WorldWideScience

Sample records for understory vegetation response

  1. Long-Term Responses of Understory Vegetation on a Highly Erosive Louisiana Soil to Fertilization

    Science.gov (United States)

    James D. Haywood; Ronald E. Thill

    1995-01-01

    Responses of vegetation on highly eroded Kisatchie soils to a broadcast application of 600 lb/acre of 16-30-l 3 granular fertilizer were monitored for 12 years. Understory woody and herbaceous vegetation responded to fertilization immediately, and thus the soil surface was protected from erosion sooner in the fertilized area than in the two unfertilized areas. After 1...

  2. Understory vegetation response after 30 years of interval prescribed burning in two ponderosa pine sites in northern Arizona, USA

    Science.gov (United States)

    Catherine A. Scudieri; Carolyn Hull Sieg; Sally M. Haase; Andrea E. Thode; Stephen S. Sackett

    2010-01-01

    Southwestern USA ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.) forests evolved with frequent surface fires and have changed dramatically over the last century. Overstory tree density has sharply increased while abundance of understory vegetation has declined primarily due to the near cessation of fires. We...

  3. Role of burning season on initial understory vegetation response to prescribed fire in a mixed conifer forest

    Science.gov (United States)

    Knapp, E.E.; Schwilk, D.W.; Kane, J.M.; Keeley, J.E.

    2007-01-01

    Although the majority of fires in the western United States historically occurred during the late summer or early fall when fuels were dry and plants were dormant or nearly so, early-season prescribed burns are often ignited when fuels are still moist and plants are actively growing. The purpose of this study was to determine if burn season influences postfire vegetation recovery. Replicated early-season burn, late-season burn, and unburned control units were established in a mixed conifer forest, and understory vegetation was evaluated before and after treatment. Vegetation generally recovered rapidly after prescribed burning. However, late-season burns resulted in a temporary but significant drop in cover and a decline in species richness at the 1 m 2 scale in the following year. For two of the several taxa that were negatively affected by burning, the reduction in frequency was greater after late-season than early-season burns. Early-season burns may have moderated the effect of fire by consuming less fuel and lessening the amount of soil heating. Our results suggest that, when burned under high fuel loading conditions, many plant species respond more strongly to differences in fire intensity and severity than to timing of the burn relative to stage of plant growth. ?? 2007 NRC.

  4. Estimating aboveground live understory vegetation carbon in the United States

    Science.gov (United States)

    Johnson, Kristofer D.; Domke, Grant M.; Russell, Matthew B.; Walters, Brian; Hom, John; Peduzzi, Alicia; Birdsey, Richard; Dolan, Katelyn; Huang, Wenli

    2017-12-01

    Despite the key role that understory vegetation plays in ecosystems and the terrestrial carbon cycle, it is often overlooked and has few quantitative measurements, especially at national scales. To understand the contribution of understory carbon to the United States (US) carbon budget, we developed an approach that relies on field measurements of understory vegetation cover and height on US Department of Agriculture Forest Service, Forest Inventory and Analysis (FIA) subplots. Allometric models were developed to estimate aboveground understory carbon. A spatial model based on stand characteristics and remotely sensed data was also applied to estimate understory carbon on all FIA plots. We found that most understory carbon was comprised of woody shrub species (64%), followed by nonwoody forbs and graminoid species (35%) and seedlings (1%). The largest estimates were found in temperate or warm humid locations such as the Pacific Northwest and southeastern US, thus following the same broad trend as aboveground tree biomass. The average understory aboveground carbon density was estimated to be 0.977 Mg ha-1, for a total estimate of 272 Tg carbon across all managed forest land in the US (approximately 2% of the total aboveground live tree carbon pool). This estimate is more than twice as low as previous FIA modeled estimates that did not rely on understory measurements, suggesting that this pool may currently be overestimated in US National Greenhouse Gas reporting.

  5. Discerning responses of down wood and understory vegetation abundance to riparian buffer width and thinning treatments: an equivalence-inequivalence approach

    Science.gov (United States)

    Paul D. Anderson; Mark A. Meleason

    2009-01-01

    We investigated buffer width and thinning effects on the abundance of down wood and understory vegetation in headwater stream catchments of 40- to 65-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests in western Oregon, USA. Small-wood cover became more homogeneous among stream reaches within 5 years following thinning, primarily...

  6. Post-fire logging produces minimal persistent impacts on understory vegetation in northeastern Oregon, USA

    Science.gov (United States)

    David W. Peterson; Erich Dodson

    2016-01-01

    Post-fire forest management commonly requires accepting some negative ecological impacts from management activities in order to achieve management objectives. Managers need to know, however, whether ecological impacts from post-fire management activities are transient or cause long-term ecosystem degradation. We studied the long-term response of understory vegetation...

  7. Understory vegetation data quality assessment for the Interior West Forest and Inventory Analysis program

    Science.gov (United States)

    Paul L. Patterson; Renee A. O' Brien

    2011-01-01

    The Interior West Forest Inventory and Analysis (IW-FIA) program of the USDA Forest Service collects field data on understory vegetation structure that have broad applications. In IW-FIA one aspect of quality assurance is assessed based on the repeatability of field measurements. The understory vegetation protocol consists of two suites of measurements; (1) the...

  8. Contributions of understory and/or overstory vegetations to soil microbial PLFA and nematode diversities in Eucalyptus monocultures.

    Science.gov (United States)

    Zhao, Jie; Wan, Songze; Zhang, Chenlu; Liu, Zhanfeng; Zhou, Lixia; Fu, Shenglei

    2014-01-01

    Ecological interactions between aboveground and belowground biodiversity have received many attentions in the recent decades. Although soil biodiversity declined with the decrease of plant diversity, many previous studies found plant species identities were more important than plant diversity in controlling soil biodiversity. This study focused on the responses of soil biodiversity to the altering of plant functional groups, namely overstory and understory vegetations, rather than plant diversity gradient. We conducted an experiment by removing overstory and/or understory vegetation to compare their effects on soil microbial phospholipid fatty acid (PLFA) and nematode diversities in eucalyptus monocultures. Our results indicated that both overstory and understory vegetations could affect soil microbial PLFA and nematode diversities, which manifested as the decrease in Shannon-Wiener diversity index (H') and Pielou evenness index (J) and the increase in Simpson dominance index (λ) after vegetation removal. Soil microclimate change explained part of variance of soil biodiversity indices. Both overstory and understory vegetations positively correlated with soil microbial PLFA and nematode diversities. In addition, the alteration of soil biodiversity might be due to a mixing effect of bottom-up control and soil microclimate change after vegetation removal in the studied plantations. Given the studied ecosystem is common in humid subtropical and tropical region of the world, our findings might have great potential to extrapolate to large scales and could be conducive to ecosystem management and service.

  9. Contributions of understory and/or overstory vegetations to soil microbial PLFA and nematode diversities in Eucalyptus monocultures.

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    Full Text Available Ecological interactions between aboveground and belowground biodiversity have received many attentions in the recent decades. Although soil biodiversity declined with the decrease of plant diversity, many previous studies found plant species identities were more important than plant diversity in controlling soil biodiversity. This study focused on the responses of soil biodiversity to the altering of plant functional groups, namely overstory and understory vegetations, rather than plant diversity gradient. We conducted an experiment by removing overstory and/or understory vegetation to compare their effects on soil microbial phospholipid fatty acid (PLFA and nematode diversities in eucalyptus monocultures. Our results indicated that both overstory and understory vegetations could affect soil microbial PLFA and nematode diversities, which manifested as the decrease in Shannon-Wiener diversity index (H' and Pielou evenness index (J and the increase in Simpson dominance index (λ after vegetation removal. Soil microclimate change explained part of variance of soil biodiversity indices. Both overstory and understory vegetations positively correlated with soil microbial PLFA and nematode diversities. In addition, the alteration of soil biodiversity might be due to a mixing effect of bottom-up control and soil microclimate change after vegetation removal in the studied plantations. Given the studied ecosystem is common in humid subtropical and tropical region of the world, our findings might have great potential to extrapolate to large scales and could be conducive to ecosystem management and service.

  10. Evapotranspiration from understory vegetation in an eastern Siberian boreal larch forest, Agricultural and Forest Meteorology

    NARCIS (Netherlands)

    Iida, S.; Ohta, T.; Matsumoto, K.; Nakai, T.; Kuwada, T.; Konovov, A.V.; Maximov, T.C.; van der Molen, M.K.; Dolman, A.J.; Tanaka, H.; Yabuki, H.

    2009-01-01

    We measured evapotranspiration in an eastern Siberian boreal forest, in which the understory was cowberry and the overstory was larch, during the entire growing seasons of 2005 and 2006. We compared evapotranspiration from the understory vegetation above the forest floor E

  11. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation.

    Science.gov (United States)

    Fu, Xiaoli; Yang, Fengting; Wang, Jianlei; Di, Yuebao; Dai, Xiaoqin; Zhang, Xinyu; Wang, Huimin

    2015-01-01

    Experiments with potted plants and removed understories have indicated that understory vegetation often affects the chemical and microbial properties of soil. In this study, we examined the mechanism and extent of the influence of understory vegetation on the chemical and microbial properties of soil in plantation forests. The relationships between the vegetational structure (diversity for different functional layers, aboveground biomass of understory vegetation, and species number) and soil properties (pH, microbial community structure, and levels of soil organic carbon, total nitrogen, and inorganic nitrogen) were analyzed across six reforestation types (three pure needleleaf forests, a needle-broadleaf mixed forest, a broadleaf forest, and a shrubland). Twenty-seven years after reforestation, soil pH significantly decreased by an average of 0.95 across reforestation types. Soil pH was positively correlated with the aboveground biomass of the understory. The levels of total, bacterial, and fungal phospholipid fatty acids, and the fungal:bacterial ratios were similar in the shrubland and the broadleaf forest. Both the aboveground biomass of the understory and the diversity of the tree layer positively influenced the fungal:bacterial ratio. Improving the aboveground biomass of the understory could alleviate soil acidification. An increase in the aboveground biomass of the understory, rather than in understory diversity, enhanced the functional traits of the soil microbial communities. The replacement of pure plantations with mixed-species stands, as well as the enhancement of understory recruitment, can improve the ecological functions of a plantation, as measured by the alleviation of soil acidification and increased fungal dominance. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations.

    Science.gov (United States)

    Pan, Ping; Zhao, Fang; Ning, Jinkui; Zhang, Ling; Ouyang, Xunzhi; Zang, Hao

    2018-01-01

    Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality.

  13. Little response of true fir saplings to understory shrub removal

    Science.gov (United States)

    William W. Oliver; Fabian C.C. Uzoh

    2002-01-01

    The ability of white fir and California red fir to become established, persist, and eventually dominate montane shrub fields is well known. When the firs have eventually dominated do the understory shrubs continue to inhibit growth? In a small study in the southern Cascade Range of northeastern California, we tested the growth response of a thinned stand of saplings to...

  14. Understory vegetation and site factors : implications for a managed Wisconsin landscape

    Science.gov (United States)

    K.D. Brosofske; J. Chen; Thomas R. Crow

    2001-01-01

    We investigated relationships between edaphic and environmental factors (soil, forest floor, topography, and canopy) and understory vegetation (composition, richness, and Shannon-Wiener diversity index, H')among 77 plots representing seven major patch types comprising a landscape in northern Wisconsin that has a long history of human management. Sampled patch...

  15. Carbon and energy fluxes of the understory vegetation of the black spruce ecosystem in interior Alaska

    Science.gov (United States)

    Ikawa, H.; Nakai, T.; Kim, Y.; Busey, R.; Suzuki, R.; Hinzman, L. D.

    2013-12-01

    Underlain by permafrost, understory vegetation in the boreal forest of the high northern latitudes is likely sensitive to climate change. This study investigated the contribution of the understory vegetation of the black spruce forest (Picea mariana) to net ecosystem exchange (NEE) and vertical energy fluxes at the supersite (65deg 07' 24' N, 147deg 29' 15' W) of the JAMSTEC-IARC Collaboration Study (JICS) located within the property of the Poker Flat Research Range of the University of Alaska Fairbanks in interior Alaska [Sugiura et al., 2011; Nakai et al., 2013]. The understory is dominated by a 0 - 20 cm thick layer of peat moss (Sphagnum fuscum) and feather moss (Hylocomium splendens). Eddy covariance measurements were made at 11 m over the canopy and 1.9 m above the ground in summer 2013. The measurement shows that the peak sink of CO2 from understory during the day typically accounted for 80% of the total NEE of (~ 3 μmol m-2s-1) observed over the canopy. Sensible heat flux was nearly identical between the two heights and latent heat flux observed at 1.9m was slightly higher than that observed at 11m. Higher latent heat flux from understory than the total latent heat flux over the canopy is most likely due to the difference in the footprint of the two measurements, and it is necessary to further evaluate the spatial representativeness of the understory fluxes. Nonetheless, these high flux values from the understory suggest an importance of the understory vegetation in evaluating ecosystem flux of the black spruce forest. Acknowledgement This study is funded by the Japan Aerospace Exploration Agency (JAXA) and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) References Nakai, T., Y. Kim, R. C. Busey, R. Suzuki, S. Nagai, H. Kobayashi, H. Park, K. Sugiura, and A. Ito (2013), Characteristics of evapotranspiration from a permafrost black spruce forest in interior Alaska, Polar Science, 7(2), 136-148, doi:10.1016/j.polar.2013.03.003. Sugiura, K

  16. Multi-scale spatial controls of understory vegetation in Douglas-fir–western hemlock forests of western Oregon, USA

    Science.gov (United States)

    Julia I. Burton; Lisa M. Ganio; Klaus J. Puettmann

    2014-01-01

    Forest understory vegetation is influenced by broad-scale variation in climate, intermediate scale variation in topography, disturbance and neighborhood interactions. However, little is known about how these multi-scale controls interact to influence observed spatial patterns. We examined relationships between the aggregated cover of understory plant species (%...

  17. Influence of microtopography on soil chemistry and understory riparian vegetation

    Science.gov (United States)

    Irene M. Unger; Rose-Marie Muzika

    2008-01-01

    The success of riparian forest restoration efforts depends in part on an understanding of the relationship between soil characteristics and vegetation patterns and how these change with site conditions. To examine these relationships for floodplains in northern Missouri, we chose three unchannelized streams as study areas. A sampling grid was established at two plots...

  18. Classification and ordination of understory vegetation using multivariate techniques in the Pinus wallichiana forests of Swat Valley, northern Pakistan

    Science.gov (United States)

    Rahman, Inayat Ur; Khan, Nasrullah; Ali, Kishwar

    2017-04-01

    An understory vegetation survey of the Pinus wallichiana-dominated temperate forests of Swat District was carried out to inspect the structure, composition and ecological associations of the forest vegetation. A quadrat method of sampling was used to record the floristic and phytosociological data necessary for the analysis using 300 quadrats of 10 × 10 m each. Some vegetation parameters viz. frequency and density for trees (overstory vegetation) as well as for the understory vegetation were recorded. The results revealed that in total, 92 species belonging to 77 different genera and 45 families existed in the area. The largest families were Asteraceae, Rosaceae and Lamiaceae with 12, ten and nine species, respectively. Ward's agglomerative cluster analysis for tree species resulted in three floristically and ecologically distinct community types along different topographic and soil variables. Importance value indices (IVI) were also calculated for understory vegetation and were subjected to ordination techniques, i.e. canonical correspondence analysis (CCA) and detrended correspondence analysis (DCA). DCA bi-plots for stands show that most of the stands were scattered around the centre of the DCA bi-plot, identified by two slightly scattered clusters. DCA for species bi-plot clearly identified three clusters of species revealing three types of understory communities in the study area. Results of the CCA were somewhat different from the DCA showing the impact of environmental variables on the understory species. CCA results reveal that three environmental variables, i.e. altitude, slope and P (mg/kg), have a strong influence on distribution of stands and species. Impact of tree species on the understory vegetation was also tested by CCA which showed that four tree species, i.e. P. wallichiana A.B. Jackson, Juglans regia Linn., Quercus dilatata Lindl. ex Royle and Cedrus deodara (Roxb. ex Lamb.) G. Don, have strong influences on associated understory vegetation. It

  19. Responses of a Federally Endangered Songbird to Understory Thinning in Oak-Juniper Woodlands

    Science.gov (United States)

    Long, Ashley M.; Marshall, Mike E.; Morrison, Michael L.; Hays, K. Brian; Farrell, Shannon L.

    2017-04-01

    Wildlife conservation and management on military lands must be accomplished in the context of military readiness, which often includes ground-based training that is perceived to conflict with wildlife needs and environmental regulations. From 2008‒2012, we examined territory density, pairing success, and fledging success of the federally endangered golden-cheeked warbler ( Setophaga chrysoparia; hereafter warbler) in relation to removal of small-diameter trees from the understory of mature oak-juniper ( Quercus-Juniperus) woodland at the 87,890 ha Fort Hood Military Reservation in central Texas. Understory thinning created troop maneuver lanes, but left canopy vegetation intact. Warbler density, pairing success, and fledging success were similar across thinned and control sites. We found that warbler pairing and fledging success were best predicted by Ecological site (hereafter Ecosite), an indicator of hardwood tree species composition. Warbler pairing and fledging success were about 1.5 and 1.6 times higher, respectively, for territories dominated by the Low Stony Hill Ecosite than territories dominated by the Redlands Ecosite. Our results indicate that understory thinning for military training purposes did not have a negative effect on warblers at Fort Hood in the manner tested, and suggest that removal of smaller trees from the understory in a way that replicates historic conditions may elicit neutral responses from this forest-dependent songbird. Quantifying wildlife responses to military activities provides the Department of Defense and US Fish and Wildlife Service with data to guide conservation of threatened and endangered species on Department of Defense facilities while maintaining the military mission, and supports wildlife management efforts on other public and private lands.

  20. Influence of precommercial thinning and herbicides on understory vegetation of young-growth Sitka spruce forest in southeastern Alaska

    Science.gov (United States)

    Elizabeth C. Cole; Thomas A. Hanley; Michael Newton

    2010-01-01

    The effects of precommercial thinning on the understory vegetative cover of 16- to 18-year-old spruce-hemlock (Picea sitchensis (Bong.) Carriere--Tsuga heterophylla (Raf.) Sarg.) stands were studied in seven replicate areas over seven growing seasons postthinning. Vegetative cover was analyzed at the class level, but species-...

  1. Remote sensing of temperate coniferous forest lead area index - The influence of canopy closure, understory vegetation and background reflectance

    Science.gov (United States)

    Spanner, Michael A.; Pierce, Lars L.; Running, Steven W.; Peterson, David L.

    1990-01-01

    Consideration is given to the effects of canopy closure, understory vegetation, and background reflectance on the relationship between Landsat TM data and the leaf area index (LAI) of temperate coniferous forests in the western U.S. A methodology for correcting TM data for atmospheric conditions and sun-surface-sensor geometry is discussed. Strong inverse curvilinear relationships were found between coniferous forest LAI and TM bands 3 and 5. It is suggested that these inverse relationships are due to increased reflectance of understory vegetation and background in open stands of lower LAI and decreased reflectance of the overstory in closed canopy stands with higher LAI.

  2. Understory Vegetation 3 Years after Implementing Uneven-Aged Silviculture in a Shortleaf Pine-Oak Stand

    Science.gov (United States)

    Michael G. Shelton; Paul A. Murphy

    1997-01-01

    The effects of retaining overstory hardwoods on understory vegetation were determined after implementing uneven-aged silviculture usingsingle-tree selection in a shortleaf pine-oak stand (Pinus echinata Mill. and Quercus spp.) in the Ouachita Mountains. Treatments were the following hardwood basal areas (square feet per acre) and...

  3. Waste heaps left by historical Zn-Pb ore mining are hotspots of species diversity of beech forest understory vegetation.

    Science.gov (United States)

    Woch, Marcin W; Stefanowicz, Anna M; Stanek, Małgorzata

    2017-12-01

    Metalliferous mining and smelting industries are associated with very high levels of heavy metal(loid) contamination of the environment. Heavy metals have been proved to significantly influence the species diversity and composition of grassland communities, but little is known on their effects on forest understory vegetation. Therefore, the aim of this study was to investigate the effects of the presence of small heaps of waste rock left by historical Zn-Pb ore mining on understory vegetation. The heaps are scattered over vast areas of beech forests in southern Poland. Three types of study plots were established: (1) on waste heaps themselves, (2) in their vicinity (5-10m from the foot of the heaps, with no waste rock but potentially influenced by the heaps through drainage water), and (3) at least 100m from the foot of the heaps (pseudo-control). In all plots vegetation parameters, i.e., plant species number, cover and community composition, life forms and strategies, as well as basic soil properties were assessed. Although the heaps contained high concentrations of metals, namely Cd, Pb and Zn, they were characterised by higher cover and diversity of understory vegetation, including ancient forest and endangered species, in comparison to their surroundings. They were also characterised by the distinct species composition of their plant communities. This might have resulted from the beneficial influence of high pH and Ca content originating from waste rock composed of dolomite and calcite, as well as from increased habitat heterogeneity, e.g. soil skeleton and steeper slopes. Another important factor influencing the richness and composition of understory was tree cover, which relates to the light transmissibility of the canopy. Our study proved that the disturbance brought about by the former mining and processing of metal ores led to the formation of species-rich understory with high frequency and cover of naturally-valuable species. Copyright © 2017 Elsevier B

  4. Prescribed burning and clear-cutting effects on understory vegetation in a Pinus canariensis stand (Gran Canaria).

    Science.gov (United States)

    Arévalo, José Ramón; Fernández-Lugo, Silvia; García-Domínguez, Celia; Naranjo-Cigala, Agustín; Grillo, Federico; Calvo, Leonor

    2014-01-01

    Prescribed fires are a powerful tool for reducing fire hazards by decreasing amounts of fuel. The main objective is to analyze the effects of prescribed burning on the understory vegetation composition as well as on the soil characteristics of a reforested stand of Pinus canariensis. The study attempts to identify the effects of the preburning treatment of cutting understory vegetation on the floristic parameters of the vegetation community. This study was carried out for two years following a prescribed fire in a Canarian pine stand. Cutting and burning treatment affected species composition and increased diversity. Burnt and cut plots were characterized by a diverse array of herbaceous species and by a lower abundance of Teline microphylla (endemic legume), although burning apparently induced its germination. Cut treatment was more consistently differentiated from the control plots than burnt treatment. Soil K decreased after both treatments, pH slightly decreased after cutting, while P and Ca increased after fire. From an ecological point of view, prescribed burning is a better management practice than cutting the woody species of the understory. However, long-term studies would be necessary to evaluate the effects of fire intensity, season and frequency in which the prescribed burning is applied.

  5. Prescribed Burning and Clear-Cutting Effects on Understory Vegetation in a Pinus canariensis Stand (Gran Canaria

    Directory of Open Access Journals (Sweden)

    José Ramón Arévalo

    2014-01-01

    Full Text Available Prescribed fires are a powerful tool for reducing fire hazards by decreasing amounts of fuel. The main objective is to analyze the effects of prescribed burning on the understory vegetation composition as well as on the soil characteristics of a reforested stand of Pinus canariensis. The study attempts to identify the effects of the preburning treatment of cutting understory vegetation on the floristic parameters of the vegetation community. This study was carried out for two years following a prescribed fire in a Canarian pine stand. Cutting and burning treatment affected species composition and increased diversity. Burnt and cut plots were characterized by a diverse array of herbaceous species and by a lower abundance of Teline microphylla (endemic legume, although burning apparently induced its germination. Cut treatment was more consistently differentiated from the control plots than burnt treatment. Soil K decreased after both treatments, pH slightly decreased after cutting, while P and Ca increased after fire. From an ecological point of view, prescribed burning is a better management practice than cutting the woody species of the understory. However, long-term studies would be necessary to evaluate the effects of fire intensity, season and frequency in which the prescribed burning is applied.

  6. Understory vegetation as a useful predictor of natural regeneration and canopy dynamics in Pinus sylvestris forests in Italy

    Science.gov (United States)

    Bucci, Gabriele; Borghetti, Marco

    The relations between understory vegetation, canopy characteristics and natural regeneration have been studied in natural Scots pine forests growing in sub-Mediterranean conditions in Italy. Multivariate ordination techniques (detrended correspondence analysis, DCA, and detrended canonical correspondence analysis, DCCA) have been applied to extract vegetation gradients. The first four DCA axes accounted for 41% of the total variation in vegetation data and DCA ordination patterns have been interpreted by the variability of forest stands, ranging from pioneer pine communities to closed pine stands mixed with hardwood species. Characteristic indicator values (CIVs), computed by understory species abundance using the ELLENBERG'S species scores, have been tentatively used as estimators of environmental variability. Relating vegetation gradients extracted by DCA to CIVs allowed further interpretation of the multivariate ordination patterns. Geographic and edaphic factors had only a minor effect on plant communities in the present study. The competition exerted in mixed stands by hardwood species seems to be the main limiting factor for Scots pine recruitment in the study area. Multivariate synthetic variable and CIVs were found to predict a large proportion of variation in Scots pine recruitment. The application of CIVs for predicting ecological meaningful conditions and their use as a tool for management decisions is discussed.

  7. Fuels planning: science synthesis and integration; environmental consequences fact sheet 10: The Understory Response Model

    Science.gov (United States)

    Steve Sutherland; Melanie Miller

    2005-01-01

    The Understory Response Model is a species-specific computer model that qualitatively predicts change in total species biomass for grasses, forbs, and shrubs after thinning, prescribed fire, or wildfire. The model examines the effect of fuels management on plant survivorship and reproduction. This fact sheet identifies the intended users and uses, required inputs, what...

  8. Development of understory tree vegetation after thinning naturally occurring shortleaf pine forests

    Science.gov (United States)

    K.C. Anup; Thomas B. Lynch; Douglas Stevenson; Duncan Wilson; James M. Guldin; Bob Heinemann; Randy Holeman; Dennis Wilson; Keith Anderson

    2015-01-01

    During the 25 years since establishment of more than 200 growth study plots in even-aged, naturally regenerated shortleaf pine (Pinus echinata Mill.) forests, there has been considerable development of hardwood understory trees, shrubs, and some shortleaf pine regeneration. During the period from 1985-1987, even-aged shortleaf pine growth-study...

  9. Variation in Vegetation Structure and Soil Properties, and the Relation Between Understory Plants and Environmental Variables Under Different Phyllostachys pubescens Forests in Southeastern China

    Science.gov (United States)

    Zhang, Changshun; Xie, Gaodi; Fan, Shaohui; Zhen, Lin

    2010-04-01

    Biodiversity maintenance and soil improvement are key sustainable forestry objectives. Research on the effects of bamboo forest management on plant diversity and soil properties are therefore necessary in bamboo-growing regions, such as southeastern China’s Shunchang County, that have not been studied from this perspective. We analyzed the effects of different Phyllostachys pubescens proportions in managed forests on vegetation structure and soil properties using pure Cunninghamia lanceolata forests as a contrast, and analyzed the relation between understory plants and environmental variables (i.e., topography, stand and soil characteristics) by canonical correspondence analysis (CCA). The forest with 80% P. pubescens and 20% hardwoods (such as Phoebe bournei, Jatropha curcas, Schima superba) maintained the highest plant diversity and best soil properties, with significantly higher plant diversity than the C. lanceolata forest, and better soil physicochemical and biological properties. The distribution of understory plants is highly related to environmental factors. Silvicultural disturbance strongly influenced the ability of different bamboo forests to maintain biodiversity and soil quality under extensive management, and the forest responses to management were consistent with the intermediate-disturbance hypothesis (i.e., diversity and soil properties were best at intermediate disturbance levels). Our results suggest that biodiversity maintenance and soil improvement are important management goals for sustainable bamboo management. To achieve those objectives, managers should balance the inputs and outputs of nutrients and protect understory plants by using appropriate fertilizer (e.g., organic fertilizer), adjusting stand structure, modifying utilization model and the harvest time, and controlling the intensity of culms and shoots harvests.

  10. Stable isotope-based approach to validate effects of understory vegetation on shallow soil water movement in a Japanese cypress plantation

    Science.gov (United States)

    Sakashita, W.; Onda, Y.; Boutefnouchet, M. R.; Kato, H.; Gomi, T.

    2017-12-01

    Evapotranspiration is an important controlling factor of the hydrological cycle in forested watershed. In general, the evapotranspiration is partitioned into three components (evaporation, transpiration, and interception). In a Japanese cypress plantation, our previous work using hydrometric method revealed that total evapotranspiration rate was 47.5% of the total rainfall amount during the growing season. This research also provided the contribution rates of three evapotranspiration components. Our previous study reported the difference of forest floor evaporation between pre-thinning and post-thinning periods (pre-thinning: Nov 2010-Oct 2011; post-thinning: Nov 2011-Oct 2012), indicating that a significant change appeared in the evaporation flux after the thinning. To examine the long-term changes of evapotranspiration, we have to consider the influence of increased understory vegetation. However, hydrometric-based method using such as weighting lysimeter is sensitive to vegetation conditions inside and outside lysimeter. This disadvantage makes it difficult to evaluate the contribution rates of each evapotranspiration components. In this study, we focus on the isotope-based method to obtain each flux of evapotranspiration under the condition including understory vegetation. Our study site is Mt. Karasawa, Tochigi Prefecture, in central Japan (139°36'E, 36°22'N; 198 m a.s.l.), and we prepare both sparse and dense areas of understory vegetation. In these two plots, we collect soil water samples from shallow depth profiles after various intensity precipitation events. Throughfall and understory-intercepted water are also obtained. Stable water isotope measurements of these samples may provide information about (a) effects of understory vegetation on shallow soil water movement and (b) interception flux of understory vegetation. In this paper, we report the results and interpretations of our measurements.

  11. Short-term effects of spring prescribed burning on the understory vegetation of a Pinushalepensis forest in Northeastern Spain.

    Science.gov (United States)

    Fuentes, Laura; Duguy, Beatriz; Nadal-Sala, Daniel

    2018-01-01

    Since the 1970s, fire regimes have been modified in the Northern Mediterranean region due to profound landscape changes mostly driven by socioeconomic factors, such as rural abandonment and large-scale plantations. Both fuel accumulation and the increasing vegetation spatial continuity, combined with the expansion of the wildland-urban interface, have enhanced fire risk and the occurrence of large wildfires. This situation will likely worsen under the projected aridity increase resulting from climate change. Higher fire recurrences, in particular, are expected to cause changes in vegetation composition or structure and affect ecosystems' resilience to fire, which may lead to further land degradation. Prescribed burning is a common fuel reduction technique used for fire prevention, but for conservation and restoration purposes as well. It is still poorly accepted in the Mediterranean region since constrained by critical knowledge gaps about, in particular, its effects on the ecosystems (soil, vegetation). We studied the short-term (10months) effects on the understory vegetation of a spring prescribed burning conducted in a Pinushalepensis forest in Mediterranean climate (Northeastern Spain). Our results show that the understory plant community recovered after the burning without short term significant changes in either species richness, diversity, or floristic composition. Most vegetation structural characteristics were modified though. The burning strongly reduced shrub height, shrub and herbaceous percentage covers, and aerial shrub phytomass; especially its living fine fraction, thus resulting in a less flammable community. The treatment proved to be particularly effective for the short term control of Ulexparviflorus, a highly flammable seeder species. Moreover, the strong reduction of seeder shrubs frequency in relation to resprouters' likely promoted the resilience to fire of this plant community. From a fuel-oriented perspective, the burning caused a strong

  12. Impact of herbaceous understory vegetation to ecosystem water cycle, productivity and infiltration in a semi arid oak woodland assessed by stable oxygen isotopes

    Science.gov (United States)

    Dubbert, Maren; Piayda, Arndt; Silva, Filipe Costa e.; Correia, Alexandra C.; Pereira, Joao S.; Cuntz, Matthias; Werner, Christiane

    2015-04-01

    Water is one of the key factors driving ecosystem productivity, especially in water-limited ecosystems. Thus a separation of these component fluxes is needed to gain a functional understanding on the development of net ecosystem water and carbon fluxes. Oxygen isotope signatures are valuable tracers for such water movements within the ecosystem because of the distinct isotopic compositions of water in the soil and vegetation. Here, a novel approach was used (Dubbert et al., 2013), combining a custom build flow-through gas-exchange branch chamber with a Cavity Ring-Down Spectrometer in a Mediterranean cork-oak woodland where two vegetation layers respond differently to drought: oak-trees (Quercus suber L.) avoid drought due to their access to ground water while herbaceous plants survive the summer as seeds. We used this approach to quantify the impact of the understory herbaceous vegetation on ecosystem carbon and water fluxes throughout the year and disentangle how ET components of the ecosystem relate to carbon dioxide exchange. Partitioning ecosystem ET and NEE into its three sources revealed that understory vegetation contributed markedly to ecosystem ET and gross primary production (GPP; max. 43 and 51%, respectively). It reached similar water-use efficiencies (WUE) as cork-oak trees and significantly contributed to the ecosystem sink-strength in spring and fall. The understory vegetation layer further strongly inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish ecosystem WUE during water-limited times (Dubbert et al., 2014a). Although, during most of the year, interactions with trees neither facilitated nor hampered the development of the understory vegetation, strong competition for water could be observed at the end of the growing period, which shortened the life-cycle of understory plants and significantly reduced the carbon uptake of the ecosystem in spring (Dubbert et al., 2014b). Finally, herbaceous understory

  13. Biomass and element pools of understory vegetation in the catchments of Čertovo Lake and Plešné Lake in the Bohemian Forest

    Czech Academy of Sciences Publication Activity Database

    Svoboda, M.; Matějka, K.; Kopáček, Jiří

    2006-01-01

    Roč. 61, Suppl. 20 (2006), S509-S521 ISSN 0006-3088 R&D Projects: GA ČR GA206/03/1583 Grant - others:MA(CZ) NAZV QG50105 Institutional research plan: CEZ:AV0Z60170517 Keywords : Norway spruce forest * understory vegetation Subject RIV: EH - Ecology, Behaviour Impact factor: 0.213, year: 2006

  14. Differences in Fine-Root Biomass of Trees and Understory Vegetation among Stand Types in Subtropical Forests.

    Directory of Open Access Journals (Sweden)

    Xiaoli Fu

    Full Text Available Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4% than that at Datian (16.7%. This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer.

  15. Differences in Fine-Root Biomass of Trees and Understory Vegetation among Stand Types in Subtropical Forests.

    Science.gov (United States)

    Fu, Xiaoli; Wang, Jianlei; Di, Yuebao; Wang, Huimin

    2015-01-01

    Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer.

  16. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in 4 northern hardwood tree species

    International Nuclear Information System (INIS)

    Sefcik, L.T.; Zak, D.R.; Ellsworth, D.S.

    2006-01-01

    Stimulation of photosynthesis in response to elevated carbon dioxide (CO 2 ) varies among tree species and species groups. In this study, seedling responses to elevated atmospheric carbon dioxide (CO 2 ) concentrations and solar irradiance over 2 growing seasons were investigated for shade tolerant Acer saccharum Marsh.; Fagus grandifolia J.F. Ehrh; and shade-intolerant Prunus serotina. Seedlings were exposed to a combination of elevated and ambient concentrations of CO 2 and understory shade in open-top chambers placed in a forest understory. It was observed that the elevated CO 2 treatment increased mean light-saturated net photosynthetic rates by 63 per cent in the shade-tolerant species and 67 per cent in the shade-intolerant species. When measured at the elevated CO 2 , long-term enhancement of photosynthesis was 10 per cent lower than the instantaneous enhancement observed in ambient-CO 2 -grown plants. As the growth irradiance increased, proportional enhancement due to elevated CO 2 decreased from 97 per cent for plants grown in deep shade to 47 per cent for plants grown in moderate shade. Results indicated that in nitrogen (N) limited northern temperate forests, trees grown in deep shade may display greater photosynthetic gains from a CO 2 enriched atmosphere than trees growing in more moderate shade, due to greater down-regulation. It was concluded that if elevated CO 2 levels promote the survival of shade-intolerant species in dim understory light, the future composition and dynamics of successional forest communities may be altered. 70 refs., 2 tabs., 3 figs

  17. Canopy openings and white-tailed deer influence the understory vegetation in mixed oak woodlots

    Science.gov (United States)

    Todd W. Bowersox; Gerald L. Storm; Walter M. Tzilkowski

    1995-01-01

    Effects of canopy opening and white-tailed deer on ground level vegetation are being assessed in south-central Pennsylvania. Herbaceous plants and woody seedlings are being monitored in three unevenaged, mixed oak woodlots at Gettysburg National Military Park. Canopy opening levels on 0.20 ha treatment units were closed (~100% canopy), small (50-60% canopy) and large (...

  18. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Directory of Open Access Journals (Sweden)

    D. Tian

    2017-07-01

    Full Text Available Reactive nitrogen (N increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m  ×  20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings, and ground-cover plants (ferns according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height of 5–10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha−1 yr−1 and N100 fertilized plots (100 kg N ha−1 yr−1, while the growth of median and large trees with a DBH of  >  10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical

  19. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Science.gov (United States)

    Tian, Di; Li, Peng; Fang, Wenjing; Xu, Jun; Luo, Yongkai; Yan, Zhengbing; Zhu, Biao; Wang, Jingjing; Xu, Xiaoniu; Fang, Jingyun

    2017-07-01

    Reactive nitrogen (N) increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m × 20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings), and ground-cover plants (ferns) according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height) of 5-10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha-1 yr-1) and N100 fertilized plots (100 kg N ha-1 yr-1), while the growth of median and large trees with a DBH of > 10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical forest, and that the limitation of other nutrients in the forest

  20. Early understory biomass response to organic matter removal and soil compaction

    Science.gov (United States)

    Felix Jr. Ponder

    2008-01-01

    In the Missouri Ozarks, 6 and 8 years after treatment, understory biomass differences between bole only harvesting (BO) and whole-tree plus forest floor harvesting were not different; neither were there understory biomass differences between no compaction and severe compaction. Separation of the biomass into broad species categories (trees, shrubs, annuals, perennials...

  1. Five-year growth responses of Douglas-fir, western hemlock, and western redcedar seedlings to manipulated levels of overstory and understory competition.

    Science.gov (United States)

    T.B. Harrington

    2006-01-01

    Douglas-fir, western hemlock, and western redcedar seedlings were planted in 2001 within clearcuts, shelterwoods, or thinned stands of second-growth Douglas-fir. Understory vegetation was left untreated or removed to provide areas of vegetation control (AVC) of 0, 50, or 100 percent of seedling growing space. Third-year stem volume of seedlings growing in clearcuts...

  2. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China

    NARCIS (Netherlands)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-01-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in

  3. Understory Changes in Fraxinus excelsior Stands in Response to Dieback in Latvia

    Directory of Open Access Journals (Sweden)

    Pušpure Ilze

    2016-06-01

    Full Text Available Intense dieback of Fraxinus excelsior L. has been causing rapid changes in advance growth of trees and understory shrub growth of the affected stands. In this study, changes in composition and density of understory were studied in 15 permanent plots (each 235.6 m2, repeatedly sampled in 2005, 2010, and 2015. Within each plot, the number and average height of understory individuals were determined. The successional changes in understory were assessed by Detrended Correspondence Analysis. In total, 11 advance growth and 20 undergrowth species were recorded. A significant increase in the density of understory was observed only in 2015, mainly due to understorey growth of Corylus avellana L., Padus avium Mill., and Lonicera xylosteum L. Regarding advanced growth, the highest density was observed for Ulmus glabra Huds., F. excelsior and Acer platanoides L.; the density of A. platanoides and F. excelsior increased particularly in the period from 2010–2015. The observed successional changes suggested individuality of development of the affected stands according to the composition of the remaining and neighbouring canopy trees.

  4. Burn Severity Dominates Understory Plant Community Response to Fire in Xeric Jack Pine Forests

    Directory of Open Access Journals (Sweden)

    Bradley D. Pinno

    2016-04-01

    Full Text Available Fire is the most common disturbance in northern boreal forests, and large fires are often associated with highly variable burn severities across the burnt area. We studied the understory plant community response to a range of burn severities and pre-fire stand age four growing seasons after the 2011 Richardson Fire in xeric jack pine forests of northern Alberta, Canada. Burn severity had the greatest impact on post-fire plant communities, while pre-fire stand age did not have a significant impact. Total plant species richness and cover decreased with disturbance severity, such that the greatest richness was in low severity burns (average 28 species per 1-m2 quadrat and plant cover was lowest in the high severity burns (average 16%. However, the response of individual plant groups differed. Lichens and bryophytes were most common in low severity burns and were effectively eliminated from the regenerating plant community at higher burn severities. In contrast, graminoid cover and richness were positively related to burn severity, while forbs did not respond significantly to burn severity, but were impacted by changes in soil chemistry with increased cover at pH >4.9. Our results indicate the importance of non-vascular plants to the overall plant community in this harsh environment and that the plant community is environmentally limited rather than recruitment or competition limited, as is often the case in more mesic forest types. If fire frequency and severity increase as predicted, we may see a shift in plant communities from stress-tolerant species, such as lichens and ericaceous shrubs, to more colonizing species, such as certain graminoids.

  5. Understory response following varying levels of overstory removal in mixed conifer stands

    Science.gov (United States)

    Fabian C.C. Uzoh; Leroy K. Dolph; John R. Anstead

    1997-01-01

    Diameter growth rates of understory trees were measured for periods both before and after overstory removal on six study areas in northern California. All the species responded with increased diameter growth after adjusting to their new environments. Linear regression equations that predict post treatment diameter growth increment of the residual trees are presented...

  6. Responses of Soil Organic Carbon to Long-Term Understory Removal in Subtropical Cinnamomum camphora Stands

    Directory of Open Access Journals (Sweden)

    Yacong Wu

    2014-01-01

    Full Text Available We conducted a study on a 48-year-old Cinnamomum camphora plantation in the subtropics of China, by removing understory gradually and then comparing this treatment with a control (undisturbed. This study analyzed the content and storage soil organic carbon (SOC in a soil depth of 0–60 cm. The results showed that SOC content was lower in understory removal (UR treatment, with a decrease range from 5% to 34%, and a decline of 10.16 g·kg−1 and 8.58 g·kg−1 was noticed in 0–10 cm and 10–20 cm layers, respectively, with significant differences (P<0.05. Carbon storage was reduced in UR, ranging from 2% to 43%, with a particular drastic decline of 15.39 t·hm−2 and 11.58 t·hm−2 in 0–10 cm (P<0.01 and 10–20 cm (P<0.01 layers, respectively. Content of SOC had an extremely significant (P<0.01 correlation with soil nutrients in the two stands, and the correlation coefficients of CK were higher than those of UR. Our data showed that the presence of understory favored the accumulation of soil organic carbon to a large extent. Therefore, long-term practice of understory removal weakens the function of forest ecosystem as a carbon sink.

  7. Influence of Afforestation on the Species Diversity of the Soil Seed Bank and Understory Vegetation in the Hill-Gullied Loess Plateau, China.

