposed. In the control scheme, the robust controller based on the traditional variable structure control method is modified to have the adaptation within the boundary layer. From this controller, the width of the boundary layer where the robust control input is smoothened out can be given by an appropriate value. But the improve control performance within the boundary layer can be achieved without the so-called control chattering because the role of adaptive control is to compensate for the uncovered portions of the robust control occurred from the continuous approximation within the boundary layer. Simulation tests for circular navigation of an underwater wall-ranging robot developed for inspection of wall surfaces in the research reactor, TRIGA MARK III, confirm the performance improvement

  7. Resources for Underwater Robotics Education

    Science.gov (United States)

    Wallace, Michael L.; Freitas, William M.

    2016-01-01

    4-H clubs can build and program underwater robots from raw materials. An annotated resource list for engaging youth in building underwater remotely operated vehicles (ROVs) is provided. This article is a companion piece to the Research in Brief article "Building Teen Futures with Underwater Robotics" in this issue of the "Journal of…

  8. Underwater welding using remote controlled robots. Development of remote underwater welding technology with a high power YAG laser

    International Nuclear Information System (INIS)

    Miwa, Yasuhiro; Sato, Syuuichi; Kojima, Toshio; Owaki, Katsura; Hirose, Naoya

    2002-01-01

    As components in nuclear power plant have been periodically carried out their inspection and repair to keep their integrity, on radioactive liquid wastes storage facility, because of difficulty on their inspection by human beings, some are remained without inspection, and even when capable of inspection, conversion from human works to remote operations is desired from a viewpoint of their operation efficiency upgrading. For response to these needs, some developments on a technology capable of carrying out inspection of their inside at underwater environment and repairing welding with YAG laser by means of remote operation, have been performed. Remote underwater inspection and repair technology is a combination technology of already applied underwater mobile technique (underwater inspection robot) with underwater YAG laser welding technique which is recently at actual using level. Therefore, this technology is composed of an inspection robot and a repair welding robot. And, testing results using the underwater inspection robot and welding test results using the underwater repair welding robot, were enough preferable to obtain forecasting applicable to actual apparatuses. This technology is especially effective for inspection and repair of inside of nuclear fuel cycle apparatuses and relatively high dose apparatuses, and can be thought to be applicable also to large capacity tanks, tanks dealing with harmful matters, underwater structures, and so on, in general industries. (G.K.)

  9. Underwater Robots Surface in Utah

    Science.gov (United States)

    Hurd, Randy C.; Hacking, Kip S.; Damarjian, Jennifer L.; Wright, Geoffrey A.; Truscott, Tadd

    2015-01-01

    Underwater robots (or ROVs: Remotely Operated Vehicles as they are typically called in industry) have recently become a very popular instructional STEM activity. Nationally, ROVs have been used in science and technology classrooms for several years in cities such as Seattle, San Diego, Virginia Beach, and other coastal areas. In the past two…

  10. Collective Modular Underwater Robotic System for Long-Term Autonomous Operation

    DEFF Research Database (Denmark)

    Christensen, David Johan; Andersen, Jens Christian; Blanke, Mogens

    This paper provides a brief overview of an underwater robotic system for autonomous inspection in confined offshore underwater structures. The system, which is currently in development, consist of heterogeneous modular robots able to physically dock and communicate with other robots, transport...

  11. Efficient Modelling Methodology for Reconfigurable Underwater Robots

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Cornelius; Blanke, Mogens; Schjølberg, Ingrid

    2016-01-01

    This paper considers the challenge of applying reconfigurable robots in an underwater environment. The main result presented is the development of a model for a system comprised of N, possibly heterogeneous, robots dynamically connected to each other and moving with 6 Degrees of Freedom (DOF). Th...

  12. Inspecting the inside of underwater hull

    Science.gov (United States)

    Valkovic, Vladivoj; Sudac, Davorin

    2009-05-01

    In order to demonstrate the possibility of identifying the material within ship's underwater hull, sunken ships and other objects on the sea floor tests with the 14 MeV sealed tube neutron generator incorporated inside a small submarine submerged in the test basin filled with sea water have been performed. Results obtained for inspection of diesel fuel and explosive presence behind single and double hull constructions are presented.

  13. An underwater robot controls water tanks in nuclear power plants

    International Nuclear Information System (INIS)

    Lardiere, C.

    2015-01-01

    The enterprises Newton Research Labs and IHI Southwest Technologies have developed a robot equipped with sensors to inspect the inside walls (partially) and bottom of water tanks without being obliged to empty them. The robot called 'Inspector' is made up of 4 main components: a chassis with 4 independent steering wheels, a camera video system able to provide a 360 degree view, various non-destructive testing devices such as underwater laser scanners, automated ultra-sound or Foucault current probes and an operation system for both driving the robot and controlling the testing. The Inspector robot has been used to inspect the inside bottom of an operating condensate tank at the Palo Verde nuclear station. The robot was able to check all the welds joining the bottom plates and the welds between the walls and the bottom. The robot is also able to come back to the exact place where a defect was detected during a previous inspection. (A.C.)

  14. Centralised versus Decentralised Control Reconfiguration for Collaborating Underwater Robots

    DEFF Research Database (Denmark)

    Furno, Lidia; Nielsen, Mikkel Cornelius; Blanke, Mogens

    2015-01-01

    The present paper introduces an approach to fault-tolerant reconfiguration for collaborating underwater robots. Fault-tolerant reconfiguration is obtained using the virtual actuator approach, Steen (2005). The paper investigates properties of a centralised versus a decentralised implementation an...... an underwater drill needs to be transported and positioned by three collaborating robots as part of an underwater autonomous operation....

  15. Underwater inspection training in intense radiation field

    International Nuclear Information System (INIS)

    Taniguchi, Ryoichi

    2017-01-01

    Osaka Prefecture University has a large dose cobalt 60 gamma ray source of about 2 PBq, and is engaged in technological training and human resource development. It is assumed that the decommissioning underwater operation of Fukushima Daiichi Nuclear Power Station would be the focus. The university aims at acquisition of the basic of underwater inspection work under radiation environment that is useful for the above purpose, radiation measurement under water, basic training in image measurement, and aims as well to evaluate the damage of imaging equipment due to radiation, and master practical knowledge for the use of inspection equipment under a large dose. In particular, it is valuable to train in the observation of Cherenkov light emitted from a large dose cobalt radiation source in water using a high sensitivity camera. The measurement of radiation dose distribution in water had difficulty in remote measurement due to water shielding effect. Although it took much time before, the method using high sensitivity camera is easy to sequentially perform two-dimensional measurement, and its utility value is large. Its effect on the dose distribution measurement of irregularly shaped sources is great. The contents of training includes the following: radiation source imaging in water, use of a laser rangefinder in water, dose distribution measurement in water and Cherenkov light measurement, judgment of equipment damage due to irradiation, weak radiation measurement, and measurement and decontamination of surface contamination. (A.O.)

  16. Development of Inspection Robots for Bridge Cables

    Directory of Open Access Journals (Sweden)

    Hae-Bum Yun

    2013-01-01

    Full Text Available This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented.

  17. Development of inspection robots for bridge cables.

    Science.gov (United States)

    Yun, Hae-Bum; Kim, Se-Hoon; Wu, Liuliu; Lee, Jong-Jae

    2013-01-01

    This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented.

  18. CMS cavern inspection robot

    CERN Document Server

    Ibrahim, Ibrahim

    2017-01-01

    Robots which are immune to the CMS cavern environment, wirelessly controlled: -One actuated by smart materials (Ionic Polymer-Metal Composites and Macro Fiber Composites) -One regular brushed DC rover -One servo-driven rover -Stair-climbing robot

  19. Modeling and Control of Underwater Robotic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schjoelberg, I:

    1996-12-31

    This doctoral thesis describes modeling and control of underwater vehicle-manipulator systems. The thesis also presents a model and a control scheme for a system consisting of a surface vessel connected to an underwater robotic system by means of a slender marine structure. The equations of motion of the underwater vehicle and manipulator are described and the system kinematics and properties presented. Feedback linearization technique is applied to the system and evaluated through a simulation study. Passivity-based controllers for vehicle and manipulator control are presented. Stability of the closed loop system is proved and simulation results are given. The equation of motion for lateral motion of a cable/riser system connected to a surface vessel at the top end and to a thruster at the bottom end is described and stability analysis and simulations are presented. The equations of motion in 3 degrees of freedom of the cable/riser, surface vessel and robotic system are given. Stability analysis of the total system with PD-controllers is presented. 47 refs., 32 figs., 7 tabs.

  20. Drum inspection robots: Application development

    International Nuclear Information System (INIS)

    Hazen, F.B.; Warner, R.D.

    1996-01-01

    Throughout the Department of Energy (DOE), drums containing mixed and low level stored waste are inspected, as mandated by the Resource Conservation and Recovery Act (RCRA) and other regulations. The inspections are intended to prevent leaks by finding corrosion long before the drums are breached. The DOE Office of Science and Technology (OST) has sponsored efforts towards the development of robotic drum inspectors. This emerging application for mobile and remote sensing has broad applicability for DOE and commercial waste storage areas. Three full scale robot prototypes have been under development, and another project has prototyped a novel technique to analyze robotically collected drum images. In general, the robots consist of a mobile, self-navigating base vehicle, outfitted with sensor packages so that rust and other corrosion cues can be automatically identified. They promise the potential to lower radiation dose and operator effort required, while improving diligence, consistency, and documentation

  1. A new technique for robot vision in autonomous underwater vehicles using the color shift in underwater imaging

    Science.gov (United States)

    2017-06-01

    FOR ROBOT VISION IN AUTONOMOUS UNDERWATER VEHICLES USING THE COLOR SHIFT IN UNDERWATER IMAGING by Jake A. Jones June 2017 Thesis Advisor...techniques to determine the distances from each pixel to the camera. 14. SUBJECT TERMS unmanned undersea vehicles (UUVs), autonomous ... AUTONOMOUS UNDERWATER VEHICLES USING THE COLOR SHIFT IN UNDERWATER IMAGING Jake A. Jones Lieutenant Commander, United States Navy B.S

  2. A bio-inspired electrocommunication system for small underwater robots.

    Science.gov (United States)

    Wang, Wei; Liu, Jindong; Xie, Guangming; Wen, Li; Zhang, Jianwei

    2017-03-29

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  3. ROBOTIC TANK INSPECTION END EFFECTOR

    International Nuclear Information System (INIS)

    Rachel Landry

    1999-01-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related sub-tasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these sub-tasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these sub-tasks were derived from the original intent

  4. An intelligent inspection and survey robot

    International Nuclear Information System (INIS)

    Byrd, J.; Holland, J.M.

    1994-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is a semi-autonomous robotic system intended for use in the automatic inspection of stored containers of low-level nuclear waste. This article describes the technology and how it could be used. 3 refs., 3 figs

  5. QFD-based conceptual design of an autonomous underwater robot

    Directory of Open Access Journals (Sweden)

    Thip Pasawang

    2015-12-01

    Full Text Available Autonomous underwater robots in the past few years have been designed according to the individual concepts and experiences of the researchers. To design a robot, which meets all the requirements of potential users, is an advanced work. Hence, a systematic design method that could include users’ preferences and requirements is needed. This paper presents the quality function deployment (QFD technique to design an autonomous underwater robot focusing on the Thai Navy military mission. Important user requirements extracted from the QFD method are the ability to record videos, operating at depth up to 10 meters, the ability to operate remotely with cable and safety concerns related to water leakages. Less important user requirements include beauty, using renewable energy, operating remotely with radio and ability to work during night time. The important design parameters derived from the user requirements are a low cost-controller, an autonomous control algorithm, a compass sensor and vertical gyroscope, and a depth sensor. Of low-importance ranked design parameters include the module design, use clean energy, a low noise electric motor, remote surveillance design, a pressure hull, and a beautiful hull form design. The study results show the feasibility of using QFD techniques to systematically design the autonomous underwater robot to meet user requirements. Mapping between the design and expected parameters and a conceptual drafting design of an autonomous underwater robot are also presented.

  6. Robotic inspection technology-process an toolbox

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Markus [ROSEN Group (United States). R and D Dept.

    2005-07-01

    Pipeline deterioration grows progressively with ultimate aging of pipeline systems (on-plot and cross country). This includes both, very localized corrosion as well as increasing failure probability due to fatigue cracking. Limiting regular inspecting activities to the 'scrapable' part of the pipelines only, will ultimately result into a pipeline system with questionable integrity. The confidence level in the integrity of these systems will drop below acceptance levels. Inspection of presently un-inspectable sections of the pipeline system becomes a must. This paper provides information on ROSEN's progress on the 'robotic inspection technology' project. The robotic inspection concept developed by ROSEN is based on a modular toolbox principle. This is mandatory. A universal 'all purpose' robot would not be reliable and efficient in resolving the postulated inspection task. A preparatory Quality Function Deployment (QFD) analysis is performed prior to the decision about the adequate robotic solution. This enhances the serviceability and efficiency of the provided technology. The word 'robotic' can be understood in its full meaning of Recognition - Strategy - Motion - Control. Cooperation of different individual systems with an established communication, e.g. utilizing Bluetooth technology, support the robustness of the ROSEN robotic inspection approach. Beside the navigation strategy, the inspection strategy is also part of the QFD process. Multiple inspection technologies combined on a single carrier or distributed across interacting container must be selected with a clear vision of the particular goal. (author)

  7. Development of a handling technology for underwater inspection and dismantling

    International Nuclear Information System (INIS)

    Rose, N.

    1994-01-01

    For the purpose of underwater inspection and dismantling of nuclear facilities, a prototype of a freely submersible, remote-controlled handling system was developed and tested under laboratory conditions. Particular interest was taken in the specific boundary conditions of the area of application and the methodological concept. The system was developed in three phases; in each phase, a prototype was constructed and tested. (orig.) [de

  8. Improvements in or relating to the inspection of underwater structures

    International Nuclear Information System (INIS)

    Caldecourt, L.R.; Evans, G.V.; Parsons, T.V.

    1980-01-01

    A radiation detector is described, for use in the inspection of underwater structures, which is capable of withstanding high pressures and arduous marine conditions. The ingress of water into the body of the radiation detector tube is prevented by the use of a resilient waterproof compound. Marine structures incorporating such radiation detectors are described, whereby the presence or density of flowing cement grout in the legs of an offshore platform may be determined. (U.K.)

  9. AEKF-SLAM: A New Algorithm for Robotic Underwater Navigation

    Directory of Open Access Journals (Sweden)

    Xin Yuan

    2017-05-01

    Full Text Available In this work, we focus on key topics related to underwater Simultaneous Localization and Mapping (SLAM applications. Moreover, a detailed review of major studies in the literature and our proposed solutions for addressing the problem are presented. The main goal of this paper is the enhancement of the accuracy and robustness of the SLAM-based navigation problem for underwater robotics with low computational costs. Therefore, we present a new method called AEKF-SLAM that employs an Augmented Extended Kalman Filter (AEKF-based SLAM algorithm. The AEKF-based SLAM approach stores the robot poses and map landmarks in a single state vector, while estimating the state parameters via a recursive and iterative estimation-update process. Hereby, the prediction and update state (which exist as well in the conventional EKF are complemented by a newly proposed augmentation stage. Applied to underwater robot navigation, the AEKF-SLAM has been compared with the classic and popular FastSLAM 2.0 algorithm. Concerning the dense loop mapping and line mapping experiments, it shows much better performances in map management with respect to landmark addition and removal, which avoid the long-term accumulation of errors and clutters in the created map. Additionally, the underwater robot achieves more precise and efficient self-localization and a mapping of the surrounding landmarks with much lower processing times. Altogether, the presented AEKF-SLAM method achieves reliably map revisiting, and consistent map upgrading on loop closure.

  10. Conceptual design for transmission line inspection robot

    International Nuclear Information System (INIS)

    Jalal, M F Abdul; Sahari, K S Mohamed; Anuar, A; Arshad, A D Mohd; Idris, M S

    2013-01-01

    Power transmission line is used for power distribution purposes due to their cost effective measure compared to underlying cable. However, prolonged exposure to natural weather may cause fatigue stress to the lines as well as induce material failure. Therefore, periodical line inspection is considered uttermost important as a preventive measure to avoid power outage. However, transmission line inspection has always been a high risk and expensive work. Hazardous works that may harm operator as well as routine that requires precise handling can be performed by robots. Various types of robots have been designed and developed for line inspection but only perform well on a straight and continuous line. As these robots encounter an obstacle during the inspection, then the real problem in terms of robot stability and smooth operation arises. In this paper, conceptual design and evaluation for transmission line inspection robot is presented. The inspection robot mobile robot must be able to bypass or avoid obstacles as it travels along the power transmission line.

  11. Development of underwater robot for taking off marine life

    International Nuclear Information System (INIS)

    Hirai, Harumi; Wakamatsu, Kazuhiko; Ueda, Ryohei; Edahiro, Kyosuke; Hayashi, Shunichi.

    1983-01-01

    Fouling by marine life growths in the cooling water system at seaside power generating stations is a major problem in the maintenance of a safe and efficient operation. Ingress of released growths into the condensers and coolers often jeopardizes their tube life and performance by clogging and/or tube corrosion. Many stations are obliged to remove periodically the growths manually after drying-out the system or by divers at considerable expenditure in time and money. A new remote-controlled underwater robot is developed for brushing marine life off cooling water intake channels of thermal and nuclear power generation plants. This robot consists of an underwater working unit, a power supply system, hydraulic hose take-up unit and controlling equipment. The full hydraulically powered robot, which can be used for both open and closed conduits, permits cleaning under water intake servicing condition. It drastically reduces both time and cost. (author)

  12. Reduced Attitude Control of a Robotic Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Bláha Lukáš

    2017-01-01

    Full Text Available This paper deals with stabilization and reduced attitude control of a robotic underwater vehicle. The vehicle is assumed to be able to perform a full stable rotations around all axes in underwater space, that is why the standard bottom-heavy structure is not used. The system preferably uses a vectored-thrust arrangement and is built as an overactuated system, which enables to gain a better robustness and guarantees a stable controlled motion even if some thruster suddenly stop working. Because the heading angle cannot be measured, the reduced attitude control strategy is designed and the stability of reduced state of the system is proved using perturbation method.

  13. Development of underwater YAG laser repair welding robots for tanks

    International Nuclear Information System (INIS)

    Miwa, Yasuhiro; Satoh, Syuichi; Ito, Kosuke; Kochi, Tsutomu; Kojima, Toshio; Ohwaki, Katsura; Morita, Ichiro

    1999-01-01

    A remote-controlled repair welding robot which uses YAG laser welding technology in underwater environment was developed. This is an underwater robot technology combined with a laser welding technology. This report will describe the structure and performance of this robot, and the welding test results. The repair welding robot consists of two parts. The one is driving equipment, and the other is welding unit. It can swim in the tank, move around the tank wall, and stay on the welding area. After that it starts YAG laser repair welding. The target of this technology is inner surface repair of some tanks made of austenitic stainless steel, for example RW (Radioactive Waste) tanks. A degradation by General Corrosion and so on might be occurred at inner surface of these tanks in BWR type nuclear power plants. If the damaged area is wide, repair welding works are done. Some workers go into the tank and set up scaffolding after full drainage. In many cases it spends too much time for draining water and repair welding preparation. If the repair welding works can be done in underwater environment, the outage period will be reduced. This is a great advantage. (author)

  14. Building Teen Futures with Underwater Robotics

    Science.gov (United States)

    Wallace, Michael L.; Freitas, William M.

    2016-01-01

    Preparing young Americans with science and technology skills has been on the forefront of educational reform for several years, and Extension has responded. Robotics projects have become a natural fit for 4-H clubs, with members' experiences ranging from using Lego® Mindstorms® and other "purchase and assemble" robotics kits to building…

  15. Morphologically intelligent underactuated robot for underwater hull cleaning

    DEFF Research Database (Denmark)

    Souto, Daniel; Faina, Andres; López-Peña, Fernando

    2015-01-01

    In this paper we discuss a new type of robot for underwater hull cleaning on ships with non-magnetic hulls. This robot is based on the concept that cleaning hulls regularly, without waiting to take them out of the water, will improve the efficiency of the ships and will permit a reduction...... in the use of the chemicals that are usually employed to prevent the growth of marine life on the hull and which are generally harmful to the environment. The robot described in this paper is an underactuated morphologically adapted robot that through an appropriate morphology and making use of the forces...... and constraints of the environment solves the most difficult problems that arise when moving along hulls. Some of these are changing planes, negotiating appendices, avoiding portholes, passing corners, and other elements. This greatly simplifies the control mechanisms that are required for its operation making...

  16. Synthesis of a Controller for Swarming Robots Performing Underwater Mine Countermeasures

    National Research Council Canada - National Science Library

    Tan, Yong

    2004-01-01

    This Trident Scholar project involved the synthesis of a swarm controller that is suitable for controlling movements of a group of autonomous robots performing underwater mine countermeasures (UMCM...

  17. An automated miniature robotic vehicle inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter [Centre for Ultrasonic Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  18. An automated miniature robotic vehicle inspection system

    International Nuclear Information System (INIS)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter

    2014-01-01

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software

  19. A Survey on Intermediation Architectures for Underwater Robotics

    Directory of Open Access Journals (Sweden)

    Xin Li

    2016-02-01

    Full Text Available Currently, there is a plethora of solutions regarding interconnectivity and interoperability for networked robots so that they will fulfill their purposes in a coordinated manner. In addition to that, middleware architectures are becoming increasingly popular due to the advantages that they are capable of guaranteeing (hardware abstraction, information homogenization, easy access for the applications above, etc.. However, there are still scarce contributions regarding the global state of the art in intermediation architectures for underwater robotics. As far as the area of robotics is concerned, this is a major issue that must be tackled in order to get a holistic view of the existing proposals. This challenge is addressed in this paper by studying the most compelling pieces of work for this kind of software development in the current literature. The studied works have been assessed according to their most prominent features and capabilities. Furthermore, by studying the individual pieces of work and classifying them several common weaknesses have been revealed and are highlighted. This provides a starting ground for the development of a middleware architecture for underwater robotics capable of dealing with these issues.

  20. Hydrodynamic design of an underwater hull cleaning robot and its evaluation

    Directory of Open Access Journals (Sweden)

    Man Hyung Lee

    2012-12-01

    Full Text Available An underwater hull cleaning robot can be a desirable choice for the cleaning of large ships. It can make the cleaning process safe and economical. This paper presents a hydrodynamic design of an underwater cleaning robot and its evaluation for an underwater ship hull cleaning robot. The hydrodynamic design process of the robot body is described in detail. Optimal body design process with compromises among conflicting design requirements is given. Experimental results on the hydrodynamic performance of the robot are given.

  1. Monitoring and Controlling an Underwater Robotic Arm

    Science.gov (United States)

    Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.

    2009-01-01

    The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.

  2. Robotics Vision-based Heuristic Reasoning for Underwater Target Tracking and Navigation

    OpenAIRE

    Kia, Chua; Arshad, Mohd Rizal

    2006-01-01

    This paper presents a robotics vision-based heuristic reasoning system for underwater target tracking and navigation. This system is introduced to improve the level of automation of underwater Remote Operated Vehicles (ROVs) operations. A prototype which combines computer vision with an underwater robotics system is successfully designed and developed to perform target tracking and intelligent navigation. This study focuses on developing image processing algorithms and fuzzy inference system ...

  3. Controlling Underwater Robots with Electronic Nervous Systems

    Directory of Open Access Journals (Sweden)

    Joseph Ayers

    2010-01-01

    Full Text Available We are developing robot controllers based on biomimetic design principles. The goal is to realise the adaptive capabilities of the animal models in natural environments. We report feasibility studies of a hybrid architecture that instantiates a command and coordinating level with computed discrete-time map-based (DTM neuronal networks and the central pattern generators with analogue VLSI (Very Large Scale Integration electronic neuron (aVLSI networks. DTM networks are realised using neurons based on a 1-D or 2-D Map with two additional parameters that define silent, spiking and bursting regimes. Electronic neurons (ENs based on Hindmarsh–Rose (HR dynamics can be instantiated in analogue VLSI and exhibit similar behaviour to those based on discrete components. We have constructed locomotor central pattern generators (CPGs with aVLSI networks that can be modulated to select different behaviours on the basis of selective command input. The two technologies can be fused by interfacing the signals from the DTM circuits directly to the aVLSI CPGs. Using DTMs, we have been able to simulate complex sensory fusion for rheotaxic behaviour based on both hydrodynamic and optical flow senses. We will illustrate aspects of controllers for ambulatory biomimetic robots. These studies indicate that it is feasible to fabricate an electronic nervous system controller integrating both aVLSI CPGs and layered DTM exteroceptive reflexes.

  4. Robot fish bio-inspired fishlike underwater robots

    CERN Document Server

    Li, Zheng; Youcef-Toumi, Kamal; Alvarado, Pablo

    2015-01-01

    This book provides a comprehensive coverage on robot fish including design, modeling and optimization, control, autonomous control and applications. It gathers contributions by the leading researchers in the area. Readers will find the book very useful for designing and building robot fish, not only in theory but also in practice. Moreover, the book discusses various important issues for future research and development, including design methodology, control methodology, and autonomous control strategy. This book is intended for researchers and graduate students in the fields of robotics, ocean engineering and related areas.

  5. An intelligent inspection and survey robot

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1995-01-01

    Large quantities of mixed and low-level radioactive waste contained in 55-, 85-, and 110-gallon steel drums are stored at Department of Energy (DOE) warehouses located throughout the United States. The steel drums are placed on pallets and stacked on top of one another, forming a column of drums ranging in heights of one to four drums and up to 16 feet high. The columns of drums are aligned in rows forming an aisle approximately three feet wide between the rows of drums. Tens of thousands of drums are stored in these warehouses throughout the DOE complex. ARIES (Autonomous Robotic Inspection Experimental System) is under development for the DOE to survey and inspect these drums. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a data of pertinent information about each drum

  6. An intelligent inspection and survey robot

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1995-01-01

    Large quantities of mixed and low-level radioactive waste contained in 55-, 85-, and 110-gallon steel drums are stored at Department of Energy (DOE) warehouses located throughout the United States. The steel drums are placed on pallets and stacked on top of one another, forming a column of drums ranging in heights of one to four drums and up to 16 feet high. The columns of drums are aligned in rows forming an aisle approximately three feet wide between the rows of drums. Tens of thousands of drums are stored in these warehouses throughout the DOE complex. ARIES (Autonomous Robotic Inspection Experimental System), is under development for the DOE to survey and inspect these drums. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum

  7. An intelligent inspection and survey robot

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, J.S. [Univ. of South Carolina, Columbia, SC (United States)

    1995-10-01

    Large quantities of mixed and low-level radioactive waste contained in 55-, 85-, and 110-gallon steel drums are stored at Department of Energy (DOE) warehouses located throughout the United States. The steel drums are placed on pallets and stacked on top of one another, forming a column of drums ranging in heights of one to four drums and up to 16 feet high. The columns of drums are aligned in rows forming an aisle approximately three feet wide between the rows of drums. Tens of thousands of drums are stored in these warehouses throughout the DOE complex. ARIES (Autonomous Robotic Inspection Experimental System) is under development for the DOE to survey and inspect these drums. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a data of pertinent information about each drum.

  8. An inspection of pipe by snake robot

    Directory of Open Access Journals (Sweden)

    František Trebuňa

    2016-10-01

    Full Text Available The article deals with development and application of snake robot for inspection pipes. The first step involves the introduction of a design of mechanical and electrical parts of the snake robot. Next, the analysis of the robot locomotion is introduced. For the curved pipe, potential field method is used. By this method, the system is able to generate path for the head and rear robot, linking the environment with obstacles, which are represented by the walls of the pipe. Subsequently, the solution of potential field method is used in inverse kinematic model, which respects tasks as obstacle avoidance, joint limit avoidance, and singularity avoidance. Mentioned approach is then tested on snake robot in provisional pipe with rectangular cross section. For this research, software Matlab (2013b is used as the control system in cooperation with the control system of robot, which is based on microcontrollers. By experiments, it is shown that designed robot is able to pass through straight and also curved pipe.

  9. Development of an ITER relevant inspection robot

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, L.; Bayetti, P.; Cordier, J.J.; Grisolia, C.; Hatchressian, J.C. [Association Euratom-CEA, Cadarache (France). Dept. de Recherche sur la Fusion Controlee; Friconneau, J.P.; Keller, D.; Perrot, Y. [CEA-LIST Robotics and Interactive Systems Unit, Fontenay aux Roses (France)

    2007-07-01

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In particular, in vessel inspection operations without loss of conditioning could be very useful. Within this framework, the aim of the project called AIA (Articulated Inspection Arm) is to demonstrate the feasibility of a multi-purpose in-vessel Remote Handling inspection system using a long reach, limited payload carrier (up to 10 kg). It is composed of 5 segments with 11 degrees of freedom and a total range of 8 m. The project is currently developed by the CEA within the European workprogramme. Its first in situ tests are planned this summer on the Tore Supra tokamak at Cadarache (France). They will validate chosen concepts for operations under ITER relevant vacuum and temperature conditions. After qualification, the arm will constitute a promising tool for generic application. Several processes are already considered for ITER maintenance and will be demonstrated on the AIA robot carrier: - The first embedded process is the viewing system. It is currently being manufactured and will allow for close visual inspection of the complex Plasma Facing Components (limiters, neutralisers, RF antennae, diagnostic windows, etc.). - In situ localisation of leakage based on helium sniffer is also studied to improve maintenance operations. - Finally the laser ablation system for PFC detritiation, also developed in CEA laboratories, is being fitted to be implanted into the robot and put into operation in Tore Supra. This paper deals with the integration of the robot in the Tore Supra tokamak and the advances in the development of the listed processes. It also introduces the current test campaign aiming to qualify the robot performance and reliability under vacuum and temperature conditions. (orig.)

  10. Development of an ITER relevant inspection robot

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Laurent [Association Euratom-CEA, Departement de Recherche sur la Fusion Controlee, CE Cadarache 13108 (France)], E-mail: laurent.gargiulo@cea.fr; Bayetti, Pascal; Bruno, Vincent; Cordier, Jean-Jacques [Association Euratom-CEA, Departement de Recherche sur la Fusion Controlee, CE Cadarache 13108 (France); Friconneau, Jean-Pierre [CEA-LIST Robotics and Interactive Systems Unit, CE Fontenay Aux Roses (France); Grisolia, Christian; Hatchressian, Jean-Claude; Houry, Michael [Association Euratom-CEA, Departement de Recherche sur la Fusion Controlee, CE Cadarache 13108 (France); Keller, Delphine; Perrot, Yann [CEA-LIST Robotics and Interactive Systems Unit, CE Fontenay Aux Roses (France)

    2008-12-15

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In particular, in-vessel inspection operations without loss of conditioning will be mandatory. In this context, an Articulated Inspection Arm (AIA) is currently developed by the CEA within the European work programme framework, which aims at demonstrating the feasibility of a multi-purpose in-vessel Remote Handling inspection system using a long reach, limited payload carrier (up to 10 kg). It is composed of 5 segments with 8 degrees of freedom and a total range of 8 m. The first in situ tests will take place by the end of 2007 on the Tore Supra Tokamak at Cadarache (France). They will validate concepts for operations under ITER relevant vacuum and temperature conditions. After qualification, the arm will constitute a promising tool for various applications. Several processes are already considered for ITER maintenance and will be demonstrated on the AIA robot carrier: - The first embedded process is the viewing system. It is already manufactured and will allow close visual inspection of the complex Plasma Facing Components (PFC) (limiters, neutralisers, RF antenna, diagnostic windows, etc.). - In situ localisation of water leakage based on a helium sniffing system is also being studied to improve and facilitate maintenance operations. - Finally a laser ablation system for PFC detritiation, developed in CEA laboratories, is being fitted to be implemented on the robot for future operation in Tore Supra. This paper deals with the integration of the robot into Tore Supra and the progress in the development of the processes listed above. It also describes the current test campaign aiming to qualify the robot performance and reliability under vacuum and temperature conditions.

  11. Development of an ITER relevant inspection robot

    International Nuclear Information System (INIS)

    Gargiulo, L.; Bayetti, P.; Cordier, J.J.; Grisolia, C.; Hatchressian, J.C.

    2007-01-01

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In particular, in vessel inspection operations without loss of conditioning could be very useful. Within this framework, the aim of the project called AIA (Articulated Inspection Arm) is to demonstrate the feasibility of a multi-purpose in-vessel Remote Handling inspection system using a long reach, limited payload carrier (up to 10 kg). It is composed of 5 segments with 11 degrees of freedom and a total range of 8 m. The project is currently developed by the CEA within the European workprogramme. Its first in situ tests are planned this summer on the Tore Supra tokamak at Cadarache (France). They will validate chosen concepts for operations under ITER relevant vacuum and temperature conditions. After qualification, the arm will constitute a promising tool for generic application. Several processes are already considered for ITER maintenance and will be demonstrated on the AIA robot carrier: - The first embedded process is the viewing system. It is currently being manufactured and will allow for close visual inspection of the complex Plasma Facing Components (limiters, neutralisers, RF antennae, diagnostic windows, etc.). - In situ localisation of leakage based on helium sniffer is also studied to improve maintenance operations. - Finally the laser ablation system for PFC detritiation, also developed in CEA laboratories, is being fitted to be implanted into the robot and put into operation in Tore Supra. This paper deals with the integration of the robot in the Tore Supra tokamak and the advances in the development of the listed processes. It also introduces the current test campaign aiming to qualify the robot performance and reliability under vacuum and temperature conditions. (orig.)

  12. Development of an ITER relevant inspection robot

    International Nuclear Information System (INIS)

    Gargiulo, Laurent; Bayetti, Pascal; Bruno, Vincent; Cordier, Jean-Jacques; Friconneau, Jean-Pierre; Grisolia, Christian; Hatchressian, Jean-Claude; Houry, Michael; Keller, Delphine; Perrot, Yann

    2008-01-01

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In particular, in-vessel inspection operations without loss of conditioning will be mandatory. In this context, an Articulated Inspection Arm (AIA) is currently developed by the CEA within the European work programme framework, which aims at demonstrating the feasibility of a multi-purpose in-vessel Remote Handling inspection system using a long reach, limited payload carrier (up to 10 kg). It is composed of 5 segments with 8 degrees of freedom and a total range of 8 m. The first in situ tests will take place by the end of 2007 on the Tore Supra Tokamak at Cadarache (France). They will validate concepts for operations under ITER relevant vacuum and temperature conditions. After qualification, the arm will constitute a promising tool for various applications. Several processes are already considered for ITER maintenance and will be demonstrated on the AIA robot carrier: - The first embedded process is the viewing system. It is already manufactured and will allow close visual inspection of the complex Plasma Facing Components (PFC) (limiters, neutralisers, RF antenna, diagnostic windows, etc.). - In situ localisation of water leakage based on a helium sniffing system is also being studied to improve and facilitate maintenance operations. - Finally a laser ablation system for PFC detritiation, developed in CEA laboratories, is being fitted to be implemented on the robot for future operation in Tore Supra. This paper deals with the integration of the robot into Tore Supra and the progress in the development of the processes listed above. It also describes the current test campaign aiming to qualify the robot performance and reliability under vacuum and temperature conditions

  13. Robotic fabrication and inspection for power plants

    International Nuclear Information System (INIS)

    Date, Ranjit

    2002-01-01

    The usage of Robotic Automation is now an integral part of the modern manufacturing systems. Applications in nuclear power plants is no exception. As a matter of fact, as a result of the hazards of radiations for the human workers makes automation of the on-site working highly desirable. This presentation will focus on the broad benefits by use of automation in Power plants. Various processes and technologies for robotic applications in fabrication, maintenance and inspection will be highlighted. The specific technology features for use in nuclear environments will be highlighted

  14. Underwater inspection and maintenance programs within nuclear and non-nuclear related operating systems

    International Nuclear Information System (INIS)

    Vallance, C.; Goulet, B.; Black, S.

    2008-01-01

    The increasing age of the nuclear and non-nuclear power generating facilities requires extended inspection, repair and maintenance (IRM) activities to prolong the operation of these facilities past their original design life. Commercial divers are often utilized to perform critical work at nuclear power plants, fuel reprocessing plants, waste storage facilities, and research institutions. These various tasks include inspection, welding, mechanical modifications and repairs, coating applications, and work associated with plant decommissioning. Programs may take place in areas such as the reactor vessel, equipment pool, spent fuel pool, and suppression chamber using manned intervention and remotely operated vehicles. Some of these tasks can also be conducted using remotely operated vehicles (ROV's). Although specialist robots are not uncommon to the nuclear industry, the use of free-swimming vehicle's and remote systems for the inspection of underwater assets has increased due to improvements of the supporting technologies and information requirements needed to extend the life of these facilities. This paper will provide an overview of the procedures and equipment necessary to perform unique work tasks using manned and unmanned techniques. (author)

  15. An Underwater Image Enhancement Algorithm for Environment Recognition and Robot Navigation

    Directory of Open Access Journals (Sweden)

    Kun Xie

    2018-03-01

    Full Text Available There are many tasks that require clear and easily recognizable images in the field of underwater robotics and marine science, such as underwater target detection and identification of robot navigation and obstacle avoidance. However, water turbidity makes the underwater image quality too low to recognize. This paper proposes the use of the dark channel prior model for underwater environment recognition, in which underwater reflection models are used to obtain enhanced images. The proposed approach achieves very good performance and multi-scene robustness by combining the dark channel prior model with the underwater diffuse model. The experimental results are given to show the effectiveness of the dark channel prior model in underwater scenarios.

  16. Robotics Inspection Vehicle for Advanced Storages

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Emilio; Renaldi, Graziano; Puig, David; Franzetti, Michele; Correcher, Carlos [European Commission, Ispra (Italy). Inst. for the Protection and Security of the Citizen

    2003-05-01

    After the dismantling of nuclear weapons and the probable release of large quantities of weapon graded materials under international verification regimes, there will be a wide interest in unmanned, highly automated and secure storage areas. In such circumstances, robotics technologies can provide an effective answer to the problem of securing, manipulating and inventorying all stored materials. In view of this future application JRC's NPNS started the development and construction of an advanced robotics prototype and demonstration system, named Robotics Inspection Vehicle (RIV), for remote inspection, surveillance and remote handling in those areas. The system was designed to meet requirements of reliability, security, high availability, robustness against radiation effects, self-maintainability (i.e., auto-repair capability), and easy installation. Due to its innovative holonomic design, RIV is a highly maneuverable and agile platform able to move in any direction, including sideways. The platform carries on-board a five degree of freedom manipulator arm. The high maneuverability and operation modes take into account the needs for accessing in the most easy way materials in the storage area. The platform is prepared to operate in one of three modes: i) manual tele-operation, ii) semiautonomous and iii) fully autonomous. The paper describes RIV's main design features, and details its GENERIS based control software [JRC's software architecture for robotics] and embedded sensors (i.e., 3D laser range, transponder antenna, ultra-sound, vision-based robot guidance, force-torque sensors, etc.). RIV was designed to incorporate several JRC innovative surveillance and inspection technologies and reveals that the current state of technology is mature to effectively provide a solution to novel storage solutions. The system is available for demonstration at JRC's Rialto Laboratory.

  17. Coordinated Formation Control of Multiple Autonomous Underwater Vehicles for Pipeline Inspection

    Directory of Open Access Journals (Sweden)

    Xianbo Xiang

    2010-02-01

    Full Text Available This paper addresses the control problem of inspecting underwater pipeline on the seabed, with coordinated multiple autonomous underwater vehicles in a formation. Based on the leader-follower strategy, the dedicated nonlinear path following controller is rigorously built on Lyapunov-based design, driving a fleet of vehicles onto assigned parallel paths elevated and offset from the underwater pipeline, while keeping a triangle formation to capture complete 3D images for inspection. Due to the spatial-temporal decoupling characteristics of individual path following controller, the velocities of the followers can be adapted in the coordinated control level, only relying on the information of generalized along-path length from the leader, in order to build the desired formation. Thus, the communication variable broadcast from the leader is kept to a minimum, which is feasible under the severely constraints of acoustic communication bandwidth. Simulation results illustrate the efficiency of coordinated formation controller proposed for underwater pipeline inspection.

  18. Possible roles of remotely operated underwater vehicles (ROV and robotics in mariculture of the future

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1991-10-01

    Full Text Available The paper surveys some possible future trends in mariculture technology emphasizing new principles for controlling animal motion. Against this background possible applications of remotely operated underwater vehicles and robotics are reviewed.

  19. The SWAMI inspection robot: Fernald site requirements

    International Nuclear Information System (INIS)

    Hazen, F.B.

    1993-01-01

    The purpose of this document is to introduce and describe the Stored Waste Autonomous Mobile Inspector (SWAMI) robot project and to identify issues that will need to be addressed prior to its field demonstration at Fernald in mid-1995. SWAMI is a mobile robotic vehicle that will perform mandated weekly inspections of waste containers. Fernald has a large inventory of these containers and a need to protect workers from radiation hazards while enhancing the efficiency and effectiveness of the inspections. Fernald's role in this project is to supply the demonstration site and make all necessary preparations. This includes identification of the test areas and plans, and identification and compliance to Federal, State, DOE, and Site regulations on system safety and quality. In addition, Fernald will link SWAMI output images to off-line mass data storage, and also to an on-line ORACLE database. The authors shall initiate a dialog with State and Federal regulators towards the near term goal of acceptance of the SWAMI test plan and a longer term goal of acceptance of SWAMI as a supplement and improvement to present mandated RCRA inspections

  20. Development of an amphibious robot for visual inspection of APR1400 Npp IRWST strainer

    International Nuclear Information System (INIS)

    Jang, You Hyun; Kim, Jong Seog

    2014-01-01

    cameras was a new approach for the exact and stable position control on the IRWST strainer, unlike a traditional robot for underwater facility inspection. The developed robot will be practically used to enhance the efficiency and reliability of the inspection of nuclear power plant components.

  1. Development of an amphibious robot for visual inspection of APR1400 Npp IRWST strainer

    Energy Technology Data Exchange (ETDEWEB)

    Jang, You Hyun; Kim, Jong Seog [Korea Hydro Nuclear Power Central Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    cameras was a new approach for the exact and stable position control on the IRWST strainer, unlike a traditional robot for underwater facility inspection. The developed robot will be practically used to enhance the efficiency and reliability of the inspection of nuclear power plant components.

  2. DEVELOPMENT OF AN AMPHIBIOUS ROBOT FOR VISUAL INSPECTION OF APR1400 NPP IRWST STRAINER ASSEMBLY

    Directory of Open Access Journals (Sweden)

    YOU HYUN JANG

    2014-06-01

    installing sole cameras was a new approach for the exact and stable position control on the IRWST strainer, unlike a traditional robot for underwater facility inspection. The developed robot will be practically used to enhance the efficiency and reliability of the inspection of nuclear power plant components.

  3. Development of a remote inspection robot for high pressure structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae C.; Kim, Jae H.; Choi, Yu R.; Moon, Soon S

    1999-10-01

    The high pressure structures in industrial plants must be periodically inspected for ensure their safety. Currently, the examination of them is manually performed by human inspectors, and there are many restrictions to examine the large containers which enclose dangerous chemicals or radioactive materials. We developed a remotely operated robot to examine these structures using recent mobile robot and computer technologies. Our robot has two magnetic caterpillars that make the robot can adhere to the structures made of steel like materials. The robot moves to the position for examination, and scans that position using ultrasonic probes equipped on it's arm, and transmits the result to the inspector according to his/her commands. Without building any auxiliary structures the robot can inspect the places where manual inspection can't reach. Therefore the robot can make shortening the inspection time as well as preventing the inspector from an accident. (author)

  4. Development of a remote inspection robot for high pressure structures

    International Nuclear Information System (INIS)

    Lee, Jae C.; Kim, Jae H.; Choi, Yu R.; Moon, Soon S.

    1999-10-01

    The high pressure structures in industrial plants must be periodically inspected for ensure their safety. Currently, the examination of them is manually performed by human inspectors, and there are many restrictions to examine the large containers which enclose dangerous chemicals or radioactive materials. We developed a remotely operated robot to examine these structures using recent mobile robot and computer technologies. Our robot has two magnetic caterpillars that make the robot can adhere to the structures made of steel like materials. The robot moves to the position for examination, and scans that position using ultrasonic probes equipped on it's arm, and transmits the result to the inspector according to his/her commands. Without building any auxiliary structures the robot can inspect the places where manual inspection can't reach. Therefore the robot can make shortening the inspection time as well as preventing the inspector from an accident. (author)

  5. Development of wall ranging radiation inspection robot

    International Nuclear Information System (INIS)

    Lee, B. J.; Yoon, J. S.; Park, Y. S.; Hong, D. H.; Oh, S. C.; Jung, J. H.; Chae, K. S.

    1999-03-01

    With the aging of nation's nuclear facilities, the target of this project is to develop an under water wall ranging robotic vehicle which inspects the contamination level of the research reactor (TRIGA MARK III) as a preliminary process to dismantling. The developed vehicle is driven by five thrusters and consists of small sized control boards, and absolute position detector, and a radiation detector. Also, the algorithm for autonomous navigation is developed and its performance is tested through under water experiments. Also, the test result at the research reactor shows that the vehicle firmly attached the wall while measuring the contamination level of the wall

  6. Development of wall ranging radiation inspection robot

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. J.; Yoon, J. S.; Park, Y. S.; Hong, D. H.; Oh, S. C.; Jung, J. H.; Chae, K. S

    1999-03-01

    With the aging of nation's nuclear facilities, the target of this project is to develop an under water wall ranging robotic vehicle which inspects the contamination level of the research reactor (TRIGA MARK III) as a preliminary process to dismantling. The developed vehicle is driven by five thrusters and consists of small sized control boards, and absolute position detector, and a radiation detector. Also, the algorithm for autonomous navigation is developed and its performance is tested through under water experiments. Also, the test result at the research reactor shows that the vehicle firmly attached the wall while measuring the contamination level of the wall.

  7. Robotic inspection of nuclear waste storage facilities

    International Nuclear Information System (INIS)

    Fulbright, R.; Stephens, L.M.

    1995-01-01

    The University of South Carolina and the Westinghouse Savannah River Company have developed a prototype mobile robot designed to perform autonomous inspection of nuclear waste storage facilities. The Stored Waste Autonomous Mobile Inspector (SWAMI) navigates and inspects rows of nuclear waste storage drums, in isles as narrow as 34 inches with drums stacked three high on each side. SWAMI reads drum barcodes, captures drum images, and monitors floor-level radiation levels. The topics covered in this article reporting on SWAMI include the following: overall system design; typical mission scenario; barcode reader subsystem; video subsystem; radiation monitoring subsystem; position determination subsystem; onboard control system hardware; software development environment; GENISAS, a C++ library; MOSAS, an automatic code generating tool. 10 figs

  8. Short-Range Sensor for Underwater Robot Navigation using Line-lasers and Vision

    DEFF Research Database (Denmark)

    Hansen, Peter Nicholas; Nielsen, Mikkel Cornelius; Christensen, David Johan

    2015-01-01

    This paper investigates a minimalistic laser-based range sensor, used for underwater inspection by Autonomous Underwater Vehicles (AUV). This range detection system system comprise two lasers projecting vertical lines, parallel to a camera’s viewing axis, into the environment. Using both lasers...

  9. Development of bus duct inspection robot at nuclear power plant

    International Nuclear Information System (INIS)

    Hamada, Mamoru; Hoshi, Teruaki; Komura, Yoshinari

    2017-01-01

    Under the present situation, nuclear power plant has some places which are inspected with difficulty or not inspected due to narrowness or physical restriction, when carrying out periodical inspection. The subject of our research and development is to improve the accuracy of inspection and also to save labor (liberation from distress work of the worker) by applying a robot technology to the periodical inspection of the nuclear power plant. As a specific example, we report that developed robot can inspect inside the narrow space of Isolated Phase Bus ducts, which connect between a turbine generator and the main transformer. (author)

  10. An intelligent inspection and survey robot

    International Nuclear Information System (INIS)

    Byrd, J.; Holland, J.M.