    Science.gov (United States)

    Wang, Ning; Jiao, Juying; Jia, Yanfeng; Wang, Dongli

    2017-10-24

    The Chinese Loess Plateau region has long been suffering from serious soil erosion. Thus, large-scale afforestation has continued during the past decades in order to control soil erosion. Afforestation can dramatically alter nutrient cycles, affect soil-carbon storage, and change hydrology. However, it is unknown how afforestation influences species diversity of the soil seed bank and understory vegetation compared with spontaneous restoration of abandoned land. Forest land with trees planted 30 years ago, abandoned slope land restored spontaneously for 30 years, and the corresponding slopes with remnant natural vegetation were selected as sampling sites. The species richness both in the soil seed bank and vegetation was significantly higher on the afforested slope compared to the spontaneously restored abandoned land. The species similarity between the afforested slope and the remnant slope land was high both in the soil seed bank and standing vegetation compared to the abandoned land. The soil seed bank density varied from 1778 ± 187 to 3896 ± 221 seeds/m², and more than half of it was constituted by annual and biennial species, with no significant difference among sampling habitats. However, the afforested slope had higher seed density of grass and shrub/subshrubs compared to the abandoned slope. The present study indicates that in the study region, characterized by serious soil erosion, afforestation can better facilitate vegetation succession compared to spontaneously restoration of abandoned slope land.

  8. Effects of understory vegetation and litter on plant nitrogen (N, phosphorus (P, N:P ratio and their relationships with growth rate of indigenous seedlings in subtropical plantations.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available Establishing seedlings in subtropical plantations is very important for forest health, succession and management. Information on seedling nutrient concentrations is essential for both the selection of suitable indigenous tree species to accelerate succession of the established plantation and sustainable forest management. In this study, we investigated the concentrations of nitrogen ([N], phosphorus ([P], and N:P ratio in leaves, stems and roots of seedlings of three indigenous tree species (Castanopsis chinensis, Michelia chapensis and Psychotria rubra transplanted with removing or retaining understory vegetation and litter at two typical subtropical forest plantations (Eucalyptus plantation and native species plantation. We also measured the relative growth rate (RGR of seedling height, and developed the relationships between RGR and leaf [N], [P] and N:P ratio. Results showed that treatments of understory vegetation and associated litter (i.e. removal or retained generally had no significant effects on leaf [N], [P], N:P ratio and RGR of the transplanted tree seedlings for the experimental period. But among different species, there were significant differences in nutrient concentrations. M. chapensis and P. rubra had higher [N] and [P] compared to C. chinensis. [N] and [P] also varied among different plant tissues with much higher values in leaves than in roots for all indigenous species. RGR of indigenous tree seedlings was mostly positively correlated with leaf [N] and [P], but negatively correlated with leaf N:P ratio. Considering the low [P] and high N:P ratio observed in the introduced indigenous tree seedlings, we propose that the current experimental plantations might be P limited for plant growth.

  9. The environment, not space, dominantly structures the landscape patterns of the richness and composition of the tropical understory vegetation.

    Directory of Open Access Journals (Sweden)

    Yue-Hua Hu

    Full Text Available The mechanisms driving the spatial patterns of species richness and composition are essential to the understanding of biodiversity. Numerous studies separately identify the contributions of the environment (niche process and space (neutral process to the species richness or composition at different scales, but few studies have investigated the contributions of both types of processes in the two types of data at the landscape scale. In this study, we partitioned the spatial variations in all, exotic and native understory plant species richness and composition constrained by environmental variables and space in 134 plots that were spread across 10 counties in Hainan Island in southern China. The 134 plots included 70 rubber (Hevea brasiliensis plantation plots, 50 eucalyptus (Eucalyptus urophylla plantation plots, and 14 secondary forest plots. RDA based variation partitioning was run to assess the contribution of environment and space to species richness and composition. The results showed that the environmental variables alone explained a large proportion of the variations in both the species richness and composition of all, native, and exotic species. The RDA results indicated that overstory composition (forest type here plays a leading role in determining species richness and composition patterns. The alpha and beta diversities of the secondary forest plots were markedly higher than that of the two plantations. In conclusion, niche differentiation processes are the principal mechanisms that shape the alpha and beta diversities of understory plant species in Hainan Island.

  10. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China.

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-02-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in temperate northeastern China, dominated by mature forest (Changbaishan Nature Reserve, sampled in 2011 and 2012), secondary forest (Dongling Mountain, sampled in 2011 and 2012), and forest plantation habitats (Bashang Plateau, sampled in 2006 and 2007), respectively. The α-diversity of both taxonomic groups was highest in plantation forests of the Bashang Plateau. Beetle α-diversity was lowest, but plant and beetle species turnover peaked in the secondary forests of Dongling Mountain, while habitats in the Changbaishan Nature Reserve showed the lowest turnover rates for both taxa. Changbaishan Nature Reserve harbored the highest proportion of forest specialists. Our results suggest that in temperate regions of northern China, the protected larch plantation forest established over extensive areas might play a considerable role in maintaining a high biodiversity in relation to understory herbaceous plant species and carabid assemblages, which can be seen as indicators of forest disturbance. The high proportion of phytophagous carabids and the rarity of forest specialists reflect the relatively homogenous, immature status of the forest ecosystems on the Bashang Plateau. China's last remaining large old-growth forests like the ones on Changbaishan represent stable, mature ecosystems which require particular conservation attention.

  11. Effect of removal of hesperis matronalis (Dame's rocket) on species cover of forest understory vegetation in NW indiana

    Science.gov (United States)

    Pavlovic, N.B.; Leicht-Young, S. A.; Frohnapple, K.J.; Grundel, R.

    2009-01-01

    Exotic invasive plant species differ in their effects on indigenous vegetation as evidenced by research evaluating community response to their removal. We used a removal approach to quantify the response of a mesic woodland to the removal versus retention of an invasive plant, Hesperis matronalis (dame's rocket) from paired treatment plots over 3 y. Cover of H. matronalis did not differ between control and treatment plots prior to removal, declined in the removal plots and remained significantly lower in cover compared to the control plots. Removal did not significantly affect species richness and species diversity (evenness, Shannon and Simpson) at the plot scale, but did result in increased species richness overall in the removal plots in the last sampling year when compared to control plots. Non-metric multidimensional scaling ordination analysis indicated a significant compositional change in the spring plant composition of plots over the 3 y, reflecting an increase in exotic woody species. Exotic woody plants, especially Rosa multiflora and Euonymus alatus, increased in cover in response to H. matronalis removal. In the 3 y, neither native nor exotic forbs, nor native woody plants responded to the removal of H. matronalis in a statistically significant manner. The increasing cover of woody invasive plants in response to the removal of H. matronalis has important management implications for restoration of degraded communities.

  12. Driving Factors of Understory Evapotranspiration within a Siberian Larch Forest

    Science.gov (United States)

    Tobio, A.; Loranty, M. M.; Kropp, H.; Pena, H., III; Alexander, H. D.; Natali, S.; Kholodov, A. L.; Spawn, S.; Farmer, S.

    2017-12-01

    Amplified rates of climate change are causing alterations in vegetation productivity, hydrologic cycling, and wildfire severity and intensity in arctic ecosystems. Boreal larch forests in northeastern Siberia are a critical but understudied ecosystem that are affected by these modifications. These forests cover 2.5 million km2 with densities ranging from spare to thick. The current average canopy cover is at around 17% and is expected to increase with the observed increases in vegetation productivity and wildfire. These projected changes in forest density can alter the proportional contributions of over- and understory vegetation to whole ecosystem evapotranspiration. Low density boreal forests have much higher rates of understory evapotranspiration and can contribute as much as 80% to total ecosystem evapotranspiration, while the understory in high density forests is responsible for only around 15% of total ecosystem evapotranspiration. The objective of this research is to understand why there are changes in understory evapotranspiration with varying overstory density by looking at light levels, biomass, vegetation, and air and soil differences. To better learn about these differences in understory evapotranspiration in boreal larch forests the driving factors of evapotranspiration were measured within a burn scar with varying densities of high, medium, and low. Water fluxes were conducted using the static chamber technique under different environmental conditions. Furthermore, controlling factors of evapotranspiration such as photosynethically active radiation, vapor pressure deficit, soil moisture, moss cover, biomass, and leaf area index were measured or derived. In general, we found that low density areas have highest rates of evapotranspiration due to larger amount of biomass, and increased access to light, despite low levels of soil moisture. These results can help us understand how and why total ecosystem water exchange will change in boreal larch forests

  13. Understory bamboo discrimination using a winter image

    NARCIS (Netherlands)

    Wang, T.; Skidmore, A.K.; Toxopeus, A.G.; Liu, X.

    2009-01-01

    In this study, a new approach is presented that combines forest phenology and Landsat vegetation indices to estimate evergreen understory bamboo coverage in a mixed temperate forest. It was found that vegetation indices, especially the normalized difference vegetation index (NDVI) derived from

  14. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    Science.gov (United States)

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  15. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae outbreak in pine forests.

    Directory of Open Access Journals (Sweden)

    Gregory J Pec

    Full Text Available The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae in lodgepole pine (Pinus contorta forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  16. Do changes in soil properties after rooting by wild boars (Sus scrofa) affect understory vegetation in Swiss hardwood forests?

    Science.gov (United States)

    Sven Wirthner; Martin Schutz; Deborah S. Page-Dumroese; Matt D. Busse; James W. Kirchner; Anita C. Risch

    2012-01-01

    Recovering from small fragmented populations, wild boars (Sus scrofa L.) have considerably increased their numbers and their habitat range in many European countries during the past two decades. Although several studies have focused on the impact of wild boar rooting on selected vegetation properties, little is known about effects on entire forest ecosystems. The main...

  17. LEAF AREA INDEX (LAI) CHANGE DETECTION ON LOBLOLLY PINE FOREST STANDS WITH COMPLETE UNDERSTORY REMOVAL

    Science.gov (United States)

    The confounding effect of understory vegetation contributions to satellite derived estimates of leaf area index (LAI) was investigated on two loblolly pine (Pinus taeda) forest stands located in the southeastern United States. Previous studies have shown that understory can a...

  18. A Riparian Vegetation Ecophysiological Response Model

    Science.gov (United States)

    Jeffrey P. Leighton; Roland J. Risser

    1989-01-01

    A mathematical model is described that relates mature riparian vegetation ecophysiological response to changes in stream level. This model was developed to estimate the physiological response of riparian vegetation to reductions in streamflow. Field data from two sites on the North Fork of the Kings River were used in the model development. The physiological response...

  19. Understory cover responses to pinon-juniper treatments across tree dominance gradients in the Great Basin

    Science.gov (United States)

    Piñon (Pinus spp.) and juniper (Juniperus spp.) trees are reduced to restore native vegetation and avoid high severity fires where they have invaded sagebrush (Artemisia tridentata Nutt.) communities. To recommend treatment implementation which avoids threshold-crossing to invasive plant dominance w...

  20. Short-Term Responses of Birds to Forest Gaps and Understory: An Assessment of Reduced-Impact Logging in a Lowland Amazon Forest.

    Science.gov (United States)

    Joseph M. Wunderle Jr.; Luiza Magalli Pinto Henriques; Michael R. Willig

    2006-01-01

    We studied physiognomy-specific (i.e., gaps vs. understory) responses of birds to low harvest (18.7 m3/ha), reduced-impact logging by comparing 3500 mist net captures in control and cut blocks of an Amazonian terra firme forest in Brazil at 20–42 mo postharvest. Species richness did not differ significantly between control (92 species) and cut (85) forest based on...

  1. Reintroducing fire into a ponderosa pine forest with and without cattle grazing: understory vegetation response

    Science.gov (United States)

    Becky K. Kerns; Michelle Buonopane; Walter G. Thies; Christine. Niwa

    2011-01-01

    Reestablishing historical fire regimes is a high priority for North American coniferous forests, particularly ponderosa pine (Pinus ponderosa) ecosystems. These forests are also used extensively for cattle (Bos spp.) grazing. Prescribed fires are being applied on or planned for millions of hectares of these forests to reduce...

  2. Photosynthetic responses of forest understory tree species to long-term exposure to elevated carbon dioxide concentration at the Duke Forest FACE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Springer, C.J. [West Virginia Univ., Morgantown, WV (United States); Thomas, R.B. [Kansas Univ., Lawrence, KS (United States). Dept. of Ecology and Evolutionary Biology

    2007-01-15

    Tree species growing within the forest understory contribute to the overall carbon balance of forest ecosystems in addition to representing many of the species that occur in the overstory of mature ecosystems. This article described a 7 year study investigating the responses of forest understory tree species to increasing concentrations of atmospheric carbon dioxide (CO{sub 2}). The study examined the photosynthetic responses of Acer rubrum L., Carya glabra Mill., Cercis Canadensis L., and Liquidambar styraciflua L. during their seventh year of exposure to elevated CO{sub 2} at the Duke Forest Free Air Carbon Enrichment (FACE) experiment to determine whether photosynthetic down-regulation had occurred, as well as to determine whether the enhancement of photosynthesis observed during the first year of exposure to elevated CO{sub 2} was sustained. The study was conducted to test a previous hypothesis that significant photosynthetic down-regulation would be observed after 7 years of exposure to elevated CO{sub 2}. Photosynthetic CO{sub 2} response and light response curves were measured, as well as chlorophyll fluorescence, chlorophyll concentration and foliar nitrogen (N). Results showed that exposure to elevated CO{sub 2} increased photosynthesis in all species measured after 7 years of treatment. The greatest photosynthetic increase was observed near saturating irradiances. In all species, elevated CO{sub 2} increased electron transport efficiency but did not significantly alter carboxylation efficiency. Quantum yield as estimated by light curves, chlorophyll concentration, and foliar N concentrations was unaffected by elevated CO{sub 2}. It was concluded that there was scant evidence of progressive N limitation of leaf-level processes in the understory species after 7 years of exposure to elevated CO{sub 2} in the experiment. 42 refs., 2 tabs., 4 figs.

  3. Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores.

    Science.gov (United States)

    Coverdale, Tyler C; Kartzinel, Tyler R; Grabowski, Kathryn L; Shriver, Robert K; Hassan, Abdikadir A; Goheen, Jacob R; Palmer, Todd M; Pringle, Robert M

    2016-11-01

    Positive indirect effects of consumers on their resources can stabilize food webs by preventing overexploitation, but the coupling of trophic and non-trophic interactions remains poorly integrated into our understanding of community dynamics. Elephants engineer African savanna ecosystems by toppling trees and breaking branches, and although their negative effects on trees are well documented, their effects on small-statured plants remain poorly understood. Using data on 117 understory plant taxa collected over 7 yr within 36 1-ha experimental plots in a semi-arid Kenyan savanna, we measured the strength and direction of elephant impacts on understory vegetation. We found that elephants had neutral effects on most (83-89%) species, with a similar frequency of positive and negative responses among the remainder. Overall, estimated understory biomass was 5-14% greater in the presence of elephants across a range of rainfall levels. Whereas direct consumption likely accounts for the negative effects, positive effects are presumably indirect. We hypothesized that elephants create associational refuges for understory plants by damaging tree canopies in ways that physically inhibit feeding by other large herbivores. As predicted, understory biomass and species richness beneath elephant-damaged trees were 55% and 21% greater, respectively, than under undamaged trees. Experimentally simulated elephant damage increased understory biomass by 37% and species richness by 49% after 1 yr. Conversely, experimentally removing elephant damaged branches decreased understory biomass by 39% and richness by 30% relative to sham-manipulated trees. Camera-trap surveys revealed that elephant damage reduced the frequency of herbivory by 71%, whereas we detected no significant effect of damage on temperature, light, or soil moisture. We conclude that elephants locally facilitate understory plants by creating refuges from herbivory, which countervails the direct negative effects of

  4. Vegetation Response to Western Juniper Slash Treatments

    Science.gov (United States)

    O'Connor, Casey; Miller, Rick; Bates, Jonathan D.

    2013-09-01

    The expansion of piñon-juniper woodlands the past 100 years in the western United States has resulted in large scale efforts to kill trees and recover sagebrush steppe rangelands. It is important to evaluate vegetation recovery following woodland control to develop best management practices. In this study, we compared two fuel reduction treatments and a cut-and-leave (CUT) treatment used to control western juniper ( Juniperus occidentalis spp. occidentalis Hook.) of the northwestern United States. Treatments were; CUT, cut-and-broadcast burn (BURN), and cut-pile-and-burn the pile (PILE). A randomized complete block design was used with five replicates of each treatment located in a curl leaf mahogany ( Cercocarpus ledifolius Nutt. ex Torr. & A. Gray)/mountain big sagebrush ( Artemisia tridentata Nutt. spp. vaseyana (Rydb.) Beetle)/Idaho fescue ( Festuca idahoensis Elmer) association. In 2010, 4 years after tree control the cover of perennial grasses (PG) [Sandberg's bluegrass ( Poa secunda J. Pres) and large bunchgrasses] were about 4 and 5 % less, respectively, in the BURN (7.1 ± 0.6 %) than the PILE (11.4 ± 2.3 %) and CUT (12.4 ± 1.7 %) treatments ( P < 0.0015). In 2010, cover of invasive cheatgrass ( Bromus tectorum L.) was greater in the BURN (6.3 ± 1.0 %) and was 50 and 100 % greater than PILE and CUT treatments, respectively. However, the increase in perennial bunchgrass density and cover, despite cheatgrass in the BURN treatment, mean it unlikely that cheatgrass will persist as a major understory component. In the CUT treatment mahogany cover increased 12.5 % and density increased in from 172 ± 25 to 404 ± 123 trees/ha. Burning, killed most or all of the adult mahogany, and mahogany recovery consisted of 100 and 67 % seedlings in the PILE and BURN treatments, respectively. After treatment, juniper presence from untreated small trees (<1 m tall; PILE and CUT treatments) and seedling emergence (all treatments) represented 25-33 % of pre-treatment tree

  5. Understory avifauna exhibits altered mobbing behavior in tropical forest degraded by selective logging.

    Science.gov (United States)

    Hua, Fangyuan; Sieving, Kathryn E

    2016-11-01

    In understanding the impacts of selective logging on biodiversity, relatively little is known about the critical behavioral link between altered forest conditions and population persistence. Predator-mobbing is a widespread anti-predator behavior in birds that expresses a well-known trade-off influencing prey survival under predation risk. Here, we ask whether the predator-mobbing behavior of understory forest birds is altered by selective logging and associated forest structural changes in the highly endangered lowland rainforest of Sumatra. At four study sites spanning a gradient of logging-induced forest degradation, we used standardized mobbing and owl call playbacks with predator model presentation to elicit the predator-mobbing behavior of understory prey birds, compared birds' mobbing intensity across sites, and related variation in this intensity to forest vegetation structure. We found that selective logging altered birds' predator-mobbing intensity (measured by behavioral conspicuousness and propensity to approach the predator) as well as forest structure, and that vegetative changes to canopy and understory were correlated with contrasting responses by the two major bird foraging guilds, gleaning versus flycatching birds. We additionally discuss the implications of our findings for further hypothesis testing pertaining to the impacts of selective logging on the ecological processes underlying prey mobbing behavior, particularly with regards to predator-prey interactions and prey accruement of energy reserves.

  6. Estimating Understory Temperatures Using MODIS LST in Mixed Cordilleran Forests

    Directory of Open Access Journals (Sweden)

    David N. Laskin

    2016-08-01

    Full Text Available Satellite remote sensing provides a rapid and broad-scale means for monitoring vegetation phenology and its relationship with fluctuations in air temperature. Investigating the response of plant communities to climate change is needed to gain insight into the potentially detrimental effects on ecosystem processes. While many studies have used satellite-derived land surface temperature (LST as a proxy for air temperature, few studies have attempted to create and validate models of forest understory temperature (Tust, as it is obscured from these space-borne observations. This study worked to predict instantaneous values of Tust using daily Moderate Resolution Imaging Spectroradiometer (MODIS LST data over a 99,000 km2 study area located in the Rocky Mountains of western Alberta, Canada. Specifically, we aimed to identify the forest characteristics that improve estimates of Tust over using LST alone. Our top model predicted Tust to within a mean absolute error (MAE of 1.4 °C with an overall model fit of R2 = 0.89 over two growing seasons. Canopy closure and the LiDAR-derived standard deviation of canopy height metric were found to significantly improve estimations of Tust over MODIS LST alone. These findings demonstrate that canopy structure and forest stand-type function to differentiate understory air temperatures from ambient canopy temperature as seen by the sensor overhead.

  7. Photochemical efficiency of adult and young leaves of the neotropical understory shrub Psychotria limonensis (Rubiaceaein response to changes in the light environment

    Directory of Open Access Journals (Sweden)

    Gerardo Avalos

    2004-12-01

    Full Text Available We explored the short-term adjustment in photochemical efficiency (Fv /Fm in adult and young leaves of the understory neotropical shrub Psychotria limonensis Krause (Rubiaceaein response to rapid changes in the light environment.Leaves were collected from 20 individual plants growing under sun and shade conditions on Gigante Peninsula,Barro Colorado Natural Monument (Republic of Panama,during the wet season of 1996. Leaves were distributed in four sequences of light treatments (AB leaves were expanded under sun and were transferred to shade,BA leaves experienced the opposite transfer,and the controls AA and BB leaves that were expanded and maintained under sun or shade conditions.Adult and young leaves did not differ in overall photochemical efficiency.Instead,differences were found among light environments,for which leaves transferred from shade to sun showed the lowest F v /F m ratios.There was no relationship between photochemical efficiency and leaf temperature.In P.limonensis,understory plants are susceptible of photoinhibition independently of the leaf ontogenetic stage.The approach utilized in this experiment allowed the rapid exploration of this capacity, and could be applied to poorly studied understory species. Rev.Biol.Trop.52(4:839-844.Epub 2005 Jun 24.Se exploró el ajuste a corto plazo en la eficiencia fotosintética (Fv /Fm en hojas jovenes y adultas del arbusto del sotobosque neotropical Psychotria limonensis Krause (Rubiaceaeen respuesta a cambios rápidos de luz ambiental. Las hojas fueron recolectadas de 20 plantas individuales bajo condiciones de sol y sombra en Peninsula Gigante, Monumento Natural Barro Colorado (Panamá,durante la estación lluviosa de 1996.Las hojas fueron distribuidas en una secuencia cuatro tratamientos de luz (AB las hojas fueron expandidas bajo el sol y fueron transferidas a la sombra,BA las hojas experimentaron la transferencia contraria,y las hojas controles AA y BB que fueron expandidas y mantenidas

  8. Understory biomass from southern pine forests as a fuel source

    Energy Technology Data Exchange (ETDEWEB)

    Ku, T.T. [Univ. of Arkansas, Monticello, AR (United States); Baker, J.B. [USDA Forest Service, Monticello, AR (United States)

    1993-12-31

    The energy crisis in the US in the late 1970s led to accelerated research on renewable energy resources. The use of woody biomass, harvested from pine forests in the southern US, as a renewable energy source would not only provide an efficient energy alternative to forest industries, but its use would also reduce understory competition and accelerate growth of overstory crop trees. This study was initiated in the early 1980s to investigate the feasibility and applicability of the use of understory vegetation as a possible energy fuel resource. All woody understory vegetation [<14 cm (<5.5 in) in dbh], on 0.2 ha (0.5 ac) plots that represented a range of stand/site conditions of pine stands located in twelve southern Arkansas counties and two northern Louisiana parishes were characterized, quantified, and harvested. Based on the biomass yield from 720 subplots nested within 40 main plots, the top five dominant species in the understory, based on number and size were: Red maple, red oaks, pines, sweetgum, and winged elm. Some other species occurring, but in smaller proportions, were flowering dogwood, beautyberry, white oaks, black gum, wax myrtle, hickories, persimmon, and ashes. Most of these species are deciduous hardwoods that provide high BTU output upon burning. The average yield of chipped understory biomass was 23.5 T/ha with no difference occurring between summer and winter harvests. A predictive model of understory biomass production was developed using a step-wise multivariate regression analysis. In relation to forest type, high density pine stands produced 53% more understory biomass than high density pine-hardwood stands. The average moisture content of biomass was significantly lower when harvested in winter than when harvested in summer.

  9. Vegetation index anomaly response to varying lengths of drought across vegetation and climatic gradients in Hawaii

    Science.gov (United States)

    Lucas, M.; Miura, T.; Trauernicht, C.; Frazier, A. G.

    2017-12-01

    A drought which results in prolonged and extended deficit in naturally available water supply and creates multiple stresses across ecosystems is classified as an ecological drought. Detecting and understanding the dynamics and response of such droughts in tropical systems, specifically across various vegetation and climatic gradients is fairly undetermined, yet increasingly important for better understandings of the ecological effects of drought. To understanding the link between what lengths and intensities of known meteorological drought triggers detectable ecological vegetation responses, a landscape scale regression analysis evaluating the response (slope) and relationship strength (R-squared) of several cumulative SPI (standard precipitation index) lengths(1, 3, 6, 12, 18, 24, 36, 48, and 60 month), to various satellite derived monthly vegetation indices anomalies (NDVI, EVI, EVI2, and LSWI) was performed across a matrix of dominant vegetation covers (grassland, shrubland, and forest) and climatic moisture zones (arid, dry, mesic, and wet). The nine different SPI lags across these climactic and vegetation gradients was suggest that stronger relationships and steeper slopes were found in dryer climates (across all vegetation covers) and finer vegetation types (across all moisture zones). Overall NDVI, EVI and EVI2 showed the best utility in these dryer climatic zones across all vegetation types. Within arid and dry areas "best" fits showed increasing lengths of cumulative SPI were with increasing vegetation coarseness respectively. Overall these findings suggest that rainfall driven drought may have a stronger impact on the ecological condition of vegetation in water limited systems with finer vegetation types ecologically responding more rapidly to meteorological drought events than coarser woody vegetation systems. These results suggest that previously and newly documented trends of decreasing rainfall and increasing drought in Hawaiian drylands may have

  10. CRMS vegetation analytical team framework: Methods for collection, development, and use of vegetation response variables

    Science.gov (United States)

    Cretini, Kari F.; Visser, Jenneke M.; Krauss, Ken W.; Steyer, Gregory D.

    2011-01-01

    This document identifies the main objectives of the Coastwide Reference Monitoring System (CRMS) vegetation analytical team, which are to provide (1) collection and development methods for vegetation response variables and (2) the ways in which these response variables will be used to evaluate restoration project effectiveness. The vegetation parameters (that is, response variables) collected in CRMS and other coastal restoration projects funded under the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) are identified, and the field collection methods for these parameters are summarized. Existing knowledge on community and plant responses to changes in environmental drivers (for example, flooding and salinity) from published literature and from the CRMS and CWPPRA monitoring dataset are used to develop a suite of indices to assess wetland condition in coastal Louisiana. Two indices, the floristic quality index (FQI) and a productivity index, are described for herbaceous and forested vegetation. The FQI for herbaceous vegetation is tested with a long-term dataset from a CWPPRA marsh creation project. Example graphics for this index are provided and discussed. The other indices, an FQI for forest vegetation (that is, trees and shrubs) and productivity indices for herbaceous and forest vegetation, are proposed but not tested. New response variables may be added or current response variables removed as data become available and as our understanding of restoration success indicators develops. Once indices are fully developed, each will be used by the vegetation analytical team to assess and evaluate CRMS/CWPPRA project and program effectiveness. The vegetation analytical teams plan to summarize their results in the form of written reports and/or graphics and present these items to CRMS Federal and State sponsors, restoration project managers, landowners, and other data users for their input.

  11. Long-term understory vegetation dynamics and responses to ungulate exclusion in the dry forest of Mona Island

    Science.gov (United States)

    J. Rojas-Sandoval; E.J. Melendez-Ackerman; J. Fumero-Caban; M. Garcia-Bermudez; J. Sustache; S. Aragon; M. Morales-Vargas; G. Olivieri; D.S. Fernandez

    2016-01-01

    Mona Island protects one of the most important remnants of Caribbean dry forests and hosts a high diversity of rare and endangered plant and animal species. Feral ungulates (goats and pigs) were introduced to the island ~500 y ago, and their populations may be threatening the conservation of Mona Island’s native biodiversity. In this study, we used permanent fenced and...

  12. Maximizing vegetation response on management burns by identifying fire regimes

    Science.gov (United States)

    V. Thomas Parker

    1989-01-01

    Maintenance of vegetation is a central goal of watershed management. When prescribed burning of chaparral is included in management practice, then it is important for managers to understand and use the natural chaparral fire regime to maximize vegetation response. Variations from the natural fire regime in intensity, frequency, season, and environmental conditions at...

  13. Retrieval of seasonal dynamics of forest understory reflectance from semi-arid to boreal forests using MODIS BRDF data

    Science.gov (United States)

    Pisek, Jan; Chen, Jing; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael; Karnieli, Arnon; Sprintsin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi

    2016-04-01

    Ground vegetation (understory) provides an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal, and temperate forests. Accurate knowledge about forest understory reflectance is urgently needed in various forest reflectance modelling efforts. However, systematic collections of understory reflectance data covering different sites and ecosystems are almost missing. Measurement of understory reflectance is a real challenge because of an extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum, spectral separability issues of over- and understory and its variable nature. Understory can consist of several sub-layers (regenerated tree, shrub, grasses or dwarf shrub, mosses, lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional challenges are introduced by patchiness of ground vegetation, ground surface roughness, and understory-overstory relations. Due to this variability, remote sensing might be the only means to provide consistent data at spatially relevant scales. In this presentation, we report on retrieving seasonal courses of understory Normalized Difference Vegetation Index (NDVI) from multi-angular MODIS BRDF/Albedo data. We compared satellite-based seasonal courses of understory NDVI against an extended collection of different types of forest sites with available in-situ understory reflectance measurements. These sites are distributed along a wide latitudinal gradient on the Northern hemisphere: a sparse and dense black spruce forests in Alaska and Canada, a northern European boreal forest in Finland, hemiboreal needleleaf and deciduous stands in Estonia, a mixed temperate forest in Switzerland, a cool temperate deciduous broadleaf forest in Korea, and a semi-arid pine plantation in Israel. Our results indicated the retrieval method performs well particularly over open forests of different types. We also demonstrated

  14. Infrared heater system for warming tropical forest understory plants and soils.

    Science.gov (United States)

    Kimball, Bruce A; Alonso-Rodríguez, Aura M; Cavaleri, Molly A; Reed, Sasha C; González, Grizelle; Wood, Tana E

    2018-02-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses to Altered Climate Experiment (TRACE) in the Luquillo Experimental Forest in Puerto Rico. Three replicate heated 4-m-diameter plots were warmed to maintain a 4°C increase in understory vegetation compared to three unheated control plots, as sensed by IR thermometers. The equipment was larger than any used previously and was subjected to challenges different from those of many temperate ecosystem warming systems, including frequent power surges and outages, high humidity, heavy rains, hurricanes, saturated clayey soils, and steep slopes. The system was able to maintain the target 4.0°C increase in hourly average vegetation temperatures to within ± 0.1°C. The vegetation was heterogeneous and on a 21° slope, which decreased uniformity of the warming treatment on the plots; yet, the green leaves were fairly uniformly warmed, and there was little difference among 0-10 cm depth soil temperatures at the plot centers, edges, and midway between. Soil temperatures at the 40-50 cm depth increased about 3°C compared to the controls after a month of warming. As expected, the soil in the heated plots dried faster than that of the control plots, but the average soil moisture remained adequate for the plants. The TRACE heating system produced an adequately uniform warming precisely controlled down to at least 50-cm soil depth, thereby creating a treatment that allows for assessing mechanistic responses of tropical plants and soil to warming, with applicability to other ecosystems. No physical obstacles to scaling the approach to taller vegetation (i.e., trees) and larger plots were observed.

  15. Impact of oil palm agriculture on understory amphibians and reptiles: A Mesoamerican perspective

    Directory of Open Access Journals (Sweden)

    Nina Gallmetzer

    2015-07-01

    Full Text Available Oil palm plantations expand rapidly in tropical regions, including the Neotropics. This study, quantifies the impact on the herpetofauna of the Pacific lowlands of Costa Rica. Amphibians and reptiles were sampled along transects in forest interior (FI, at forest margins (FM and in oil palm plantations (OP. While no significant difference in species richness was found between FI and FM, OP were characterized by a strongly impoverished fauna. Total species richness of amphibians and reptiles was reduced to 45.3% and 49.8% compared to FI, respectively. Species assemblages in OP differed from forest habitats and were characterized by disturbance-tolerant species and a severe loss of endemic species. In amphibians, functional diversity declined dramatically towards OP indicating a decrease of their ecological function. The almost complete absence of leaf litter, understory vegetation and woody debris and the more open canopy may be responsible for the depauperate herpetofauna in OP. Enhancing understory vegetation could help making plantations a less hostile environment for some species. Still, those management measures might not be enough to promote forest specialists. Therefore, to maintain a diverse herpetofauna in tropical human-modified landscapes, the protection of any forested habitats such as secondary forests and strips of gallery forests is essential.

  16. Fire and fire surrogate treatments in mixed-oak forests: Effects on herbaceous layer vegetation

    Science.gov (United States)

    Ross Phillips; Todd Hutchinson; Lucy Brudnak; Thomas Waldrop

    2007-01-01

    Herbaceous layer vegetation responses to prescribed fire and fire surrogate treatments (thinning and understory removal) were examined. Results from 3 to 4 years following treatment are presented for the Ohio Hills Country and the Southern Appalachian Mountain sites of the National Fire and Fire Surrogate Study. At the Ohio Hills site, changes in forest structure were...

  17. Monoterpene emissions from an understory species, Pteridium aquilinum

    Science.gov (United States)

    Madronich, Monica B.; Greenberg, James P.; Wessman, Carol A.; Guenther, Alex B.

    2012-07-01

    Monoterpene emissions from the dominant understory species Pteridium aquilinum (Bracken fern) in a mixed temperate forest were measured in the field during the summers of 2006, 2007 and 2008. The results showed that Bracken fern emitted monoterpenes at different rates depending if the plants were located in the understory or in open areas. Understory plants emitted monoterpene levels ranging from 0.002 to 13 μgC gdw-1 h-1. Open area plants emitted monoterpene levels ranging from 0.005 to 2.21 μgC gdw-1 h-1. During the summer of 2008 greenhouse studies were performed to complement the field studies. Only 3% of the greenhouse Bracken fern plants emitted substantial amounts of monoterpenes. The average emission, 0.15 μgC gdw-1 h-1 ± 0.9 μgC gdw-1 h-1, was much lower than that observed in the field. The factors controlling monoterpene emissions are not clear, but this study provides evidence of the potential importance of understory vegetation to ecosystem total hydrocarbon emissions and emphasizes the need for longer-term field studies.

  18. Responses of five small mammal species to micro-scale variations in vegetation structure in secondary Atlantic Forest remnants, Brazil

    Directory of Open Access Journals (Sweden)

    Meyer-Lucht Yvonne

    2008-05-01

    Full Text Available Abstract Background The Brazilian Atlantic Forest is highly endangered and only about 7% of the original forest remains, most of which consists of fragments of secondary forest. Small mammals in the Atlantic Forest have differential responses to this process of fragmentation and conversion of forest into anthropogenic habitats, and have varying abilities to occupy the surrounding altered habitats. We investigated the influence of vegetation structure on the micro-scale distribution of five small mammal species in six secondary forest remnants in a landscape of fragmented Atlantic Forest. We tested whether the occurrence of small mammal species is influenced by vegetation structure, aiming to ascertain whether species with different degrees of vulnerability to forest fragmentation (not vulnerable: A. montensis, O. nigripes and G. microtarsus; vulnerable: M. incanus and D. sublineatus; classification of vulnerability was based on the results of previous studies are associated with distinct vegetation characteristics. Results Although vegetation structure differed among fragments, micro-scale distribution of most of the species was influenced by vegetation structure in a similar way in different fragments. Among the three species that were previously shown not to be vulnerable to forest fragmentation, A. montensis and G. microtarsus were present at locations with an open canopy and the occurrence of O. nigripes was associated to a low canopy and a dense understory. On the other hand, from the two species that were shown to be vulnerable to fragmentation, M. incanus was captured most often at locations with a closed canopy while the distribution of D. sublineatus was not clearly influenced by micro-scale variation in vegetation structure. Conclusion Results indicate the importance of micro-scale variation in vegetation structure for the distribution of small mammal species in secondary forest fragments. Species that are not vulnerable to

  19. Patterns of Understory Diversity in Mixed Coniferous Forests of Southern California Impacted by Air Pollution

    Directory of Open Access Journals (Sweden)

    Edith B. Allen

    2007-01-01

    Full Text Available The forests of the San Bernardino Mountains have been subject to ozone and nitrogen (N deposition for some 60 years. Much work has been done to assess the impacts of these pollutants on trees, but little is known about how the diverse understory flora has fared. Understory vegetation has declined in diversity in response to elevated N in the eastern U.S. and Europe. Six sites along an ozone and N deposition gradient that had been part of a long-term study on response of plants to air pollution beginning in 1973 were resampled in 2003. Historic ozone data and leaf injury scores confirmed the gradient. Present-day ozone levels were almost half of these, and recent atmospheric N pollution concentrations confirmed the continued air pollution gradient. Both total and extractable soil N were higher in sites on the western end of the gradient closer to the urban source of pollution, pH was lower, and soil carbon (C and litter were higher. The gradient also had decreasing precipitation and increasing elevation from west to east. However, the dominant tree species were the same across the gradient.

  20. Vegetable parenting practices scale: Item response modeling analyses

    Science.gov (United States)

    Our objective was to evaluate the psychometric properties of a vegetable parenting practices scale using multidimensional polytomous item response modeling which enables assessing item fit to latent variables and the distributional characteristics of the items in comparison to the respondents. We al...

  1. Responses of selected biota after biostimulation of a vegetable oil ...

    African Journals Online (AJOL)

    An investigation on the effect of a vegetable oil spill was conducted on the biological diversity of the Con Joubert Bird Sanctuary wetland in South Africa before and after biostimulation with different concentrations of fertilizer during 2008. Biostimulation responses were analyzed 30 days after different concentrations of ...

  2. Response of vegetable cowpea ( Vigna unguiculata (l.) Walp. Sub ...

    African Journals Online (AJOL)

    Two factorial experiments were conducted in a randomized block design (RCBD) with three replications to study the responses of vegetable cowpea (Vigna unguiculata subspecies unguiculata) to different plant dates (May, June and July in 1998 and April, May, June and July in 1999) and various nitrogen fertilizer levels (0, ...

  3. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange.

    Science.gov (United States)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra C; Costa E Silva, Filipe; Pereira, Joao S; Werner, Christiane

    2014-01-01

    Semi-arid ecosystems contribute about 40% to global net primary production (GPP) even though water is a major factor limiting carbon uptake. Evapotranspiration (ET) accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE) were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated. The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43 and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss) similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to drought.

  4. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Directory of Open Access Journals (Sweden)

    Maren eDubbert

    2014-10-01

    Full Text Available Semi-arid ecosystems contribute about 40% to global net primary production (GPP even though water is a major factor limiting carbon uptake. Evapotranspiration (ET accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated.The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43% and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to

  5. [Effects of understory removal on soil greenhouse gas emissions in Carya cathayensis stands].

    Science.gov (United States)

    Liu, Juan; Chen, Xue-shuang; Wu, Jia-sen; Jiang, Pei-kun; Zhou, Guo-mo; Li, Yong-fu

    2015-03-01

    CO2, N2O and CH4 are important greenhouse gases, and soils in forest ecosystems are their important sources. Carya cathayensis is a unique tree species with seeds used for high-grade dry fruit and oil production. Understory vegetation management plays an important role in soil greenhouse gases emission of Carya cathayensis stands. A one-year in situ experiment was conducted to study the effects of understory removal on soil CO2, N2O and CH4 emissions in C. cathayensis plantation by closed static chamber technique and gas chromatography method. Soil CO2 flux had a similar seasonal trend in the understory removal and preservation treatments, which was high in summer and autumn, and low in winter and spring. N2O emission occurred mainly in summer, while CH4 emission showed no seasonal trend. Understory removal significantly decreased soil CO, emission, increased N2O emission and CH4 uptake, but had no significant effect on soil water soluble organic carbon and microbial biomass carbon. The global warming potential of soil greenhouse gases emitted in the understory removal. treatment was 15.12 t CO2-e . hm-2 a-1, which was significantly lower than that in understory preservation treatment (17.04 t CO2-e . hm-2 . a-1).

  6. Carpathian mountain forest vegetation and its responses to climate stressors

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.; Dida, Adrian I.

    2017-10-01

    Due to anthropogenic and climatic changes, Carpathian Mountains forests in Romania experience environmental degradation. As a result of global climate change, there is growing evidence that some of the most severe weather events could become more frequent in Romania over the next 50 to 100 years. In the case of Carpathian mountain forests, winter storms and heat waves are considered key climate risks, particularly in prealpine and alpine areas. Effects of climate extremes on forests can have both short-term and long-term implications for standing biomass, tree health and species composition. The preservation and enhancement of mountain forest vegetation cover in natural, semi-natural forestry ecosystems is an essential factor in sustaining environmental health and averting natural hazards. This paper aims to: (i) describe observed trends and scenarios for summer heat waves, windstorms and heavy precipitation, based on results from satellite time series NOAA AVHRR, MODIS Terra/Aqua and Landsat TM/ETM+/OLI NDVI and LAI data recorded during 2000-2016 period correlated with meteorological parameters, regional climate models, and other downscaling procedures, and (ii) discuss potential impacts of climate changes and extreme events on Carpathian mountain forest system in Romania. The response of forest land cover vegetation in Carpathian Mountains, Romania to climatic factors varies in different seasons of the years, the diverse vegetation feedbacks to climate changes being related to different vegetation characteristics and meteorological conditions. Based on integrated analysis of satellite and field data was concluded that forest ecosystem functions are responsible of the relationships between mountain specific vegetation and climate.

  7. Vegetation physiology controls continental water cycle responses to climate change

    Science.gov (United States)

    Lemordant, L. A.; Swann, A. L. S.; Cook, B.; Scheff, J.; Gentine, P.