    1995-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is a semi-autonomous robotic system intended for use in the automatic inspection of stored containers of low level nuclear waste. The project is being performed by a team under the SCUREF (South Carolina University Research and Education Foundation) comprised of the University of South Carolina, and Clemson University, and their industrial partner Cybermotion Inc., with funding from METC, Morgantown, WV. The ARIES program is unusual in the level of cooperation between the universities and Cybermotion. By maintaining daily communications via telephone and E-Mall, participating in frequent meetings with each other and the end users, and by developing an open flow of (sometimes sensitive) technical information, the team has been able to build on a very broad base of intellectual strengths and existing technology without wasteful duplication. This base includes all of the navigation and control software and hardware developed by Cybermotion over nearly a decade and the deep technology resources of the university partners. It is anticipated that the result will be a technically advanced system that is much closer to a deployable configuration than is typical for this stage of research. In this decade of shrinking budgets, such relationships can provide a crucial advantage for all participants

  11. A study on in-pipe inspection mobile robots, 3

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Hosokai, Hidemi; Uemura, Masahiro.

    1990-01-01

    This paper deals with inspection path planning for in-pipe inspection mobile robots which have the capability of moving through complicated pipeline networks. It is imperative that the robot systems have an inspection path planning system for such networks for their reasonable and rational operation, controlled by themselves or by the operators. The planning mainly requires two projects: the selection of the place to put the robot in or out, and the generation of the paths in the networks. This system provides the for complicated problems with plural inspection points using a basic strategy of systematically producing patterns and dividing partial problems of simple searches based on rules. (author)

  12. Hydro-Quebec inspection robot RIT-LRG

    International Nuclear Information System (INIS)

    Champagne, D.; Rinfret, F.; Bourgault, Y.G.

    2008-01-01

    Hydro Quebec's Research Centre (IREQ), has developed a variety of inspection tools over the years. The Metar bracelet for the feeder tubes, the REC robot for the heat exchanger and the RIT robot for the Delayed Neutron system just to name a few. This paper discusses with the successful deployment of the Camera Probe Positioning robot for Visual Inspection of the sample lines of the delayed neutron system of CANDU power plants. This RIT robot has three possible configurations (Face, Cabinet and LRG configurations) and has remained a prototype version although it has been used over the years in many outage inspection campaigns since 1997. The main advantages of using this robot are: the significant reduction in radiation exposure, the high quality of the data collected and the archiving of inspection data for further analysis and reports. In 2007, Gentilly-2 (G-2), decided to industrialize the LRG configuration of the RIT robot and to designate it the standard tool for the inspection of the Delayed Neutron System. An improved RIT-LRG robot, along with its control box and command station was developed. The software had to be rewritten requiring an ergonomics analysis of user tasks, work station and interface display. These issues included both physical and cognitive requirements aspects. The two principal topics of this paper will be on the Inspection Robot Technology developed and highlights of the 2008 outage inspection campaign. (author)

  13. Hydro-Quebec inspection robot RIT-LRG

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, D., E-mail: champagne.dominique@ireq.ca [Inst. de recherche d' Hydro-Quebec, Quebec (Canada); Rinfret, F.; Bourgault, Y.G., E-mail: rinfret.francois@hydro.qc.ca, E-mail: bourgault.yves.g@hydro.qc.ca [Hydro-Quebec, Becancour, Quebec (Canada)

    2008-07-01

    Hydro Quebec's Research Centre (IREQ), has developed a variety of inspection tools over the years. The Metar bracelet for the feeder tubes, the REC robot for the heat exchanger and the RIT robot for the Delayed Neutron system just to name a few. This paper discusses with the successful deployment of the Camera Probe Positioning robot for Visual Inspection of the sample lines of the delayed neutron system of CANDU power plants. This RIT robot has three possible configurations (Face, Cabinet and LRG configurations) and has remained a prototype version although it has been used over the years in many outage inspection campaigns since 1997. The main advantages of using this robot are: the significant reduction in radiation exposure, the high quality of the data collected and the archiving of inspection data for further analysis and reports. In 2007, Gentilly-2 (G-2), decided to industrialize the LRG configuration of the RIT robot and to designate it the standard tool for the inspection of the Delayed Neutron System. An improved RIT-LRG robot, along with its control box and command station was developed. The software had to be rewritten requiring an ergonomics analysis of user tasks, work station and interface display. These issues included both physical and cognitive requirements aspects. The two principal topics of this paper will be on the Inspection Robot Technology developed and highlights of the 2008 outage inspection campaign. (author)

  14. Robot technology in remote inspection and repair

    International Nuclear Information System (INIS)

    Lowe, D.B.

    1981-01-01

    The development of remotely controlled equipment for use in a hostile (eg radioactive) environment is reviewed. Inspection and repair work in the core vessel of a nuclear reactor is a particular example of the need for robot devices. Devices with the ability to reach out after entering the interior of the reactor and perform specified operations some distance from the entry axis are needed. It is also necessary to design with tool retrieval emergencies in mind. Should an accident or malfunction prevent withdrawal of the equipment by normal means there must be a fail-safe mechanism of collapse and withdrawal. Visual contact with the device, usually by closed circuit TV is also necessary. Recent developments are described. These include stereoscopic imaging, a flexible arm of increased reach, dexterity and strength, and a computerized robotic arm with seven degrees of freedom to be deployed by the flexible arm. Microprocessors are used to analyse information and command functions. A current solution of the need for precise positioning and tracking of a NDT head round a reactor core is illustrated. (U.K.)

  15. Low-level stored waste inspection using mobile robots

    International Nuclear Information System (INIS)

    Byrd, J.S.; Pettus, R.O.

    1996-01-01

    A mobile robot inspection system, ARIES (Autonomous Robotic Inspection Experimental System), has been developed for the U.S. Department of Energy to replace human inspectors in the routine, regulated inspection of radioactive waste stored in drums. The robot will roam the three-foot aisles of drums, stacked four high, making decisions about the surface condition of the drums and maintaining a database of information about each drum. A distributed system of onboard and offboard computers will provide versatile, friendly control of the inspection process. This mobile robot system, based on a commercial mobile platform, will improve the quality of inspection, generate required reports, and relieve human operators from low-level radioactive exposure. This paper describes and discusses primarily the computer and control processes for the system

  16. UWSim, an underwater robotic simulator on the cloud as educational tool

    Directory of Open Access Journals (Sweden)

    Javier Pérez

    2017-12-01

    Full Text Available Due to the introduction of robotic applications in the modern society, such as service robots or self-driving cars, it is possible to use this trend as motivating factor in the learning process of robotics. Several possibilities about how to use this motivation to increase learning rate are analysed, focusing on underwater robotic simulators. Moreover, a cloud learning environment able to evaluate the students with a robotic simulator is proposed as key element of the system. These kinds of tools can be used with just an Internet-capable system through a web browser, reaching a virtually unlimited amount of resources. The implemented features are used in a underwater pipe following application, creating a comparison environment on the cloud that immerse students in a competition to reach the best possible result. Finally, a first experience in a real educational environment using the proposed tool is detailed, demonstrating the viability and suitability of the proposed tool.

  17. Automatic stabilization of underwater robots in the time manipulation operations

    International Nuclear Information System (INIS)

    Filaretov, V.F.; Koval, E.V.

    1994-01-01

    When carrying out underwater technical works by means of an underwater vehicles having a manipulator it is desirable to perform manipulation operations in the regime of the underwater vehicle hovering above the object without durable and complicated operations up its rigid fixation. Underwater vehicle stabilization is achieved by compensation all the effects on the vehicle caused by the operating manipulator in water medium. This automatic stabilization is formed due to input of the required control signals into corresponding vehicle propellers proportional to calculated components of the generalized forces and moments. The propellers should form stops reacting against effects

  18. Particle Filter for Fault Diagnosis and Robust Navigation of Underwater Robot

    DEFF Research Database (Denmark)

    Zhao, Bo; Skjetne, Roger; Blanke, Mogens

    2014-01-01

    A particle filter based robust navigation with fault diagnosis is designed for an underwater robot, where 10 failure modes of sensors and thrusters are considered. The nominal underwater robot and its anomaly are described by a switchingmode hidden Markov model. By extensively running a particle...... filter on the model, the fault diagnosis and robust navigation are achieved. Closed-loop full-scale experimental results show that the proposed method is robust, can diagnose faults effectively, and can provide good state estimation even in cases where multiple faults occur. Comparing with other methods...

  19. Validation of multi-body modelling methodology for reconfigurable underwater robots

    DEFF Research Database (Denmark)

    Nielsen, M.C.; Eidsvik, O. A.; Blanke, Mogens

    2016-01-01

    This paper investigates the problem of employing reconfigurable robots in an underwater setting. The main results presented is the experimental validation of a modelling methodology for a system consisting of N dynamically connected robots with heterogeneous dynamics. Two distinct types...... of experiments are performed, a series of hydrostatic free-decay tests and a series of open-loop trajectory tests. The results are compared to a simulation based on the modelling methodology. The modelling methodology shows promising results for usage with systems composed of reconfigurable underwater modules...

  20. Remote radioactive waste drum inspection with an autonomous mobile robot

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Ward, C.R.; Wagner, D.G.

    1992-01-01

    An autonomous mobile robot is being developed to perform remote surveillance and inspection task on large numbers of stored radioactive waste drums. The robot will be self guided through narrow storage aisles and record the visual image of each viewable drum for subsequent off line analysis and archiving. The system will remove the personnel from potential exposure to radiation, perform the require inspections, and improve the ability to assess the long term trends in drum conditions

  1. Dismantling of JPDR reactor internals by underwater plasma arc cutting technique using robotic manipulator

    International Nuclear Information System (INIS)

    Yokota, M.

    1988-01-01

    The actual dismantling of JPDR started on December 4, 1986. As of now, equipment that surrounds the reactor has mostly been removed to provide working space in reactor containment prior to the dismantling of reactor internals. Some reactor internals have been successfully dismantled using the underwater arc cutting system with a robotic manipulator during the period of January to March 1988. The cutting system is composed of an underwater plasma arc cutting device and a robotic manipulator. The cut off reactor internals were core spray block, feedwater sparger and stabilizers for fuel upper grid tube. The plasma arc cutting device was developed to dismantle the reactor internals underwater. It mainly consists of a plasma torch, power and gas supply systems for the torch, and by-product treatment systems. It has the cutting ability of 130 mm thickness stainless steel underwater. The robotic manipulator has seven degrees of freedom of movement, enabling it to move in almost the same way as the arm of a human being. The arm of the robot is mounted on a supporting device which is suspended by three chains from the support structure set on a service floor. A plasma torch is griped by the robotic hand; its position to the structure to be cut is controlled from a remote control room, about 100 meters outside the reactor containment

  2. Robots in pipe and vessel inspection: past, present, and future

    International Nuclear Information System (INIS)

    Mueller, T.A.; Tyndall, J.F.

    1984-01-01

    Over the past several decades, remotely operated scanners have been employed to inspect piping and pressure vessels. These devices in their early forms were manually controlled manipulators functioning as mere extensions of the operator. With the addition of limit sensing, speed control, and positional feedback and display, the early manipulators became primitive robots. By adding computer controls with their degree of intelligence to the devices, they achieved the status of robots. Future applications of vision, adaptive control, proximity sensing, and pattern recognition will bring these devices to a level of intelligence that will make automated robotic inspection of pipes and pressure vessels a true reality

  3. Robotics Vision-based Heuristic Reasoning for Underwater Target Tracking and Navigation

    Directory of Open Access Journals (Sweden)

    Chua Kia

    2005-09-01

    Full Text Available This paper presents a robotics vision-based heuristic reasoning system for underwater target tracking and navigation. This system is introduced to improve the level of automation of underwater Remote Operated Vehicles (ROVs operations. A prototype which combines computer vision with an underwater robotics system is successfully designed and developed to perform target tracking and intelligent navigation. This study focuses on developing image processing algorithms and fuzzy inference system for the analysis of the terrain. The vision system developed is capable of interpreting underwater scene by extracting subjective uncertainties of the object of interest. Subjective uncertainties are further processed as multiple inputs of a fuzzy inference system that is capable of making crisp decisions concerning where to navigate. The important part of the image analysis is morphological filtering. The applications focus on binary images with the extension of gray-level concepts. An open-loop fuzzy control system is developed for classifying the traverse of terrain. The great achievement is the system's capability to recognize and perform target tracking of the object of interest (pipeline in perspective view based on perceived condition. The effectiveness of this approach is demonstrated by computer and prototype simulations. This work is originated from the desire to develop robotics vision system with the ability to mimic the human expert's judgement and reasoning when maneuvering ROV in the traverse of the underwater terrain.

  4. Robotics Vision-based Heuristic Reasoning for Underwater Target Tracking and Navigation

    Directory of Open Access Journals (Sweden)

    Chua Kia

    2008-11-01

    Full Text Available This paper presents a robotics vision-based heuristic reasoning system for underwater target tracking and navigation. This system is introduced to improve the level of automation of underwater Remote Operated Vehicles (ROVs operations. A prototype which combines computer vision with an underwater robotics system is successfully designed and developed to perform target tracking and intelligent navigation. This study focuses on developing image processing algorithms and fuzzy inference system for the analysis of the terrain. The vision system developed is capable of interpreting underwater scene by extracting subjective uncertainties of the object of interest. Subjective uncertainties are further processed as multiple inputs of a fuzzy inference system that is capable of making crisp decisions concerning where to navigate. The important part of the image analysis is morphological filtering. The applications focus on binary images with the extension of gray-level concepts. An open-loop fuzzy control system is developed for classifying the traverse of terrain. The great achievement is the system's capability to recognize and perform target tracking of the object of interest (pipeline in perspective view based on perceived condition. The effectiveness of this approach is demonstrated by computer and prototype simulations. This work is originated from the desire to develop robotics vision system with the ability to mimic the human expert's judgement and reasoning when maneuvering ROV in the traverse of the underwater terrain.

  5. Research on the inspection robot for cable tunnel

    Science.gov (United States)

    Xin, Shihao

    2017-03-01

    Robot by mechanical obstacle, double end communication, remote control and monitoring software components. The mechanical obstacle part mainly uses the tracked mobile robot mechanism, in order to facilitate the design and installation of the robot, the other auxiliary swing arm; double side communication part used a combination of communication wire communication with wireless communication, great improve the communication range of the robot. When the robot is controlled by far detection range, using wired communication control, on the other hand, using wireless communication; remote control part mainly completes the inspection robot walking, navigation, positioning and identification of cloud platform control. In order to improve the reliability of its operation, the preliminary selection of IPC as the control core the movable body selection program hierarchical structure as a design basis; monitoring software part is the core part of the robot, which has a definite diagnosis Can be instead of manual simple fault judgment, instead the robot as a remote actuators, staff as long as the remote control can be, do not have to body at the scene. Four parts are independent of each other but are related to each other, the realization of the structure of independence and coherence, easy maintenance and coordination work. Robot with real-time positioning function and remote control function, greatly improves the IT operation. Robot remote monitor, to avoid the direct contact with the staff and line, thereby reducing the accident casualties, for the safety of the inspection work has far-reaching significance.

  6. Robotics for waste storage inspection: A user's perspective

    International Nuclear Information System (INIS)

    Hazen, F.B.

    1994-01-01

    Self-navigating robotic vehicles are now commercially available, and the technology supporting other important system components has also matured. Higher reliability and the obtainability of system support now make it practical to consider robotics as a way of addressing the growing operational requirement for the periodic inspection and maintenance of radioactive, hazardous, and mixed waste inventories. This paper describes preparations for the first field deployment of an autonomous container inspection robot at a Department of Energy (DOE) site. The Stored Waste Autonomous Mobile Inspector (SWAMI) is presently being completed by engineers at the Savannah River Technology Center (SRTC). It is a modified version of a commercially available robot. It has been outfitted with sensor suites and cognition that allow it to perform inspections of drum inventories and their storage facilities

  7. Development of automatic inspection robot for nuclear power plants

    International Nuclear Information System (INIS)

    Yamada, K.; Suzuki, K.; Saitoh, K.; Sakaki, T.; Ohe, Y.; Mizutani, T.; Segawa, M.; Kubo, K.

    1987-01-01

    This robot system has been developed for automatic inspection of nuclear power plants. The system configuration is composed of vehicle that runs on monorail, the sensors on the vehicle, an image processer that processes the image information from the sensors, a computer that creates the inspection planning of the robot and an operation panel. This system has two main features, the first is the robot control system. The vehicle and the sensors are controlled by the output data calculated in the computer with the three dimensional plant data. The malfunction is recognized by the combination of the results of image processing, information from the microphone and infrared camera. Tests for a prototype automatic inspection robot system have been performed in the simulated main steam piping room of a nuclear power plant

  8. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  9. Intelligent robots for nuclear power plant inspection and surveillance

    International Nuclear Information System (INIS)

    Miyazawa, Tatsuo; Suzuki, Kazumi; Fujie, Hideo; Fujii, Masaaki; Asai, Takashi; Sugimoto, Hiroshi.

    1986-01-01

    Recently, the research and development of robotizing the patrol and works in nuclear power plants have been actively carried out since the TMI-2 accident in March, 1979. In this paper, among these robots, six examples of the movable robots, of which the working and movement were intellectualized by using information processing techniques and others, are reported, and their intellectualization is concretely discussed. In Japan, the development of the supporting system for nuclear power generation was carried out for five years from fiscal year 1980 as the project subsidized by the Ministry of International Trade and Industry, and during this period, the inspection robots for LWR plants were developed. The development of the robots for ultimate working as the large scale project of the Agency of Industrial Science and Technology aiming at further heightening the function is in progress as the eight-year project from fiscal year 1983. Monorail type automatic surveillance robots, system maintenance robots 'AMOOTY', variable crawler type intelligent movable robots, hybrid running type intelligent movable robots, monorail running type small checkup robots, and floor running type checkup and light work robots are reported. Sense information processing control and a robot language processor for expanding the function of autonomous control are outlined. (Kako, I.)

  10. Pipelines inspection robots; Robos para inspecao de linhas de servico

    Energy Technology Data Exchange (ETDEWEB)

    Archila Diaz, John Faber; Dutra, Max Suell [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Robotica

    2008-07-01

    One of the problems existing in the area of maintenance of systems for the transport of mass and / or energy is to examine the integrity of the lines of service in the basic infrastructure of cities and industries. For the development of maintenance, whether predictive, preventive or corrective is necessary to conduct the inspection of these lines. To carry out this task is necessary count on help of appropriate technological tools. The main tools for inspection of service lines come from the area of external inspection of pipelines and are also in development, the problem happens when we need to achieve internal or external failures in places of difficult access, and move the inspection equipment to places where it's going to fail. In these cases it is necessary to the use of mechatronic systems, more specifically robotic systems, which may be developed for inspection. This paper aims to present the main robotic systems used for inspection, especially for internal inspection of pipelines. These systems have been developed by the research groups in Brazil, Japan, and Belgium among others, giving up a classification of robots for inspection of pipelines and the main features necessary for its project. (author)

  11. Pipelines inspection robots; Robos para inspecao de linhas de servico

    Energy Technology Data Exchange (ETDEWEB)

    Archila Diaz, John Faber; Dutra, Max Suell [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Robotica

    2008-07-01

    One of the problems existing in the area of maintenance of systems for the transport of mass and / or energy is to examine the integrity of the lines of service in the basic infrastructure of cities and industries. For the development of maintenance, whether predictive, preventive or corrective is necessary to conduct the inspection of these lines. To carry out this task is necessary count on help of appropriate technological tools. The main tools for inspection of service lines come from the area of external inspection of pipelines and are also in development, the problem happens when we need to achieve internal or external failures in places of difficult access, and move the inspection equipment to places where it's going to fail. In these cases it is necessary to the use of mechatronic systems, more specifically robotic systems, which may be developed for inspection. This paper aims to present the main robotic systems used for inspection, especially for internal inspection of pipelines. These systems have been developed by the research groups in Brazil, Japan, and Belgium among others, giving up a classification of robots for inspection of pipelines and the main features necessary for its project. (author)

  12. Will an underwater robot ever replace the diver? A rather poor progress or a great success?

    Directory of Open Access Journals (Sweden)

    Olejnik Adam

    2016-03-01

    Full Text Available The article deals with the subject matter related to the development of underwater works technologies. Nearly 15 years ago one of the authors of this study published a material in the monthly magazine of “Podwodny Świat” (The Underwater World entitled “The Future of Underwater Technologies – the diver or the robot?” where he noted that the time of great changes in technologies aimed at researching the depths and conducting works under water has arrived. This new era mainly consists in the fact that on an increasing number of occasions the diver is replaced by an underwater robot. The presented material constitutes an attempt to provide an answer to the question whether the then posed thesis is still valid. In the article the authors discuss issues concerned with the development of techniques and technologies applied in the conquest of depths that leads them to the conclusion that the previously observed tendency of a double-tracked development of underwater technologies is gaining in strength, which causes that the works and exploration of bodies of water at great depths will be possible only with the use of unmanned techniques.

  13. SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots

    Science.gov (United States)

    Li, Xin; Bilbao, Sonia; Martín-Wanton, Tamara; Bastos, Joaquim; Rodriguez, Jonathan

    2017-01-01

    In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning. PMID:28287468

  14. Underwater inspection, repair and reconstitution of water reactor fuel

    International Nuclear Information System (INIS)

    1988-06-01

    On-site fuel examination plays an important role for evaluation of fuel irradiation performance under reactor operating conditions. Also fuel assembly repairs are economically very attractive for operating nuclear utilities. The status of the processes of examination and repair, equipment used and research plans in Member States are reviewed in these Proceedings. All presentations were divided into three sessions: inspection diagnostic: facilities, techniques, and programmes (8 papers); repair and reconstitution techniques (6 papers); power plant experience (6 papers). A separate abstract was prepared for each of these 20 papers. Refs, figs and tabs

  15. Autonomous navigation system for mobile robots of inspection

    International Nuclear Information System (INIS)

    Angulo S, P.; Segovia de los Rios, A.

    2005-01-01

    One of the goals in robotics is the human personnel's protection that work in dangerous areas or of difficult access, such it is the case of the nuclear industry where exist areas that, for their own nature, they are inaccessible for the human personnel, such as areas with high radiation level or high temperatures; it is in these cases where it is indispensable the use of an inspection system that is able to carry out a sampling of the area in order to determine if this areas can be accessible for the human personnel. In this situation it is possible to use an inspection system based on a mobile robot, of preference of autonomous navigation, for the realization of such inspection avoiding by this way the human personnel's exposure. The present work proposes a model of autonomous navigation for a mobile robot Pioneer 2-D Xe based on the algorithm of wall following using the paradigm of fuzzy logic. (Author)

  16. A survey on inspecting structures using robotic systems

    Directory of Open Access Journals (Sweden)

    Randa Almadhoun

    2016-11-01

    Full Text Available Advancements in robotics and autonomous systems are being deployed nowadays in many application domains such as search and rescue, industrial automation, domestic services and healthcare. These systems are developed to tackle tasks in some of the most challenging, labour intensive and dangerous environments. Inspecting structures (e.g. bridges, buildings, ships, wind turbines and aircrafts is considered a hard task for humans to perform and of critical importance since missing any details could affect the structure’s performance and integrity. Additionally, structure inspection is time and resource intensive and should be performed as efficiently and accurately as possible. Inspecting various structures has been reported in the literature using different robotic platforms to: inspect difficult to reach areas and detect various types of faults and anomalies. Typically, inspection missions involve performing three main tasks: coverage path planning, shape, model or surface reconstruction and the actual inspection of the structure. Coverage path planning ensures the generation of an optimized path that guarantees the complete coverage of the structure of interest in order to gather highly accurate information to be used for shape/model reconstruction. This article aims to provide an overview of the recent work and breakthroughs in the field of coverage path planning and model reconstruction, with focus on 3D reconstruction, for the purpose of robotic inspection.

  17. A mobile robot for remote inspection of radioactive waste

    International Nuclear Information System (INIS)

    Suh, Y. C.; Kim, C. H.; Cho, J. W.; Choi, Y. S.; Kim, S. H.

    2004-01-01

    Tele-operation and remote monitoring techniques are essential and important technologies for the inspection and maintenance of the radioactive waste. A mobile robot has been developed for the application of remote monitoring and inspection of nuclear facilities, where human access is limited because of the high-level radioactive environments. The mobile robot was designed with reconfigurable crawler type of wheels attached on the front and rear side in order to pass through the ditch. The extendable mast, mounted on the mobile robot, car be extended up to 8 m vertically. The robust controller for radiation is designed in focus on electric components to prevent abnormal operation in a highly radioactivated area during reactor operation. This robot system will enhance the reliability of nuclear power facilities, and cope with the unexpected radiation accident

  18. Mechatronics Design of an Autonomous Pipe-Inspection Robot

    Directory of Open Access Journals (Sweden)

    Abdellatif Mohamed

    2018-01-01

    Full Text Available Pipelines require periodical inspection to detect corrosion, deformation and congestion with obstacles in the network. Autonomous mobile robots are good solutions for this task. Visual information from the pipe interior associated with a location stamp is needed for inspection. In this paper, the previous designs of autonomous robots are reviewed and a new robot is developed to ensure simple design and smooth motion. Images are processed online to detect irregularity in pipe and then start capturing high resolution pictures to conserve the limited memory size. The new robot moves in pipes and provides video stream of pipe interior with location stamp. The visual information can later be processed offline to extract more information of pipeline condition to make maintenance decisions.

  19. An approach to software quality assurance for robotic inspection systems

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1993-10-01

    Software quality assurance (SQA) for robotic systems used in nuclear waste applications is vital to ensure that the systems operate safely and reliably and pose a minimum risk to humans and the environment. This paper describes the SQA approach for the control and data acquisition system for a robotic system being developed for remote surveillance and inspection of underground storage tanks (UST) at the Hanford Site

  20. Visual communication system among underwater robots and divers. Kaichu robot ya diver kan no shikaku ni yoru tsushin

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, H. (East Japan Railway Co., Tokyo (Japan)); Ura, T.; Fujii, T. (The University of Tokyo, Tokyo (Japan). Institute of Industrial Science)

    1993-07-01

    Performing coordinated works between underwater robots and divers, often called undersea agents, requires communication means to promote mutual understanding. This paper describes a system to make visual communications as a communication means used under sea, and discusses elementary technologies to realize mutual communications between the agents. The visual communication system comprises a device to indicate command patterns that correspond to intentions to be communicated using five electroluminescence (EL) panels, a CCD camera, and a transponder. Discussions were given on image processing to recognize the command patterns, EL panel positions, and communication protocols. As a result of experiments assuming underwater communications between divers and robots, using a water tank, it was found that the command patterns can be recognized if illuminance in the water tank is 100 lux or lower. Validity of the system was verified in the experiments. 4 refs., 9 figs., 1 tab.

  1. Evaluation of robotic inspection systems at nuclear power plants

    International Nuclear Information System (INIS)

    White, J.R.; Eversole, R.E.; Farnstrom, K.A.; Harvey, H.W.; Martin, H.L.

    1984-03-01

    This report presents and demonstrates a cost-effective approach for robotics application (CARA) to surveillance and inspection work in existing nuclear power plants. The CARA was developed by the Remote Technology Corporation to systematically determine the specific surveillance/inspection tasks, worker hazards, and access or equipment placement restraints in each of the many individual rooms or areas at a power plant. Guidelines for designing inspection robotics are included and are based upon the modular arrangement of commercially-available sensors and other components. Techniques for maximizing the cost effectiveness of robotics are emphasized in the report including: selection of low-cost robotic components, minimal installation work in plant areas, portable systems for common use in different areas, and standardized robotic modules. Factors considered as benefits are reduced radiation exposure, lower man-hours, shorter power outage, less waste material, and improved worker safety concerns. A partial demonstration of the CARA methodology to the Sequoyah (PWR) and Browns Ferry (BWR) Plants is provided in the report along with specific examples of robotic installations in high potential areas

  2. An intelligent inspection and survey robot. Volume 1

    International Nuclear Information System (INIS)

    1995-01-01

    ARIES number-sign 1 (Autonomous Robotic Inspection Experimental System), has been developed for the Department of Energy to survey and inspect drums containing low-level radioactive waste stored in warehouses at DOE facilities. The drums are typically stacked four high and arranged in rows with three-foot aisle widths. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum. A new version of the Cybermotion series of mobile robots is the base mobile vehicle for ARIES. The new Model K3A consists of an improved and enhanced mobile platform and a new turret that will permit turning around in a three-foot aisle. Advanced sonar and lidar systems were added to improve navigation in the narrow drum aisles. Onboard computer enhancements include a VMEbus computer system running the VxWorks real-time operating system. A graphical offboard supervisory UNIX workstation is used for high-level planning, control, monitoring, and reporting. A camera positioning system (CPS) includes primitive instructions for the robot to use in referencing and positioning the payload. The CPS retracts to a more compact position when traveling in the open warehouse. During inspection, the CPS extends up to deploy inspection packages at different heights on the four-drum stacks of 55-, 85-, and 110-gallon drums. The vision inspection module performs a visual inspection of the waste drums. This system will locate and identify each drum, locate any unique visual features, characterize relevant surface features of interest and update a data-base containing the inspection data

  3. An intelligent inspection and survey robot. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-15

    ARIES {number_sign}1 (Autonomous Robotic Inspection Experimental System), has been developed for the Department of Energy to survey and inspect drums containing low-level radioactive waste stored in warehouses at DOE facilities. The drums are typically stacked four high and arranged in rows with three-foot aisle widths. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum. A new version of the Cybermotion series of mobile robots is the base mobile vehicle for ARIES. The new Model K3A consists of an improved and enhanced mobile platform and a new turret that will permit turning around in a three-foot aisle. Advanced sonar and lidar systems were added to improve navigation in the narrow drum aisles. Onboard computer enhancements include a VMEbus computer system running the VxWorks real-time operating system. A graphical offboard supervisory UNIX workstation is used for high-level planning, control, monitoring, and reporting. A camera positioning system (CPS) includes primitive instructions for the robot to use in referencing and positioning the payload. The CPS retracts to a more compact position when traveling in the open warehouse. During inspection, the CPS extends up to deploy inspection packages at different heights on the four-drum stacks of 55-, 85-, and 110-gallon drums. The vision inspection module performs a visual inspection of the waste drums. This system will locate and identify each drum, locate any unique visual features, characterize relevant surface features of interest and update a data-base containing the inspection data.

  4. Towards an automated checked baggage inspection system augmented with robots

    Science.gov (United States)

    DeDonato, Matthew P.; Dimitrov, Velin; Padır, Taskin

    2014-05-01

    We present a novel system for enhancing the efficiency and accuracy of checked baggage screening process at airports. The system requirements address the identification and retrieval of objects of interest that are prohibited in a checked luggage. The automated testbed is comprised of a Baxter research robot designed by Rethink Robotics for luggage and object manipulation, and a down-looking overhead RGB-D sensor for inspection and detection. We discuss an overview of current system implementations, areas of opportunity for improvements, robot system integration challenges, details of the proposed software architecture and experimental results from a case study for identifying various kinds of lighters in checked bags.

  5. Development of a remote tank inspection robotic system

    International Nuclear Information System (INIS)

    Knape, B.P.; Bares, L.C.

    1990-01-01

    RedZone Robotics is currently developing a remote tank inspection (RTI) robotic system for Westinghouse Idaho Nuclear Company (WINCO). WINCO intends to use the RTI robotic system at the Idaho Chemical Processing Plant, a facility that contains a tank farm of several 1,135,500-ell (300,000-gal), 15.2-m (50-ft)-diam, high-level liquid waste storage tanks. The primary purpose of the RTI robotic system is to inspect the interior of these tanks for corrosion that may have been caused by the combined effects of radiation, high temperature, and caustic by the combined effects of radiation, high temperature, and caustic chemicals present inside the tanks. The RTI robotic system features a vertical deployment unit, a robotic arm, and a remote control console and computer [located up to 30.5 m (100 ft) away from the tank site]. All actuators are high torque, electric dc brush motors that are servocontrolled with absolute position feedback. The control system uses RedZone's standardized intelligent controller for enhanced telerobotics, which provides a high speed, multitasking environment on a VME bus. Currently, the robot is controlled in a manual, job-button, control mode; however, control capability is available to develop preprogrammed, automated modes of operation

  6. Cooperative Rendezvous and Docking for Underwater Robots Using Model Predictive Control and Dual Decomposition

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Cornelius; Johansen, Tor Arne; Blanke, Mogens

    2018-01-01

    This paper considers the problem of rendezvous and docking with visual constraints in the context of underwater robots with camera-based navigation. The objective is the convergence of the vehicles to a common point while maintaining visual contact. The proposed solution includes the design of a ...... of a distributed model predictive controller based on dual decomposition, which allows for optimization in a decentralized fashion. The proposed distributed controller enables rendezvous and docking between vehicles while maintaining visual contact....

  7. Constrained Multi-Body Dynamics for Modular Underwater Robots — Theory and Experiments

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Cornelius; Eidsvik, Ole Alexander; Blanke, Mogens

    2018-01-01

    This paper investigates the problem of modelling a system of interconnected underwater robots with highly coupled dynamics. The objective is to develop a mathematical description of the system that captures its most significant dynamics. The proposed modelling method is based on active constraint...... on a BlueROV vehicle to determine the model parameters. The applicability of the modelling approach is assessed by comparing experimental data to simulations of an equivalent model synthesised using the proposed theory....

  8. Teleoperated mobile robot (KAEROT) for inspection in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung-Soo; Kim, Chang-Hoi; Hwang, Suk-Young; Kim, Seung-Ho; Lee, Jong-Min [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1994-12-31

    A teleoperated mobile robot, named as KAEROT, has been developed for inspection and maintenance in nuclear facilities. It is composed of the planetary wheel-type mobile unit and 5 DOF manipulator one. The mobile unit is able to climb up and down stairs with high stability. This paper presents the kinematic analysis of KAEROT and the stair climbing algorithm. The proposed algorithm consists of two parts; one is to generate the moving path, and the other is to calculate the angular velocity of each wheel to follow up the generated reference path. Simulations and experiments on the irregular stairs have been carried out with the developed mobile robot. The proposed algorithm is proved to be very effective for inspection in nuclear facilities. The inclination angle of robot is maintained below 30.8deg while it is climbing up the stairs of a slope of 25deg. (author).

  9. Teleoperated mobile robot (KAEROT) for inspection in nuclear facilities

    International Nuclear Information System (INIS)

    Kim, Byung-Soo; Kim, Chang-Hoi; Hwang, Suk-Young; Kim, Seung-Ho; Lee, Jong-Min

    1994-01-01

    A teleoperated mobile robot, named as KAEROT, has been developed for inspection and maintenance in nuclear facilities. It is composed of the planetary wheel-type mobile unit and 5 DOF manipulator one. The mobile unit is able to climb up and down stairs with high stability. This paper presents the kinematic analysis of KAEROT and the stair climbing algorithm. The proposed algorithm consists of two parts; one is to generate the moving path, and the other is to calculate the angular velocity of each wheel to follow up the generated reference path. Simulations and experiments on the irregular stairs have been carried out with the developed mobile robot. The proposed algorithm is proved to be very effective for inspection in nuclear facilities. The inclination angle of robot is maintained below 30.8deg while it is climbing up the stairs of a slope of 25deg. (author)

  10. Trajectory planning of tokamak flexible in-vessel inspection robot

    International Nuclear Information System (INIS)

    Wang, Hesheng; Chen, Weidong; Lai, Yinping; He, Tao

    2015-01-01

    Highlights: • A tokamak flexible in-vessel inspection robot is designed. • Two trajectory planning methods are used to ensure the full coverage of the first wall scanning. • The method is tested on a simulated platform of EAST with the flexible in-vessel inspection robot. • Experimental results show the effectiveness of the proposed algorithm. - Abstract: Tokamak flexible in-vessel inspection robot is mainly designed to carry a camera for close observation of the first wall of the vacuum vessel, which is essential for the maintenance of the future tokamak reactor without breaking the working condition of the vacuum vessel. A tokamak flexible in-vessel inspection robot is designed. In order to improve efficiency of the remote maintenance, it is necessary to design a corresponding trajectory planning algorithm to complete the automatic full coverage scanning of the complex tokamak cavity. Two different trajectory planning methods, RS (rough scanning) and FS (fine scanning), according to different demands of the task, are used to ensure the full coverage of the first wall scanning. To quickly locate the damage position, the first trajectory planning method is targeted for quick and wide-ranging scan of the tokamak D-shaped section, and the second one is for careful observation. Furthermore, both of the two different trajectory planning methods can ensure the full coverage of the first wall scanning with an optimal end posture. The method is tested on a simulated platform of EAST (Experimental Advanced Superconducting Tokamak) with the flexible in-vessel inspection robot, and the results show the effectiveness of the proposed algorithm.

  11. Trajectory planning of tokamak flexible in-vessel inspection robot

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng [Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai (China); Lai, Yinping; He, Tao [Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai (China)

    2015-10-15

    Highlights: • A tokamak flexible in-vessel inspection robot is designed. • Two trajectory planning methods are used to ensure the full coverage of the first wall scanning. • The method is tested on a simulated platform of EAST with the flexible in-vessel inspection robot. • Experimental results show the effectiveness of the proposed algorithm. - Abstract: Tokamak flexible in-vessel inspection robot is mainly designed to carry a camera for close observation of the first wall of the vacuum vessel, which is essential for the maintenance of the future tokamak reactor without breaking the working condition of the vacuum vessel. A tokamak flexible in-vessel inspection robot is designed. In order to improve efficiency of the remote maintenance, it is necessary to design a corresponding trajectory planning algorithm to complete the automatic full coverage scanning of the complex tokamak cavity. Two different trajectory planning methods, RS (rough scanning) and FS (fine scanning), according to different demands of the task, are used to ensure the full coverage of the first wall scanning. To quickly locate the damage position, the first trajectory planning method is targeted for quick and wide-ranging scan of the tokamak D-shaped section, and the second one is for careful observation. Furthermore, both of the two different trajectory planning methods can ensure the full coverage of the first wall scanning with an optimal end posture. The method is tested on a simulated platform of EAST (Experimental Advanced Superconducting Tokamak) with the flexible in-vessel inspection robot, and the results show the effectiveness of the proposed algorithm.

  12. Robotic inspection of fiber reinforced composites using phased array UT

    Science.gov (United States)

    Stetson, Jeffrey T.; De Odorico, Walter

    2014-02-01

    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  13. A locomotive inspection robot for turbine building interior inspection in nuclear power plants

    International Nuclear Information System (INIS)

    Obama, M.; Ozaki, F.; Asano, K.

    1985-01-01

    A locomotive inspection robot, named Turbine Building Inspection System (TBIS), has been developed for turbine building interior inspections in nuclear power plants. This robot is made up of a vehicle, a telescopic support, turning head and a multijoint arm which has dual TV cameras and a diagnostic rod on its tip. The multijoint arm has 17 degrees of freedom and its length is 243 cm. Minimum and maximum heights for the multijoint arm shoulder are 1.5 meter and 4 meters respectively. The total degree of freedom in the combination of the multijoint arm, turning head and telescopic support is 19 and the area, it is capable of inspecting, is equal to the cylindrical dome whose height and diameter are 6.4 meters and 4.8 meters respectively. The design philosophy, hardware structure and operation method of the TBIS are described. 2 refs.; 10 figs

  14. A Cable-tunnel Inspecting Robot for Dangerous Environment

    Directory of Open Access Journals (Sweden)

    Fu Zhuang

    2008-11-01

    Full Text Available This paper presents a kind of mobile robot used for inspecting the cable tunnel online in the dangerous environment. Usually, the calble tunnel is full of poisonous gases after fire, such as CO,CH4, CO2 and so on. Then, the mobile robot is able to tell us whether the tunnel environment is safe or not. In this paper the architecture of the robot is designed at first to meet the motion requirement in the tunnel. These characteristics distinguish the mobile robot from others like compact structure,small size,little weight and easily being carried. Next, the moving mechanism and its kinematics are described. And thus, the operating procedure and experiments are introuduced to validate its reliablity.

  15. A cable-tunnel inspecting robot for dangerous environment

    Directory of Open Access Journals (Sweden)

    Fu Zhuang

    2008-09-01

    Full Text Available This paper presents a kind of mobile robot used for inspecting the cable tunnel online in the dangerous environment. Usually, the calble tunnel is full of poisonous gases after fire, such as CO, CH4, CO2 and so on. Then, the mobile robot is able to tell us whether the tunnel environment is safe or not. In this paper the architecture of the robot is designed at first to meet the motion requirement in the tunnel. These characteristics distinguish the mobile robot from others like compact structure, small size, little weight and easily being carried. Next, the moving mechanism and its kinematics are described. And thus, the operating procedure and experiments are introuduced to validate its reliablity.

  16. Localization of a Robotic Crawler for CANDU Fuel Channel Inspection

    Science.gov (United States)

    Manning, Mark

    This thesis discusses the design and development of a pipe crawling robot for the purpose of CANDU fuel channel inspection. The pipe crawling robot shall be capable of deploying the existing CIGAR (Channel Inspection and Gauging Apparatus for Reactors) sensor head. The main focus of this thesis is the design of the localization system for this robot and the many tests that were completed to demonstrate its accuracy. The proposed localization system consists of three redundant resolver wheels mounted to the robot's frame and two resolvers that are mounted inside a custom made cable drum. This cable drum shall be referred to in this thesis as the emergency retrieval device. This device serves the dual-purpose of providing absolute position measurements (via the cable that is tethered to the robot) as well as retrieving the robot if it is inoperable. The estimated accuracy of the proposed design is demonstrated with the use of a proof-of-concept prototype and a custom made test bench that uses a vision system to provide a more accurate estimate of the robot's position. The only major difference between the proof-of-concept prototype and the proposed solution is that the more expensive radiation hardened components were not used in the proof-of-concept prototype design. For example, the proposed solution shall use radiation hardened resolver wheels, whereas the proof-of-concept prototype used encoder wheels. These encoder wheels provide the same specified accuracy as the radiation hardened resolvers for the most realistic results possible. The rationale behind the design of the proof-of-concept prototype, the proposed final design, the design of the localization system test bench, and the test plan for developing all of the components of the design related to the robot's localization system are discussed in the thesis. The test plan provides a step by step guide to the configuration and optimization of an Unscented Kalman Filter (UKF). The UKF was selected as the ideal

  17. An intelligent inspection and survey robot. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-15

    Radioactive materials make up a significant part of the hazardous-material inventory of the Department of Energy. Much of the radioactive material will be inspected or handled by robotic systems that contain electronic circuits that may be damaged by gamma radiation and other particles emitted from radioactive material. This report examines several scenarios, the damage that may be inflicted, and methods that may be used to protect radiation-hardened robot control systems. Commercial sources of components and microcomputers that can withstand high radiation exposure are identified.

  18. An intelligent inspection and survey robot. Volume 2

    International Nuclear Information System (INIS)

    1995-01-01

    Radioactive materials make up a significant part of the hazardous-material inventory of the Department of Energy. Much of the radioactive material will be inspected or handled by robotic systems that contain electronic circuits that may be damaged by gamma radiation and other particles emitted from radioactive material. This report examines several scenarios, the damage that may be inflicted, and methods that may be used to protect radiation-hardened robot control systems. Commercial sources of components and microcomputers that can withstand high radiation exposure are identified

  19. An autonomous mobil robot to perform waste drum inspections

    International Nuclear Information System (INIS)

    Peterson, K.D.; Ward, C.R.

    1994-01-01

    A mobile robot is being developed by the Savannah River Technology Center (SRTC) Robotics Group of Westinghouse Savannah River company (WSRC) to perform mandated inspections of waste drums stored in warehouse facilities. The system will reduce personnel exposure and create accurate, high quality documentation to ensure regulatory compliance. Development work is being coordinated among several DOE, academic and commercial entities in accordance with DOE's technology transfer initiative. The prototype system was demonstrated in November of 1993. A system is now being developed for field trails at the Fernald site

  20. Development of a SG Tube Inspection/maintenance Robot

    International Nuclear Information System (INIS)

    Shin, Ho Cheol; Jung, Kyung Min; Choi, Chang Hwan; Kim, Seung Ho

    2005-01-01

    A radiation hardened robot system is developed which assists in an automatic non-destructive testing and the repair of nuclear steam generator tubes. And a control system is developed. For easy carriage and installation, the robot system consists of three separable parts: a manipulator, a water chamber entering and leaving device of the manipulator and a manipulator base pose adjusting device. The kinematic analysis using the grid method was performed to search for the optimal manipulator's link parameters, and the stress analysis of the robotic system was also carried out for a structural safety verification. The robotic control system consists of a main personal computer placed near the operator and a local robotic position controller placed near the steam generator. A software program to control and manage the robotic system has been developed on the NT based OS to increase the usability. The software program provides a robot installation function, a robot calibration function, a managing and arranging function for the eddy-current test, a real time 3- D graphic simulation function which offers a remote reality to operators and so on. The image information acquired from the camera attached to the end-effector is used to calibrate the end-effector pose error and the time-delayed control algorithm is applied to calculate the optimal PID gain of the position controller. Eddy-current probe guide devices, a brushing tool, a motorized plugging tool and a U-tube internal visual inspection system have been developed. A data acquisition system was built to acquire and process the eddy-current signals, and a software program for eddy-current signal acquisition and processing. The developed robotic system has been tested in the Ulchin NPP type steam generator mockup in a laboratory. The final function test was carried out at the Kori Npp type steam generator mockup in the Kori training center

  1. Control system for a multi-joint inspection robot

    International Nuclear Information System (INIS)

    Asano, K.

    1984-01-01

    Remote systems, in which a human operator in a safe zone determines pertinent circumstances and makes decisions on work procedures, while a robot does direct work in hazardous environments, have been becoming more and more important in accordance with the increase in nuclear facilities. In such remote systems, to perform tasks which are merely ambiguously defined beforehand, it is very important that the systems have the ability to execute desired tasks easily and immediately without any programming or teaching work on the spot. A control system, named Self Approach System (SAS), for a multi-joint inspection robot has been developed as a key component in a remote inspection system for use in physically difficult or dangerous environments. It has 8 joints and 17 degrees-of-freedom and was designed taking many of the above points into account. This paper describes SAS details

  2. A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics.

    Science.gov (United States)

    Jaffe, Jules S; Franks, Peter J S; Roberts, Paul L D; Mirza, Diba; Schurgers, Curt; Kastner, Ryan; Boch, Adrien

    2017-01-24

    Measuring the ever-changing 3-dimensional (3D) motions of the ocean requires simultaneous sampling at multiple locations. In particular, sampling the complex, nonlinear dynamics associated with submesoscales (swarm of 16 independent vehicles whose 3D trajectories are measured near-continuously, underwater. As the vehicles drift with the ambient flow or execute preprogrammed vertical behaviours, the simultaneous measurements at multiple, known locations resolve the details of the flow within the swarm. We describe the design, construction, control and underwater navigation of the M-AUE. A field programme in the coastal ocean using a swarm of these robots programmed with a depth-holding behaviour provides a unique test of a physical-biological interaction leading to plankton patch formation in internal waves. The performance of the M-AUE vehicles illustrates their novel capability for measuring submesoscale dynamics.

  3. Inspection and repair of steam generator tubing with a robot

    International Nuclear Information System (INIS)

    Boehm, H.H.; Foerch, H.