    2017-12-01

    Abstract per se:Predicting how climate change will affect the hydrologic cycle is of utmost importance for ecological systems and for human life and activities. A typical perspective is that global warming will cause an intensification of the mean state, the so-called "dry gets drier, wet gets wetter" paradigm. While this result is robust over the oceans, recent works suggest it may be less appropriate for terrestrial regions. Using Earth System Models (ESMs) with decoupled surface (vegetation physiology, PHYS) and atmospheric (radiative, ATMO) CO2 responses, we show that the CO2 physiological response dominates the change in the continental hydrologic cycle compared to radiative and precipitation changes due to increased atmospheric CO2, counter to previous assumptions. Using multiple linear regression analysis, we estimate the individual contribution of each of the three main drivers, precipitation, radiation and physiological CO2 forcing (see attached figure). Our analysis reveals that physiological effects dominate changes for 3 key indicators of dryness and/or vegetation stress (namely LAI, P-ET and EF) over the largest fraction of the globe, except for soil moisture which exhibits a more complex response. This highlights the key role of vegetation in controlling future terrestrial hydrologic response.Legend of the Figure attached:Decomposition along the three main drivers of LAI (a), P-ET (b), EF (c) in the control run. Green quantifies the effect of the vegetation physiology based on the run PHYS; red and blue quantify the contribution of, respectively, net radiation and precipitation, based on multiple linear regression in ATMO. Pie charts show for each variable the fraction (labelled in %) of land under the main influence (more than 50% of the changes is attributed to this driver) of one the three main drivers (green for grid points dominated by vegetation physiology, red for grid points dominated by net radiation, and blue for grid points dominated by the

  8. Providing habitat for native mammals through understory enhancement in forestry plantations.

    Science.gov (United States)

    Simonetti, Javier A; Grez, Audrey A; Estades, Cristián F

    2013-10-01

    The Convention on Biological Diversity (CBD) expects forestry plantations to contribute to biodiversity conservation. A well-developed understory in forestry plantations might serve as a surrogate habitat for native species and mitigate the negative effect of plantations on species richness. We experimentally tested this hypothesis by removing the understory in Monterey pine (Pinus radiata) plantations in central Chile and assessing changes in species richness and abundance of medium-sized mammals. Frequency of occurrence of mammals, including kodkods (Leopardus guigna), culpeo foxes (Pseudalopex culpaeus), lesser grisons (Conepatus chinga), and Southern pudu deer (Pudu puda), was low in forest stands with little to no understory relative to stands with well-developed undergrowth vegetation. After removing the understory, their frequency of occurrence decreased significantly, whereas in control stands, where understory was not removed, their frequency did not change. This result strongly supports the idea that facilitating the development of undergrowth vegetation may turn forestry stands into secondary habitats as opposed to their containing no habitat for native mammals. This forestry practice could contribute to conservation of biological diversity as it pertains to CBD targets. © 2013 Society for Conservation Biology.

  9. LEAF AREA INDEX (LAI) CHANGE DETECTION ANALYSIS ON LOBLOLLY PINE (PINUS TAEDA) FOLLOWING COMPLETE UNDERSTORY REMOVAL

    Science.gov (United States)

    The confounding effect of understory vegetation contributions to satellite-derived estimates of leaf area index (LAI) was investigated on two loblolly pine (Pinus taeda) forest stands located in Virginia and North Carolina. In order to separate NDVI contributions of the dominantc...

  10. Understory cover and biomass indices predictions for forest ecosystems of the Northwestern United States

    Science.gov (United States)

    Vasile A. Suchar; Nicholas L. Crookston

    2010-01-01

    The understory community is a critical component of many processes of forest ecosystems. Cover and biomass indices of shrubs and herbs of forested ecosystems of Northwestern United States are presented. Various forest data were recorded for 10,895 plots during a Current Vegetation Survey, over the National Forest lands of entire Pacific Northwest. No significant...

  11. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.

    2012-01-01

    • Over the past 30 years (1982-2011), the Normalized Difference Vegetation Index (NDVI), an index of green vegetation, has increased 15.5% in the North American Arctic and 8.2% in the Eurasian Arctic. In the more southern regions of Arctic tundra, the estimated aboveground plant biomass has...... in vegetation (including shrub tundra expansion) and thunderstorm activity, each a result of Arctic warming, have created conditions that favor a more active Arctic fire regime....

  12. From groundwater abstraction to vegetative response in fen ecosystems

    DEFF Research Database (Denmark)

    Johansen, Ole Munch; Jensen, Jacob Birk; Pedersen, Morten Lauge

    2014-01-01

    periods. The predicted change in water table conditions in the fen habitat is compared to the variability found in 35 Danish fens, and the ecological response is discussed based on statistical water-level vegetation relations. The results provide a rare quantitative foundation for decision making...... resolution. A considerable flow reduction in the natural spring was monitored during a full-scale pumping test while no significant effects on the water table in the fen habitats were observed. A modelled abstraction scenario predicted a lowering of 2–3 cm in the centre of the main fen area during summer...

  13. Historical jigsaw puzzles: piecing together the understory of Garry Oak (Quercus garryana) ecosystems and the implications for restoration

    Science.gov (United States)

    Carrina Maslovat

    2002-01-01

    Ecosystem restoration requires a set of reference vegetation conditions which are difficult to find for Garry oak (Quercus garryana) ecosystems in Canada because contemporary sites have been drastically altered. A survey of historical information provides only limited clues about the original understory vegetation. Although there is considerable...

  14. Preliminary Results: Effects of Fertilization, Herbicide Application, and Prescribed Burning on Understory Regeneration on Pine Plantations in East Texas

    Science.gov (United States)

    Betsy Ott; Brian Oswald; Hans Williams; Kenneth Farrish

    2002-01-01

    Biodiversity and species rareness are increasingly the focal points for assessment of habitat quality. Managed pine plantations are often viewed as monocultures with little of value beyond their timber crop. The purpose of this study is to assess vegetative biodiversity in the understory of two pine plantations in which different vegetative control mechanisms are...

  15. Florística e estrutura da vegetação arbustivo-arbórea do sub-bosque de um povoamento de Eucalyptus grandis W. Hill ex Maiden em Viçosa, MG, Brasil Floristic and structure of tree-shrub vegetation in understory of Eucalyptus grandis W. Hill ex Maiden stands, in Viçosa, MG, Brazil

    Directory of Open Access Journals (Sweden)

    Priscila Bezerra de Souza

    2007-01-01

    Full Text Available Este estudo teve como objetivo conhecer a composição florística e a estrutura da vegetação arbustivo-arbórea no sub-bosque de povoamento de Eucalyptus grandis na Reserva Florestal da Mata do Paraíso, em Viçosa, MG. Foram demarcadas 40 parcelas contíguas de 5 x 5 m, dispostas em transectos de 5 x 50 m, nas quais foram medidos, identificados e classificados quanto às síndromes de dispersão de sementes e às categorias sucessionais. Foram amostrados 884 indivíduos pertencentes a 50 espécies e 22 famílias. As espécies que se destacaram em valor de importância foram Psychotria sessilis, Siparuna guianensis e Erythroxylum pelleterianum, principalmente com relação à elevada densidade. Predominaram em densidade espécies secundárias tardias com síndromes de dispersão zoocórica. A riqueza florística encontrada pode ser considerada alta, por se tratar de sub-bosque de Eucalyptus grandis, e reflete o potencial da utilização dessa espécie como catalisadora de vegetação arbustivo-arbórea nativa em áreas degradadas.The objective of the present study was to analyze the floristic composition and structure of tree-shrub vegetation in understory of Eucalyptus grandis W. former Hill Maiden, Paraíso Forest Reserve, Viçosa, MG. Forty adjacent 5 x 5 m plots were demarcated and arranged in 5 x 50 m transects, in which individuals were measured, identified and classified in relation to seed dispersal syndromes and successional categories. Eight hundred and eighty four individuals belonging to 50 species and 22 families were recorded. The species with the highest Importance Value were Psychotria sessilis, Siparuna guianensis and Erythroxylum pelleterianum, particularly with regard to high density. Late secondary species with zoochorous dispersal syndromes prevailed in density. The founded floristic richness can be considered high for a Eucalyptus grandis understory and reflects the potential for using the species as catalyst for native

  16. Efectos de la producción de semillas y la heterogeneidad vegetal sobre la supervivencia de semillas y el patrón espacio-temporal de establecimiento de plántulas en Araucaria araucana Araucaria araucana temporal and spatial seedling establishment patterns: masting, seed predation and understory vegetation effects

    Directory of Open Access Journals (Sweden)

    JAVIER SANGUINETTI

    2009-01-01

    , or the availability of microsites for germination and plant growth. Seed dispersal and survival from mother tree could determine the spatial pattern of seedling establishment and the literature proposes several distance mother-recruit models. We studied the effects of masting, seed predation and understory vegetation on seedling establishment in A. araucana. Using tree cone production and seed survival data and through seedling surveys in different microsites we evaluated the temporal and spatial establishment pattern. In the study site A. araucana showed a pulsed pattern for seedling establishment, synchronized among trees, and associated with masting due to an increase of seed survivorship. At dense microsites, mainly Chusquea bamboo, seedling regeneration was strongly inhibited by an excessive seed predation and not due to competition with the bamboo. The observed distance mother-recruit pattern mainly fits the Janzen-Connell model that considers the increase of seed survivorship with distance and the establishment peak occurrence at intermedíate distances from the seeding tree. However, we detected a significantly difference on the distance mother-recruit between seedlings and saplings, presumably due to differential age- and distance- dependent mortality patterns. These results suggest that the occurrence of A. araucana regeneration is mainly controlled by seed production and granivory, and its interaction with vegetation, modulate the seedling establishment intensity.

  17. Post-Fire Peat Land Understory Plant in Rimba Panjang, Sumatera, Indonesia

    Science.gov (United States)

    Firdaus, L. N.; Nursal; Wulandari, Sri; Syafi'i, Wan; Fauziah, Yuslim

    2017-12-01

    The existence of understory plants during early post-fire succession is essential in term of natural post-fire ecological restoration. More than fifty percent of fire incidents in Riau, Sumatera, Indonesia occurred in shallow peat lands which have the huge impact on vegetation damage. This study aims to explore the understory plants species and diversity in post-fire peat land at Rimba Panjang, Kampar Regency, Sumatera, Indonesia. By using survey method, the observations were conducted on 150 plots which were distributed randomly over four locations based on the year after fire: 2009, 2014, 2015 and 2016. We found respectively 12, 14, 19 and 17 species at that sites with respective Shannon Wiener diversity index were 1.72, 2.00, 2.14 and 2.40. All the sites were dominated by Stenochlaena palustris (Burm.). Coverage percentage of understory vegetation were respectively 28.87%, 25.50%, 51.60% and 54.13%. Overall, we found 31 species of 17 familia. The result showed that the species composition, diversity index and coverage percentage of understory plant are likely to decrease in line with the length of time after the fire. Post peatland fires in Rimba Panjang are still having the characteristics of the peat swamp habitat which was dominated by Stenochlaena palustris (Burm.). Ecological restoration of that habitat is still possible, but it is necessary to consider technological and socio-economical aspects of local communities.

  18. Simulating Various Terrestrial and Uav LIDAR Scanning Configurations for Understory Forest Structure Modelling

    Science.gov (United States)

    Hämmerle, M.; Lukač, N.; Chen, K.-C.; Koma, Zs.; Wang, C.-K.; Anders, K.; Höfle, B.

    2017-09-01

    Information about the 3D structure of understory vegetation is of high relevance in forestry research and management (e.g., for complete biomass estimations). However, it has been hardly investigated systematically with state-of-the-art methods such as static terrestrial laser scanning (TLS) or laser scanning from unmanned aerial vehicle platforms (ULS). A prominent challenge for scanning forests is posed by occlusion, calling for proper TLS scan position or ULS flight line configurations in order to achieve an accurate representation of understory vegetation. The aim of our study is to examine the effect of TLS or ULS scanning strategies on (1) the height of individual understory trees and (2) understory canopy height raster models. We simulate full-waveform TLS and ULS point clouds of a virtual forest plot captured from various combinations of max. 12 TLS scan positions or 3 ULS flight lines. The accuracy of the respective datasets is evaluated with reference values given by the virtually scanned 3D triangle mesh tree models. TLS tree height underestimations range up to 1.84 m (15.30 % of tree height) for single TLS scan positions, but combining three scan positions reduces the underestimation to maximum 0.31 m (2.41 %). Combining ULS flight lines also results in improved tree height representation, with a maximum underestimation of 0.24 m (2.15 %). The presented simulation approach offers a complementary source of information for efficient planning of field campaigns aiming at understory vegetation modelling.

  19. CO2 enrichment accelerates successional development of an understory plant community

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Lara [University of Tennessee, Knoxville (UTK); Belote, R. Travis Travis [Wilderness Society, The; Kardol, Paul [ORNL; Weltzin, Jake [ORNL; Norby, Richard J [ORNL

    2010-01-01

    Rising concentrations of atmospheric carbon dioxide ([CO{sub 2}]) may influence forest successional development and species composition of understory plant communities by altering biomass production of plant species of functional groups. Here, we describe how elevated [CO{sub 2}] (eCO{sub 2}) affects aboveground biomass within the understory community of a temperate deciduous forest at the Oak Ridge National Laboratory sweetgum (Liquidambar styraciflua) free-air carbon dioxide enrichment (FACE) facility in eastern Tennessee, USA. We asked if (i) CO{sub 2} enrichment affected total understory biomass and (ii) whether total biomass responses could be explained by changes in understory species composition or changes in relative abundance of functional groups through time. The FACE experiment started in 1998 with three rings receiving ambient [CO{sub 2}] (aCO{sub 2}) and two rings receiving eCO{sub 2}. From 2001 to 2003, we estimated species-specific, woody versus herbaceous and total aboveground biomass by harvesting four 1 x 0.5-m subplots within the established understory plant community in each FACE plot. In 2008, we estimated herbaceous biomass as previously but used allometric relationships to estimate woody biomass across two 5 x 5-m quadrats in each FACE plot. Across years, aboveground biomass of the understory community was on average 25% greater in eCO{sub 2} than in aCO{sub 2} plots. We could not detect differences in plant species composition between aCO{sub 2} and eCO{sub 2} treatments. However, we did observe shifts in the relative abundance of plant functional groups, which reflect important structural changes in the understory community. In 2001-03, little of the understory biomass was in woody species; herbaceous species made up 94% of the total understory biomass across [CO{sub 2}] treatments. Through time, woody species increased in importance, mostly in eCO{sub 2}, and in 2008, the contribution of herbaceous species to total understory biomass was

  20. Physiological and Growth Responses of Midrotation Loblolly Pine to Treatments of Fire, Herbicide, and Fertilizer

    Science.gov (United States)

    Emily J. Goodwin; Lisa M. Marino McInnis; Hans M. Williams; Brian P. Oswald; Kenneth W. Farrish

    2004-01-01

    The objectives of this study were to examine the effects of fertilizer and understory vegetation control (herbicide and prescribed fire) on mature tree physiology and to link observed physiological responses with tree growth. Photosynthetic rate (photosynthesis), transpiration, stomatal conductance, stem diameter, and crown area were measured in two midrotation...

  1. Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds

    Science.gov (United States)

    Merritt, D.M.; Scott, M.L.; Leroy, Poff N.; Auble, G.T.; Lytle, D.A.

    2010-01-01

    Riparian vegetation composition, structure and abundance are governed to a large degree by river flow regime and flow-mediated fluvial processes. Streamflow regime exerts selective pressures on riparian vegetation, resulting in adaptations (trait syndromes) to specific flow attributes. Widespread modification of flow regimes by humans has resulted in extensive alteration of riparian vegetation communities. Some of the negative effects of altered flow regimes on vegetation may be reversed by restoring components of the natural flow regime. 2. Models have been developed that quantitatively relate components of the flow regime to attributes of riparian vegetation at the individual, population and community levels. Predictive models range from simple statistical relationships, to more complex stochastic matrix population models and dynamic simulation models. Of the dozens of predictive models reviewed here, most treat one or a few species, have many simplifying assumptions such as stable channel form, and do not specify the time-scale of response. In many cases, these models are very effective in developing alternative streamflow management plans for specific river reaches or segments but are not directly transferable to other rivers or other regions. 3. A primary goal in riparian ecology is to develop general frameworks for prediction of vegetation response to changing environmental conditions. The development of riparian vegetation-flow response guilds offers a framework for transferring information from rivers where flow standards have been developed to maintain desirable vegetation attributes, to rivers with little or no existing information. 4. We propose to organise riparian plants into non-phylogenetic groupings of species with shared traits that are related to components of hydrologic regime: life history, reproductive strategy, morphology, adaptations to fluvial disturbance and adaptations to water availability. Plants from any river or region may be grouped

  2. Time-lag effects of global vegetation responses to climate change.

    Science.gov (United States)

    Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian

    2015-09-01

    Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P effects is quite important for better predicting and evaluating the vegetation dynamics under the background of global climate change. © 2015 John Wiley & Sons Ltd.

  3. Resource Limitations Influence Growth and Vigor of Idaho Fescue, a Common Understory Species in Pacific Northwest Ponderosa Pine Forests

    Directory of Open Access Journals (Sweden)

    Craig A. Carr

    2016-12-01

    Full Text Available Alterations in under-canopy resource availability associated with elevated ponderosa pine (Pinus ponderosa Dougl. abundance can negatively influence understory vegetation. Experimental evidence linking under-canopy resource availability and understory vegetation is scarce. Yet this information would be beneficial in developing management strategies to recover desired understory species. We tested the effects of varying nitrogen (N and light availability on Idaho fescue (Festuca idahoensis Elmer, the dominant understory species in ponderosa pine/Idaho fescue plant associations in eastern Oregon. In a greenhouse experiment, two levels of N (50 kg∙N∙ha−1 and 0 kg∙N∙ha−1 and shade (80% shade and 0% shade were applied in a split-plot design to individual potted plants grown in soil collected from high abundance pine stands. Plants grown in unshaded conditions produced greater root (p = 0.0027 and shoot (p = 0.0017 biomass and higher cover values (p = 0.0378 compared to those in the shaded treatments. The addition of N had little effect on plant growth (p = 0.1602, 0.5129, and 0.0853 for shoot biomass, root biomass, and cover, respectively, suggesting that soils in high-density ponderosa pine stands that lack understory vegetation were not N deficient and Idaho fescue plants grown in these soils were not N limited. Management activities that increase under-canopy light availability will promote the conditions necessary for Idaho fescue recovery. However, successful restoration may be constrained by a lack of residual fescue or the invasion of more competitive understory vegetation.

  4. Multiple environmental changes drive forest floor vegetation in a temperate mountain forest.

    Science.gov (United States)

    Helm, Norbert; Essl, Franz; Mirtl, Michael; Dirnböck, Thomas

    2017-04-01

    Human-induced changes of the environment and their possible impacts on temperate forest understory plant communities have been examined in many studies. However, the relative contribution of individual environmental factors to these changes in the herb layer is still unclear. In this study, we used vegetation survey data covering a time period of 21 years and collected from 143 permanent plots in the Northern Limestone Alps, Austria. Data on soil chemistry (49 plots), light condition (51 plots), soil temperature and moisture (four and six plots), disturbance (all plots), climate (one station in a clearing area), and airborne sulfur (S) and nitrogen (N) deposition (two forest stands) were available for analyses. We used these data together with plot mean Ellenberg indicator values in a path analysis to attribute their relative contributions to observed vegetation changes. Our analysis reveals a strong directional shift of the forest understory plant community. We found strong evidence for a recovery of the ground-layer vegetation from acidification as response to decreased S deposition. We did not observe a community response to atmospheric N deposition, but we found a response to altered climatic conditions (thermophilization and drying). The path analysis revealed that changes in the light regime, which were related to small-scale disturbances, had most influence on herb layer community shifts. Thermophilization and drying were identified as drivers of understory community changes independent of disturbance events.

  5. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China.

    Science.gov (United States)

    Zhou, Lili; Cai, Liping; He, Zongming; Wang, Rongwei; Wu, Pengfei; Ma, Xiangqing

    2016-12-01

    Sustainable forestry requires adopting more ecosystem-informed perspectives. Tree thinning improves forest productivity by encouraging the development of the understory, which in turn improves species diversity and nutrient cycling, thereby altering the ecophysiological environment of the stand. This study aimed to quantify tree growth, understory vegetation, and soil quality of 9- and 16-year-old Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations in South China, 1-7 years after pre-commercial thinning. The quadratic mean diameter (QMD) and individual tree volume were greatly increased and compensated for the reduced stand yield in thinned stands. In 2011, the stand volume in unthinned and thinned stands were 276.33 and 226.46 and 251.30 and 243.64 m 3  ha -1 , respectively, for young and middle stage. Therefore, we predicted that over time, the stand volume in thinned stands should exceed that in unthinned stands. The composition, diversity, and biomass of understory vegetation of the plantation monocultures significantly increased after thinning. The effects of thinning management on understory development were dynamic and apparent within 1-2 years post-thinning. Some light-demanding plant species such as Styrax faberi, Callicarpa formosana, Lophatherum gracile, and Gahnia tristis emerged in the shrub and herb layer and became dominant with the larger gaps in the canopy in thinned stands. The trigger effects of thinning management on understory and tree growth were more pronounced in the young stage. The beneficial effects on soil physical and chemical properties were measurable at later stages (7 years after thinning). The strong positive relationship between understory biomass and volume increment (at the tree and stand levels) indicated that understory improvement after thinning did not restrict productivity within Chinese fir stands but rather, benefited soil water content and nutrient status and promoted tree growth.

  6. A population model of chaparral vegetation response to frequent wildfires.

    Science.gov (United States)

    Lucas, Timothy A; Johns, Garrett; Jiang, Wancen; Yang, Lucie

    2013-12-01

    The recent increase in wildfire frequency in the Santa Monica Mountains (SMM) may substantially impact plant community structure. Species of Chaparral shrubs represent the dominant vegetation type in the SMM. These species can be divided into three life history types according to their response to wildfires. Nonsprouting species are completely killed by fire and reproduce by seeds that germinate in response to a fire cue, obligate sprouting species survive by resprouting from dormant buds in a root crown because their seeds are destroyed by fire, and facultative sprouting species recover after fire both by seeds and resprouts. Based on these assumptions, we developed a set of nonlinear difference equations to model each life history type. These models can be used to predict species survivorship under varying fire return intervals. For example, frequent fires can lead to localized extinction of nonsprouting species such as Ceanothus megacarpus while several facultative sprouting species such as Ceanothus spinosus and Malosma (Rhus) laurina will persist as documented by a longitudinal study in a biological preserve in the SMM. We estimated appropriate parameter values for several chaparral species using 25 years of data and explored parameter relationships that lead to equilibrium populations. We conclude by looking at the survival strategies of these three species of chaparral shrubs under varying fire return intervals and predict changes in plant community structure under fire intervals of short return. In particular, our model predicts that an average fire return interval of greater than 12 years is required for 50 % of the initial Ceanothus megacarpus population and 25 % of the initial Ceanothus spinosus population to survive. In contrast, we predict that the Malosma laurina population will have 90 % survivorship for an average fire return interval of at least 6 years.

  7. Infrared heater system for warming tropical forest understory plants and soils

    Science.gov (United States)

    Bruce A. Kimball; Aura M. Alonso-Rodríguez; Molly A. Cavaleri; Sasha C. Reed; Grizelle González; Tana E. Wood

    2018-01-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses...

  8. Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM.

    Directory of Open Access Journals (Sweden)

    Siyang Wang

    Full Text Available Analyzing how climate change affects vegetation distribution is one of the central issues of global change ecology as this has important implications for the carbon budget of terrestrial vegetation. Mapping vegetation distribution under historical climate scenarios is essential for understanding the response of vegetation distribution to future climatic changes. The reconstructions of palaeovegetation based on pollen data provide a useful method to understand the relationship between climate and vegetation distribution. However, this method is limited in time and space. Here, using species distribution model (SDM approaches, we explored the climatic determinants of contemporary vegetation distribution and reconstructed the distribution of Chinese vegetation during the Last Glacial Maximum (LGM, 18,000 14C yr BP and Middle-Holocene (MH, 6000 14C yr BP. The dynamics of vegetation distribution since the LGM reconstructed by SDMs were largely consistent with those based on pollen data, suggesting that the SDM approach is a useful tool for studying historical vegetation dynamics and its response to climate change across time and space. Comparison between the modeled contemporary potential natural vegetation distribution and the observed contemporary distribution suggests that temperate deciduous forests, subtropical evergreen broadleaf forests, temperate deciduous shrublands and temperate steppe have low range fillings and are strongly influenced by human activities. In general, the Tibetan Plateau, North and Northeast China, and the areas near the 30°N in Central and Southeast China appeared to have experienced the highest turnover in vegetation due to climate change from the LGM to the present.

  9. Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective

    Science.gov (United States)

    Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga

    2016-01-01

    Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.

  10. Vegetation responses to sagebrush-reduction treatments measured by satellites

    Science.gov (United States)

    Johnston, Aaron N.; Beever, Erik; Merkle, Jerod A.; Chong, Geneva W.

    2018-01-01

    Time series of vegetative indices derived from satellite imagery constitute tools to measure ecological effects of natural and management-induced disturbances to ecosystems. Over the past century, sagebrush-reduction treatments have been applied widely throughout western North America to increase herbaceous vegetation for livestock and wildlife. We used indices from satellite imagery to 1) quantify effects of prescribed-fire, herbicide, and mechanical treatments on vegetative cover, productivity, and phenology, and 2) describe how vegetation changed over time following these treatments. We hypothesized that treatments would increase herbaceous cover and accordingly shift phenologies towards those typical of grass-dominated systems. We expected prescribed burns would lead to the greatest and most-prolonged effects on vegetative cover and phenology, followed by herbicide and mechanical treatments. Treatments appeared to increase herbaceous cover and productivity, which coincided with signs of earlier senescence − signals expected of grass-dominated systems, relative to sagebrush-dominated systems. Spatial heterogeneity for most phenometrics was lower in treated areas relative to controls, which suggested treatment-induced homogenization of vegetative communities. Phenometrics that explain spring migrations of ungulates mostly were unaffected by sagebrush treatments. Fire had the strongest effect on vegetative cover, and yielded the least evidence for sagebrush recovery. Overall, treatment effects were small relative to those reported from field-based studies for reasons most likely related to sagebrush recovery, treatment specification, and untreated patches within mosaicked treatment applications. Treatment effects were also small relative to inter-annual variation in phenology and productivity that was explained by temperature, snowpack, and growing-season precipitation. Our results indicated that cumulative NDVI, late-season phenometrics, and spatial

  11. Long-term overstory and understory change following logging and fire exclusion in a Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    Eric E. Knapp; Carl N. Skinner; Malcolm P. North; Becky L. Estes

    2013-01-01

    In many forests of the western US, increased potential for fires of uncharacteristic intensity and severity is frequently attributed to structural changes brought about by fire exclusion, past land management practices, and climate. Extent of forest change and effect on understory vegetation over time are not well understood, but such information is useful to forest...

  12. Monitoring vegetation response to episodic disturbance events by using multi-temporal vegetation indices

    Science.gov (United States)

    Steyer, Gregory D.; Couvillion, Brady R.; Barras, John A.

    2013-01-01

    Normalized Difference Vegetation Index (NDVI) derived from MODerate-resolution Imaging Spectroradiometer (MODIS) satellite imagery and land/water assessments from Landsat Thematic Mapper (TM) imagery were used to quantify the extent and severity of damage and subsequent recovery after Hurricanes Katrina and Rita of 2005 within the vegetation communities of Louisiana's coastal wetlands. Field data on species composition and total live cover were collected from 232 unique plots during multiple time periods to corroborate changes in NDVI values over time. Aprehurricane 5-year baseline time series clearly identified NDVI values by habitat type, suggesting the sensitivity of NDVI to assess and monitor phenological changes in coastal wetland habitats. Monthly data from March 2005 to November 2006 were compared to the baseline average to create a departure from average statistic. Departures suggest that over 33% (4,714 km2) of the prestorm, coastal wetlands experienced a substantial decline in the density and vigor of vegetation by October 2005 (poststorm), mostly in the east and west regions, where landfalls of Hurricanes Katrina and Rita occurred. The percentage of area of persistent vegetation damage due to long-lasting formation of new open water was 91.8% in the east and 81.0% and 29.0% in the central and west regions, respectively. Although below average NDVI values were observed in most marsh communities through November 2006, recovery of vegetation was evident. Results indicated that impacts and recovery from large episodic disturbance events that influence multiple habitat types can be accurately determined using NDVI, especially when integrated with assessments of physical landscape changes and field verifications.

  13. Monitoring vegetation response to episodic disturbance events by using multitemporal vegetation indices

    Science.gov (United States)

    Steyer, Gregory D.; Couvillion, Brady R.; Barras, John A.

    2013-01-01

    Normalized Difference Vegetation Index (NDVI) derived from MODerate-resolution Imaging Spectroradiometer (MODIS) satellite imagery and land/water assessments from Landsat Thematic Mapper (TM) imagery were used to quantify the extent and severity of damage and subsequent recovery after Hurricanes Katrina and Rita of 2005 within the vegetation communities of Louisiana's coastal wetlands. Field data on species composition and total live cover were collected from 232 unique plots during multiple time periods to corroborate changes in NDVI values over time. Aprehurricane 5-year baseline time series clearly identified NDVI values by habitat type, suggesting the sensitivity of NDVI to assess and monitor phenological changes in coastal wetland habitats. Monthly data from March 2005 to November 2006 were compared to the baseline average to create a departure from average statistic. Departures suggest that over 33% (4,714 km2) of the prestorm, coastal wetlands experienced a substantial decline in the density and vigor of vegetation by October 2005 (poststorm), mostly in the east and west regions, where landfalls of Hurricanes Katrina and Rita occurred. The percentage of area of persistent vegetation damage due to long-lasting formation of new open water was 91.8% in the east and 81.0% and 29.0% in the central and west regions, respectively. Although below average NDVI values were observed in most marsh communities through November 2006, recovery of vegetation was evident. Results indicated that impacts and recovery from large episodic disturbance events that influence multiple habitat types can be accurately determined using NDVI, especially when integrated with assessments of physical landscape changes and field verifications.

  14. Chronic over browsing and biodiversity collapse in a forest understory in Pennsylvania: Results from a 60 year-old deer exclusion plot

    Science.gov (United States)

    Chandra Goetsch; Jennifer Wigg; Alejandro A. Royo; Todd Ristau; Walter P. Carson

    2011-01-01

    We evaluated the impact of chronic deer over browsing on the diversity and abundance of understory forbs and shrubs within a forest stand in the Allegheny High Plateau Region of Pennsylvania by comparing vegetation inside a 60-year-old exclosure to vegetation within an adjacent reference site. This is the oldest known exclosure in the Eastern Deciduous Forest. Browsing...

  15. Broad-Scale Environmental Conditions Responsible for Post-Fire Vegetation Dynamics

    OpenAIRE

    Stuart E. Marsh; Grant M. Casady

    2010-01-01

    Ecosystem response to disturbance is influenced by environmental conditions at a number of scales. Changes in climate have altered fire regimes across the western United States, and have also likely altered spatio-temporal patterns of post-fire vegetation regeneration. Fire occurrence data and a vegetation index (NDVI) derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR) were used to monitor post-fire vegetation from 1989 to 2007. We first investigated differences in post-fi...

  16. Response of Competing Vegetation to Site Preparation on West Gulf Coastal Plain Commercial Forest Land

    Science.gov (United States)

    Gale L. Wolters; Henry A. Pearson; Ronald E. Thill; V. Clark Baldwin; Alton Martin

    1995-01-01

    The response of woody and herbaceous vegetation to site preparation, subsoil texture, and fertilization was measured on the West Gulf Coastal Plain. The influences of these treatments on competing vegetation were short-term. Drastic soil disturbance and fertilization briefly increased herbage production. Shear-windrow and shear-disk were generally the most effective...

  17. The influence of parent material on vegetation response 15 years after the Dude Fire, Arizona

    Science.gov (United States)

    Jackson M. Leonard; Alvin L. Medina; Daniel G. Neary; Aregai Tecle

    2015-01-01

    This study examined the effects of two types of parent material, sandstone and limestone, on the response of vegetation growth after the 1990 Dude Fire in central Arizona. The operating hypothesis of the study was that, given the right conditions, severe wildfire can trigger vegetation type conversion. Overall, three patterns emerged: (1) oak density increased by 413%...

  18. Large-scale vegetation responses to terrestrial moisture storage changes

    Science.gov (United States)

    Andrew, Robert L.; Guan, Huade; Batelaan, Okke

    2017-09-01

    The normalised difference vegetation index (NDVI) is a useful tool for studying vegetation activity and ecosystem performance at a large spatial scale. In this study we use the Gravity Recovery and Climate Experiment (GRACE) total water storage (TWS) estimates to examine temporal variability of the NDVI across Australia. We aim to demonstrate a new method that reveals the moisture dependence of vegetation cover at different temporal resolutions. Time series of monthly GRACE TWS anomalies are decomposed into different temporal frequencies using a discrete wavelet transform and analysed against time series of the NDVI anomalies in a stepwise regression. The results show that combinations of different frequencies of decomposed GRACE TWS data explain NDVI temporal variations better than raw GRACE TWS alone. Generally, the NDVI appears to be more sensitive to interannual changes in water storage than shorter changes, though grassland-dominated areas are sensitive to higher-frequencies of water-storage changes. Different types of vegetation, defined by areas of land use type, show distinct differences in how they respond to the changes in water storage, which is generally consistent with our physical understanding. This unique method provides useful insight into how the NDVI is affected by changes in water storage at different temporal scales across land use types.

  19. Growth and Yield Responses of Vegetable Cowpea ( Vigna ...

    African Journals Online (AJOL)

    The amendment of acidic soil with lime application enhances nutrient availability for optimum vegetable cowpea production. Field experiments were conducted in the teaching and research farm of Michael Okpara University of Agriculture, Umudike during 2006 and 2007 cropping seasons to determine the growth and yield ...

  20. Vegetative response to water availability on the San Carlos Apache Reservation

    Science.gov (United States)

    Petrakis, Roy; Wu, Zhuoting; McVay, Jason; Middleton, Barry R.; Dye, Dennis G.; Vogel, John M.

    2016-01-01

    On the San Carlos Apache Reservation in east-central Arizona, U.S.A., vegetation types such as ponderosa pine forests, pinyon-juniper woodlands, and grasslands have significant ecological, cultural, and economic value for the Tribe. This value extends beyond the tribal lands and across the Western United States. Vegetation across the Southwestern United States is susceptible to drought conditions and fluctuating water availability. Remotely sensed vegetation indices can be used to measure and monitor spatial and temporal vegetative response to fluctuating water availability conditions. We used the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived Modified Soil Adjusted Vegetation Index II (MSAVI2) to measure the condition of three dominant vegetation types (ponderosa pine forest, woodland, and grassland) in response to two fluctuating environmental variables: precipitation and the Standardized Precipitation Evapotranspiration Index (SPEI). The study period covered 2002 through 2014 and focused on a region within the San Carlos Apache Reservation. We determined that grassland and woodland had a similar moderate to strong, year-round, positive relationship with precipitation as well as with summer SPEI. This suggests that these vegetation types respond negatively to drought conditions and are more susceptible to initial precipitation deficits. Ponderosa pine forest had a comparatively weaker relationship with monthly precipitation and summer SPEI, indicating that it is more buffered against short-term drought conditions. This research highlights the response of multiple, dominant vegetation types to seasonal and inter-annual water availability. This research demonstrates that multi-temporal remote sensing imagery can be an effective tool for the large scale detection of vegetation response to adverse impacts from climate change and support potential management practices such as increased monitoring and management of drought-affected areas. Different

  1. Characterizing drought-induced changes in active microbial communities and recently assimilated carbon transferred belowground in a forest understory

    Science.gov (United States)

    von Rein, Isabell; Kayler, Zachary; Gessler, Arthur

    2013-04-01

    Greenhouse gas induced global warming is expected to result in droughts of longer duration and higher intensity. Since droughts can disturb ecosystem interconnections, the investigation of ecosystem responses is crucial. Nonetheless, little is known about how changes in water availability affect ecosystem interconnections, e.g. the plant-microorganism response towards a drought event. We hypothesize that there is a shift in the microbial community structure and activity under drought when compared to a well-watered control. Moreover, we assume that changes seen at the microbial level are linked to plant carbon (C) assimilation and transport. We expect reduced C assimilation in plants under drought and a subsequent weakening in the coupling between the plant and belowground processes. How do microbial communities that depend on the rhizodeposited C provided by plants react to a reduction in exudate availability? To answer this question, three intact soil monoliths (70x70x20cm) with their natural understory vegetation were taken from a spruce forest in Hainich, Germany and transferred to a climate chamber. Half of the monoliths are exposed to drought whereas the other half is kept well-watered. The monoliths are pulse labeled with 13CO2 and the label is traced through the plant-soil system. Plants, roots and soil are sampled after labeling and analyzed for their isotopic composition. Pyrosequencing and PLFA-SIP (Phospholipid fatty acids stable isotope probing) are performed to detect changes in the microbial community structure and in the composition of the metabolically active microorganisms, respectively. We will discuss our first results concerning the effects of drought on understory carbon partitioning and the impact of drought on carbon availability to soil microorganisms.

  2. Vegetation response to climate change : implications for Canada's conservation lands

    International Nuclear Information System (INIS)

    Scott, D.; Lemieux, C.

    2003-01-01

    Studies have shown that Canada's national parks are vulnerable to the impacts of climate change. A wide range of biophysical climate change impacts could affect the integrity of conservation lands in each region of Canada. This report examines the potential impact of climate change on landscape alterations and vegetation distribution in Canada's wide network of conservation lands. It also presents several ways to integrate climate change into existing conservation policy and adaptation strategies. Canada's conservation lands include provincial parks, migratory bird sanctuaries, national wildlife areas and wildlife protected areas. This is the first study to examine biome changes by applying an equilibrium Global Vegetation Model (GVM) to Canada's network of national park systems. Some of the policy and planning challenges posed by changes in landscape level vegetation were also addressed. The report indicates that in terms of potential changes to the biome classification of Canada's national forests, more northern biomes are projected to decrease. These northern biomes include the tundra, taiga and boreal conifer forests. 56 refs., 8 tabs., 6 figs

  3. Terrestrial Feedbacks Incorporated in Global Vegetation Models through Observed Trait-Environment Responses

    Science.gov (United States)

    Bodegom, P. V.

    2015-12-01

    Most global vegetation models used to evaluate climate change impacts rely on plant functional types to describe vegetation responses to environmental stresses. In a traditional set-up in which vegetation characteristics are considered constant within a vegetation type, the possibility to implement and infer feedback mechanisms are limited as feedback mechanisms will likely involve a changing expression of community trait values. Based on community assembly concepts, we implemented functional trait-environment relationships into a global dynamic vegetation model to quantitatively assess this feature. For the current climate, a different global vegetation distribution was calculated with and without the inclusion of trait variation, emphasizing the importance of feedbacks -in interaction with competitive processes- for the prevailing global patterns. These trait-environmental responses do, however, not necessarily imply adaptive responses of vegetation to changing conditions and may locally lead to a faster turnover in vegetation upon climate change. Indeed, when running climate projections, simulations with trait variation did not yield a more stable or resilient vegetation than those without. Through the different feedback expressions, global and regional carbon and water fluxes were -however- strongly altered. At a global scale, model projections suggest an increased productivity and hence an increased carbon sink in the next decades to come, when including trait variation. However, by the end of the century, a reduced carbon sink is projected. This effect is due to a downregulation of photosynthesis rates, particularly in the tropical regions, even when accounting for CO2-fertilization effects. Altogether, the various global model simulations suggest the critical importance of including vegetation functional responses to changing environmental conditions to grasp terrestrial feedback mechanisms at global scales in the light of climate change.

  4. Broad-Scale Environmental Conditions Responsible for Post-Fire Vegetation Dynamics

    Directory of Open Access Journals (Sweden)

    Stuart E. Marsh

    2010-11-01

    Full Text Available Ecosystem response to disturbance is influenced by environmental conditions at a number of scales. Changes in climate have altered fire regimes across the western United States, and have also likely altered spatio-temporal patterns of post-fire vegetation regeneration. Fire occurrence data and a vegetation index (NDVI derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR were used to monitor post-fire vegetation from 1989 to 2007. We first investigated differences in post-fire rates of vegetation regeneration between ecoregions. We then related precipitation, temperature, and elevation records at four temporal scales to rates of post-fire vegetation regeneration to ascertain the influence of climate on post-fire vegetation dynamics. We found that broad-scale climate factors are an important influence on post-fire vegetation regeneration. Most notably, higher rates of post-fire regeneration occurred with warmer minimum temperatures. Increases in precipitation also resulted in higher rates of post-fire vegetation growth. While explanatory power was slight, multiple statistical approaches provided evidence for real ecological drivers of post-fire regeneration that should be investigated further at finer scales. The sensitivity of post-disturbance vegetation dynamics to climatic drivers has important ramifications for the management of ecosystems under changing climatic conditions. Shifts in temperature and precipitation regimes are likely to result in changes in post-disturbance dynamics, which could represent important feedbacks into the global climate system.

  5. Measuring and modeling the spatial pattern of understory bamboo across landscapes: Implications for giant panda habitat

    Science.gov (United States)

    Linderman, Marc Alan

    We examined an approach to classifying understory bamboo, the staple food of the giant panda (Ailuropoda melanoleuca), from remote sensing imagery in the Wolong Nature Reserve, China. We also used these data to estimate the landscape-scale distribution of giant panda habitat, and model the human effects on forest cover and the spatio-temporal dynamics of bamboo and the resulting implications for giant panda habitat. The spatial distribution of understory bamboo was mapped using an artificial neural network and leaf-on remote sensing data. Training on a limited set of ground truth data and using widely available Landsat TM data as input, a non-linear artificial neural network achieved a classification accuracy of 80% despite the presence of co-occurring mid-story and understory vegetation. Using information on the spatial distribution of bamboo in Wolong, we compared the results of giant panda habitat analyses with and without bamboo information. Total amount of habitat decreased by 29--56% and overall habitat patch size decreased by 16--48% after bamboo information was incorporated into the analyses. The decreases in the quantity of panda habitat and increases in habitat fragmentation resulted in decreases of 41--60% in carrying capacity. Using a spatio-temporal model of bamboo dynamics and human activities, we found that local fuelwood collection and household creation will likely reduce secondary habitat relied upon by pandas. Human impacts would likely contribute up to an additional 16% loss of habitat. Furthermore, these impacts primarily occur in the habitat relied upon by giant pandas during past bamboo die-offs. Decreased total area of habitat and increased fragmentation from human activities will likely make giant pandas increasingly sensitive to natural disturbances such as cyclical bamboo die-offs. Our studies suggest that it is necessary to further examine approaches to monitor understory vegetation and incorporate understory information into wildlife

  6. Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types

    Directory of Open Access Journals (Sweden)

    A. Bargsten

    2010-05-01

    Full Text Available Nitric oxide (NO plays an important role in the photochemistry of the troposphere. NO from soil contributes up to 40% to the global budget of atmospheric NO. Soil NO emissions are primarily caused by biological activity (nitrification and denitrification, that occurs in the uppermost centimeter of the soil, a soil region often characterized by high contents of organic material. Most studies of NO emission potentials to date have investigated mineral soil layers. In our study we sampled soil organic matter under different understories (moss, grass, spruce and blueberries in a humid mountainous Norway spruce forest plantation in the Fichtelgebirge (Germany. We performed laboratory incubation and flushing experiments using a customized chamber technique to determine the response of net potential NO flux to physical and chemical soil conditions (water content and temperature, bulk density, particle density, pH, C/N ratio, organic C, soil ammonium, soil nitrate. Net potential NO fluxes (in terms of mass of N from soil samples taken under different understories ranged from 1.7–9.8 ng m−2 s−1 (soil sampled under grass and moss cover, 55.4–59.3 ng m−2 s−1 (soil sampled under spruce cover, and 43.7–114.6 ng m−2 s−1 (soil sampled under blueberry cover at optimum water content and a soil temperature of 10 °C. The water content for optimum net potential NO flux ranged between 0.76 and 0.8 gravimetric soil moisture for moss covered soils, between 1.0 and 1.1 for grass covered soils, 1.1 and 1.2 for spruce covered soils, and 1.3 and 1.9 for blueberry covered soils. Effects of soil physical and chemical characteristics on net potential NO flux were statistically significant (0.01 probability level only for NH4+. Therefore, as an alternative explanation for the differences in soil biogenic NO emission we consider more biological factors like understory

  7. Southeastern U.S. vegetation response to ENSO Events (1989–1999)

    Science.gov (United States)

    Peters, Albert J.; Walter-Shea, Elizabeth

    2003-01-01

    El Niño/Southern Oscillation (ENSO) is considered one of the most powerful forces driving anomalous global weather patterns. Large-scale seasonal precipitation and temperature changes influenced by ENSO have been examined in many areas of the world. The southeastern United States is one of the regions affected by ENSO events. In this study, remote sensing detection of vegetation response to ENSO phases is demonstrated with one-kilometer biweekly Normalized Difference Vegetation Index (NDVI) data (1989–1999) derived from the Advanced Very High Resolution Radiometer(AVHRR). The impacts of three ENSO phases, cold, warm and neutral, on vegetation were analyzed with a focus on two vegetation cover types, two seasons and two geographic regions within the southeastern U.S. Significant ENSO effects on vegetation were found in cropland and forest vegetation cover types based on image and statistical analysis of the NDVI data. The results indicate that vegetation condition was optimal during the ENSO neutral phase for both agricultural and natural vegetation.