    1985-01-01

    During inspection and repair of steam generator tubing, radiation exposure to personnel is an unrequested endowment. To combat this intrinsic handicap, a robot has been designed for deployment in all operations inside the steam generator water chamber. This measure drastically reduces entering time and also improves inspection capabilities with regard to the accuracy and reproduction of the desired tube address. The inherent flexibility of the robot allows for performing various inspection and repair techniques: eddy-current testing of tubing; ultrasonic testing of tubing; visual examination of tube ends; profilometry measurements; tube plugging; plug removal; tube extraction; sleeving of tubes; tube end repair; chemical cleaning; and thermal treatment. Plant experience has highlighted the following features of the robot: 1) short installation and demounting periods; 2) installation independent of manhole location; 3) installation possible from outside the steam generator; 4) only one relocation required to address all the tube positions; 5) fast and highly accurate positioning; 6) operational surveillance not required; and 7) drastic reduction of radiation exposure to personnel during repair work

  4. In-service inspection robot for PFBR main vessel- concept

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, S; Ramakumar, M S [Bhabha Atomic Research Centre, Mumbai (India). Div. of Remote Handling and Robotics

    1994-12-31

    In-service inspection (ISI) of critical components in a nuclear reactor is one of the foremost and important tasks which reveals the state of health of the system, thereby ensuring the safety of the plant, personnel and environment. Prototype Fast Breeder Reactor (PFBR) is designed as a pool type reactor. A safety vessel is provided in the design which envelopes the main reactor vessel. The ISI of the main vessel is mandatory and will be carried out by a robot which will operate on this annular gap. The design of the robot is such that it can crawl around the vessel and into the gap at the bottom of the vessel relying on friction grip. The mobile robot will carry a CCTV camera and the inspection technique packages into the interspace, position and orient these to carry out the ISI of the main vessel. The paper discusses about the design features of the robot including the gripping mechanism and the crawling sequence to perform ISI of the reactor vessel. 3 figs.

  5. In-service inspection robot for PFBR main vessel- concept

    International Nuclear Information System (INIS)

    Rajendran, S.; Ramakumar, M.S.

    1994-01-01

    In-service inspection (ISI) of critical components in a nuclear reactor is one of the foremost and important tasks which reveals the state of health of the system, thereby ensuring the safety of the plant, personnel and environment. Prototype Fast Breeder Reactor (PFBR) is designed as a pool type reactor. A safety vessel is provided in the design which envelopes the main reactor vessel. The ISI of the main vessel is mandatory and will be carried out by a robot which will operate on this annular gap. The design of the robot is such that it can crawl around the vessel and into the gap at the bottom of the vessel relying on friction grip. The mobile robot will carry a CCTV camera and the inspection technique packages into the interspace, position and orient these to carry out the ISI of the main vessel. The paper discusses about the design features of the robot including the gripping mechanism and the crawling sequence to perform ISI of the reactor vessel. 3 figs

  6. Thermal Tracking in Mobile Robots for Leak Inspection Activities

    Directory of Open Access Journals (Sweden)

    Iñaki Maurtua

    2013-10-01

    Full Text Available Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system.

  7. Thermal tracking in mobile robots for leak inspection activities.

    Science.gov (United States)

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-10-09

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system.

  8. Ultra light inspection robotic arm, design and modeling

    International Nuclear Information System (INIS)

    Voisembert, S.

    2012-01-01

    One of the major challenges in robotics is the improvement of inspections operations in confined and hazardous area using unmanned remote handling systems. Articulated arm are used in this case to carry some diagnostic tools for the inspection tasks. These long reach multi-link carriers should be characterized by a large workspace and reduced mass. Today, with about ten degrees of freedom and ten meters long they have reached their performance limit. Indeed, for long reach, the arm should have enough torque to carry its own weight plus the payload in cantilever mode and enough stiffness to minimize the deflection caused by the gravity. Despite the use of best materials and components, this kind of robot has reach its performance limit. Overcoming this limit needs a change in paradigm. Therefore a problem-solving, analysis and forecasting tool TRIZ (theory of inventive problem solving) is used. It leads naturally to identify the origin of the dilemma: the proper weight of the arm and so its mass under gravity. In particular, it proposes to postulate that a no-mass robot exists. An analysis of the properties of such a robot leads to the patented concept of an ultra light inflatable robot with unique and constant volume and constant diameter joints. This new object would benefit from advantages such as easy implementation, harmlessness toward its environment and so the ability to lean on it without damage. Therefore it could easily increase its range and its foreseen low-cost building would open a wide field of new applications. This thesis work, elaborates appropriate technical concepts and dimensioning methods for ultra light inflatable robots. The payload and length performances of an inflatable robot are analytically validated. Experimentations and a finite-element modeling are used for a pre-dimensioning of the joints and different modes of construction are prototyped in partnership with, specialized company in thigh-tech textile. The joints are also modeled with

  9. Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot.

    Science.gov (United States)

    Calisti, M; Corucci, F; Arienti, A; Laschi, C

    2015-07-30

    This paper studies underwater legged locomotion (ULL) by means of a robotic octopus-inspired prototype and its associated model. Two different types of propulsive actions are embedded into the robot model: reaction forces due to leg contact with the ground and hydrodynamic forces such as the drag arising from the sculling motion of the legs. Dynamic parameters of the model are estimated by means of evolutionary techniques and subsequently the model is exploited to highlight some distinctive features of ULL. Specifically, the separation between the center of buoyancy (CoB)/center of mass and density affect the stability and speed of the robot, whereas the sculling movements contribute to propelling the robot even when its legs are detached from the ground. The relevance of these effects is demonstrated through robotic experiments and model simulations; moreover, by slightly changing the position of the CoB in the presence of the same feed-forward activation, a number of different behaviors (i.e. forward and backward locomotion at different speeds) are achieved.

  10. SAFIRE - a robotic inspection system for CANDU feeders

    International Nuclear Information System (INIS)

    Buckingham, R.

    2011-01-01

    The condition of primary circuit feeder pipes in CANDU reactors is relevant to the commercial viability and plant life. One known wear mechanism is external fretting between feeder pipes and adjacent services or support structures, particularly within the Upper Feeder Cabinet (UFC). Fretting leads to wall thinning which must not exceed certain agreed limits. Chafe shields have been added to protect the feeder pipes. Regular inspections are required of the chafe shields, feeder pipes and other structures that may cause feeder damage. Historically, the dose received by inspectors conducting this work has been significant. For this reason Ontario Power Generation has invested in a remotely operated robot system to conduct visual inspections within the UFC. This system, called SAFIRE for 'Snake-Arm Feeder Inspection Robot Equipment' has been deployed at Pickering during 2010 and 2011 and has been used to inspect areas that are extremely difficult to inspect with existing manual techniques. The 2011 scope of work included inspection of a total of 660 feeder pipes in three UFC quadrants, in two reactors. The full scope was completed over a one-month period in Autumn 2011 in which SAFIRE was used during 23, twelve hour shifts. This included two periods each of 72 hours of continuous operation using multiple teams of operators. SAFIRE is remote controlled delivery system for multiple cameras to record still images and video. The main system elements include a snake-arm robot mounted on a mobile vehicle. It can be controlled from up to 500m away using a fibre/copper connection. The snake-arm is 2.2m long, 25mm wide and has 18 degrees of freedom. It is designed to snake between the rows of feeder pipes to inspect feeder/hanger interfaces, both above and below the feeder cabinet catwalks. Future upgrades offer the potential to add additional tools to increase functionality. This paper describes the SAFIRE development process from inception to operational experience gained

  11. SAFIRE - a robotic inspection system for CANDU feeders

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, R. [OC Robotics, Bristol (United Kingdom)

    2011-07-01

    The condition of primary circuit feeder pipes in CANDU reactors is relevant to the commercial viability and plant life. One known wear mechanism is external fretting between feeder pipes and adjacent services or support structures, particularly within the Upper Feeder Cabinet (UFC). Fretting leads to wall thinning which must not exceed certain agreed limits. Chafe shields have been added to protect the feeder pipes. Regular inspections are required of the chafe shields, feeder pipes and other structures that may cause feeder damage. Historically, the dose received by inspectors conducting this work has been significant. For this reason Ontario Power Generation has invested in a remotely operated robot system to conduct visual inspections within the UFC. This system, called SAFIRE for 'Snake-Arm Feeder Inspection Robot Equipment' has been deployed at Pickering during 2010 and 2011 and has been used to inspect areas that are extremely difficult to inspect with existing manual techniques. The 2011 scope of work included inspection of a total of 660 feeder pipes in three UFC quadrants, in two reactors. The full scope was completed over a one-month period in Autumn 2011 in which SAFIRE was used during 23, twelve hour shifts. This included two periods each of 72 hours of continuous operation using multiple teams of operators. SAFIRE is remote controlled delivery system for multiple cameras to record still images and video. The main system elements include a snake-arm robot mounted on a mobile vehicle. It can be controlled from up to 500m away using a fibre/copper connection. The snake-arm is 2.2m long, 25mm wide and has 18 degrees of freedom. It is designed to snake between the rows of feeder pipes to inspect feeder/hanger interfaces, both above and below the feeder cabinet catwalks. Future upgrades offer the potential to add additional tools to increase functionality. This paper describes the SAFIRE development process from inception to operational experience

  12. Mini AERCam Inspection Robot for Human Space Missions

    Science.gov (United States)

    Fredrickson, Steven E.; Duran, Steve; Mitchell, Jennifer D.

    2004-01-01

    The Engineering Directorate of NASA Johnson Space Center has developed a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam free flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35 pound, 14 inch AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations including automatic stationkeeping and point-to-point maneuvering. Mini AERCam is designed to fulfill the unique requirements and constraints associated with using a free flyer to perform external inspections and remote viewing of human spacecraft operations. This paper describes the application of Mini AERCam for stand-alone spacecraft inspection, as well as for roles on teams of humans and robots conducting future space exploration missions.

  13. Design of Underwater Robot Lines Based on a Hybrid Automatic Optimization Strategy

    Institute of Scientific and Technical Information of China (English)

    Wenjing Lyu; Weilin Luo

    2014-01-01

    In this paper, a hybrid automatic optimization strategy is proposed for the design of underwater robot lines. Isight is introduced as an integration platform. The construction of this platform is based on the user programming and several commercial software including UG6.0, GAMBIT2.4.6 and FLUENT12.0. An intelligent parameter optimization method, the particle swarm optimization, is incorporated into the platform. To verify the strategy proposed, a simulation is conducted on the underwater robot model 5470, which originates from the DTRC SUBOFF project. With the automatic optimization platform, the minimal resistance is taken as the optimization goal;the wet surface area as the constraint condition; the length of the fore-body, maximum body radius and after-body’s minimum radius as the design variables. With the CFD calculation, the RANS equations and the standard turbulence model are used for direct numerical simulation. By analyses of the simulation results, it is concluded that the platform is of high efficiency and feasibility. Through the platform, a variety of schemes for the design of the lines are generated and the optimal solution is achieved. The combination of the intelligent optimization algorithm and the numerical simulation ensures a global optimal solution and improves the efficiency of the searching solutions.

  14. Development of inspection equipment for fuel bundles of CANDU-PHWR using R981 underwater radiation tolerant camera

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae-Seo; Cho, Moon-Sung; Jo, Chang-Keun; Jun, Ji-Su; Jung, Jong Yeob; Park, Kwang-June; Suk, Ho-Chun

    2005-03-15

    The inspection equipment of fuel bundles was developed, which could perform visual inspection and dimensional measurement on fuel bundles of CANDU-PHWR, to evaluate, analyze the defective behavior of fuel bundles and inner surface of pressure tubes of inherent two-phase flow over 24kg/s in CANDU-6. The R981 radiation tolerant camera system with pan and tilt function was ordered and manufactured, which was waterproof, shielding radiation in underwater 10m in depth. The performance test, of the system ,due to camera-object distance was carried out in air/underwater atmosphere. The results of performance test of R981 radiation tolerant camera system are good. The inspection equipment of fuel bundles using R981 radiation tolerant camera system and underwater-radiation tolerant LVDT sensor(D5/200AW) was fabricated, which could perform visual inspection and dimensional measurement on fuel bundles of CANDU-PHWR with measurement accuracy 10{mu}m. This equipment will be utilizable integrity evaluation of fuel bundles which are irradiated in pressure tube of CANDU-PHWR.

  15. SAFER vehicle inspection: a multimodal robotic sensing platform

    Science.gov (United States)

    Page, David L.; Fougerolle, Yohan; Koschan, Andreas F.; Gribok, Andrei; Abidi, Mongi A.; Gorsich, David J.; Gerhart, Grant R.

    2004-09-01

    The current threats to U.S. security both military and civilian have led to an increased interest in the development of technologies to safeguard national facilities such as military bases, federal buildings, nuclear power plants, and national laboratories. As a result, the Imaging, Robotics, and Intelligent Systems (IRIS) Laboratory at The University of Tennessee (UT) has established a research consortium, known as SAFER (Security Automation and Future Electromotive Robotics), to develop, test, and deploy sensing and imaging systems for unmanned ground vehicles (UGV). The targeted missions for these UGV systems include -- but are not limited to --under vehicle threat assessment, stand-off check-point inspections, scout surveillance, intruder detection, obstacle-breach situations, and render-safe scenarios. This paper presents a general overview of the SAFER project. Beyond this general overview, we further focus on a specific problem where we collect 3D range scans of under vehicle carriages. These scans require appropriate segmentation and representation algorithms to facilitate the vehicle inspection process. We discuss the theory for these algorithms and present results from applying them to actual vehicle scans.

  16. Flexible mobile robot system for smart optical pipe inspection

    Science.gov (United States)

    Kampfer, Wolfram; Bartzke, Ralf; Ziehl, Wolfgang

    1998-03-01

    Damages of pipes can be inspected and graded by TV technology available on the market. Remotely controlled vehicles carry a TV-camera through pipes. Thus, depending on the experience and the capability of the operator, diagnosis failures can not be avoided. The classification of damages requires the knowledge of the exact geometrical dimensions of the damages such as width and depth of cracks, fractures and defect connections. Within the framework of a joint R&D project a sensor based pipe inspection system named RODIAS has been developed with two partners from industry and research institute. It consists of a remotely controlled mobile robot which carries intelligent sensors for on-line sewerage inspection purpose. The sensor is based on a 3D-optical sensor and a laser distance sensor. The laser distance sensor is integrated in the optical system of the camera and can measure the distance between camera and object. The angle of view can be determined from the position of the pan and tilt unit. With coordinate transformations it is possible to calculate the spatial coordinates for every point of the video image. So the geometry of an object can be described exactly. The company Optimess has developed TriScan32, a special software for pipe condition classification. The user can start complex measurements of profiles, pipe displacements or crack widths simply by pressing a push-button. The measuring results are stored together with other data like verbal damage descriptions and digitized images in a data base.

  17. Self-generation of controller of an underwater robot with neural network

    International Nuclear Information System (INIS)

    Suto, T.; Ura, T.

    1994-01-01

    A self-organizing controller system is constructed based on artificial neural networks and applied to constant altitude swimming of the autonomous underwater robot PTEROA 150. The system consists of a controller and a forward model which calculates the values for evaluation as a result of control. Some methods are introduced for quick and appropriate adjustment of the controller network. Modification of the controller network is executed based on error-back-propagation method utilizing the forward model network. The forward model is divided into three sub-networks which represent dynamics of the vehicle, estimation of relative position to the seabed and calculation of the altitude. The proposed adaptive system is demonstrated in computer simulations where objective of a vehicle is keeping a constant altitude from seabed which is constituted of triangular ridges

  18. A wall-crawling robot for reactor vessel inspection in advanced reactors

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected. (author)

  19. A wall-crawling robot for reactor vessel inspection in advanced reactors

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected

  20. Mobile robot teleoperation system for plant inspection based on collecting and utilizing environment data

    International Nuclear Information System (INIS)

    Kawabata, Kuniaki; Watanabe, Nobuyasu; Asama, Hajime; Kita, Nobuyuki; Yang, Hai-quan

    2004-01-01

    This paper describes about development of a mobile robot teleoperation system for plant inspection. In our system, the robot is an agent for collecting the environment data and is also teleoperated by the operator utilizing such accumulated environment data which is displayed on the operation interface. The robot equips many sensors for detecting the state of the robot and the environment. Such redundant sensory system can be also utilized to collect the working environment data on-site while the robot is patrolling. Here, proposed system introduces the framework of collecting and utilizing environment data for adaptive plant inspection using the teleoperated robot. A view simulator is primarily aiming to facilitate evaluation of the visual sensors and algorithms and is also extended as the Environment Server, which is the core technology of the digital maintenance field for the plant inspection. In order to construct detailed seamless digital maintenance field mobile robotic technology is utilized to supply environment data to the server. The sensory system on the robot collect the environment data on-site and such collected data is uploaded to the Environment Server for compiling accurate digital environment data base. The robot operator also can utilize accumulated environment data by referring to the Environment Server. In this paper, we explain the concept of our teleoperation system based on collecting and utilizing environment data. Using developed system, inspection patrol experiments were attempted in the plant mock-up. Experimental results are shown by using an omnidirectional mobile robot with sensory system and the Environment Server. (author)

  1. Control system design for robotic underground storage tank inspection systems

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1994-09-01

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission

  2. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to shipowners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  3. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to ship owners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  4. Structural Dynamics of a Pulsed-Jet Propulsion System for Underwater Soft Robots

    Directory of Open Access Journals (Sweden)

    Federico Renda

    2015-06-01

    Full Text Available This paper entails the study of the pulsed-jet propulsion inspired by cephalopods in the frame of underwater bioinspired robotics. This propulsion routine involves a sequence of consecutive cycles of inflation and collapse of an elastic bladder, which, in the robotics artefact developed by the authors, is enabled by a cable-driven actuation of a deformable shell composed of rubber-like materials. In the present work an all-comprehensive formulation is derived by resorting to a coupled approach that comprises of a model of the structural dynamics of the cephalopod-like elastic bladder and a model of the pulsed-jet thrust production. The bladder, or mantle, is modelled by means of geometrically exact, axisymmetric, nonlinear shell theory, which yields an accurate estimation of the forces involved in driving the deformation of the structure in water. By coupling these results with those from a standard thrust model, the behaviour of the vehicle propelling itself in water is derived. The constitutive laws of the shell are also exploited as control laws with the scope of replicating the muscle activation routine observed in cephalopods. The model is employed to test various shapes, material properties and actuation routines of the mantle. The results are compared in terms of speed performance in order to identify suitable design guidelines. Altogether, the model is tested in more than 50 configurations, eventually providing useful insight for the development of more advanced vehicles and bringing evidence of its reliability in studying the dynamics of both man-made cephalopod-inspired robots and live specimens.

  5. Design considerations for an intelligent mobile robot for mixed-waste inspection

    Energy Technology Data Exchange (ETDEWEB)

    Sias, F.R.; Dawson, D.M.; Schalkoff, R.J. [Clemson Univ., SC (United States). Dept. of Electrical and Computer Engineering; Byrd, J.S.; Pettus, R.O. [South Carolina Univ., Columbia, SC (United States). Dept. of Electrical and Computer Engineering

    1993-06-01

    Large quantities of low-level radioactive waste are stored in steel drums at various Department of Energy (DOE) sites in the United States. Much of the stored waste qualifies as mixed waste and falls under Environmental Protection Agency (EPA) regulations that require periodic inspection. A semi-autonomous mobile robot is being developed during Phase 1 of a DOE contract to perform the inspection task and consequently reduce the radiation exposure of inspection personnel to ALARA (as low as reasonably achievable). The nature of the inspection process, the resulting robot design requirements, and the current status of the project are the subjects of this paper.

  6. Design considerations for an intelligent mobile robot for mixed-waste inspection

    International Nuclear Information System (INIS)

    Sias, F.R.; Dawson, D.M.; Schalkoff, R.J.; Byrd, J.S.; Pettus, R.O.

    1993-01-01

    Large quantities of low-level radioactive waste are stored in steel drums at various Department of Energy (DOE) sites in the United States. Much of the stored waste qualifies as mixed waste and falls under Environmental Protection Agency (EPA) regulations that require periodic inspection. A semi-autonomous mobile robot is being developed during Phase 1 of a DOE contract to perform the inspection task and consequently reduce the radiation exposure of inspection personnel to ALARA (as low as reasonably achievable). The nature of the inspection process, the resulting robot design requirements, and the current status of the project are the subjects of this paper

  7. A remote telepresence robotic system for inspection and maintenance of a nuclear power plant

    International Nuclear Information System (INIS)

    Crane, C.D. III; Tulenko, J.S.

    1993-01-01

    Progress in reported in the areas of environmental hardening; database/world modeling; man-machine interface; development of the Advanced Liquid Metal Reactor (ALMR) maintenance inspection robot design; and Articulated Transporter/Manipulator System (ATMS) development

  8. Fault Tree Analysis for an Inspection Robot in a Nuclear Power Plant

    Science.gov (United States)

    Ferguson, Thomas A.; Lu, Lixuan

    2017-09-01

    The life extension of current nuclear reactors has led to an increasing demand on inspection and maintenance of critical reactor components that are too expensive to replace. To reduce the exposure dosage to workers, robotics have become an attractive alternative as a preventative safety tool in nuclear power plants. It is crucial to understand the reliability of these robots in order to increase the veracity and confidence of their results. This study presents the Fault Tree (FT) analysis to a coolant outlet piper snake-arm inspection robot in a nuclear power plant. Fault trees were constructed for a qualitative analysis to determine the reliability of the robot. Insight on the applicability of fault tree methods for inspection robotics in the nuclear industry is gained through this investigation.

  9. Underwater floating robot-fish: a comparative analysis of the results of mathematical modelling and full-scale tests of the prototype

    Directory of Open Access Journals (Sweden)

    Jatsun Sergey

    2017-01-01

    Full Text Available The article presents a comparative analysis of the results of computer mathematical modelling of the motion of the underwater robot-fish implemented by using the MATLAB / Simulink package and fullscale tests of an experimental model developed in the laboratory of mechatronics and robotics of the SouthWest State University.

  10. A Robotic System for Inspection and Repair of Small Diameter Pipelines

    Directory of Open Access Journals (Sweden)

    S. A. Vorotnikov

    2015-01-01

    Full Text Available This paper deals with the construction and control system of miniature robotic system that is designed to move and make inspection inside small diameter pipelines. It gives an overview of ways to move a microsize robotic system inside the small diameter pipe. The proposed design consists of information module and three traction modules, including modules for fixing, linear moving and angular positioning. This paper describes the design and operation of a robotic system and its different modules. Also are shown the structure of the robot control system, the basic calculations of construct and some simulation results of the individual modules of the robot.

  11. Genetic Optimization and Simulation of a Piezoelectric Pipe-Crawling Inspection Robot

    Science.gov (United States)

    Hollinger, Geoffrey A.; Briscoe, Jeri M.

    2004-01-01

    Using the DarwinZk development software, a genetic algorithm (GA) was used to design and optimize a pipe-crawling robot for parameters such as mass, power consumption, and joint extension to further the research of the Miniature Inspection Systems Technology (MIST) team. In an attempt to improve on existing designs, a new robot was developed, the piezo robot. The final proposed design uses piezoelectric expansion actuators to move the robot with a 'chimneying' method employed by mountain climbers and greatly improves on previous designs in load bearing ability, pipe traversing specifications, and field usability. This research shows the advantages of GA assisted design in the field of robotics.

  12. Kinematic analysis and simulation of a substation inspection robot guided by magnetic sensor

    Science.gov (United States)

    Xiao, Peng; Luan, Yiqing; Wang, Haipeng; Li, Li; Li, Jianxiang

    2017-01-01

    In order to improve the performance of the magnetic navigation system used by substation inspection robot, the kinematic characteristics is analyzed based on a simplified magnetic guiding system model, and then the simulation process is executed to verify the reasonability of the whole analysis procedure. Finally, some suggestions are extracted out, which will be helpful to guide the design of the inspection robot system in the future.

  13. A Novel Method of Autonomous Inspection for Transmission Line based on Cable Inspection Robot LiDAR Data

    Directory of Open Access Journals (Sweden)

    Xinyan Qin

    2018-02-01

    Full Text Available With the growth of the national economy, there is increasing demand for electricity, which forces transmission line corridors to become structurally complicated and extend to complex environments (e.g., mountains, forests. It is a great challenge to inspect transmission line in these regions. To address these difficulties, a novel method of autonomous inspection for transmission line is proposed based on cable inspection robot (CIR LiDAR data, which mainly includes two steps: preliminary inspection and autonomous inspection. In preliminary inspection, the position and orientation system (POS data is used for original point cloud dividing, ground point filtering, and structured partition. A hierarchical classification strategy is established to identify the classes and positions of the abnormal points. In autonomous inspection, CIR can autonomously reach the specified points through inspection planning. These inspection targets are imaged with PTZ (pan, tilt, zoom cameras by coordinate transformation. The feasibility and effectiveness of the proposed method are verified by test site experiments and actual line experiments, respectively. The proposed method greatly reduces manpower and improves inspection accuracy, providing a theoretical basis for intelligent inspection of transmission lines in the future.

  14. Design and construction of an in-pipe robot for inspection and maintenance

    KAUST Repository

    Sibai, Fadi N.

    2012-12-01

    Inspection and maintenance of aging pipelines is crucial to the reliable and continued distribution of hydrocarbons. In this paper, we describe the design and construction of a robotic platform for inspection and minor maintenance of pipelines. The 7.5 kg robotic platform was demonstrated to move straight inside 12″ to 16″ diameter pipes in a forward or backward direction, and either horizontally or vertically. The experimental robotic platform has three sets of two wheels, and three driving motors. The equations governing the mechanical frame\\'s component sizes are presented and the robotic frame component dimensions derived. The paper also discusses the construction and testing of the robot. Future work includes adding sensors, controls for turning, a microcontroller board, and a robotic arm for performing maintenance tasks. © 2012 IEEE.

  15. Design and construction of an in-pipe robot for inspection and maintenance

    KAUST Repository

    Sibai, Fadi N.; Sayegh, Amer Ahmed; Al-Taie, Ihsan

    2012-01-01

    Inspection and maintenance of aging pipelines is crucial to the reliable and continued distribution of hydrocarbons. In this paper, we describe the design and construction of a robotic platform for inspection and minor maintenance of pipelines. The 7.5 kg robotic platform was demonstrated to move straight inside 12″ to 16″ diameter pipes in a forward or backward direction, and either horizontally or vertically. The experimental robotic platform has three sets of two wheels, and three driving motors. The equations governing the mechanical frame's component sizes are presented and the robotic frame component dimensions derived. The paper also discusses the construction and testing of the robot. Future work includes adding sensors, controls for turning, a microcontroller board, and a robotic arm for performing maintenance tasks. © 2012 IEEE.

  16. Development of Pipe Holding Mechanism for Pipe Inspection Robot Using Flexible Pneumatic Cylinder

    Directory of Open Access Journals (Sweden)

    Choi Kyujun

    2016-01-01

    Full Text Available A pipe inspection robot is useful to reduce the inspection cost. In the previous study, a novel pipe inspection robot using a flexible pneumatic cylinder that can move forward along to the pipe by changing the robot’s body naturally was proposed and tested. In this paper, to improve its mobility for a corner of a pipe, the thin pipe holding mechanism using pneumatic bellows was proposed and tested. As a result of its driving test, the holding performance of the mechanism was confirmed.

  17. Pipe robots for internal inspection, non-destructive testing and machining of pipelines

    International Nuclear Information System (INIS)

    Reiss, Alexander

    2016-01-01

    Inspector Systems is a specialist in manufacturing of tethered self-propelled pipe robots for internal inspection, non-destructive testing and machining of pipeline systems. Our industrial sectors, which originates from 30 year experience in the nuclear industry, are Gas and Oil (On-/Offshore, Refineries), Chemical, Petrochemical, Water etc. The pipe robots are able to get inserted through poor access points (e.g. valves) and to pass in bi-directional travelling vertical sections and numerous bends with small arc radius. The paper describes the system concept and performance of the pipe robot technology. A modular construction allows to equip the robots with different operational elements for the respective application.

  18. Transfer system development for a remote inspection robot in nuclear power plants

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohnuma, M.; Hamada, K.; Mizutani, T.; Shimada, A.; Segawa, M.; Kubo, K.

    1984-01-01

    A remote operated robot system has been developed for inspection inside the primary containment vessel (PCV) of nuclear power plants. This system consists of an inspection vehicle, a monorail driving system, a signal transmission system, a power supply system and an operator console.. The system has two main features. First is that the operator can transfer the vehicle at any time from outside the PCV to inside or vice versa through a personnel airlock. The second feature is that the vehicle can be transported from one inspection route to another route at junction points. A prototype inspection robot system was fabricated on a trial basis. Running and inspection performances were confirmed utilizing actual size test apparatus

  19. Present state of inspection robot technology in nuclear power facilities. Case of fast breeder reactors

    International Nuclear Information System (INIS)

    Ara, Kuniaki

    1995-01-01

    In the maintenance works in nuclear power facilities such as checkup, inspection and repair, for the main purpose of radiation protection, remote operation technology was introduced since relatively early stage, and at present, the robots that carry out the inspection works for confirming the soundness of main equipment have been developed and put to practical use. At the time of introducing these technologies, in addition to the research and development of robots proper, the coordination with the design of plant machinery and equipment facilities as the premise of introducing robots is an important requirement. In this report, the present state of the development of remote inspection technology for fast breeder reactors is introduced, and the matters to which attention is paid in the plant design for introducing robots are explained. First, fast breeder reactors are described. The needs of robotizing and adopting remote operation in nuclear power facilities are explained, using the examples of the inspection system for a reactor vessel and the inspection system for steam generator heat transfer tubes. (K.I.)

  20. Robots take a hand in inspection, maintenance and repair

    International Nuclear Information System (INIS)

    Cruickshank, A.

    1985-01-01

    In the search for better economic performance through higher availability, utilities are beginning to look with interest at the uses of robotics. However, while some routine surveillance jobs may be amenable to existing commercial robot technology, most maintenance and repair tasks are not. A lot of work still needs to be done to develop robotic devices that can be employed effectively in the sometimes congested and inaccessible environments inside containments. (author)

  1. Robots take a hand in inspection, maintenance and repair

    Energy Technology Data Exchange (ETDEWEB)

    Cruickshank, A

    1985-04-01

    In the search for better economic performance through higher availability, utilities are beginning to look with interest at the uses of robotics. However, while some routine surveillance jobs may be amenable to existing commercial robot technology, most maintenance and repair tasks are not. A lot of work still needs to be done to develop robotic devices that can be employed effectively in the sometimes congested and inaccessible environments inside containments.

  2. Long-reach articulated robots for inspection and mini-invasive interventions in hazardous environments: Recent robotics research, qualification testing, and tool developments

    International Nuclear Information System (INIS)

    Perrot, Yann; Kammerer, Nolwenn; Measson, Yvan; Verney, Alexandre; Gargiulo, Laurent; Houry, Michael; Keller, Delphine; Piolain, Gerard

    2012-01-01

    The Interactive Robotics Laboratory of CEA LIST is in charge of the development of remote handling technologies to meet energy industry requirements. This paper reports the research and development activities in advanced robotics systems for inspection or light intervention in hazardous environments with limited access such as blind hot cells in the nuclear industry or the thermonuclear experimental Tokamak fusion reactor. A long-reach carrier robot called the articulated inspection arm (AIA) and diagnostics and tools for inspection or intervention are described. Finally experimental field tests are presented and actual challenges in modeling the robot's flexibilities are discussed. (authors)

  3. Development of an automatic reactor inspection system

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Eom, Heung Seop; Lee, Jae Cheol; Choi, Yoo Raek; Moon, Soon Seung

    2002-02-01

    Using recent technologies on a mobile robot computer science, we developed an automatic inspection system for weld lines of the reactor vessel. The ultrasonic inspection of the reactor pressure vessel is currently performed by commercialized robot manipulators. Since, however, the conventional fixed type robot manipulator is very huge, heavy and expensive, it needs long inspection time and is hard to handle and maintain. In order to resolve these problems, we developed a new automatic inspection system using a small mobile robot crawling on the vertical wall of the reactor vessel. According to our conceptual design, we developed the reactor inspection system including an underwater inspection robot, a laser position control subsystem, an ultrasonic data acquisition/analysis subsystem and a main control subsystem. We successfully carried out underwater experiments on the reactor vessel mockup, and real reactor ready for Ulchine nuclear power plant unit 6 at Dusan Heavy Industry in Korea. After this project, we have a plan to commercialize our inspection system. Using this system, we can expect much reduction of the inspection time, performance enhancement, automatic management of inspection history, etc. In the economic point of view, we can also expect import substitution more than 4 million dollars. The established essential technologies for intelligent control and automation are expected to be synthetically applied to the automation of similar systems in nuclear power plants

  4. Accurately Localize and Recognize Instruments with Substation Inspection Robot in Complex Environments

    Directory of Open Access Journals (Sweden)

    Hui Song

    2014-07-01

    Full Text Available This paper designs and develops an automatic detection system in the substation environment where complex and multi-inspecting objects exist. The inspection robot is able to fix and identify the objects quickly using a visual servo control system. This paper focuses on the analysis of fast lockup and recognition method of the substation instruments based on an improved Adaboost algorithm. The robot adjusts its position to the best view point and best resolution for the instrument in real-time. The dial and pointer of the instruments are detected with an improved Hough algorithm, and the angle of the pointer is converted to the corresponding readings. The experimental results indicate that the inspection robot can fix and identify the substation instruments quickly, and has a wide range of practical applications.

  5. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid

    Directory of Open Access Journals (Sweden)

    Bat-erdene Byambasuren

    2016-02-01

    Full Text Available Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.

  6. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid.

    Science.gov (United States)

    Byambasuren, Bat-Erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar

    2016-02-19

    Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.

  7. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok

    1997-07-01

    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs.

  8. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok.

    1997-07-01

    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs

  9. Operation of an ITER relevant inspection robot on Tore Supra tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Laurent [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)], E-mail: laurent.gargiulo@cea.fr; Bayetti, Pascal; Bruno, Vincent; Hatchressian, Jean-Claude; Hernandez, Caroline; Houry, Michael [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Keller, Delphine [CEA, LIST, Service de Robotique Interactive, F-92265 Fontenay aux Roses (France); Martins, Jean-Pierre [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Measson, Yvan; Perrot, Yann [CEA, LIST, Service de Robotique Interactive, F-92265 Fontenay aux Roses (France); Samaille, Frank [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2009-06-15

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. CEA has developed a multipurpose carrier able to realize deployments in the plasma vessel without breaking the Ultra High Vacuum (UHV) and temperature conditioning. A 6 years R and D programme was jointly conducted by CEA-LIST Interactive Robotics Unit and the Institute for Magnetic Fusion Research (IRFM) in order to demonstrate the feasibility and reliability of an in-vessel inspection robot relevant to ITER requirements. The Articulated Inspection Arm robot (AIA) is an 8-m long multilink carrier with a payload up to 10 kg operable between plasma under tokamak conditioning environment; its geometry allows a complete close inspection of Plasma Facing Components (PFCs) of the Tore Supra vessel. Different tools are being developed by CEA to be plugged at the front head of the carrier. The diagnostic presently in operation consists in a viewing system offering accurate visual inspection of PFCs. Leak detection of first wall based on helium sniffing and laser compact system for carbon co-deposited layers characterizations or treatments are also considered for demonstration. In April 2008, the AIA robot equipped with its vision diagnostic has realized a complete deployment into Tore Supra and the first closed inspection of the vessel under UHV conditions. During the upcoming experimental campaign, the same operation will be performed under relevant conditions (10{sup -6} Pa and 120 deg. C) after a conditioning phase at 200 deg. C to avoid outgassing pollution of the chamber. This paper describes the different steps of the project development, robot capabilities with the present operations conducted on Tore Supra and future requirements for making the robot a tool for tokamak routine operation.

  10. Selection of Shear Horizontal Wave Transducers for Robotic Nondestructive Inspection in Harsh Environments

    Directory of Open Access Journals (Sweden)

    Sungho Choi

    2016-12-01

    Full Text Available Harsh environments and confined spaces require that nondestructive inspections be conducted with robotic systems. Ultrasonic guided waves are well suited for robotic systems because they can provide efficient volumetric coverage when inspecting for various types of damage, including cracks and corrosion. Shear horizontal guided waves are especially well suited for robotic inspection because they are sensitive to cracks oriented perpendicular or parallel to the wave propagation direction and can be generated with electromagnetic acoustic transducers (EMATs and magnetostrictive transducers (MSTs. Both types of transducers are investigated for crack detection in a stainless steel plate. The MSTs require the robot to apply a compressive normal force that creates frictional force coupling. However, the coupling is observed to be very dependent upon surface roughness and surface debris. The EMATs are coupled through the Lorentz force and are thus noncontact, although they depend on the lift off between transducer and substrate. After comparing advantages and disadvantages of each transducer for robotic inspection the EMATs are selected for application to canisters that store used nuclear fuel.

  11. Design of the reactor vessel inspection robot for the advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and Oak Ridge National Laboratory designed a prototype wall-crawling robot to perform weld inspection in an advanced nuclear reactor. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a mock non-hostile environment and shown to perform as expected, as detailed in this report

  12. Design of underwater work systems

    International Nuclear Information System (INIS)

    Lovelace, R.B.

    1980-01-01

    In the near future, underwater vehicles will replace divers as the principal means for inspection and maintenance work. These vehicles will provide a maneuverable work platform for an underwater viewing system and manipulator/tool package. Some of the problems faced by the underwater designer, and some areas to consider in the design of an integrated underwater work system, are considered

  13. Analysis and optimization on in-vessel inspection robotic system for EAST

    International Nuclear Information System (INIS)

    Zhang, Weijun; Zhou, Zeyu; Yuan, Jianjun; Du, Liang; Mao, Ziming

    2015-01-01

    Since China has successfully built her first Experimental Advanced Superconducting TOKAMAK (EAST) several years ago, great interest and demand have been increasing in robotic in-vessel inspection/operation systems, by which an observation of in-vessel physical phenomenon, collection of visual information, 3D mapping and localization, even maintenance are to be possible. However, it has been raising many challenges to implement a practical and robust robotic system, due to a lot of complex constraints and expectations, e.g., high remanent working temperature (100 °C) and vacuum (10"−"3 pa) environment even in the rest interval between plasma discharge experiments, close-up and precise inspection, operation efficiency, besides a general kinematic requirement of D shape irregular vessel. In this paper we propose an upgraded robotic system with redundant degrees of freedom (DOF) manipulator combined with a binocular vision system at the tip and a virtual reality system. A comprehensive comparison and discussion are given on the necessity and main function of the binocular vision system, path planning for inspection, fast localization, inspection efficiency and success rate in time, optimization of kinematic configuration, and the possibility of underactuated mechanism. A detailed design, implementation, and experiments of the binocular vision system together with the recent development progress of the whole robotic system are reported in the later part of the paper, while, future work and expectation are described in the end.

  14. Analysis and optimization on in-vessel inspection robotic system for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weijun, E-mail: zhangweijun@sjtu.edu.cn; Zhou, Zeyu; Yuan, Jianjun; Du, Liang; Mao, Ziming

    2015-12-15

    Since China has successfully built her first Experimental Advanced Superconducting TOKAMAK (EAST) several years ago, great interest and demand have been increasing in robotic in-vessel inspection/operation systems, by which an observation of in-vessel physical phenomenon, collection of visual information, 3D mapping and localization, even maintenance are to be possible. However, it has been raising many challenges to implement a practical and robust robotic system, due to a lot of complex constraints and expectations, e.g., high remanent working temperature (100 °C) and vacuum (10{sup −3} pa) environment even in the rest interval between plasma discharge experiments, close-up and precise inspection, operation efficiency, besides a general kinematic requirement of D shape irregular vessel. In this paper we propose an upgraded robotic system with redundant degrees of freedom (DOF) manipulator combined with a binocular vision system at the tip and a virtual reality system. A comprehensive comparison and discussion are given on the necessity and main function of the binocular vision system, path planning for inspection, fast localization, inspection efficiency and success rate in time, optimization of kinematic configuration, and the possibility of underactuated mechanism. A detailed design, implementation, and experiments of the binocular vision system together with the recent development progress of the whole robotic system are reported in the later part of the paper, while, future work and expectation are described in the end.

  15. Completion of development of robotics systems for inspecting unpiggable transmission pipelines.

    Science.gov (United States)

    2013-02-01

    This document presents the final report for a program focusing on the completion of the : research, development and demonstration effort, which was initiated in 2001, for the : development of two robotic systems for the in-line, live inspection of un...

  16. Basic maneuvers for an inspection robot for small diameter gas distribution mains

    NARCIS (Netherlands)

    Dertien, Edwin Christian; Stramigioli, Stefano

    2011-01-01

    This video shows the design of a mechanical structure of a miniature pipe inspection robot (MPR) capable of moving trough very small pipes (up to 41 mm inner diameter) as well as a wide range of diameters (63 to 125 mm outer diameter). The requirement to negotiate bends, T-joints and steep

  17. A Collaborative Approach for Surface Inspection Using Aerial Robots and Computer Vision

    Directory of Open Access Journals (Sweden)

    Martin Molina

    2018-03-01

    Full Text Available Aerial robots with cameras on board can be used in surface inspection to observe areas that are difficult to reach by other means. In this type of problem, it is desirable for aerial robots to have a high degree of autonomy. A way to provide more autonomy would be to use computer vision techniques to automatically detect anomalies on the surface. However, the performance of automated visual recognition methods is limited in uncontrolled environments, so that in practice it is not possible to perform a fully automatic inspection. This paper presents a solution for visual inspection that increases the degree of autonomy of aerial robots following a semi-automatic approach. The solution is based on human-robot collaboration in which the operator delegates tasks to the drone for exploration and visual recognition and the drone requests assistance in the presence of uncertainty. We validate this proposal with the development of an experimental robotic system using the software framework Aerostack. The paper describes technical challenges that we had to solve to develop such a system and the impact on this solution on the degree of autonomy to detect anomalies on the surface.

  18. Autonomous navigation system for mobile robots of inspection; Sistema de navegacion autonoma para robots moviles de inspeccion

    Energy Technology Data Exchange (ETDEWEB)

    Angulo S, P. [ITT, Metepec, Estado de Mexico (Mexico); Segovia de los Rios, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: pedrynteam@hotmail.com

    2005-07-01

    One of the goals in robotics is the human personnel's protection that work in dangerous areas or of difficult access, such it is the case of the nuclear industry where exist areas that, for their own nature, they are inaccessible for the human personnel, such as areas with high radiation level or high temperatures; it is in these cases where it is indispensable the use of an inspection system that is able to carry out a sampling of the area in order to determine if this areas can be accessible for the human personnel. In this situation it is possible to use an inspection system based on a mobile robot, of preference of autonomous navigation, for the realization of such inspection avoiding by this way the human personnel's exposure. The present work proposes a model of autonomous navigation for a mobile robot Pioneer 2-D Xe based on the algorithm of wall following using the paradigm of fuzzy logic. (Author)

  19. Design and implementation of motion planning of inspection and maintenance robot for ITER-like vessel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng; Lai, Yinping [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Cao, Qixin [Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-12-15

    Robot motion planning is a fundamental problem to ensure the robot executing the task without clashes, fast and accurately in a special environment. In this paper, a motion planning of a 12 DOFs remote handling robot used for inspecting the working state of the ITER-like vessel and maintaining key device components is proposed and implemented. Firstly, the forward and inverse kinematics are given by analytic method. The work space and posture space of this manipulator are both considered. Then the motion planning is divided into three stages: coming out of the cassette mover, moving along the in-vessel center line, and inspecting the D-shape section. Lastly, the result of experiments verified the performance of the motion design method. In addition, the task of unscrewing/screwing the screw demonstrated the feasibility of system in function.

  20. Some advanced concepts of mobile robotics for plant inspection and maintenance

    International Nuclear Information System (INIS)

    Halme, A.

    1994-01-01

    The paper introduces two concepts in robotics the feasibility of which are presently being studied for plant inspection/maintenance purposes. One of them is a walking machine platform which utilizes walking on discrete set of points making it possible to feed energy trough legs and/or grip on fixing points when needing strong support or climbing on walls. The other is a robot society concept in which the work is distributed among the member robots of the society. The society has an inner communication system trough which information is spread between the members. The control system of the society takes care of the task coordination and communication between the society and the user. As a special feature energy distribution within the society is considered. The concept is suggested for inspection and cleaning type of work in process equipment area and also inside processes in some cases. (author)

  1. A Vision-Based Self-Calibration Method for Robotic Visual Inspection Systems

    Science.gov (United States)

    Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua

    2013-01-01

    A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system. PMID:24300597

  2. Development of the robot for pressurizer electric heater inspection and repairing

    International Nuclear Information System (INIS)

    Jung, Seung Ho; Kim, Seung Ho; Su, Yong Chil

    1999-01-01

    In this study a robot system has been developed for inspection and maintenance of the pressurizer and the rod heaters. The developed robot system consists of four parts: two links, a support frame, a movable gripper, and a controller box. The robot is attached on the support frame, which is attached at the man-way flange of the pressurizer such that the robot is positioned inside pressurizer. To access arbitrary heater, at first two links horizontally rotate, and then the gripper suspended by two steel wires moves up and down by turing wire drum because the rod heaters are located about 8 meters under the robot and are arranged in two circular rows. The robot must be designed under several constraints such as its weight and collision with pressurized wall or spray nozzle because the robot is positioned and moves inside the pressurizer. To verify that the designed robot is free from collision during installation procedure and it can access any desired rod heater, it is simulated by 3-dimensional graphic software (RobCAD). For evaluating stress of the support frame finite element analysis is performed by using the ANSYS code

  3. Development of the robot for pressurizer electric heater inspection and repairing

    International Nuclear Information System (INIS)

    Jung, Seung Ho; Kim, Seung Ho; Su, Yong Chil

    1998-01-01

    In this study a robot system has been developed for inspection and maintenance of the pressurizer and the rod heater. The developed robot system consists of four parts: two links, a support frame, a movable gripper, and a controller box. The robot is attached on the support frame, which is attached at the man-way flange of the pressurizer such that the robot is positioned inside pressurizer. To access arbitrary heater, at first two links horizontally rotate, and then the gripper suspended by two steel wires moves up and down by turing wire drum because the rod heaters are located about 8 meters under the robot and are arranged in two circular rows. The robot must be designed under several constraint such as its weight and collision with pressurizer wall or spray nozzle because the robot is positioned and moves inside the pressurizer. To verify that the designed robot is free from collision during installation procedure and it can access any desired rod heater, it is simulated by 3-dimensional graphic software (RobCAD). For evaluating stress of the support frame finite element analysis is performed by using the ANSYS code. For gripping the rod heater the passive self-locking mechanism is adopted, which is made up three balls and springs. Because the mechanism is very simple, it is very hardly defected than that adopted motor. (author). 11 refs., 8 tabs., 13 figs

  4. Autonomous Inspection Robot for Power Transmission Lines Maintenance While Operating on the Overhead Ground Wires

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2010-12-01

    Full Text Available This paper describes the development of a mobile robot capable of clearing such obstacles as counterweights, anchor clamps, and torsion tower. The mobile robot walks on overhead ground wires in 500KV power tower. Its ultimate purpose is to automate to inspect the defect of power transmission line. The robot with 13 motors is composed of two arms, two wheels, two claws, two wrists, etc. Each arm has 4 degree of freedom. Claws are also mounted on the arms. An embedded computer based on PC/104 is chosen as the core of control system. Visible light and thermal infrared cameras are installed to obtain the video and temperature information, and the communication system is based on wireless LAN TCP/IP protocol. A prototype robot was developed with careful considerations of mobility. The new sensor configuration is used for the claw to grasp the overhead ground wires. The bridge is installed in the torsion tower for the robot easy to cross obstacles. The new posture plan is proposed for obstacles cleaning in the torsion tower. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  5. Autonomous Inspection Robot for Power Transmission Lines Maintenance While Operating on the Overhead Ground Wires

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2011-01-01

    Full Text Available This paper describes the development of a mobile robot capable of clearing such obstacles as counterweights, anchor clamps, and torsion tower. The mobile robot walks on overhead ground wires in 500KV power tower. Its ultimate purpose is to automate to inspect the defect of power transmission line. The robot with 13 motors is composed of two arms, two wheels, two claws, two wrists, etc. Each arm has 4 degree of freedom. Claws are also mounted on the arms. An embedded computer based on PC/104 is chosen as the core of control system. Visible light and thermal infrared cameras are installed to obtain the video and temperature information, and the communication system is based on wireless LAN TCP/IP protocol. A prototype robot was developed with careful considerations of mobility. The new sensor configuration is used for the claw to grasp the overhead ground wires. The bridge is installed in the torsion tower for the robot easy to cross obstacles. The new posture plan is proposed for obstacles cleaning in the torsion tower. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  6. Conceptual design of an in-vessel inspection robotic system for Tokamak environment

    International Nuclear Information System (INIS)

    Kumar, Prabhat; Raju, Daniel; Ranjan, Vaibhav; Patel, Prateek; Dave, Jatinkumar; Naik, Mehul

    2013-01-01

    An in-vessel inspection robotic system has been conceptualized for operation inside a tokamak vessel. The robotic system is envisaged to comprise of a robotic arm, end-effector, microcontroller and wireless communication system. The end-effector is envisaged to be a special purpose camera for in-situ inspection between plasma shots. The three-link robotic arm, designed for ITER-like environment, has 4 revolute joints- 3 providing manipulation in poloidal plane and the fourth one providing limited movement in adjacent toroidal planes. This paper provides the conceptual design of the system along with kinematic analysis of robotic arm. Solutions have been derived for forward and inverse kinematic models and the Jacobian matrix for the robotic arm linkage. In forward kinematic model, given a set of joint-link parameters, the position and orientation of end-effector are determined with respect to a reference frame. In inverse kinematic model, given the specified position and orientation of end-effector with respect to a reference frame, a set of joint variables are derived that would bring the end-effector into the required posture. Using Jacobian matrix, the relation between the end-effector velocity and the joint velocity of a manipulator is obtained i.e. given the individual joint velocity; the end-effector velocity is obtained. A CAD model has been generated using CATIA to simulate the kinematic model and carry out computational stress analysis. (author)

  7. Waste tank inspection and characterization with automated UT and robotics

    International Nuclear Information System (INIS)

    McIntosh, J.B.