  8. Response of alpine vegetation growth dynamics to snow cover phenology on the Tibetan Plateau

    Science.gov (United States)

    Wang, X.; Wu, C.

    2017-12-01

    Alpine vegetation plays a crucial role in global energy cycles with snow cover, an essential component of alpine land cover showing high sensitivity to climate change. The Tibetan Plateau (TP) has a typical alpine vegetation ecosystem and is rich of snow resources. With global warming, the snow of the TP has undergone significant changes that will inevitably affect the growth of alpine vegetation, but observed evidence of such interaction is limited. In particular, a comprehensive understanding of the responses of alpine vegetation growth to snow cover variability is still not well characterized on TP region. To investigate this, we calculated three indicators, the start (SOS) and length (LOS) of growing season, and the maximum of normalized difference vegetation index (NDVImax) as proxies of vegetation growth dynamics from the Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2000-2015. Snow cover duration (SCD) and melt (SCM) dates were also extracted during the same time frame from the combination of MODIS and the Interactive Multi-sensor Snow and Ice Mapping System (IMS) data. We found that the snow cover phenology had a strong control on alpine vegetation growth dynamics. Furthermore, the responses of SOS, LOS and NDVImax to snow cover phenology varied among plant functional types, eco-geographical zones, and temperature and precipitation gradients. The alpine steppes showed a much stronger negative correlation between SOS and SCD, and also a more evidently positive relationship between LOS and SCD than other types, indicating a longer SCD would lead to an earlier SOS and longer LOS. Most areas showed positive correlation between SOS and SCM, while a contrary response was also found in the warm but drier areas. Both SCD and SCM showed positive correlations with NDVImax, but the relationship became weaker with the increase of precipitation. Our findings provided strong evidences between vegetation growth and snow cover phenology, and changes in

  9. Research Summary: Projecting Vegetation and Wildfire Response to Changing Climate and Fire Management in Interior Alaska

    Science.gov (United States)

    2016-08-21

    of lightning strikes in interior Alaska and their relations to elevation and vegetation. Canadian Journal of Forest Research (33): 770–782. IPCC...USER GUIDE Research Summary: Projecting Vegetation and Wildfire Response to Changing Climate and Fire Management in Interior Alaska SERDP Project...21-08-2016 2. REPORT TYPE User Guide/Summary 3. DATES COVERED (From - To) Mar 2011-Nov 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Research

  10. Short-term light and leaf photosynthetic dynamics affect estimates of daily understory photosynthesis in four tree species.

    Science.gov (United States)

    Naumburg, Elke; Ellsworth, David S

    2002-04-01

    Instantaneous measurements of photosynthesis are often implicitly or explicitly scaled to longer time frames to provide an understanding of plant performance in a given environment. For plants growing in a forest understory, results from photosynthetic light response curves in conjunction with diurnal light data are frequently extrapolated to daily photosynthesis (A(day)), ignoring dynamic photosynthetic responses to light. In this study, we evaluated the importance of two factors on A(day) estimates: dynamic physiological responses to photosynthetic photon flux density (PPFD); and time-resolution of the PPFD data used for modeling. We used a dynamic photosynthesis model to investigate how these factors interact with species-specific photosynthetic traits, forest type, and sky conditions to affect the accuracy of A(day) predictions. Increasing time-averaging of PPFD significantly increased the relative overestimation of A(day) similarly for all study species because of the nonlinear response of photosynthesis to PPFD (15% with 5-min PPFD means). Depending on the light environment characteristics and species-specific dynamic responses to PPFD, understory tree A(day) can be overestimated by 6-42% for the study species by ignoring these dynamics. Although these overestimates decrease under cloudy conditions where direct sunlight and consequently understory sunfleck radiation is reduced, they are still significant. Within a species, overestimation of A(day) as a result of ignoring dynamic responses was highly dependent on daily sunfleck PPFD and the frequency and irradiance of sunflecks. Overall, large overestimates of A(day) in understory trees may cause misleading inferences concerning species growth and competition in forest understories with sunlight. We conclude that comparisons of A(day) among co-occurring understory species in deep shade will be enhanced by consideration of sunflecks by using high-resolution PPFD data and understanding the physiological

  11. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest.

    Science.gov (United States)

    Sitters, Holly; York, Alan; Swan, Matthew; Christie, Fiona; Di Stefano, Julian

    2016-01-01

    Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD) provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion) were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion) were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated with vegetation

  12. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest.

    Directory of Open Access Journals (Sweden)

    Holly Sitters

    Full Text Available Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated

  13. Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds

    Science.gov (United States)

    Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun

    2017-08-01

    Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest - a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types.

  14. Response of vegetation to different time-scales drought across China: Spatiotemporal patterns, causes and implications

    Science.gov (United States)

    Zhang, Qiang; Kong, Dongdong; Singh, Vijay P.; Shi, Peijun

    2017-05-01

    Based on Normalized Difference Vegetation Index (NDVI) and Standardized Precipitation Evapotranspiration Index (SPEI), we investigated vegetation response to different time-scales drought across different vegetation types and homogeneous clusters in China, by annual maximum Pearson correlation (Rmax) and the corresponding time-scales of drought. Results showed that: (1) 8 subregions with homogeneous climate-vegetation conditions were identified using Fuzzy C-Means algorithm; (2) SPEI and NDVI's annual Rmax were in significantly positive correlation in most regions of China, indicating that vegetation biomass were influenced mainly by the spatiotemporal characteristics of the water availability. The southeastern Yangtze River basin and the lower Pearl River basin are dominated by abundant precipitation, and vegetation is not sensitive to droughts in these regions. The northeastern Heilongjiang province, the Changbai Mountains and western Sichuan province are characterized by weak NDVI versus SPEI relations, indicating a relatively small effect of drought on vegetation; (3) The effects of annual average water balance, annual average annual precipitation, annual average effective accumulative temperature, and annual average daily sunshine hours on the NDVI versus SPEI correlation show that the annual average water balance is the key factor behind the change of vegetation vigor. It can therefore be concluded that the change of water availability is the key factor behind the change of vegetation activity and biomass. Regional precipitation or water balance was significantly related to the correlation between SPEI and NDVI. Vegetation in the regions with longer sunshine hours is more sensitive to droughts. In general, the sensitivity of grassland to droughts is the largest, followed by the sensitivity of shrubs and forests to droughts.

  15. Spatiotemporal changes of vegetation and their responses to temperature and precipitation in upper Shiyang river basin

    Science.gov (United States)

    Tang, Zhiguang; Ma, Jinhui; Peng, Huanhua; Wang, Shuhan; Wei, Junfeng

    2017-09-01

    The Shiyang river basin is a typical arid inland river basin in northwestern China, where significant climate change and ecological environment deterioration has been observed over the past several decades. The vegetation in Shiyang river basin is mostly concentrated in its upstream, and plays an important role in ecological environment of this watershed. However, how the regional vegetation responds to such climatic change is poorly understood. To address this question, the spatiotemporal changes of vegetation growth in upper Shiyang river basin together with their responses to climate changes were investigated using SPOT VEGETATION Normalized Difference Vegetation Index (NDVI) and climate datasets from 1999 to 2013. Results reveal that about 81.3% of the study area shows an increasing trend in NDVI. The average NDVI of the study area increases at rates of 7.75% for the growing season (March-November), 11.75% for spring (March-May), 9.62% for summer (June-August), and 5.98% for autumn (September-November) over the study period. The increase of NDVI in spring and autumn suggests the growing season of the vegetation in this study area has been prolonged. The effects of climate changes on vegetation growth vary with the types of vegetation and seasons, which shows a large spatial and temporal heterogeneity. As compared with temperature, precipitation is the dominant climatic factor affecting the interannual variations of vegetation. If the temperature and precipitation continue to increase in the study area, the sensitivity of vegetation growth to temperature and precipitation may decline.

  16. Response of Vegetables to Cadmium-Enriched Soil

    Directory of Open Access Journals (Sweden)

    Babak Ebrazi Bakhshayesh

    2014-05-01

    Full Text Available Environmental and water pollution through heavy metals is a growing concern. The recycling of untreated wastewater, which is often contaminated with heavy metals, for agricultural applications is becoming more popular. However, information on the amount of absorption and accumulation of cadmium (Cd at variable concentrations by different crops is limited. This study aims to analyze the impact of various Cd concentrations (0, 30, 60 and 120 mg/kg in the root zone on the quantity of its absorption as well as accumulation in various parts of seven different types of common vegetables. The experiments were carried out under laboratory-like controlled conditions. Four treatments and three replicates were selected. Cadmium accumulation exceeded the permissible limits for human consumption, and its accumulation in different plant parts followed this order: Leaves: broccoli > spinach > basil > garlic > carrot > tarragon > dill. Stems: broccoli > spinach > basil > garlic > tarragon > carrot > dill. Roots: broccoli > garlic > basil > spinach > carrot > dill > tarragon. Therefore, the authors recommend the reuse of treated wastewater, which should be virtually free of contaminants such as heavy metals, to irrigate farm lands in the future.

  17. Phenoregions For Monitoring Vegetation Responses to Climate Change

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall purpose in this research was to identify the regions of the world best suited for long-term monitoring of biospheric responses to climate change, i.e.,...

  18. Phenoregions For Monitoring Vegetation Responses to Climate Change

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The overall purpose in this research was to identify the regions of the world best suited for long-term monitoring of biospheric responses to climate...

  19. Semi-arid vegetation response to antecedent climate and water balance windows

    Science.gov (United States)

    Thoma, David P.; Munson, Seth M.; Irvine, Kathryn M.; Witwicki, Dana L.; Bunting, Erin

    2016-01-01

    Questions Can we improve understanding of vegetation response to water availability on monthly time scales in semi-arid environments using remote sensing methods? What climatic or water balance variables and antecedent windows of time associated with these variables best relate to the condition of vegetation? Can we develop credible near-term forecasts from climate data that can be used to prepare for future climate change effects on vegetation? Location Semi-arid grasslands in Capitol Reef National Park, Utah, USA. Methods We built vegetation response models by relating the normalized difference vegetation index (NDVI) from MODIS imagery in Mar–Nov 2000–2013 to antecedent climate and water balance variables preceding the monthly NDVI observations. We compared how climate and water balance variables explained vegetation greenness and then used a multi-model ensemble of climate and water balance models to forecast monthly NDVI for three holdout years. Results Water balance variables explained vegetation greenness to a greater degree than climate variables for most growing season months. Seasonally important variables included measures of antecedent water input and storage in spring, switching to indicators of drought, input or use in summer, followed by antecedent moisture availability in autumn. In spite of similar climates, there was evidence the grazed grassland showed a response to drying conditions 1 mo sooner than the ungrazed grassland. Lead times were generally short early in the growing season and antecedent window durations increased from 3 mo early in the growing season to 1 yr or more as the growing season progressed. Forecast accuracy for three holdout years using a multi-model ensemble of climate and water balance variables outperformed forecasts made with a naïve NDVI climatology. Conclusions We determined the influence of climate and water balance on vegetation at a fine temporal scale, which presents an opportunity to forecast vegetation

  20. Response of vegetation to drought time-scales across global land biomes.

    Science.gov (United States)

    Vicente-Serrano, Sergio M; Gouveia, Célia; Camarero, Jesús Julio; Beguería, Santiago; Trigo, Ricardo; López-Moreno, Juan I; Azorín-Molina, César; Pasho, Edmond; Lorenzo-Lacruz, Jorge; Revuelto, Jesús; Morán-Tejeda, Enrique; Sanchez-Lorenzo, Arturo

    2013-01-02

    We evaluated the response of the Earth land biomes to drought by correlating a drought index with three global indicators of vegetation activity and growth: vegetation indices from satellite imagery, tree-ring growth series, and Aboveground Net Primary Production (ANPP) records. Arid and humid biomes are both affected by drought, and we suggest that the persistence of the water deficit (i.e., the drought time-scale) could be playing a key role in determining the sensitivity of land biomes to drought. We found that arid biomes respond to drought at short time-scales; that is, there is a rapid vegetation reaction as soon as water deficits below normal conditions occur. This may be due to the fact that plant species of arid regions have mechanisms allowing them to rapidly adapt to changing water availability. Humid biomes also respond to drought at short time-scales, but in this case the physiological mechanisms likely differ from those operating in arid biomes, as plants usually have a poor adaptability to water shortage. On the contrary, semiarid and subhumid biomes respond to drought at long time-scales, probably because plants are able to withstand water deficits, but they lack the rapid response of arid biomes to drought. These results are consistent among three vegetation parameters analyzed and across different land biomes, showing that the response of vegetation to drought depends on characteristic drought time-scales for each biome. Understanding the dominant time-scales at which drought most influences vegetation might help assessing the resistance and resilience of vegetation and improving our knowledge of vegetation vulnerability to climate change.

  1. Yield Responses of Black Spruce to Forest Vegetation Management Treatments: Initial Responses and Rotational Projections

    Directory of Open Access Journals (Sweden)

    Peter F. Newton

    2012-01-01

    Full Text Available The objectives of this study were to (1 quantitatively summarize the early yield responses of black spruce (Picea mariana (Mill. B.S.P. to forest vegetation management (FVM treatments through a meta-analytical review of the scientific literature, and (2 given (1, estimate the rotational consequences of these responses through model simulation. Based on a fixed-effects meta-analytic approach using 44 treated-control yield pairs derived from 12 experiments situated throughout the Great Lakes—St. Lawrence and Canadian Boreal Forest Regions, the resultant mean effect size (response ratio and associated 95% confidence interval for basal diameter, total height, stem volume, and survival responses, were respectively: 54.7% (95% confidence limits (lower/upper: 34.8/77.6, 27.3% (15.7/40.0, 198.7% (70.3/423.5, and 2.9% (−5.5/11.8. The results also indicated that early and repeated treatments will yield the largest gains in terms of mean tree size and survival. Rotational simulations indicated that FVM treatments resulted in gains in stand-level operability (e.g., reductions of 9 and 5 yr for plantations established on poor-medium and good-excellent site qualities, resp.. The challenge of maintaining coniferous forest cover on recently disturbed sites, attaining statutory-defined free-to-grow status, and ensuring long-term productivity, suggest that FVM will continue to be an essential silvicultural treatment option when managing black spruce plantations.

  2. Foliar moisture content of Pacific Northwest vegetation and its relation to wildland fire behavior.

    Science.gov (United States)

    James K. Agee; Clinton S. Wright; Nathan Williamson; Mark H. Huff

    2002-01-01

    Fotiar moisture was monitored for five conifers and associated understory vegetation in Pacific Northwest forests. Decline in foliar moisture of new foliage occurred over the dry season, while less variation was evident in older foliage. Late season foliar moisture ranged from 130 to 170%. In riparian-upland comparisons, largest differences were found for understory...

  3. Induction of defensive response in Eucalyptus globulus plants and its persistence in vegetative propagation.

    Science.gov (United States)

    Troncoso, Christian; Perez, Claudia; Hernandez, Victor; Sanchez-Olate, Manuel; Rios, Darcy; San Martin, Aurelio; Becerra, José

    2013-03-01

    The expression of defensive compounds derived from secondary metabolism in plants of Eucalyptus globulus Labill, and the persistence of these in vegetative propagation was evaluated by gas chromatography with flame ionization (GC-FID) and mass spectrometry (MS). The plants were induced by attack from the insect Ctenarytaina eucalypti ("blue gum psyllid") and by mechanical damage. Defense responses were activated in plants for the different types of tested induction. We identified four defensive compounds present in the leaves of plants induced in entomological form (beta-terpineol, aromadendrene, caryophyllene-oxide and eremophilene); all remained in the vegetative propagation. After mechanical induction, we identified three compounds (beta-terpineol, aromadendrene and ledol), of which ledol and aromadendrene persisted in the vegetative propagation. Virtually all the compounds detected, in addition to persisting in the vegetative propagation, showed specificity for the induction type, whether entomological or mechanical, except for aromadendrene, which was expressed in both types of induction.

  4. Composition and diversity of understory plants in the tropical rain ...

    African Journals Online (AJOL)

    The study assessed the composition and diversity pattern of understory in Oban division of CRNP with a view to established the contribution of the understory to diversity of the area. The study was conducted in four land use types: primary forest (core), secondary forest (buffer), farm fallow and plantation. Ten transects of ...

  5. Response of Vegetation in Northern China to Global Warming

    Science.gov (United States)

    Cui, H.; Huang, R.

    2009-05-01

    (Sophora japonica), tree of heaven (Ailanthus altissima), yellow locust (Robinia pseudoacacia), staghorn sumac (Rhus typhina), and gingko (Ginkgo biloba) have also been pushing northward to Huhhot, (41 degree N)Chifeng (42 degree N) and Tongliao (43 degree N), Inner Mongolia Autonomous Region. Alpine timberline has also been moved to higher altitude in Wutai Mt., Shanxi Province and Changbaishan Mt., Jilin Province. Although global warming seems to benefit agriculture in some cases, considering the decrease of wetness, the perspective is still uncertain. Drought and frost hazard are stress factors for the vegetation introduced to the northern areas. Chinese scholars are carefully watching the trend.

  6. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2

    Science.gov (United States)

    Friend, Andrew D.; Lucht, Wolfgang; Rademacher, Tim T.; Keribin, Rozenn; Betts, Richard; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B.; Dankers, Rutger; Falloon, Pete D.; Ito, Akihiko; Kahana, Ron; Kleidon, Axel; Lomas, Mark R.; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Peylin, Philippe; Schaphoff, Sibyll; Vuichard, Nicolas; Warszawski, Lila; Wiltshire, Andy; Woodward, F. Ian

    2014-01-01

    Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510–758 ppm of CO2), vegetation carbon increases by 52–477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended. PMID:24344265

  7. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2.

    Science.gov (United States)

    Friend, Andrew D; Lucht, Wolfgang; Rademacher, Tim T; Keribin, Rozenn; Betts, Richard; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B; Dankers, Rutger; Falloon, Pete D; Ito, Akihiko; Kahana, Ron; Kleidon, Axel; Lomas, Mark R; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Peylin, Philippe; Schaphoff, Sibyll; Vuichard, Nicolas; Warszawski, Lila; Wiltshire, Andy; Woodward, F Ian

    2014-03-04

    Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510-758 ppm of CO2), vegetation carbon increases by 52-477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.

  8. Model-generated air quality statistics for application in vegetation response models in Alberta

    International Nuclear Information System (INIS)

    McVehil, G.E.; Nosal, M.

    1990-01-01

    To test and apply vegetation response models in Alberta, air pollution statistics representative of various parts of the Province are required. At this time, air quality monitoring data of the requisite accuracy and time resolution are not available for most parts of Alberta. Therefore, there exists a need to develop appropriate air quality statistics. The objectives of the work reported here were to determine the applicability of model generated air quality statistics and to develop by modelling, realistic and representative time series of hourly SO 2 concentrations that could be used to generate the statistics demanded by vegetation response models

  9. Understory succession in post-agricultural oak plantations

    DEFF Research Database (Denmark)

    Brunet, Jörg; Valtinat, Karin; Mayr, Marian Lajos

    2011-01-01

    The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post-agricultural planta......The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post...... forested stands, which maintained differences in species composition. The development of a shrub layer seemed to imply a competitive advantage for forest specialists compared to generalist species. For successful recovery of a rich understory, we suggest that post-arable plantations should be established...

  10. Influence of skid trails and haul roads on understory plant richness and composition in managed forest landscapes in Upper Michigan, USA

    Science.gov (United States)

    David S. Buckley; Thomas R. Crow; Elizabeth A. Nauertz; Kurt E. Schulz

    2003-01-01

    We evaluated impacts of disturbance in interior haul roads and skid trails on understory vegetation by documenting the areal extent of these features and plant composition along 10 m x 100 m belt transects. Ten belt transects were sampled in each of three comparable northern hardwood forests under even-aged management. These forests were approximately 80 years old and...

  11. Optimal plant nitrogen use improves model representation of vegetation response to elevated CO2

    Science.gov (United States)

    Caldararu, Silvia; Kern, Melanie; Engel, Jan; Zaehle, Sönke

    2017-04-01

    Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as optimal biomass allocation between above- and belowground components in response to nutrient and water availability. The underlying hypothesis is that plants adjust their use of nitrogen in response to environmental conditions and nutrient availability in order to maximise biomass growth. We show that for two FACE (Free Air CO2 enrichment) experiments, the Duke forest and Oak Ridge forest sites, the model can better predict vegetation responses over the duration of the experiment when optimal processes are included. Specifically, under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration as well as increased biomass allocation to fine roots, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry predict a quick onset of N limitation.Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as

  12. Vegetation response after post-fire mulching and native grass seeding

    Science.gov (United States)

    Penelope Morgan; Marshell Moy; Christine A. Droske; Leigh B. Lentile; Sarah A. Lewis; Peter R. Robichaud; Andrew T. Hudak

    2014-01-01

    Post-fire mulch and seeding treatments, often applied on steep, severely burned slopes immediately after large wildfires, are meant to reduce the potential of erosion and establishment of invasive plants, especially non-native plants, that could threaten values at risk. However, the effects of these treatments on native vegetation response post fire are little studied...

  13. Response of ponderosa pine plantations to competing vegetation control in Northern California, USA: A meta- analysis

    Science.gov (United States)

    Jianwei Zhang; Robert Powers; William Oliver; Young David

    2013-01-01

    A meta-analysis was performed to determine response of stand basal area growth to competing vegetation control (CVC) in ponderosa pine (Pinus ponderosa) plantations grown at 29 sites across northern California. These studies were installed during the last 50 years on site indices from 11 to 35 m at 50 years and often included other treatments...

  14. Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya: Contributions Toward Future Earth Initiatives

    Directory of Open Access Journals (Sweden)

    Joseph Shea

    2017-08-01

    Full Text Available Reviewed: Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya: Contributions Toward Future Earth Initiatives. Edited by R. B. Singh, Udo Schickhoff, and Suraj Mal. Cham, Switzerland: Springer, 2016. xvi + 399 pp. Hardcover: US$ 179.00, ISBN 978-3-319-28975-5. E-book: US$ 139.00, ISBN 978-3-319-28977-9.

  15. Generation of dose-response relationships to assess the effects of acidity in precipitation on growth and productivity of vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L.S.

    1981-01-01

    Experiments were performed with several plant species in natural environments as well in a greenhouse and/or tissue culture facilities to establish dose-response functions of plant responses to simulated acidic rain in order to determine environmental risk assessments to ambient levels of acidic rain. Response functions of foliar injury, biomass of leaves and seed of soybean and pinto beans, root yields of radishes and garden beets, and reproduction of bracken fern are considered. The dose-response function of soybean seed yields with the hydrogen ion concentration of simulated acidic rainfalls was expressed by the equation y = 21.06-1.01 log x where y = seed yield in grams per plant and x = the hydrogen concentration if ..mu..eq l/sup -1/. The correlation coefficient of this relationship was -0.90. A similar dose-response function was generated for percent fertilization of ferns in a forest understory. When percent fertilization is plotted on logarithmic scale with hydrogen ion concentration of the simulated rain solution, the Y intercept is 51.18, slope -0.041 with a correlation coefficient of -0.98. Other dose-response functions were generated that assist in a general knowledge as to which plant species and which physiological processes are most impacted by acidic precipitation. Some responses did not produce convenient dose-response relationships. In such cases the responses may be altered by other environmental factors or there may be no differences among treatment means.

  16. Generation of dose-response relationships to assess the effects of acidity in precipitation on growth and productivity of vegetation

    International Nuclear Information System (INIS)

    Evans, L.S.

    1981-01-01

    Experiments were performed with several plant species in natural environments as well in a greenhouse and/or tissue culture facilities to establish dose-response functions of plant responses to simulated acidic rain in order to determine environmental risk assessments to ambient levels of acidic rain. Response functions of foliar injury, biomass of leaves and seed of soybean and pinto beans, root yields of radishes and garden beets, and reproduction of bracken fern are considered. The dose-response function of soybean seed yields with the hydrogen ion concentration of simulated acidic rainfalls was expressed by the equation y = 21.06-1.01 log x where y = seed yield in grams per plant and x = the hydrogen concentration if μeq l -1 . The correlation coefficient of this relationship was -0.90. A similar dose-response function was generated for percent fertilization of ferns in a forest understory. When percent fertilization is plotted on logarithmic scale with hydrogen ion concentration of the simulated rain solution, the Y intercept is 51.18, slope -0.041 with a correlation coefficient of -0.98. Other dose-response functions were generated that assist in a general knowledge as to which plant species and which physiological processes are most impacted by acidic precipitation. Some responses did not produce convenient dose-response relationships. In such cases the responses may be altered by other environmental factors or there may be no differences among treatment means

  17. The Frequency and Fate of Understory Forest Fires in Amazonia

    Science.gov (United States)

    Morton, D. C.; le page, Y.; Wang, D.; Chen, Y.; Randerson, J. T.; Collatz, G. J.; Giglio, L.; Hurtt, G. C.; DeFries, R. S.

    2012-12-01

    Fires for deforestation or agricultural management frequently escape their intended boundaries and burn standing Amazon forests. The extent and frequency of understory forest fires are critical to assess forest carbon emissions and the long-term legacy of understory fires in Amazonia. Patterns of understory fire activity under current climate conditions also offer a blueprint for potential changes in Amazon forests under scenarios of future climate and land use. Here, we estimated of the extent and frequency of understory forest fires for the entire arc of deforestation in southern Amazonia using a time series of annual Moderate Resolution Imaging Spectroradiometer (MODIS) data. Understory forest fires burned more than 80,000 km2 during 1999-2010. Fires were widespread along the southern and eastern extents of Amazon forests during the four years with highest fire activity (1999, 2005, 2007, 2010). The interannual variability in understory fires offered new insights into fire-climate dynamics in Amazonia over a range of temporal scales, based on the combination of burned area, MODIS active fire detections, and reanalysis climate data. Initial fire exposure reduces aboveground carbon stocks, and frequent fires are one possible mechanism for long-term changes the structure of Amazon forests. Repeated burning was concentrated in southeastern Amazonia, and >95% of all repeated fires occurred in the Brazilian states of Mato Grosso and Pará. Forests that burned two or more times during this period accounted for 16% of understory fire activity. Finally, deforestation of burned forests was rare, suggesting that forest degradation from understory fires was an independent source of carbon emissions during this period. Modeling the time scales of carbon loss and recovery in burned forests is therefore critical to estimate the net carbon emissions from these fires. The results of this study suggest that understory fires operate as a large-scale edge effect in Amazonia, as

  18. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta Forests.

    Directory of Open Access Journals (Sweden)

    Anne C S McIntosh

    Full Text Available Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs and multiple carbon-source substrate-induced respiration (MSIR of the forest floor microbial community environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis showed that two above-ground (mean tree diameter, litter cover and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs properties were associated with variation in understory plant community composition. These results provide

  19. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests.

    Science.gov (United States)

    McIntosh, Anne C S; Macdonald, S Ellen; Quideau, Sylvie A

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  20. Response of vegetation phenology to urbanization in the conterminous United States.

    Science.gov (United States)

    Li, Xuecao; Zhou, Yuyu; Asrar, Ghassem R; Mao, Jiafu; Li, Xiaoma; Li, Wenyu

    2017-07-01

    The influence of urbanization on vegetation phenology is gaining considerable attention due to its implications for human health, cycling of carbon and other nutrients in Earth system. In this study, we examined the relationship between change in vegetation phenology and urban size, an indicator of urbanization, for the conterminous United States. We studied more than 4500 urban clusters of varying size to determine the impact of urbanization on plant phenology, with the aids of remotely sensed observations since 2003-2012. We found that phenology cycle (changes in vegetation greenness) in urban areas starts earlier (start of season, SOS) and ends later (end of season, EOS), resulting in a longer growing season length (GSL), when compared to the respective surrounding urban areas. The average difference of GSL between urban and rural areas over all vegetation types, considered in this study, is about 9 days. Also, the extended GSL in urban area is consistent among different climate zones in the United States, whereas their magnitudes are varying across regions. We found that a tenfold increase in urban size could result in an earlier SOS of about 1.3 days and a later EOS of around 2.4 days. As a result, the GSL could be extended by approximately 3.6 days with a range of 1.6-6.5 days for 25th ~ 75th quantiles, with a median value of about 2.1 days. For different vegetation types, the phenology response to urbanization, as defined by GSL, ranges from 1 to 4 days. The quantitative relationship between phenology and urbanization is of great use for developing improved models of vegetation phenology dynamics under future urbanization, and for developing change indicators to assess the impacts of urbanization on vegetation phenology. © 2016 John Wiley & Sons Ltd.

  1. Response of vegetation phenology to urbanization in the conterminous United States

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuecao [Department of Geological and Atmospheric Sciences, Iowa State University, Ames IA 50011 USA; Zhou, Yuyu [Department of Geological and Atmospheric Sciences, Iowa State University, Ames IA 50011 USA; Asrar, Ghassem R. [Pacific Northwest National Laboratory, Joint Global Change Research Institute, College Park MD 20740 USA; Mao, Jiafu [Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Li, Xiaoma [Department of Geological and Atmospheric Sciences, Iowa State University, Ames IA 50011 USA; Li, Wenyu [Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Tsinghua University, Beijing 100084 China

    2016-12-18

    The influence of urbanization on vegetation phenology is gaining considerable attention due to its implications for human health, cycling of carbon and other nutrients in Earth system. In this study, we examined the relationship between change in vegetation phenology and urban size, an indicator of urbanization, for the conterminous United States. We studied more than 4500 urban clusters of varying size to determine the impact of urbanization on plant phenology, with the aids of remotely sensed observations since 2003–2012. We found that phenology cycle (changes in vegetation greenness) in rural areas starts earlier (start of season, SOS) and ends later (end of season, EOS), resulting in a longer growing season length (GSL), when compared to the respective surrounding urban areas. The average difference of GSL between urban and rural areas over all vegetation types, considered in this study, is about 9 days. Also, the extended GSL in urban area is consistent among different climate zones in the United States, whereas their magnitudes are varying across regions. We found that a tenfold increase in urban size could result in an earlier SOS of about 1.3 days and a later EOS of around 2.4 days. As a result, the GSL could be extended by approximately 3.6 days with a range of 1.6–6.5 days for 25th ~ 75th quantiles, with a median value of about 2.1 days. For different vegetation types, the phenology response to urbanization, as defined by GSL, ranges from 1 to 4 days. The quantitative relationship between phenology and urbanization is of great use for developing improved models of vegetation phenology dynamics under future urbanization, and for developing change indicators to assess the impacts of urbanization on vegetation phenology.

  2. Response of vegetation phenology to urbanization in the conterminous United States

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuecao [Iowa State Univ., Ames, IA (United States); Zhou, Yuyu [Iowa State Univ., Ames, IA (United States); Asrar, Ghassem R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mao, Jiafu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Xiaoma [Iowa State Univ., Ames, IA (United States); Li, Wenyu [Tsinghua Univ., Beijing (China)

    2016-12-18

    The influence of urbanization on vegetation phenology is gaining considerable attention due to its implications for human health, cycling of carbon and other nutrients in Earth system. In this study, we examined the relationship between change in vegetation phenology and urban size, an indicator of urbanization, for the conterminous United States. We studied more than 4500 urban clusters of varying size to determine the impact of urbanization on plant phenology, with the aids of remotely sensed observations since 2003–2012. We found that phenology cycle (changes in vegetation greenness) in urban areas starts earlier (start of season, SOS) and ends later (end of season, EOS), resulting in a longer growing season length (GSL), when compared to the respective surrounding urban areas. The average difference of GSL between urban and rural areas over all vegetation types, considered in this study, is about 9 days.Also, the extended GSL in urban area is consistent among different climate zones in the United States, whereas their magnitudes are varying across regions. We found that a tenfold increase in urban size could result in an earlier SOS of about 1.3 days and a later EOS of around 2.4 days. As a result, the GSL could be extended by approximately 3.6 days with a range of 1.6–6.5 days for 25th ~ 75th quantiles, with a median value of about 2.1 days. For different vegetation types, the phenology response to urbanization, as defined by GSL, ranges from 1 to 4 days. In conclusion, the quantitative relationship between phenology and urbanization is of great use for developing improved models of vegetation phenology dynamics under future urbanization, and for developing change indicators to assess the impacts of urbanization on vegetation phenology.

  3. Study on urban heat island effect and its response to the vegetation eco-environmental quality

    Science.gov (United States)

    Xu, Saiping; Zhao, Qianjun; Yin, Kai; Cui, Bei; Zhang, Xiupeng

    2016-10-01

    With the development of urbanization, urban heat island effect issue is becoming more and more severe. What's more, the vegetation eco-environmental quality (VEEQ) is severely damaged, resulting in the decline of urban ecosystem function. Therefore, it is of great significance to use remote sensing technique to analyze the response of urban heat island to VEEQ quantitatively. As is known to all, vegetation is the main body in the vegetation ecological environment system. Water and heat conditions are the important driving forces for its formation and evolution. Good soil condition is the basis for vegetation survival. Besides, the terrain is conducive to the judgment of the vegetation distribution. Accordingly, several indexes involving vegetation index, heat index, soil moisture index, soil brightness index, elevation factor and slope factor were selected and extracted from Landsat8 OLI images to establish the evaluation index system of VEEQ. Based on Landsat8 TIRS images, this paper applied the radiative transfer equation method to retrieve land surface temperature (LST) and the urban island grade was divided based on the mean and standard deviation values of LST. The principal component analysis method was utilized to determine the weigh value of each index and then a comprehensive evaluation model of VEEQ was established. Furthermore, the quantitative relationship between LST and VEEQ was analyzed. The results showed that, there existed obvious heat island effects in Haidian District of Beijing city and its surrounding areas. The poor quality areas and the high quality areas of vegetation ecological environment had strengthening and weakening thermal environment effects respectively. There was a strong negative relationship between LST and VEEQ.

  4. Vegetation response to right-of-way clearing procedures in coastal British Columbia

    International Nuclear Information System (INIS)

    McGee, A.B.

    1988-09-01

    The response of the flora of forested sites to the methods employed by British Columbia Hydro and Power Authority for the initial clearing of transmission line rights-of-way in coastal British Columbia was assessed. Seven immature forest vegetation units adjacent to, and seven early seral vegetation units on, the transmission line rights-of-way were identified. The environmental parameter most highly correlated with both the immature forest and the early seral vegetation units was the slope position. The degree of disturbance and seeding with agronomic grass and legume species complicated the determination of relationships between immature forest and early seral vegetation units. The majority of seeds in the forest samples were found in the floor layers, and seed bank samples from the high-disturbance sites had the fewest germinable seeds, primarily because the floor had been removed. The seed rain was dominated by tree species within the forests, and shrub and herbaceous species on rights of way. The seed rain was higher and percent germinability was higher in the second year than in the first. Important species vegetatively invading after, or recovering from, plot scarification included Gaultheria shallon, Pteridium aquilinum, and Rubus ursinus. Successful seeding establishment was rare: only Alnus rubra, Anaphalis margaritacea, and Rubus ursinus seedlings were observed in significant numbers and few survived to the following year. 142 refs., 28 figs., 39 tabs

  5. Vegetation response to right-of-way clearing procedures in coastal British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    McGee, A.B.

    1988-09-01

    The response of the flora of forested sites to the methods employed by British Columbia Hydro and Power Authority for the initial clearing of transmission line rights-of-way in coastal British Columbia was assessed. Seven immature forest vegetation units adjacent to, and seven early seral vegetation units on, the transmission line rights-of-way were identified. The environmental parameter most highly correlated with both the immature forest and the early seral vegetation units was the slope position. The degree of disturbance and seeding with agronomic grass and legume species complicated the determination of relationships between immature forest and early seral vegetation units. The majority of seeds in the forest samples were found in the floor layers, and seed bank samples from the high-disturbance sites had the fewest germinable seeds, primarily because the floor had been removed. The seed rain was dominated by tree species within the forests, and shrub and herbaceous species on rights of way. The seed rain was higher and percent germinability was higher in the second year than in the first. Important species vegetatively invading after, or recovering from, plot scarification included Gaultheria shallon, Pteridium aquilinum, and Rubus ursinus. Successful seeding establishment was rare: only Alnus rubra, Anaphalis margaritacea, and Rubus ursinus seedlings were observed in significant numbers and few survived to the following year. 142 refs., 28 figs., 39 tabs.

  6. Performance and population dynamics of a native understory herb differ between young and old forest stands in the Southern Appalachians

    Science.gov (United States)

    Michelle M. Jackson; Scott M. Pearson; Monica G. Turner

    2013-01-01

    Anthropogenic disturbances (e.g., logging) can strongly affect the composition and structure of forest understory herb communities, with land-use legacies often persisting for decades or even centuries. Many studies of forest plant response to land-use history have focused on species distributions and abundances, and argued broadly for either dispersal or establishment...

  7. Impacts of Climate Change Induced Vegetation Responses on BVOC Emissions from Subarctic Heath Ecosystems

    DEFF Research Database (Denmark)

    Valolahti, Hanna Maritta

    chemistry and physics. Vegetation is the main source of BVOCs. Their production is directly linked to temperature and the foliar biomass. On global scale, vegetation in subarctic and arctic regions has been modeled to have only minor contribution to annual total BVOC emissions. In these regions cold...... the understanding of the controls of BVOC emissions from subarctic ecosystems under climate change by studying the responses to long-term manipulations from leaf level to small ecosystem scale. Leaf-level studies showed different anatomical responses for warming and shading manipulations between studied species......, but no significant effects on BVOC emissions on plant individual level were found. The lack of changes in BVOC emissions after longterm exposure could be at least partially explained by long term-acclimation, which is supported by the observed anatomy responses. Whereas warming was not found to alter the BVOC...

  8. BOREAS TE-9 In Situ Understory Spectral Reflectance Within the NSA

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Supronowicz, Jan; Edwards, Geoffrey; Viau, Alain; Thomson, Keith

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. Spectral reflection coefficients of the forest understory at the ground level, in three boreal forest sites of Northern Manitoba (56 N latitude and 98 W longitude), were obtained and analyzed in 1994. In particular, angular variation of the reflection coefficients in the old jack pine and young jack pine forests, as well as nadir reflection coefficient in the young aspen forest, were investigated. The complexity of understory composition and the light patterns limited quantitative conclusions; however, a number of interesting trends in the behavior of the measured values can be inferred. In particular, the unique spectral profiles of lichens show very strongly in the old jack pine understory, yet are definitely less conspicuous for young jack pine, and virtually absent in the aspen forest. The angular variation of the reflection coefficient by the young pine understory seems to be significantly toned down by fine-structured branches and their shadows. Our study also indicates how difficult the ground reflection coefficient problem in a forest is, compared to certain previously investigated areas that have a more uniform appearance, such as prairie grassland, bare soil, or agricultural crops. This is due to several factors, generally typical of a forest environment, that may influence the overall understory reflection coefficient, including: (1) a strong diversity of the forest floor due to the presence of dead tree trunks, holes in the ground, patches of different types of vegetation or litter, etc.; (2) pronounced 3-D structures at the ground level, such as shrubs, bushes, and young trees; and (3) an irregular shadow mosaic, which not only varies with the time of the day, causing intensity variations, but likely also effectively modifies the spectrum of the

  9. Simulated Vegetation Response to Climate Change in California: The Importance of Seasonal Production Patterns

    Science.gov (United States)

    Kim, J. B.; Pitts, B.

    2013-12-01

    MC1 dynamic global vegetation model simulates vegetation response to climate change by simulating vegetation production, soil biogeochemistry, plant biogeography and fire. It has been applied at a wide range of spatial scales, yet the spatio-temporal patterns of simulated vegetation production, which drives the model's response to climate change, has not been examined in detail. We ran MC1 for California at a relatively fine scale, 30 arc-seconds, for the historical period (1895-2006) and for the future (2007-2100), using downscaled data from four CMIP3-based climate projections: A2 and B1 GHG emissions scenarios simulated by PCM and GFDL GCMs. The use of these four climate projections aligns our work with a body of climate change research work commissioned by the California Public Interest Energy Research (PIER) Program. The four climate projections vary not only in terms of changes in their annual means, but in the seasonality of projected climate change. We calibrated MC1 using MODIS NPP data for 2000-2011 as a guide, and adapting a published technique for adjusting simulated vegetation production by increasing the simulated plant rooting depths. We evaluated the simulation results by comparing the model output for the historical period with several benchmark datasets, summarizing by EPA Level 3 Ecoregions. Multi-year summary statistics of model predictions compare moderately well with Kuchler's potential natural vegetation map, National Biomass and Carbon Dataset, Leenhouts' compilation of fire return intervals, and, of course, the MODIS NPP data for 2000-2011. When we compared MC1's monthly NPP values with MODIS monthly GPP data (2000-2011), however, the seasonal patterns compared very poorly, with NPP/GPP ratio for spring (Mar-Apr-May) often exceeding 1, and the NPP/GPP ratio for summer (Jun-Jul-Aug) often flattening to zero. This suggests MC1's vegetation production algorithms are overly biased for spring production at the cost of summer production. We

  10. Response of Vegetation on Gravel Bars to Management Measures and Floods: Case Study From the Czech Republic

    Directory of Open Access Journals (Sweden)

    Eremiášová Renata

    2014-08-01

    Full Text Available This article investigates response of vegetation on gravel bars to management measures and floods. The management measures consisted of the partial removal of gravel and vegetation cover, and were applied to six gravel bars on the Ostravice River, Czech Republic. Unexpected floods occu-rred in 2010, with the amplitude of 5- to 50-year repetition. Research of vegetation on the gravel bars consisted of vegetation survey before the management works; the monitoring of vegetation development over the following year and the verification of the relationships of species diversity, successional stages and the biotope conditions with the help of multivariate analysis (detrended correspondence analysis. Vegetation on the gravel bars was at different successional stages, and had higher diversity and vegetation cover before the management measures and floods. The mul-tivariate analysis revealed a shift toward initial successional stages with high demand on moisture, temperature and light after both management measures and floods.

  11. Relative role of understory and overstory in carbon and nitrogen cycling in a southern Appalachian spruce-fir forest

    Energy Technology Data Exchange (ETDEWEB)

    Moore, P.T.; Van Miegroet, H. [Utah State Univ., Logan, UT (United States). Dept. of Wildland Resources and the Ecology Center; Nicholas, N.S. [Yosemite National Park, El Portal, CA (United States). Resources Management and Science Div.

    2007-12-15

    This study examined pools and fluxes of biomass, carbon (C) and nitrogen (N) in the overstory and understory of a southern Appalachian red spruce and Fraser fir forest after adelgid-induced fir mortality and spruce windthrow. Standing biomass and fluxes of all growth forms from periodic stand inventories, vegetation surveys, and allometric equations were estimated. Plant- and tissue-specific C and N concentrations were used to calculate total C and N pools and fluxes. Results of the study showed that total aboveground biomass re-attained values observed before the disturbances. Overstory biomass production and N uptake exceeded values observed in earlier reports. The woody overstory accounted for 3 per cent of all aboveground biomass as well as 10 per cent of annual productivity, and 19 per cent of total N uptake. It was concluded that the N-rich understory vegetation plays a significant role in N cycling, and contributed to overall productivity of the system. Further research is needed to examine the relationships between the over- and understories in order to investigate future changes in nutrient cycling. 60 refs., 2 tabs., 4 figs.

  12. Simulating the vegetation response in western Europe to abrupt climate changes under glacial background conditions

    Directory of Open Access Journals (Sweden)

    M.-N. Woillez

    2013-03-01

    Full Text Available The last glacial period has been punctuated by two types of abrupt climatic events, the Dansgaard–Oeschger (DO and Heinrich (HE events. These events, recorded in Greenland ice and in marine sediments, involved changes in the Atlantic Meridional Overturning Circulation (AMOC and led to major changes in the terrestrial biosphere. Here we use the dynamical global vegetation model ORCHIDEE to simulate the response of vegetation to abrupt changes in the AMOC strength. We force ORCHIDEE offline with outputs from the IPSL_CM4 general circulation model, in which the AMOC is forced to change by adding freshwater fluxes in the North Atlantic. We investigate the impact of a collapse and recovery of the AMOC, at different rates, and focus on Western Europe, where many pollen records are available for comparison. The impact of an AMOC collapse on the European mean temperatures and precipitations simulated by the GCM is relatively small but sufficient to drive an important regression of forests and expansion of grasses in ORCHIDEE, in qualitative agreement with pollen data for an HE event. On the contrary, a run with a rapid shift of the AMOC to a hyperactive state of 30 Sv, mimicking the warming phase of a DO event, does not exhibit a strong impact on the European vegetation compared to the glacial control state. For our model, simulating the impact of an HE event thus appears easier than simulating the abrupt transition towards the interstadial phase of a DO. For both a collapse or a recovery of the AMOC, the vegetation starts to respond to climatic changes immediately but reaches equilibrium about 200 yr after the climate equilibrates, suggesting a possible bias in the climatic reconstructions based on pollen records, which assume equilibrium between climate and vegetation. However, our study does not take into account vegetation feedbacks on the atmosphere.

  13. A Database of Herbaceous Vegetation Responses to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.H.

    1999-11-24

    To perform a statistically rigorous meta-analysis of research results on the response by herbaceous vegetation to increased atmospheric CO{sub 2} levels, a multiparameter database of responses was compiled from the published literature. Seventy-eight independent CO{sub 2}-enrichment studies, covering 53 species and 26 response parameters, reported mean response, sample size, and variance of the response (either as standard deviation or standard error). An additional 43 studies, covering 25 species and 6 response parameters, did not report variances. This numeric data package accompanies the Carbon Dioxide Information Analysis Center's (CDIAC's) NDP-072, which provides similar information for woody vegetation. This numeric data package contains a 30-field data set of CO{sub 2}-exposure experiment responses by herbaceous plants (as both a flat ASCII file and a spreadsheet file), files listing the references to the CO{sub 2}-exposure experiments and specific comments relevant to the data in the data sets, and this documentation file (which includes SAS{reg_sign} and Fortran codes to read the ASCII data file). The data files and this documentation are available without charge on a variety of media and via the Internet from CDIAC.

  14. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest

    OpenAIRE

    Sitters, Holly; York, Alan; Swan, Matthew; Christie, Fiona; Di Stefano, Julian

    2016-01-01

    Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD) provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape samplin...

  15. Volatile organic compound emissions from arctic vegetation highly responsive to experimental warming

    Science.gov (United States)

    Rinnan, Riikka; Kramshøj, Magnus; Lindwall, Frida; Schollert, Michelle; Svendsen, Sarah H.; Valolahti, Hanna

    2017-04-01

    Arctic areas are experiencing amplified climate warming that proceeds twice as fast as the global temperature increase. The increasing temperature is already causing evident alterations, e.g. changes in the vegetation cover as well as thawing of permafrost. Climate warming and the concomitant biotic and abiotic changes are likely to have strong direct and indirect effects on emission of volatile organic compounds (VOCs) from arctic vegetation. We used long-term field manipulation experiments in the Subarctic, Low Arctic and High Arctic to assess effects of climate change on VOC emissions from vegetation communities. In these experiments, we applied passive warming with open-top chambers alone and in combination with other experimental treatments in well-replicated experimental designs. Volatile emissions were sampled in situ by drawing air from plant enclosures and custom-built chambers into adsorbent cartridges, which were analyzed by thermal desorption and gas chromatography-mass spectrometry in laboratory. Emission increases by a factor of 2-5 were observed under experimental warming by only a few degrees, and the strong response seems universal for dry, mesic and wet ecosystems. In some cases, these vegetation community level responses were partly due to warming-induced increases in the VOC-emitting plant biomass, changes in species composition and the following increase in the amount of leaf litter (Valolahti et al. 2015). In other cases, the responses appeared before any vegetation changes took place (Lindwall et al. 2016) or even despite a decrease in plant biomass (Kramshøj et al. 2016). VOC emissions from arctic ecosystems seem more responsive to experimental warming than other ecosystem processes. We can thus expect large increases in future VOC emissions from this area due to the direct effects of temperature increase, and due to increasing plant biomass and a longer growing season. References Kramshøj M., Vedel-Petersen I., Schollert M., Rinnan

  16. Nile Basin Vegetation Response and Vulnerability to Climate Change: A Multi-Sensor Remote Sensing Approach

    Science.gov (United States)

    Yitayew, M.; Didan, K.; Barreto-munoz, A.

    2013-12-01

    changes in the vegetation index signal and to a lesser degree the change in land cover and land use over the last 30 years. Using the climate data record we looked at the drivers of this change. The sensitivity of the basin to climate change was assessed using the multi-linear regression analysis on the covariance of the change in key phenology parameters and the two climate drivers considered here. The overall response was very complex owing to the complicated climate regime and topography of the region. Vegetation response was mostly stable in high lands with a slightly decreasing trend over low and mid-elevations. Over the same period we also observed an intensification of agriculture production corresponding to an increase in percent cover and productivity. We also observed a decrease in forest cover associated with land use conversion. These changes were mostly driven by the precipitation regimes with little impact of the temperature. Climate models project an eventual decrease in precipitation and increase in temperature over the basin. Coupled with these results and observations these projected changes point to major challenges to the vegetation cover, productivity, and associated ecosystem services of the Nile basin.

  17. Airborne laser scanner (LiDAR) proxies for understory light conditions

    DEFF Research Database (Denmark)

    Alexander, Cici; Moeslund, Jesper Erenskjold; Bøcher, Peder Klith

    2013-01-01

    on the average Ellenberg indicator values for light for the plant species present in a given plot. The correlations of Ellenberg values with ALS-based canopy closure were higher (r2: 0.47) than those with ALS-based canopy cover (r2: 0.26) and densiometer readings (r2: 0.41) for the forest sites. ALS-based canopy......Canopy cover and canopy closure are two closely related measures of vegetation structure. They are used for estimating understory light conditions and their influence on a broad range of biological components in forest ecosystems, from the demography and population dynamics of individual species...... to community structure. Angular canopy closure is more closely related to the direct and indirect light experienced by a plant or an animal than vertical canopy cover, but more challenging to estimate. We used airborne laser scanner (ALS) data to estimate canopy cover for 210 5-m radius vegetation plots...

  18. Remote sensing analysis of riparian vegetation response to desert marsh restoration in the Mexican Highlands

    Science.gov (United States)

    Norman, Laura M.; Villarreal, Miguel; Pulliam, H. Ronald; Minckley, Robert L.; Gass, Leila; Tolle, Cindy; Coe, Michelle

    2014-01-01

    Desert marshes, or cienegas, are extremely biodiverse habitats imperiled by anthropogenic demands for water and changing climates. Given their widespread loss and increased recognition, remarkably little is known about restoration techniques. In this study, we examine the effects of gabions (wire baskets filled with rocks used as dams) on vegetation in the Cienega San Bernardino, in the Arizona, Sonora portion of the US-Mexico border, using a remote-sensing analysis coupled with field data. The Normalized Difference Vegetation Index (NDVI), used here as a proxy for plant biomass, is compared at gabion and control sites over a 27-year period during the driest months (May/June). Over this period, green-up occurred at most sites where there were gabions and at a few of the control sites where gabions had not been constructed. When we statistically controlled for differences among sites in source area, stream order, elevation, and interannual winter rainfall, as well as comparisons of before and after the initiation of gabion construction, vegetation increased around gabions yet did not change (or decreased) where there were no gabions. We found that NDVI does not vary with precipitation inputs prior to construction of gabions but demonstrates a strong response to precipitation after the gabions are built. Field data describing plant cover, species richness, and species composition document increases from 2000 to 2012 and corroborate reestablished biomass at gabions. Our findings validate that gabions can be used to restore riparian vegetation and potentially ameliorate drought conditions in a desert cienega.

  19. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau

    Science.gov (United States)

    Munson, Seth M.; Belnap, Jayne; Okin, Gregory S.

    2011-01-01

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces.

  20. Influences of prior wildfires on vegetation response to subsequent fire in a reburned Southwestern landscape.

    Science.gov (United States)

    Coop, Jonathan D; Parks, Sean A; McClernan, Sarah R; Holsinger, Lisa M

    2016-03-01

    Large and severe wildfires have raised concerns about the future of forested landscapes in the southwestern United States, especially under repeated burning. In 2011, under extreme weather and drought conditions, the Las Conchas fire burned over several previous burns as well as forests not recently exposed to fire. Our purpose was to examine the influences of prior wildfires on plant community composition and structure, subsequent burn severity, and vegetation response. To assess these relationships, we used satellite-derived measures of burn severity and a nonmetric multidimensional scaling of pre- and post- Las Conchas field samples. Earlier burns were associated with shifts from forested sites to open savannas and meadows, oak scrub, and ruderal communities. These non-forested vegetation types exhibited both resistance to subsequent fire, measured by reduced burn severity, and resilience to reburning, measured by vegetation recovery relative to forests not exposed to recent prior fire. Previous shifts toward non-forested states were strongly reinforced by reburning. Ongoing losses of forests and their ecological values confirm the need for restoration interventions. However, given future wildfire and climate projections, there may also be opportunities presented by transformations toward fire-resistant and resilient vegetation types within portions of the landscape.

  1. Assessment of Vegetation Responses and Sensitivity to the Millennium Drought in Australia

    Science.gov (United States)

    Jiao, T.; Williams, C. A.

    2017-12-01

    During the period from 1997 to 2009, Australia experienced one of the most severe and persistent drought known as the Millennium Drought (MD). Major water shortages were reported across the Australian continent as well as a great many tree mortality during and post this drought event. Given the projection of hotter and drier conditions for much of the continent (Hughes 2003), it is critical to analyze the impacts of climate extremes like MD as an indicator of possible impacts of future trends. A few drought assessments have been performed for the MD but their utilization of single-source Remote sensing data like vegetation indices makes it difficult to produce a comprehensive understanding of drought responses for diverse ecosystems in Australia. Furthermore, methods adopted in past drought assessments did not distinguish vegetation responses to drought events with different intensity, duration and sequence, which are critically important in determining the magnitude of vegetation responses to drought. Here, multi-source remote sensing datasets and an event-based drought assessment method were employed to assess the impacts of MD on vegetation in Australia in terms of the magnitude and sensitivity. Vegetation variables examined include fraction of photosynthetically absorbed radiation (Fpar), vegetation optical depth (VOD) and aboveground biomass (AGB). Drought indicators were calculated based on precipitation and potential evapotranspiration. Results show that most of Eastern Australia experienced abnormal water deficit during the MD and drought intensity was greatest in humid regions. The decline in aboveground biomass (ABC) demonstrates consistent variation with drought intensity across aridity levels. Drought impacts on Fpar and VOD were greatest at intermediate dryness and for woodier ecosystems, with impacts appearing in Fpar before VOD. Drought sensitivity was also greatest at intermediate dryness and for woodier ecosystems. The small difference in drought

  2. Seasonal moisture fluctuations four species of pocosin vegetation

    Science.gov (United States)

    George W. Wendel; Theodore G. Storey

    1962-01-01

    During the most severe burning conditions practically all of the living understory vegetation on pocosins may be consumed by fire (9). Even under less severe conditions leaves and branch tips are readily consumed. Whether the moisture content in the living vegetation is high, as it is in the spring, or low, as in the winter, exerts a strong influence on fuel...

  3. Post-fire burn severity and vegetation response following eight large wildfires across the Western United States

    Science.gov (United States)

    Leigh B. Lentile; Penelope Morgan; Andrew T. Hudak; Michael J. Bobbitt; Sarah A. Lewis; Alistair M. S. Smith; Peter R. Robichaud

    2007-01-01

    Vegetation response and burn severity were examined following eight large wildfires that burned in 2003 and 2004: two wildfires in California chaparral, two each in dry and moist mixed-conifer forests in Montana, and two in boreal forests in interior Alaska. Our research objectives were: 1) to characterize one year post-fire vegetation recovery relative to initial fire...

  4. SO/sub 2/ dose-response sensitivity classification data for crops and natural vegetation species

    Energy Technology Data Exchange (ETDEWEB)

    Irving, P.M.; Ballou, S.W.

    1980-09-01

    Over the past several years studies have been made on the interaction of sulfur dioxide (SO/sub 2/) and vegetation by performing field research and by developing analytical procedures for applying field observation data to energy impact assessments. As a result of this work, numerous reports have been prepared on crop-pollutant interactions, such as dose-response data; on the applications of such data to screening approaches for identifying crops at risk; and on models that predict crop yield reductions from point source emissions of SO/sub 2/. Data that were used for these studies, such as the crop-at-risk screening procedure, are presented in this report. Maps are also presented that show the national distribution of SO/sub 2/-sensitive crops and natural vegetation.

  5. The response of vegetation structure to active warming and precipitation reduction of the Sphagnum peatland

    Science.gov (United States)

    Łuców, Dominika; Basińska, Anna; Chojnicki, Bogdan; Gąbka, Maciej; Józefczyk, Damian; Juszczak, Radosław; Leśny, Jacek; Olejnik, Janusz; Reczuga, Monika; Samson, Mateusz; Silvennoinen, Hanna; Stróżecki, Marcin; Urbaniak, Marek; Zielińska, Małgorzata; Lamentowicz, Mariusz

    2017-04-01

    The recent climate change (e.g. increased temperature and decreased precipitation) is expected to affect biodiversity and vegetation structure of the European peatlands, as well as carbon fluxes. Our experimental study carried out in Western Poland, tests the hypothesis that the increased temperature, in particular in combination with rainfall reduction affects vegetation structure of the Sphagnum peatland, through changes in moss and vascular plants abundance. The innovative climate manipulation system was installed on the Rzecin peatland in 2014. The field site consists of four blocks: "drought" "warming and drought" "warming" and "control". The air and peat temperatures were increased in 2015 and 2016 by about 0.2 oC and 1.0 oC, respectively, using infrared radiators. Precipitation was reduced by automatic curtain operated only during the nights by about 37 % in both years. Data resulting from the analyses of digital pictures as well as Point Intercept method were used to identify changes in vegetation structure as a response to warming and drought. We observed increase in abundance of vascular plant and decrease in abundance of mosses during the very dry 2015 vegetation season. It appeared that Carex spp. (C. limosa and C. rostrata) abundance responded positively to warming, while Sphagnum spp. (S. angustifolium and S. teres) responded negatively. The "warming" block was characterized by an increase in abundance of Carex spp. by 8.3 % to 16.7 % and decreased abundance of Sphagnum spp. from 25 % to 19.4 %, whereas in the block of "warming and drought" 11.4 % to by 18.3 and 38 % to 26.9 %, respectively in the August 2015. However, we observed decrease in Sphagnum spp. abundance in the treatment with rainfall reduction in wetter 2016, and their increase in the control. Our results show how considerable changes in vegetation structure can be expected under the stress of warming and modified rainfall conditions, even after a short-term manipulation. However, it is

  6. Remote sensing of vegetation dynamics in response to flooding and fire in the Okavango Delta, Botswana

    Science.gov (United States)

    Neuenschwander, Amy Lynn

    2007-12-01

    The Okavango Delta, an internationally recognized wetland, is undergoing natural and anthropogenic change at a variety of spatio-temporal scales. The objective of this research was to utilize remotely sensed imagery to assess the spatio-temporal distribution of flooding and fire and their subsequent influences on vegetation as represented by vegetation index trajectories in the Okavango Delta. The characterization of the spatio-temporal dynamics of vegetation spectral response via a time-series of remotely sensed data not only informs ecosystem and disturbance theory but also presents new methodological applications for multi-temporal change analysis. Disentangling these components from a signal is critical for better assessing the interrelationships among climatic oscillations, disturbance regimes, and human management on ecosystem response. This research tested six hypotheses regarding flooding and fire, and found that the largest number of fires occurred either within 5 km of the border to the Wildlife Management Areas or within the active (flooded a minimum of every two years) floodplains. These hypotheses indicate that burning is highest where people have access into the management areas and where the natural resources are plentiful. Periodicities from vegetation signal time-series did not confirm published climate-driven periodicities of 3, 8, and 18-years but did reveal seasonal (6 month) and quasi-decadal periodicities. Vegetation trajectories were more predictable with increasing flood frequency and duration, but were less predictable with increased fire frequency. The fact that increased burning resulted in less predictable behavior indicates the potential of quantifying the anthropogenic influence on the landscape using remotely sensed imagery. Flooding and fire were not statistically correlated to the residual dynamics, refuting the conceptualization of flooding and fire as disturbance and supporting the interpretation of flooding and fire as

  7. Analysing vegetation phenology in response to climate change using enhanced bioclimatic indices in Iraq

    Science.gov (United States)

    Daham, Afrah; Han, Dawei; Jolly, William M.; Rico-Ramirez, Miguel

    2017-04-01

    Exchanges of momentum, heat, carbon dioxide, energy, water and mass between the land's surface and the atmosphere are significantly affected by the phenological state of vegetation. Although, most phenology models have the function in analysing and predicting future trends in response to climate change, a bioclimatic index including precipitation in has not been adequately considered in the existing phenology models. In this study a new variable is added to the common set of variables found in the literature review and it is demonstrated how these variables could be combined into an index to quantify the greenness of vegetation throughout the three different years that have been selected (2001, 2006, and 2010). These four selected variables are: Suboptimal (minimum) temperatures, evaporative demand (vapour pressure deficit), photoperiod (daylength), and precipitation. Threshold limits (a lower threshold and an upper threshold) have been set for individual variables, within which the relative phenological performance of the vegetation is assumed to vary from inactive (0) to unconstrained (1). A combined Growing Season Index (GSI) is derived as the product of the four indices. The mean GSI values over twenty one days for the study area during the study period showed a good correlation with the MODerate-resolution Imaging Spectroradiometer (MODIS) and the derived Normalized Difference Vegetation Index (NDVI). The model has been tested for different locations in Iraq (Sulaymaniyah in the north, Wasit in the centre and Basrah in the south) by comparing the model results for these areas with the addition of the precipitation variable and without. The correlation for this model has been improved significantly after adding precipitation as an index in the GSI model. The modified model appears sufficiently robust to reconstruct historical variation as well as to forecast possible future phenological responses to changing climatic conditions. This study is of important value

  8. Complex responses of spring alpine vegetation phenology to snow cover dynamics over the Tibetan Plateau, China.

    Science.gov (United States)

    Wang, Siyuan; Wang, Xiaoyue; Chen, Guangsheng; Yang, Qichun; Wang, Bin; Ma, Yuanxu; Shen, Ming

    2017-09-01

    Snow cover dynamics are considered to play a key role on spring phenological shifts in the high-latitude, so investigating responses of spring phenology to snow cover dynamics is becoming an increasingly important way to identify and predict global ecosystem dynamics. In this study, we quantified the temporal trends and spatial variations of spring phenology and snow cover across the Tibetan Plateau by calibrating and analyzing time series of the NOAA AVHRR-derived normalized difference vegetation index (NDVI) during 1983-2012. We also examined how snow cover dynamics affect the spatio-temporal pattern of spring alpine vegetation phenology over the plateau. Our results indicated that 52.21% of the plateau experienced a significant advancing trend in the beginning of vegetation growing season (BGS) and 34.30% exhibited a delaying trend. Accordingly, the snow cover duration days (SCD) and snow cover melt date (SCM) showed similar patterns with a decreasing trend in the west and an increasing trend in the southeast, but the start date of snow cover (SCS) showed an opposite pattern. Meanwhile, the spatial patterns of the BGS, SCD, SCS and SCM varied in accordance with the gradients of temperature, precipitation and topography across the plateau. The response relationship of spring phenology to snow cover dynamics varied within different climate, terrain and alpine plant community zones, and the spatio-temporal response patterns were primarily controlled by the long-term local heat-water conditions and topographic conditions. Moreover, temperature and precipitation played a profound impact on diverse responses of spring phenology to snow cover dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2.

    Science.gov (United States)

    Lemordant, Léo; Gentine, Pierre; Swann, Abigail S; Cook, Benjamin I; Scheff, Jacob

    2018-04-02

    Predicting how increasing atmospheric CO 2 will affect the hydrologic cycle is of utmost importance for a range of applications ranging from ecological services to human life and activities. A typical perspective is that hydrologic change is driven by precipitation and radiation changes due to climate change, and that the land surface will adjust. Using Earth system models with decoupled surface (vegetation physiology) and atmospheric (radiative) CO 2 responses, we here show that the CO 2 physiological response has a dominant role in evapotranspiration and evaporative fraction changes and has a major effect on long-term runoff compared with radiative or precipitation changes due to increased atmospheric CO 2 This major effect is true for most hydrological stress variables over the largest fraction of the globe, except for soil moisture, which exhibits a more nonlinear response. This highlights the key role of vegetation in controlling future terrestrial hydrologic response and emphasizes that the carbon and water cycles are intimately coupled over land. Copyright © 2018 the Author(s). Published by PNAS.

  10. Influence of vegetable diets on physiological and immune responses to thermal stress in Senegalese sole (Solea senegalensis)

    DEFF Research Database (Denmark)

    Conde-Sieira, Marta; Gesto, Manuel; Batista, Sónia

    2018-01-01

    quality parameters. However, scarce information is available regarding the long-term impact of vegetable diets (combining the inclusion of both vegetable protein and oils) on the stress response and immunity of this fish species. This study aims to evaluate the concomitant effect of the extended use...... of vegetable protein-based diets with fish oil (FO) replacement (0, 50 or 100%) by vegetable oils (VO), on the response to acute (10 min) or prolonged (4 days) stress, induced by thermal shock. Plasma levels of cortisol, glucose and lactate as well as hepatic levels of glucose, glycogen and lactate were......The substitution of fish resources as ingredients for aquafeeds by those based on vegetable sources is needed to ensure aquaculture sustainability in the future. It is known that Senegalese sole (Solea senegalensis) accepts high dietary content of plant ingredients without altering growth or flesh...

  11. CORTICAL RESPONSES TO SALIENT NOCICEPTIVE AND NOT NOCICEPTIVE STIMULI IN VEGETATIVE AND MINIMAL CONSCIOUS STATE

    Directory of Open Access Journals (Sweden)

    MARINA eDE TOMMASO

    2015-01-01

    Full Text Available Aims Questions regarding perception of pain in non-communicating patients and the management of pain continue to raise controversy both at a clinical and ethical level. The aim of this study was to examine the cortical response to salient multimodal visual, acoustic, somatosensory electric non nociceptive and nociceptive laser stimuli and their correlation with the clinical evaluation.Methods: Five Vegetative State (VS, 4 Minimally Conscious State (MCS patients and 11 age- and sex-matched controls were examined. Evoked responses were obtained by 64 scalp electrodes, while delivering auditory, visual, non-noxious electrical and noxious laser stimulation, which were randomly presented every 10 sec. Laser, somatosensory, auditory and visual evoked responses were identified as a negative-positive (N2-P2 vertex complex in the 500 msec post-stimulus time. We used Nociception Coma Scale-Revised (NCS-R and Coma Recovery Scale (CRS-R for clinical evaluation of pain perception and consciousness impairment.Results: The laser evoked potentials (LEPs were recognizable in all cases. Only one MCS patient showed a reliable cortical response to all the employed stimulus modalities. One VS patient did not present cortical responses to any other stimulus modality. In the remaining participants, auditory, visual and electrical related potentials were inconstantly present. Significant N2 and P2 latency prolongation occurred in both VS and MCS patients. The presence of a reliable cortical response to auditory, visual and electric stimuli was able to correctly classify VS and MCS patients with 90% accuracy. Laser P2 and N2 amplitudes were not correlated with the CRS-R and NCS-R scores, while auditory and electric related potentials amplitude were associated with the motor response to pain and consciousness recovery. Discussion: pain arousal may be a primary function also in vegetative state patients while the relevance of other stimulus modalities may indicate the

  12. Variation in herbaceous vegetation and soil moisture under treated and untreated oneseed juniper trees

    Science.gov (United States)

    Hector Ramirez; Alexander Fernald; Andres Cibils; Michelle Morris; Shad Cox; Michael Rubio

    2008-01-01

    Clearing oneseed juniper (Juniperus monosperma) may make more water available for aquifer recharge or herbaceous vegetation growth, but the effects of tree treatment on soil moisture dynamics are not fully understood. This study investigated juniper treatment effects on understory herbaceous vegetation concurrently with soil moisture dynamics using vegetation sampling...

  13. The Influence of Parent Material on Vegetation Response 15 years after the Dude Fire, Arizona

    Directory of Open Access Journals (Sweden)

    Jackson M. Leonard

    2015-03-01

    Full Text Available This study examined the effects of two types of parent material, sandstone and limestone, on the response of vegetation growth after the 1990 Dude Fire in central Arizona. The operating hypothesis of the study was that, given the right conditions, severe wildfire can trigger vegetation type conversion. Overall, three patterns emerged: (1 oak density increased by 413% from unburned sites to burned sites, with the highest densities occurring on sandstone soils; (2 weeping lovegrass (Eragrostis curvula Nees, a very aggressive non-native grass species seeded after the fire, now makes up 81% of the total herbaceous cover in the burned area; and (3 bare ground cover is 150% higher and litter cover is 50% lower in the burned area. Soil analysis was not definitive enough to differentiate impacts between parent materials however it was useful in quantifying the long-term impact of the fire on soils. The results of this study support the idea that catastrophic fire events can trigger vegetation type conversion and that perennial, non-native species used in rehabilitation efforts can persist within the ecosystem for long periods of time. Hence, the recovery period needed for the Dude Fire site to revert back to a pine-oak dominated forest could be on the scale of many decades to centuries.

  14. Hydrologic Response to Climatic and Vegetation Change in an Extreme Alpine Environment

    Science.gov (United States)

    Livneh, B.; Badger, A.; Molotch, N. P.; Bueno de Mesquita, C.; Suding, K.

    2016-12-01

    Mountain hydrology and ecology are uniquely sensitive to climate change. This presentation will examine how changes in climate have altered land cover and hydrology in the Green Lakes Valley, an alpine catchment for which approximately 80% of the annual precipitation ( 950 mm/yr) falls as snow. In these environments vegetation has two way interaction with hydrology: its distribution is driven by patterns of snowpack and water availability while it functions to modulate hydrologic responses by alterating land-atmosphere interaction. Long-term climate trends indicate warming, earlier snowmelt, and longer snow-free growing seasons. High-resolution aerial photography from 1972 and 2008 identified vegetation encroachment as shrubs and trees have increased in vigor and density in the tundra, while herbaceous tundra plants have colonized high-elevation bare ground. To understand modulations to physical hydrology from climate and biophysical responses, we apply a 20-m resolution fully-distributed hydrologic model. Through the use of observed meteorology (radiation, humidity, temperature and precipitation) an hourly climatology was created. Realizations from a stochastic ensemble of this climatology together with trends from long-term observations are used to characterize historical hydrologic response and project future changes. Through temperature and precipitation change experiments, alterations to the annual water cycle are presented—indicating the importance of annual snowpack evolution on both the surface and sub-surface hydrology, particularly through seasonal water storage. Probabilistic land cover change scenarios are developed that project how further vegetation encroachment modulates surface water fluxes and sediment yields. Lastly, the context of these results are compared with hydrometeorological research from other differing alpine and ecological regions.

  15. Microtopographic hydrologic variability change resulting from vegetation acclimation response to elevated atmospheric CO2

    Science.gov (United States)

    Le, P. V.; Kumar, P.

    2015-12-01

    The elevated concentration of atmospheric CO2 increases the ratio of carbon fixation to water loss from plants or water use efficiency, which reduces transpiration. However, the magnitude of the effects of this vegetation acclimation on hydrologic dynamics, such as soil moisture content and surface runoff controlled by microtopographic variability on the land surface, remains unclear. Here we integrate a multi-layer canopy-root-soil model (MLCan) with a coupled surface-subsurface flow model (GCSFlow) to capture the acclimation responses of vegetation to climate change and predict how these changes affect hydrologic dynamics on landscapes at fine scales. The model is implemented on a hybrid CPU-GPU parallel computing environment to overcome challenges associated with the high density of computational grid and nonlinear solvers. The model is capable of simulating large-scale heterogeneities due to both microtopography and soils and lateral water fluxes at emerging lidar-scale resolutions (~1m). We demonstrate that hybrid computing is feasible for detailed, large-scale ecohydrologic modeling, which has been previously assumed to be an intractable computational problem. Simulations are performed for corn crop in the Goose Creek watershed in central Illinois, USA at present and projected higher concentrations of atmospheric CO2, 400 ppm and 550 ppm, respectively. The results show a net decrease of 11% for the average annual evapotranspiration of corn, which increases water content in the soil and at the land surface. These results highlight the critical role of a warming climate on atmospheric-soil-vegetation interactions and the need to understand other dynamics near the soil surface associated with water and vegetation.

  16. Response of vegetable seed germination to solar radiation penetrating through soil

    International Nuclear Information System (INIS)

    Hamamoto, H.

    1999-01-01

    Response of vegetable seeds to irradiation and emergence of plants seeded at various depths were investigated to clarify the effects of solar radiation through soil on vegetable seed germination. Seeds of eight vegetable species were germinated in Petri dishes under 11-h irradiation per day. Seed germination was delayed in tomato (Licopersicon esculentum Mill.) but accelerated in perilla (Perilla ocymoides L.) and Japanese hornwort (Cryptotaenia japonica Hassk.) with increase in irradiation at the intensities higher than 0.4W m -2 . Seeds of Japanese radish (Raphanus sativus L.), watermelon (Citrullus lanatus Matsum.), and Chinese cabbage (Brassica campestris L.) showed delayed germination at more than 4-6W m -2 . No effect of irradiation on lettuce (Lactuca sativa L.) and carrot (Daucus carota L.) seed germination was seen. For tomato, Japanese radish and Japanese hornwort, the effects of irradiation time on germination were also investigated. Tomato seed germination was delayed and Japanese hornwort seed germination was accelerated with increase in irradiation time beyond 2h per day. The emergence of tomato and Japanese hornwort covered with Shimokuriyagawa loam soil (Kuriyagawa soil) and vermiculite at depths of less than 5mm, 5-10mm and 10-15mm was observed. Plants emerged more rapidly from 5-10mm depths than from less than 5mm depth in tomato. The plants seeded at 10-15mm depths emerged as rapidly as those at 5-10mm depths using vermiculite but later than those at other depths using Kuriyagawa soil, probably due to high bulk density. The early emergence of Japanese hornwort was fastest from less than 5mm depth. The plants seeded at 5-10mm depths did not emerge much slower than those at less than 5mm depth. A seeding depth of 5-10mm was suitable for the rapid emergence of those vegetables covered with both the soil and vermiculite. (author)

  17. Cortical responses to salient nociceptive and not nociceptive stimuli in vegetative and minimal conscious state

    Science.gov (United States)

    de Tommaso, Marina; Navarro, Jorge; Lanzillotti, Crocifissa; Ricci, Katia; Buonocunto, Francesca; Livrea, Paolo; Lancioni, Giulio E.

    2015-01-01

    Aims: Questions regarding perception of pain in non-communicating patients and the management of pain continue to raise controversy both at a clinical and ethical level. The aim of this study was to examine the cortical response to salient visual, acoustic, somatosensory electric non-nociceptive and nociceptive laser stimuli and their correlation with the clinical evaluation. Methods: Five Vegetative State (VS), 4 Minimally Conscious State (MCS) patients and 11 age- and sex-matched controls were examined. Evoked responses were obtained by 64 scalp electrodes, while delivering auditory, visual, non-noxious electrical and noxious laser stimulation, which were randomly presented every 10 s. Laser, somatosensory, auditory and visual evoked responses were identified as a negative-positive (N2-P2) vertex complex in the 500 ms post-stimulus time. We used Nociception Coma Scale-Revised (NCS-R) and Coma Recovery Scale (CRS-R) for clinical evaluation of pain perception and consciousness impairment. Results: The laser evoked potentials (LEPs) were recognizable in all cases. Only one MCS patient showed a reliable cortical response to all the employed stimulus modalities. One VS patient did not present cortical responses to any other stimulus modality. In the remaining participants, auditory, visual and electrical related potentials were inconstantly present. Significant N2 and P2 latency prolongation occurred in both VS and MCS patients. The presence of a reliable cortical response to auditory, visual and electric stimuli was able to correctly classify VS and MCS patients with 90% accuracy. Laser P2 and N2 amplitudes were not correlated with the CRS-R and NCS-R scores, while auditory and electric related potentials amplitude were associated with the motor response to pain and consciousness recovery. Discussion: pain arousal may be a primary function also in vegetative state patients while the relevance of other stimulus modalities may indicate the degree of cognitive and motor

  18. Spatial Heterogeneity of the Forest Canopy Scales with the Heterogeneity of an Understory Shrub Based on Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Catherine K. Denny

    2017-04-01

    Full Text Available Spatial heterogeneity of vegetation is an important landscape characteristic, but is difficult to assess due to scale-dependence. Here we examine how spatial patterns in the forest canopy affect those of understory plants, using the shrub Canada buffaloberry (Shepherdia canadensis (L. Nutt. as a focal species. Evergreen and deciduous forest canopy and buffaloberry shrub presence were measured with line-intercept sampling along ten 2-km transects in the Rocky Mountain foothills of west-central Alberta, Canada. Relationships between overstory canopy and understory buffaloberry presence were assessed for scales ranging from 2 m to 502 m. Fractal dimensions of both canopy and buffaloberry were estimated and then related using box-counting methods to evaluate spatial heterogeneity based on patch distribution and abundance. Effects of canopy presence on buffaloberry were scale-dependent, with shrub presence negatively related to evergreen canopy cover and positively related to deciduous cover. The effect of evergreen canopy was significant at a local scale between 2 m and 42 m, while that of deciduous canopy was significant at a meso-scale between 150 m and 358 m. Fractal analysis indicated that buffaloberry heterogeneity positively scaled with evergreen canopy heterogeneity, but was unrelated to that of deciduous canopy. This study demonstrates that evergreen canopy cover is a determinant of buffaloberry heterogeneity, highlighting the importance of spatial scale and canopy composition in understanding canopy-understory relationships.

  19. Changes in Soil Carbon Stocks and Fluxes in Response to Altered Above- and Belowground Vegetation Inputs

    Science.gov (United States)

    Marañón-Jiménez, S.; Schuetze, C.; Cuntz, M.; García-Quirós, I.; Dienstbach, L.; Schrumpf, M.; Rebmann, C.

    2016-12-01

    The stimulation of vegetation productivity in response to rising atmospheric CO2 concentrations can potentially compensate climate change feedbacks. However, this will depend on the allocation of C resources of vegetation into biomass production versus root exudates and on the feedbacks with soil microorganisms. These dynamic adjustments of vegetation will result on changes in above- and belowground productivity and on the amount of C exported to root exudates. Consequent alteration of litter and rhizosphere detritus inputs to the soil and their interaction on controlling soil C sequestration capacity has been, however, rarely assessed. We hypothesize that above- and belowground vegetation exert a synergistic control of soil CO2 emissions, and that the activation of soil organic matter mineralization by the addition of labile organic substrates (i.e.: the priming effect) is altered by changes in the amount and in the quality of the carbon inputs. In order to elucidate these questions, different levels of litter addition were implemented on trenched (root exclusion) and non-trenched plots (with roots) in a temperate deciduous forest. Changes in the sensitivity of soil respiration to temperature and moisture were detected by measuring CO2 fluxes continuously at high temporal resolution with automatic chambers, whereas the spatial and seasonal variability was determined using portable chambers. Annual changes in soil carbon and nitrogen stocks provide additional information on the soil carbon sequestration in response to above- and belowground inputs. Both roots and litter inputs significantly enhanced soil CO2 effluxes soon after the implementation of the experiment. We detected synergistic effects between roots and litter inputs on soil CO2 emissions: When roots were present, carbon mineralized in response to litter addition was much higher than the total amount of carbon added in litter (ca. 170 g C m-2 y-1). Preliminary results of this study suggest that labile

  20. Short-term bryoid and vascular vegetation response to reforestation alternatives following wildfire in conifer plantations

    Science.gov (United States)

    Lori J. Kayes; Klaus J. Puettmann; Paul D. Anderson

    2011-01-01

    How are dynamics of early-seral post-fire vascular plant and bryoid (terrestrial mosses, lichens, and fungi) vegetation impacted by reforestation activities, particularly manual vegetation removal and planting density? Does the relationship between vegetation dynamics and vegetation removal differ between harsh (west-facing) and moderate (east-facing) aspects?...

  1. Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA

    Science.gov (United States)

    El-Vilaly, Mohamed Abd Salam; Didan, Kamel; Marsh, Stuart E.; van Leeuwen, Willem J. D.; Crimmins, Michael A.; Munoz, Armando Barreto

    2018-03-01

    For more than a decade, the Four Corners Region has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources while exacerbating soil erosion. These persistent droughts threaten ecosystem services, agriculture, and livestock activities, and expose the hypersensitivity of this region to inter-annual climate variability and change. Much of the intermountainWestern United States has sparse climate and vegetation monitoring stations, making fine-scale drought assessments difficult. Remote sensing data offers the opportunity to assess the impacts of the recent droughts on vegetation productivity across these areas. Here, we propose a drought assessment approach that integrates climate and topographical data with remote sensing vegetation index time series. Multisensor Normalized Difference Vegetation Index (NDVI) time series data from 1989 to 2010 at 5.6 km were analyzed to characterize the vegetation productivity changes and responses to the ongoing drought. A multi-linear regression was applied to metrics of vegetation productivity derived from the NDVI time series to detect vegetation productivity, an ecosystem service proxy, and changes. The results show that around 60.13% of the study area is observing a general decline of greenness ( p<0.05), while 3.87% show an unexpected green up, with the remaining areas showing no consistent change. Vegetation in the area show a significant positive correlation with elevation and precipitation gradients. These results, while, confirming the region's vegetation decline due to drought, shed further light on the future directions and challenges to the region's already stressed ecosystems. Whereas the results provide additional insights into this isolated and vulnerable region, the drought assessment approach used in this study may be adapted for application in other regions where surface-based climate and vegetation monitoring record is spatially and temporally limited.

  2. Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA

    Science.gov (United States)

    El-Vilaly, Mohamed Abd Salam; Didan, Kamel; Marsh, Stuart E.; van Leeuwen, Willem J. D.; Crimmins, Michael A.; Munoz, Armando Barreto

    2017-05-01

    For more than a decade, the Four Corners Region has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources while exacerbating soil erosion. These persistent droughts threaten ecosystem services, agriculture, and livestock activities, and expose the hypersensitivity of this region to inter-annual climate variability and change. Much of the intermountainWestern United States has sparse climate and vegetation monitoring stations, making fine-scale drought assessments difficult. Remote sensing data offers the opportunity to assess the impacts of the recent droughts on vegetation productivity across these areas. Here, we propose a drought assessment approach that integrates climate and topographical data with remote sensing vegetation index time series. Multisensor Normalized Difference Vegetation Index (NDVI) time series data from 1989 to 2010 at 5.6 km were analyzed to characterize the vegetation productivity changes and responses to the ongoing drought. A multi-linear regression was applied to metrics of vegetation productivity derived from the NDVI time series to detect vegetation productivity, an ecosystem service proxy, and changes. The results show that around 60.13% of the study area is observing a general decline of greenness (p<0.05), while 3.87% show an unexpected green up, with the remaining areas showing no consistent change. Vegetation in the area show a significant positive correlation with elevation and precipitation gradients. These results, while, confirming the region's vegetation decline due to drought, shed further light on the future directions and challenges to the region's already stressed ecosystems. Whereas the results provide additional insights into this isolated and vulnerable region, the drought assessment approach used in this study may be adapted for application in other regions where surfacebased climate and vegetation monitoring record is spatially and temporally limited.