    1994-01-01

    Equipment and Materials Technology (E ampersand MT of the Westinghouse Savannah river Company) has developed a robotic system to deliver an ultrasonic transducer to the wall of underground storage tanks (USTs). The system is designed to meet the physical and environmental constraints of the USTs and will provide the ability to visually survey the wall, clean the surface and ultrasonically map the wall thickness

  8. Outer navigation of a inspection robot by means of feedback of global guidance

    International Nuclear Information System (INIS)

    Segovia de los R, A.; Bucio V, F.; Garduno G, M.

    2008-01-01

    The objective of this article is the presentation of an inspection system to mobile robot navigating in exteriors by means of the employment of a feedback of instantaneous guidance with respect to a global reference throughout moment of the displacement. The robot evolves obeying the commands coming from the one tele operator which indicates the diverse addresses by means of the operation console that the robot should take using for it information provided by an electronic compass. The mobile robot employee in the experimentations is a Pioneer 3-AT, which counts with a sensor series required to obtain an operation of more autonomy. The electronic compass offers geographical information coded in a format SPI, reason for which a micro controller (μC) economic of general use has been an employee for to transfer the information to the format RS-232, originally used by the Pioneer 3-AT. The orientation information received by the robot by means of their serial port RS-232 secondary it is forwarded to the computer hostess in the one which a program Java is used to generate the commands for the robot navigation control and to deploy one graphic interface user utilized to receive the order of the operator. This research is part of an ambitious project in which it is tried to count on an inspection system and monitoring of sites in which risks of high radiation levels could exist, thus a navigation systems in exteriors could be very useful. The complete system will count besides the own sensors of the robot, with certain numbers of agree sensors to the variables that are desired to monitor. The resulting values of such measurements will be visualized in real time in the graphic interface user, thanks to a bidirectional wireless communication among the station of operation and the mobile robot. (Author)

  9. Eddy Currents Inspection of CANDU Steam Generator Tubes using Zetec's ZR-1 Robot. Experience in Romania

    International Nuclear Information System (INIS)

    Scott Hower; Luiza Vladu; Adrian Nichisov; Mihai Cretu

    2006-01-01

    Full text of publication follows: The commercial operation of Unit 1 of Cernavoda NPP started on 2 December, 1996. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium. The nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant has four CANDU - design steam generators that have been in service since 1996. The paper introduces the new ZR-1 Robot System for Inspection and Maintenance/Repair from Zetec that combines the newest state-of-the-art robotics technology with Zetec experience - based innovation to address the needs for inspection and repair of steam generators. The multipurpose ZR-1 can be easily installed to perform the necessary eddy current inspection and remain installed ready for follow-up maintenance and repair. It has superior technical performances and a modular three axis motion of arm that enables 100% coverage of tube sheet. Automated, repeatable, and precise positioning of tool heads ensures accurate delivery and reducing costly rework and reduces inspection time by 30%. The modular, light weight, and portable design permits easy assembly and disassembly through small openings and it reduces setup/tear down time by 30%. The first deployment of the new ZR-1 Robot was made in September 2004 at the Cernavoda NPP inspection outage. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium; the nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant Unit 1 has four CANDU - design steam generators that have been in service since 1996. The paper presents also the Zetec's field experience and customer experience with this system. It describes the equipment setup in Cernavoda's steam generators mock-up, functional tests and calibration. Finally, provides details on the execution of the inspection, options for standardizing the inspection techniques and conclusions. (authors)

  10. Introduction to autonomous manipulation case study with an underwater robot, SAUVIM

    CERN Document Server

    Marani, Giacomo

    2014-01-01

    “Autonomous manipulation” is a challenge in robotic technologies. It refers to the capability of a mobile robot system with one or more manipulators that performs intervention tasks requiring physical contacts in unstructured environments and without continuous human supervision. Achieving autonomous manipulation capability is a quantum leap in robotic technologies as it is currently beyond the state of the art in robotics. This book addresses issues with the complexity of the problems encountered in autonomous manipulation including representation and modeling of robotic structures, kinematic and dynamic robotic control, kinematic and algorithmic singularity avoidance, dynamic task priority, workspace optimization and environment perception. Further development in autonomous manipulation should be able to provide robust improvements of the solutions for all of the above issues. The book provides an extensive tract on sensory-based autonomous manipulation for intervention tasks in unstructured environment...

  11. An Adaptive Approach for Precise Underwater Vehicle Control in Combined Robot-Diver Operations

    Science.gov (United States)

    2015-03-01

    and Nicosia and Tomei [13] focused on industrial applications involving robotic manipulator arms carrying various loads. The application of...1987. 94 [13] S. Nicosia and P. Tomei, “Model reference adaptive control algorithms for industrial robots ,” Automatica, vol. 20, pp. 635–644, 9... kinematic and dynamic properties,” The International Journal of Robotics Research, vol. 25, pp. 283–296, March 01, 2006. [17] A. Sanei and M. French

  12. Potential application of nuclear remote-handling technology to underwater inspection and maintenance

    International Nuclear Information System (INIS)

    Eccleston, M.J.

    1990-01-01

    Examples are given of remote handling equipment developed within the nuclear industry and employing telemanipulative or telerobotic principles. In telerobotics the nuclear industry has been following a trend towards increased levels of autonomy, delegating operator control to a computer, for example, in resolved rate manipulator tip control, teach-and-repeat control and collision avoidance. Illustrations are presented of remote-handling techniques from the nuclear industry which may be carried over into undersea remote inspection, maintenance and repair systems. (author)

  13. Inspection, maintenance, and repair of large pumps and piping systems using advanced robotic tools

    International Nuclear Information System (INIS)

    Lewis, R.K.; Radigan, T.M.

    1998-01-01

    Operating and maintaining large pumps and piping systems can be an expensive proposition. Proper inspections and monitoring can reduce costs. This was difficult in the past, since detailed pump inspections could only be performed by disassembly and many portions of piping systems are buried or covered with insulation. Once these components were disassembled, a majority of the cost was already incurred. At that point, expensive part replacement usually took place whether it was needed or not. With the completion of the Pipe Walkertrademark/LIP System and the planned development of the Submersible Walkertrademark, this situation is due to change. The specifications for these inspection and maintenance robots will ensure that. Their ability to traverse both horizontal and vertical, forward and backward, make them unique tools. They will open the door for some innovative approaches to inspection and maintenance of large pumps and piping systems

  14. Mobile robot for power plant inspection and maintenance

    International Nuclear Information System (INIS)

    White, J.R.; Farnstrom, K.A.; Harvey, H.W.; Upton, R.G.; Walker, K.L.

    1988-01-01

    An all-terrain, mobile robot (called SURBOT-T) has been developed to perform remote visual, sound, and radiation surveillance within contaminated areas of nuclear power plants. The robot can be equipped with a two-armed, telerobotic manipulator system to perform remote maintenance work. The SURBOT-T vehicle has a double-articulating track base that is capable of climbing 45-deg slopes and stairs and over 16-in.-high obstacles. The overall size of SURBOT-T is 28 in. wide by 38 in. long with the front and rear tracks raised and 52 in. high with the camera lowered. With the tracks in a level position, the base provides a sturdy work platform and can ascend/descend stairs without fear of tipping over. The track can be pivoted straight down to elevate the base 14 in. and pass through water up to 24 in. deep. All motors, amplifiers, computer boards, and other electronic components are contained within a sealed housing. The color television camera, spotlight, and directional microphone are mounted on a pan/tilt, which is attached to an elevating mechanism that has 8 ft of vertical travel. An air sampler, radiation detector, and temperature/humidity probe are mounted on the vehicle. The slave manipulator arms on the vehicle can be teleoperated using master arms that are attached to a portable stand near the control console. They can also be taught to perform motions or tasks by computer control much like robot arms in the automated manufacturing industry

  15. Control system of the inspection robots group applying auctions and multi-criteria analysis for task allocation

    Science.gov (United States)

    Panfil, Wawrzyniec; Moczulski, Wojciech

    2017-10-01

    In the paper presented is a control system of a mobile robots group intended for carrying out inspection missions. The main research problem was to define such a control system in order to facilitate a cooperation of the robots resulting in realization of the committed inspection tasks. Many of the well-known control systems use auctions for tasks allocation, where a subject of an auction is a task to be allocated. It seems that in the case of missions characterized by much larger number of tasks than number of robots it will be better if robots (instead of tasks) are subjects of auctions. The second identified problem concerns the one-sided robot-to-task fitness evaluation. Simultaneous assessment of the robot-to-task fitness and task attractiveness for robot should affect positively for the overall effectiveness of the multi-robot system performance. The elaborated system allows to assign tasks to robots using various methods for evaluation of fitness between robots and tasks, and using some tasks allocation methods. There is proposed the method for multi-criteria analysis, which is composed of two assessments, i.e. robot's concurrency position for task among other robots and task's attractiveness for robot among other tasks. Furthermore, there are proposed methods for tasks allocation applying the mentioned multi-criteria analysis method. The verification of both the elaborated system and the proposed tasks' allocation methods was carried out with the help of simulated experiments. The object under test was a group of inspection mobile robots being a virtual counterpart of the real mobile-robot group.

  16. The Development of a Radiation Hardened Robot for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil (and others)

    2007-04-15

    We has been developed two remotely controlled robotic systems. One is a underwater vehicle for inspection of the internal structures of PWRs and retrieving foreign stubs in the reactor pressure vessels and reactor coolant pipes. The other robotic system consists of a articulated-type mobile robot capable of recovering the failure of the fuel exchange machine and a mini modular mobile robot for inspection of feeder pipes with ultrasonic array sensors in PHWRs. The underwater robot has been designed by considering radiation effect, underwater condition, and accessibility to the working area. The size of underwater robot is designed to enter the cold legs. A extendable manipulator is mounted on the mobile robot, which can restore nuclear fuel exchange machine. The mini modular mobile robot is composed of dual inch worm mechanisms, which are constructed by two gripper bodies that can fix the robot body on to the pipe and move along the longitudinal and to rotate in a circumferential direction to access all of the outer surfaces of the pipe.

  17. Robotized system for in-pipe inspection using pressure tolerant electronics technique

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ramon R; Hsu, Liu; Peixoto, Alessandro J; Gomes, Luiz P.C.S. [Coordenacao dos Programas de Pos-graduacao de Engenharia (UFRJ/COPPE), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Eletrica. Grupo de Simulacao e Controle em Automacao e Robotica (GSCAR)]. E-mail: ramon, liu, jacoud, lpgomes@coep.ufrj.br; Reis, Ney R.S. dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Lab. de Robotica]. E-mail: salvireis@cenpes.petrobras.com.br

    2003-07-01

    This paper reports the development and experimental evaluation of a robotized system devised to perform two kinds of measurements inside a pipeline: the thickness of the internal wall painting layer and the internal radius. The thickness measurement allows the inspection of the painting layer quality and by measuring several radii it is possible to estimate the pipeline transversal section shape. The proposed scheme is shown to yield very satisfactory results on an actual 14'' (inches) pipeline in a real site. (author)

  18. Evaluation of effectiveness of monorail type inspection robot at nuclear power plant

    International Nuclear Information System (INIS)

    Nakagawa, Katsuei; Kimura, Motohiko; Ito, Takao; Sasaki, Keiichi.

    1991-01-01

    An inspection robot, with a TV camera, infrared camera and microphone as sensors, was tentatively installed in the main steam tunnel room of Kashiwazaki-Kariwa N.P.S. no.1 to evaluate its effectiveness in actual plant use. After a one and a half-year run, it appeared to have the ability to perform daily patrol tasks inplace of human beings. (author)

  19. Designing and implementing transparency for real time inspection of autonomous robots

    Science.gov (United States)

    Theodorou, Andreas; Wortham, Robert H.; Bryson, Joanna J.

    2017-07-01

    The EPSRC's Principles of Robotics advises the implementation of transparency in robotic systems, however research related to AI transparency is in its infancy. This paper introduces the reader of the importance of having transparent inspection of intelligent agents and provides guidance for good practice when developing such agents. By considering and expanding upon other prominent definitions found in literature, we provide a robust definition of transparency as a mechanism to expose the decision-making of a robot. The paper continues by addressing potential design decisions developers need to consider when designing and developing transparent systems. Finally, we describe our new interactive intelligence editor, designed to visualise, develop and debug real-time intelligence.

  20. Variable geometry truss manipulators: A new type of robot for site inspection and remediation

    International Nuclear Information System (INIS)

    Naccarato, F.

    1996-01-01

    A new type of robotic manipulator has been developed that offers many potential advantages over conventional robot arms for site inspection and remediation. This new robot is based on the variable geometry truss manipulator (VGTM) concept which combines the structural properties of a truss with the dexterous capabilities of a manipulator. By substituting linear actuators for some of the fixed-length members within a truss, the structure can be made to change its overall shape. By coordinating the motion of these actuators appropriately, a VGTM can perform tasks that are relevant to hazardous waste clean-up, including deployment through curved ducts, probing into crevices and obstacle avoidance. Trussarm trademark, a prototype VGTM with twelve degrees-of-freedom, has been constructed by Dynacon Enterprises Limited

  1. A Mobile Robotic System for the Inspection and Repair of SG Tubes in NPPs

    Directory of Open Access Journals (Sweden)

    Yong-Chil Seo

    2016-04-01

    Full Text Available The reliability and performance of a steam generator (SG is one of the serious concerns in the operation of pressurized water nuclear power plants. Because of high levels of radiation, robotic systems have been used to inspect and repair SG tubes. In this paper, we present a mobile robotic system that positions the inspection and repair tools while hanging down from the tube sheets where the tubes are fixed. All of the driving mechanisms of the mobile robot are actuated by electric motors to start its works, providing that the electric power is prepared without the additional need for an on-site air services. A special tube-holding mechanism with a high holding force has been developed to prevent falling from the tube sheets, even in the case of an electric power failure. We have also developed a quick installation guide device that guides the mobile robot to desired initial positions in the tube sheet exactly and quickly, which helps to reduce the radiation exposure of human workers during the installation work. This paper also provides on-site experimental results and lessons learned.

  2. ITER Articulated Inspection Arm (AIA): Geometric calibration issues of a long-reach flexible robot

    International Nuclear Information System (INIS)

    Arhur, D.; Perrot, Y.; Bidard, C.; Friconneau, J.P.; Palmer, J.D.; Semeraro, L.

    2005-01-01

    This paper is part of the Remote Handling (RH) activities for the future fusion reactor ITER. Specifically it relates to the possibility to carry out close inspection tasks of the Vacuum Vessel first wall using a long reach robot called the 'Articulated Inspection Arm' (AIA). Early studies for this device identified the need of improving the accuracy of the end-effector position in such robot structures. Therefore, the aim of this R and D program performed under the European Fusion Development Agreement (EFDA) work program is to develop a flexible parametric model with localised compliances of an AIA-like system, in order to compensate for its flexibilities. The geometric calibration is performed using a non-linear multivariable optimisation technique, which minimizes the average error between the simulated and real robot position. The optimised set of parameters, tested on the first segment of the robot, enables to divide by 3 the error on the end-effector position, in comparison to a rigid model. We expect better prediction after mechanical improvements to reduce the serious backlash in the joints. The prediction model applied to the whole arm will enable errors to be reduced from more than 1 m, in some configurations, to a final accuracy of a few centimetres

  3. Robotic system for remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1990-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO), operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE). WINCO's mission is to process government owned spent nuclear fuel. The process involves dissolving the fuel and extracting off uranium. The waste from this process is temporarily stored at the ICPP in underground storage tanks. The tanks were put in service between 1953 and 1966 and are operating 10 to 15 years beyond their design life. Five of the tanks will be replaced by 1998. The integrity of the remaining six tanks must be verified to continue their use until they can be replaced at a later data. In order to verify the tank integrity, a complete corrosion analysis must be performed. This analysis will require a remote visual inspection of the tank surfaces

  4. X-ray computed tomography reconstruction on non-standard trajectories for robotized inspection

    International Nuclear Information System (INIS)

    Banjak, Hussein

    2016-01-01

    The number of industrial applications of computed tomography (CT) is large and rapidly increasing with typical areas of use in the aerospace, automotive and transport industry. To support this growth of CT in the industrial field, the identified requirements concern firstly software development to improve the reconstruction algorithms and secondly the automation of the inspection process. Indeed, the use of robots gives more flexibility in the acquisition trajectory and allows the control of large and complex objects, which cannot be inspected using classical CT systems. In this context of new CT trend, a robotic platform has been installed at CEA LIST to better understand and solve specific challenges linked to the robotization of the CT process. The considered system integrates two robots that move the X-ray generator and detector. This thesis aims at achieving this new development. In particular, the objective is to develop and implement analytical and iterative reconstruction algorithms adapted to such robotized trajectories. The main focus of this thesis is concerned with helical-like scanning trajectories. We consider two main problems that could occur during acquisition process: truncated and limited-angle data. We present in this work experimental results for reconstruction on such non-standard trajectories. CIVA software is used to simulate these complex inspections and our developed algorithms are integrated as reconstruction tools. This thesis contains three parts. In the first part, we introduce the basic principles of CT and we present an overview of existing analytical and iterative algorithms for non-standard trajectories. In the second part, we modify the approximate helical FDK algorithm to deal with transversely truncated data and we propose a modified FDK algorithm adapted to reverse helical trajectory with the scan range less than 360 degrees. For iterative reconstruction, we propose two algebraic methods named SART-FISTA-TV and DART

  5. Development of a light weighted mobile robot for SG tube inspection in NPP

    International Nuclear Information System (INIS)

    Seo, Yong Chil; Jeong, Kyung Min; Shin, Hochul; Gweng, Jung Ju; Lee, Sung Uk; Jeong, Seung Ho; Choi, Young Soo; Kim, Seung Ho; Shin, Chun Sup; Park, Ki Tae

    2012-01-01

    Steam generators (SG) are among the most critical components of pressurized water Nuclear Power Plants (NPP). SG tubes must provide a reliable pressure boundary between the primary and secondary cooling water, because any leakage from tube defects could result in the release of radioactivity to the environment. Thus degradations of steam generators tubes should be monitored and inspected periodically under nuclear regulation. In service inspections of SG tubes are carried out using eddy current test (ECT) and the defected tubes are usually plugged. Because the radioactivity in the internal SG chambers limits free access of human workers, remote manipulators are required. In South Korea, Manipulators such as the Zet ec SM series and the Westinghouse ROSA series have bee used. Such manipulators are rigidly mounted to man ways or tube sheets of SG. Confusions of the inspected tubes may occur from deflection of the manipulators. To reduce the deflections of the manipulators for covering the large working areas of tube sheets, sufficient rigidity is required and that leads to an increase of the weight. Such weight increase results in some difficulties for handling and more radiation exposure of human workers. Recently light weighed mobile robots have been introduced by Westinghouse and Zet ec. The robots can move keeping in contact with the tube sheets using devices which are commonly called cam locks. They are easier to handle and provide no confusion for the position of the inspected tubes. But when the clamping forces are loosed accidentally, they can be fall down and light repair works can be performed. This paper provides the design results for a lightweight mobile robot which is being developed in cooperation of our institutes

  6. Development of a light weighted mobile robot for SG tube inspection in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Yong Chil; Jeong, Kyung Min; Shin, Hochul; Gweng, Jung Ju; Lee, Sung Uk; Jeong, Seung Ho; Choi, Young Soo; Kim, Seung Ho [KAERI, Daejeon (Korea, Republic of); Shin, Chun Sup; Park, Ki Tae [Korea Plant Service and Engineering, Busan (Korea, Republic of)

    2012-10-15

    Steam generators (SG) are among the most critical components of pressurized water Nuclear Power Plants (NPP). SG tubes must provide a reliable pressure boundary between the primary and secondary cooling water, because any leakage from tube defects could result in the release of radioactivity to the environment. Thus degradations of steam generators tubes should be monitored and inspected periodically under nuclear regulation. In service inspections of SG tubes are carried out using eddy current test (ECT) and the defected tubes are usually plugged. Because the radioactivity in the internal SG chambers limits free access of human workers, remote manipulators are required. In South Korea, Manipulators such as the Zet ec SM series and the Westinghouse ROSA series have bee used. Such manipulators are rigidly mounted to man ways or tube sheets of SG. Confusions of the inspected tubes may occur from deflection of the manipulators. To reduce the deflections of the manipulators for covering the large working areas of tube sheets, sufficient rigidity is required and that leads to an increase of the weight. Such weight increase results in some difficulties for handling and more radiation exposure of human workers. Recently light weighed mobile robots have been introduced by Westinghouse and Zet ec. The robots can move keeping in contact with the tube sheets using devices which are commonly called cam locks. They are easier to handle and provide no confusion for the position of the inspected tubes. But when the clamping forces are loosed accidentally, they can be fall down and light repair works can be performed. This paper provides the design results for a lightweight mobile robot which is being developed in cooperation of our institutes.

  7. Design and implementation of visual inspection system handed in tokamak flexible in-vessel robot

    International Nuclear Information System (INIS)

    Wang, Hesheng; Xu, Lifei; Chen, Weidong

    2016-01-01

    In-vessel viewing system (IVVS) is a fundamental tool among the remote handling systems for ITER, which is used to providing information on the status of the in-vessel components. The basic functional requirement of in-vessel visual inspection system is to perform a fast intervention with adequate optical resolution. In this paper, we present the software and hardware solution, which is designed and implemented for tokamak in-vessel viewing system that installed on end-effector of flexible in-vessel robot working under vacuum and high temperature. The characteristic of our in-vessel viewing system consists of two parts: binocular heterogeneous vision inspection tool and first wall scene emersion based augment virtuality. The former protected with water-cooled shield is designed to satisfy the basic functional requirement of visual inspection system, which has the capacity of large field of view and high-resolution for detection precision. The latter, achieved by overlaying first wall tiles images onto virtual first wall scene model in 3D virtual reality simulation system, is designed for convenient, intuitive and realistic-looking visual inspection instead of viewing the status of first wall only by real-time monitoring or off-line images sequences. We present the modular division of system, each of them in smaller detail, and go through some of the design choices according to requirements of in-vessel visual inspection task.

  8. Design and implementation of visual inspection system handed in tokamak flexible in-vessel robot

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng; Xu, Lifei [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China)

    2016-05-15

    In-vessel viewing system (IVVS) is a fundamental tool among the remote handling systems for ITER, which is used to providing information on the status of the in-vessel components. The basic functional requirement of in-vessel visual inspection system is to perform a fast intervention with adequate optical resolution. In this paper, we present the software and hardware solution, which is designed and implemented for tokamak in-vessel viewing system that installed on end-effector of flexible in-vessel robot working under vacuum and high temperature. The characteristic of our in-vessel viewing system consists of two parts: binocular heterogeneous vision inspection tool and first wall scene emersion based augment virtuality. The former protected with water-cooled shield is designed to satisfy the basic functional requirement of visual inspection system, which has the capacity of large field of view and high-resolution for detection precision. The latter, achieved by overlaying first wall tiles images onto virtual first wall scene model in 3D virtual reality simulation system, is designed for convenient, intuitive and realistic-looking visual inspection instead of viewing the status of first wall only by real-time monitoring or off-line images sequences. We present the modular division of system, each of them in smaller detail, and go through some of the design choices according to requirements of in-vessel visual inspection task.

  9. Accuracy Analysis of a Robotic Radionuclide Inspection and Mapping System for Surface Contamination

    International Nuclear Information System (INIS)

    Mauer, Georg F.; Kawa, Chris

    2008-01-01

    The mapping of localized regions of radionuclide contamination in a building can be a time consuming and costly task. Humans moving hand-held radiation detectors over the target areas are subject to fatigue. A contamination map based on manual surveys can contain significant operator-induced inaccuracies. A Fanuc M16i light industrial robot has been configured for installation on a mobile aerial work platform, such as a tall forklift. When positioned in front of a wall or floor surface, the robot can map the radiation levels over a surface area of up to 3 m by 3 m. The robot's end effector is a commercial alpha-beta radiation sensor, augmented with range and collision avoidance sensors to ensure operational safety as well as to maintain a constant gap between surface and radiation sensors. The accuracy and repeatability of the robotically conducted contamination surveys is directly influenced by the sensors and other hardware employed. This paper presents an in-depth analysis of various non-contact sensors for gap measurement, and the means to compensate for predicted systematic errors that arise during the area survey scans. The range sensor should maintain a constant gap between the radiation counter and the surface being inspected. The inspection robot scans the wall surface horizontally, moving down at predefined vertical intervals after each scan in a meandering pattern. A number of non-contact range sensors can be employed for the measurement of the gap between the robot end effector and the wall. The nominal gap width was specified as 10 mm, with variations during a single scan not to exceed ± 2 mm. Unfinished masonry or concrete walls typically exhibit irregularities, such as holes, gaps, or indentations in mortar joints. These irregularities can be sufficiently large to indicate a change of the wall contour. The responses of different sensor types to the wall irregularities vary, depending on their underlying principles of operation. We explored

  10. Decentralized real time control system of inspection robot programmed in APL

    International Nuclear Information System (INIS)

    Dupeyrat, Benoit; Liabot, M.J.; Vertut, Jean

    1979-01-01

    The running of the SUPER PHENIX vessel inspection robot meets with special practical necessities: the distance between the robot and the computer responsible for its management is important since the piloting station is outside the safety enclosure. For this reason the control and alarm functions have been separated from those of strategy and readjustment. The system described here is thus made up of: a mini-computer to manage the piloting station and a microprocessor as close as possible to the machine for control and safety duties. This arrangement has the advantage of limiting the input/output volume of the mini-computer which can thus be programmed in APL, a language particularly efficient and well suited to the problem [fr

  11. Long-Range Untethered Real-Time Live Gas Main Robotic Inspection System

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf; Daphne D' Zurko

    2004-10-31

    Under funding from the Department of Energy (DOE) and the Northeast Gas Association (NGA), Carnegie Mellon University (CMU) developed an untethered, wireless remote controlled inspection robot dubbed Explorer. The project entailed the design and prototyping of a wireless self-powered video-inspection robot capable of accessing live 6- and 8-inch diameter cast-iron and steel mains, while traversing turns and Ts and elbows under real-time control with live video feedback to an operator. The design is that of a segmented actively articulated and wheel-leg powered robot design, with fisheye imaging capability and self-powered battery storage and wireless real-time communication link. The prototype was functionally tested in an above ground pipe-network, in order to debug all mechanical, electrical and software subsystems, and develop the necessary deployment and retrieval, as well as obstacle-handling scripts. A pressurized natural gas test-section was used to certify it for operation in natural gas at up to 60 psig. Two subsequent live-main field-trials in both cast-iron and steel pipe, demonstrated its ability to be safely launched, operated and retrieved under real-world conditions. The system's ability to safely and repeatably exidrecover from angled and vertical launchers, traverse multi-thousand foot long pipe-sections, make T and varied-angle elbow-turns while wirelessly sending live video and handling command and control messages, was clearly demonstrated. Video-inspection was clearly shown to be a viable tool to understand the state of this critical buried infrastructure, irrespective of low- (cast-iron) or high-pressure (steel) conditions. This report covers the different aspects of specifications, requirements, design, prototyping, integration and testing and field-trialing of the Explorer platform.

  12. Robotized system for in-pipe inspection using pressure tolerant electronics technique

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ramon R.; Hsu, Liu; Peixoto, Alessandro J.; Gomes, Luiz P.C.S. [Coordenacao dos Programas de Pos-graduacao de Engenharia (UFRJ/COPPE), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Eletrica. Grupo de Simulacao e Controle em Automacao e Robotica (GSCAR)]. E-mail: ramon, liu, jacoud, lpgomes@coep.ufrj.br; Reis, Ney R.S. dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Lab. de Robotica]. E-mail: salvireis@cenpes.petrobras.com.br

    2003-07-01

    This paper reports the development and experimental evaluation of a robotized system devised to perform two kinds of measurements inside a pipeline: the thickness of the internal wall painting layer and the internal radius. The thickness measurement allows the inspection of the painting layer quality and by measuring several radii it is possible to estimate the pipeline transversal section shape. The proposed scheme is shown to yield very satisfactory results on an actual 14'' (inches) pipeline in a real site. (author)

  13. Optimal Sensor placement for acoustic range-based underwater robotic positioning

    Digital Repository Service at National Institute of Oceanography (India)

    Glotzbach, T.; Moreno-Salinas, D.; Aranda, J.; Pascoal, A.M.

    by affording the reviewer an overview of relevant principles, methods, and results available in the literature in the area, as well as of the practical motivation for this challenging topic of research. After a brief literature survey, a method... position estimator. Naturally, the optimal placement solution is a function of the actual measurement setup, the measurement model, and the actual position of the target. At first inspection this problem may seem to have little practical relevance...

  14. Development of a robotic nozzle inspection with a flexible transducer array

    International Nuclear Information System (INIS)

    Dobigny, Blandine; Wattiau, Olivier; Bey, Sebastien; Vanhoye, Arnaud; Ancrenaz, Patrick; Dumas, Philippe; Fournier, Laurent

    2016-01-01

    The evaluation of the integrity of the nuclear plant components is a major issue. It is mandatory to assess the degradation due to the aging. NDE aim is to detect potential defects, resulting of thermal fatigue, and to be able to evaluate their dimensions. Ultrasonic non destructive testing has demonstrated its efficiency for detection and characterization of such defects and industrial probes offer satisfactory results in various applications. However, the complex geometry of some components (nozzle,..) severely limits the inspection performances. Indeed, the use of conventional probes is restricted to regular surfaces. Flexible transducer arrays technology provides an attractive solution in ultrasonic NDT for the inspection of complex geometry components. Its ability to conform to the wavy surface of the component and to ensure a good coupling when the limits of conventional probes are reached, makes it suitable for the characterization of a defect detected in a nozzle. To develop and implement a flexible probe inspection of a nozzle weld, several skills are needed: especially ultrasonic, robotic, simulation skills. Moreover, an innovative tool dedicated to delay laws and probe position calculation is used to optimize the performance of such phased array probes. In the framework of a partnership, EDF, the CEA LIST and AREVA have developed a robotic inspection tool able to be operate on nuclear site, in order to characterize defects located in the inner radius of a nozzle with a flexible transducer array. The article describes the use of the new tools developed for the nozzle case. It also presents acquisition results and the contribution of this technology of potential defect characterization. These results are compared to classical phased-array methods.

  15. Towards operations on Tore Supra of an ITER relevant inspection robot and associated processes

    International Nuclear Information System (INIS)

    Gargiulo, L.; Cordier, J.J.; Friconneau, J.P.; Grisolia, C.; Palmer, J.D.; Perrot, Y.; Samaille, F.

    2007-01-01

    The aim of the project is to demonstrate on Tore Supra the reliability of a multi-purpose in-vessel remote handling inspection system using a long reach, limited payload carrier. The robot prototype is fully representative of the deployment carrier system that could be required on ITER. The demonstration on Tore Supra will help in the understanding of operation issues that could occur in the tokamak vacuum vessel equipped of actively cooled components. The viewing process that is currently under development will allow close inspection of the Tore Supra plasma facing components that are representative of the ITER divertor targets in terms of confined environment and identification of possible tiles failure of CFC carbon tiles. One of the other potential inspection processes that is foreseen to be tested using the AIA carrier in Tore Supra is the laser ablation system of the CFC armour. It could be fully relevant for the ITER wall detritiation issues. Such process can be simulated on Tore Supra through the deuterium inventory under long-time plasma discharges. The in situ leakage localisation of a damaged plasma facing component is also one of the major ITER maintenance challenges that could use remote handling inspection tools

  16. Towards operations on Tore Supra of an ITER relevant inspection robot and associated processes

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, L. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France)], E-mail: laurent.gargiulo@cea.fr; Cordier, J.J. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France); Friconneau, J.P. [CEA-LIST Robotics and Interactive Systems Unit, BP6 F-92265 Fontenay aux Roses Cedex (France); Grisolia, C. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France); Palmer, J.D. [EFDA CSU, Max-Planck-Institut fuer Plasma Physik Boltzmannstr. 2, D-85748 Garching (Germany); Perrot, Y. [CEA-LIST Robotics and Interactive Systems Unit, BP6 F-92265 Fontenay aux Roses Cedex (France); Samaille, F. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France)

    2007-10-15

    The aim of the project is to demonstrate on Tore Supra the reliability of a multi-purpose in-vessel remote handling inspection system using a long reach, limited payload carrier. The robot prototype is fully representative of the deployment carrier system that could be required on ITER. The demonstration on Tore Supra will help in the understanding of operation issues that could occur in the tokamak vacuum vessel equipped of actively cooled components. The viewing process that is currently under development will allow close inspection of the Tore Supra plasma facing components that are representative of the ITER divertor targets in terms of confined environment and identification of possible tiles failure of CFC carbon tiles. One of the other potential inspection processes that is foreseen to be tested using the AIA carrier in Tore Supra is the laser ablation system of the CFC armour. It could be fully relevant for the ITER wall detritiation issues. Such process can be simulated on Tore Supra through the deuterium inventory under long-time plasma discharges. The in situ leakage localisation of a damaged plasma facing component is also one of the major ITER maintenance challenges that could use remote handling inspection tools.

  17. Self-reconfiguration of Modular Underwater Robots using an Energy Heuristic

    DEFF Research Database (Denmark)

    Furno, Lidia; Blanke, Mogens; Galeazzi, Roberto

    2017-01-01

    This paper investigates self-reconfiguration of a modular robotic system, which consists of a cluster of modular vehicles that can attach to each other by a connection mechanism. Thereby, they can form a desired morphology to meet task specific requirements. Reconfiguration can be needed due to limi...... in morphologies. The properties of the proposed self-reconfiguration algorithm are evaluated through simulations and preliminary model tank experiments. The energy based heuristic for reconfiguration is compared to a traditional solution that minimizes the Euclidean distance....

  18. Mechanical Construction and Propulsion Analysis of a Rescue Underwater Robot in the case of Drowning Persons

    Directory of Open Access Journals (Sweden)

    Angelo Bonfitto

    2018-04-01

    Full Text Available This paper presents the design of an unmanned and tele-operated robotized life-saving system aimed to work as a recovery tool in case of water-related disasters. The device is designed to save people in distress in the water, either conscious or unconscious, without exposing the rescuer’s life to risk. The data of in water accidents show that the greatest number of casualties occurs because of dangerous predicaments conducted by people who want to save other lives. All present solutions are based on aerial, surface or submarine systems needing a crew and able to save only conscious people. This paper intends to fill this gap in the literature by analyzing the main critical issues in the design of a marine autonomous rescue vehicle in terms of performance, capabilities of maneuver in rough sea conditions and the costs. The proposed robot is fully electric and tele-manipulated, from the shore in case of accidents near dry land, or directly from boats or helicopters if drowning is occurring in the open sea. The paper demonstrates the feasibility of a system and its readiness for prototyping phases while presenting a trade-off and cost analysis between six different configurations as well as illustrating in detail the design of the selected layout. The motivations behind the choice of diving strategy to tackle rough sea conditions are described along with the design and the numerical validations of the hydroplane and propulsion systems.

  19. Remote Underwater Characterization System - Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    Willis, Walter David

    1999-01-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The underwater characterization equipment is often required to operate at depths exceeding 20 ft (6.1 m) and in relatively confined or congested spaces. The typical baseline approach has been the use of radiation detectors and underwater cameras mounted on long poles, or stationary cameras with pan and tilt features mounted on the sides of the underwater facility. There is a perceived need for an inexpensive, more mobile method of performing close-up inspection and radiation measurements in confined spaces underwater. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available ''Scallop'' vehicle, but has been modified by Department of Energy's Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at Idaho National Engineering and environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a ''head-to-head'' fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations

  20. Towards operations on Tore Supra of an ITER relevant inspection robot and associated processes

    International Nuclear Information System (INIS)

    Laurent Gargiulo, L.; Cordier, J.-J.; Samaille, F.; Grisolia, Ch.; Perrot, Y.; Olivier, D.; Friconneau, J.-P.; Palmer, J.

    2006-01-01

    The aim of the project is to demonstrate on Tore Supra the reliability of a multi-purpose in-vessel Remote Handling inspection system using a long reach, limited payload carrier. This project called AIA (Articulated Inspection Arm) is currently being developed at CEA under a European EFDA work program. The paper describes the detailed design, the manufacturing processes and the results of the first module test campaign in the CEA Tore Supra ME60 facility, at representative vacuum, temperature and nominal loading conditions. The second part of this work that is reported in the paper, concerns the description of the whole integration of the device on the Tore Supra tokamak that is foreseen to be operated on Tore Supra early 2007. The deployer system and the 10 m long storage vacuum vessel are presented. The robot prototype is fully representative of the deployment carrier system that could be required on ITER. The demonstration on Tore Supra will help in the understanding of operation issues that could occur in the tokamak vacuum vessel equipped of actively cooled components. The viewing process that is currently under development is presented in the paper. It will allow close inspection of the Tore Supra Plasma Facing Components that are representative of the ITER divertor targets in terms of confined environment and identification of possible tiles failure of CFC carbon tiles. Such viewing process could be used on ITER during the early stage of operation under a limited radiation level. The AIA technology is also showing promising potential for generic application in alternative systems for ITER. The feasibility study for viewing inspection of the beam line components in the neutral beam test facility is presented. One of the other potential inspection processes that is foreseen to be tested using the AIA carrier in Tore Supra is the laser ablation system of the CFC armour. It could be fully relevant for the ITER wall detritiation issues. Such process can be

  1. Design of an Infrared Imaging System for Robotic Inspection of Gas Leaks in Industrial Environments

    Directory of Open Access Journals (Sweden)

    Ramon Barber

    2015-03-01

    Full Text Available Gas detection can become a critical task in dangerous environments that involve hazardous or contaminant gases, and the use of imaging sensors provides an important tool for leakage location. This paper presents a new design for remote sensing of gas leaks based on infrared (IR imaging techniques. The inspection system uses an uncooled microbolometer detector, operating over a wide spectral bandwidth, that features both low size and low power consumption. This equipment is boarded on a robotic platform, so that wide objects or areas can be scanned. The detection principle is based on the use of active imaging techniques, where the use of external IR illumination enhances the detection limit and allows the proposed system to operate in most cases independently from environmental conditions, unlike passive commercial approaches. To illustrate this concept, a fully radiometric description of the detection problem has been developed; CO2 detection has been demonstrated; and simulations of typical gas detection scenarios have been performed, showing that typical industrial leaks of CH4 are well within the detection limits. The mobile platform where the gas sensing system is going to be implemented is a robot called TurtleBot. The control of the mobile base and of the inspection device is integrated in ROS architecture. The exploration system is based on the technique of Simultaneous Localization and Mapping (SLAM that makes it possible to locate the gas leak in the map.

  2. AERCam Autonomy: Intelligent Software Architecture for Robotic Free Flying Nanosatellite Inspection Vehicles

    Science.gov (United States)

    Fredrickson, Steven E.; Duran, Steve G.; Braun, Angela N.; Straube, Timothy M.; Mitchell, Jennifer D.

    2006-01-01

    The NASA Johnson Space Center has developed a nanosatellite-class Free Flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam Free Flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35-pound, 14-inch diameter AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, power, propulsion, and imaging subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations, including automatic stationkeeping, point-to-point maneuvering, and waypoint tracking. The Mini AERCam Free Flyer is accompanied by a sophisticated control station for command and control, as well as a docking system for automated deployment, docking, and recharge at a parent spacecraft. Free Flyer functional testing has been conducted successfully on both an airbearing table and in a six-degree-of-freedom closed-loop orbital simulation with avionics hardware in the loop. Mini AERCam aims to provide beneficial on-orbit views that cannot be obtained from fixed cameras, cameras on robotic manipulators, or cameras carried by crewmembers during extravehicular activities (EVA s). On Shuttle or International Space Station (ISS), for example, Mini AERCam could support external robotic operations by supplying orthogonal views to the intravehicular activity (IVA) robotic operator, supply views of EVA operations to IVA and/or ground crews monitoring the EVA, and carry out independent visual inspections of areas of interest around the spacecraft. To enable these future benefits

  3. Kinematic and dynamic analysis of a serial-link robot for inspection process in EAST vacuum vessel

    International Nuclear Information System (INIS)

    Peng Xuebing; Yuan Jianjun; Zhang Weijun; Yang Yang; Song Yuntao

    2012-01-01

    Highlights: ► A serial-link robot FIVIR is proposed for inspection of EAST PFCs between plasma shots. ► The FIVIR is a function modular design and has specially designed curvilinear mechanism for axes 4–6. ► The D-H coordinate systems, forward and inverse kinematic model can be easily established and solved for the FIVIR. ► The FIVIR can fulfill the required workspace and has a good dynamic performance in the inspection process. - Abstract: The present paper introduces a serial-link robot which is named flexible in-vessel inspection robot (FIVIR) and developed for Experimental Advanced Superconducting Tokamak (EAST). The task of the robot is to carry process tools, such as viewing camera and leakage detector, to inspect the components installed inside of EAST vacuum vessel. The FIVIR can help to understand the physical phenomena which could be happened in the vacuum vessel during plasma operation and could be one part of EAST remote handling system if needed. The FIVIR was designed with the consideration of having easy control and a good mechanics property which drives it resulted in function modular design. The workspace simulation and kinematic analysis are given in this paper. The dynamic behavior of the FIVIR is studied by multi-body system simulation using ADAMS software. The study result shows the FIVIR has ascendant kinematic and dynamic performance and can fulfill the design requirement for inspection process in EAST vacuum vessel.

  4. Kinematic and dynamic analysis of a serial-link robot for inspection process in EAST vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Peng Xuebing, E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Shushanhu Road 350, Hefei, Anhui 230031 (China); Yuan Jianjun; Zhang Weijun [Research Institute of Robotics, Mechanical Engineering School, Shanghai Jiao Tong University, No.800, Dong Chuan Road, Min Hang District, Shanghai 200240 (China); Yang Yang; Song Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Shushanhu Road 350, Hefei, Anhui 230031 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A serial-link robot FIVIR is proposed for inspection of EAST PFCs between plasma shots. Black-Right-Pointing-Pointer The FIVIR is a function modular design and has specially designed curvilinear mechanism for axes 4-6. Black-Right-Pointing-Pointer The D-H coordinate systems, forward and inverse kinematic model can be easily established and solved for the FIVIR. Black-Right-Pointing-Pointer The FIVIR can fulfill the required workspace and has a good dynamic performance in the inspection process. - Abstract: The present paper introduces a serial-link robot which is named flexible in-vessel inspection robot (FIVIR) and developed for Experimental Advanced Superconducting Tokamak (EAST). The task of the robot is to carry process tools, such as viewing camera and leakage detector, to inspect the components installed inside of EAST vacuum vessel. The FIVIR can help to understand the physical phenomena which could be happened in the vacuum vessel during plasma operation and could be one part of EAST remote handling system if needed. The FIVIR was designed with the consideration of having easy control and a good mechanics property which drives it resulted in function modular design. The workspace simulation and kinematic analysis are given in this paper. The dynamic behavior of the FIVIR is studied by multi-body system simulation using ADAMS software. The study result shows the FIVIR has ascendant kinematic and dynamic performance and can fulfill the design requirement for inspection process in EAST vacuum vessel.

  5. Development of an inspection robot under iter relevant vacuum and temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hatchressian, J-C; Bruno, V; Gargiulo, L; Bayetti, P; Cordier, J-J; Samaille, F [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA Cadarache, F-13108 Saint Paul-Lez-Durance Cedex (France); Keller, D; Perrot, Y; Friconneau, J-P [CEA, LIST, Service de Robotique Interactive, 18 route du Panorama, BP6, Fontenay aux Roses F-92265 France (France); Palmer, J D [EFDA-CSU Max-Planck-Institut fuer Plasma Physik Boltzmannstr.2, D-85748 Garching Germany (Germany)

    2008-03-15

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In vessel inspection operations without loss of conditioning could be very mandatory. Within this framework, the aim of the Articulated Inspection Arm (AIA) project is to demonstrate the feasibility of a multi-purpose in-vessel Remote Handling inspection system. It is a long reach, composed of 5 segments with in all 8 degrees of freedom, limited payload carrier (up to 10kg) and a total range of 8m. The project is currently developed by the CEA within the European work program. Some tests will validate chosen concepts for operations under ITER relevant vacuum and temperature conditions. The presence of magnetic fields, radiation and neutron beams will not be considered. This paper deals with the choices of the materials to minimize the out-gassing under vacuum and high temperature during conditioning, the implantation of the electronics which are enclosed in boxes with special gaskets, the design of the first embedded process which is a viewing system.

  6. Robotic gait trainer in water: development of an underwater gait-training orthosis.

    Science.gov (United States)

    Miyoshi, Tasuku; Hiramatsu, Kazuaki; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2008-01-01

    To develop a robotic gait trainer that can be used in water (RGTW) and achieve repetitive physiological gait patterns to improve the movement dysfunctions. The RGTW is a hip-knee-ankle-foot orthosis with pneumatic actuators; the control software was developed on the basis of the angular motions of the hip and knee joint of a healthy subject as he walked in water. Three-dimensional motions and electromyographic (EMG) activities were recorded in nine healthy subjects to evaluate the efficacy of using the RGTW while walking on a treadmill in water. The device could preserve the angular displacement patterns of the hip and knee and foot trajectories under all experimental conditions. The tibialis anterior EMG activities in the late swing phase and the biceps femoris throughout the stance phase were reduced whose joint torques were assisted by the RGTW while walking on a treadmill in water. Using the RGTW could expect not only the effect of the hydrotherapy but also the standard treadmill gait training, in particular, and may be particularly effective for treating individuals with hip joint movement dysfunction.