  3. When Winners Become Losers: Predicted Nonlinear Responses of Arctic Birds to Increasing Woody Vegetation.

    Directory of Open Access Journals (Sweden)

    Sarah J Thompson

    Full Text Available Climate change is facilitating rapid changes in the composition and distribution of vegetation at northern latitudes, raising questions about the responses of wildlife that rely on arctic ecosystems. One widely observed change occurring in arctic tundra ecosystems is an increasing dominance of deciduous shrub vegetation. Our goals were to examine the tolerance of arctic-nesting bird species to existing gradients of vegetation along the boreal forest-tundra ecotone, to predict the abundance of species across different heights and densities of shrubs, and to identify species that will be most or least responsive to ongoing expansion of shrubs in tundra ecosystems. We conducted 1,208 point counts on 12 study blocks from 2012-2014 in northwestern Alaska, using repeated surveys to account for imperfect detection of birds. We considered the importance of shrub height, density of low and tall shrubs (i.e. shrubs >0.5 m tall, percent of ground cover attributed to shrubs (including dwarf shrubs <0.5 m tall, and percent of herbaceous plant cover in predicting bird abundance. Among 17 species considered, only gray-cheeked thrush (Catharus minimus abundance was associated with the highest values of all shrub metrics in its top predictive model. All other species either declined in abundance in response to one or more shrub metrics or reached a threshold where further increases in shrubs did not contribute to greater abundance. In many instances the relationship between avian abundance and shrubs was nonlinear, with predicted abundance peaking at moderate values of the covariate, then declining at high values. In particular, a large number of species were responsive to increasing values of average shrub height with six species having highest abundance at near-zero values of shrub height and abundance of four other species decreasing once heights reached moderate values (≤ 33 cm. Our findings suggest that increases in shrub cover and density will negatively

  4. Increasing biological diversity in a dynamic vegetation model and consequences for simulated response to climate change

    Science.gov (United States)

    Keribin, R. M.; Friend, A. D.; Purves, D.; Smith, M. J.

    2013-12-01

    Vegetation, from tropical rainforests to the tundra, is the basis of the world food chain but is also a key component of the Earth system, with biophysical and biogeochemical impacts on the global climate, and Dynamic Global Vegetation Models (DGVMs) are an important integrative tool for understanding its responses to climate change. DGVMs up to now have treated only a small number of plant types representing broad divisions in vegetation worldwide (e.g. trees and grasses, broadleaf and needleleaf, deciduousness), but these categories ignore most of the variation that exists between plant species and between individuals within a species. Research in community ecology makes it clear however that these variations can affect large-scale ecosystem properties such as productivity and resilience to environmental changes. The current challenge is for DGVMs to account for fine-grained variations between plants and a few such models are being developed using newly-available plant trait databases such as the TRY database and insights from community ecology such as habitat filtering. Hybrid is an individual-based DGVM, first published in 1993, that models plant physiology in a mechanistic way. We modified Hybrid 8, the latest version of the model which uses surface physics taken from the GISS ModelE GCM, to include a mechanistic gap-model component with individual-based variation in tree wood density. This key plant trait is known to be strongly correlated with a trade-off between growth and mortality in the majority of forests worldwide, which allows for otherwise-similar individuals to have different life-history strategies. We investigate how the inclusion of continuous variation in wood density into the model affects the ecosystem's transient dynamics under climate change.

  5. Examining spring phenology of forest understory using digital photography

    Science.gov (United States)

    Liang Liang; Mark D. Schwartz; Songlin. Fei

    2011-01-01

    Phenology is an important indicator of forest health in relation to energy/nutrient cycles and species interactions. Accurate characterization of forest understory phenology is a crucial part of forest phenology observation. In this study, ground plots set up in a temperate mixed forest in Wisconsin were observed with a visible-light digital camera during spring 2007....

  6. Monitoring responses of Mason Pine to acid rain in China based on remote sensing vegetation index

    International Nuclear Information System (INIS)

    Jin, Jiaxin; Jiang, Hong; Zhang, Xiuying; Wang, Ying; Hou, Chunliang

    2014-01-01

    Since the 1970s, acid rain has remained in the public spotlight in both Europe and the United States and recently has emerged as an important problem in other regions such as Southeast Asia. To reveal responses of Masson Pine to acid rain during a long time series in central China, we used the interpolation dataset of acid rain and the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) data to derive the monthly pH and NDVI trajectories based on acidity gradients from 1992 to 2006. Then we analyzed inter-annual and seasonal variation of vegetation growth by improved sinusoidal fitting and regression analysis. In the environment of strong acidity and moderate acidity, the growth of Masson Pine was inhibited during the study period, while the slight acidity promoted growth of Masson Pine to some extent. For the multi-year monthly changing trend of NDVI, late spring to mid autumn, the NDVI showed a decreasing trend, especially in June, while from late autumn to the following spring, the NDVI showed a rising tendency, specifically in December and March

  7. Vegetation response to soil salinity and waterlogging in three saltmarsh hydrosequences through macronutrients distribution

    Science.gov (United States)

    Ferronato, Chiara; Speranza, Maria; Ferroni, Lucia; Buscaroli, Alessandro; Vianello, Gilmo; Vittori Antisari, Livia

    2018-01-01

    Saltmarshes consist of soil hydrosequences, where the complex interactions between water tide fluctuations, soil physicochemical properties and plant colonization contribute to the triggering of the pedogenetic processes and consequently to the stability of the saltmarsh edges. In this study, the composition and richness of the vegetation cover were investigated along soil transects in three different saltmarshes. With the aim to investigate the response of the vegetation to the soil hydroperiod and its influence on the availability of soil nutrients, plant and soil samples were collected in four representative sites on each saltmarsh transect (hydrosequence). Among the different species of saltmarshes, L. vulgare and S. europaea colonized intertidal areas, where an accumulation of nutrients (Ca, K, P, S and Na) and organic C and total N (OC and TN, respectively) was found. These intertidal areas are the "critical transition zones", which drive the transition between the terrestrial and the aquatic systems along the increase of soil salinity and water saturation. Among the different element cycles analysed in the soil-plant system, the analysis of the Na and S dynamic, through both bioconcentration and translocation indexes, explains the different adaptation mechanisms to different salinity and waterlogging stressors. The limiting of the species areal was generally associated firstly with a decrease in their Na and S bioconcentration factor and, to a lesser extent, with the increase in their Na and S translocation.

  8. Analyzing the vegetation response under different treatments after wildfires in NE Spain

    Science.gov (United States)

    León, Javier; Cerdà, Artemi; Badía, David; Echeverría, Maite; Martí, Clara

    2014-05-01

    Fire is a natural factor of landscape evolution in Mediterranean ecosystems. The socio-economic changes that occurred in the last decades have contributed to an increase in forest fires (Shakesby, 2011). There was found a change in the fire regimes in terms of frequency, size, seasonality, recurrence as well as fire intensity and severity (Keeley, 2009), which resulted in severe effects on soils, water and vegetation (Guénon et al., 2013). Fire affects soil properties directly by the heat impact (Aznar et al., 2013), and the ash cover (Cerdà and Doerr, 2008) and the reduction of the plant cover (Neary et al., 1999). The lack of vegetation and the heating promotes changes in the soil organic matter content (González-Pérez et al., 2004), on the structural stability (Mataix-Solera et al., 2011), on the hydrophobic response (Bodí et al., 2012), and on the infiltration capacity (Cerdà, 1998a). This is why the vegetation cover and the litter are key factors on soil erosion after forest fires (Prats et al., 2013). Besides, the ash plays an important paper in the soil protection after the forest fire and after the first storms and winds (León et al., 2013; Pereira et al., 2013). The objective of this experiment is to asses the vegetation response after a forest fire and the impact of vegetation recovery on soil erosion. The experiment consisted in a sampling of a linear transect of 10 m with samples each 2 m, under different slope position and aspect. To measure the soil erosion rates we used rainfall simulation experiments (León et al., 2013). The experiments were carried in Castejón (UTM 30T, X671106, Y4644584) in a forest burned in 2008, in the Zuera Mountains, both located in the north of Zaragoza province (NE Spain). The soils on limestone parent material are Rendzic Phaeozem (IUSS, 2007) and the texture of Ah horizons of soils developed on limestone is sandy-loam (Badía et al., 2013). The result shows fast and successful vegetation regeneration in the north

  9. Response of shortgrass Plains vegetation to chronic and seasonally administered gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fraley, Jr., Leslie [Colorado State Univ., Fort Collins, CO (United States)

    1971-08-01

    In order to determine the effect of radiation on the structure of native shortgrass plains vegetation, an 8750 Ci 137Cs source was installed on the Central Plains Experimental Range near Nunn, Colorado; The experimental area was divided into 6 treatment sectors, a control, 2 sectors for chronic exposure (irradiation initiated April 1969 and continuing as of August 1971), and one each for spring, summer and late fall seasonal semi-acute (30 day), exposures which were administered during April, July and December, 1969, respectively. Community structure was measured by coefficient of community and diversity index. Yield was determined by clipping plots in September 1970 and visual estimates in September 1969 and 1970 for the grass-sedge component of the vegetation. Individual species sensitivity was determined by density data recorded in April, June and September of 1969 and 1970 and by a phenological index recorded at weekly intervals during the 1969 and 1970 growing seasons. The response of the vegetation was similar whether determined by coefficient of community or diversity with diversity being a more sensitive measure of effects. In the chronically exposed sectors, the exposure rate which resulted in a 50 per cent reduction in these 2 parameters (CC50 or D50) was still decreasing the second growing season and was approximately 18 R/hr for the CC50 as of June 1970 and 10 R/hr for the D50 as of September 1970. For the seasonally exposed sectors, the late fall period (December, 1969) was the most sensitive, summer (July, 1969) the least sensitive and spring (April, 1969) intermediate with CC50 and D50 values of 195 and 90, 240 and 222, and 120 and 74 R/hr for the spring, summer and late fall exposed sectors, respectively. Yield and density data indicated a rapid revegetation of the spring and summer exposed sectors during 1970 as a result of an influx of invader species such as Salsola kali tenuifolia, Chenopodium leptophyllum and Lepidium densiflorum and the

  10. Trends in global vegetation activity and climatic drivers indicate a decoupled response to climate change

    DEFF Research Database (Denmark)

    Schut, Antonius G T; Ivits, Eva; Conijn, Jacob G.

    2015-01-01

    Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982-2010) derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty...... in trend estimates. Annual total biomass weight (TBW) was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR) with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS......-NPP) and TBWper biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land...

  11. Smart plants, smart models? On adaptive responses in vegetation-soil systems

    Science.gov (United States)

    van der Ploeg, Martine; Teuling, Ryan; van Dam, Nicole; de Rooij, Gerrit

    2015-04-01

    Hydrological models that will be able to cope with future precipitation and evapotranspiration regimes need a solid base describing the essence of the processes involved [1]. The essence of emerging patterns at large scales often originates from micro-behaviour in the soil-vegetation-atmosphere system. A complicating factor in capturing this behaviour is the constant interaction between vegetation and geology in which water plays a key role. The resilience of the coupled vegetation-soil system critically depends on its sensitivity to environmental changes. To assess root water uptake by plants in a changing soil environment, a direct indication of the amount of energy required by plants to take up water can be obtained by measuring the soil water potential in the vicinity of roots with polymer tensiometers [2]. In a lysimeter experiment with various levels of imposed water stress the polymer tensiometer data suggest maize roots regulate their root water uptake on the derivative of the soil water retention curve, rather than the amount of moisture alone. As a result of environmental changes vegetation may wither and die, or these changes may instead trigger gene adaptation. Constant exposure to environmental stresses, biotic or abiotic, influences plant physiology, gene adaptations, and flexibility in gene adaptation [3-7]. To investigate a possible relation between plant genotype, the plant stress hormone abscisic acid (ABA) and the soil water potential, a proof of principle experiment was set up with Solanum Dulcamare plants. The results showed a significant difference in ABA response between genotypes from a dry and a wet environment, and this response was also reflected in the root water uptake. Adaptive responses may have consequences for the way species are currently being treated in models (single plant to global scale). In particular, model parameters that control root water uptake and plant transpiration are generally assumed to be a property of the plant

  12. Vegetation response to rainfall seasonality and interannual variability in tropical dry forests

    Science.gov (United States)

    Feng, X.; Silva Souza, R. M.; Souza, E.; Antonino, A.; Montenegro, S.; Porporato, A. M.

    2015-12-01

    We analyzed the response of tropical dry forests to seasonal and interannual rainfall variability, focusing on the caatinga biome in semi-arid in Northeast Brazil. We selected four sites across a gradient of rainfall amount and seasonality and analyzed daily rainfall and biweekly Normalized Difference Vegetation Index (NDVI) in the period 2000-2014. The seasonal and interannual rainfall statistics were characterized using recently developed metrics describing duration, location, and intensity of wet season and compared them with those of NDVI time series and modelled soil moisture. A model of NDVI was also developed and forced by different rainfall scenarios (combination amount of rainfall and duration of wet season). The results show that the caatinga tends to have a more stable response characterized by longer and less variable growing seasons (of duration 3.1±0.1 months) compared to the rainfall wet seasons (2.0±0.5 months). Even for more extreme rainfall conditions, the ecosystem shows very little sensitivity to duration of wet season in relation to the amount of rainfall, however the duration of wet season is most evident for wetter sites. This ability of the ecosystem in buffering the interannual variability of rainfall is corroborated by the stability of the centroid location of the growing season compared to the wet season for all sites. The maximal biomass production was observed at intermediate levels of seasonality, suggesting a possible interesting trade-off in the effects of intensity (i.e., amount) and duration of the wet season on vegetation growth.

  13. Drought, climate change and vegetation response in the succulent karoo, South Africa

    Directory of Open Access Journals (Sweden)

    M. T. Hoffman

    2009-12-01

    Full Text Available For the winter-rainfall region of South Africa, the frequency of drought is predicted to increase over the next 100 years, with dire consequences for the vegetation of this biodiversity hotspot. We analysed historical 20th century rainfall records for six rainfall stations within the succulent karoo biome to determine if the signal of increasing drought frequency is already apparent, and whether mean annual rainfall is decreasing. We found no evidence for a decrease either in mean annual rainfall or in the incidence of drought, as measured by the Standardised Precipitation Index (SPI over the 20th century. Evidence points to a drying trend from 1900–1950 while no significant trend in rainfall and drought was found at most stations from 1951–2000. In a second analysis we synthesised the information concerning the response of adult succulent karoo biome plants and seedlings to extended drought conditions. General findings are that responses to drought differ between species, and that longevity is an important life history trait related to drought survival. Growth form is a poor predictor of drought response across the biome. There was a range of responses to drought among adult plants of various growth forms, and among non-succulent seedlings. Leaf-succulent seedlings, however, exhibited phenomenal drought resistance, the majority surviving drought long after all the experimentally comparative non-succulent seedlings had died. Our synthesis showed that previous studies on the impact of drought on succulent karoo biome plants differ greatly in terms of their location, sampling design, measured values and plant responses. A suite of coordinated long-term field observations, experiments and models are therefore needed to assess the response of succulent karoo biome species to key drought events as they occur over time and to integrate this information into conservation planning.

  14. Neurophysiological and behavioural responses to music therapy in vegetative and minimally conscious states

    Directory of Open Access Journals (Sweden)

    Julian eO'Kelly

    2013-12-01

    Full Text Available Assessment of awareness for those with disorders of consciousness (DOC is a challenging undertaking, due to the complex presentation of the population, where misdiagnosis rates remain high. Music therapy may be effective in the assessment and rehabilitation with this population due to effects of musical stimuli on arousal, attention and emotion, irrespective of verbal or motor deficits, however, an evidence base is lacking. To address this, a neurophysiological and behavioural study was undertaken comparing EEG, heart rate variability, respiration and behavioural responses of 20 healthy subjects with 21 individuals in vegetative or minimally conscious states (VS or MCS. Subjects were presented with live preferred music and improvised music entrained to respiration (i.e., music therapy procedures, recordings of disliked music, white noise and silence. ANOVA tests indicated a range of significant responses (p ≤ 0.05 across healthy subjects corresponding to arousal and attention in response to preferred music including concurrent increases in respiration rate with globally enhanced EEG power spectra responses across frequency bandwidths. Whilst physiological responses were heterogeneous across patients, significant post hoc EEG amplitude increases for stimuli associated with preferred music were found for frontal midline theta in 6 VS and 4 MCS subjects, and frontal alpha in 3 VS and 4 MCS subjects (p = 0.05 - 0.0001. Furthermore, behavioural data showed a significantly increased blink rate for preferred music (p = 0.029 across the VS cohort. Two VS cases are presented with concurrent changes (p ≤ 0.05 across measures indicative of discriminatory responses to both music therapy procedures. A MCS case study highlights how more sensitive selective attention may distinguish MCS from VS. Further investigation is warranted to explore the use of music therapy for prognostic indicators, and its potential to support neuroplasticity in rehabilitation

  15. Complexity confers stability: Climate variability, vegetation response and sand transport on longitudinal sand dunes in Australia's deserts

    Science.gov (United States)

    Hesse, Paul P.; Telfer, Matt W.; Farebrother, Will

    2017-04-01

    The relationship between antecedent precipitation, vegetation cover and sand movement on sand dunes in the Simpson and Strzelecki Deserts was investigated by repeated (up to four) surveys of dune crest plots (≈25 × 25 m) over a drought cycle (2002-2012) in both winter (low wind) and spring (high wind). Vegetation varied dramatically between surveys on vegetated and active dune crests. Indices of sand movement had significant correlations with vegetation cover: the depth of loose sand has a strong inverse relationship with crust (cyanobacterial and/or physical) while the area covered by ripples has a strong inverse relationship with the areal cover of vascular plants. However, the relationship between antecedent rainfall and vegetation cover was found to be complex. We tentatively identify two thresholds; (1) >10 mm of rainfall in the preceding 90 days leads to rapid and near total cover of crust and/or small plants 400 mm of rainfall in the preceding three years leads to higher cover of persistent and longer-lived plants >50 cm tall. These thresholds were used to predict days of low vegetation cover on dune crests. The combination of seasonality of predicted bare-crest days, potential sand drift and resultant sand drift direction explains observed patterns of sand drift on these dunes. The complex vegetation and highly variable rainfall regime confer meta-stability on the dunes through the range of responses to different intervals of antecedent rainfall and non-linear growth responses. This suggests that the geomorphic response of dunes to climate variation is complex and non-linear.

  16. Response of the European Vegetation to the Global Climatic Changes during the Neogene

    Science.gov (United States)

    Popescu, S.; Jimenez-Moreno, G.; Suc, J.; Rabineau, M.

    2009-12-01

    The beginning of the Neogene coincides with a transient cooler climate event (Mi-1) as response to the intermittent expansion on the EAIS. The Miocene is characterized by warm and humid climate that implied the development of forest environments in Europe. The vegetation was composed mainly by tropical, subtropical and warm-temperate plants, which attempted the maximum of diversity during the Miocene Climate Optimum event (17-15 Ma). Reconstruction of climatic parameters, applied to our pollen records, indicates for the NE Spain, for the Early Miocene a MAT~19°C, a MTW~24.5°C, a MTC~7.5 °C, and MAP = 900 - 1700 mm. Several cooling events (Mi-1 to Mi-7) are responsible for a progressive impoverishment in tropical and subtropical plants, which will be replaced by warm-temperate ones. The most important, Monterey Cooling Event induce the decrease of MAT about 2-4°C implying the disappearance of the Avicennia mangrove from the NW Mediterranean coastline. Warm climate characterized the Serravallian and Tortonian. Paleoclimatic reconstruction for the Late Miocene indicates a MAT=15-24°C, with a strong seasonality correlated with high precipitation values (1100 -1550 mm) in N.Europe and respectively low seasonality and precipitation values (320-680 mm) in SW Europe and N Africa. The West Antarctic glaciations at 6 Ma, probably caused the disappearance of the Avicennia mangrove from S. Mediterranean coastlines. During the Early Pliocene, the climate was relatively warmer with MAT higher of about 1-5°C than today.Increase in humidity characterize the Central and Eastern Europe (MAP higher of about 400 -1000 mm than today), that promoted the development of forest vegetation in this area. The pollen floras from the European Early Pliocene allow a refined geographic specification of the different kinds of reconstructed vegetation. The Late Pliocene is still too much poorly-documented and needs more attention as it represents the key-moment of the progressive transition

  17. Vegetation Response to Climatic Variations in the southern African tropics during the Late- Pleistocene and Holocene

    Science.gov (United States)

    Beuning, K. R.; Zimmerman, K. A.; Ivory, S. J.; Cohen, A. S.

    2007-12-01

    Pollen records from Lake Malawi, Africa spanning the last 135 kyr show substantial and abrupt vegetation response to multiple episodes of extreme aridity during the mega-drought period (130-90 ka). In contrast, vegetation composition and relative abundance remained fairly constant throughout the last 75 ka with no significant change during the Last Glacial Maxima (LGM) (35-15 ka). During the extremely arid mega-drought time period, fluctuations in pollen production define three distinct zones. The first zone, from 123-117 ka, is characterized by increasing amounts of grass, and decreasing amounts of both Podocarpus and evergreen forest taxa (i.e. Celtis, Ixora, Myrica, Macaranga), which, when matched with charcoal data, suggests a short period of extreme aridity. The disappearance of Brachystegia in this interval in conjunction with a peak in Amaranthaceae suggests conversion of the surrounding miombo woodland to an open grassland community probably caused by increased seasonality with a more prolonged and arid dry season. Peak amounts of Podocarpus (30-40%) along with diminishing levels of grass distinguish zone two (117-105 ka). This assemblage defines zone 2 as a period marked by a cool, dry climate resulting in expansion of montane forest taxa to lower elevations. Marine palynological records from the Angola Margin and Congo Fan show similar peak Podocarpus percentages at this time (oxygen isotope stage 5d) indicating similar latitudinal climates across the African continent. Zone three (105-75 ka) shows the highest and most consistent levels of Poaceae. This evidence, along with markedly low levels of most other taxa, indicates that this period contained the most sustained long-lasting dry spells during the past 135 ka. This episode in African history was severe enough as to cause the disappearance of forest taxa such as Uapaca and Brachystegia as well as montane taxa ( Podocarpus, Olea spp. and Ericaceae) within the pollen source area of Lake Malawi. The

  18. Simplifying understory complexity in oil palm plantations is associated with a reduction in the density of a cleptoparasitic spider,Argyrodes miniaceus(Araneae: Theridiidae), in host (Araneae: Nephilinae) webs.

    Science.gov (United States)

    Spear, Dakota M; Foster, William A; Advento, Andreas Dwi; Naim, Mohammad; Caliman, Jean-Pierre; Luke, Sarah H; Snaddon, Jake L; Ps, Sudharto; Turner, Edgar C

    2018-02-01

    Expansion of oil palm agriculture is currently one of the main drivers of habitat modification in Southeast Asia. Habitat modification can have significant effects on biodiversity, ecosystem function, and interactions between species by altering species abundances or the available resources in an ecosystem. Increasing complexity within modified habitats has the potential to maintain biodiversity and preserve species interactions. We investigated trophic interactions between Argyrodes miniaceus, a cleptoparasitic spider, and its Nephila spp . spider hosts in mature oil palm plantations in Sumatra, Indonesia. A. miniaceus co-occupy the webs of Nephila spp . females and survive by stealing prey items caught in the web. We examined the effects of experimentally manipulated understory vegetation complexity on the density and abundance of A. miniaceus in Nephila spp . webs. Experimental understory treatments included enhanced complexity, standard complexity, and reduced complexity understory vegetation, which had been established as part of the ongoing Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Project. A. miniaceus density ranged from 14.4 to 31.4 spiders per square meter of web, with significantly lower densities found in reduced vegetation complexity treatments compared with both enhanced and standard treatment plots. A. miniaceus abundance per plot was also significantly lower in reduced complexity than in standard and enhanced complexity plots. Synthesis and applications : Maintenance of understory vegetation complexity contributes to the preservation of spider host-cleptoparasite relationships in oil palm plantations. Understory structural complexity in these simplified agroecosystems therefore helps to support abundant spider populations, a functionally important taxon in agricultural landscapes. In addition, management for more structurally complex agricultural habitats can support more complex trophic interactions in tropical

  19. Influence of Vegetation Cover on Rain Pulse Responses in Semi-Arid Savannas in Central Texas

    Science.gov (United States)

    Litvak, M.; Heilman, J.; McInnes, K.; Thijs, A.; Kjelgaard, J.

    2007-12-01

    Savannas in central Texas are dominated by live oak (Quercus virginiana) and Ashe juniper (Juniperus asheii) underlain by perennial, C3/C4 grasslands, and are increasingly becoming juniper and mesquite dominated due to overgrazing and suppression of wildfires. Since 2004, we have been investigating how carbon, water and energy exchange in these rain-limited savannas respond to rainfall variability and this observed vegetation change. In semi-arid regions, rainfall pulses provide inputs of soil moisture and trigger biotic activity in the form of plant gas exchange and microbial metabolism as well as water dependent physical processes in the soil. Each of these components has a different characteristic response curve to soil moisture and integrates soil water content over a different range of depths. Here we focus on examining how the observed increase of woody species in central Texas savannas alters the response of net ecosystem exchange and its components, ecosystem respiration and gross ecosystem exchange, to rain pulses. Using data we have collected over the last three years from three Ameriflux tower sites at Freeman Ranch near San Marcos, TX (C3/C4 grassland, juniper/mesquite savanna with 50 percent woody cover, and oak/juniper woodland), we quantify the responses of both ecosystem respiration and daily carbon uptake to rainfall pulses throughout the year. Specifically, we look at the enhancement and persistence of ecosystem respiration and carbon uptake responses following a pulse, and isolate the main controlling factors on the observed response: seasonality, antecedent soil moisture and temperature, or previous pulses. In all three land covers, the general response to precipitation pulses is a respiration pulse followed by an increase in total carbon uptake. Differences in pulse responses observed at the savanna site compared to the grassland and woodland sites can be explained, in part, by the observed differences in rooting structure and photosynthetic

  20. Drought is Coming: Monitoring Vegetation Response to Water Scarcity through Variable Chlorophyll a Fluorescence

    Science.gov (United States)

    Guadagno, C. R.; Beverly, D.; Pleban, J. R.; Speckman, H. N.; Ewers, B. E.; Weinig, C.

    2017-12-01

    Aridity is one of the most pronounced environmental limits to plant survival, and understanding how plants respond to drought and recovery is crucial for predicting impacts on managed and natural ecosystems. Changes in soil moisture conditions induce a suite of physiological responses from the cell to ecosystem scale, complicating the assessment of drought effects. Characterizing early indicators of water scarcity across species can inform biophysical models with improved understanding of plant hydraulics. While indexes exist for drought monitoring across scales, many are unable to identify imminent vegetative drought. We explore a method of early diagnosis using leaf-level and kinetic imaging measures of variable chlorophyll a fluorescence. This is a fast and reliable tool capturing leaf physiological changes in advance of changes in NDVI or passive solar induced fluorescence. Both image and leaf level Pulse Amplitude Method (PAM) measurements illustrate the utility of variable chlorophyll a fluorescence for monitoring vegetative drought. Variable fluorescence was monitored across populations of crops, desert shrubs, montane conifers and riparian deciduous trees under variable water regimes. We found a strong correlation (R = 0.85) between the maximum efficiency of photosystem II measured using variable fluorescence (Fv'Fm') and leaf level electrolyte leakage, a proximal cause of drought stress induced by cellular damage in leaves. This association was confirmed in two gymnosperm species (Picea engelmannii and Pinus contorta) and for diverse varieties of the crop species Brassica rapa. The use of chlorophyll a fluorescence per image also allowed for early detection of drought in aspen (Populus tremuloides). These results provide evidence that variable chlorophyll fluorescence decreases between 25% and 70% in mild and severely droughted twigs with respect to ones collected from trees in wet soil conditions. While current systems for monitoring variable fluorescence

  1. Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites.

    Science.gov (United States)

    Turner, Wendy C; Kausrud, Kyrre L; Krishnappa, Yathin S; Cromsigt, Joris P G M; Ganz, Holly H; Mapaure, Isaac; Cloete, Claudine C; Havarua, Zepee; Küsters, Martina; Getz, Wayne M; Stenseth, Nils Chr

    2014-11-22

    Parasites can shape the foraging behaviour of their hosts through cues indicating risk of infection. When cues for risk co-occur with desired traits such as forage quality, individuals face a trade-off between nutrient acquisition and parasite exposure. We evaluated how this trade-off may influence disease transmission in a 3-year experimental study of anthrax in a guild of mammalian herbivores in Etosha National Park, Namibia. At plains zebra (Equus quagga) carcass sites we assessed (i) carcass nutrient effects on soils and grasses, (ii) concentrations of Bacillus anthracis (BA) on grasses and in soils, and (iii) herbivore grazing behaviour, compared with control sites, using motion-sensing camera traps. We found that carcass-mediated nutrient pulses improved soil and vegetation, and that BA is found on grasses up to 2 years after death. Host foraging responses to carcass sites shifted from avoidance to attraction, and ultimately to no preference, with the strength and duration of these behavioural responses varying among herbivore species. Our results demonstrate that animal carcasses alter the environment and attract grazing hosts to parasite aggregations. This attraction may enhance transmission rates, suggesting that hosts are limited in their ability to trade off nutrient intake with parasite avoidance when relying on indirect cues. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Floristic conservation value, nested understory floras, and the development of second-growth forest.

    Science.gov (United States)

    Spyreas, Greg; Matthews, Jeffrey W

    2006-08-01

    Nestedness analysis can reveal patterns of plant composition and diversity among forest patches. For nested floral assemblages, the plants occupying any one patch are a nested subset of the plants present in successively more speciose patches. Elimination of sensitive understory plants with human disturbance is one of several mechanisms hypothesized to generate nonrandom, nested floral distributions. Hypotheses explaining distributions of understory plants remain unsubstantiated across broad landscapes of varying forest types and disturbance histories. We sampled the vegetation of 51 floodplain and 55 upland forests across Illinois (USA) to examine how the diversity, composition, and nestedness of understory floras related to their overstory growth and structure (basal area), and their overall floristic conservation value (mean C). We found that plant assemblages were nested with respect to site species richness, such that rare plants indicated diverse forests. Floras were also nested with respect to site mean C and basal area (BA). However, in an opposite pattern from what we had expected, floras of high-BA stands were nested subsets of those of low-BA stands. A set of early-successional plants restricted to low-BA stands, and more importantly, the absence of a set of true forest plants in high-BA stands, accounted for this pattern. Additionally, we observed a decrease in species richness with increasing BA. These results are consistent with the hypothesis that recovery of true forest plants does not occur concurrently with overstory regeneration following massive anthropogenic disturbance. Nestedness by site mean C indicates that high conservation value (conservative) plants co-occur in highly diverse stands; these forests are assumed to be less disturbed historically. Because site mean C was uncorrelated with BA, BA-neutral disturbances such as livestock usage are suggested as accounting for between-site differences in mean C. When considered individually

  3. Intake of fruit and vegetables and risk of bladder cancer: a dose-response meta-analysis of observational studies.

    Science.gov (United States)

    Yao, Baodong; Yan, Yujie; Ye, Xianwu; Fang, Hong; Xu, Huilin; Liu, Yinan; Li, Sheran; Zhao, Yanping

    2014-12-01

    Observational studies suggest an association between fruit and vegetables intake and risk of bladder cancer, but the results are controversial. We therefore summarized the evidence from observational studies in categorical, linear, and nonlinear, dose-response meta-analysis. Pertinent studies were identified by searching EMBASE and PubMed from their inception to August 2013. Thirty-one observational studies involving 12,610 cases and 1,121,649 participants were included. The combined rate ratio (RR, 95 % CI) of bladder cancer for the highest versus lowest intake was 0.83 (0.69-0.99) for total fruit and vegetables, 0.81 (0.70-0.93) for total vegetables, 0.77 (0.69-0.87) for total fruit, 0.84 (0.77-0.91) for cruciferous vegetables, 0.79 (0.68-0.91) for citrus fruits, and 0.74 (0.66-0.84) for yellow-orange vegetables. Subgroup analysis showed study design and gender as possible sources of heterogeneity. A nonlinear relationship was found of citrus fruits intake with risk of bladder cancer (P for nonlinearity = 0.018), and the RRs (95 % CI) of bladder cancer were 0.87 (0.78-0.96), 0.80 (0.67-0.94), 0.79 (0.66-0.94), 0.79 (0.65-0.96), and 0.79 (0.64-0.99) for 30, 60, 90, 120, and 150 g/day. A nonlinear relationship was also found of yellow-orange vegetable intake with risk of bladder cancer risk (P for nonlinearity = 0.033). Some evidence of publication bias was observed for fruit, citrus fruits, and yellow-orange vegetables. This meta-analysis supports the hypothesis that intakes of fruit and vegetables may reduce the risk of bladder cancer. Future well-designed studies are required to confirm this finding.

  4. Dune Morphology and Sediment Budget Responses to Varying Vegetation Cover and Restoration: Humboldt Bay National Wildlife Refuge, Northern California.

    Science.gov (United States)

    Rader, A. M.; Walker, I. J.; Pickart, A.

    2016-12-01

    This study examines morphodynamic and sedimentation responses of a stretch of coastal foredune undergoing removal of invasive vegetation (Ammophila arenaria) to restore ecosystem dynamics at Humboldt Bay National Wildlife Refuge. Seasonal topographic and vegetation transect surveys and historical aerial photography are analyzed to assess interannual to decadal geomorphic responses of the foredune and sediment budget changes. Relationships between sedimentation and geomorphic change are explored between dominant vegetation cover types as possible. The foredune maintained a near balanced position (+0.004 m a-1) between 1939 and 2014 across the study site. However, there is a general N to S trend from progradation to retreat of the foredune with a maximum change of +1.34 m a-1 in the northern A. arenaria dominated areas to a max retreat of -0.49 m a-1 in the southern sites with a lower and more hummocky foredune dominated by native plants. From 2004 to 2014, percent active sand surface and average aerial change of blowouts remained relatively stable across the study site, with average change values of -0.97% and +0.01% respectively. Positive statistical correlations exist between seasonal beach and foredune volume changes across all sites, yet no significant differences are observed in total volumetric change over the observation period or volume changes within beach and foredune between different vegetation cover types. Survey and aerial photography results suggest that the increased density of A. arenaria has contributed to foredune stabilization over recent decades. However, there is no observed significant difference in seasonal sand volume change in relation to differing dominant vegetation covers. Rather, strong positive correlations exist between seasonal beach volumes and foredune sedimentation, which suggests that foredune sediment budgets may be driven primarily by littoral and aeolian supply variations. Future research will explore vegetation

  5. Implications of introducing realistic fire response traits in a Dynamic Global Vegetation Model

    Science.gov (United States)

    Kelley, D.; Harrison, S. P.; Prentice, I. C.

    2013-12-01

    the next growing season, while regenerating from seed at 10% the rate of non-resprouters. Tests of LPX-Mv1 for Australia - a continent with a wide range of fire-adapted ecosystems - show that it produces a 33% improvement in the simulation of vegetation composition compared to the previous version of the model, with more realistic vegetation transitions from forests to woodland/savanna. It also produces a 19% improvement in the simulation of burnt area compared to the original model. Resprouting PFTs dominate tropical and temperate areas where the climate is semi-humid but are not common in very dry or very wet areas. Comparison with site-based observations of the abundance of resprouters indicate this is realistic. Ecosystems dominated by resprouters in the simulations recover to pre-fire levels of biomass within 5-7 years, much faster than ecosystems dominated by non-resprouters; again this is confirmed by our analyses of the observations. Simulations of the response to projected future climate change show that the incorporation of adaptive bark thickness and of resprouting has a significant effect on terrestrial carbon stocks in fire-affected areas.

  6. Within-stand variation in understorey vegetation affects fire behaviour in longleaf pine xeric sandhills

    Science.gov (United States)

    Evelyn S. Wenk; G. Geoff Wang; Joan L. Walker

    2011-01-01

    The frequent fires typical of the longleaf pine ecosystem in the south-eastern USA are carried by live understorey vegetation and pine litter. Mature longleaf pine stands in the xeric sandhills region have a variable understory vegetation layer, creating several fuel complexes at the within-stand scale (20 m2). We identified three fuel complexes...

  7. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature

    NARCIS (Netherlands)

    Blok, D.; Schaepman-Strub, G.; Bartholomeus, H.; Heijmans, M.M.P.D.; Maximov, T.C.; Berendse, F.

    2011-01-01

    Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature. An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming.

  8. Post-fire vegetation response at the woodland-shrubland interface is mediated by the pre-fire community

    Science.gov (United States)

    Alexandra Urza; Peter J. Weisberg; Jeanne C. Chambers; Jessica M. Dhaemers; David Board

    2017-01-01

    Understanding the drivers of ecosystem responses to disturbance is essential for management aimed at maintaining or restoring ecosystem processes and services, especially where invasive species respond strongly to disturbance. In this study, we used repeat vegetation surveys from a network of prescribed fire treatments at the woodland–shrubland interface in the...

  9. Modeling and predicting vegetation response of western USA grasslands, shrublands, and deserts to climate change (Chapter 1)

    Science.gov (United States)

    Megan M. Friggens; Marcus V. Warwell; Jeanne C. Chambers; Stanley G. Kitchen

    2012-01-01

    Experimental research and species distribution modeling predict large changes in the distributions of species and vegetation types in the Interior West due to climate change. Species’ responses will depend not only on their physiological tolerances but also on their phenology, establishment properties, biotic interactions, and capacity to evolve and migrate. Because...

  10. Effects of an exotic plant invasion on native understory plants in a tropical dry forest.

    Science.gov (United States)

    Prasad, Ayesha E

    2010-06-01

    The dry forests of southern India, which are endangered tropical ecosystems and among the world's most important tiger (Panthera tigris) habitats, are extensively invaded by exotic plants. Yet, experimental studies exploring the impacts of these invasions on native plants in these forests are scarce. Consequently, little is known about associated implications for the long-term conservation of tigers and other biodiversity in these habitats. I studied the impacts of the exotic plant Lantana camara on understory vegetation in a dry-forest tiger habitat in southern India. I compared the richness, composition, and abundance of tree seedlings, herbs, and shrubs and the abundance of grass among plots in which Lantana was cleared or left standing. These plots were distributed across two blocks-livestock free and livestock grazed. Removal of Lantana had an immediate positive effect on herb-shrub richness in the livestock-free block, but had no effect on that of tree seedlings in either livestock block. Tree-seedling and herb-shrub composition differed significantly between Lantana treatment and livestock block, and Lantana removal significantly decreased survival of tree seedlings. Nevertheless, the absence of trees, in any stage between seedling and adult, indicates that Lantana may stall tree regeneration. Lantana removal decreased the abundance of all understory strata, probably because forage plants beneath Lantana are less accessible to herbivores, and plants in Lantana-free open plots experienced greater herbivory. Reduced access to forage in invaded habitats could negatively affect ungulate populations and ultimately compromise the ability of these forests to sustain prey-dependent large carnivores. Additional research focused on understanding and mitigating threats posed by exotic plants may be crucial to the long-term protection of these forests as viable tiger habitats.

  11. Effects of N on plant response to heat-wave: a field study with prairie vegetation.

    Science.gov (United States)

    Wang, Dan; Heckathorn, Scott A; Mainali, Kumar; Hamilton, E William

    2008-11-01

    More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic ecological impacts. Increasing nitrogen (N) availability and its dynamics will likely impact plant responses to heat stress and carbon (C) sequestration in terrestrial ecosystems. This field study examined the effects of N availability on plant response to heat-stress (HS) treatment in naturally-occurring vegetation. HS (5 d at ambient or 40.5 degrees C) and N treatments (+/-N) were applied to 16 1 m(2) plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass) and Solidago canadensis (warm-season C3 forb). Before, during, and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (P(n)), quantum yield of photosystem II (Phi(PSII)), stomatal conductance (g(s)), and leaf water potential (Psi(w)) of the dominant species and soil respiration (R(soil)) of each plot were measured daily during HS. One week after HS, plots were harvested, and C% and N% were determined for rhizosphere and bulk soil, and above-ground tissue (green/senescent leaf, stem, and flower). Photosynthetic N-use efficiency (PNUE) and N resorption rate (NRR) were calculated. HS decreased P(n), g(s), Psi(w), and PNUE for both species, and +N treatment generally increased these variables (+/-HS), but often slowed their post-HS recovery. Aboveground biomass tended to decrease with HS in both species (and for green leaf mass in S. canadensis), but decrease with +N for A. gerardii and increase with +N for S. canadensis. For A. gerardii, HS tended to decrease N% in green tissues with +N, whereas in S. canadensis, HS increased N% in green leaves. Added N decreased NRR for A. gerardii and HS increased NRR for S. canadensis. These results suggest that heat waves, though transient, could have significant effects on plants, communities, and ecosystem N cycling, and N can influence the effect of heat waves.

  12. Vegetation response to early holocene warming as an analog for current and future changes: Special section

    Science.gov (United States)

    Cole, K.L.

    2010-01-01

    Temperatures in southwestern North America are projected to increase 3.5-4 ??C over the next 60-90 years. This will precipitate ecological shifts as the ranges of species change in response to new climates. During this shift, rapid-colonizing species should increase, whereas slow-colonizing species will at first decrease, but eventually become reestablished in their new range. This successional process has been estimated to require from 100 to over 300 years in small areas, under a stable climate, with a nearby seed source. How much longer will it require on a continental scale, under a changing climate, without a nearby seed source? I considered this question through an examination of the response of fossil plant assemblages from the Grand Canyon, Arizona, to the most recent rapid warming of similar magnitude that occurred at the start of the Holocene, 11,700 years ago. At that time, temperatures in southwestern North America increased about 4 ??C over less than a century. Grand Canyon plant species responded at different rates to this warming climate. Early-successional species rapidly increased, whereas late-successional species decreased. This shift persisted throughout the next 2700 years. I found two earlier, less-extreme species shifts following rapid warming events around 14,700 and 16,800 years ago. Late-successional species predominated only after 4000 years or more of relatively stable temperature. These results suggest the potential magnitude, duration, and nature of future ecological changes and have implications for conservation plans, especially those incorporating equilibrium assumptions or reconstituting past conditions. When these concepts are extended to include the most rapid early-successional colonizers, they imply that the recent increases in invasive exotics may be only the most noticeable part of a new resurgence of early-successional vegetation. Additionally, my results challenge the reliability of models of future vegetation and carbon

  13. Neurophysiological and Behavioral Responses to Music Therapy in Vegetative and Minimally Conscious States

    Science.gov (United States)

    O’Kelly, Julian; James, L.; Palaniappan, R.; Taborin, J.; Fachner, J.; Magee, W. L.

    2013-01-01

    Assessment of awareness for those with disorders of consciousness is a challenging undertaking, due to the complex presentation of the population. Debate surrounds whether behavioral assessments provide greatest accuracy in diagnosis compared to neuro-imaging methods, and despite developments in both, misdiagnosis rates remain high. Music therapy may be effective in the assessment and rehabilitation with this population due to effects of musical stimuli on arousal, attention, and emotion, irrespective of verbal or motor deficits. However, an evidence base is lacking as to which procedures are most effective. To address this, a neurophysiological and behavioral study was undertaken comparing electroencephalogram (EEG), heart rate variability, respiration, and behavioral responses of 20 healthy subjects with 21 individuals in vegetative or minimally conscious states (VS or MCS). Subjects were presented with live preferred music and improvised music entrained to respiration (procedures typically used in music therapy), recordings of disliked music, white noise, and silence. ANOVA tests indicated a range of significant responses (p ≤ 0.05) across healthy subjects corresponding to arousal and attention in response to preferred music including concurrent increases in respiration rate with globally enhanced EEG power spectra responses (p = 0.05–0.0001) across frequency bandwidths. Whilst physiological responses were heterogeneous across patient cohorts, significant post hoc EEG amplitude increases for stimuli associated with preferred music were found for frontal midline theta in six VS and four MCS subjects, and frontal alpha in three VS and four MCS subjects (p = 0.05–0.0001). Furthermore, behavioral data showed a significantly increased blink rate for preferred music (p = 0.029) within the VS cohort. Two VS cases are presented with concurrent changes (p ≤ 0.05) across measures indicative of discriminatory responses to both music therapy

  14. Influence of light conditions on the allometry and growth of the understory palm Geonoma undata subsp. edulis (Arecaceae) of neotropical cloud forests.

    Science.gov (United States)

    Sylvester, Olivia; Avalos, Gerardo

    2013-12-01

    Knowledge on the growth responses of understory palms to changing light conditions within neotropical cloud forests is limited. The low light regime of these environments, in addition to persistent cloudiness, low ambient temperatures, and slow nutrient cycles, imposes significant constraints on biomass accumulation. Here, we evaluate how changes in the understory light conditions influenced the allometry and growth of G. undata subsp. edulis in two cloud forests in Costa Rica. We examined the structural relationships between stem diameter, stem height, and crown area in reproductive and nonreproductive individuals. We related the variation in stem growth and crown area with allometry, leaf production and longevity, and light conditions that we measured using hemispherical photographs over 1 year. The allometric and growth pattern of G. undata subsp. edulis was characterized by its investment in crown area, which was strongly and positively related to increments in palm height and reproduction. Growth, measured as the increase in crown area and stem height, was not explained by the variation in the light regime spanning 1 year. However, reproductive individuals were generally taller, more slender, and had larger leaf areas than nonreproductive individuals. Our results demonstrated that stem growth responses were mostly controlled by initial crown size rather than by temporal differences in the understory light regimes of cloud forests. These results suggest that cloud forest understory palms have a limited capacity to respond to light changes and rely mostly on an opportunistic strategy for biomass accumulation and reproduction.

  15. Fruit and vegetables consumption and incident hypertension: dose-response meta-analysis of prospective cohort studies.

    Science.gov (United States)

    Wu, L; Sun, D; He, Y

    2016-10-01

    The role of dietary factors on chronic diseases seems essential in the potentially adverse or preventive effects. However, no evidence of dose-response meta-analysis of prospective cohort studies has verified the association between the intake of fruit and/or vegetables and the risk of developing hypertension. The PubMed and Embase were searched for prospective cohort studies. A generic inverse-variance method with random effects model was used to calculate the pooled relative risks (RRs) and 95% confidence intervals (CIs). Generalized least squares trend estimation model was used to calculate the study-specific slopes for the dose-response analyses. Seven articles comprised nine cohorts involving 185 676 participants were assessed. The highest intake of fruit or vegetables separately, and total fruit and vegetables were inversely associated with the incident risk of hypertension compared with the lowest level, and the pooled RRs and 95% CIs were 0.87 (0.79, 0.95), 0.88 (0.79, 0.99) and 0.90 (0.84, 0.98), respectively. We also found an inverse dose-response relation between the risk of developing hypertension and fruit intake, and total fruit and vegetables consumption. The incident risk of hypertension was decreased by 1.9% for each serving per day of fruit consumption, and decreased by 1.2% for each serving per day of total fruit and vegetables consumption. Our results support the recommendation to increase the consumption of fruit and vegetables with respect to preventing the risk of developing hypertension. However, further large prospective studies and long-term high-quality randomized controlled trials are still needed to confirm the observed association.

  16. River flow response to changes in vegetation cover in a South ...

    African Journals Online (AJOL)

    It was hypothesised in this study that annual river yield (river flow as a fraction of rainfall) in the Molenaars catchment near Paarl, South Africa co-varies with an index of green vegetation cover derived from satellite data (the normalised difference vegetation index, NDVI). The catchment was partitioned into 'upland' and ...

  17. Response of Vegetation to Climate Change in the Drylands of East Asia

    International Nuclear Information System (INIS)

    Dai, L; Wang, K; Wang, R L; Zhang, L

    2014-01-01

    Over the past 25 years, global climate and environmental changes have caused an unprecedented rate of vegetation change, as exemplified in the drylands of East Asia. In this study, we investigated the spatio-temporal changes of vegetation in this region and analysed their relationship with climate data. Our results show that vegetation productivity significantly increased from 1982 to 2006. This increasing trend was observed for most of the region, particularly for northwest Mongolia and central Inner Mongolia. Grasslands, croplands, forests, and shrublands, all exhibited this trend. The annual growth rate of the grasslands determined using the Normalized Difference Vegetation Index (NDVI) was the largest observed change; reaching 0.07% p.a, followed by shrublands (0.06%), croplands (0.03%), and forests (0.02%). In the different geographic regions, the roles of temperature and precipitation on vegetation growth were shown to be different. Temperature was the dominant factor for the observed NDVI increase in northwest Mongolia and the centre of Inner Mongolia. The combined influences of temperature and precipitation changes have resulted in the promotion of vegetation growth, as seen in eastern GanSu. Temperature change is the primary factor for initiating vegetation growth in spring and autumn because warmer temperatures increase the length of the growing season, and are thus evaluated as an increased NDVI value. Increased precipitation has been shown to play a positive role on vegetation growth during summer

  18. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31.  doi:10.9767/bcrec.4.1.7115.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.7115.23-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7115

  19. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Bambang Tri Nugroho

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31. doi:10.9767/bcrec.4.1.23.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.23.23-31

  20. Ecosystem response to removal of exotic riparian shrubs and a transition to upland vegetation

    Science.gov (United States)

    Reynolds, Lindsay V.; Cooper, David J.

    2011-01-01

    Understanding plant community change over time is essential for managing important ecosystems such as riparian areas. This study analyzed historic vegetation using soil seed banks and the effects of riparian shrub removal treatments and channel incision on ecosystem and plant community dynamics in Canyon de Chelly National Monument, Arizona. We focused on how seeds, nutrients, and ground water influence the floristic composition of post-treatment vegetation and addressed three questions: (1) How does pre-treatment soil seed bank composition reflect post-treatment vegetation composition? (2) How does shrub removal affect post-treatment riparian vegetation composition, seed rain inputs, and ground water dynamics? and (3) Is available soil nitrogen increased near dead Russian olive plants following removal and does this influence post-treatment vegetation? We analyzed seed bank composition across the study area, analyzed differences in vegetation, ground water levels, and seed rain between control, cut-stump and whole-plant removal areas, and compared soil nitrogen and vegetation near removed Russian olive to areas lacking Russian olive. The soil seed bank contained more riparian plants, more native and fewer exotic plants than the extant vegetation. Both shrub removal methods decreased exotic plant cover, decreased tamarisk and Russian olive seed inputs, and increased native plant cover after 2 years. Neither method increased ground water levels. Soil near dead Russian olive trees indicated a short-term increase in soil nitrogen following plant removal but did not influence vegetation composition compared to areas without Russian olive. Following tamarisk and Russian olive removal, our study sites were colonized by upland plant species. Many western North American rivers have tamarisk and Russian olive on floodplains abandoned by channel incision, river regulation or both. Our results are widely applicable to sites where drying has occurred and vegetation

  1. Stable fly (Stomoxys calcitrans: Diptera, Muscidae) trap response to changes in effective trap height caused by growing vegetation.

    Science.gov (United States)

    Beresford, D V; Sutcliffe, J F

    2008-06-01

    Stable flies (Stomoxys calcitrans L.) are blood-feeding pests of cattle, whose populations are often monitored using sticky traps. Trap responses at different heights were compared with: 1) a choice and no-choice test, with sticky cards set at 30 and 121 cm heights (above ground), and 2) tall (120 cm) traps placed in short (3 cm) and tall (40 cm) grass to assess how vegetation height affects trap catches. In the first experiment, the percentage of upper to lower trap catches were similar at choice (16%) and no-choice traps (15%). In the vegetation study, stable fly catch height data were fitted to gamma distributions to determine the most productive trap heights; 20 cm above short grass and 24 cm above tall grass (from lower edge of trap). The results indicate that traps used to monitor stable fly populations should be maintained at a constant distance above surrounding vegetation rather than ground surface, otherwise trap data can be misleading.

  2. LBA-ECO CD-05 Forest Understory Fuel Loads, Paragominas, Para, Brazil: 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains estimates of understory fuel loads (forest litter) at six locations near Paragominas in Northeastern Amazonia. Samples were...

  3. Manipulating riparian vegetation, large wood, and discharge in a gravel-cobble bed stream: channel response

    Science.gov (United States)

    McDowell, P. F.

    2016-12-01

    The Middle Fork John Day River at Oxbow Conservation Area, northeastern Oregon, experienced heavy cattle grazing for a number of decades and was dredge mined for gold in the 1930s-50s. As a result of dredging, flow was divided between the original meandering channel on the southern part of the floodplain and a straight dredged channel on the northern part of the floodplain. The Confederated Tribes of the Warm Springs acquired this property and began planning floodplain and instream restoration focused primarily on anadromous and resident salmonids. In 2000, cattle grazing in the riparian zone was eliminated, resulting in expansion of sedges and other plants on banks, bars and the channel bed. In 2003, riparian planting of woody vegetation began. In 2011, log structures were constructed in the south channel. The overarching goals of the log structure project were: 1) to add bank protection and roughness to accommodate the planned increase in discharge, and 2) to provide fish cover, pools, and channel complexity. In 2013, the north channel was closed and all flow was put in the south channel. This paper examines channel morphological response to these multiple actions. Channel adjustment was monitored through repeated channel cross-section surveys, longitudinal profile surveys, and analysis of planform change using high-resolution aerial imagery. I hypothesized that channel adjustment would be greatest where banks were less protected, and where bed materials were more mobile due to smaller size or local hydraulic factors such as bend curvature. The results indicate that there has been significant reorganization of riffle-pool structure in the longitudinal profile, but less change in cross-sections and planform. Cross-sections, both at log structures and not at structures, show limited bar aggradation and bank erosion. Some modest erosion occurred on banks protected by log structures. There is no increase in pool depth. The hypothesized relationship between channel

  4. Responses of Vegetation Growth to Climatic Factors in Shule River Basin in Northwest China: A Panel Analysis

    Directory of Open Access Journals (Sweden)

    Jinghui Qi

    2017-03-01

    Full Text Available The vegetation response to climatic factors is a hot topic in global change research. However, research on vegetation in Shule River Basin, which is a typical arid region in northwest China, is still limited, especially at micro scale. On the basis of Moderate-resolution Imaging Spectroradiometer (MODIS Normalized Difference Vegetation Index (NDVI data and daily meteorological data, employing panel data models and other mathematical models, the aim of this paper is to reveal the interactive relationship between vegetation variation and climatic factors in Shule River Basin. Results show that there is a widespread greening trend in the whole basin during 2000–2015, and 80.28% of greening areas (areas with vegetation improvement are distributed over upstream region, but the maximum vegetation variation appears in downstream area. The effects of climate change on NDVI lag about half to one month. The parameters estimated using panel data models indicate that precipitation and accumulated temperature have positive contribution to NDVI. With every 1-mm increase in rainfall, NDVI increases by around 0.223‰ in upstream area and 0.6‰ in downstream area. With every 1-°C increase in accumulated temperature, NDVI increases by around 0.241‰ in upstream area and 0.174‰ in downstream area. Responses of NDVI to climatic factors are more sensitive when these factors are limiting than when they are not limiting. NDVI variation has performance in two seasonal and inter-annual directions, and the range of seasonal change is far more than that of inter-annual change. The inverted U-shaped curve of the variable intercepts reflects the seasonal change. Our results might provide some scientific basis for the comprehensive basin management.

  5. Historical analysis of riparian vegetation change in response to shifting management objectives on the Middle Rio Grande

    Science.gov (United States)

    Petrakis, Roy; van Leeuwen, Willem J.D.; Villarreal, Miguel; Tashjian, Paul; Dello Russo, Regina; Scott, Christopher A.

    2017-01-01

    Riparian ecosystems are valuable to the ecological and human communities that depend on them. Over the past century, they have been subject to shifting management practices to maximize human use and ecosystem services, creating a complex relationship between water policy, management, and the natural ecosystem. This has necessitated research on the spatial and temporal dynamics of riparian vegetation change. The San Acacia Reach of the Middle Rio Grande has experienced multiple management and river flow fluctuations, resulting in threats to its riparian and aquatic ecosystems. This research uses remote sensing data, GIS, a review of management decisions, and an assessment of climate to both quantify how riparian vegetation has been altered over time and provide interpretations of the relationships between riparian change and shifting climate and management objectives. This research focused on four management phases from 1935 to 2014, each highlighting different management practices and climate-driven river patterns, providing unique opportunities to observe a direct relationship between river management, climate, and riparian response. Overall, we believe that management practices coupled with reduced surface river-flows with limited overbank flooding influenced the compositional and spatial patterns of vegetation, including possibly increasing non-native vegetation coverage. However, recent restoration efforts have begun to reduce non-native vegetation coverage.

  6. Temperature and substrate controls on intra-annual variation in ecosystem respiration in two subarctic vegetation types

    DEFF Research Database (Denmark)

    Grogan, Paul; Jonasson, Sven Evert

    2005-01-01

    Arctic ecosystems are important in the context of climate change because they are expected to undergo the most rapid temperature increases, and could provide a globally significant release of CO2 to the atmosphere from their extensive bulk soil organic carbon reserves. Understanding the relative...... contributions of bulk soil organic matter and plant-associated carbon pools to ecosystem respiration is critical to predicting the response of arctic ecosystem net carbon balance to climate change. In this study, we determined the variation in ecosystem respiration rates from birch forest understory and heath...... tundra vegetation types in northern Sweden through a full annual cycle. We used a plant biomass removal treatment to differentiate bulk soil organic matter respiration from total ecosystem respiration in each vegetation type. Plant-associated and bulk soil organic matter carbon pools each contributed...

  7. Fire regimes and vegetation responses in two Mediterranean-climate regions

    Science.gov (United States)

    Montenegro, G.; Ginocchio, R.; Segura, A.; Keely, J.E.; Gomez, M.

    2004-01-01

    Wildfires resulting from thunderstorms are common in some Mediterranean-climate regions, such as southern California, and have played an important role in the ecology and evolution of the flora. Mediterranean-climate regions are major centers for human population and thus anthropogenic impacts on fire regimes may have important consequences on these plant formations. However, changes in fire regimes may have different impacts on Mediterranean type-ecosystems depending on the capability of plants to respond to such perturbations. Therefore, we compare here fire regimes and vegetation responses of two Mediterranean-climate regions which differ in wildfire regimes and history of human occupation, the central zone of Chile (matorral) and the southern area of California in United States (chaparral). In Chile almost all fires result from anthropogenic activities, whereas lightning fires resulting from thunderstorms are frequent in California. In both regions fires are more frequent in summer, due to high accumulation of dry plant biomass for ignition. Humans have markedly increased fires frequency both in the matorral and chaparral, but extent of burned areas has remained unaltered, probably due to better fire suppression actions and a decline in the built-up of dry plant fuel associated to increased landscape fragmentation with less flammable agricultural and urban developments. As expected, post-fire plant regeneration responses differs between the matorral and chaparral due to differences in the importance of wildfires as a natural evolutionary force in the system. Plants from the chaparral show a broader range of post-fire regeneration responses than the matorral, from basal resprouting, to lignotuber resprouting, and to fire-stimulated germination and flowering with fire-specific clues such as heat shock, chemicals from smoke or charred wood. Plants from the matorral have some resprouting capabilities after fire, but these probably evolved from other environmental

  8. Linear and non-linear responses of vegetation and soils to glacial-interglacial climate change in a Mediterranean refuge.

    Science.gov (United States)

    Holtvoeth, Jens; Vogel, Hendrik; Valsecchi, Verushka; Lindhorst, Katja; Schouten, Stefan; Wagner, Bernd; Wolff, George A

    2017-08-14

    The impact of past global climate change on local terrestrial ecosystems and their vegetation and soil organic matter (OM) pools is often non-linear and poorly constrained. To address this, we investigated the response of a temperate habitat influenced by global climate change in a key glacial refuge, Lake Ohrid (Albania, Macedonia). We applied independent geochemical and palynological proxies to a sedimentary archive from the lake over the penultimate glacial-interglacial transition (MIS 6-5) and the following interglacial (MIS 5e-c), targeting lake surface temperature as an indicator of regional climatic development and the supply of pollen and biomarkers from the vegetation and soil OM pools to determine local habitat response. Climate fluctuations strongly influenced the ecosystem, however, lake level controls the extent of terrace surfaces between the shoreline and mountain slopes and hence local vegetation, soil development and OM export to the lake sediments. There were two phases of transgressional soil erosion from terrace surfaces during lake-level rise in the MIS 6-5 transition that led to habitat loss for the locally dominant pine vegetation as the terraces drowned. Our observations confirm that catchment morphology plays a key role in providing refuges with low groundwater depth and stable soils during variable climate.

  9. Vegetation Dynamics and Its Response to Climate Change - A Case Study from Gandaki River Basin in Central Nepal

    Science.gov (United States)

    Panthi, J., Sr.

    2016-12-01

    Vegetation is affected by inter-annual variability and trends in precipitation, temperature, and snow cover. Remote sensing is especially important for monitoring vegetation response in mountainous regions like the Himalayas in subtropical Asia, where few detailed field investigations of ecosystem variability have been performed due to logistical challenges. We compared MODIS Normalized Difference Vegetation Index (NDVI) in the Gandaki River Basin (GRB) in central Nepal to mean climate and its interannual variability and trends to quantify these relationships over a steep elevation gradient. NDVI was found to be highest in the lower and middle elevations and sharply decrease past 3000 m asl. Seasonally, NDVI peaks in the fall (post-monsoon season) followed by summer (monsoon season), indicating a positive response of vegetation to the rainfall peak. Inter-annual variability in climate, particularly temperature, is correlated with NDVI fluctuations in the basin. When the GRB is disaggregated by land cover, NDVI is most closely related to temperature and precipitation in agricultural areas, followed by grasslands. Snow cover in the GRB is decreasing but does not show any relationship with basin-wide NDVI.

  10. [Responses of vegetation changes to climatic variations in Panxi area based on the MODIS multispectral data].

    Science.gov (United States)

    Shao, Huai-Yong; Wu, Jin-Hui; Liu, Meng; Yang, Wu-Nian

    2014-01-01

    It is an important research area to quantitatively studying the relationship between global climatic change and vegetation change based on the remote sensing technology. Panxi area is the ecological barrier of the upper reaches of the Yangtze River, and it is essential for the stability of the ecological environment of Sichuan as well as that of the whole China. The present article analyzes the vegetation change in 2001-2008 and the relationship between vegetation change and climatic variations of Panxi area, based on MODIS multispectral data and meteorological data. The results indicate that NDVI is positively correlated with temperature and precipitation. The precipitation is the major factor that affects the change of vegetation in the Panxi region and the trend of NDVI is similar with autumn precipitation; while at the same time the influence of climate has a one-month-time-lag.

  11. Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data

    Directory of Open Access Journals (Sweden)

    L. Jia

    2011-03-01

    Full Text Available Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe River basin in northwestern China. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional irrigation systems in the lower reach. In this study, the response of vegetation in the Ejina Oasis in the lower reach of the Heihe River to the water yield of the upper catchment was analyzed by time series analysis of monthly observations of precipitation in the upper and lower catchment, river streamflow downstream of the modern irrigation schemes and satellite observations of vegetation index. Firstly, remotely sensed NDVI data acquired by Terra-MODIS are used to monitor the vegetation dynamic for a seven years period between 2000 and 2006. Due to cloud-contamination, atmospheric influence and different solar and viewing angles, however, the quality and consistence of time series of remotely sensed NDVI data are degraded. A Fourier Transform method – the Harmonic Analysis of Time Series (HANTS algorithm – is used to reconstruct cloud- and noise-free NDVI time series data from the Terra-MODIS NDVI dataset. Modification is made on HANTS by adding additional parameters to deal with large data gaps in yearly time series in combination with a Temporal-Similarity-Statistics (TSS method developed in this study to seek for initial values for the large gap periods. Secondly, the same Fourier Transform method is used to model time series of the vegetation phenology. The reconstructed cloud-free NDVI time series data are used to study the relationship between the water availability (i.e. the local precipitation and upstream water yield and the evolution of vegetation conditions in Ejina Oasis from 2000 to 2006. Anomalies in precipitation, streamflow, and vegetation index are detected by comparing each year with the average year. The results showed that

  12. Vegetation Carbon Storage, Spatial Patterns and Response to Altitude in Lancang River Basin, Southwest China

    Directory of Open Access Journals (Sweden)

    Long Chen

    2016-01-01

    Full Text Available Vegetation plays a very important role of carbon (C sinks in the global C cycle. With its complex terrain and diverse vegetation types, the Lancang River Basin (LRB of southwest China has huge C storage capacity. Therefore, understanding the spatial variations and controlling mechanisms of vegetation C storage is important to understand the regional C cycle. In this study, data from a forest inventory and field plots were used to estimate and map vegetation C storage distribution in the LRB, to qualify the quantitative relationships between vegetation C density and altitude at sublot and township scale, and a linear model or polynomial model was used to identify the relationship between C density and altitude at two spatial scales and two statistical scales. The results showed that a total of 300.32 Tg C was stored in the LRB, an important C sink in China. The majority of C storage was contributed by forests, notably oaks. The vegetation C storage exhibited nonlinear variation with latitudinal gradients. Altitude had tremendous influences on spatial patterns of vegetation C storage of three geomorphological types in the LRB. C storage decreased with increasing altitude at both town and sublot scales in the flat river valley (FRV region and the mid-low mountains gorge (MMG region, and first increased then decreased in the alpine gorge (AG region. This revealed that, in southwest China, altitude changes the latitudinal patterns of vegetation C storage; especially in the AG area, C density in the mid-altitude (3100 m area was higher than that of adjacent areas.

  13. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas.

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    Full Text Available The Qinghai-Tibetan Plateau (QTP contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS Normalized Difference Vegetation Index (NDVI product based on turning points (TPs, which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost

  14. Climatic consequences of adopting drought tolerant vegetation over Los Angeles as a response to California drought

    Science.gov (United States)

    Ban-Weiss, G. A.; Vahmani, P.

    2016-12-01

    During 2012-2014, drought in California resulted in policies to reduce water consumption. One measure pursued was replacing lawns with landscapes that minimize water consumption, such as drought tolerant vegetation. If implemented at broad scale, this strategy would result in reductions in irrigation, and changes in land surface characteristics. In this study, we employ a modified regional climate model to assess the climatic consequences of adopting drought tolerant vegetation over the Los Angeles metropolitan area. Transforming lawns to drought tolerant vegetation resulted in daytime warming of up to 1.9°C, largely due to decreases in irrigation that shifted surface energy partitioning toward higher sensible and lower latent heat flux. During nighttime, however, adopting drought tolerant vegetation caused mean cooling of about 3°C, due to changes in soil thermodynamic properties and heat exchange dynamics between the surface and ground. Our results show that nocturnal cooling effects, which are larger in magnitude and of great importance for public health during heat events, could counterbalance the daytime warming attributed to the studied water conservation strategy. A more aggressive implementation, assuming all urban vegetation was replaced with drought tolerant vegetation, resulted in an average daytime cooling of 0.2°C, largely due to weakened sea-breeze patterns, highlighting the important role of land surface roughness in this coastal megacity.

  15. Trends in Global Vegetation Activity and Climatic Drivers Indicate a Decoupled Response to Climate Change.

    Directory of Open Access Journals (Sweden)

    Antonius G T Schut

    Full Text Available Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982-2010 derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty in trend estimates. Annual total biomass weight (TBW was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS-NPP and TBW per biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land, and for 5% a negative trend. A decoupled trend, indicating positive TBW trends and monotonic negative or segmented and negative NDVI trends, was observed for 17-36% of all productive areas depending on the NDVI metric used. For only 1-2% of all pixels in productive areas, a diverging and greening trend was found despite a strong negative trend in TBW. The choice of NDVI metric used strongly affected outcomes on regional scales and differences in the fraction of explained variation in MODIS-NPP between biomes were large, and a combination of NDVI metrics is recommended for global studies. We have found an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration capacity.

  16. Mechanisms for success after long-term nutrient enrichment in a boreal forest understory.

    Directory of Open Access Journals (Sweden)

    Tess Nahanni Grainger

    Full Text Available Global levels of reactive nitrogen are predicted to rise in the coming decades as a result of increased deposition from the burning of fossil fuels and the large-scale conversion of nitrogen into a useable form for agriculture. Many plant communities respond strongly to increases in soil nitrogen, particularly in northern ecosystems where nitrogen levels are naturally very low. An experiment in northern Canada that was initiated in 1990 has been investigating the effects of long-term nutrient enrichment (fertilizer added annually on a boreal forest understory community. We used this experiment to investigate why some species increase in abundance under nutrient enrichment whereas others decline. We focused on four species that differed in their responses to fertilization: Mertensia paniculata and Epilobium angustifolium increased in abundance, Achillea millefolium remained relatively constant and Festuca altaica declined. We hypothesized that the two species that were successful in the new high-nutrient, light-limited environment would be taller, have higher specific leaf area, change phenology by growing earlier in the season and be more morphologically plastic than their less successful counterparts. We compared plant height, specific leaf area, growth spurt date and allocation to leaves in plants grown in control and fertilized plots. We demonstrated that each of the two species that came to dominate fertilized plots has a different combination of traits and responses that likely gave them a competitive advantage; M. paniculata has the highest specific leaf area of the four species whereas E. angustifolium is tallest and exhibits morphological plasticity when fertilized by increasing biomass allocation to leaves. These results indicate that rather than one strategy determining success when nutrients become available, a variety of traits and responses may contribute to a species' ability to persist in a nutrient-enriched boreal forest

  17. The acclimation of Tilia cordata stomatal opening in response to light, and stomatal anatomy to vegetational shade and its components.

    Science.gov (United States)

    Aasamaa, Krõõt; Aphalo, Pedro José

    2017-02-01

    Stomatal anatomical traits and rapid responses to several components of visible light were measured in Tilia cordata Mill. seedlings grown in an open, fully sunlit field (C-set), or under different kinds of shade. The main questions were: (i) stomatal responses to which visible light spectrum regions are modified by growth-environment shade and (ii) which separate component of vegetational shade is most effective in eliciting the acclimation effects of the full vegetational shade. We found that stomatal opening in response to red or green light did not differ between the plants grown in the different environments. Stomatal response to blue light was increased (in comparison with that of C-set) in the leaves grown in full vegetational shade (IABW-set), in attenuated UVAB irradiance (AB-set) or in decreased light intensity (neutral shade) plus attenuated UVAB irradiance (IAB-set). In all sets, the addition of green light-two or four times stronger-into induction light barely changed the rate of the blue-light-stimulated stomatal opening. In the AB-set, stomatal response to blue light equalled the strong IABW-set response. In attenuated UVB-grown leaves, stomatal response fell midway between IABW- and C-set results. Blue light response by neutral shade-grown leaves did not differ from that of the C-set, and the response by the IAB-set did not differ from that of the AB-set. Stomatal size was not modified by growth environments. Stomatal density and index were remarkably decreased only in the IABW- and IAB-sets. It was concluded that differences in white light responses between T. cordata leaves grown in different light environments are caused only by their different blue light response. Differences in stomatal sensitivity are not dependent on altered stomatal anatomy. Attenuated UVAB irradiance is the most efficient component of vegetational shade in stimulating acclimation of stomata, whereas decreased light intensity plays a minor role. © The Author 2016. Published

  18. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland

    Directory of Open Access Journals (Sweden)

    Tineke Kraaij

    2017-08-01

    Full Text Available Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed ‘recruitment’. Factors (in decreasing order of importance affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire and fire return interval (>7 years had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2–3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting

  19. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland.

    Science.gov (United States)

    Kraaij, Tineke; Cowling, Richard M; van Wilgen, Brian W; Rikhotso, Diba R; Difford, Mark

    2017-01-01

    Season of fire has marked effects on floristic composition in fire-prone Mediterranean-climate shrublands. In these winter-rainfall systems, summer-autumn fires lead to optimal recruitment of overstorey proteoid shrubs (non-sprouting, slow-maturing, serotinous Proteaceae) which are important to the conservation of floral diversity. We explored whether fire season has similar effects on early establishment of five proteoid species in the eastern coastal part of the Cape Floral Kingdom (South Africa) where rainfall occurs year-round and where weather conducive to fire and the actual incidence of fire are largely aseasonal. We surveyed recruitment success (ratio of post-fire recruits to pre-fire parents) of proteoids after fires in different seasons. We also planted proteoid seeds into exclosures, designed to prevent predation by small mammals and birds, in cleared (intended to simulate fire) fynbos shrublands at different sites in each of four seasons and monitored their germination and survival to one year post-planting (hereafter termed 'recruitment'). Factors (in decreasing order of importance) affecting recruitment success in the post-fire surveys were species, pre-fire parent density, post-fire age of the vegetation at the time of assessment, and fire season, whereas rainfall (for six months post-fire) and fire return interval (>7 years) had little effect. In the seed-planting experiment, germination occurred during the cooler months and mostly within two months of planting, except for summer-plantings, which took 2-3 months longer to germinate. Although recruitment success differed significantly among planting seasons, sites and species, significant interactions occurred among the experimental factors. In both the post-fire surveys and seed planting experiment, recruitment success in relation to fire- or planting season varied greatly within and among species and sites. Results of these two datasets were furthermore inconsistent, suggesting that proteoid

  20. Ecosystem Evapotranspiration as a Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China.

    Science.gov (United States)

    Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt

    2015-01-01

    Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water

  1. Ecosystem Evapotranspiration as a Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China.

    Directory of Open Access Journals (Sweden)

    Hao Yang

    Full Text Available Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET and water yield (WY of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water

  2. A Monte Carlo/response surface strategy for sensitivity analysis: application to a dynamic model of vegetative plant growth

    Science.gov (United States)

    Lim, J. T.; Gold, H. J.; Wilkerson, G. G.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    We describe the application of a strategy for conducting a sensitivity analysis for a complex dynamic model. The procedure involves preliminary screening of parameter sensitivities by numerical estimation of linear sensitivity coefficients, followed by generation of a response surface based on Monte Carlo simulation. Application is to a physiological model of the vegetative growth of soybean plants. The analysis provides insights as to the relative importance of certain physiological processes in controlling plant growth. Advantages and disadvantages of the strategy are discussed.

  3. Satellite Monitoring of Vegetation Response to Precipitation and Dust Storm Outbreaks in Gobi Desert Regions

    Directory of Open Access Journals (Sweden)

    Yuki Sofue

    2018-02-01

    Full Text Available Recently, droughts have become widespread in the Northern Hemisphere, including in Mongolia. The ground surface condition, particularly vegetation coverage, affects the occurrence of dust storms. The main sources of dust storms in the Asian region are the Taklimakan and Mongolian Gobi desert regions. In these regions, precipitation is one of the most important factors for growth of plants especially in arid and semi-arid land. The purpose of this study is to clarify the relationship between precipitation and vegetation cover dynamics over 29 years in the Gobi region. We compared the patterns between precipitation and Normalized Difference Vegetation Index (NDVI for a period of 29 years. The precipitation and vegetation datasets were examined to investigate the trends during 1985–2013. Cross correlation analysis between the precipitation and the NDVI anomalies was performed. Data analysis showed that the variations of NDVI anomalies in the east region correspond well with the precipitation anomalies during this period. However, in the southwest region of the Gobi region, the NDVI had decreased regardless of the precipitation amount, especially since 2010. This result showed that vegetation in this region was more degraded than in the other areas.

  4. Differential responses of Vegetation along Effective Soil Gradients in Mughal Garden Wah, Pakistan

    Directory of Open Access Journals (Sweden)

    Khansa Gulshad

    2016-06-01

    Full Text Available Vegetation plays significant role in ecology and is limited to their ecological optimum. Vegetation composition is function of changing habitat conditions along the soil gradients. Soil gradients affect distribution, growth and composition of vegetation within space and time. The vegetation data of Mughal Garden Wah was collected along with soil samples for determining impact of soil parameters on plants growth and survival. A total of 50 quadrat each measuring 1×1 square meter were applied for vegetation sampling. The soils at a depth of 5-15cm were also collected from the study area. The ordination, CCA biplot and its sub-technique t-value biplot were established to determine correlation between identified species and environmental parameters. The T-value bi-plot of organic matter (O.M revealed that Ziziphus nummularia, Adiantum capillus-veneris, Sisymbrium irio and Solanum nigrum were strongly correlated with it. There was strong relationship of the most abundant species such as Cannabis sativa, Oxalis corniculata, Cynodon dactylon and Digitaria setigera; while there was negative relationship with infrequent speciesviz., Anagallis arvensis and Acacia modesta with soil variables was determined by data attribute plot. This study will help in conservation of indigenous and rare flora and reclamation of study area by recommending adaptable species.

  5. Influence of light and soil moisture on Sierran mixed-conifer understory communities.

    Science.gov (United States)

    Malcolm North; Brian Oakley; Rob Fiegener; Andrew Gray; Michael. Barbour

    2005-01-01

    Sierra Nevada forests have high understory species richness yet we do not know which site factors influence herb and shrub distribution or abundance. We examined the understory of an old-growth mixed-conifer Sierran forest and its distribution in relation to microsite conditions. The forest has high species richness (98 species sampled), most of which are herbs with...

  6. Mapping snags and understory shrubs for LiDAR based assessment of wildlife habitat suitability

    Science.gov (United States)

    Sebastian Martinuzzi; Lee A. Vierling; William A. Gould; Michael J. Falkowski; Jeffrey S. Evans; Andrew T. Hudak; Kerri T. Vierling

    2009-01-01

    The lack of maps depicting forest three-dimensional structure, particularly as pertaining to snags and understory shrub species distribution, is a major limitation for managing wildlife habitat in forests. Developing new techniques to remotely map snags and understory shrubs is therefore an important need. To address this, we first evaluated the use of LiDAR data for...

  7. Overstory and understory development in thinned and underplanted Oregon Coast Range Douglas-fir stands.

    Science.gov (United States)

    S.S. Chan; D.J. Larson; K.G. Maas-Hebner; W.H. Emmingham; S.R. Johnston; D.A. Mikowski

    2006-01-01

    This study examined thinning effects on overstory and understory development for 8 years after treatment. Three 30- to 33-year-old Oregon Coast Range plantations were partitioned into four overstory treatments: (1) unthinned (~550 trees/ha) (2) light thin (~250 trees/ha), (3) moderate thin (~150 trees/ha), and (4) heavy thin (~75 trees/ha). Two understory treatments...

  8. Dwarf Mistletoe on Red Fir . . . infection and control in understory stands

    Science.gov (United States)

    Robert F. Scharpf

    1969-01-01

    Height and age of understory red fir (Abies magnifica A. Murr.) were related to dwarf mistletoe (Arceuthobiilm campylopodum f. abietinum) infection from the surrounding overstory red fir on four National Forests in California. Percentage of trees infected and intensity of infection increased significantly as height of understory...

  9. Assessing tolerance of longleaf pine understory herbaceous plants to herbicide applications in a container nursery

    Science.gov (United States)

    D. Paul Jackson; Scott A. Enebak; James West; Drew Hinnant

    2015-01-01

    Renewed efforts in longleaf pine (Pinus palustris Mill.) ecosystem restoration has increased interest in the commercial production of understory herbaceous species. Successful establishment of understory herbaceous species is enhanced when using quality nursery-grown plants that have a better chance of survival after outplanting. Nursery growing practices have not been...

  10. Tradeoffs in overstory and understory aboveground net primary productivity in southwestern ponderosa pine stands

    Science.gov (United States)

    Kyla E. Sabo; Stephen C. Hart; Carolyn Hull Sieg; John Duff Bailey

    2008-01-01

    Previous studies in ponderosa pine forests have quantified the relationship between overstory stand characteristics and understory production using tree measurements such as basal area. We built on these past studies by evaluating the tradeoff between overstory and understory aboveground net primary productivity (ANPP) in southwestern ponderosa pine forests at the...

  11. Wood and understory production under a range of ponderosa pine stocking levels, Black Hills, South Dakota

    Science.gov (United States)

    Daniel W. Uresk; Carleton B. Edminster; Kieth E. Severson

    2000-01-01

    Stemwood and understory production (kg ha-1) were estimated during 3 nonconsecutive years on 5 growing stock levels of ponderosa pine including clearcuts and unthinned stands. Stemwood production was consistently greater at mid- and higher pine stocking levels, and understory production was greater in stands with less pine; however, there were no...

  12. Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: a case study in Xinjiang, China

    Science.gov (United States)

    Yao, Junqiang; Chen, Yaning; Zhao, Yong; Mao, Weiyi; Xu, Xinbing; Liu, Yang; Yang, Qing

    2018-02-01

    Observed data showed the climatic transition from warm-dry to warm-wet in Xinjiang during the past 30 years and will probably affect vegetation dynamics. Here, we analyze the interannual change of vegetation index based on the satellite-derived normalized difference vegetation index (NDVI) with temperature and precipitation extreme over the Xinjiang, using the 8-km NDVI third-generation (NDVI3g) from the Global Inventory Modelling and Mapping Studies (GIMMS) from 1982 to 2010. Few previous studies analyzed the link between climate extremes and vegetation response. From the satellite-based results, annual NDVI significantly increased in the first two decades (1981-1998) and then decreased after 1998. We show that the NDVI decrease over the past decade may conjointly be triggered by the increases of temperature and precipitation extremes. The correlation analyses demonstrated that the trends of NDVI was close to the trend of extreme precipitation; that is, consecutive dry days (CDD) and torrential rainfall days (R24) positively correlated with NDVI during 1998-2010. For the temperature extreme, while the decreases of NDVI correlate positively with warmer mean minimum temperature ( Tnav), it correlates negatively with the number of warmest night days ( Rwn). The results suggest that the climatic extremes have possible negative effects on the ecosystem.

  13. Responses of Vegetation Cover to Environmental Change in Large Cities of China

    Directory of Open Access Journals (Sweden)

    Kai Jin

    2018-01-01

    Full Text Available Vegetation cover is crucial for the sustainability of urban ecosystems; however, this cover has been undergoing substantial changes in cities. Based on climate data, city statistical data, nighttime light data and the Normalized Difference Vegetation Index (NDVI dataset, we investigate the spatiotemporal variations of climate factors, urban lands and vegetation cover in 71 large cities of China during 1998–2012, and explore their correlations. A regression model between growing-season NDVI (G-NDVI and urban land proportion (PU is built to quantify the impact of urbanization on vegetation cover change. The results indicate that the spatiotemporal variations of temperature, precipitation, PU and G-NDVI are greatly different among the 71 cities which experienced rapid urbanization. The spatial difference of G-NDVI is closely related to diverse climate conditions, while the inter-annual variations of G-NDVI are less sensitive to climate changes. In addition, there is a negative correlation between G-NDVI trend and PU change, indicating vegetation cover in cities have been negatively impacted by urbanization. For most of the inland cities, the urbanization impacts on vegetation cover in urban areas are more severe than in suburban areas. But the opposite occurs in 17 cities mainly located in the coastal areas which have been undergoing the most rapid urbanization. Overall, the impacts of urbanization on G-NDVI change are estimated to be −0.026 per decade in urban areas and −0.015 per decade in suburban areas during 1998–2012. The long-term developments of cities would persist and continue to impact on the environmental change and sustainability. We use a 15-year window here as a case study, which implies the millennia of human effects on the natural biotas and warns us to manage landscapes and preserve ecological environments properly.

  14. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland.

    Science.gov (United States)

    Cong, Nan; Shen, Miaogen; Yang, Wei; Yang, Zhiyong; Zhang, Gengxin; Piao, Shilong

    2017-08-01

    Vegetation activity on the Tibetan Plateau grassland has been substantially enhanced as a result of climate change, as revealed by satellite observations of vegetation greenness (i.e., the normalized difference vegetation index, NDVI). However, little is known about the temporal variations in the relationships between NDVI and temperature and precipitation, and understanding this is essential for predicting how future climate change would affect vegetation activity. Using NDVI data and meteorological records from 1982 to 2011, we found that the inter-annual partial correlation coefficient between growing season (May-September) NDVI and temperature (R NDVI-T ) in a 15-year moving window for alpine meadow showed little change, likely caused by the increasing R NDVI-T in spring (May-June) and autumn (September) and decreasing R NDVI-T in summer (July-August). Growing season R NDVI-T for alpine steppe increased slightly, mainly due to increasing R NDVI-T in spring and autumn. The partial correlation coefficient between growing season NDVI and precipitation (R NDVI-P ) for alpine meadow increased slightly, mainly in spring and summer, and R NDVI-P for alpine steppe increased, mainly in spring. Moreover, R NDVI-T for the growing season was significantly higher in those 15-year windows with more precipitation for alpine steppe. R NDVI-P for the growing season was significantly higher in those 15-year windows with higher temperature, and this tendency was stronger for alpine meadow than for alpine steppe. These results indicate that the impact of warming on vegetation activity of Tibetan Plateau grassland is more positive (or less negative) during periods with more precipitation and that the impact of increasing precipitation is more positive (or less negative) during periods with higher temperature. Such positive effects of the interactions between temperature and precipitation indicate that the projected warmer and wetter future climate will enhance vegetation activity

  15. Riparian vegetation responses: Snatching defeat from the jaws of victory and vice versa

    Science.gov (United States)

    Kearsley, Michael J. C.; Ayers, Tina J.

    The 1996 controlled flood failed to demonstrate five aspects of its primary vegetation-related management goal of removal of near-shore vegetation. First, when compared to pre-flood measurements, total vegetative cover was reduced only 20% and the areal extent of wetland and woodland/shrubland patches was not significantly different from the previous year when measured 6 months after the high flows. There was an immediate effect in terms of burial of some marshy areas under coarse sand, but most of these recovered within 6 months. Second, the controlled flood consistently affected only the lowest vegetation layer (grasses and herbs). Third, there was some effect on soil seed banks; sites lost roughly 45% of the seeds and 30% of the species richness of the pool of readily germinable seeds in the top 10 cm of the soil. Fourth, the loss of surface organic matter (duff) was significant in only 3 of the 9 sites, the other 6 showed no significant differences between years. There was no significant change across all sites. Finally, although there was no consistent effect on germination site quality in terms of mean soil grain sizes, there was a significant homogenization of substrates within and among sites due mostly to the loss or burial of fine sediments in return current channel settings. As documented in other chapters of this volume, the controlled flood was a success administratively and a successful demonstration of other management goals, especially in moving sediment from the channel bottom to high elevation deposits. Further, the flood was also a success in that it provided a relatively consequence-free opportunity to learn about flood hydrographs and vegetation in this system. Our data and those of others in this volume suggest that had the flows been successful in removing plants and reworking the underlying substrate in wetland patches, the recovery of vegetation would have been slowed considerably by the lack of fine, nutrient-rich sediments.