  7. Outer navigation of a inspection robot by means of feedback of global guidance; Navegacion exterior de un robot de inspeccion mediante retroalimentacion de la orientacion global

    Energy Technology Data Exchange (ETDEWEB)

    Segovia de los R, A.; Bucio V, F. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Garduno G, M. [Instituto Tecnologico de Toluca, Av. Instituto Tecnologico s/n, Metepec, Estado de Mexico 52140 (Mexico)]. e-mail: asegovia@nuclear.inin.mx

    2008-07-01

    The objective of this article is the presentation of an inspection system to mobile robot navigating in exteriors by means of the employment of a feedback of instantaneous guidance with respect to a global reference throughout moment of the displacement. The robot evolves obeying the commands coming from the one tele operator which indicates the diverse addresses by means of the operation console that the robot should take using for it information provided by an electronic compass. The mobile robot employee in the experimentations is a Pioneer 3-AT, which counts with a sensor series required to obtain an operation of more autonomy. The electronic compass offers geographical information coded in a format SPI, reason for which a micro controller ({mu}C) economic of general use has been an employee for to transfer the information to the format RS-232, originally used by the Pioneer 3-AT. The orientation information received by the robot by means of their serial port RS-232 secondary it is forwarded to the computer hostess in the one which a program Java is used to generate the commands for the robot navigation control and to deploy one graphic interface user utilized to receive the order of the operator. This research is part of an ambitious project in which it is tried to count on an inspection system and monitoring of sites in which risks of high radiation levels could exist, thus a navigation systems in exteriors could be very useful. The complete system will count besides the own sensors of the robot, with certain numbers of agree sensors to the variables that are desired to monitor. The resulting values of such measurements will be visualized in real time in the graphic interface user, thanks to a bidirectional wireless communication among the station of operation and the mobile robot. (Author)

  8. Development of the hull inspection robot (RTV-SHIP); Sentai kensayo suichu robot (RTV-SHIP) no kaihatsu (atarashii sentai kensaho no ichiteian)

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Y.; Otsuka, M.; Ozawa, H.; Konosu, M. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1997-08-01

    A compact and lightweight underwater RTV robot (RTV-SHIP) that enables the remote sensing in the double-shell structure of a tanker and the six-freedom motion control was developed based on the technology of the conventional portable underwater robot. The motion performance test in a water tank showed that the RTV-SHIP can freely access the manhole in the double-shell structure of a tanker and completely satisfies the thrust and swing force required for movement and measurement in a tank. The in-tank function confirmation test also shows that the main measurement items such as positioning in the tank, large deflection of panels, and plate thickness have a satisfactory measurement accuracy and that the RTV-SHIP has the same tone discrimination function as for a visual check. The method of inputting the tank shape during measurement and miniaturizing the recording unit should be improved until the RTV-SHIP is put to practical use. This system can be widely used by improving the above points according to the result of a future measurement test for the actual ships. 1 ref., 9 figs.

  9. Hand-eye coordination of a robot for the automatic inspection of steam-generator tubes in nuclear power plants

    International Nuclear Information System (INIS)

    Choi, D.H.; Song, Y.C.; Kim, J.H.; Kim, J.G.

    2004-01-01

    The inspection of steam-generator tubes in nuclear power plants needs to collect test signals in a highly radiated region that is not accessible by humans. In general, a robot equipped with a camera and a test probe is used to handle such a dangerous environment. The robot moves the probe to right below a tube to be inspected and then the probe is inserted into the tube. The inspection signals are acquired while the probe is pulling back. Currently, an operator in a control room controls all the process remotely. To make a fully automatic inspection system, first of all, a control mechanism is needed to position the probe to the proper location. This is so called a hand-eye coordination problem. In this paper, a hand-eye coordination method for a robot has been presented. The proposed method consists of the two consecutive control modes: rough positioning and fine-tuning. The rough positioning controller tries to position its probe near a target place using kinematics information and the known environments, and then the fine-tuning controller tries to adjust the probe to the target using the image acquired by the camera attached to the robot. The usefulness of the proposed method has been tested and verified through experiments. (orig.)

  10. Colour reconstruction of underwater images

    OpenAIRE

    Hoth, Julian; Kowalczyk, Wojciech

    2017-01-01

    Objects look very different in the underwater environment compared to their appearance in sunlight. Images with correct colouring simplify the detection of underwater objects and may allow the use of visual SLAM algorithms developed for land-based robots underwater. Hence, image processing is required. Current algorithms focus on the colour reconstruction of scenery at diving depth where different colours can still be distinguished. At greater depth this is not the case. In this study it is i...

  11. Collision Detection for Underwater ROV Manipulator Systems

    Directory of Open Access Journals (Sweden)

    Satja Sivčev

    2018-04-01

    Full Text Available Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations.

  12. Eddy Currents Inspection of CANDU Steam Generator Tubes using Zetec's ZR-1 Robot. Experience in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hower [Zetec Inc. (Romania); Luiza Vladu; Adrian Nichisov; Mihai Cretu [COMPCONTROL ING. (Romania)

    2006-07-01

    Full text of publication follows: The commercial operation of Unit 1 of Cernavoda NPP started on 2 December, 1996. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium. The nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant has four CANDU - design steam generators that have been in service since 1996. The paper introduces the new ZR-1 Robot System for Inspection and Maintenance/Repair from Zetec that combines the newest state-of-the-art robotics technology with Zetec experience - based innovation to address the needs for inspection and repair of steam generators. The multipurpose ZR-1 can be easily installed to perform the necessary eddy current inspection and remain installed ready for follow-up maintenance and repair. It has superior technical performances and a modular three axis motion of arm that enables 100% coverage of tube sheet. Automated, repeatable, and precise positioning of tool heads ensures accurate delivery and reducing costly rework and reduces inspection time by 30%. The modular, light weight, and portable design permits easy assembly and disassembly through small openings and it reduces setup/tear down time by 30%. The first deployment of the new ZR-1 Robot was made in September 2004 at the Cernavoda NPP inspection outage. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium; the nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant Unit 1 has four CANDU - design steam generators that have been in service since 1996. The paper presents also the Zetec's field experience and customer experience with this system. It describes the equipment setup in Cernavoda's steam generators mock-up, functional tests and calibration. Finally, provides details on the execution of the inspection, options for standardizing the inspection techniques and conclusions. (authors)

  13. A trend of robotics in nuclear facilities

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi

    1993-01-01

    In order to operate stably nuclear power stations, the periodic inspection determined by the law has been carried out once every year in Japan. For reducing the radiation exposure of workers and improving work efficiency and work quality, the automation and the use of robots have been promoted. Also in fuel reprocessing plants and the facilities for storing radioactive wastes, the remotely operated devices for handling uranium and plutonium are indispensable. The course of the development of the robots for nuclear power plants classified by ages is shown. The research and development have been advanced from special automatic machines of first generation since 1965, through versatile robots of second generation since 1980 to intellectual robots of third generation since 1985. Automatic fuel exchanger, control rod moving mechanism and the ultrasonic flaw detector for pipings are those of first generation. As those of second generation, various movable inspection robots and the manipulators for them were developed. The ultimate working robot completed in 1990 is that of third generation. As the trend of the practical use, monorail type inspection robots and underwater inspection robots and various manipulators are reported. (K.I.)

  14. Design of a micro-robot with an electro-pneumatic servo-actuator for the intra-pipe inspection; Conception d'un micro robot a actionneur asservi electropneumatique pour l'inspection intratubulaire

    Energy Technology Data Exchange (ETDEWEB)

    Anthierens, C

    1999-12-01

    Micro Electro Mechanical Systems (MEMS) are integrated in many current products and are not only the concern of military defence or medicine. Nowadays micro actuators are diversified by using different kind of energy, and creating different motions. Several applications require small systems to inspect confined and hostile places. Vapour generators in nuclear plants are composed with 3000 to 5000 vertical pipes of 17 mm diameter. These pipes endure high mechanical constraints and have to be inspected to detect eventual cracks. Our study is based on the design, modelling and implementation of a micro-robot enable to move up and carry sensors in these pipes. It moves as an inchworm and then is composed by 2 blocking modules that brace the robot on the pipe sides, and one stretching module that creates a step. This actuator is pneumatic and composed by metal bellows. By this original design, the micro-robot have a good power to volume ratio and thus it can carry a load higher than 1 kg. Its good positioning accuracy is proved with a 90 mm course where the error of positioning is less than 60{mu}m. A PID control law is used to control the robot but state feed back control law is planed. (author)

  15. Design of a micro-robot with an electro-pneumatic servo-actuator for the intra-pipe inspection; Conception d'un micro robot a actionneur asservi electropneumatique pour l'inspection intratubulaire

    Energy Technology Data Exchange (ETDEWEB)

    Anthierens, C

    1999-12-01

    Micro Electro Mechanical Systems (MEMS) are integrated in many current products and are not only the concern of military defence or medicine. Nowadays micro actuators are diversified by using different kind of energy, and creating different motions. Several applications require small systems to inspect confined and hostile places. Vapour generators in nuclear plants are composed with 3000 to 5000 vertical pipes of 17 mm diameter. These pipes endure high mechanical constraints and have to be inspected to detect eventual cracks. Our study is based on the design, modelling and implementation of a micro-robot enable to move up and carry sensors in these pipes. It moves as an inchworm and then is composed by 2 blocking modules that brace the robot on the pipe sides, and one stretching module that creates a step. This actuator is pneumatic and composed by metal bellows. By this original design, the micro-robot have a good power to volume ratio and thus it can carry a load higher than 1 kg. Its good positioning accuracy is proved with a 90 mm course where the error of positioning is less than 60{mu}m. A PID control law is used to control the robot but state feed back control law is planed. (author)

  16. Development and Evaluation of Compact Robot Imitating a Hermit Crab for Inspecting the Outer Surface of Pipes

    Directory of Open Access Journals (Sweden)

    Naoto Imajo

    2015-01-01

    Full Text Available Terrestrial hermit crabs which are a type of hermit crabs live on land, whereas typical hermit crabs inhabit the sea. They have an ability of climbing a tree vertically. Their claws allow them to hang on the tree. In this study, an outer-pipe inspection robot was developed. Its locomotion mechanism was developed in imitation of the terrestrial hermit crab’s claws. It is equipped with two rimless wheels. Each of the spokes is tipped with a neodymium magnet, which allows the robot to remain attached to even a vertical steel pipe. Moreover, the robot has a mechanism for adjusting the camber angle of the right and left wheels, allowing it to tightly grip pipes with different diameters. Experiments were conducted to check the performance of the robot using steel pipes with different diameters, placed horizontally, vertically, or obliquely. The robot attempted to move a certain distance along a pipe, and its success rate was measured. It was found that the robot could successfully travel along pipes with vertical orientations, although it sometimes fell from oblique or horizontal pipes. The most likely reason for this is identified and discussed. Certain results were obtained in laboratory. Further experiments in actual environment are required.

  17. Development of a surveillance robot for dimensional and visual inspection of fuel and reflector elements from the Fort St. Vrain HTGR

    International Nuclear Information System (INIS)

    Wallroth, C.F.; Marsh, N.I.; Miller, C.M.; Saurwein, J.J.; Smith, T.L.

    1979-11-01

    A robotic device has been developed for dimensional and visual inspection of irradiated HTGR core components. The robot consists of a rotary table and a two-finger probe, driven by stepping motors, and four remotely controlled television cameras. Automated operation is accomplished via minicomputer control. A total of 51 irradiated fuel and reflector elements were inspected at a fraction of the time and cost required for conventional methods

  18. A fast position estimation method for a control rod guide tube inspection robot with a single camera

    International Nuclear Information System (INIS)

    Lee, Jae C.; Seop, Jun H.; Choi, Yu R.; Kim, Jae H.

    2004-01-01

    One of the problems in the inspection of control rod guide tubes using a mobile robot is accurate estimation of the robot's position. The problem is usually explained by the question 'Where am I?'. We can solve this question by a method called dead reckoning using odometers. But it has some inherent drawbacks such that the position error grows without bound unless an independent reference is used periodically to reduce the errors. In this paper, we presented one method to overcome this drawback by using a vision sensor. Our method is based on the classical Lucas Kanade algorithm for on image tracking. In this algorithm, an optical flow must be calculated at every image frame, thus it has intensive computing load. In order to handle large motions, it is preferable to use a large integration window. But a small integration window is more preferable to keep the details contained in the images. We used the robot's movement information obtained from the dead reckoning as an input parameter for the feature tracking algorithm in order to restrict the position of an integration window. By means of this method, we could reduce the size of an integration window without any loss of its ability to handle large motions and could avoid the trade off in the accuracy. And we could estimate the position of our robot relatively fast without on intensive computing time and the inherent drawbacks mentioned above. We studied this algorithm for applying it to the control rod guide tubes inspection robot and tried an inspection without on operator's intervention

  19. The conceptual design of the sensing system for patrolling and inspecting a nuclear facility by the intelligent robot

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi

    1993-11-01

    Supposing that an intelligent robot, instead of a human worker, patrols and inspects nuclear facilities, it is indispensable for such robot to be capable of moving with avoiding obstacles and recognizing various abnormal conditions, carrying out some ordered works based on information from sensors mounted on the robot. The present robots being practically used in nuclear facilities, however, have the limited capability such as identifying a few specific abnormal conditions using data detected by specific sensors on them. Hence, a conceptual design of a sensor-fusion-based system, which is named 'sensing system', has been performed to collect various kinds of information required for patrol and inspection. This sensing system combines a visual sensor, which consists of a monocular camera and a range finder by the active stereopsis method, an olfactory, acoustic and dose sensors. This report describes the hardware configuration and the software function for processing sensed data. An idea of sensor fusion and the preliminary consideration in respect of applying the neural network to image data processing are also described. (author)

  20. Design of a micro-robot with an electro-pneumatic servo-actuator for the intra-pipe inspection

    International Nuclear Information System (INIS)

    Anthierens, C.

    1999-12-01

    Micro Electro Mechanical Systems (MEMS) are integrated in many current products and are not only the concern of military defence or medicine. Nowadays micro actuators are diversified by using different kind of energy, and creating different motions. Several applications require small systems to inspect confined and hostile places. Vapour generators in nuclear plants are composed with 3000 to 5000 vertical pipes of 17 mm diameter. These pipes endure high mechanical constraints and have to be inspected to detect eventual cracks. Our study is based on the design, modelling and implementation of a micro-robot enable to move up and carry sensors in these pipes. It moves as an inchworm and then is composed by 2 blocking modules that brace the robot on the pipe sides, and one stretching module that creates a step. This actuator is pneumatic and composed by metal bellows. By this original design, the micro-robot have a good power to volume ratio and thus it can carry a load higher than 1 kg. Its good positioning accuracy is proved with a 90 mm course where the error of positioning is less than 60μm. A PID control law is used to control the robot but state feed back control law is planed. (author)

  1. Autonomy and manual operation in a small robotic system for under-vehicle inspections at security checkpoints

    Science.gov (United States)

    Smuda, William; Muench, Paul L.; Gerhart, Grant R.; Moore, Kevin L.

    2002-07-01

    Unmanned ground vehicle (UGV) technology can be used in a number of ways to assist in counter-terrorism activities. In addition to the conventional uses of tele-operated robots for unexploded ordinance handling and disposal, water cannons and other crowd control devices, robots can also be employed for a host of terrorism deterrence and detection applications. In previous research USU developed a completely autonomous prototype robot for performing under- vehicle inspections in parking areas (ODIS). Testing of this prototype and discussions with the user community indicated that neither the technology nor the users are ready for complete autonomy. In this paper we present a robotic system based on ODIS that balances the users' desire/need for tele- operation with a limited level of autonomy that enhances the performance of the robot. The system can be used by both civilian law enforcement and military police to replace the traditional mirror on a stick system of looking under cars for bombs and contraband.

  2. Non-manufacturing applications of robotics

    International Nuclear Information System (INIS)

    Dauchez, P.

    2000-12-01

    This book presents the different non-manufacturing sectors of activity where robotics can have useful or necessary applications: underwater robotics, agriculture robotics, road work robotics, nuclear robotics, medical-surgery robotics, aids to disabled people, entertainment robotics. Service robotics has been voluntarily excluded because this developing sector is not mature yet. (J.S.)

  3. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  4. Mechanical Implementation and Simulation of MoboLab, A Mobile Robot for Inspection of Power Transmission Lines

    Directory of Open Access Journals (Sweden)

    Mahmud Saadat Foumani

    2008-11-01

    Full Text Available This paper describes the first phase in development of a mobile robot that can navigate aerial power transmission lines completely unattended by human operator. Its ultimate purpose is to automate inspection of power transmission lines and their equipments. The authors have developed a scaled functional model of such a mobile robot with a preliminary simple computer based on-off controller. MoboLab (Mobile Laboratory navigates a power transmission line between two strain towers. It can maneuver over obstructions created by line equipments such as insulators, warning spheres, dampers, and spacer dampers. It can also easily negotiate the towers by its three flexible arms. MoboLab has an internal main screw which enables the robot to move itself or its two front and rear arms independently through changing gripped points. When the front arm gets close to an obstacle, the arm detaches from the line and goes down, the robot moves forward, the arm passes the obstacle and grippes the line again. In a same way another arms pass the obstacle.

  5. Remote Underwater Characterization System - Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    Willis, W.D.

    1999-01-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available Scallop vehicle 1 , but has been modified by the Department of Energys Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at the Idaho National Engineering and Environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a ''head-to-head fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations

  6. JACoW A dual arms robotic platform control for navigation, inspection and telemanipulation

    CERN Document Server

    Di Castro, Mario; Ferre, Manuel; Gilardoni, Simone; Losito, Roberto; Lunghi, Giacomo; Masi, Alessandro

    2018-01-01

    High intensity hadron colliders and fixed target experiments require an increasing amount of robotic tele-manipulation to prevent excessive exposure of maintenance personnel to the radioactive environment. Telemanipulation tasks are often required on old radioactive devices not conceived to be maintained and handled using standard industrial robotic solutions. Robotic platforms with a level of dexterity that often require the use of two robotic arms with a minimum of six degrees of freedom are instead needed for these purposes. In this paper, the control of a novel robust robotic platform able to host and to carry safely a dual robotic arm system is presented. The control of the arms is fully integrated with the vehicle control in order to guarantee simplicity to the operators during the realization of the robotic tasks. A novel high-level control architecture for the new robot is shown, as well as a novel low level safety layer for anti-collision and recovery scenarios. Preliminary results of the system comm...

  7. Eddy currents inspection of CANDU steam generator' tubes using Zetec's ZR-1 Robot: experience in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Hower, S. [Zetec Inc., Quebec, Quebec (Canada); Serban, M. [CNE-Prod U1 Cernavoda (Romania); Vladu, L. [Compcontrol Ing., Bucharest (Romania)

    2006-07-01

    'Full text:' The paper introduces the new ZR-1 Robot System for Inspection and Maintenance/Repair from Zetec that combines the newest state-of-the-art robotics technology with Zetec experience-based innovation to address the needs for inspection and repair of steam generators. The multipurpose ZR-1 can be easily installed to perform the necessary eddy current inspection and remain installed ready for follow-up maintenance and repair. It has superior technical performances and a modular three axis motion of arm that enables 100% coverage of tube sheet. Automated, repeatable, and precise positioning of toolheads, ensures accurate delivery and reducing costly rework and reduces inspection time by 30%. The modular, lightweight, and portable design permits easy assembly and disassembly through small openings and it reduces setup/tear down time by 30%. The first deployment of the new ZR-1 Robot was made in September 2004 at the Cernavoda NPP inspection outage. The Cernavoda plant has four Advanced 600 MW CANDU-design generators that have been in service since 1996. The paper presents also the Zetec's filed experience and customer experience with this system. It describes the equipment setup in Cernavoda's generator mock-up, functional testes and calibration. Finally, provides details on the execution of the inspection, options for standardizing the inspection techniques and conclusions. (author)

  8. Application of TSL Underwater Robots (AUV) for Investigation of Benthic Ecosystems and Quantification of Benthic Invertebrate Reserves

    Science.gov (United States)

    Golikov, S. Yu; Dulepov, V. I.; Maiorov, I. S.

    2017-11-01

    The issues on the application of autonomous underwater vehicles for assessing the abundance, biomass, distribution and reserves of invertebrates in the marine benthic ecosystems and on the environmental monitoring are discussed. An example of the application of methodology to assess some of the quantitative characteristics of macrobenthos is provided based upon using the information obtained from the TSL AUV in the Peter the Great Gulf (the Sea of Japan) in the Bay of Paris and the Eastern Bosphorus Strait within the area of the bridge leading to the Russian island. For the quantitative determination of the benthic invertebrate reserves, the values of biomass density of specific species are determined. Based on the data of direct measurements and weightings, the equations of weight dependencies on the size of animals are estimated according to the studied species that are well described by the power law dependence.

  9. Diving Deep: A Comparative Study of Educator Undergraduate and Graduate Backgrounds and Their Effect on Student Understanding of Engineering and Engineering Careers, Utilizing an Underwater Robotics Program

    Science.gov (United States)

    Scribner, J. Adam

    Numerous studies have demonstrated that educators having degrees in their subjects significantly enhances student achievement, particularly in secondary mathematics and science (Chaney, 1995; Goe, 2007; Rowan, Chiang, & Miller, 1997; Wenglinsky, 2000). Yet, science teachers in states that adopt the Next Generation Science Standards will be facilitating classroom engineering activities despite the fact that few have backgrounds in engineering. This quantitative study analyzed ex-post facto WaterBotics (an innovative underwater robotics curriculum for middle and high school students) data to determine if educators having backgrounds in engineering (i.e., undergraduate and graduate degrees in engineering) positively affected student learning on two engineering outcomes: 1) the engineering design process, and 2) understanding of careers in engineering (who engineers are and what engineers do). The results indicated that educators having backgrounds in engineering did not significantly affect student understanding of the engineering design process or careers in engineering when compared to educators having backgrounds in science, mathematics, technology education, or other disciplines. There were, however, statistically significant differences between the groups of educators. Students of educators with backgrounds in technology education had the highest mean score on assessments pertaining to the engineering design process while students of educators with disciplines outside of STEM had the highest mean scores on instruments that assess for student understanding of careers in engineering. This might be due to the fact that educators who lack degrees in engineering but who teach engineering do a better job of "sticking to the script" of engineering curricula.

  10. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  11. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H J [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Gao, B T [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Zhang, X H [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Deng, Z Q [School of Mechanical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China)

    2006-10-15

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot.

  12. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    International Nuclear Information System (INIS)

    Chen, H J; Gao, B T; Zhang, X H; Deng, Z Q

    2006-01-01

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot

  13. Explorer-II: Wireless Self-Powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    Energy Technology Data Exchange (ETDEWEB)

    Carnegie Mellon University

    2008-09-30

    Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design, field-trial and Magnetic Flux Leakage (MFL) sensor evaluation program for the next-generation Explorer-II (X-II) live gas main Non-destructive Evaluation (NDE) and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The resulting robot-train system with CAD renderings of the individual modules. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules

  14. Robotics in the nuclear environment-inspection and repairs inside the primary coolant system

    International Nuclear Information System (INIS)

    Guillet, J.; Marcel Tortolano

    2005-01-01

    The increase in the lifetime of the power plants and the ageing of materials require the intervention inside the components to carry out controls and possibly repairs in the event of discovered defects. Within this framework, EDF is investigating the feasibility of robotized repairs of the components and pipes of the main primary coolant system of a nuclear power plant. For several years, EDF R and D has engaged projects whose subject of study is the possibility of repairing components such as the main vessel; the pressurizer or the primary coolant pipes with the help of robots and dedicated tools. INTERVENTIONS INSIDE PRIMARY COOLANT PIPES: Studies undertaken by EDF highlighted that certain zones, particularly in pipe connections, can be affected by thermal fatigue which causes crackling defects or crackings. In anticipation of this phenomenon which would affect primary pipes and to avoid their replacements, EDF R and D has been studying the feasibility of examining and repairing these zones using robots. Robotized repair consists in introducing into the pipe while passing by the vessel, a 6 degrees of freedom manipulator mounted on a mobile carrier. This robot implements and carries out the trajectories of the different processes of repair: - Precise localization of the defects, - Elimination (possibly sampling) of the defects by machining, - Control that the defects were eliminated, - Weld metal buildup if the repair cavity is too deep, - Grinding followed by a new control of the surface. These studies and tests were conducted in the laboratory of EDF R and D in Chatou. The sequence of operations included machining by grinding and milling, profilometric control, dye penetrant testing, TIG welding and ultrasonic examinations. The results of the tests, executed on full scale models of components, are satisfactory and show the advantages of robotics compared with classical methods. ROBOTIZED INTERVENTIONS IN THE REACTOR VESSEL: Another difficult issue is the

  15. Robotics

    International Nuclear Information System (INIS)

    Scheide, A.W.

    1983-01-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS

  16. An Automated Sensing System for Steel Bridge Inspection Using GMR Sensor Array and Magnetic Wheels of Climbing Robot

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2016-01-01

    Full Text Available Corrosion is one of the main causes of deterioration of steel bridges. It may cause metal loss and fatigue cracks in the steel components, which would lead to the collapse of steel bridges. This paper presents an automated sensing system to detect corrosion, crack, and other kinds of defects using a GMR (Giant Magnetoresistance sensor array. Defects will change the relative permeability and electrical conductivity of the material. As a result, magnetic field density generated by ferromagnetic material and the magnetic wheels will be changed. The defects are able to be detected by using GMR sensor array to measure the changes of magnetic flux density. In this study, magnetic wheels are used not only as the adhesion device of the robot, but also as an excitation source to provide the exciting magnetic field for the sensing system. Furthermore, compared to the eddy current method and the MFL (magnetic flux leakage method, this sensing system suppresses the noise from lift-off value fluctuation by measuring the vertical component of induced magnetic field that is perpendicular to the surface of the specimen in the corrosion inspection. Simulations and experimental results validated the feasibility of the system for the automated defect inspection.

  17. System for leaks inspection in a nuclear plant by means of a mobile robot

    International Nuclear Information System (INIS)

    Ramirez S, R.; Segovia de los Rios, J.A.

    2004-01-01

    In this work a supervision system that could allow to carry out the detection of leaks of vapor in pipe lines, using a mobile robot Pioneer 2 -D Xe, which is controlled by means of an external micro controller 68HC912B32 programmed in Forth and using diffuse control to travel a road by means of the one to follow one lines painted in the floor is described. The robot takes in his superior part, a thermographic camera that allows to determine if leaks of vapor exist in pipes and a dosemeter to measure the present radiation levels in the place, besides a video camera. This way, the personnel, can make sure of having a propitious situation to make the maintenance of the facilities. (Author)

  18. Marine Robot Autonomy

    CERN Document Server

    2013-01-01

    Autonomy for Marine Robots provides a timely and insightful overview of intelligent autonomy in marine robots. A brief history of this emerging field is provided, along with a discussion of the challenges unique to the underwater environment and their impact on the level of intelligent autonomy required.  Topics covered at length examine advanced frameworks, path-planning, fault tolerance, machine learning, and cooperation as relevant to marine robots that need intelligent autonomy.  This book also: Discusses and offers solutions for the unique challenges presented by more complex missions and the dynamic underwater environment when operating autonomous marine robots Includes case studies that demonstrate intelligent autonomy in marine robots to perform underwater simultaneous localization and mapping  Autonomy for Marine Robots is an ideal book for researchers and engineers interested in the field of marine robots.      

  19. Merge Fuzzy Visual Servoing and GPS-Based Planning to Obtain a Proper Navigation Behavior for a Small Crop-Inspection Robot.

    Science.gov (United States)

    Bengochea-Guevara, José M; Conesa-Muñoz, Jesus; Andújar, Dionisio; Ribeiro, Angela

    2016-02-24

    The concept of precision agriculture, which proposes farming management adapted to crop variability, has emerged in recent years. To effectively implement precision agriculture, data must be gathered from the field in an automated manner at minimal cost. In this study, a small autonomous field inspection vehicle was developed to minimise the impact of the scouting on the crop and soil compaction. The proposed approach integrates a camera with a GPS receiver to obtain a set of basic behaviours required of an autonomous mobile robot to inspect a crop field with full coverage. A path planner considered the field contour and the crop type to determine the best inspection route. An image-processing method capable of extracting the central crop row under uncontrolled lighting conditions in real time from images acquired with a reflex camera positioned on the front of the robot was developed. Two fuzzy controllers were also designed and developed to achieve vision-guided navigation. A method for detecting the end of a crop row using camera-acquired images was developed. In addition, manoeuvres necessary for the robot to change rows were established. These manoeuvres enabled the robot to autonomously cover the entire crop by following a previously established plan and without stepping on the crop row, which is an essential behaviour for covering crops such as maize without damaging them.

  20. Underwater Ranging

    OpenAIRE

    S. P. Gaba

    1984-01-01

    The paper deals with underwater laser ranging system, its principle of operation and maximum depth capability. The sources of external noise and methods to improve signal-to-noise ratio are also discussed.

  1. Development of a running robot in super high speed tube. Aiming at realization of in-tube inspection for primary cooler and so forth of nuclear reactor

    International Nuclear Information System (INIS)

    Kato, Shigeo

    2000-01-01

    Authors have carried out a study on an in-tube running robot in living body on a base of laying stretching of bellows at a means of running by thinking application of in-tube inspection in living body such as large and small bowels. As a result, an in-tube running robot with about 20 mm in inner diameter capable of running in soft small bowel as well as in hard running tube was developed successfully. After an accident of the Tsuruga nuclear power plant, inspection of a large diameter tube with 76 mm in inner diameter was found to be much important, to begin development of an in-tube running robot for 50 mm class diameter tube. As a result, an in-tube running robot capable of enough holding a micro video camera with about 20 g in mass and showing 4.6 N in tension at more than ten times higher speed of 248 mm/s in no loading state, could be made in trial. Here was reported on a foothold realizable on an in-tube running robot for the 76 mm class large diameter tube to be investigated in future. (G.K.)

  2. Signal sensing of the internal ducts inspection robot: GIRINO (Get Inside Robot to Impel Normal Operation); Sensoriamento de sinais do robo de inspecao interna de dutos: GIRINO (Gabarito Interno Robotizado de Incidencia Normal ao Oleoduto)

    Energy Technology Data Exchange (ETDEWEB)

    Panta, Pedro G.; Dutra, Max S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Santos, Auderi V.; Ferreira, Rodrigo C. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Centro de Estudos em Telecomunicacoes; Reis, Ney S. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2004-07-01

    One of the major challenges in the operation field of subway oil pipelines is the presence of blockades caused by paraffin and hydrates accumulation. The maintenance and inspection inside pipelines practiced until now imply complicated risky processes for people and equipment involved in daily operational activities. The Get Inside Robot to Impel Normal Operation (G.I.R.I.N.O.) is a robot developed by the Robotic Laboratory of PETROBRAS Research Center, that aims at looking for less risky ways in internal inspection process of pipelines which displacement movements are generated by hydraulic energy. In order to get the inspection and displacement functions, the G.I.R.I.N.O. needs a constant internal movement monitoring that is made by its several parts; the interaction with the environment in diverse processes. This paper has the objective of proposing a monitoring system for the 14 inch duct G.I.R.I.N.O. For this end, a study of available components for receiving , signal processing and visualization used in the industry that fulfill the basic requirements of the robot's performance was done. The choice of the proposed devices considers these main features: size, power consumption and marinization capability. (author)

  3. Robotics

    Energy Technology Data Exchange (ETDEWEB)

    Lorino, P; Altwegg, J M

    1985-05-01

    This article, which is aimed at the general reader, examines latest developments in, and the role of, modern robotics. The 7 main sections are sub-divided into 27 papers presented by 30 authors. The sections are as follows: 1) The role of robotics, 2) Robotics in the business world and what it can offer, 3) Study and development, 4) Utilisation, 5) Wages, 6) Conditions for success, and 7) Technological dynamics.

  4. Actuator Module of Robot Manipulator for Nuclear Power Plants Inspection, Maintenance and Decommission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Uk; Jung, Kyung Min; Seo, Young Chil; Choi, Byung Seon; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    For nuclear facility decommissioning, there are many different electrical manipulators to remotely dismantle a nuclear facility. Various manipulators will be necessary for inspection, maintenance and decommission. Only one manipulator cannot response to many required tasks. Therefore, several manipulators are necessary, depending on the payload capacity, their number of axes and their dexterity. Each manipulator was developed for a specific task. The actuators used at manipulator are varied and many companies sell actuators depending on power, torque and speed. However, the commercial product is not standardized. Therefore, the development of the manipulator is time consuming and expensive. The essential item of the manipulators is the actuator module. If actuator module is standardized, it is easier to develop manipulator. In this paper, we developed two electrical actuator modules to standardize the actuator module and easily develop a manipulator using the proposed actuator modules. The electrical actuator module has a motor, gear and rotary sensor, and is also waterproof. The electrically driven manipulator being used in the proposed actuator modules will be shown. Two modularized electrical actuator modules were developed for inspection, maintenance and decommission. Using the two developed actuator modules, the manipulator inspecting the welding area of reactor vessel is easily developed. Various modularized electrical actuator modules will be developed in terms of size and power.

  5. Robots: l'embarras de richesses [:survey of robots available

    International Nuclear Information System (INIS)

    Meieran, H.; Brittain, K.; Sturkey, R.

    1989-01-01

    A survey of robots available for use in the nuclear industry is presented. Two new categories of mobile robots have been introduced since the last survey (April 1987): pipe crawlers and underwater robots. The number of robots available has risen to double what it was two years ago and four times what it was in 1986. (U.K.)

  6. A development methodology for a remote inspection system with JAVA and socket

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Lee, Jae Cheol; Kim, Jae Hee

    2004-01-01

    We have developed RISYS (Reactor Inspection System) which inspects reactor vessel welds by an underwater mobile robot. The system consists of a main control computer and an inspection robot which is controlled by the main control computer. Since the environments of the inspection tasks in a nuclear plant, like in other industrial fields, is very poor, serious accidents often happen. Therefore the necessity for remote inspection and control system has increased more and more. We have carried out the research for a remote inspection model for RISYS, and have adopted the world wide web, java, and socket technologies for it. Client interface to access the main control computer that controls the inspection equipment is essential for the development of a remote inspection system. It has been developed with a traditional programming language, for example, Visual C++, Visual Basic and X-Window. However, it is too expensive to vend and maintain the version of a interface program because of the different computer O/S. Nevertheless web and java technologies come to the fore to solve the problems but the java interpreting typed language could incur a performance problem in operating the remote inspection system. We suggest a methodology for developing a remote inspection system with java, a traditional programming language, and a socket programming that solves the java performance problem in this paper

  7. Remote handling and robotic inspections of Palo Verde reactor vessel internals

    International Nuclear Information System (INIS)

    Ryder, W.

    1998-01-01

    Remote visual examinations and handling evolutions in high radiation field environments have required the use of radiation tolerant video systems. These systems involve significant expense and potentially require large envelope deployment structures. Recent events at Palo Verde including Upper Guide Structure damage and Reactor Vessel In-Service Inspections have provided opportunities for research, design and utilization of alternative approaches. Most significant of these, utilization of CCD modules with high magnification capabilities, have produced higher quality viewing, reduced maintenance expenditures, and rapid deployment intervals. (orig.) [de

  8. Automated Inspection of Aircraft

    Science.gov (United States)

    1998-04-01

    This report summarizes the development of a robotic system designed to assist aircraft inspectors by remotely deploying non-destructive inspection (NDI) sensors and acquiring, processing, and storing inspection data. Carnegie Mellon University studie...

  9. Operational experience in underwater photogrammetry

    Science.gov (United States)

    Leatherdale, John D.; John Turner, D.

    Underwater photogrammetry has become established as a cost-effective technique for inspection and maintenance of platforms and pipelines for the offshore oil industry. A commercial service based in Scotland operates in the North Sea, USA, Brazil, West Africa and Australia. 70 mm cameras and flash units are built for the purpose and analytical plotters and computer graphics systems are used for photogrammetric measurement and analysis of damage, corrosion, weld failures and redesign of underwater structures. Users are seeking simple, low-cost systems for photogrammetric analysis which their engineers can use themselves.

  10. International Conference on Underwater Environment

    CERN Document Server

    Jaulin, Luc; Creuze, Vincent; Debese, Nathalie; Quidu, Isabelle; Clement, Benoît; Billon-Coat, Annick

    2016-01-01

    This volume constitutes the results of the International Conference on Underwater Environment, MOQESM’14, held at “Le Quartz” Conference Center in Brest, France, on October 14-15, 2014, within the framework of the 9th Sea Tech Week, International Marine Science and Technology Event. The objective of MOQESM'14 was to bring together researchers from both academia and industry, interested in marine robotics and hydrography with application to the coastal environment mapping and underwater infrastructures surveys. The common thread of the conference is the combination of technical control, perception, and localization, typically used in robotics, with the methods of mapping and bathymetry. The papers presented in this book focus on two main topics. Firstly, coastal and infrastructure mapping is addressed, focusing not only on hydrographic systems, but also on positioning systems, bathymetry, and remote sensing. The proposed methods rely on acoustic sensors such as side scan sonars, multibeam echo sounders, ...

  11. Non-manufacturing applications of robotics; Applications non-manufacturieres de la robotique

    Energy Technology Data Exchange (ETDEWEB)

    Dauchez, P. [LIRMM, Laboratoire d' Informatique, de Robotique et de Microelectronique de Montpellier, 34 (France)

    2000-12-01

    This book presents the different non-manufacturing sectors of activity where robotics can have useful or necessary applications: underwater robotics, agriculture robotics, road work robotics, nuclear robotics, medical-surgery robotics, aids to disabled people, entertainment robotics. Service robotics has been voluntarily excluded because this developing sector is not mature yet. (J.S.)

  12. Inspection of Pipe Inner Surface using Advanced Pipe Crawler Robot with PVDF Sensor based Rotating Probe

    Directory of Open Access Journals (Sweden)

    Vimal AGARWAL

    2011-04-01

    Full Text Available Due to corrosive environment, pipes used for transportation of water and gas at the plants often get damaged. Defects caused by corrosion and cracking may cause serious accidents like leakage, fire and blasts. It also reduces the life of the transportation system substantially. In order to inspect such defects, a Polyvinyledene Fluoride (PVDF based cantilever smart probe is developed to scan the surface quality of the pipes. The smart probe, during rotation, touches the inner surface of the pipe and experience a broad-band excitation in the absence of surface features. On the other hand, whenever the probe comes across any surface projection, there is a change in vibration pattern of the probe, which causes a high voltage peak/pulse. Such peaks/pulses could give useful information about the location and nature of a defect. Experiments are carried out on different patterns, sizes and shapes of surface projections artificially constructed inside the pipe. The sensor system has reliably predicted the presence and distribution of projections in every case. It is envisaged that the new sensing system could be used effectively for pipe health monitoring.

  13. Underwater running device

    International Nuclear Information System (INIS)

    Kogure, Sumio; Matsuo, Takashiro; Yoshida, Yoji

    1996-01-01

    An underwater running device for an underwater inspection device for detecting inner surfaces of a reactor or a water vessel has an outer frame and an inner frame, and both of them are connected slidably by an air cylinder and connected rotatably by a shaft. The outer frame has four outer frame legs, and each of the outer frame legs is equipped with a sucker at the top end. The inner frame has four inner frame legs each equipped with a sucker at the top end. The outer frame legs and the inner frame legs are each connected with the outer frame and the inner frame by the air cylinder. The outer and the inner frame legs can be elevated or lowered (or extended or contracted) by the air cylinder. The sucker is connected with a jet pump-type negative pressure generator. The device can run and move by repeating attraction and releasing of the outer frame legs and the inner frame legs alternately while maintaining the posture of the inspection device stably. (I.N.)

  14. Underwater photogrammetry successful in Spain and France

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Underwater photogrammetry has been used to measure distortions in fuel assembly alignment pins in the upper internals of the Almarez and Dampierre PWRs. Photogrammetry is a three-dimensional precision measurement method using photographic techniques for the on-site measurement phase. On the strength of the operations at the two PWRs, underwater photogrammetry is now considered as a practical and effective technique for dimensional inspection at nuclear plants. (U.K.)

  15. Robotics

    Indian Academy of Sciences (India)

    netic induction to detect an object. The development of ... end effector, inclination of object, magnetic and electric fields, etc. The sensors described ... In the case of a robot, the various actuators and motors have to be modelled. The major ...

  16. 3D Laser Scanner for Underwater Manipulation

    Directory of Open Access Journals (Sweden)

    Albert Palomer

    2018-04-01

    Full Text Available Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS is used to autonomously grasp an object from the bottom of a water tank.

  17. 3D Laser Scanner for Underwater Manipulation.

    Science.gov (United States)

    Palomer, Albert; Ridao, Pere; Youakim, Dina; Ribas, David; Forest, Josep; Petillot, Yvan

    2018-04-04

    Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF) fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS) is used to autonomously grasp an object from the bottom of a water tank.

  18. Development of a tentacle propulsion technique for underwater application

    International Nuclear Information System (INIS)

    Alamgir, T; Rashid, M M; Khan, M R

    2013-01-01

    As robotic technology matures and more platforms are fielded in unstructured real-world situations, the more new areas of applications are being thought for robotic deployment. After successes in industrial robots, researchers are now trying to explore new robots with biological features of different biological creatures like, snake, bird, and spider for their stunning advantages. Underwater exploration using robots is a new avenue. Research on the tentacle robot for underwater application is a new field of research besides the other research in this arena. There are few researches on this topic are explored and mostly are on biological robot. Besides those researches this paper aims to propose and demonstrate another technique to build a tentacle for propulsion purposes. Therefore, in this paper will discuss more on mathematical development for the propulsion technique and its software verification technique in considering the environmental constrains

  19. CISM Course on Basics of Robotics : Theory and Components of Manipulators and Robots

    CERN Document Server

    Knapczyk, Józef

    1999-01-01

    This volume contains the basic concepts of modern robotics, basic definitions, systematics of robots in industry, service, medicine and underwater activity. Important information on walking and mili-walking machines are included as well as possible applications of microrobots in medicine, agriculture, underwater activity.

  20. PWR vessel inspection performance improvements

    International Nuclear Information System (INIS)

    Blair Fairbrother, D.; Bodson, Francis

    1998-01-01

    A compact robot for ultrasonic inspection of reactor vessels has been developed that reduces setup logistics and schedule time for mandatory code inspections. Rather than installing a large structure to access the entire weld inspection area from its flange attachment, the compact robot examines welds in overlapping patches from a suction cup anchor to the shell wall. The compact robot size allows two robots to be operated in the vessel simultaneously. This significantly reduces the time required to complete the inspection. Experience to date indicates that time for vessel examinations can be reduced to fewer than four days. (author)

  1. The development of controller and navigation algorithm for underwater wall crawler

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyung Suck; Kim, Kyung Hoon; Kim, Min Young [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-01-01

    In this project, the control system of a underwater robotic vehicle(URV) for underwater wall inspection in the nuclear reactor pool or the related facilities has been developed. The following 4-sub projects have been studied for this project: (1) Development of the controller and motor driver for the URV (2) Development of the control algorithm for the tracking control of the URV (3) Development of the localization system (4) Underwater experiments of the developed system. First, the dynamic characteristic of thruster with the DC servo-motor was analyzed experimentally. Second the controller board using the INTEL 80C196 was designed and constructed, and the software for the communication and motor control is developed. Third the PWM motor-driver was developed. Fourth the localization system using the laser scanner and inclinometer was developed and tested in the pool. Fifth the dynamics of the URV was studied and the proper control algorithms for the URV was proposed. Lastly the validation of the integrated system was experimentally performed. (author). 27 refs., 51 figs., 8 tabs.

  2. Low cost submarine robot

    Directory of Open Access Journals (Sweden)

    Ponlachart Chotikarn

    2010-10-01

    Full Text Available A submarine robot is a semi-autonomous submarine robot used mainly for marine environmental research. We aim todevelop a low cost, semi-autonomous submarine robot which is able to travel underwater. The robot’s structure was designedand patented using a novel idea of the diving system employing a volume adjustment mechanism to vary the robot’s density.A light weight, flexibility and small structure provided by PVC can be used to construct the torpedo-liked shape robot.Hydraulic seal and O-ring rubbers are used to prevent water leaking. This robot is controlled by a wired communicationsystem.

  3. Underwater television camera for monitoring inner side of pressure vessel

    International Nuclear Information System (INIS)

    Takayama, Kazuhiko.

    1997-01-01

    An underwater television support device equipped with a rotatable and vertically movable underwater television camera and an underwater television camera controlling device for monitoring images of the inside of the reactor core photographed by the underwater television camera to control the position of the underwater television camera and the underwater light are disposed on an upper lattice plate of a reactor pressure vessel. Both of them are electrically connected with each other by way of a cable to rapidly observe the inside of the reactor core by the underwater television camera. The reproducibility is extremely satisfactory by efficiently concentrating the position of the camera and image information upon inspection and observation. As a result, the steps for periodical inspection can be reduced to shorten the days for the periodical inspection. Since there is no requirement to withdraw fuel assemblies over a wide reactor core region, and the device can be used with the fuel assemblies being left as they are in the reactor, it is suitable for inspection of detectors for nuclear instrumentation. (N.H.)

  4. Robot vision

    International Nuclear Information System (INIS)

    Hall, E.L.

    1984-01-01

    Almost all industrial robots use internal sensors such as shaft encoders which measure rotary position, or tachometers which measure velocity, to control their motions. Most controllers also provide interface capabilities so that signals from conveyors, machine tools, and the robot itself may be used to accomplish a task. However, advanced external sensors, such as visual sensors, can provide a much greater degree of adaptability for robot control as well as add automatic inspection capabilities to the industrial robot. Visual and other sensors are now being used in fundamental operations such as material processing with immediate inspection, material handling with adaption, arc welding, and complex assembly tasks. A new industry of robot vision has emerged. The application of these systems is an area of great potential

  5. Incore inspection and repairing device

    International Nuclear Information System (INIS)

    Ito, Arata; Kimura, Motohiko

    1998-01-01

    The present invention provides a device for inspecting and repairing the inside of a reactor container even if it is narrow, with no trouble by using a swimming-type operation robot. Namely, the device of the present invention conducts inspection and repairing operations for the inside of the reactor by introducing a swimming type operation robot into the reactor container. The swimming-type operation robot comprises a robot main body having a propeller, a balancer operably disposed to the robot main body and an inspection and repairing unit attached detachable to the balancer. In the device of the present invention, since the inspection and preparing unit is attached detachably to the swimming robot, a robot which transports tools is formed as a standard product. As a result, the production cost can be reduced, and the reliability of products can be improved. Appropriate operations can be conducted by using best tools. (I.S.)

  6. Survivability design for a hybrid underwater vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong [State Key Lab of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-03-10

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system.

  7. Survivability design for a hybrid underwater vehicle

    International Nuclear Information System (INIS)

    Wang, Biao; Wu, Chao; Li, Xiang; Zhao, Qingkai; Ge, Tong

    2015-01-01

    A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports the survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system

  8. Autonomous docking control of visual-servo type underwater vehicle system aiming at underwater automatic charging

    International Nuclear Information System (INIS)

    Yanou, Akira; Ohnishi, Shota; Ishiyama, Shintaro; Minami, Mamoru

    2015-01-01

    A visual-servo type remotely operated vehicle (ROV) system with binocular wide-angle lens was developed to survey submarine resources, decontaminate radiation from mud in dam lake and so on. This paper explores the experiments on regulator performance and underwater docking of the robot system utilizing Genetic Algorithm (GA) for real-time recognition of the robot's relative position and posture through 3D marker. The visual servoing performances have been verified as follows; (1) The stability performances of the proposed regulator system have been evaluated by exerting abrupt distrubane force while the ROV is controlled by visual servoing. (2) The proposed system can track time-variant desired target position in x-axis (front-back direction of the robot). (3) The underwater docking can be completed by switching visual servoing and docking modes based on the error threshold, and by giving time-varying desired target position and orientation to the controller as a desired pose. (author)

  9. Visual feedback navigation for cable tracking by autonomous underwater vehicles; Jiritsugata kaichu robot no gazo shori ni motozuku cable jido tsuiju

    Energy Technology Data Exchange (ETDEWEB)

    Takai, M.; Ura, T. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Balasuriya, B.; Lam, W. [The University of Tokyo, Tokyo (Japan); Kuroda, Y. [Meiji Univ., Tokyo (Japan)

    1997-08-01

    A vision processing unit was introduced into autonomous underwater vehicles (AUV) to judge the visual situation and to construct an environmental observation platform that can collect wide-range and high-precision measurement data. The cable optionally installed at the bottom of the sea was recognized by vision processing to propose automatic tracking technique. An estimator that compensates for the hough conversion or time delay and a PSA controller that is used as a target value set mechanism or lower-level controller were introduced as the factor technology required for automatic tracking. The feature of the automatic tracking is that a general-purpose platform which can observe the prescribed range environmentally in high precision and density can be constructed because the observation range required by the observer can be prescribed near the sea-bottom surface using a cable. The verification result off Omi Hachiman at Lake Biwa showed that AUV can be used for the high-precision environmental survey in the range prescribed near the sea-bottom surface using a cable. 8 refs., 8 figs., 1 tab.

  10. Robotics for nuclear facilities

    International Nuclear Information System (INIS)

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  11. Innovative inspection system for reactor pressure vessels

    International Nuclear Information System (INIS)

    Mertens, K.; Trautmann, H.

    1999-01-01

    The versatile, compact and modern underwater systems described, the DELPHIN manipulators and MIDAS submarines, are innovative systems enabling RPV inspections at considerably reduced efforts and time, thus reducing the total time required for ISI of reactors. (orig./CB) [de

  12. Application of YAG laser processing in underwater welding and cutting

    Energy Technology Data Exchange (ETDEWEB)

    Ohwaki, Katsura; Morita, Ichiro; Kojima, Toshio; Sato, Shuichi [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    2002-09-01

    The high-power YAG laser is a new fabrication tool. The laser torch is easy to combine with complex with complex mechanics because of beam delivery through optical fiber. A direct underwater laser welding technology has been developed and applied to the preservation, maintenance and removal of nuclear power plants. For subdividing or removing operations for retirement of plants, the laser cutting properties were confirmed to allow a maximum cutting thickness of 80 mm. For repairing inner surface of stainless steel tanks, an underwater laser welding system using a remote-controlled robot was developed and the high quality of underwater laser welding was confirmed. (author)

  13. Feasibility of Robotics and Machine Vision in Military Combat Ration Inspection (Short Term Project STP No. 11)

    Science.gov (United States)

    1994-06-01

    January 1989. [11] Burdea G and Zhuang J. Dextrous telerobotics with force feedback - an overview - part 2: Control and implementation. Robotica , UK, 9...291-298, 1991. [12] Burdea G. and Zhuang J. Dextrous telerobotics with force feedback - an overview, part 1: Human I factors. Robotica , UK, 9:171-178...trans- planting workcell. In American Society of Agricultural Engineering, St. Joseph, MI, 1991. I [26] Frost A.R. Robotic milking: a review. Robotica

  14. Latest Trends in the Monitoring of Ships’s Hull Underwater Part and Analysis of Its Effectiveness

    OpenAIRE

    Urbahs, A; Carjova, K; Vulans, P; Straume, R

    2012-01-01

    Ship operation is not possible without regular maintenance, inspection and certification, established by international and domestic law, where one of the main goals is an effective operation of a ship. To achieve this, it is important to reduce time and costs involved in carrying out the surveys. This paper explores the law under which it’s required for ship to have inspection of underwater part; identifies problems of ship’s hull underwater part; analyze latest trends in ship's hull underwat...

  15. Robotic Fish Technology and Its Applications to Space Mechatronics

    OpenAIRE

    Yamamoto, Ikuo; Shin, Nobuhiro; Oka, Taishi; Matsui, Miki

    2014-01-01

    The authors have developed a shark ray robotic fish based on biomimetic approaches. The paper describes the newly developed robotic fish technology and its application to mechatronics in the space. It is found that robotic fish technology creates not only new underwater robotics, but also the next generation space mechatronics for geological survey of lunar/planets and dust cleaning in the space station.

  16. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human`s eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. 203 figs, 12 tabs, 72 refs. (Author).

  17. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human's eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. It has been looking for these techniques to expand the working area of human, raise the working efficiencies of remote task to the highest degree, and enhance the industrial

  18. Vision-based online vibration estimation of the in-vessel inspection flexible robot with short-time Fourier transformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Lifei; He, Tao [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-10-15

    Highlights: • Vision-based online vibration estimation method for a flexible arm is proposed. • The vibration signal is obtained by image processing in unknown environments. • Vibration parameters are estimated by short-time Fourier transformation. - Abstract: The vibration should be suppressed if it happens during the motion of a flexible robot or under the influence of external disturbance caused by its structural features and material properties, because the vibration may affect the positioning accuracy and image quality. In Tokamak environment, we need to get the real-time vibration information on vibration suppression of robotic arm, however, some sensors are not allowed in the extreme Tokamak environment. This paper proposed a vision-based method for online vibration estimation of a flexible manipulator, which is achieved by utilizing the environment image information from the end-effector camera to estimate its vibration. Short-time Fourier Transformation with adaptive window length method is used to estimate vibration parameters of non-stationary vibration signals. Experiments with one-link flexible manipulator equipped with camera are carried out to validate the feasibility of this method in this paper.

  19. Vision-based online vibration estimation of the in-vessel inspection flexible robot with short-time Fourier transformation

    International Nuclear Information System (INIS)

    Wang, Hesheng; Chen, Weidong; Xu, Lifei; He, Tao

    2015-01-01

    Highlights: • Vision-based online vibration estimation method for a flexible arm is proposed. • The vibration signal is obtained by image processing in unknown environments. • Vibration parameters are estimated by short-time Fourier transformation. - Abstract: The vibration should be suppressed if it happens during the motion of a flexible robot or under the influence of external disturbance caused by its structural features and material properties, because the vibration may affect the positioning accuracy and image quality. In Tokamak environment, we need to get the real-time vibration information on vibration suppression of robotic arm, however, some sensors are not allowed in the extreme Tokamak environment. This paper proposed a vision-based method for online vibration estimation of a flexible manipulator, which is achieved by utilizing the environment image information from the end-effector camera to estimate its vibration. Short-time Fourier Transformation with adaptive window length method is used to estimate vibration parameters of non-stationary vibration signals. Experiments with one-link flexible manipulator equipped with camera are carried out to validate the feasibility of this method in this paper.

  20. Underwater Calibration of Dome Port Pressure Housings

    Science.gov (United States)

    Nocerino, E.; Menna, F.; Fassi, F.; Remondino, F.

    2016-03-01

    Underwater photogrammetry using consumer grade photographic equipment can be feasible for different applications, e.g. archaeology, biology, industrial inspections, etc. The use of a camera underwater can be very different from its terrestrial use due to the optical phenomena involved. The presence of the water and camera pressure housing in front of the camera act as additional optical elements. Spherical dome ports are difficult to manufacture and consequently expensive but at the same time they are the most useful for underwater photogrammetry as they keep the main geometric characteristics of the lens unchanged. Nevertheless, the manufacturing and alignment of dome port pressure housing components can be the source of unexpected changes of radial and decentring distortion, source of systematic errors that can influence the final 3D measurements. The paper provides a brief introduction of underwater optical phenomena involved in underwater photography, then presents the main differences between flat and dome ports to finally discuss the effect of manufacturing on 3D measurements in two case studies.

  1. Blind equalization for underwater communications

    NARCIS (Netherlands)

    Blom, K.C.H.

    2014-01-01

    Underwater wireless (sensor) networks would vastly improve man's ability to explore and exploit remote aquatic environments. Despite underwater sensor and vehicle technology being relatively mature, underwater communications is still a major challenge. The most challenging characteristics of the

  2. Robotics and remote systems applications

    International Nuclear Information System (INIS)

    Rabold, D.E.

    1996-01-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling

  3. 46 CFR 115.650 - Alternative Hull Examination (AHE) Program options: Divers or underwater ROV.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Alternative Hull Examination (AHE) Program options... MORE THAN 49 PASSENGERS INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 115.650 Alternative Hull Examination (AHE) Program options: Divers or underwater ROV. To complete your underwater...

  4. The Support of Underwater Works with the Use of Remotely Operated Vehicles On the Example of Works Conducted On the Wreck of the Fishing Boat WŁA-127

    Directory of Open Access Journals (Sweden)

    Dawidziuk Marek

    2017-03-01

    Full Text Available The article demonstrates use of underwater remotely operated vehicles during an underwater visual inspection of a sunken vessel. The presented tasks were carried out in the course of underwater works performed from a Polish navy rescue vessel on the fishing boat WŁA-127. The discussed examples include a visual inspection of the sunken vessel and the support offered to Polish Navy rescue divers as they carried out underwater works.

  5. Underwater welding of steel

    International Nuclear Information System (INIS)

    Ibarra, S.; Olson, D.L.

    1992-01-01

    A fundamental basis to understand the behavior of wet underwater welding of steel is introduced. Both the pyrometallurgical and physical metallurgy concepts are discussed. Modifications of welding consumables and practice are suggested. This chapter promotes further contributions of meatllurgical research to improve and promote wet underwater welding. (orig.)

  6. Underwater Scene Composition

    Science.gov (United States)

    Kim, Nanyoung

    2009-01-01

    In this article, the author describes an underwater scene composition for elementary-education majors. This project deals with watercolor with crayon or oil-pastel resist (medium); the beauty of nature represented by fish in the underwater scene (theme); texture and pattern (design elements); drawing simple forms (drawing skill); and composition…

  7. Underwater Acoustic Networking Techniques

    CERN Document Server

    Otnes, Roald; Casari, Paolo; Goetz, Michael; Husøy, Thor; Nissen, Ivor; Rimstad, Knut; van Walree, Paul; Zorzi, Michele

    2012-01-01

    This literature study presents an overview of underwater acoustic networking. It provides a background and describes the state of the art of all networking facets that are relevant for underwater applications. This report serves both as an introduction to the subject and as a summary of existing protocols, providing support and inspiration for the development of network architectures.

  8. Underwater Acoustic Tracer System

    Science.gov (United States)

    2009-03-13

    for controlling and utilizing supercavitating projectile dynamics to produce a distinctive radiated noise signal. (2) Description of the Prior Art...metallic objects which travel relatively closely to a magnetic pickup. For larger, high speed, underwater projectiles, supercavitating underwater vehicles...have been proposed for use. The conditions for supercavitation are known in the art. Supercavitation allows for higher speeds to be sustainable

  9. Remote repair robots for dissolvers in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Sugiyama, Sen; Hirose, Yasuo; Kawamura, Hironobu; Minato, Akira; Ozaki, Norihiko.

    1984-01-01

    In nuclear facilities, for the purpose of the reduction of radiation exposure of workers, the shortening of working time and the improvement of capacity ratio of the facilities, the technical development of various devices for remote maintenance and inspection has been advanced so far. This time, an occasion came to inspect and repair the pinhole defects occurred in spent fuel dissolving tanks in the reprocessing plant of Tokai Establishment, Power Reactor and Nuclear Fuel Development Corp. However, since the radiation environmental condition and the restricting condition due to the object of repair were extremely severe, it was impossible to cope with them using conventional robot techniques. Consequently, a repair robot withstanding high level radiation has been developed anew, which can work by totally remote operation in the space of about 270 mm inside diameter and about 6 m length. The repair robot comprises a periscope reflecting mirror system, a combined underwater and atmospheric use television, a grinder, a welder, a liquid penetrant tester and an ultrasonic flaw detector. The key points of the development were the parts withstanding high level radiation and the selection of materials, to make the mechanism small size and the realization of totally remote operation. (Kako, I.)

  10. Subsea Infrastructure Inspection

    DEFF Research Database (Denmark)

    Mai, Christian; Pedersen, Simon; Hansen, Leif

    2016-01-01

    Due to the increasing energy demands, the offshore energy business has boomed in recent decades. Sub-sea pipeline and power transmission cable installations are commonly applied worldwide. Any potential breakages can cause equipment damage and also damage the environment. The majority...... (S-AUVs) can significantly change the inspections of infrastructure, as these vehicles could be much cheaper to deploy. S-AUVs can potentially conduct faster data collection and provide higher inspection data quality. However, there are still some technical challenges related to: underwater wireless...

  11. Full autonomous microline trace robot

    Science.gov (United States)

    Yi, Deer; Lu, Si; Yan, Yingbai; Jin, Guofan

    2000-10-01

    Optoelectric inspection may find applications in robotic system. In micro robotic system, smaller optoelectric inspection system is preferred. However, as miniaturizing the size of the robot, the number of the optoelectric detector becomes lack. And lack of the information makes the micro robot difficult to acquire its status. In our lab, a micro line trace robot has been designed, which autonomous acts based on its optoelectric detection. It has been programmed to follow a black line printed on the white colored ground. Besides the optoelectric inspection, logical algorithm in the microprocessor is also important. In this paper, we propose a simply logical algorithm to realize robot's intelligence. The robot's intelligence is based on a AT89C2051 microcontroller which controls its movement. The technical details of the micro robot are as follow: dimension: 30mm*25mm*35*mm; velocity: 60mm/s.

  12. Inspection system performance test procedure

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1995-01-01

    This procedure establishes requirements to administer a performance demonstration test. The test is to demonstrate that the double-shell tank inspection system (DSTIS) supplied by the contractor performs in accordance with the WHC-S-4108, Double-Shell Tank Ultrasonic Inspection Performance Specification, Rev. 2-A, January, 1995. The inspection system is intended to provide ultrasonic (UT) and visual data to determine integrity of the Westinghouse Hanford Company (WHC) site underground waste tanks. The robotic inspection system consists of the following major sub-systems (modules) and components: Mobile control center; Deployment module; Cable management assembly; Robot mechanism; Ultrasonic testing system; Visual testing system; Pneumatic system; Electrical system; and Control system

  13. Intelligent Navigation for a Solar Powered Unmanned Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Francisco García-Córdova

    2013-04-01

    Full Text Available In this paper, an intelligent navigation system for an unmanned underwater vehicle powered by renewable energy and designed for shadow water inspection in missions of a long duration is proposed. The system is composed of an underwater vehicle, which tows a surface vehicle. The surface vehicle is a small boat with photovoltaic panels, a methanol fuel cell and communication equipment, which provides energy and communication to the underwater vehicle. The underwater vehicle has sensors to monitor the underwater environment such as sidescan sonar and a video camera in a flexible configuration and sensors to measure the physical and chemical parameters of water quality on predefined paths for long distances. The underwater vehicle implements a biologically inspired neural architecture for autonomous intelligent navigation. Navigation is carried out by integrating a kinematic adaptive neuro-controller for trajectory tracking and an obstacle avoidance adaptive neuro- controller. The autonomous underwater vehicle is capable of operating during long periods of observation and monitoring. This autonomous vehicle is a good tool for observing large areas of sea, since it operates for long periods of time due to the contribution of renewable energy. It correlates all sensor data for time and geodetic position. This vehicle has been used for monitoring the Mar Menor lagoon.

  14. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Kimura, Motohiko; Abe, Akira

    1993-01-01

    A continuing need exists for automatic or remote-controlled machines or robots which can perform inspection and maintenance tasks in nuclear power plants. Toshiba has developed several types of monofunctional and multi- functional robots for such purposes over the past 20 years, some of which have already been used in actual plants. This paper describes new multifunctional robots for inspection and maintenance. An inspection robot has been applied in an actual plant for two years for performance testing. Maintenance robots for grinding tasks have also been developed, which can be easily teleoperated by the operator using automatic control. These new robots are expected to be applied to actual inspection and maintenance work in nuclear power plants. (author)

  15. Incore inspection device

    International Nuclear Information System (INIS)

    Ogisu, Tatsuki; Taguchi, Kosei.

    1995-01-01

    The device of the present invention can inspect surfaces of equipments in reactor water in a nuclear reactor in a state of atmospheric air. Namely, an inspection device is movable forwardly and backwardly in a water-proof vessel. An annular sucker with pleats is disposed to the outer side of a lid of the water-proof vessel. A television camera for an under water monitoring is disposed to the inner side of the lid of the water-proof vessel by way of a partitioning wall with lid. Transferring screws are disposed at the back and on the side of the water-proof vessel. In the device having such a constitution, (1) the inside of the water-proof vessel is at first made water-tight by closing the partitioning wall with lid, (2) the back and the side screws are operated by the guide of the underwater monitoring television camera, to transfer the water-proof vessel to the surface of the reactor core to be inspected, (3) the annular sucker with pleats is urged on the surface to be inspected by the back screw, to fix the water-proof vessel, (4) reactor water in a space of the annular sucker with pleats is discharged and replaced with air, and (5) the lid of the partition wall with lid is opened and the inspection device is disposed at a position of the underwater monitoring television camera, to inspect the surface to be inspected in a state of atmospheric air. (I.S.)

  16. Autonomous underwater vehicle for research and rescue operations

    CSIR Research Space (South Africa)

    Holtzhausen S

    2008-11-01

    Full Text Available Autonomous under water vehicles are ideal platforms for search and rescue operations. They can also be used for inspection of underwater terrains. These vehicles need to be autonomous and robust to cope with unpredictable current and high pressures...

  17. Underwater 3D filming

    Directory of Open Access Journals (Sweden)

    Roberto Rinaldi

    2014-12-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  18. Underwater wireless communication system

    International Nuclear Information System (INIS)

    Goh, J H; Shaw, A; Al-Shamma'a, A I

    2009-01-01

    Underwater communication has a range of applications including remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) communication and docking in the offshore industry. Current underwater transmission techniques is primarily utilise sound waves for large distance at lower frequencies and the velocity of sound in water is approximately 1500m/s the resultant communications have problems with multi-path propagation and low bandwidth problems. The use of electromagnetic (EM) techniques underwater has largely been overlooked because of the attenuation due to the conductivity of seawater. However, for short range applications, the higher frequencies and much higher velocity can prove advantageous. This paper will outline a project which will utilise recent investigations that demonstrate EM wave propagation up to the MHz frequency range is possible in seawater.

  19. Smelling and Tasting Underwater.

    Science.gov (United States)

    Atema, Jelle

    1980-01-01

    Discusses differences between smell and taste, comparing these senses in organisms in aquatic and terrestrial environments. Describes the chemical environment underwater and in air, differences in chemoreceptors to receive stimuli, and the organs, brain, and behavior involved in chemoreception. (CS)

  20. Visual inspection. Better than your eyes

    International Nuclear Information System (INIS)

    Jakobs, N.; Baumgartl, R.

    2005-01-01

    Ongoing improvements in the development of camera technologies and manipulator techniques permit an enhanced performance of inspection tasks in nuclear services. In areas of reduced dose rate it's possible to use small size high resolution CCD cameras instead of tube cameras. Underwater inspections may be performed by submarine instead of rigid manipulator systems. This allows the enlargement of inspection areas and the performance at reduced time and personnel dose rate. (author)

  1. ARIES: A mobile robot inspector

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1995-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is a mobile robot inspection system being developed for the Department of Energy (DOE) to survey and inspect drums containing mixed and low-level radioactive waste stored in warehouses at DOE facilities. The drums are typically stacked four high and arranged in rows with three-foot aisle widths. The robot will navigate through the aisles and perform an autonomous inspection operation, typically performed by a human operator. It will make real-time decisions about the condition of the drums, maintain a database of pertinent information about each drum, and generate reports

  2. Autonomous Underwater Gliders

    OpenAIRE

    Wood,; Stephen,

    2009-01-01

    Autonomous Underwater Vehicles are only now being marketed as robust commercial vehicles for many industries, and of these vehicles underwater gliders are becoming the new tool for oceanographers. Satellites have provided scientists and marine specialists with measurements of the sea surface such as temperature since the late 1970s, and data via subsurface oceanographic moorings since the 1950's. As stated by David Smeed of the National Oceanography Centre, Southampton, England, that "gliders...

  3. Underwater Gliders: A Review

    OpenAIRE

    Javaid Muhammad Yasar; Ovinis Mark; Nagarajan T; Hashim Fakhruldin B M

    2014-01-01

    Underwater gliders are a type of underwater vehicle that transverse the oceans by shifting its buoyancy, during which its wings develop a component of the downward motion in the horizontal plane, thus producing a forward force. They are primarily used in oceanography sensing and data collection and play an important role in ocean research and development. Although there have been considerable developments in these gliders since the development of the first glider concept in 1989, to date, no ...

  4. Applicability evaluation of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Kobayashi, Noriyasu; Kasuya, Takashi; Ueno, Souichi; Ochiai, Makoto; Yuguchi, Yasuhiro

    2010-01-01

    We clarified a defect detecting capability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding. An underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in groove and welding surface grinding as a post treatment. Therefore groove and grinded welding surface inspections are required underwater. We curried out defect detection tests using three kinds of specimens simulated a groove, reactor vessel nozzle dissimilar metal welding materials and a laser beam welding material with a cross coil ECT probe. From experimental results, we confirmed that it is possible to detect 0.3 mm or more depth electro-discharge machining slits on machining surfaces in all specimens and an ECT has possibility as a surface inspection technique for underwater laser beam welding. (author)

  5. Application status and performance analysis of robot in nuclear power plants

    International Nuclear Information System (INIS)

    Liu Chengze; Yan Zhi; Deng Jingshan

    2012-01-01

    Application status of robot in nuclear power plants in some countries is summarized. The related robots include accident response robot, dismantling and cleaning robot, in-service inspection robot, special-purpose robot and so on. Finally, some key technologies such as the radiation-tolerance and reliability of the robot systems are analyzed in details. (authors)

  6. Radio Controlled Fish Robot RR-9

    OpenAIRE

    Cifanskis, S; Vība, J; Jakuševičs, V

    2015-01-01

    A remote-controlled underwater robot fish is described. For motion control three actuator drives are used: one actuator is for tail frequency exchange, the second actuator is for the left or right turnings and the third actuator provides neutral swimming or up and down diving. From the robot's center of mass motion theorem (according to the given total mass of robot) the proportional distribution of massesof structural elements is found. Experimental indoor and out...

  7. Autonomous Underwater Navigation and Optical Mapping in Unknown Natural Environments

    Directory of Open Access Journals (Sweden)

    Juan David Hernández

    2016-07-01

    Full Text Available We present an approach for navigating in unknown environments while, simultaneously, gathering information for inspecting underwater structures using an autonomous underwater vehicle (AUV. To accomplish this, we first use our pipeline for mapping and planning collision-free paths online, which endows an AUV with the capability to autonomously acquire optical data in close proximity. With that information, we then propose a reconstruction pipeline to create a photo-realistic textured 3D model of the inspected area. These 3D models are also of particular interest to other fields of study in marine sciences, since they can serve as base maps for environmental monitoring, thus allowing change detection of biological communities and their environment over time. Finally, we evaluate our approach using the Sparus II, a torpedo-shaped AUV, conducting inspection missions in a challenging, real-world and natural scenario.

  8. Fuel inspection device

    International Nuclear Information System (INIS)

    Tsuji, Tadashi.

    1990-01-01

    The fuel inspection device of the present invention has a feature of obtaining an optimum illumination upon fuel rod interval inspection operation in a fuel pool. That is, an illumination main body used underwater is connected to a cable which is led out on a floor. A light control device is attached to the other end of the cable and an electric power cable is connected to the light control device. A light source (for example, incandescent lamp) is incorporated in the casing of the illumination main body, and a diffusion plate is disposed at the front to provide a plane light source. The light control device has a light control knob capable of remote-controlling the brightness of the light of the illumination main body. In the fuel inspection device thus constituted, halation is scarcely caused on the image screen upon inspection of fuels by a submerged type television camera to facilitate control upon inspection. Accordingly, efficiency of the fuel inspection can be improved to shorten the operation time. (I.S.)

  9. Robotics in Japan

    International Nuclear Information System (INIS)

    Martin, T.

    1987-02-01

    In September 1986, a group of German scientists visited Japanese institutions dealing with advanced robotics research, to gain a deeper insight in the Japanese status of this technology. Research projects found and discussions led in seven leading research institutes and seven firms are reported. Advanced robot or handling systems to ease or avoid human exposure to activities in harsh, demanding or dangerous conditions or environment are mainly dealt with. The Japanese show vast research activities in this area in the pre-competitive stage especially in the nuclear and underwater application area. (orig.) [de

  10. The application of manipulator robot for nuclear power plant maintenance

    International Nuclear Information System (INIS)

    Fujita, Jun; Onishi, Ken

    2009-01-01

    In the maintenance works at nuclear power plant, robots are used because of high radiation, narrow space and underwater work. In light of manufacture period, cost and reliability, various maintenance works are requested to be done by one robot. As one of the solutions, we developed manipulator robots for the access of specialized tools. This study shows manipulator robots developed by MHI, application example to maintenance works and effectiveness of manipulator robots. When robotization of maintenance works are considered, manipulator technology is very effective solution means. The manipulator technologies in this study are able to apply to robotization needed under radiation environment. (author)

  11. A study on an autonomous pipeline maintenance robot, 8

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Hosokai, Hidemi; Niitsu, Shunichi; Kaneshige, Masanori; Iwasaki, Shinnosuke.

    1990-01-01

    This paper deals with the path planning and sensing planning expert system with learning functions for the pipeline inspection and maintenance robot, Mark IV. The robot can carry out inspection tasks to autonomously detect malfunctions in a plant pipeline system. Furthermore, the robot becomes more intelligent by adding the following functions: (1) the robot, Mark IV, is capable of inspecting surfaces of storage tanks as well as pipeline outer surfaces; (2) in path planning, the robot has a learning function using information generated in the past such as a moving path, task level and control commands of the robot; (3) in inspecting a pipeline system with plant equipment such as valves, franges, T- and L-joints, the robot is capable of inspecting continuous surfaces in pipeline. Thus, together with the improved path planning expert system (PPES) and the sensing planning expert system (SPES), the Mark IV robot becomes intelligent enough to automatically carry out given inspection tasks. (author)

  12. Defect detectability of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Ueno, Souichi; Kobayashi, Noriyasu; Ochiai, Makoto; Kasuya, Takashi; Yuguchi, Yasuhiro

    2011-01-01

    We clarified defect detectability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding works of dissimilar metal welding (DMW) of reactor vessel nozzle. The underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in the grooves and welded surface grinding as a post treatment. Therefore groove and welded surface inspections are required in the underwater condition. The ECT is a major candidate as this inspection technique because a penetrant testing is difficult to perform in the underwater condition. Several kinds of experiments were curried out using a cross coil an ECT probe and ECT data acquisition system in order to demonstrate the ECT defect detectability. We used specimens, simulating groove and DMW materials at an RV nozzle, with electro-discharge machining (EDM) slits over it. Additionally, we performed a detection test for artificial stress corrosion cracking (SCC) defects. From these experimental results, we confirmed that an ECT was possible to detect EDM slits 0.3 mm or more in depth and artificial SCC defects 0.02 mm to 0.48 mm in depth on machined surface. Furthermore, the underwater ECT defect detectability is equivalent to that in air. We clarified an ECT is sufficiently usable as a surface inspection technique for underwater laser beam welding works. (author)

  13. Underwater 3D filming

    OpenAIRE

    Rinaldi, Roberto

    2014-01-01

    After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” ) and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Unde...

  14. Point features extraction: towards slam for an autonomous underwater vehicle

    CSIR Research Space (South Africa)

    Matsebe, O

    2010-07-01

    Full Text Available and Control. Available: http://www.robots.ox.ac.uk/~pnewman/papers/Robotica.pdf, date accessed: [2009, 05/20] [7] Williams, S.B., Newman, P., Rosenblatt, J., Dissanayake, G. & Whyte, H.D., Autonomous Underwater Simultaneous and Localisation and Map Building.... Available: http://www.robots.ox.ac.uk/~pnewman/papers/Robotica.pdf., date accessed: [2009, 05/20] [8]http://www.tritech.co.uk/products/products-micron_sonar.htm, date accessed: [10/01/10] [9] Tena, I., Petillot, Y., Lane, D.M.,Salson. Feature Extraction...

  15. Soft computing in advanced robotics

    CERN Document Server

    Kobayashi, Ichiro; Kim, Euntai

    2014-01-01

    Intelligent system and robotics are inevitably bound up; intelligent robots makes embodiment of system integration by using the intelligent systems. We can figure out that intelligent systems are to cell units, while intelligent robots are to body components. The two technologies have been synchronized in progress. Making leverage of the robotics and intelligent systems, applications cover boundlessly the range from our daily life to space station; manufacturing, healthcare, environment, energy, education, personal assistance, logistics. This book aims at presenting the research results in relevance with intelligent robotics technology. We propose to researchers and practitioners some methods to advance the intelligent systems and apply them to advanced robotics technology. This book consists of 10 contributions that feature mobile robots, robot emotion, electric power steering, multi-agent, fuzzy visual navigation, adaptive network-based fuzzy inference system, swarm EKF localization and inspection robot. Th...

  16. Evaluation of an Efficient Approach for Target Tracking from Acoustic Imagery for the Perception System of an Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Sebastián A. Villar

    2014-02-01

    Full Text Available This article describes the core algorithms of the perception system to be included within an autonomous underwater vehicle (AUV. This perception system is based on the acoustic data acquired from side scan sonar (SSS. These data should be processed in an efficient time, so that the perception system is able to detect and recognize a predefined target. This detection and recognition outcome is therefore an important piece of knowledge for the AUVs dynamic mission planner (DMP. Effectively, the DMP should propose different trajectories, navigation depths and other parameters that will change the robot's behaviour according to the perception system output. Hence, the time in which to make a decision is critical in order to assure safe robot operation and to acquire good quality data; consequently, the efficiency of the on-line image processing from acoustic data is a key issue. Current techniques for acoustic data processing are time and computationally intensive. Hence, it was decided to process data coming from a SSS using a technique that is used for radars, due to its efficiency and its amenability to on-line processing. The engineering problem to solve in this case was underwater pipeline tracking for routine inspections in the off-shore industry. Then, an automatic oil pipeline detection system was developed borrowing techniques from the processing of radar measurements. The radar technique is known as Cell Average – Constant False Alarm Rate (CA – CFAR. With a slight variation of the algorithms underlying this radar technique, which consisted of the previous accumulation of partial sums, a great improvement in computing time and effort was achieved. Finally, a comparison with previous approaches over images acquired with a SSS from a vessel in the Salvador de Bahia bay in Brazil showed the feasibility of using this on-board technique for AUV perception.

  17. Robots in the USA nuclear industry: An overview to the end of the 20th century

    International Nuclear Information System (INIS)

    Meleran, H.B.

    1993-01-01

    Stationary robotic arms, mobile robotic vehicles, ROV's and other underwater crawling robots, and pipecrawlers are beginning to play a growing role in nuclear power plants and other nuclear facilities. This paper presents an overview of the current status and availability of robots, and in particular mobile robots, in the nuclear industry in the US. Typical missions for the robots conducted upon terrestrial surfaces, underwater, inside pipelines, and above ground location will also be described. An additional focus will also be directed towards the examination of issues concerning evolving insights and new development projects which are currently underway. Successfully exploited technologies that have been developed for other non-nuclear activities the aerospace, underwater, and industrial environments are being incorporated into the new generation of robots used in the nuclear industry

  18. The application of manipulator robot for nuclear plant maintenance

    International Nuclear Information System (INIS)

    Kohata, Yukifumi; Fujita, Jun; Onishi, Ken; Tsuhari, Hiroyuki; Hosoe, Fumihiro

    2010-01-01

    In the maintenance works at nuclear power plant, robots are used because of high radiation, narrow space and underwater work. Various robots are needed because there is various maintenance works. This is inefficiency. As the solutions, we developed manipulator robots for the access of specialized tools. This study shows manipulator robots developed by MHI, application example to maintenance works and effectiveness of manipulator robots. When robotization of maintenance works are considered, manipulator technology is very effective solution means. We achieved efficiency improvement and the reliability improvement by developing a high generality manipulator. (author)

  19. Exploratorium: Robots.

    Science.gov (United States)

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  20. Underwater Welding Techniques

    OpenAIRE

    Esam F. Alajmi; Ahmad A. Alqenaei

    2017-01-01

    Welding demand in offshore and marine applications is increased with the increasing in oil and gas activities as well as increasing in the marine transportation and industrial applications. Applications of underwater welding well be increased in Kuwait in the coming years due to the strategic directive of the country toward starting the offshore oil and gas exploration and production, and the increase in marine transportation projects. Therefore, there is a need to understand the concept of u...

  1. Underwater Gliders: A Review

    Directory of Open Access Journals (Sweden)

    Javaid Muhammad Yasar

    2014-07-01

    Full Text Available Underwater gliders are a type of underwater vehicle that transverse the oceans by shifting its buoyancy, during which its wings develop a component of the downward motion in the horizontal plane, thus producing a forward force. They are primarily used in oceanography sensing and data collection and play an important role in ocean research and development. Although there have been considerable developments in these gliders since the development of the first glider concept in 1989, to date, no review of these gliders have been done. This paper reviews existing underwater gliders, with emphasis on their respective working principles, range and payload capacity. All information on gliders available in the public domain or published in literature from the year 2000-2013 was reviewed. The majority of these gliders have an operational depth of 1000 m and a payload of less than 25 kg. The exception is a blend-body shape glider, which has a payload of approximately 800 kg and an operational depth around about 300 m. However, the commercialization of these gliders has been limited with only three know examples that have been successfully commercialized.

  2. Testing of an underwater remotely-operated vehicle in the basins of the Cattenom nuclear power generation center

    International Nuclear Information System (INIS)

    Delfour, D.; Khakanski, M.; Nepveu, C.; Schmitt, J.

    1993-05-01

    An underwater robot was tested in the basins of the Cattenom Nuclear Power Generation Center fed with raw water from the Moselle River. The purpose was to inspect wall biofouling without interrupting water circulation. The ROV is a light, compact device, remotely controlled by cable and equipped with video cameras. The video recordings made were used to compare conditions in a basin cleaned the previous month by divers with those in a basin which had not been cleaned for a year. Manual cleaning by divers is an effective method, leaving Zebra Mussels on less than 5% of the wall surfaces. On the other hand, the floor of the basin was observed to be covered with fine sediment, vegetal matters and shells washed in with the Moselle River water. In the basin which had not been cleaned, the entire wall surface was covered with very dense tufts of tubular organisms (Hydrozoa Cordylophora) and zebra mussels. The tests have provided elements for definition of an inspection procedure and have given rise to suggestions for complementary equipment. (authors). 5 figs., 9 photos

  3. State of the art report: Underwater examination techniques for spent nuclear fuels

    International Nuclear Information System (INIS)

    Chun, Yong Bum

    1997-06-01

    In these days, much efforts are being put to increase the final discharge burnup of PWR fuels. Therefore, the necessity of the inspection of irradiated nuclear fuels assembly during the the refueling outage is greatly increased to evaluate the safe operation and soundness of fuel assemblies in their next cycles in core, and apply the results for safe operation and effective core management. The necessity to evaluate the irradiation performance of indigenous nuclear fuels pushes the relative researchers to the development of on-site fuel inspection techniques and devices which can perform the underwater inspection and measurement of irradiated nuclear fuels during refueling outage. To ensure the technologies, the status of in situ underwater fuel inspection techniques and equipment were investigated and reviewed. Those information provides the fuel inspection capability to evaluate and certificate the performance and integrity of nuclear fuels which leads to the safe operation of NPP. (author). 49 refs., 52 figs

  4. Lessons of nuclear robot history

    International Nuclear Information System (INIS)

    Oomichi, Takeo

    2014-01-01

    Severe accidents occurred at Fukushima Daiichi Nuclear Power Station stirred up people's great expectation of nuclear robot's deployment. However unexpected nuclear disaster, especially rupture of reactor building caused by core meltdown and hydrogen explosion, made it quite difficult to introduce nuclear robot under high radiation environment to cease accidents and dispose damaged reactor. Robotics Society of Japan (RSJ) set up committee to look back upon lessons learned from 50 year's past experience of nuclear robot development and summarized 'Lessons of nuclear robot history', which was shown on the home page website of RSJ. This article outlined it with personal comment. History of nuclear robot developed for inspection and maintenance at normal operation and for specific required response at nuclear accidents was reviewed with many examples at home and abroad for TMI, Chernobyl and JCO accidents. Present state of Fukushima accident response robot's introduction and development was also described with some comments on nuclear robot development from academia based on lessons. (T. Tanaka)

  5. RIMACS, Reactor Inspection Main Control System

    International Nuclear Information System (INIS)

    2008-01-01

    1 - Description of program or function: RIMACS prepares for automatic inspection files on each inspection item for the reactor. These automatic inspection files provide the data to move RIROB (Reactor Inspection Robot) with laser by interpreting the coordinates of LASPO (Laser Positioner) and the laser detecting device of RIROB in three dimensional space. In addition, when RIROB arrives at the inspecting location, the files provide all values of the manipulator's motions to acquire the ultrasonic data. RIMACS provides various modules in order to perform these complex functions, and the functions are programmed on graphic user interface for the convenience of the user. RIMACS provides various functions, such as insertion of reactor production data, selection of the reactor for inspection, the creation of automatic inspection file, the selection of the inspection item, inspection simulation, and automatic inspection procedures. It also provides all other functions, which are necessary for the inspection, such as operating program download and manual control of LASPO and RIROB, the inspection simulation and the inspection status display by means of the graphic screen, and SODAS (ultra-Sonic Data Acquisition System) drive verification. 2 - Methods: Moving path and operation procedures for inspection robot are generated automatically with Kinematics algorithm. 3 - Restrictions on the complexity of the problem: A graphics display with MS-Window capability is required

  6. A Game-theoretical Approach for Distributed Cooperative Control of Autonomous Underwater Vehicles

    KAUST Repository

    Lu, Yimeng

    2018-05-01

    This thesis explores a game-theoretical approach for underwater environmental monitoring applications. We first apply game-theoretical algorithm to multi-agent resource coverage problem in drifting environments. Furthermore, existing utility design and learning process of the algorithm are modified to fit specific constraints of underwater exploration/monitoring tasks. The revised approach can take the real scenario of underwater monitoring applications such as the effect of sea current, previous knowledge of the resource and occasional communications between agents into account, and adapt to them to reach better performance. As the motivation of this thesis is from real applications, in this work we emphasize highly on implementation phase. A ROS-Gazebo simulation environment was created for preparation of actual tests. The algorithms are implemented in simulating both the dynamics of vehicles and the environment. After that, a multi-agent underwater autonomous robotic system was developed for hardware test in real settings with local controllers to make their own decisions. These systems are used for testing above mentioned algorithms and future development of other underwater projects. After that, other works related to robotics during this thesis will be briefly mentioned, including contributions in MBZIRC robotics competition and distributed control of UAVs in an adversarial environment.

  7. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  8. Mobility Systems For Robotic Vehicles

    Science.gov (United States)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  9. PIPEBOT: a mobile system for duct inspection

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Emanuel; Goncalves, Eder Mateus; Botelho, Silvia; Oliveira, Vinicius; Souto Junior, Humberto; Almeida, Renan de; Mello Junior, Claudio; Santos, Thiago [Universidade Federal do Rio Grande (FURG), RS (Brazil); Gulles, Roger [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    In this paper, it is presented the development of an innovative and low-cost robotic mobile system to be employed in inspection of pipes. The system is composed of a robot with different sensors which permit to move inside pipes and detect faults as well as incipient faults. The robot is a semiautonomous one, i.e. it can navigate by human tele operation or autonomously one. The autonomous mode uses computer vision techniques and signals from position sensor of the robot to navigating and localizing it. It is showed the mechanical structure of the robot, the overall architecture of the system and preliminary results. (author)

  10. ACEC: remote inspection, remote intervention, autonomous vehicle

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Early in 1979, the accident at the TMI-2 nuclear power station focused attention on the lack of inspection and intervention means in containments where high radiation levels do not allow the entrance of humans. Recent years have seen a trend towards significant developments in the application of robotic technology to maintenance and inspection in nuclear facilities. This paper presents the general development concept and the technical specifications of a mobile robot [fr

  11. Modeling the kinematics of an autonomous underwater vehicle for range-bearing Simultaneous Localization and Mapping

    CSIR Research Space (South Africa)

    Matsebe, O

    2008-12-01

    Full Text Available . Dissanayaki and H.D. Whyte, “Autonomous underwater navigation and control”. Robotica, vol.19,No.5, pp.481-496, 2001. [5] H.D. Whyte, “Introduction to estimation and the kalman filter”, 2001, unpublished. [6] H. Choset et al. Principles of robot motion...

  12. System for leaks inspection in a nuclear plant by means of a mobile robot; Sistema para inspeccion de fugas en una planta nuclear por medio de un robot movil

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, R.; Segovia de los Rios, J.A. [ININ, Km. 36.5 Carretera Mexico-Toluca, Salazar, Edo. de Mexico (Mexico)]. E-mail: ramses@nuclear.inin.mx

    2004-07-01

    In this work a supervision system that could allow to carry out the detection of leaks of vapor in pipe lines, using a mobile robot Pioneer 2 -D Xe, which is controlled by means of an external micro controller 68HC912B32 programmed in Forth and using diffuse control to travel a road by means of the one to follow one lines painted in the floor is described. The robot takes in his superior part, a thermographic camera that allows to determine if leaks of vapor exist in pipes and a dosemeter to measure the present radiation levels in the place, besides a video camera. This way, the personnel, can make sure of having a propitious situation to make the maintenance of the facilities. (Author)

  13. Synthesis and Development of Gold Polypyrrole Actuator for Underwater Application

    Science.gov (United States)

    Panda, S. K.; Bandopadhya, D.

    2018-02-01

    Electro-active polymer (EAP) such as Polypyrrole has gained much attention in the category of functional materials for fabrication of both active actuator and sensor. Particularly, PPy actuator has shown potential in fluid medium application because of high strain, large bending displacement and work density. This paper focuses on developing a low cost active actuator promising in delivering high performance in underwater environment. The proposed Au-pyrrole actuator is synthesized by adopting the layer-by-layer electrochemical polymerization technique and is fabricated as strip actuator from aqueous solution of Pyrrole and NaDBS in room temperature. In the follow-up, topographical analysis has been carried out using SEM and FESEM instruments showing surface morphology and surface integrity of chemical components of the structure. Several experiments have been conducted under DC input voltage evaluating performance effectiveness such as underwater bending displacement and tip force etc. This is observed that the actuator exhibits quite similar stress profile as of natural muscle, endowed with high modulus makes them effective in working nearly 10,000 cycles underwater environment. In addition, the bending displacement up to 5.4 mm with a low input voltage 1.3 V makes the actuator suitable for underwater micro-robotics applications.

  14. Proceedings of '85 International conference on advanced robotics

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    In these proceedings on advanced robotics four contributions are recorded devoted to the application of robotics in remote handling equipment for interior maintenance and inspection of nuclear power plants. refs.; figs.; tabs.

  15. Pyrotechnic robot - constructive design and command

    Directory of Open Access Journals (Sweden)

    Ionel A. Staretu

    2013-10-01

    Full Text Available Pyrotechnic robots are service robots used to reduce the time for intervention of pyrotechnic troops and to diminish the danger for the operators. Pyrotechnic robots are used to inspect dangerous areas or/and to remove and to distroy explosive or suspicious devices/objects. These robots can be used to make corridors through mined battle fields, for manipulation and neutralization of unexploded ammunition, for inspection of vehicles, trains, airplanes and buildings. For these robots, a good functional activity is determined with regard to work space dimensions,, robotic arm kinematics and gripper characteristics. The paper shows the structural, kinematic, static synthesis and analysis as well as the design and functional simulation of the robotic arm and the grippers attached on the pyrotechnic robot designed by the authors.

  16. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  17. Advanced robotics for decontamination and dismantlement

    International Nuclear Information System (INIS)

    Hamel, W.R.; Haley, D.C.

    1994-01-01

    The decontamination and dismantlement (D ampersand D) robotics technology application area of the US Department of Energy's Robotics Technology Development Program is explained and described. D ampersand D robotic systems show real promise for the reduction of human exposure to hazards, for improvement of productivity, and for the reduction of secondary waste generation. Current research and development pertaining to automated floor characterization, robotic equipment removal, and special inspection is summarized. Future research directions for these and emerging activities is given

  18. Handling uncertainty and networked structure in robot control

    CERN Document Server

    Tamás, Levente

    2015-01-01

    This book focuses on two challenges posed in robot control by the increasing adoption of robots in the everyday human environment: uncertainty and networked communication. Part I of the book describes learning control to address environmental uncertainty. Part II discusses state estimation, active sensing, and complex scenario perception to tackle sensing uncertainty. Part III completes the book with control of networked robots and multi-robot teams. Each chapter features in-depth technical coverage and case studies highlighting the applicability of the techniques, with real robots or in simulation. Platforms include mobile ground, aerial, and underwater robots, as well as humanoid robots and robot arms. Source code and experimental data are available at http://extras.springer.com. The text gathers contributions from academic and industry experts, and offers a valuable resource for researchers or graduate students in robot control and perception. It also benefits researchers in related areas, such as computer...

  19. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  20. OFDM for underwater acoustic communications

    CERN Document Server

    Zhou, Shengli

    2014-01-01

    A blend of introductory material and advanced signal processing and communication techniques, of critical importance to underwater system and network development This book, which is the first to describe the processing techniques central to underwater OFDM, is arranged into four distinct sections: First, it describes the characteristics of underwater acoustic channels, and stresses the difference from wireless radio channels. Then it goes over the basics of OFDM and channel coding. The second part starts with an overview of the OFDM receiver, and develops various modules for the receiver des

  1. Machine vision system for remote inspection in hazardous environments

    International Nuclear Information System (INIS)

    Mukherjee, J.K.; Krishna, K.Y.V.; Wadnerkar, A.

    2011-01-01

    Visual Inspection of radioactive components need remote inspection systems for human safety and equipment (CCD imagers) protection from radiation. Elaborate view transport optics is required to deliver images at safe areas while maintaining fidelity of image data. Automation of the system requires robots to operate such equipment. A robotized periscope has been developed to meet the challenge of remote safe viewing and vision based inspection. (author)

  2. Inspection Database

    Data.gov (United States)

    U.S. Department of Health & Human Services — FDA is disclosing the final inspection classification for inspections related to currently marketed FDA-regulated products. The disclosure of this information is not...

  3. Visual examination program of the TRIGA Mark II reactor Vienna with the nuclear underwater telescope

    International Nuclear Information System (INIS)

    Boeck, H.; Hammer, J.; Varga, K.

    1985-12-01

    The visual inspection programm carried out during a three month shut-period at the TRIGA Mark II reactor Vienna is described. Optical inspection of all welds inside the reactor tank was carried out with an underwater telescope developed by the Central Research Institute of Physics, Budapest, Hungary. It is shown that even after 23 years of reactor operation all tank internals were found to be in good condition and minor defects can be easily repaired by remote handling tools. (Author)

  4. An Aerial Robot for Rice Farm Quality Inspection With Type-2 Fuzzy Neural Networks Tuned by Particle Swarm Optimization-Sliding Mode Control Hybrid Algorithm

    DEFF Research Database (Denmark)

    Camci, Efe; Kripalan, Devesh Raju; Ma, Linlu

    2017-01-01

    , an autonomous quality inspection over rice farms is proposed by employing quadcopters. Real-time control of these vehicles, however, is still challenging as they exhibit highly nonlinear behavior especially for agile maneuvers. What is more, these vehicles have to operate under uncertain working conditions...... particle swarm optimization-sliding mode control (PSO-SMC) theory-based hybrid algorithm is proposed for the training of T2-FNNs. In particular, continuous version of PSO is adopted for the identification of the antecedent part of T2-FNNs while SMCbased update rules are utilized for online learning...

  5. Underwater plasma arc cutting

    International Nuclear Information System (INIS)

    Leautier, R.; Pilot, G.

    1991-01-01

    This report describes the work done to develop underwater plasma arc cutting techniques, to characterise aerosols from cutting operations on radioactive and non-radioactive work-pieces, and to develop suitable ventilation and filtration techniques. The work has been carried out in the framework of a contract between CEA-CEN Cadarache and the Commission of European Communities. Furthermore, this work has been carried out in close cooperation with CEA-CEN Saclay mainly for secondary emissions and radioactive analysis. The contract started in May 1986 and was completed in December 1988 by a supplementary agreement. This report has been compiled from several progress reports submitted during the work period, contains the main findings of the work and encloses the results of comparative tests on plasma arc cutting

  6. ROV90 - A prototype autonomous inspection vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Roedseth, Oe.J.; Hallset, J.O.

    1991-04-01

    Simple autonomous inspection vehicles are suitable for operations where the cost, danger to humans, or area of operation prohibits the use of conventional underwater technology. Autonomous vehicles are, however, in their infancy and few such vehicles are available. There are still some problems to be overcome before this technology becomes useful in commercial applications. We have built ROV90 to investigate these problems. It is a test bed for experimenting with the different parts of an autonomous underwater vehicle. ROV90 will be able to autonomously follow prominent features in the real world, man made or natural. Examples are pipelines or walls in tunnels. ROV90 is tethered, but we are planning to use experience and results from ROV90 to develop av ''real'' autonomous underwater vehicle (AUV) called PISCIS. 11 refs., 8 figs.

  7. 46 CFR 176.650 - Alternative Hull Examination Program options: Divers or underwater ROV.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Alternative Hull Examination Program options: Divers or...) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INSPECTION AND CERTIFICATION Hull and Tailshaft Examinations § 176.650 Alternative Hull Examination Program options: Divers or underwater ROV. To complete the...

  8. Autonomous underwater vehicle motion tracking using a Kalman Filter for sensor fusion

    CSIR Research Space (South Africa)

    Holtzhausen, S

    2008-01-01

    Full Text Available AUVs are ideal platforms for search and rescue operations. They can also be used for inspection of underwater terrains. These vehicles need to be autonomous and robust to cope with unpredictable current and high pressures. In this paper...

  9. Safety aspects for underwater vehicles

    Digital Repository Service at National Institute of Oceanography (India)

    Madhan, R.; Navelkar, G.S.; Desa, E.S.; Afzulpurkar, S.; Prabhudesai, S.P.; Dabholkar, N.; Mascarenhas, A.A.M.Q.; Maurya, P.

    instrumentation is intelligent small Autonomous Underwater Vehicles (AUV’s), autonomous profilers, gliders [1], etc. The ultimate aim in all autonomous platforms research and development is to reach the stage of unescorted missions with minimum failures...

  10. 241-AY-102 Leak Detection Pit Drain Line Inspection Report

    International Nuclear Information System (INIS)

    Boomer, Kayle D.; Engeman, Jason K.; Gunter, Jason R.; Joslyn, Cameron C.; Vazquez, Brandon J.; Venetz, Theodore J.; Garfield, John S.

    2014-01-01

    This document provides a description of the design components, operational approach, and results from the Tank AY-102 leak detection pit drain piping visual inspection. To perform this inspection a custom robotic crawler with a deployment device was designed, built, and operated by IHI Southwest Technologies, Inc. for WRPS to inspect the 6-inch leak detection pit drain line

  11. Anthropomorphic Robot Hand And Teaching Glove

    Science.gov (United States)

    Engler, Charles D., Jr.

    1991-01-01

    Robotic forearm-and-hand assembly manipulates objects by performing wrist and hand motions with nearly human grasping ability and dexterity. Imitates hand motions of human operator who controls robot in real time by programming via exoskeletal "teaching glove". Telemanipulator systems based on this robotic-hand concept useful where humanlike dexterity required. Underwater, high-radiation, vacuum, hot, cold, toxic, or inhospitable environments potential application sites. Particularly suited to assisting astronauts on space station in safely executing unexpected tasks requiring greater dexterity than standard gripper.

  12. An Articulated Inspection Arm for fusion purposes

    International Nuclear Information System (INIS)

    Villedieu, E.; Bruno, V.; Pastor, P.; Gargiulo, L.; Song, Y.T.; Cheng, Y.; Feng, H.; Liu, C.; Shi, S.S.

    2016-01-01

    Highlights: • Requirements for in vacuum tokamak inspection are presented. • Development of a prototype of the Articulated Inspection Arm is described. • The upgrade of the prototype to convert it into a fully operational device is detailed. • Future applications of inspection robots in the new fusion reactors is discussed. - Abstract: Fusion Tokamaks are complex machines which require special conditions for their operation, in particular, high vacuum inside the vessel and high temperature of the vessel walls. During plasma phases, the first wall components are highly stressed and a control is necessary in case of doubt about their condition. To be able to make safely such an inspection in a short period of time is a great advantage. The Articulated Inspection Arm (AIA) developed by the CEA provides the capability for fast inspections of the first wall overall surface keeping the vacuum and temperature conditions of the vessel. The robot prototype was validated in Tore Supra in 2008. In the frame of a joint laboratory, CEA/IRFM and ASIPP have decided to upgrade the existing AIA prototype to use it routinely in the EAST and WEST tokamaks. The robot has followed an important upgrade program in 2013 and 2014. The document presents the various upgrades made on the mechanics, the sensors, the electronics, the control station and the integration adaptation for the operation on EAST. From the AIA experience, thoughts for future inspection robots are given.

  13. An Articulated Inspection Arm for fusion purposes

    Energy Technology Data Exchange (ETDEWEB)

    Villedieu, E., E-mail: eric.villedieu@cea.fr [CEA-IRFM, 13108 Saint Paul lez Durance (France); Bruno, V.; Pastor, P.; Gargiulo, L. [CEA-IRFM, 13108 Saint Paul lez Durance (France); Song, Y.T.; Cheng, Y.; Feng, H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Liu, C. [CEA-IRFM, 13108 Saint Paul lez Durance (France); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Shi, S.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2016-11-01

    Highlights: • Requirements for in vacuum tokamak inspection are presented. • Development of a prototype of the Articulated Inspection Arm is described. • The upgrade of the prototype to convert it into a fully operational device is detailed. • Future applications of inspection robots in the new fusion reactors is discussed. - Abstract: Fusion Tokamaks are complex machines which require special conditions for their operation, in particular, high vacuum inside the vessel and high temperature of the vessel walls. During plasma phases, the first wall components are highly stressed and a control is necessary in case of doubt about their condition. To be able to make safely such an inspection in a short period of time is a great advantage. The Articulated Inspection Arm (AIA) developed by the CEA provides the capability for fast inspections of the first wall overall surface keeping the vacuum and temperature conditions of the vessel. The robot prototype was validated in Tore Supra in 2008. In the frame of a joint laboratory, CEA/IRFM and ASIPP have decided to upgrade the existing AIA prototype to use it routinely in the EAST and WEST tokamaks. The robot has followed an important upgrade program in 2013 and 2014. The document presents the various upgrades made on the mechanics, the sensors, the electronics, the control station and the integration adaptation for the operation on EAST. From the AIA experience, thoughts for future inspection robots are given.

  14. Development of underwater camera using high-definition camera

    International Nuclear Information System (INIS)

    Tsuji, Kenji; Watanabe, Masato; Takashima, Masanobu; Kawamura, Shingo; Tanaka, Hiroyuki

    2012-01-01

    In order to reduce the time for core verification or visual inspection of BWR fuels, the underwater camera using a High-Definition camera has been developed. As a result of this development, the underwater camera has 2 lights and 370 x 400 x 328mm dimensions and 20.5kg weight. Using the camera, 6 or so spent-fuel IDs are identified at 1 or 1.5m distance at a time, and 0.3mmφ pin-hole is recognized at 1.5m distance and 20 times zoom-up. Noises caused by radiation less than 15 Gy/h are not affected the images. (author)

  15. Inspection planning

    International Nuclear Information System (INIS)

    Korosec, D.; Levstek, M.F.

    2001-01-01

    Slovenian Nuclear Safety Administration (SNSA) division of nuclear and radiological safety inspection has developed systematic approach to their inspections. To be efficient in their efforts regarding regular and other types of inspections, in past years, the inspection plan has been developed. It is yearly based and organized on a such systematic way, that all areas of nuclear safety important activities of the licensee are covered. The inspection plan assures appropriate preparation for conducting the inspections, allows the overview of the progress regarding the areas to be covered during the year. Depending on the licensee activities and nature of facility (nuclear power plant, research reactor, radioactive waste storage, others), the plan has different levels of intensity of inspections and also their frequency. One of the basic approaches of the plan is to cover all nuclear and radiological important activities on such way, that all regulatory requests are fulfilled. In addition, the inspection plan is a good tool to improve inspection effectiveness based on previous experience and allows to have the oversight of the current status of fulfillment of planned inspections. Future improvement of the plan is necessary in the light of newest achievements on this field in the nuclear world, that means, new types of inspections are planned and will be incorporated into plan in next year.(author)

  16. A Decentralized Interactive Architecture for Aerial and Ground Mobile Robots Cooperation

    OpenAIRE

    Harik, El Houssein Chouaib; Guérin, François; Guinand, Frédéric; Brethé, Jean-François; Pelvillain, Hervé

    2014-01-01

    International audience; —This paper presents a novel decentralized interactive architecture for aerial and ground mobile robots cooperation. The aerial mobile robot is used to provide a global coverage during an area inspection, while the ground mobile robot is used to provide a local coverage of ground features. We include a human-in-the-loop to provide waypoints for the ground mobile robot to progress safely in the inspected area. The aerial mobile robot follows continuously the ground mobi...

  17. Underwater inverse LIBS (iLIBS) for marine archaeology

    Science.gov (United States)

    Asmus, J.; Magde, M.; Elford, J.; Magde, D.; Parfenov, V.

    2013-05-01

    In recent years there have been enormous advances in nautical archaeology through developments in SONAR technologies as well as in manned and robotic submersible vehicles. The number of sunken vessel discoveries has escalated in many of the seas of the world in response to the widespread application of these and other new tools. Customarily, surviving artifacts within the debris field of a wreck are collected and then moved to laboratories, centers, or institutions for analyses and possible conservation. Frequently, the conservation phase involves chemical treatments to stabilize an artefact to standard temperature, pressure, and humidity instead of an undersea environment. Many of the artefacts encountered at an underwater site are now characterized and restored in-situ in accordance with modern trends in art conservation. Two examples of this trend are exemplified by the resting place of the wreck of the Titanic in the Atlantic and the Cancun Underwater Park in the Caribbean Sea. These two debris fields have been turned into museums for diving visitors. Several research groups have investigated the possibility of adapting the well-established analytical tool Laser Induced Breakdown Spectroscopy (LIBS) to in-situ elemental analyses of underwater cultural, historic, and archaeological artefacts where discovered, rather than as a phase of a salvage operation. As the underwater laser ablation associated with LIBS generates a "snowplough" shockwave within the aqueous matrix, the atomic emission spectrum is usually severely attenuated in escaping from the target. Consequently, probative experiments to date generally invoke a submerged air chamber or air jet to isolate water from the interaction zone as well as employ more complex double-pulse lasers. These measures impose severe logistical constraints on the examination of widely dispersed underwater artefacts. In order to overcome this constraint we report on water-immersion LIBS experiments performed with oblique

  18. Robot engineering

    International Nuclear Information System (INIS)

    Jung, Seul

    2006-02-01

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  19. Robot engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seul

    2006-02-15

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  20. Underwater radiation measuring device

    International Nuclear Information System (INIS)

    Seki, Noriyuki; Suzuki, Yasuo

    1998-01-01

    The present invention provides a device for measuring, under water, radiation from spent fuels (long members to be detected) of nuclear power plants and reprocessing facilities. Namely, a detecting insertion tube (insertion tube) is disposed so as to be in parallel with axial direction of the long member to be detected stored underwater. A γ-ray detector is inserted to the inside of the insertion tube. A driving mechanism is disposed for moving the γ-ray detector in axial direction inside of the insertion tube. The driving mechanism preferably has a system that it moves the γ-ray detector by winding a detection signal cable around a driving drum. The driving mechanism is formed by inserting and securing a driving tube having screws formed on the side surface and inserting it into the insertion tube. It may have a system of moving the γ-ray detector together with the driving tube while engaging the teeth of a driving transfer mechanism with the screws of the driving tube. (I.S.)

  1. An underwater shear compactor

    International Nuclear Information System (INIS)

    Biver, E.; Sims, J.

    1997-01-01

    This paper, originally presented at the WM'96 Conference in Tucson Arizona, describes a concept of a specialised decommissioning tool designed to operate underwater and to reduce the volume of radioactive components by shearing and compacting. The shear compactor was originally conceived to manage the size reduction of a variety of decommissioned stainless steel tubes stored within a reactor fuel cooling pond and which were consuming a substantial volume of the pond. The main objective of this tool was to cut the long tubes into shorter lengths and to compact them into a flat rectangular form which could be stacked on the pond floor, thus saving valuable space. The development programme, undertaken on this project, investigated a wide range of factors which could contribute to an extended cutting blade performance, ie: materials of construction, cutting blade shape and cutting loads required, shock effects, etc. The second phase was to review other aspects of the design, such as radiological protection, cutting blade replacement, maintenance, pond installation and resultant wall loads, water hydraulics, collection of products of shearing/compacting operations, corrosion of the equipment, control system, operational safety and the ability of the equipment to operate in dry environments. The paper summarises the extended work programme involved with this shear compactor tool. (author)

  2. Underwater cutting techniques developments

    International Nuclear Information System (INIS)

    Bach, F.-W.

    1990-01-01

    The primary circuit structures of different nuclear powerplants are constructed out of stainless steels, ferritic steels, plated ferritic steels and alloys of aluminium. According to the level of the specific radiation of these structures, it is necessary for dismantling to work with remote controlled cutting techniques. The most successful way to protect the working crew against exposure of radiation is to operate underwater in different depths. The following thermal cutting processes are more or less developed to work under water: For ferritic steels only - flame cutting; For ferritic steels, stainless steels, cladded steels and aluminium alloys - oxy-arc-cutting, arc-waterjet-cutting with a consumable electrode, arc-saw-cutting, plasma-arc-cutting and plasma-arc-saw. The flame cutting is a burning process, all the other processes are melt-cutting processes. This paper explains the different techniques, giving a short introduction of the theory, a discussion of the possibilities with the advantages and disadvantages of these processes giving a view into the further research work in this interesting field. (author)

  3. Development of underwater laser cutting technology

    International Nuclear Information System (INIS)

    Sato, Seiichi; Inaba, Takanori; Inose, Koutarou; Matsumoto, Naoyuki; Sakakibara, Yuji

    2015-01-01

    In is desirable to use remote underwater device for the decommissioning work of highly radioactive components such as the nuclear internals from a view point of reducing the ranitidine exposure to the worker. Underwater laser cutting technology has advantages. First advantage in underwater laser cutting technology is that low reaction force during cutting, namely, remote operability is superior. Second point is that underwater laser cutting generates a little amount of secondary waste, because cutting kerf size is very small. Third point is that underwater laser cutting has low risk of the process delay, because device trouble is hard to happen. While underwater laser cutting has many advantages, the careful consideration in the safe treatment of the offgas which underwater laser cutting generates is necessary. This paper describes outline of underwater laser cutting technology developed by IHI Corporation (IHI) and that this technology is effective in various dismantling works in water. (author)

  4. Inspection vehicle

    International Nuclear Information System (INIS)

    Takahashi, Masaki; Omote, Tatsuyuki; Yoneya, Yutaka; Tanaka, Keiji; Waki, Tetsuro; Yoshida, Tomiji; Kido, Tsuyoshi.

    1993-01-01

    An inspection vehicle comprises a small-sized battery directly connected with a power motor or a direct power source from trolly lines and a switching circuit operated by external signals. The switch judges advance or retreat by two kinds of signals and the inspection vehicle is recovered by self-running. In order to recover the abnormally stopped inspection vehicle to the targeted place, the inspection vehicle is made in a free-running state by using a clutch mechanism and is pushed by an other vehicle. (T.M.)

  5. Computer Simulations Imply Forelimb-Dominated Underwater Flight in Plesiosaurs.

    Directory of Open Access Journals (Sweden)

    Shiqiu Liu

    2015-12-01

    Full Text Available Plesiosaurians are an extinct group of highly derived Mesozoic marine reptiles with a global distribution that spans 135 million years from the Early Jurassic to the Late Cretaceous. During their long evolutionary history they maintained a unique body plan with two pairs of large wing-like flippers, but their locomotion has been a topic of debate for almost 200 years. Key areas of controversy have concerned the most efficient biologically possible limb stroke, e.g. whether it consisted of rowing, underwater flight, or modified underwater flight, and how the four limbs moved in relation to each other: did they move in or out of phase? Previous studies have investigated plesiosaur swimming using a variety of methods, including skeletal analysis, human swimmers, and robotics. We adopt a novel approach using a digital, three-dimensional, articulated, free-swimming plesiosaur in a simulated fluid. We generated a large number of simulations under various joint degrees of freedom to investigate how the locomotory repertoire changes under different parameters. Within the biologically possible range of limb motion, the simulated plesiosaur swims primarily with its forelimbs using an unmodified underwater flight stroke, essentially the same as turtles and penguins. In contrast, the hindlimbs provide relatively weak thrust in all simulations. We conclude that plesiosaurs were forelimb-dominated swimmers that used their hind limbs mainly for maneuverability and stability.

  6. Validation of Underwater Sensor Package Using Feature Based SLAM

    Directory of Open Access Journals (Sweden)

    Christopher Cain

    2016-03-01

    Full Text Available Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additionally, their relatively high cost make them less than ideal for usage on low cost vehicles designed to be used underwater. In this paper we propose a sensor package composed of a downward facing camera, which is used to perform feature tracking based visual odometry, and a custom vision-based two dimensional rangefinder that can be used on low cost underwater unmanned vehicles. In order to examine the performance of this sensor package in a SLAM framework, experimental tests are performed using an unmanned ground vehicle and two feature based SLAM algorithms, the extended Kalman filter based approach and the Rao-Blackwellized, particle filter based approach, to validate the sensor package.

  7. Validation of Underwater Sensor Package Using Feature Based SLAM

    Science.gov (United States)

    Cain, Christopher; Leonessa, Alexander

    2016-01-01

    Robotic vehicles working in new, unexplored environments must be able to locate themselves in the environment while constructing a picture of the objects in the environment that could act as obstacles that would prevent the vehicles from completing their desired tasks. In enclosed environments, underwater range sensors based off of acoustics suffer performance issues due to reflections. Additionally, their relatively high cost make them less than ideal for usage on low cost vehicles designed to be used underwater. In this paper we propose a sensor package composed of a downward facing camera, which is used to perform feature tracking based visual odometry, and a custom vision-based two dimensional rangefinder that can be used on low cost underwater unmanned vehicles. In order to examine the performance of this sensor package in a SLAM framework, experimental tests are performed using an unmanned ground vehicle and two feature based SLAM algorithms, the extended Kalman filter based approach and the Rao-Blackwellized, particle filter based approach, to validate the sensor package. PMID:26999142

  8. A study on autonomous maintenance robot, 7

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Hosokai, Hidemi; Shimasaka, Naoki; Kaneshige, Masanori; Iwasaki, Shinnosuke.

    1990-01-01

    This paper deals with the new mechanism of a new maintenance robot, Mark IV, following the previous reports on pipeline inspection and maintenance robots of Mark I, II, and III. The Mark IV has a mechanism capable of inspecting surfaces of storage tanks as well as pipeline outer surfaces, which is another capability of the maintenance robots, different from the previous ones. The main features of Mark IV are as follows, (i) The robot has a multijoint structure, so that it has better adaptability to the curvartures of pipelines and storage tanks. (ii) The joint of the robot has SMA actuators to make the robot lighter in weight. Some actuator shape characteristics are also examined for the robot structure and control. (iii) The robot has suckers at both ends so that the robot can climb up along the wall from the ground. (iv) A robot with the inch worm mechanisms has many functional motions, such that it can pass over flanges and T-joints, and transfer to adjacent pipelines with a wider range of pipe diameters. (v) A control method is given for the mobile motion control. Thus, the functional level of the maintenance robot has been greatly improved by the introduction of the Mark IV robot. (author)

  9. Amooty, a stair climbing intelligent maintenance robot

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Toshiba Corporation and a team from Tokyo University have jointly developed a prototype of a mobile, stair climbing intelligent robot, named Amooty, for inspection and maintenance tasks in nuclear power plants. (author)

  10. Amooty, a stair climbing intelligent maintenance robot

    Energy Technology Data Exchange (ETDEWEB)

    1985-04-01

    Toshiba Corporation and a team from Tokyo University have jointly developed a prototype of a mobile, stair climbing intelligent robot, named Amooty, for inspection and maintenance tasks in nuclear power plants.

  11. Underwater Gliders by Dr. Kevin Smith [video

    OpenAIRE

    Naval Postgraduate School Physics

    2015-01-01

    NPS Physics NPS Physics Research Projects Underwater glider research is currently underway in the physics department at the naval postgraduate in Monterey Ca. Dr. Kevin Smith is a specialist in underwater acoustics and sonar systems. He and his team are currently focused on autonomous underwater gliders and developing systems capable of detecting parameters in the ocean and listening for various sources of sound.

  12. Design of Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Tadahiro Hyakudome

    2011-03-01

    Full Text Available There are concerns about the impact that global warming will have on our environment, and which will inevitably result in expanding deserts and rising water levels. While a lot of underwater vehicles are utilized, AUVs (Autonomous Underwater Vehicle were considered and chosen, as the most suitable tool for conduction survey concerning these global environmental problems. AUVs can comprehensive survey because the vehicle does not have to be connected to the support vessel by tether cable. When such underwater vehicles are made, it is necessary to consider about the following things. 1 Seawater and Water Pressure Environment, 2 Sink, 3 There are no Gas or Battery Charge Stations, 4 Global Positioning System cannot use, 5 Radio waves cannot use. In the paper, outline of above and how deal about it are explained.

  13. Underwater Inspection of Navigation Structures with an Acoustic Camera

    Science.gov (United States)

    2013-08-01

    the camera with a slow angular speed while recording the images. 5. After the scanning has been performed, review recorded data to determine the...Core x86) or newer  2GB RAM  120GB disc space Operating system requirements  Windows XP, Vista, Windows 7, 32/64 bit Java requirements  Sun... Java JDK, Version 1.6, Update 16 or newer, for installation Limitations and tips for proper scanning  Best results are achieved when scanning in

  14. Adaptive Backstepping Controller Design for Leveling Control of an Underwater Platform Based on Joint Space

    Directory of Open Access Journals (Sweden)

    Zhi-Lin Zeng

    2014-01-01

    Full Text Available This paper focuses on high precision leveling control of an underwater heavy load platform, which is viewed as an underwater parallel robot on the basis of its work pattern. The kinematic of platform with deformation is analyzed and the dynamics model of joint space is established. An adaptive backstepping controller according to Lyapunov's function is proposed for leveling control of platform based on joint space. Furthermore, the “lowest point fixed angle error” leveling scheme called “chase” is chosen for leveling control of platform. The digital simulation and practical experiment of single joint space actuator are carried out, and the results show high precision servo control of joint space. On the basis of this, the platform leveling control simulation relies on the hardware-in-loop system. The results indicate that the proposed controller can effectively restrain the influence from system parameter uncertainties and external disturbance to realize high precision leveling control of the underwater platform.

  15. A Spatial Reference Grid for Real-Time Autonomous Underwater Modeling using 3-D Sonar

    Energy Technology Data Exchange (ETDEWEB)

    Auran, P.G.

    1996-12-31

    The offshore industry has recognized the need for intelligent underwater robotic vehicles. This doctoral thesis deals with autonomous underwater vehicles (AUVs) and concentrates on a data representation for real-time image formation and analysis. Its main objective is to develop a 3-D image representation suitable for autonomous perception objectives underwater, assuming active sonar as the main sensor for perception. The main contributions are: (1) A dynamical image representation for 3-D range data, (2) A basic electronic circuit and software system for 3-D sonar sampling and amplitude thresholding, (3) A model for target reliability, (4) An efficient connected components algorithm for 3-D segmentation, (5) A method for extracting general 3-D geometrical representations from segmented echo clusters, (6) Experimental results of planar and curved target modeling. 142 refs., 120 figs., 10 tabs.

  16. Research on key technology of prognostic and health management for autonomous underwater vehicle

    Science.gov (United States)

    Zhou, Zhi

    2017-12-01

    Autonomous Underwater Vehicles (AUVs) are non-cable and autonomous motional underwater robotics. With a wide range of activities, it can reach thousands of kilometers. Because it has the advantages of wide range, good maneuverability, safety and intellectualization, it becomes an important tool for various underwater tasks. How to improve diagnosis accuracy of the AUVs electrical system faults, and how to repair AUVs by the information are the focus of navy in the world. In turn, ensuring safe and reliable operation of the system has very important significance to improve AUVs sailing performance. To solve these problems, in the paper the prognostic and health management(PHM) technology is researched and used to AUV, and the overall framework and key technology are proposed, such as data acquisition, feature extraction, fault diagnosis, failure prediction and so on.

  17. UNDERWATER COATINGS FOR CONTAMINATION CONTROL

    International Nuclear Information System (INIS)

    Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

    2004-01-01

    The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases

  18. Snake Robots Modelling, Mechatronics, and Control

    CERN Document Server

    Liljebäck, Pål; Stavdahl, Øyvind; Gravdahl, Jan Tommy

    2013-01-01

    Snake Robots is a novel treatment of theoretical and practical topics related to snake robots: robotic mechanisms designed to move like biological snakes and able to operate in challenging environments in which human presence is either undesirable or impossible. Future applications of such robots include search and rescue, inspection and maintenance, and subsea operations. Locomotion in unstructured environments is a focus for this book. The text targets the disparate muddle of approaches to modelling, development and control of snake robots in current literature, giving a unified presentation of recent research results on snake robot locomotion to increase the reader’s basic understanding of these mechanisms and their motion dynamics and clarify the state of the art in the field. The book is a complete treatment of snake robotics, with topics ranging from mathematical modelling techniques, through mechatronic design and implementation, to control design strategies. The development of two snake robots is de...

  19. Ultrasonic inspection

    International Nuclear Information System (INIS)

    Satittada, Gannaga

    1984-01-01

    Ultrasonic inspection is one of the most widely used methods for nondestructive inspection. The beam of high-frequency sound wave, ultrasonic wave, is introduced into the material. It travels through the material with some attendant loss of energy and can be reflected at interfaces. The reflected beam is detected and analyzed. Ultrasonic inspection is used to detect flaws in metal parts as well as in welded, brazed and bonded joints during research work and developing production and service. It is also used to detect and locate porosity, pipe, and flakes. In addition, it can be used for the measurement of metal thickness. Ultrasonic inspection is therefore used for quality control and material inspection in all major industries

  20. Underwater laser imaging system (UWLIS)

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Practical limitations with underwater imaging systems area reached when the noise in the back scattered radiation generated in the water between the imaging system and the target obscures the spatial contrast and resolution necessary for target discovery and identification. The advent of high power lasers operating in the blue-green portion of the visible spectrum (oceanic transmission window) has led to improved experimental illumination systems for underwater imaging. Range-gated and synchronously scanned devices take advantage of the unique temporal and spatial coherence properties of laser radiation, respectively, to overcome the deleterious effects of common volume back scatter.

  1. Usage of industrial robots in nuclear power industry

    International Nuclear Information System (INIS)

    Matsuo, Yoshio; Hamada, Kenjiro

    1982-01-01

    Japan is now at the top level in the world in robot technology.Its application to nuclear power field is one of the most expected. However, their usage spreads over various types of nuclear power plants, their manufacture and operation, and other areas such as fuel reprocessing plants and reactor plant decommissioning. The robots as used for the operation of BWR nuclear power plants, already developed and under development, are described: features in the nuclear-power usage of robots, the robots used currently for automatic fuel exchange, the replacement of control rod drives and in-service inspection; the robots under development for travelling inspection device and the inspection of main steam-relief safety valves, future development of robots. By robot usage, necessary personnel, work period and radiation exposure can be greatly reduced, and safety and reliability are also raised. (Mori, K.)

  2. Aerial service robotics: the AIRobots perspective

    NARCIS (Netherlands)

    Marconi, L.; Basile, F.; Caprari, G.; Carloni, Raffaella; Chiacchio, P.; Hurzeler, C.; Lippiello, V.; Naldi, R.; Siciliano, B.; Stramigioli, Stefano; Zwicker, E.

    This paper presents the main vision and research activities of the ongoing European project AIRobots (Innova- tive Aerial Service Robot for Remote Inspection by Contact, www.airobots.eu). The goal of AIRobots is to develop a new generation of aerial service robots capable of supporting human beings

  3. Underground mining robot: a CSIR project

    CSIR Research Space (South Africa)

    Green, JJ

    2012-11-01

    Full Text Available The Council for Scientific and Industrial Research (CSIR) in South Africa is currently developing a robot for the inspection of the ceiling (hanging-wall) in an underground gold mine. The robot autonomously navigates the 30 meter long by 3 meter...

  4. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  5. The development of fire detection robot

    OpenAIRE

    Sucuoğlu, Hilmi Saygın

    2015-01-01

    The aim of this thesis is to design and manufacture a fire detection robot that especially operates in industrial areas for fire inspection and early detection. Robot is designed and implemented to track prescribed paths with obstacle avoidance function through obstacle avoidance and motion planning units and to scan the environment in order to detect fire source using fire detection unit. Robot is able to track patrolling routes using virtual lines that defined to the motion planning unit. ...

  6. Robotics in near-earth space

    Science.gov (United States)

    Card, Michael E.

    1991-01-01

    The areas of space exploration in which robotic devices will play a part are identified, and progress to date in the space agency plans to acquire this capability is briefly reviewed. Roles and functions on orbit for robotic devices include well known activities, such as inspection and maintenance, assembly, docking, berthing, deployment, retrieval, materials handling, orbital replacement unit exchange, and repairs. Missions that could benefit from a robotic capability are discussed.

  7. Design, modeling and optimization of an underwater manipulator with four-bar mechanism and compliant linkage

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sang Ok; Kim, Ji Hoon; Bae, Jang Ho; Kim, Jong Won [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Seo, Tae Won [School of Mechanical Engineering, Yeungnam University, Gyeongsan (Korea, Republic of)

    2016-09-15

    Underwater manipulators are very important for a robot to perform a specific operation in water. Conventional robot arm manipulators have been suggested for various operations but have not been suitable for repeated motion in gathering something. This paper presents a new underwater manipulator design for gathering things such as starfish on the sea floor. The manipulator is composed of a four-bar linkage to achieve repeated motion along a loop and compliant linkages to enhance the efficiency of the gathering work. Kinematic and quasi-static analyses were performed to calculate the loop path and the reaction force at the actuation point. Based on the analysis, optimal design was performed to maximize the working distance with the height difference and the reaction moments considered as constraints. A prototype was assembled to test the performance of the manipulator, and the empirical loop path was compared to simulation results.

  8. Design, modeling and optimization of an underwater manipulator with four-bar mechanism and compliant linkage

    International Nuclear Information System (INIS)

    Jin, Sang Ok; Kim, Ji Hoon; Bae, Jang Ho; Kim, Jong Won; Seo, Tae Won

    2016-01-01

    Underwater manipulators are very important for a robot to perform a specific operation in water. Conventional robot arm manipulators have been suggested for various operations but have not been suitable for repeated motion in gathering something. This paper presents a new underwater manipulator design for gathering things such as starfish on the sea floor. The manipulator is composed of a four-bar linkage to achieve repeated motion along a loop and compliant linkages to enhance the efficiency of the gathering work. Kinematic and quasi-static analyses were performed to calculate the loop path and the reaction force at the actuation point. Based on the analysis, optimal design was performed to maximize the working distance with the height difference and the reaction moments considered as constraints. A prototype was assembled to test the performance of the manipulator, and the empirical loop path was compared to simulation results

  9. Underwater noise due to precipitation

    DEFF Research Database (Denmark)

    Crum, Lawrence A.; Pumphrey, Hugh C.; Prosperetti, Andrea

    1989-01-01

    In 1959, G. Franz published a thorough investigation of the underwater sound produced by liquid drop impacts [G. Franz, J. Acoust. Soc. Am. 31, 1080 (1959)]. He discovered that, under certain conditions, a gas bubble was entrained by the impacting droplet, and the subsequent oscillation of this b...

  10. Underwater nuclear power plant structure

    International Nuclear Information System (INIS)

    Severs, S.; Toll, H.V.

    1982-01-01

    A structure for an underwater nuclear power generating plant comprising a triangular platform formed of tubular leg and truss members upon which are attached one or more large spherical pressure vessels and one or more small cylindrical auxiliary pressure vessels. (author)

  11. Bending continuous structures with SMAs: a novel robotic fish design

    OpenAIRE

    Rossi, Claudio; Colorado Montaño, Julián; Coral Cuellar, William; Barrientos Cruz, Antonio

    2011-01-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature o...

  12. A Probabilistic and Highly Efficient Topology Control Algorithm for Underwater Cooperating AUV Networks.

    Science.gov (United States)

    Li, Ning; Cürüklü, Baran; Bastos, Joaquim; Sucasas, Victor; Fernandez, Jose Antonio Sanchez; Rodriguez, Jonathan

    2017-05-04

    The aim of the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) project is to make autonomous underwater vehicles (AUVs), remote operated vehicles (ROVs) and unmanned surface vehicles (USVs) more accessible and useful. To achieve cooperation and communication between different AUVs, these must be able to exchange messages, so an efficient and reliable communication network is necessary for SWARMs. In order to provide an efficient and reliable communication network for mission execution, one of the important and necessary issues is the topology control of the network of AUVs that are cooperating underwater. However, due to the specific properties of an underwater AUV cooperation network, such as the high mobility of AUVs, large transmission delays, low bandwidth, etc., the traditional topology control algorithms primarily designed for terrestrial wireless sensor networks cannot be used directly in the underwater environment. Moreover, these algorithms, in which the nodes adjust their transmission power once the current transmission power does not equal an optimal one, are costly in an underwater cooperating AUV network. Considering these facts, in this paper, we propose a Probabilistic Topology Control (PTC) algorithm for an underwater cooperating AUV network. In PTC, when the transmission power of an AUV is not equal to the optimal transmission power, then whether the transmission power needs to be adjusted or not will be determined based on the AUV's parameters. Each AUV determines their own transmission power adjustment probability based on the parameter deviations. The larger the deviation, the higher the transmission power adjustment probability is, and vice versa. For evaluating the performance of PTC, we combine the PTC algorithm with the Fuzzy logic Topology Control (FTC) algorithm and compare the performance of these two algorithms. The simulation results have demonstrated that the PTC is efficient at reducing the transmission power

  13. A Probabilistic and Highly Efficient Topology Control Algorithm for Underwater Cooperating AUV Networks

    Directory of Open Access Journals (Sweden)

    Ning Li

    2017-05-01

    Full Text Available The aim of the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs project is to make autonomous underwater vehicles (AUVs, remote operated vehicles (ROVs and unmanned surface vehicles (USVs more accessible and useful. To achieve cooperation and communication between different AUVs, these must be able to exchange messages, so an efficient and reliable communication network is necessary for SWARMs. In order to provide an efficient and reliable communication network for mission execution, one of the important and necessary issues is the topology control of the network of AUVs that are cooperating underwater. However, due to the specific properties of an underwater AUV cooperation network, such as the high mobility of AUVs, large transmission delays, low bandwidth, etc., the traditional topology control algorithms primarily designed for terrestrial wireless sensor networks cannot be used directly in the underwater environment. Moreover, these algorithms, in which the nodes adjust their transmission power once the current transmission power does not equal an optimal one, are costly in an underwater cooperating AUV network. Considering these facts, in this paper, we propose a Probabilistic Topology Control (PTC algorithm for an underwater cooperating AUV network. In PTC, when the transmission power of an AUV is not equal to the optimal transmission power, then whether the transmission power needs to be adjusted or not will be determined based on the AUV’s parameters. Each AUV determines their own transmission power adjustment probability based on the parameter deviations. The larger the deviation, the higher the transmission power adjustment probability is, and vice versa. For evaluating the performance of PTC, we combine the PTC algorithm with the Fuzzy logic Topology Control (FTC algorithm and compare the performance of these two algorithms. The simulation results have demonstrated that the PTC is efficient at reducing the

  14. Hospital Inspections

    Data.gov (United States)

    U.S. Department of Health & Human Services — Welcome to hospitalinspections.org, a website run by the Association of Health Care Journalists (AHCJ) that aims to make federal hospital inspection reports easier...

  15. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  16. Robot Aesthetics

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... in robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  17. Filigree Robotics

    DEFF Research Database (Denmark)

    Tamke, Martin; Evers, Henrik Leander; Clausen Nørgaard, Esben

    2016-01-01

    Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture.......Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture....

  18. Developing sensor-driven robots for hazardous environments

    International Nuclear Information System (INIS)

    Trivedi, M.M.; Gonzalez, R.C.; Abidi, M.A.

    1987-01-01

    Advancements in robotic technology are sought to provide enhanced personnel safety and reduced costs of operation associated with nuclear power plant manufacture, construction, maintenance, operation, and decommissioning. The authors describe main characteristics of advanced robotic systems for such applications and suggest utilization of sensor-driven robots. Research efforts described in the paper are directed towards developing robotic systems for automatic inspection and manipulation of various tasks associated with a test panel mounted with a variety of switches, controls, displays, meters, and valves

  19. Robotic platform for traveling on vertical piping network

    Science.gov (United States)

    Nance, Thomas A; Vrettos, Nick J; Krementz, Daniel; Marzolf, Athneal D

    2015-02-03

    This invention relates generally to robotic systems and is specifically designed for a robotic system that can navigate vertical pipes within a waste tank or similar environment. The robotic system allows a process for sampling, cleaning, inspecting and removing waste around vertical pipes by supplying a robotic platform that uses the vertical pipes to support and navigate the platform above waste material contained in the tank.

  20. Guide to robots and remote-controlled tools used in French nuclebar power plants

    International Nuclear Information System (INIS)

    Ferriole, G.

    1987-01-01

    Three types of robots are used in French nuclear plants: 1) Tool carriers for steam generator channel heads 2) Autonomous tool carriers and 3) Multifunctional tool carriers. Tool carriers for steam generator channel heads have been designed to perform only maintenance activities inside the channel head of steam generators and especially on the tubes. The shape and size of these carriers are adapted to the channel heads which is their only application. Autonomous carriers are tank-type vehicles with full tractor treads and their capacity ranges from 20 to 150 kg. These vehicles are used mainly for televisual inspection of the instrumentation penetrations underneath the pressure vessel and the upper pressure vessel internal structures (inspection of control rod guide tube split pins). Multifunctional tool carriers are developed to perform exceptional maintenance tasks of a nongeneric type in an environment with very high irradiation fields, that are inaccessible to a human operator. This means that such tasks are not always clearly defined and their execution is liable to change during the process. The different tasks can be delicate to perform and highly complex, e.g.: recovering a dropped fuel element, underwater measuration, dismantling of mechanical equipment, etc

  1. Cooperative OFDM underwater acoustic communications

    CERN Document Server

    Cheng, Xilin; Cheng, Xiang

    2016-01-01

    Following underwater acoustic channel modeling, this book investigates the relationship between coherence time and transmission distances. It considers the power allocation issues of two typical transmission scenarios, namely short-range transmission and medium-long range transmission. For the former scenario, an adaptive system is developed based on instantaneous channel state information. The primary focus is on cooperative dual-hop orthogonal frequency division multiplexing (OFDM). This book includes the decomposed fountain codes designed to enable reliable communications with higher energy efficiency. It covers the Doppler Effect, which improves packet transmission reliability for effective low-complexity mirror-mapping-based intercarrier interference cancellation schemes capable of suppressing the intercarrier interference power level. Designed for professionals and researchers in the field of underwater acoustic communications, this book is also suitable for advanced-level students in electrical enginee...

  2. Cutting method and device underwater

    International Nuclear Information System (INIS)

    Takano, Genta; Kamei, Hiromasa; Beppu, Seiji

    1998-01-01

    A place of material to be cut is surrounded by an openable/closable box. The material to be cut is cut underwater, and materials generated in this case are removed from the cut portion by a pressurized water jet. The removed materials are sucked and recovered together with water in the box. Among the materials caused by the cutting underwater, solid materials not floating on water are caused to stay in the midway of a sucking and recovering channel. A large sucking force might be required for the entire region of the sucking and recovering channel when sucking and recovering large sized solid materials not floating on water, but even large sized materials can be recovered easily according to the present invention since they are recovered after being sucked and stayed in the midway of the sucking and recovering channel. (N.H.)

  3. Current trend of robotics application in medical

    International Nuclear Information System (INIS)

    Olanrewaju, O A; Faieza, A A; Syakirah, K

    2013-01-01

    The applications of robotics in recent years has emerged beyond the field of manufacturing or industrial robots itself. Robotics applications are now widely used in medical, transport, underwater, entertainment and military sector. In medical field, these applications should be emphasized in view of the increasing challenges due to the variety of findings in the field of medicine which requires new inventions to ease work process. The objective of this review paper is to study and presents the past and on-going research in medical robotics with emphasis on rehabilitation (assistive care) and surgery robotics which are certainly the two main practical fields where robots application are commonly used presently. The study found that, rehabilitation and surgery robotics applications grow extensively with the finding of new invention, as well as research that is being undertaken and to be undertaken. The importance of medical robot in medical industry is intended to offer positive outcomes to assist human business through a complicated task that involves a long period, accuracy, focus and other routines that cannot be accomplished by human ability alone.

  4. Operational inspections

    International Nuclear Information System (INIS)

    Bystersky, M.

    1997-01-01

    Special equipment is described, designed for inspection of reactor pressure vessels performed from the inside. Central shaft manipulator ZMM-5 is available for crack detection control using ultrasound and eddy currents, for visual check of surfaces, repair works at the reactor pressure vessel, and hardness measurements. The manipulator consists of the manipulator bridge, a cable container, shaft segments, a control mechanism and auxiliary parts. Eight inspections were performed at the Bohunice nuclear power plant and two at the Paks nuclear power plant. (M.D.)

  5. Taiwan's underwater cultural heritage documentation management

    Science.gov (United States)

    Tung, Y.-Y.

    2015-09-01

    Taiwan is an important trading and maritime channels for many countries since ancient time. Numerous relics lie underwater due to weather, wars, and other factors. In the year of 2006, Bureau of Cultural Heritage (BOCH) entrusted the Underwater Archaeological Team of Academia Sinica to execute the underwater archaeological investigation projects. Currently, we verified 78 underwater targets, with 78 site of those had been recognized as shipwrecks sites. Up to date, there is a collection of 638 underwater objects from different underwater archaeological sites. Those artefacts are distributed to different institutions and museums. As very diverse management methods/systems are applied for every individual institution, underwater cultural heritage data such as survey, excavation report, research, etc. are poorly organized and disseminated for use. For better communication regarding to Taiwan's underwater cultural heritage in every level, a universal format of documentation should be established. By comparing the existing checklist used in Taiwan with guidelines that are followed in other countries, a more intact and appropriate underwater cultural heritage condition documentation system can be established and adapted in Taiwan.

  6. Automatic weld joint X-ray inspection

    International Nuclear Information System (INIS)

    Richter, H.U.; Linke, D.; Siems, K.D.; Kruse, H.; Schuetze, E.

    1990-01-01

    A gantry mounted robotic x-ray inspection unit has been developed for the series testing of small and medium sized welded components (pipe bends and nozzles). The unit features computer controlled positioning of the x-ray tube and x-ray image amplifier. Image quality classes 2 and even 1 could be achieved without difficulty. (author)

  7. Employing innovative techniques to reduce inspection times

    International Nuclear Information System (INIS)

    Heumueller, R.; Guse, G.; Dirauf, F.; Fischer, E.

    1997-01-01

    Shorter inspection periods mean lower revision costs and less tight revision schedules, but must not detract from the quality of inspection findings. This requirement imposes upon the company performing the inspection the need for top achievements both in quality management and in the use of innovative techniques. Flexible equipment systems and inspection techniques adapted to specific purposes are able to reduce inspection times in many inspection jobs. As part of a complete system designed to reduce inspection times, the new Saphir (Siemens Alok Phased Array Integrated Reliable UT-System) inspection equipment system is the core of most of the recent innovations. Being an integrated inspection equipment system, it is able to handle conventional US probes as well as arrays and phased arrays. It is open for further matching to specific inspection and administrative requirements and developments, and it may be incorporated in the network of an integrated system with a database. A technological leap in probe design in the past few years has allowed controllable wave fields to be generated which are in no way inferior to those of conventional probes with fixed angles of incidence. In this way, a number of inspection techniques can be implemented with a single probe. This reduces inspection times, setup and retooling times, and doses. Typical examples already used in practice are the LLT (longitudinal-longitudinal-transverse waves) technique and the integration of inspections for longitudinal and transverse defects in a single run. In the near future, surfaces with complicated curvatures will be inspected by novel modular robot systems consisting of individual modules of linear axes and rotational axes. (orig.) [de

  8. Underwater Coatings for Contamination Control

    International Nuclear Information System (INIS)

    Julia L. Tripp; Kip Archibald; Ann-Marie Phillips; Joseph Campbell

    2004-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included (1) Test Area North (TAN-607) with epoxy painted concrete walls; (2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; (3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and (4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55 F to 80 F dependent on the pool and the season. These tests were done at room temperature. The following criteria were used during this evaluation. The underwater coating must: (1) Be easy to apply; (2) Adhere well to the four surfaces of interest; (3) Not change or have a negative impact on water chemistry or clarity; (4) Not be hazardous in final applied form; and (5) Be proven in other underwater applications. In addition, it is desirable for the coating to have a high pigment or high cross-link density to prevent radiation from penetrating. This paper will detail the testing completed and the test results. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates

  9. Optimal Estimation of Glider’s Underwater Trajectory with Depth-Dependent Correction Using the Navy Coastal Ocean Model with Application to Antisubmarine Warfare

    Science.gov (United States)

    2014-09-01

    step study. 2010 IEEE International Conf. on Robotics and Autonomation, Anchorage, Alaska, IEEE Xplore , 4770‒4777, doi:10.1109/ ROBOT.2010.5509240...Autonomation, Karlsruhe, Germany, IEEE Xplore , 5565‒5570, doi:10.1109/ ICRA.2013.6631376. Webb, D. C., P. J. Simonetti, C. P. Jones, 2001: SLOCUM: An...unmanned underwater vehicles for very shallow water mine countermeasures. Proc. OCEANS 2003, San Diego, California, IEEE , 1417‒1423. doi:10.1109

  10. Robotic environments

    NARCIS (Netherlands)

    Bier, H.H.

    2011-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic architectural environments to be implemented and tested in the last decade in virtual and physical prototypes. These prototypes are incorporating sensing-actuating

  11. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  12. In service inspection of superphenix 1 vessels: MIR

    International Nuclear Information System (INIS)

    Asty, M.; Viard, J.; Lerat, B.; Saglio, R.

    1985-02-01

    Presentation of the in-service inspection device, MIR, which has been specially developed for the visual and ultrasonic examination of Super Phenix 1 vessels (surface and internal defects). The inspections take place during fuel handling operations. The inspection device is a robot with a four-wheel drive vehicle which guidance along the welds is achieved by eddy-current devices; visual examination is performed by a television camera and ultrasonic probes are specially resistent to high temperatures

  13. Healthcare Robotics

    OpenAIRE

    Riek, Laurel D.

    2017-01-01

    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key sta...

  14. A remote inspection system for use inside reactor containment vessels

    International Nuclear Information System (INIS)

    Aoki, Toshihiko; Kashiwai, Jun-ichi; Yamamoto, Ikuo; Fukada, Koichi; Yamanaka, Yoshinobu.

    1985-01-01

    The harsh environment in the reactor-containment vesels of pressurized-water reactor nuclear-power plants precludes the possibility of direct circuit inspection; a remote-inspection system is essential. A robot for performing this task must not only be able to withstand the harsh conditions but must also be small and maneuverable enough to function effectively within complex and confined spaces. The article describes a monorail-type remote-inspection robot developed by Mitsubishi Electric to meet these needs, which is now under trial production and testing. (author)

  15. Industrial Robots.

    Science.gov (United States)

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  16. Visual servo simulation of EAST articulated maintenance arm robot

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang, E-mail: yangyang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Song, Yuntao; Pan, Hongtao; Cheng, Yong; Feng, Hansheng [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Wu, Huapeng [Lappeenranta University of Technology, Skinnarilankatu 34, Lappeenranta (Finland)

    2016-03-15

    For the inspection and light-duty maintenance of the vacuum vessel in the EAST tokamak, a serial robot arm, called EAST articulated maintenance arm, is developed. Due to the 9-m-long cantilever arm, the large flexibility of the EAMA robot introduces a problem in the accurate positioning. This article presents an autonomous robot control to cope with the robot positioning problem, which is a visual servo approach in context of tile grasping for the EAMA robot. In the experiments, the proposed method was implemented in a simulation environment to position and track a target graphite tile with the EAMA robot. As a result, the proposed visual control scheme can successfully drive the EAMA robot to approach and track the target tile until the robot reaches the desired position. Furthermore, the functionality of the simulation software presented in this paper is proved to be suitable for the development of the robotic and computer vision application.

  17. Visual servo simulation of EAST articulated maintenance arm robot

    International Nuclear Information System (INIS)

    Yang, Yang; Song, Yuntao; Pan, Hongtao; Cheng, Yong; Feng, Hansheng; Wu, Huapeng

    2016-01-01

    For the inspection and light-duty maintenance of the vacuum vessel in the EAST tokamak, a serial robot arm, called EAST articulated maintenance arm, is developed. Due to the 9-m-long cantilever arm, the large flexibility of the EAMA robot introduces a problem in the accurate positioning. This article presents an autonomous robot control to cope with the robot positioning problem, which is a visual servo approach in context of tile grasping for the EAMA robot. In the experiments, the proposed method was implemented in a simulation environment to position and track a target graphite tile with the EAMA robot. As a result, the proposed visual control scheme can successfully drive the EAMA robot to approach and track the target tile until the robot reaches the desired position. Furthermore, the functionality of the simulation software presented in this paper is proved to be suitable for the development of the robotic and computer vision application.

  18. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1990-01-01

    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.

  19. Modular robotic applications in nuclear power plant maintenance

    International Nuclear Information System (INIS)

    Glass, S.W.; Ranson, C.C.; Reinholtz, C.F.; Calkins, J.M.

    1996-01-01

    General-purpose factory automation robots have experienced limited use in nuclear maintenance and hazardous-environment work spaces due to demanding requirements on size, weight, mobility and adaptability. Robotic systems in nuclear power plants are frequently custom designed to meet specific space and performance requirements. Examples of these custom configurations include Framatome Technologies COBRA trademark Steam Generator Manipulator and URSULA trademark Reactor Vessel Inspection Manipulator. The use of custom robots in nuclear plants has been limited because of the lead time and expense associated with custom design. Developments in modular robotics and advanced robot control software coupled with more powerful low-cost computers, however, are helping to reduce the cost and schedule for deploying custom robots. A modular robotic system allows custom robot configurations to be implemented using standard (modular) joints and adaptable controllers. This paper discusses Framatome Technologies (FTI) current and planned developments in the area of modular robot system design

  20. Investigation of the Propagation Characteristics of Underwater Shock Waves in Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2018-01-01

    Full Text Available During the first-stage project of the main channel of Ningbo-Zhoushan Port’s Shipu Harbor, underwater shock waves were monitored. By analyzing a typical measured pressure time history curve, the characteristics of underwater shock waves in an engineering context were obtained. We obtained a traditional exponential attenuation formula for underwater shock waves based on the measured data, simplified the model of underwater drilling blasting based on engineering practice, deduced a revised formula for underwater shock wave peak overpressure on the basis of dimensional analysis, established a linear fitting model, and obtained the undetermined coefficients of the revised formula using a linear regression analysis. In addition, the accuracies of the two formulas used to predict underwater shock wave peak overpressure and the significance order of influence and influence mechanism of factors included in the revised formula on the underwater shock wave peak overpressure were discussed.

  1. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.

    Science.gov (United States)

    Raj, Aditi; Thakur, Atul

    2016-04-13

    Underwater robot designs inspired by the behavior, physiology, and anatomy of fishes can provide enhanced maneuverability, stealth, and energy efficiency. Over the last two decades, robotics researchers have developed and reported a large variety of fish-inspired robot designs. The purpose of this review is to report different types of fish-inspired robot designs based upon their intended locomotion patterns. We present a detailed comparison of various design features like sensing, actuation, autonomy, waterproofing, and morphological structure of fish-inspired robots reported in the past decade. We believe that by studying the existing robots, future designers will be able to create new designs by adopting features from the successful robots. The review also summarizes the open research issues that need to be taken up for the further advancement of the field and also for the deployment of fish-inspired robots in practice.

  2. Robot Mechanisms

    CERN Document Server

    Lenarcic, Jadran; Stanišić, Michael M

    2013-01-01

    This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.

  3. The Robots for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Chang Hwan; Kim, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil; Shin, Ho Cheol; Lee, Sung Uk; Jung, Kyung Min; Jung, Seung Ho; Choi, Young So

    2005-01-01

    Nuclear energy becomes a major energy source worldwide even though the debating environmental and safety dispute. In order to cope with the issues related to the nuclear power plant, the uncertain human factors need to be minimized by automating the inspection and maintenance work done by human workers. The demands of robotic system in nuclear industry have been growing to ensure the safety of nuclear facilities, to detect early unusual condition of it through an inspection, to protect the human workers from irradiation, and to maintain it efficiently. NRL (Nuclear Robotics Laboratory) in KAERI has been developing robotic systems to inspect and maintain nuclear power plants in stead of human workers for over thirteen years. In order to carry out useful tasks, a nuclear robot generally requires the followings. First, the robot should be protected against radiation. Second, a mobile system is required to access to the work place. Third, a kind of manipulator is required to complete the tasks such as handling radioactive wastes and other contaminated objects, etc. Fourth, a sensing system such as cameras, ultrasonic sensors, temperature sensors, dosimetry equipments etc., are required for operators to observe the work place. Lastly, a control system to help the operators control the robots. The control system generally consists of a supervisory control part and remote control part. The supervisory control part consists of a man-machine interface such as 3D graphics and a joystick. The remote control part manages the robot so that it follow the operator's command

  4. ROV Based Underwater Blurred Image Restoration

    Institute of Scientific and Technical Information of China (English)

    LIU Zhishen; DING Tianfu; WANG Gang

    2003-01-01

    In this paper, we present a method of ROV based image processing to restore underwater blurry images from the theory of light and image transmission in the sea. Computer is used to simulate the maximum detection range of the ROV under different water body conditions. The receiving irradiance of the video camera at different detection ranges is also calculated. The ROV's detection performance under different water body conditions is given by simulation. We restore the underwater blurry images using the Wiener filter based on the simulation. The Wiener filter is shown to be a simple useful method for underwater image restoration in the ROV underwater experiments. We also present examples of restored images of an underwater standard target taken by the video camera in these experiments.

  5. Quantum imaging for underwater arctic navigation

    Science.gov (United States)

    Lanzagorta, Marco

    2017-05-01

    The precise navigation of underwater vehicles is a difficult task due to the challenges imposed by the variable oceanic environment. It is particularly difficult if the underwater vehicle is trying to navigate under the Arctic ice shelf. Indeed, in this scenario traditional navigation devices such as GPS, compasses and gyrocompasses are unavailable or unreliable. In addition, the shape and thickness of the ice shelf is variable throughout the year. Current Arctic underwater navigation systems include sonar arrays to detect the proximity to the ice. However, these systems are undesirable in a wartime environment, as the sound gives away the position of the underwater vehicle. In this paper we briefly describe the theoretical design of a quantum imaging system that could allow the safe and stealthy navigation of underwater Arctic vehicles.

  6. LAKE BAIKAL: Underwater neutrino detector

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    A new underwater detector soon to be deployed in Lake Baikal in Siberia, the world's deepest lake with depths down to 1.7 kilometres, could help probe the deepest mysteries of physics. One of the big unsolved problems of astrophysics is the origin of very energetic cosmic rays. However there are many ideas on how particles could be accelerated by exotic concentrations of matter and provide the majority of the Galaxy's high energy particles. Clarification would come from new detectors picking up the energetic photons and neutrinos from these sources

  7. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    Science.gov (United States)

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%. PMID:26351656

  8. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network.

    Science.gov (United States)

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.

  9. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    Directory of Open Access Journals (Sweden)

    Rie Saotome

    2015-01-01

    Full Text Available In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles, AUV (autonomous underwater vehicle, divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3 and 93.750 Hz (MODE2 OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%.

  10. Robot Futures

    DEFF Research Database (Denmark)

    Christoffersen, Anja; Grindsted Nielsen, Sally; Jochum, Elizabeth Ann

    Robots are increasingly used in health care settings, e.g., as homecare assistants and personal companions. One challenge for personal robots in the home is acceptance. We describe an innovative approach to influencing the acceptance of care robots using theatrical performance. Live performance...... is a useful testbed for developing and evaluating what makes robots expressive; it is also a useful platform for designing robot behaviors and dialogue that result in believable characters. Therefore theatre is a valuable testbed for studying human-robot interaction (HRI). We investigate how audiences...... perceive social robots interacting with humans in a future care scenario through a scripted performance. We discuss our methods and initial findings, and outline future work....

  11. Robotics education

    International Nuclear Information System (INIS)

    Benton, O.

    1984-01-01

    Robotics education courses are rapidly spreading throughout the nation's colleges and universities. Engineering schools are offering robotics courses as part of their mechanical or manufacturing engineering degree program. Two year colleges are developing an Associate Degree in robotics. In addition to regular courses, colleges are offering seminars in robotics and related fields. These seminars draw excellent participation at costs running up to $200 per day for each participant. The last one drew 275 people from Texas to Virginia. Seminars are also offered by trade associations, private consulting firms, and robot vendors. IBM, for example, has the Robotic Assembly Institute in Boca Raton and charges about $1,000 per week for course. This is basically for owners of IBM robots. Education (and training) can be as short as one day or as long as two years. Here is the educational pattern that is developing now

  12. Robotics research in Chile

    Directory of Open Access Journals (Sweden)

    Javier Ruiz-del-Solar

    2016-12-01

    Full Text Available The development of research in robotics in a developing country is a challenging task. Factors such as low research funds, low trust from local companies and the government, and a small number of qualified researchers hinder the development of strong, local research groups. In this article, and as a case of study, we present our research group in robotics at the Advanced Mining Technology Center of the Universidad de Chile, and the way in which we have addressed these challenges. In 2008, we decided to focus our research efforts in mining, which is the main industry in Chile. We observed that this industry has needs in terms of safety, productivity, operational continuity, and environmental care. All these needs could be addressed with robotics and automation technology. In a first stage, we concentrate ourselves in building capabilities in field robotics, starting with the automation of a commercial vehicle. An important outcome of this project was the earn of the local mining industry confidence. Then, in a second stage started in 2012, we began working with the local mining industry in technological projects. In this article, we describe three of the technological projects that we have developed with industry support: (i an autonomous vehicle for mining environments without global positioning system coverage; (ii the inspection of the irrigation flow in heap leach piles using unmanned aerial vehicles and thermal cameras; and (iii an enhanced vision system for vehicle teleoperation in adverse climatic conditions.

  13. Strategies to reduce PWR inspection time

    International Nuclear Information System (INIS)

    Guerra, J.; Gonzalez, E.

    2001-01-01

    During last few years, a constant reduction in inspection time was clearly demanded by most nuclear plant owners. This requirement has to be accomplished without any impact in inspection quality that, in general, has also to be improved. All this in a market with increasing competition that forces price reductions. Under these new demands from our customers, Tecnatom reoriented its development efforts to improve his products and services to meet this challenges. Two of our main inspection activities that have clear impact in outage duration are Steam Generator and Vessel inspections. This paper describes the improvements made in these two activities as an example of the reorientation of our development efforts with a focus on the technical improvements made on the software and robotic tools applied as in the data acquisition and analysis systems. In the Steam Generator inspections, new robots with dual guide tubes are commonly used. New eddy current instruments and software were developed to keep up with the data rates produced by the faster acquisition system. Use of automatic analysis software is also helping to improve speed while reducing cost and improving overall job quality. Production rates are close to double from the previous inspection system. (author)

  14. The application of virtual prototyping methods to determine the dynamic parameters of mobile robot

    Science.gov (United States)

    Kurc, Krzysztof; Szybicki, Dariusz; Burghardt, Andrzej; Muszyńska, Magdalena

    2016-04-01

    The paper presents methods used to determine the parameters necessary to build a mathematical model of an underwater robot with a crawler drive. The parameters present in the dynamics equation will be determined by means of advanced mechatronic design tools, including: CAD/CAE software andMES modules. The virtual prototyping process is described as well as the various possible uses (design adaptability) depending on the optional accessories added to the vehicle. A mathematical model is presented to show the kinematics and dynamics of the underwater crawler robot, essential for the design stage.

  15. Autonomous flying robots

    CERN Document Server

    Nonami, Kenzo; Suzuki, Satoshi; Wang, Wei; Nakazawa, Daisuke

    2010-01-01

    Worldwide demand for robotic aircraft such as unmanned aerial vehicles (UAVs) and micro aerial vehicles (MAVs) is surging. Not only military but especially civil applications are being developed at a rapid pace. Unmanned vehicles offer major advantages when used for aerial surveillance, reconnaissance, and inspection in complex and inhospitable environments. UAVs are better suited for dirty or dangerous missions than manned aircraft and are more cost-effective. UAVs can operate in contaminated environments, for example, and at altitudes both lower and higher than those typically traversed by m

  16. Soft Robotic Grippers for Biological Sampling on Deep Reefs.

    Science.gov (United States)

    Galloway, Kevin C; Becker, Kaitlyn P; Phillips, Brennan; Kirby, Jordan; Licht, Stephen; Tchernov, Dan; Wood, Robert J; Gruber, David F

    2016-03-01

    This article presents the development of an underwater gripper that utilizes soft robotics technology to delicately manipulate and sample fragile species on the deep reef. Existing solutions for deep sea robotic manipulation have historically been driven by the oil industry, resulting in destructive interactions with undersea life. Soft material robotics relies on compliant materials that are inherently impedance matched to natural environments and to soft or fragile organisms. We demonstrate design principles for soft robot end effectors, bench-top characterization of their grasping performance, and conclude by describing in situ testing at mesophotic depths. The result is the first use of soft robotics in the deep sea for the nondestructive sampling of benthic fauna.

  17. Marinization concept for the TRICEPT TR600 robot

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, A.; Aust, E.; Niemann, H.R.; Santos, J.F. dos [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung; Hammerin, R.; Neumann, K.E. [Neos Robotics AB, Taeby (Sweden); Gibson, D. [National Hyperbaric Centre, Aberdeen (United Kingdom)

    1998-11-01

    The need for automated welding repair systems of marine structures, ship hulls and nuclear installations had lead to an increasing demand for subsea robots. Considering the application of friction welding to perform underwater repairs, a TRICEPT TR600 robot has been identified as the most suitable system to withstand the high reaction forces characteristic of this process. This study reviews initially the research and development work carried out at GKSS to modify and test a Siemens-MANUTEC robot. After a description of the TRICEPT TR600 robot a marinization concept is presented and discussed in detail. Problems of galvanic corrosion in seawater are addressed in a separate chapter. The deflection of the robot in subsea water currents is estimated with a worst-case calculation. (orig.) [Deutsch] Der Wunsch, Roboter auch unter Wasser einsetzen zu koennen, waechst mit steigendem Interesse nach automatisierten Schweissverfahren fuer Reparaturen an marinen Bauwerken, Schiffsruempfen und in Kernenergieanlagen. Fuer den Einsatz von Reibschweissverfahren fuer diese Reparaturen wurde der TRICEPT TR600-Roboter ausgewaehlt, da dieser auch den charakteristisch hohen Prozesskraeften widerstehen kann. Die notwendigen Modifikationen und Pruefungen werden beispielhaft anhand des bei der GKSS modifizierten Siemens-MANUTEC-Roboters vorgestellt. Nach einer Beschreibung des TRICEPT-Roboters werden die notwendigen Umbaumassnahmen detailliert dargestellt und diskutiert. Auf die Problematik der galvanischen Korrosion in Seewasser wird in einem gesonderten Kapitel naeher eingegangen. Zusaetzlich wird eine moegliche Ablenkung des Roboters durch Wasserstroemung ueberschlaegig berechnet. (orig.)

  18. Distributed mechatronics controller for modular wall climbing robot

    CSIR Research Space (South Africa)

    Tlale, NS

    2006-07-01

    Full Text Available - climbing robot for inspection in nuclear power plants.”, Proc. IEEE Int. Conf. on Robotics and Automation, pp. 409-1414. (Chen 2001) Chen, D-. J., 2001, “Architecture for Systematic Development of Mechatronics Software Systems”, Licentiate Thesis... provide a more cost effective solution to the problem (Luk et al 1991). Such robots are termed service robots by the International Service Robot Association (ISRA) (Pransky 1996). They are defined as machines that sense, think, and act to benefit (or...

  19. Dynamics and Control of Underwater Gliders I: Steady Motions

    OpenAIRE

    Mahmoudian, N.; Geisbert, J.; Woolsey, C.

    2007-01-01

    This paper describes analysis of steady motions for underwater gliders, a type of highly efficient underwater vehicle which uses gravity for propulsion. Underwater gliders are winged underwater vehicles which locomote by modulating their buoyancy and their attitude. Several such vehicles have been developed and have proven their worth as efficient long-distance, long-duration ocean sampling platforms. To date, the primary emphasis in underwater glider development has been on locomotive effici...

  20. Control of Oscillating Foil for Propulsion of Biorobotic Autonomous Underwater Vehicle (AUV

    Directory of Open Access Journals (Sweden)

    S. N. Singh

    2005-01-01

    Full Text Available The paper treats the question of control of a laterally and rotationally oscillating hydrofoil for the propulsion of biologically inspired robotic (biorobotic autonomous underwater vehicles (BAUVs. Sinusoidal oscillations of foils produce maneuvering and propulsive forces. The design is based on the internal model principle. Two springs are used to transmit forces from the actuators to the foil. Oscillating fins produce periodic forces, which can be used for fish-like propulsion and control of autonomous underwater vehicles (AUVs. The equations of motion of the foil include hydrodynamic lift and moment based on linear, unsteady, aerodynamic theory. A control law is derived for the lateral and rotational sinusoidal oscillation of the foil. In the closed-loop system, the lateral displacement and the rotational angle of the foil asymptotically follow sinusoidal trajectories of distinct frequencies and amplitudes independently. Simulation results are presented to show the trajectory tracking performance of the foil for different freestream velocities and sinusoidal command trajectories.

  1. Design and Experimental Validation of a USBL Underwater Acoustic Positioning System.

    Science.gov (United States)

    Reis, Joel; Morgado, Marco; Batista, Pedro; Oliveira, Paulo; Silvestre, Carlos

    2016-09-14

    This paper presents the steps for developing a low-cost POrtableNavigation Tool for Underwater Scenarios (PONTUS) to be used as a localization device for subsea targets. PONTUS consists of an integrated ultra-short baseline acoustic positioning system aided by an inertial navigation system. Built on a practical design, it can be mounted on an underwater robotic vehicle or be operated by a scuba diver. It also features a graphical user interface that provides information on the tracking of the designated target, in addition to some details on the physical properties inside PONTUS. A full disclosure of the architecture of the tool is first presented, followed by thorough technical descriptions of the hardware components ensemble and the software development process. A series of experiments was carried out to validate the developed prototype, and the results are presented herein, which allow assessing its overall performance.

  2. Design and Experimental Validation of a USBL Underwater Acoustic Positioning System

    Directory of Open Access Journals (Sweden)

    Joel Reis

    2016-09-01

    Full Text Available This paper presents the steps for developing a low-cost POrtableNavigation Tool for Underwater Scenarios (PONTUS to be used as a localization device for subsea targets. PONTUS consists of an integrated ultra-short baseline acoustic positioning system aided by an inertial navigation system. Built on a practical design, it can be mounted on an underwater robotic vehicle or be operated by a scuba diver. It also features a graphical user interface that provides information on the tracking of the designated target, in addition to some details on the physical properties inside PONTUS. A full disclosure of the architecture of the tool is first presented, followed by thorough technical descriptions of the hardware components ensemble and the software development process. A series of experiments was carried out to validate the developed prototype, and the results are presented herein, which allow assessing its overall performance.

  3. Robotic buildings(s)

    NARCIS (Netherlands)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically

  4. Development of maintenance technology with underwater TIG welding for spent fuel storage pool

    International Nuclear Information System (INIS)

    Obana, Takeshi; Hamada, Yasumitsu; Ooeda, Kaoru; Katou, Masahide; Ootsuka, Toshihiro; Toyoda, Seiichi; Hosogane, Atsushi

    2007-01-01

    The core technology of underwater TIG welding process has been developed and welding equipment system has been manufactured, for application to the maintenance of the spent fuel storage pool of Rokkasho reprocessing plant. Basic experiments for understanding the conditions of dry area and the range of welding conditions was performed, and mock examination for simulation of real environment by using the developed welding equipment was also carried out to judge the applicability of the system. For the purpose that can be selected water removing method for different spatial conditions of the parts to be maintained in underwater, two kinds of welding equipment systems of Chamber type and Partition type were developed and manufactured. On the basis of fundamental experiments, the conditions of dry area formation and welding parameters range for high-reliability weld were discussed. Thus the proper condition in this process was able to be established. With the welding equipment systems of the Chamber type and Partition type, the practical use examination of underwater TIG welding process was executed by mock examination for simulating the real environment. As a result, it was confirmed that the underwater TIG welding could obtain the same reliability as a usual in-air TIG welding, and the operation and the control at remote distance were also possible. And the reliability of the patch-plate fillet weld could be evaluated by remote inspection with the expansion visual test. (author)

  5. Path Planning & Measurement Registration for Robotic Structural Asset Monitoring

    OpenAIRE

    Pierce , Stephen Gareth; Macleod , Charles Norman; Dobie , Gordon; Summan , Rahul

    2014-01-01

    International audience; The move to increased levels of autonomy for robotic delivery of inspection for asset monitoring, demands a structured approach to path planning and measurement data presentation that greatly surpasses the more ad‐,hoc approach typically employed by remotely controlled, but manually driven robotic inspection vehicles. The authors describe a traditional CAD/CAM approach to motion planning (as used in machine tool operation) which has numerous benefits including the...

  6. On site PWR fuel inspection measurements for operational and design verification

    International Nuclear Information System (INIS)

    1996-01-01

    The on-site inspection of irradiated Pressurized Water Reactor (PWR) fuel and Non-Fuel Bearing Components (NFBC) is typically limited to visual inspections during refuelings using underwater TV cameras and is intended primarily to confirm whether the components will continue in operation. These inspections do not normally provide data for design verification nor information to benefit future fuel designs. Japanese PWR utilities and Nuclear Fuel Industries Ltd. designed, built, and performed demonstration tests of on-site inspection equipment that confirms operational readiness of PWR fuel and NFBC and also gathers data for design verification of these components. 4 figs, 3 tabs

  7. MECHANICAL DESIGN OF AN AUTONOMOUS MARINE ROBOTIC SYSTEM FOR INTERACTION WITH DIVERS

    Directory of Open Access Journals (Sweden)

    Nikola Stilinović

    2016-09-01

    Full Text Available SCUBA diving, professional or recreational, remains one of the most hazardous activities known by man, mostly due to the fact that the human survival in the underwater environment requires use of technical equipment such as breathing regulators. Loss of breathing gas supply, burst eardrum, decompression sickness and nitrogen narcosis are just a few problems which can occur during an ordinary dive and result in injuries, long-term illnesses or even death. Most common way to reduce the risk of diving is to dive in pairs, thus allowing divers to cooperate with each other and react when uncommon situation occurs. Having the ability to react before an unwanted situation happens would improve diver safety. This paper describes an autonomous marine robotic system that replaces a human dive buddy. Such a robotic system, developed within an FP7 project “CADDY – Cognitive Autonomous Diving Buddy” provides a symbiotic link between robots and human divers in the underwater. The proposed concept consists of a diver, an autonomous underwater vehicle (AUV Buddy and an autonomous surface vehicle (ASV PlaDyPos, acting within a cooperative network linked via an acoustic communication channel. This is a first time that an underwater human-robot system of such a scale has ever been developed. In this paper, focus is put on mechanical characteristics of the robotic vehicles.

  8. 4th Pacific Rim Underwater Acoustics Conference

    CERN Document Server

    Xu, Wen; Cheng, Qianliu; Zhao, Hangfang

    2016-01-01

    These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.

  9. Intelligent Autonomy for Unmanned Surface and Underwater Vehicles

    Science.gov (United States)

    Huntsberger, Terry; Woodward, Gail

    2011-01-01

    As the Autonomous Underwater Vehicle (AUV) and Autonomous Surface Vehicle (ASV) platforms mature in endurance and reliability, a natural evolution will occur towards longer, more remote autonomous missions. This evolution will require the development of key capabilities that allow these robotic systems to perform a high level of on-board decisionmaking, which would otherwise be performed by humanoperators. With more decision making capabilities, less a priori knowledge of the area of operations would be required, as these systems would be able to sense and adapt to changing environmental conditions, such as unknown topography, currents, obstructions, bays, harbors, islands, and river channels. Existing vehicle sensors would be dual-use; that is they would be utilized for the primary mission, which may be mapping or hydrographic reconnaissance; as well as for autonomous hazard avoidance, route planning, and bathymetric-based navigation. This paper describes a tightly integrated instantiation of an autonomous agent called CARACaS (Control Architecture for Robotic Agent Command and Sensing) developed at JPL (Jet Propulsion Laboratory) that was designed to address many of the issues for survivable ASV/AUV control and to provide adaptive mission capabilities. The results of some on-water tests with US Navy technology test platforms are also presented.

  10. Soft Robotics.

    Science.gov (United States)

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Getting to grips with remote handling and robotics

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, D [Ontario Hydro, Toronto (Canada)

    1984-12-01

    A report on the Canadian Nuclear Society Conference on robotics and remote handling in the nuclear industry, September 1984. Remote handling in reactor operations, particularly in the Candu reactors is discussed, and the costs and benefits of use of remote handling equipment are considered. Steam generator inspection and repair is an area in which practical application of robotic technology has made a major advance.

  12. Aerial service robots: an overview of the AIRobots activity

    NARCIS (Netherlands)

    Marconi, L.; Naldi, R.; Torre, A.; Nikolic, J.; Huerzeler, C.; Caprari, G.; Zwicker, E.; Siciliano, B.; Lippiello, V.; Carloni, Raffaella; Stramigioli, Stefano

    This video paper outlines some of the results achieved during the first two years of the ongoing European project AIRobots (Innovative Aerial Service Robots for Remote Inspection by Contact, www.airobots.eu). Goal of AIRobots is to develop a new generation of aerial service robots capable of

  13. 10th FSR (Field and Service Robotics)

    CERN Document Server

    Barfoot, Timothy

    2016-01-01

    This book contains the proceedings of the 10th FSR, (Field and Service Robotics) which is the leading single-track conference on applications of robotics in challenging environments. The 10th FSR was held in Toronto, Canada from 23-26 June 2015. The book contains 42 full-length, peer-reviewed papers organized into a variety of topics: Aquatic, Vision, Planetary, Aerial, Underground, and Systems. The goal of the book and the conference is to report and encourage the development and experimental evaluation of field and service robots, and to generate a vibrant exchange and discussion in the community. Field robots are non-factory robots, typically mobile, that operate in complex and dynamic environments: on the ground (Earth or other planets), under the ground, underwater, in the air or in space. Service robots are those that work closely with humans to help them with their lives. The first FSR was held in Canberra, Australia, in 1997. Since that first meeting, FSR has been held roughly every two years, cycling...

  14. Cecil gives in-bundle access for inspection and lancing [steam generators

    International Nuclear Information System (INIS)

    Trovato, S.A.; Ruggieri, S.K.

    1989-01-01

    Cecil (Consolidated Edison Combined Inspection and Lancing System) is a robotic device which makes it possible to take inspection and sludge lancing equipment deep inside steam generator tube bundles. Cecil is teleoperated to perform tube bundle inspections, sludge sampling and sludge lancing. The first field test of Cecil at Indian Point 2 reactor, successfully demonstrated its capability for high quality inspection, and its potential for improved sludge removal, both with reduced personnel radiation exposure. (U.K.)

  15. Underwater Object Segmentation Based on Optical Features

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    2018-01-01

    Full Text Available Underwater optical environments are seriously affected by various optical inputs, such as artificial light, sky light, and ambient scattered light. The latter two can block underwater object segmentation tasks, since they inhibit the emergence of objects of interest and distort image information, while artificial light can contribute to segmentation. Artificial light often focuses on the object of interest, and, therefore, we can initially identify the region of target objects if the collimation of artificial light is recognized. Based on this concept, we propose an optical feature extraction, calculation, and decision method to identify the collimated region of artificial light as a candidate object region. Then, the second phase employs a level set method to segment the objects of interest within the candidate region. This two-phase structure largely removes background noise and highlights the outline of underwater objects. We test the performance of the method with diverse underwater datasets, demonstrating that it outperforms previous methods.

  16. Remote inspection system for hazardous sites

    International Nuclear Information System (INIS)

    Redd, J.; Borst, C.; Volz, R.A.; Everett, L.J.

    1999-04-01

    Long term storage of special nuclear materials poses a number of problems. One of these is a need to inspect the items being stored from time to time. Yet the environment is hostile to man, with significant radiation exposure resulting from prolonged presence in the storage facility. This paper describes research to provide a remote inspection capability, which could lead to eliminating the need for humans to enter a nuclear storage facility. While there are many ways in which an RI system might be created, this paper describes the development of a prototype remote inspection system, which utilizes virtual reality technology along with robotics. The purpose of this system is to allow the operator to establish a safe and realistic telepresence in a remote environment. In addition, it was desired that the user interface for the system be as intuitive to use as possible, thus eliminating the need for extensive training. The goal of this system is to provide a robotic platform with two cameras, which are capable of providing accurate and reliable stereographic images of the remote environment. One application for the system is that it might be driven down the corridors of a nuclear storage facility and utilized to inspect the drums inside, all without the need for physical human presence. Thus, it is not a true virtual reality system providing simulated graphics, but rather an augmented reality system, which performs remote inspection of an existing, real environment

  17. Robotics in space-age manufacturing

    Science.gov (United States)

    Jones, Chip

    1991-01-01

    Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.

  18. Robotics 101

    Science.gov (United States)

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  19. Vitruvian Robot

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    2017-01-01

    future. A real version of Ava would not last long in a human world because she is basically a solipsist, who does not really care about humans. She cannot co-create the line humans walk along. The robots created as ‘perfect women’ (sex robots) today are very far from the ideal image of Ava...

  20. UNEXMIN H2020 Project: an underwater explorer for flooded mines

    Science.gov (United States)

    Lopes, Luís; Zajzon, Norbert; Bodo, Balázs; Henley, Stephen; Žibret, Gorazd; Almeida, José; Vörös, Csaba; Horvath, Janos; Dizdarevič, Tatjana; Rossi, Claudio; McLoughlin, Mike

    2017-04-01

    UNEXMIN (Underwater Explorer for Flooded Mines, Grant Agreement No. 690008, www.unexmin.eu) is a project funded by the European Commission's HORIZON2020 Framework Programme. The project is developing a multi-platform robotic system for the autonomous exploration and mapping of Europe's flooded mines. The robotic system - UX-1 - will use non-invasive methods for the 3D mapping of abandoned flooded mines, bringing new important geological and mineralogical data that cannot be currently obtained by any other means. This technology will allow the development or update of geological models at local and regional levels. The data collected will then be used to consider new exploration scenarios for the possible re-opening of some of Europe's abandoned mines which may still contain valuable resources of strategic minerals. The deployment of a multi-robotic system in such a confined environment poses challenges that must be overcome so that the robots can work autonomously, without damaging the equipment and the mine itself. Key challenges are related to the i) structural design for robustness and resilience, ii) localization, navigation and 3D mapping, iii) guidance, propulsion and control, iv) autonomous operation and supervision, v) data processing, interpretation and evaluation. The scientific instrument array is currently being tested, built and tailored for the submersible: pH, electrical conductivity, pressure and temperature analyzers and a water sampler (water sampling methods), a magnetic field analyzer, a gamma-ray counter and a sub-bottom profiler (geophysical methods) and a multispectral and UV fluorescence imaging units (optical observation methods). The instruments have been selected to generate data of maximum geoscientific interest, considering the limiting factors of the submerged underground environment, the necessary robotic functions, the size for the robot and other constraints. Other crucial components for the robot's functionality (such as movement

  1. Robot Teachers

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft; Ess, Charles Melvin; Bhroin, Niamh Ni

    The world's first robot teacher, Saya, was introduced to a classroom in Japan in 2009. Saya, had the appearance of a young female teacher. She could express six basic emotions, take the register and shout orders like 'be quiet' (The Guardian, 2009). Since 2009, humanoid robot technologies have...... developed. It is now suggested that robot teachers may become regular features in educational settings, and may even 'take over' from human teachers in ten to fifteen years (cf. Amundsen, 2017 online; Gohd, 2017 online). Designed to look and act like a particular kind of human; robot teachers mediate human...... existence and roles, while also aiming to support education through sophisticated, automated, human-like interaction. Our paper explores the design and existential implications of ARTIE, a robot teacher at Oxford Brookes University (2017, online). Drawing on an initial empirical exploration we propose...

  2. Social Robots

    DEFF Research Database (Denmark)

    Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us as indiv......Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us...... as individuals seems to be limited by our technical limitations and phantasy alone. This collection contributes to the field of social robotics by exploring its boundaries from a philosophically informed standpoint. It constructively outlines central potentials and challenges and thereby also provides a stable...

  3. Robotic seeding

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Fountas, Spyros; Sørensen, Claus Aage Grøn

    2017-01-01

    Agricultural robotics has received attention for approximately 20 years, but today there are only a few examples of the application of robots in agricultural practice. The lack of uptake may be (at least partly) because in many cases there is either no compelling economic benefit......, or there is a benefit but it is not recognized. The aim of this chapter is to quantify the economic benefits from the application of agricultural robots under a specific condition where such a benefit is assumed to exist, namely the case of early seeding and re-seeding in sugar beet. With some predefined assumptions...... with regard to speed, capacity and seed mapping, we found that among these two technical systems both early seeding with a small robot and re-seeding using a robot for a smaller part of the field appear to be financially viable solutions in sugar beet production....

  4. Micro intelligence robot

    International Nuclear Information System (INIS)

    Jeon, Yon Ho

    1991-07-01

    This book gives descriptions of micro robot about conception of robots and micro robot, match rules of conference of micro robots, search methods of mazes, and future and prospect of robots. It also explains making and design of 8 beat robot like making technique, software, sensor board circuit, and stepping motor catalog, speedy 3, Mr. Black and Mr. White, making and design of 16 beat robot, such as micro robot artist, Jerry 2 and magic art of shortening distances algorithm of robot simulation.

  5. An Intelligent Robot Programing

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Yong

    2012-01-15

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  6. An Intelligent Robot Programing

    International Nuclear Information System (INIS)

    Hong, Seong Yong

    2012-01-01

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  7. Underwater Multi-Vehicle Trajectory Alignment and Mapping Using Acoustic and Optical Constraints

    Directory of Open Access Journals (Sweden)

    Ricard Campos

    2016-03-01

    Full Text Available Multi-robot formations are an important advance in recent robotic developments, as they allow a group of robots to merge their capacities and perform surveys in a more convenient way. With the aim of keeping the costs and acoustic communications to a minimum, cooperative navigation of multiple underwater vehicles is usually performed at the control level. In order to maintain the desired formation, individual robots just react to simple control directives extracted from range measurements or ultra-short baseline (USBL systems. Thus, the robots are unaware of their global positioning, which presents a problem for the further processing of the collected data. The aim of this paper is two-fold. First, we present a global alignment method to correct the dead reckoning trajectories of multiple vehicles to resemble the paths followed during the mission using the acoustic messages passed between vehicles. Second, we focus on the optical mapping application of these types of formations and extend the optimization framework to allow for multi-vehicle geo-referenced optical 3D mapping using monocular cameras. The inclusion of optical constraints is not performed using the common bundle adjustment techniques, but in a form improving the computational efficiency of the resulting optimization problem and presenting a generic process to fuse optical reconstructions with navigation data. We show the performance of the proposed method on real datasets collected within the Morph EU-FP7 project.

  8. Underwater welding and repair technologies applied in PWR environment

    International Nuclear Information System (INIS)

    Scandella, Fabrice; Carpreau, Jean-Michel

    2012-01-01

    The authors describe several welding processes and technologies which have been used for underwater applications and which can be applied when repairing components of a PWR type reactor. They address, describe and discuss wet arc welding processes, the peculiarities of underwater welding, and the use of various processes such as 111, 114 and 135 processes, underwater welding with the hybrid plasma MIG-MAG process, underwater welding with the laser wire process, underwater welding with the FSW, FSP or UWFSW processes, underwater welding with variants of the friction welding process (friction surfacing, taper stitch welding, hydro-pillar processing

  9. Robotic Technology Efforts at the NASA/Johnson Space Center

    Science.gov (United States)

    Diftler, Ron

    2017-01-01

    The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center’s Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of “dull, dirty or dangerous” tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center’s newest development areas can provide crew with low mass exercise capability and also augment an astronaut’s strength while wearing a space suit.This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center’s Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.

  10. LHC train control system for autonomous inspections and measurements

    OpenAIRE

    Di Castro, Mario; Baiguera Tambutti, Maria Laura; Gilardoni, Simone; Losito, Roberto; Lunghi, Giacomo; Masi, Alessandro

    2018-01-01

    Intelligent robotic systems are becoming essential for inspection and measurements in harsh environments, such as the European Organization for Nuclear Research (CERN) accelerators complex. Aiming at increasing safety and machine availability, robots can help to perform repetitive or dangerous tasks, reducing the risk for the personnel as the exposure to radiation. The Large Hadron Collider (LHC) tunnel at CERN has been equipped with fail-safe trains on monorail able to perform autonomously d...

  11. Multi-robots to micro-surgery: Selected robotic applications at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center

    1996-11-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories is a multi-program organization, pursuing research, development and applications in a wide range of field. Activities range from large-scale applications such as nuclear facility dismantlement for the US Department of Energy (DOE), to aircraft inspection and refurbishment, to automated script and program generation for robotic manufacturing and assembly, to miniature robotic devices and sensors for remote sensing and micro-surgery. This paper describes six activities in the large and small scale that are underway and either nearing technology transfer stage or seeking industrial partners to continue application development. The topics of the applications include multiple arm coordination for intuitively maneuvering large, ungainly work pieces; simulation, analysis and graphical training capability for CP-5 research reactor dismantlement; miniature robots with volumes of 16 cubic centimeters and less developed for inspection and sensor deployment; and biomedical sensors to enhance automated prosthetic device production and fill laparoscopic surgery information gap.

  12. The development of radiation hardened robot for nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Jung, Seung Ho; Kim, Byung Soo and others

    2000-04-01

    The work conducted in this stage covers development of core technology of tele-robot system including monitoring technique in high-level radioactive area, tele-sensing technology and radiation-hardened technology for the non-destructive tele-inspection system which monitors the primary coolant system during the normal operations of PHWR(Pressurized Heavy Water Reactor) NPPs and measures the decrease of bending part of feeder pipe during overall. Based on the developed core technology, the monitoring mobile robot system of the primary coolant system and the feeder pipe inspecting robot system are developed.

  13. The development of radiation hardened robot for nuclear facility

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Jung, Seung Ho; Kim, Byung Soo and others

    2000-04-01

    The work conducted in this stage covers development of core technology of tele-robot system including monitoring technique in high-level radioactive area, tele-sensing technology and radiation-hardened technology for the non-destructive tele-inspection system which monitors the primary coolant system during the normal operations of PHWR(Pressurized Heavy Water Reactor) NPPs and measures the decrease of bending part of feeder pipe during overall. Based on the developed core technology, the monitoring mobile robot system of the primary coolant system and the feeder pipe inspecting robot system are developed

  14. Designs for remote inspection of the ALMR Reactor Vessel Auxiliary Cooling System (RVACS)

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Carroll, D.G.; Chen, C.; Crane, C.; Dalton, R.; Taylor, J.R.; Tosunoglu, S.; Weymouth, T.

    1993-01-01

    One of the most important safety systems in General Electric's (GI) Advanced Liquid Metal Reactor (ALMR) is the Reactor Vessel Auxiliary Cooling System (RVACS). Because of high temperature, radiation, and restricted space conditions, GI desired methods to remotely inspect the RVACS, emissive coatings, and reactor vessel welds during normal refueling operations. The DOE/NE Robotics for Advanced Reactors program formed a team to evaluate the ALMR design for remote inspection of the RVACS. Conceptual designs for robots to perform the required inspection tasks were developed by the team. Design criteria for these remote systems included robot deployment, power supply, navigation, environmental hardening of components, tether management, communication with an operator, sensing, and failure recovery. The operation of the remote inspection concepts were tested using 3-D simulation models of the ALMR. In addition, the team performed an extensive technology review of robot components that could survive the environmental conditions in the RVACS

  15. Human Injury Criteria for Underwater Blasts.

    Directory of Open Access Journals (Sweden)

    Rachel M Lance

    Full Text Available Underwater blasts propagate further and injure more readily than equivalent air blasts. Development of effective personal protection and countermeasures, however, requires knowledge of the currently unknown human tolerance to underwater blast. Current guidelines for prevention of underwater blast injury are not based on any organized injury risk assessment, human data or experimental data. The goal of this study was to derive injury risk assessments for underwater blast using well-characterized human underwater blast exposures in the open literature. The human injury dataset was compiled using 34 case reports on underwater blast exposure to 475 personnel, dating as early as 1916. Using severity ratings, computational reconstructions of the blasts, and survival information from a final set of 262 human exposures, injury risk models were developed for both injury severity and risk of fatality as functions of blast impulse and blast peak overpressure. Based on these human data, we found that the 50% risk of fatality from underwater blast occurred at 302±16 kPa-ms impulse. Conservatively, there is a 20% risk of pulmonary injury at a kilometer from a 20 kg charge. From a clinical point of view, this new injury risk model emphasizes the large distances possible for potential pulmonary and gut injuries in water compared with air. This risk value is the first impulse-based fatality risk calculated from human data. The large-scale inconsistency between the blast exposures in the case reports and the guidelines available in the literature prior to this study further underscored the need for this new guideline derived from the unique dataset of actual injuries in this study.

  16. Underwater-manipulation system for measuring- and cutting tasks in dismantling decommissioned nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Stegemann, D.; Reimche, W.; Hansch, M.; Spitzer, M.

    1995-01-01

    Not only manipulators are necessary for dismantling and inspection of structure parts in decomissioned nuclear facilities, but flexible underwater-vehicles. Free-diving underwater-vehicles for inspection and dismantling tasks are still not developed and tested. Aim of the project is the development of sensors and devices for the position determination and the depth regulation. For inspection tasks an ultrasonic measurement and dosimeter device shall be built up. A measurement device has been developed which evaluates the ultrasonic time of flight from a transmitter at the vehicle to several receivers, installed in the reactor pressure vessel. The depth regulation is based on a pressure sensor and the direct control of the thrusters. The ultrasonic measurements are realized by an adapted ultrasonic card, the γ-dosimetry with an ionization chamber and a pA-amplifier. An acoustic orientation system was built up, which measures very accurately with one transmitter mounted on the vehicle and four receivers. Problem occur by reflection from the walls of the basin. The depth regulation is working faultless. The ultrasonic device is preferably used for distance measurement. The radiation measurement device was tested and mounted in the vehicle. (orig./HP) [de

  17. Approaches to probabilistic model learning for mobile manipulation robots

    CERN Document Server

    Sturm, Jürgen

    2013-01-01

    Mobile manipulation robots are envisioned to provide many useful services both in domestic environments as well as in the industrial context. Examples include domestic service robots that implement large parts of the housework, and versatile industrial assistants that provide automation, transportation, inspection, and monitoring services. The challenge in these applications is that the robots have to function under changing, real-world conditions, be able to deal with considerable amounts of noise and uncertainty, and operate without the supervision of an expert. This book presents novel learning techniques that enable mobile manipulation robots, i.e., mobile platforms with one or more robotic manipulators, to autonomously adapt to new or changing situations. The approaches presented in this book cover the following topics: (1) learning the robot's kinematic structure and properties using actuation and visual feedback, (2) learning about articulated objects in the environment in which the robot is operating,...

  18. Wireless Communication Enhancement Methods for Mobile Robots in Radiation Environments

    CERN Document Server

    Nattanmai Parasuraman, Ramviyas; Ferre, Manuel

    In hostile environments such as in scientific facilities where ionising radiation is a dominant hazard, reducing human interventions by increasing robotic operations are desirable. CERN, the European Organization for Nuclear Research, has around 50 km of underground scientific facilities, where wireless mobile robots could help in the operation of the accelerator complex, e.g. in conducting remote inspections and radiation surveys in different areas. The main challenges to be considered here are not only that the robots should be able to go over long distances and operate for relatively long periods, but also the underground tunnel environment, the possible presence of electromagnetic fields, radiation effects, and the fact that the robots shall in no way interrupt the operation of the accelerators. Having a reliable and robust wireless communication system is essential for successful execution of such robotic missions and to avoid situations of manual recovery of the robots in the event that the robot runs ...

  19. Liveness-Based RRT Algorithm for Autonomous Underwater Vehicles Motion Planning

    Directory of Open Access Journals (Sweden)

    Yang Li

    2017-01-01

    Full Text Available Motion planning is a crucial, basic issue in robotics, which aims at driving vehicles or robots towards to a given destination with various constraints, such as obstacles and limited resource. This paper presents a new version of rapidly exploring random trees (RRT, that is, liveness-based RRT (Li-RRT, to address autonomous underwater vehicles (AUVs motion problem. Different from typical RRT, we define an index of each node in the random searching tree, called “liveness” in this paper, to describe the potential effectiveness during the expanding process. We show that Li-RRT is provably probabilistic completeness as original RRT. In addition, the expected time of returning a valid path with Li-RRT is obviously reduced. To verify the efficiency of our algorithm, numerical experiments are carried out in this paper.

  20. High–Level Control System for Biomimetic Autonomous Under-water Vehicle

    Directory of Open Access Journals (Sweden)

    Praczyk Tomasz

    2017-01-01

    Full Text Available Usually, a rough software architecture designed for a robot can be can be shortly presented in the form of layers. The lowest layer is responsible for direct control of the hardware, i.e. engines, energy system, sensors, navigation devices, etc. A next layer is a low–level control which knows how to use the hardware in order to achieve a desired state of the robot, e.g. to stay on a desired course. And the last layer, the layer which is the nearest to the human–operator, is a high–level control which decides how to use the low–level control and sometimes also individual pieces of the hardware to achieve predefined objectives. The paper describes architecture, tasks and operation of the high–level control system (HLCS designed for Biomimetic Autonomous Underwater Vehicle (BAUV.