  16. A closer look: decoupling the effects of prescribed fire and grazing on vegetation in a ponderosa pine forests

    Science.gov (United States)

    Marie Oliver; Becky K. Kerns; Michelle Buonopane

    2012-01-01

    Scientists have had little information about how prescribed fire and cattle grazing—common practices in many Western ponderosa pine forests—affects plant abundance and reproduction in the forest understory. Pacific Northwest Research Station scientists began to explore how these practices affect vegetation in a five-year study of postfire vegetation in eastern Oregon...

  17. Vegetation and invertebrate community response to eastern hemlock decline in southern new England

    Science.gov (United States)

    Laura L. Ingwell; Mailea Miller-Pierce; R. Talbot Trotter; Evan L. Preisser

    2012-01-01

    The introduction of Adelges tsugae (Hemlock Woolly Adelgid [HWA]) to the eastern United States has had a devastating impact on Tsuga canadensis (Eastern Hemlock). Although much research has been done to assess HWA impacts on ecosystem processes and vegetation structure, few researchers have examined community-level changes in...

  18. River flow response to changes in vegetation cover in a South ...

    African Journals Online (AJOL)

    2008-07-23

    Jul 23, 2008 ... to large errors since most of the rain gauges tend to be at low ele- vations, and the generally larger contribution at high elevations is under-sampled or not sampled. Tracking vegetation cover using satellite data may also be subject to significant uncertain- ties due to frequent cloud cover and shadows from ...

  19. Ten-year response of competing vegetation after oak shelterwood treatments in West Virginia

    Science.gov (United States)

    Gary W. Miller; James N. Kochenderfer; Jeffrey D. Kochenderfer; Kurt W. Gottschalk

    2014-01-01

    Successful oak regeneration depends on the relative status of advanced oak reproduction and associated competing woody vegetation present when harvests or other stand-replacing disturbances occur. This study was installed to quantify the effect of microsite light availability and deer browsing on the development of advanced northern red oak (Quercus rubra...

  20. Response of Sierra Nevada vegetation and fire regimes to past climate changes

    Science.gov (United States)

    R. Scott Anderson

    2004-01-01

    The study of changing vegetation patterns within forested communities of the Sierra Nevada has had a long history, initiated by the great naturalist John Muir. More recently, paleoecologists, who study ecosystems of the past, have analyzed fossil plant remains recovered from lake and meadow sediments to understand the regional biogeography and disturbance history of...

  1. Changes in riparian vegetation buffers in response to development in three Oregon cities

    Science.gov (United States)

    J. A. Yeakley; C. P. Ozawa; A. M. Hook

    2006-01-01

    Riparian vegetation buffer loss was investigated for three cities with contrasting local regulatory controls in urbanizing northwest Oregon. The cities examined were Hillsboro, Oregon City and Portland, all having experienced high rates of population increase in the 1990s. All cities are covered under Oregon’s land use law that provides goals for the protection of open...

  2. Hydrologic responses to restored wildfire regimes revealed by soil moisture-vegetation relationships

    Science.gov (United States)

    Boisramé, Gabrielle; Thompson, Sally; Stephens, Scott

    2018-02-01

    Many forested mountain watersheds worldwide evolved with frequent fire, which Twentieth Century fire suppression activities eliminated, resulting in unnaturally dense forests with high water demand. Restoration of pre-suppression forest composition and structure through a variety of management activities could improve forest resilience and water yields. This study explores the potential for "managed wildfire", whereby naturally ignited fires are allowed to burn, to alter the water balance. Interest in this type of managed wildfire is increasing, yet its long-term effects on water balance are uncertain. We use soil moisture as a spatially-distributed hydrologic indicator to assess the influence of vegetation, fire history and landscape position on water availability in the Illilouette Creek Basin in Yosemite National Park. Over 6000 manual surface soil moisture measurements were made over a period of three years, and supplemented with continuous soil moisture measurements over the top 1m of soil in three sites. Random forest and linear mixed effects models showed a dominant effect of vegetation type and history of vegetation change on measured soil moisture. Contemporary and historical vegetation maps were used to upscale the soil moisture observations to the basin and infer soil moisture under fire-suppressed conditions. Little change in basin-averaged soil moisture was inferred due to managed wildfire, but the results indicated that large localized increases in soil moisture had occurred, which could have important impacts on local ecology or downstream flows.

  3. Variable responses to CO2 of the duration of vegetative growth within maturity group IV soybeans

    Science.gov (United States)

    Prior experiments in indoor chambers and in the field using free-air carbon dioxide enrichment (FACE) systems indicated variation among soybean cultivars in whether and how much elevated CO2 prolonged vegetative development. However, the cultivars tested differed in maturity group, and it is not kn...

  4. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Stark, Sari; Tolvanen, Anne

    2009-01-01

    setup of the International Tundra Experiment (ITEX). Wounding of the dominant deciduous dwarf shrub Vaccinium myrtillus L. to simulate herbivory was carried out annually. We measured vegetation cover in 2003 and 2007, soil nutrient concentrations in 2003 and 2006, soil microbial respiration in 2003...

  5. In vitro vegetative growth and flowering of olive tree in response to ...

    African Journals Online (AJOL)

    The phytohormone gibberellin is involved in the regulation of many physiological process including flower induction and shoot growth. In this study, gibberellic acid (GA3) was used in order to induce the reversion of olive tree vegetative buds towards a floral ones in vitro. For this, six varieties (Marsaline, Chemchali, ...

  6. Vegetation Dynamics in Response to Climate Change Based on Satellite Derived NDVI in Nepal

    Science.gov (United States)

    Baniya, B.; Tang, Q.

    2017-12-01

    Abstract: Climate change has rapidly altered terrestrial vegetation in Nepal. The change in vegetation and its linkage to climate were investigated using latest version of third generation Normalized Difference Vegetation Index (NDVI) data obtained from Advanced Very High Resolution Radiometer (AVHRR) sensors. The data is prepared by the Global Inventory Monitoring and Modeling System (GIMMS) project, i.e., NDVI3g.v1 data. The spatial resolution of the data is 8km×8km and temporal resolution is 15day spanning from 1982-2015. A linear regression model and sen's slope method were used to estimate NDVI change. The pearson correlation between NDVI and climatic variables i.e. temperature and precipitation were measured to identify climate change impact on vegetation change. The significant vegetation and climate trends were found out by applying Mann-Kendall non-parametric test. The result shows that the NDVI experienced an overall increasing trend in Nepal during 1982-2015.The NDVI has significantly increased at a rate of 0.0008yr-1 (p=0.0001) where the temperature increased by 0.030Cyr-1(p=0.0001) but precipitation has decreased by -0.21mmyr-1(p=0.04). The NDVI Relative Change Ratio (RCR) has increased 6.29% during the study period with greater increase in the monsoon season (5.93%) and post monsoon season (5.41%) and with smaller increases (4.14%) in the winter season. It was found that 83.89% areas of Nepal exhibit a positive NDVI trend. The change in NDVI is related to changes in temperature and precipitation. The annual correlation between NDVI and temperature has significantly positive (r=0.38, p=0.03) but it has negative correlation with precipitation (r=-0.13, p=0.10). Altogether, 81.89% (36.95% significant) of the study area has positive correlation between temperature and NDVI but only 32.97% study area has reported positive correlation between NDVI and precipitation with 0.77% significant (p<0.05). It suggests that vegetation change in Nepal was more

  7. Divergent responses of vegetation cover in Southwestern US ecosystems to dry and wet years at different elevations

    Science.gov (United States)

    Herrmann, Stefanie M.; Didan, Kamel; Barreto-Munoz, Armando; Crimmins, Michael A.

    2016-12-01

    In the semiarid Southwestern United States, prolonged drought conditions since the early 2000s have resulted in widespread declines of the vegetation productivity in this water-constrained ecosystem, as revealed by analyses of the Normalized Difference Vegetation Index (NDVI). However, the spatial pattern of the NDVI response to dry years is not uniform: a divergent response of NDVI to precipitation is observed between the low-lying desert and the high montane forests at elevations above 2,500 meter. We analyzed relationships between 15 years of Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI and gridded climate data (PRISM) along elevation gradients at scales from regional to local. Our elevation-explicit analysis captures the transition from water-limited to temperature-limited ecosystems, with a sign-reversal in the correlation coefficient between precipitation and NDVI observed at about 2,500-3,000m altitude. We suggest warmer temperatures and less snow cover associated with drier years as explanations for high elevation gains in vegetation productivity during dry years.

  8. Understory species richness in an urban forest fragment, Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Cristina Ramos de Souza

    2009-09-01

    Full Text Available This study characterizes the floristic composition of the understory of Parque Estadual de Dois Irmãos, (08°01’15.1”S and 34°56’3.2”W, an area of about 370ha characterized as a lowland ombrophilous dense forest. The study included individuals with heights of up to 4.0m, such as treelets, shrubs, sub-bushes and terricolous herb plants, in fertile conditions. The collections were made every two weeks along a period of 24 months. A total of 108 species, belonging to 86 genera and 49 families, were recorded. The families with the highest number of species were Rubiaceae (14, Fabaceae (9 Melastomataceae (8, Asteraceae (8, Myrtaceae (6, and Poaceae (4. The Fabaceae, Melastomataceae, Myrtaceae and Rubiaceae presented the highest number of understory species in this fragment. Generally, among the studies made in the Atlantic forest areas in Pernambuco, the presence of a set of tree species common to these forests is evidenced.

  9. Response of Soil Fungi Community Structure to Salt Vegetation Succession in the Yellow River Delta.

    Science.gov (United States)

    Wang, Yan-Yun; Guo, Du-Fa

    2016-10-01

    High-throughput sequencing technology was used to reveal the composition and distribution of fungal community structure in the Yellow River Delta under bare land and four kinds of halophyte vegetation (saline seepweed, Angiospermae, Imperata and Apocynum venetum [A. venetum]). The results showed that the soil quality continuously improved with the succession of salt vegetation types. The soil fungi richness of mild-salt communities (Imperata and A. venetum) was relatively higher, with Shannon index values of 5.21 and 5.84, respectively. The soil fungi richness of severe-salt-tolerant communities (saline seepweed, Angiospermae) was relatively lower, with Shannon index values of 4.64 and 4.66, respectively. The UniFrac metric values ranged from 0.48 to 0.67 when the vegetation was in different succession stages. A total of 60,174 valid sequences were obtained for the five vegetation types, and they were classified into Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota and Mucoromycotina. Ascomycota had the greatest advantage among plant communities of Imperata and A. venetum, as indicated by relative abundances of 2.69 and 69.97 %, respectively. Basidiomycota had the greatest advantage among mild-salt communities of saline seepweed and Angiospermae, with relative abundances of 9.43 and 6.64 %, respectively. Soil physical and chemical properties were correlated with the distribution of the fungi, and Mucor was significantly correlated with soil moisture (r = 0.985; P Soil quality, salt vegetation and soil fungi were influenced by each other.

  10. Assessment of Vegetation Responses and Sensitivity to the Millennium Drought in Australia

    Science.gov (United States)

    Jiao, T.; Williams, C. A.

    2016-12-01

    During the period from 1997 to 2009, Australia experienced one of the most severe and persistent drought known as the Millennium Drought (MD). Major water shortages were reported across the Australian continent as well as a great many tree mortality during and post this drought event. Given the projection of hotter and drier conditions for much of the continent, it is critical to analyze the impacts of climate extremes like MD as an indicator of possible impacts of future trends. Despite many field investigation, large-area monitoring of vegetation decline from MD remains lacking. Here, multi-source remote sensing datasets and novel methods were employed to assess the impacts of MD on vegetation in Australia in terms of the magnitude and sensitivity. Vegetation variables examined include fraction of photosynthetically absorbed radiation (fPar), vegetation optical depth (VOD) and aboveground biomass (AGB). Drought indicators are calculated based on precipitation and potential evapotranspiration from meteorological data. We found consistent spatial patterns in drought-induced declines among fPar, VOD and AGB. Common declines were observed in the east of New South Wales (NSW), the southeast of Queensland, the center and east of Victoria, and Tasmania. Severe declines (>0.2) in fPar concentrate in open forests and shrub lands while regions with more than 0.1 of decline in VOD are found widely across biome types. The net decrease in AGB could reach more than 20 Mg C per ha in the west of Victoria and the southwest of NSW. Sensitivity analysis shows that forests followed by herbaceous are more sensitive to drought than shrubs in terms of declines in fPar and VOD. In addition, vegetation tends to have larger sensitivity in semi-arid or semi-mesic regions than in areas that are either too dry or too wet.

  11. Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor.

    Science.gov (United States)

    Fagan, Matthew E; DeFries, Ruth S; Sesnie, Steven E; Arroyo-Mora, J Pablo; Chazdon, Robin L

    2016-07-01

    Re-establishing connectivity between protected areas isolated by habitat clearing is a key conservation goal in the humid tropics. In northeastern Costa Rica, payments for environmental services (PES) and a government ban on deforestation have subsidized forest protection and reforestation in the San Juan-La Selva Biological Corridor (SJLSBC), resulting in a decline in mature forest loss and the expansion of tree plantations. We use field studies and graph models to assess how conservation efforts have altered functional connectivity over the last 25 years for four species of insectivorous understory birds. Field playback studies assessed how reforestation habitat quality affected the willingness of Myrmeciza exsul, Henicorhina leucosticta, Thamnophilus atrinucha, and Glyphorynchus spirurus to travel outside forest habitat for territorial defense. Observed travel distances were greatest in nonnative and native tree plantations with high understory stem density, regardless of overstory composition. In contrast, tree plantations with low stem density had travel responses comparable to open pasture for three of the four bird species. We modeled landscape connectivity for each species using graph models based on varying possible travel distances in tree plantations, gallery forests, and pastures. From 1986 to 2011, connectivity for all species declined in the SJLSBC landscape (5825 km 2 ) by 14% to 21% despite only a 4.9% net loss in forest area and the rapid expansion of tree plantations over 2% of the landscape. Plantation placement in the landscape limited their potential facilitation of connectivity because they were located either far from forest cover or within already contiguous forest areas. We mapped current connectivity bottlenecks and identified priority areas for future reforestation. We estimate that reforestation of priority areas could improve connectivity by 2% with only a 1% gain in forest cover, an impressive gain given the small area reforested

  12. Long-term demographic consequences of habitat fragmentation to a tropical understory bird community

    Science.gov (United States)

    Korfanta, N.M.; Newmark, W.D.; Kauffman, M.J.

    2012-01-01

    Tropical deforestation continues to cause population declines and local extinctions in centers of avian diversity and endemism. Although local species extinctions stem from reductions in demographic rates, little is known about how habitat fragmentation influences survival of tropical bird populations or the relative importance of survival and fecundity in ultimately shaping communities. We analyzed 22 years of mark-recapture data to assess how fragmentation influenced apparent survival, recruitment, and realized population growth rate within 22 forest understory bird species in the Usambara Mountains, Tanzania. This represents the first such effort, in either tropical or temperate systems, to characterize the effect of deforestation on avian survival across such a broad suite of species. Long-term demographic analysis of this suite of species experiencing the same fragmented environment revealed considerable variability in species' responses to fragmentation, in addition to general patterns that emerged from comparison among species. Across the understory bird community as a whole, we found significantly lower apparent survival and realized population growth rate in small fragments relative to large, demonstrating fragmentation effects to demographic rates long after habitat loss. Demographic rates were depressed across five feeding guilds, suggesting that fragmentation sensitivity was not limited to insectivores. Seniority analyses, together with a positive effect of fragmentation on recruitment, indicated that depressed apparent survival was the primary driver of population declines and observed extinctions. We also found a landscape effect, with lower vital rates in one mountain range relative to another, suggesting that fragmentation effects may add to other large-scale drivers of population decline. Overall, realized population growth rate (λ) estimates were < 1 for most species, suggesting that future population persistence even within large forest

  13. Long-term demographic consequences of habitat fragmentation to a tropical understory bird community.

    Science.gov (United States)

    Korfanta, Nicole M; Newmark, William D; Kauffman, Matthew J

    2012-12-01

    Tropical deforestation continues to cause population declines and local extinctions in centers of avian diversity and endemism. Although local species extinctions stem from reductions in demographic rates, little is known about how habitat fragmentation influences survival of tropical bird populations or the relative importance of survival and fecundity in ultimately shaping communities. We analyzed 22 years of mark-recapture data to assess how fragmentation influenced apparent survival, recruitment, and realized population growth rate within 22 forest understory bird species in the Usambara Mountains, Tanzania. This represents the first such effort, in either tropical or temperate systems, to characterize the effect of deforestation on avian survival across such a broad suite of species. Long-term demographic analysis of this suite of species experiencing the same fragmented environment revealed considerable variability in species' responses to fragmentation, in addition to general patterns that emerged from comparison among species. Across the understory bird community as a whole, we found significantly lower apparent survival and realized population growth rate in small fragments relative to large, demonstrating fragmentation effects to demographic rates long after habitat loss, Demographic rates were depressed across five feeding guilds, suggesting that fragmentation sensitivity was not limited to insectivores. Seniority analyses, together with a positive effect of fragmentation on recruitment, indicated that depressed apparent survival was the primary driver of population declines and observed extinctions. We also found a landscape effect, with lower vital rates in one mountain range relative to another, suggesting that fragmentation effects may add to other large-scale drivers of population decline. Overall, realized population growth rate (lambda) estimates were fragments, is uncertain in this biodiversity hotspot.

  14. Response characteristics of vegetation and soil environment to permafrost degradation in the upstream regions of the Shule River Basin

    International Nuclear Information System (INIS)

    Chen Shengyun; Liu Wenjie; Qin Xiang; Liu Yushuo; Ren Jiawen; Qin Dahe; Zhang Tongzuo; Hu Fengzu; Chen Kelong

    2012-01-01

    Permafrost degradation exhibits striking and profound influences on the alpine ecosystem, and response characteristics of vegetation and soil environment to such degradation inevitably differ during the entire degraded periods. However, up to now, the related research is lacking in the Qinghai–Tibetan Plateau (QTP). For this reason, twenty ecological plots in the different types of permafrost zones were selected in the upstream regions of the Shule River Basin on the northeastern margin of the QTP. Vegetation characteristics (species diversity, community coverage and biomass etc) and topsoil environment (temperature (ST), water content (SW), mechanical composition (SMC), culturable microorganism (SCM), organic carbon (SOC) and total nitrogen (TN) contents and so on), as well as active layer thickness (ALT) were investigated in late July 2009 and 2010. A spatial–temporal shifts method (the spatial pattern that is represented by different types of permafrost shifting to the temporal series that stands for different stages of permafrost degradation) has been used to discuss response characteristics of vegetation and topsoil environment throughout the entire permafrost degradation. The results showed that (1) ST of 0–40 cm depth and ALT gradually increased from highly stable and stable permafrost (H-SP) to unstable permafrost (UP). SW increased initially and then decreased, and SOC content and the quantities of SCM at a depth of 0–20 cm first decreased and then increased, whereas TN content and SMC showed obscure trends throughout the stages of permafrost degradation with a stability decline from H-SP to extremely unstable permafrost (EUP); (2) further, species diversity, community coverage and biomass first increased and then decreased in the stages from H-SP to EUP; (3) in the alpine meadow ecosystem, SOC and TN contents increased initially and then decreased, soil sandy fractions gradually increased with stages of permafrost degradation from substable (SSP

  15. Radionuclide concentrations in/on vegetation at radioactive-waste disposal Area G during the 1995 growing season. Progress report

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Vold, E.L.; Naranjo, L. Jr.

    1996-01-01

    Overstory (pinon pine) and understory (grass and forb) vegetation were collected within and around selected points at Area G--a low- level radioactive solid-waste disposal facility at Los Alamos National Laboratory--for the analysis of tritium ( 3 H), strontium ( 90 Sr), plutonium ( 238 Pu and 239 Pu), cesium ( 137 Cs), and total uranium. Also, heavy metals (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, and Tl) in/on vegetation were determined. In general, most (unwashed) vegetation collected within and around Area G contained 3 H, uranium, 238 Pu, and 239 Pu in higher concentrations than vegetation collected from background areas. Tritium, in particular, was detected as high as 7300 pCi mL -1 in understory vegetation collected from the west side of the transuranic (TRU) pads. The south and west ends of the tritium shaft field also contained elevated levels of 3 H in overstory, and especially in understory vegetation, as compared to background; this suggests that 3 H may be migrating from this waste repository through surface and subsurface pathways. Also, understory vegetation collected north of the TRU pads (adjacent to the fence line of Area G) contained the highest values of 238 Pu and 239 Pu as compared to background, and may be a result of surface holding, storage, and/or disposal activities

  16. Vegetation and Channel Morphology Responses to Ordinary High Water Discharge Events in Arid West Stream Channels

    Science.gov (United States)

    2009-05-01

    events that occur between periods of drought. It is important to understand how vegetation and stream channel morphology respond to various discharge...because there were no discharge events in our study watersheds during our study period that were large enough to affect this part of the channel...AZ 36.94389103 –109.7106684 Southwest– Northeast Compound/ Single Thread Tropical/ Subtropical Steppe Soft Rock Jurassic Navajo sandstone In a

  17. Flutuações de temperatura e umidade do solo em resposta à cobertura vegetal Soil temperature and moisture fluctuations in response to vegetation cover

    Directory of Open Access Journals (Sweden)

    Milson L. de Oliveira

    2005-12-01

    Full Text Available Com o objetivo de verificar as flutuações de temperatura e umidade do solo em resposta à cobertura vegetal, realizou-se um experimento com sete diferentes situações de cobertura do solo, constituídas por solo sem cobertura, presença de vegetação espontânea, cultivo de mucuna e plantio de milho a 0, 30, 60 e 90º em relação ao eixo leste-oeste. Dois meses após a semeadura, em janeiro de 1999, por igual período determinou-se o sombreamento nas entrelinhas do milho, às 8:30, 12:30 e 16:30 h, como também, para todos os tratamentos, a temperatura e umidade do solo nas profundidades de 2,5, 5,0 e 7,5 cm; constatou-se diferença no sombreamento entre o cultivo de milho a 0º e os outros ângulos testados nas determinações matutina e vespertina, mas tais diferenças não foram acompanhadas pela temperatura do solo que, neste caso, registrou valores intermediários entre o solo sem cobertura e os tratamentos com vegetação espontânea e mucuna. No tratamento sem cobertura verificou-se a maior amplitude de variação da temperatura ambiente acima da superfície do solo, registrando-se os menores valores de umidade e os maiores de temperatura do solo.An experimental study was carried out to evaluate the fluctuations of temperature and soil moisture in response to vegetation cover, using the following treatments: bare soil, natural weed cover, velvet bean, and maize at 0, 30, 60 and 90º in relation to a east-west axis. Two months after sowing in January 1999, for similar period the shadowed area between the lines at 8:30, 12:30 and 16:30 h, as well as for all treatments, the temperature and soil moisture at 2.5, 5.0 and 7.5 cm depths were measured. Differences in shadowing between maize cultivated at 0º and all other angles were observed in both morning and afternoon measurements. However, these differences were not accompanied by soil temperature, which showed intermediary values between the bare soil and the treatments with natural

  18. Response and Resiliency of Wildlife and Vegetation to Large-Scale Wildfires and Climate Change in the North Cascades

    Science.gov (United States)

    Bartowitz, K.; Morrison, P.; Romain-Bondi, K.; Smith, C. W.; Warne, L.; McGill, D.

    2016-12-01

    Changing climatic patterns have affected the western US in a variety of ways: decreases in precipitation and snowpack, earlier spring snowmelt, and increased lightning strikes have created a drier, more fire-prone system, despite variability in these characteristics. Wildfires are a natural phenomenon, but have been suppressed for much of the past century. Effects of this evolving fire regime on native vegetation and wildlife are not well understood. Increased frequency and intensity of fires coupled with subsequent drought and extreme heat may inhibit or alter recovery of native ecosystems. We are currently investigating how a mega-fire has affected presence of western gray squirrels (Sciurus griseus, WGS) in the North Cascades, and the mortality, survival, and recovery of vegetation following these fires and extreme drought. The Methow Valley in WA experienced a record-breaking wildfire in 2014, which disturbed nearly 50% of priority habitat of the North Cascades population of WGS. WGS were studied at the same pre and post-fire plots. WGS were present at over half of the post-burn plots (58%). There was a significant difference in the number of WGS hair samples collected in different levels of remaining vegetation: the most in moderate, few in low, and none in high. Vegetation recovery was assessed through field data, and a chronosequence of satellite images and aerial photography. 75% of the 2014 fire burned non-forested vegetation. Ponderosa pine forests comprised the rest. The forests experienced about 70% initial mortality. Recovery of the forest appears slower than in the shrub-steppe. First year seedling survival was poor due to an extremely hot, dry summer, while second year survival appears higher due to a cool, moist spring and summer. One year after a large, multi-severity fire we found WGS may be more resilient to disturbance such as fires than previously thought. Future studies of WGS will help elucidate long-term response to large-scale fires, and

  19. Backscattering and vegetation water content response of paddy crop at C-band using RISAT-1 satellite data

    Science.gov (United States)

    Kumar, Pradeep; Prasad, Rajendra; Choudhary, Arti; Gupta, Dileep Kumar; Narayan Mishra, Varun; Srivastava, Prashant K.

    2016-04-01

    The study about the temporal behaviour of vegetation water content (VWC) is essential for monitoring the growth of a crop to improve agricultural production. In agriculture, VWC could possibly provide information that can be used to infer water stress for irrigation decisions, vegetation health conditions, aid in yield estimation and assessment of drought conditions (Penuelas et al., 1993). The VWC is an important parameter for soil moisture retrieval in microwave remote sensing (Srivastava et al., 2014). In the present study, the backscattering and VWC response of paddy crop has been investigated using medium resolution (MRS) radar imaging satellite-1 (RISAT-1) synthetic aperture radar (SAR) data in Varanasi, India. The VWC of paddy crop was measured at its five different growth stages started from 15 July 2013 to 23 October 2013 from the transplanting to maturity stage during Kharif season. The whole life of paddy crop was divided into three different major growth stages like vegetative stage, reproductive stage and ripening stage. During vegetative stage, the backscattering coefficients were found increasing behaviour until the leaves became large and dense due to major contribution of stems and the interaction between the stems and water underneath the paddy crop. During reproductive stage, the backscattering coefficients were found to increase slowly due to random scattering by vertical leaves. The increase in the size of leaves cause to cover most of the spaces between plants resulted to quench the contributions from the stems and the water underneath. At the maturity stage, the backscattering showed its decreasing behaviour. The VWC of paddy crop was found increasing up to vegetative to reproductive stages (28 September 2013) and then started decreasing during the ripening (maturity) stage. Similar behaviour was obtained between backscattering coefficients and VWC that showed an increasing trend from vegetative to reproductive stage and then lowering down at

  20. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China

    Science.gov (United States)

    Zhang, Yaojun; Lin, Feng; Jin, Yaguo; Wang, Xiaofei; Liu, Shuwei; Zou, Jianwen

    2016-01-01

    It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to measure N2O and NO fluxes in response to chemical N fertilizer application in annual greenhouse vegetable cropping systems in southeast China. Annual N2O and NO fluxes averaged 52.05 and 14.87 μg N m−2 h−1 for the controls without N fertilizer inputs, respectively. Both N2O and NO emissions linearly increased with N fertilizer application. The emission factors of N fertilizer for N2O and NO were estimated to be 1.43% and 1.15%, with an annual background emission of 5.07 kg N2O-N ha−1 and 1.58 kg NO-N ha−1, respectively. The NO-N/N2O-N ratio was significantly affected by cropping type and fertilizer application, and NO would exceed N2O emissions when soil moisture is below 54% WFPS. Overall, local conventional input rate of chemical N fertilizer could be partially reduced to attain high yield of vegetable and low N2O and NO emissions in greenhouse vegetable cropping systems in China. PMID:26848094

  1. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China

    Science.gov (United States)

    Zhang, Yaojun; Lin, Feng; Jin, Yaguo; Wang, Xiaofei; Liu, Shuwei; Zou, Jianwen

    2016-02-01

    It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to measure N2O and NO fluxes in response to chemical N fertilizer application in annual greenhouse vegetable cropping systems in southeast China. Annual N2O and NO fluxes averaged 52.05 and 14.87 μg N m-2 h-1 for the controls without N fertilizer inputs, respectively. Both N2O and NO emissions linearly increased with N fertilizer application. The emission factors of N fertilizer for N2O and NO were estimated to be 1.43% and 1.15%, with an annual background emission of 5.07 kg N2O-N ha-1 and 1.58 kg NO-N ha-1, respectively. The NO-N/N2O-N ratio was significantly affected by cropping type and fertilizer application, and NO would exceed N2O emissions when soil moisture is below 54% WFPS. Overall, local conventional input rate of chemical N fertilizer could be partially reduced to attain high yield of vegetable and low N2O and NO emissions in greenhouse vegetable cropping systems in China.

  2. Response of rhizosphere soil microbial to Deyeuxia angustifolia encroaching in two different vegetation communities in alpine tundra.

    Science.gov (United States)

    Li, Lin; Xing, Ming; Lv, Jiangwei; Wang, Xiaolong; Chen, Xia

    2017-02-21

    Deyeuxia angustifolia (Komarov) Y. L Chang is an herb species originating from the birch forests in the Changbai Mountain. Recently, this species has been found encroaching into large areas in the western slopes of the alpine tundra in the Changbai Mountain, threatening the tundra ecosystem. In this study, we systematically assessed the response of the rhizosphere soil microbial to D. angustifolia encroaching in alpine tundra by conducting experiments for two vegetation types (shrubs and herbs) by real-time PCR and Illumina Miseq sequencing methods. The treatments consisted of D. angustifolia sites (DA), native sites (NS, NH) and encroaching sites (ES, EH). Our results show that (1) Rhizosphere soil properties of the alpine tundra were significantly impacted by D. angustifolia encroaching; microbial nutrient cycling and soil bacterial communities were shaped to be suitable for D. angustifolia growth; (2) The two vegetation community rhizosphere soils responded differently to D. angustifolia encroaching; (3) By encroaching into both vegetation communities, D. angustifolia could effectively replace the native species by establishing positive plant-soil feedback. The strong adaptation and assimilative capacity contributed to D. angustifolia encroaching in the alpine tundra. Our research indicates that D. angustifolia significantly impacts the rhizosphere soil microbial of the alpine tundra.

  3. Vegetation response to climate forcing during the last glacial maximum and deglaciation in the East Carpathians: attenuated response to maximum cooling and increased biomass burning

    Directory of Open Access Journals (Sweden)

    Eniko M. MAGYARI

    2014-11-01

    Full Text Available The Carpathian Mountains were one of the main mountain reserves of the boreal and cool temperate flora during the Last Glacial Maximum (LGM in East-Central Europe. Previous studies demonstrated late glacial vegetation dynamics in this area; however, our knowledge on the LGM vegetation composition is limited due to the scarcity of suitable sedimentary archives. Here we present a new record of vegetation, fire and lacustrine sedimentation from the youngest volcanic crater of the Carpathians (Lake St Anne, Lacul Sfânta Ana, Szent-Anna-tó to examine environmental change in this region during the LGM and the subsequent deglaciation. Our record indicates the persistence of boreal forest steppe vegetation (Pinus sylvestris, Pinus mugo, Pinus cembra, Betula, Salix, Populus, Picea abies in the foreland and low mountain zone of the East Carpathians and Juniperus shrubland at higher elevation. We demonstrate attenuated response of the regional vegetation to maximum global cooling. Between ~22,870 and 19,150 cal yr BP we find increased regional biomass burning that is antagonistic with the global trend. Increased regional fire activity suggests extreme continentality likely with relatively warm and dry summers. We also demonstratexerophytic steppe expansion directly after the LGM, from ~19,150 cal yr BP, and regional increase in boreal woodland cover with Pinus and Betula from 16,300 cal yr BP. Plant macrofossils indicate local (950 m a.s.l. establishment of Betula nana and B. pubescens at 15,150 cal yr BP, Pinus sylvestris at 14,700 cal yr BP and Larix decidua at 12,870 cal yr BP. Pollen data furthermore hints at the regional presence of some temperate deciduous trees during the LGM (Fagus sylvatica, Carpinus betulus, Corylus avellana, Fraxinus excelsior, Ulmus. We also present pollen based quantitative climate reconstruction from this site and discuss its connection with other climate reconstructions and climate modeling results. 

  4. Composição florística e estrutura da comunidade de plantas do estrato herbáceo em áreas de cultivo de árvores frutíferas Floristic composition and community structure of understory vegetation in orchard

    Directory of Open Access Journals (Sweden)

    Yuriko A. N. P. Yanagizawa

    1999-12-01

    describe the floristic composition and the community structure of the vegetation under avocado and pecan trees growing at Fazenda Experimental Lageado, FCA -UNESP, Botucatu -SP, Brazil. The studied areas differ in relation to light exposure conditioned by canopy architecture and pecan leaf deciduousness. A rectangular frame measuring 25 x 55 m was divided in 55 quadrats of 5 x 5 m. Forty quadrats were located under avocado trees and 15 under pecan trees. Frequency and percentage weed cover were estimated in both conditions at March, May and August 1993. Quadrats of 1 x 1 m were randomly assigned to a new area within each plot, each month. A Cluster Analysis was performed with six experimental groups (3 sampling dates x environmental conditions. Fifty four species, 38 genera and 19 families were recorded in total. Asteraceae and Poaceae had greater number of species. Species richness was greater at pecan tree community. In both areas, the richness was greater at the wet season. Total percentage of weed cover showed small variation only under the avocado trees during the study period. Most populations showed an aggregate distribution pattern. Floristic similarity was greater among the two areas at each sampling period. Commelina nudiflora and some other weed species had high cover values during all the study period. Therefore, a continuous weed control is indicated to the studied orchard.

  5. Comparative life history and physiology of two understory Neotropical herbs.

    Science.gov (United States)

    Mulkey, Stephen S; Smith, Alan P; Wright, S Joseph

    1991-10-01

    Demography and physiology of two broad-leaved understory tropical herbs (Marantaceae) were studied in gaps and shaded understory in large-scale irrigated and control treatments during the dry season at Barro Colorado Island (BCI), Panama. Because photosynthetic acclimation potential may not predict light environments where tropical species are found, we studied a suite of physiological features to determine if they uniquely reflect the distribution of each species. Calathea inocephala and Pleiostachya pruinosa grow and reproduce in gaps, persist in shade, and have equivalent rates of leaf production. Calathea leaves survived 2 to 3 times as long as leaves of Pleiostachya and plants of Pleiostachya were 6 to 8 times more likely to die as plants of Calathea during 3.5 years of study. Pleiostachya had lowest survival in shade and when not irrigated during the dry season, while Calathea survived well in both habitats and both treatments. Pleiostachya had higher photosynthetic capacity and stomatal conductance than Calathea and acclimated to gaps by producing leaves with higher photosynthetic capacity. Calathea had lower mesophyll CO 2 concentrations than Pleiostachya. Both species had similar dark respiration rates and light compensation points, and water-use and nitrogen-use efficiencies were inversely related between species. Species showed no differences in leaf osmotic potentials at full turgor. Calathea roots were deeper and had tuberous swellings.Leaf-level assimilation and potential water loss are consistent with where these species are found, but photosynthetic acclimation to high light does not reflect both species' abilities to grow and reproduce in gaps. Pleiostachya's gap-dependent, rapid growth and reproduction require high rates of carbon gain in short-lived leaves, which can amortize their cost quickly. High rates of water loss are associated with reduced longevity during drought. Calathea's roots may confer greater capacitance, while its leaves are

  6. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years

    Science.gov (United States)

    A, Duo; Zhao, Wenji; Qu, Xinyuan; Jing, Ran; Xiong, Kai

    2016-12-01

    Global climate change has led to significant vegetation changes in the past half century. North China Plain, the most important grain production base of china, is undergoing a process of prominent warming and drying. The vegetation coverage, which is used to monitor vegetation change, can respond to climate change (temperature and precipitation). In this study, GIMMS (Global Inventory Modelling and Mapping Studies)-NDVI (Normalized Difference Vegetation Index) data, MODIS (Moderate-resolution Imaging Spectroradiometer) - NDVI data and climate data, during 1981-2013, were used to investigate the spatial distribution and changes of vegetation. The relationship between climate and vegetation on different spatial (agriculture, forest and grassland) and temporal (yearly, decadal and monthly) scales were also analyzed in North China Plain. (1) It was found that temperature exhibiting a slight increase trend (0.20 °C/10a, P 0.05). The climate mutation period was during 1991-1994. (2) Vegetation coverage slight increase was observed in the 55% of total study area, with a change rate of 0.00039/10a. Human activities may not only accelerate the changes of the vegetation coverage, but also c effect to the rate of these changes. (3) Overall, the correlation between the vegetation coverage and climatic factor is higher in monthly scale than yearly scale. The correlation analysis between vegetation coverage and climate changes showed that annual vegetation coverage was better correlatend with precipitation in grassland biome; but it showed a better correlated with temperature i the agriculture biome and forest biome. In addition, the vegetation coverage had sensitive time-effect respond to precipitation. (4) The vegetation coverage showed the same increasing trend before and after the climatic variations, but the rate of increase slowed down. From the vegetation coverage point of view, the grassland ecological zone had an obvious response to the climatic variations, but the

  7. Warming climate may negatively affect native forest understory plant richness and composition by increasing invasions of non-native plants

    Science.gov (United States)

    Dovciak, M.; Wason, J. W., III; Frair, J.; Lesser, M.; Hurst, J.

    2016-12-01

    Warming climate is often expected to cause poleward and upslope migrations of native plant species and facilitate the spread of non-native plants, and thus affect the composition and diversity of forest understory plant communities. However, changing climate can often interact with other components of global environmental change, and especially so with land use, which often varies along extant climatic gradients making it more difficult to predict species and biodiversity responses to changing climate. We used large national databases (USDA FIA, NLCD, and PRISM) within GLM and NMDS analytical frameworks to study the effects of climate (temperature and precipitation), and land management (type, fragmentation, time since disturbance) on the diversity and composition of native and non-native plant species in forest understories across large geographical (environmental) gradients of the northeastern United States. We tested how non-native and native species diversity and composition responded to existing climate gradients and land-use drivers, and we approximated how changing climate may affect both native and non-native species composition and richness under different climate change scenarios (+1.5, 2, and 4.8 degrees C). Many understory forest plant communities already contain large proportions of non-native plants, particularly so in relatively warmer and drier areas, at lower elevations, and in areas with more substantial land-use histories. On the other hand, cooler and moister areas, higher elevations, and areas used predominantly for forestry or nature conservation (i.e., large contiguous forest cover) were characterized by a low proportion of non-native plant species in terms of both species cover and richness. In contrast to native plants, non-native plant richness was related positively to mean annual temperature and negatively to precipitation. Mountain areas appeared to serve as refugia for native forest understory species under the current climate, but

  8. Quantification of dynamic soil - vegetation feedbacks following an isotopically labelled precipitation pulse

    Science.gov (United States)

    Piayda, Arndt; Dubbert, Maren; Siegwolf, Rolf; Cuntz, Matthias; Werner, Christiane

    2017-04-01

    The presence of vegetation alters hydrological cycles of ecosystems. Complex plant-soil interactions govern the fate of precipitation input and water transitions through ecosystem compartments. Disentangling these interactions is a major challenge in the field of ecohydrology and pivotal foundation for understanding the carbon cycle of semi-arid ecosystems. Stable water isotopes can be used in this context as tracer to quantify water movement through soil-vegetation-atmosphere interfaces. The aim of this study is to disentangle vegetation effects on soil water infiltration and distribution as well as dynamics of soil evaporation and grassland water-use in a Mediterranean cork-oak woodland during dry conditions. An irrigation experiment using δ18O-labeled water was carried out in order to quantify distinct effects of tree and herbaceous vegetation on infiltration and distribution of event water in the soil profile. Dynamic responses of soil and herbaceous vegetation fluxes to precipitation regarding event water-use, water uptake depth plasticity and contribution to ecosystem evapotranspiration were quantified. Total water loss to the atmosphere from bare soil was as high as from vegetated soil, utilizing large amounts of unproductive water loss for biomass production, carbon sequestration and nitrogen fixation. During the experiment no adjustments of main root water uptake depth to changes of water availability could be observed, rendering light to medium precipitation events under dry conditions useless. This forces understory plants to compete with adjacent trees for soil water in deeper soil layers. Thus understory plants are faster subject to chronic drought, leading to premature senescence at the onset of drought. Despite this water competition, the presence of Cork oak trees fosters infiltration to large degrees. That reduces drought stress, caused by evapotranspiration, due to favourable micro climatic conditions under tree crown shading. This study

  9. Response of heterogeneous vegetation to aerosol radiative forcing over a northeast Indian station.

    Science.gov (United States)

    Latha, R; Vinayak, B; Murthy, B S

    2018-01-15

    Importance of atmospheric aerosols through direct and indirect effects on hydrological cycle is highlighted through multiple studies. This study tries to find how much the aerosols can affect evapo-transpiration (ET), a key component of the hydrological cycle over high NDVI (normalized difference vegetation index)/dense canopy, over Dibrugarh, known for vast tea plantation. The radiative effects of aerosols are calculated using satellite (Terra-MODIS) and reanalysis data on daily and monthly scales. Aerosol optical depth (AOD) obtained from satellite and ground observations compares well. Aerosol radiative forcing (ARF), calculated using MERRA data sets of 'clean-clear radiation' and 'clear-radiation' at the surface, shows a lower forcing efficiency, 35 Wm -zs , that is about half of that of ground observations. As vegetation controls ET over high NDVI area to the maximum and that gets modified through ARF, a regression equation is fitted between ET, AOD and NDVI for this station as ET = 0.25 + (-84.27) × AOD + (131.51) × NDVI that explains 82% of 'daily' ET variation using easily available satellite data. ET is found to follow net radiation closely and the direct relation between soil moisture and ET is weak on daily scale over this station as it may be acting through NDVI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The response of Arctic vegetation and soils following an unusually severe tundra fire.

    Science.gov (United States)

    Bret-Harte, M Syndonia; Mack, Michelle C; Shaver, Gaius R; Huebner, Diane C; Johnston, Miriam; Mojica, Camilo A; Pizano, Camila; Reiskind, Julia A

    2013-08-19

    Fire causes dramatic short-term changes in vegetation and ecosystem function, and may promote rapid vegetation change by creating recruitment opportunities. Climate warming likely will increase the frequency of wildfire in the Arctic, where it is not common now. In 2007, the unusually severe Anaktuvuk River fire burned 1039 km(2) of tundra on Alaska's North Slope. Four years later, we harvested plant biomass and soils across a gradient of burn severity, to assess recovery. In burned areas, above-ground net primary productivity of vascular plants equalled that in unburned areas, though total live biomass was less. Graminoid biomass had recovered to unburned levels, but shrubs had not. Virtually all vascular plant biomass had resprouted from surviving underground parts; no non-native species were seen. However, bryophytes were mostly disturbance-adapted species, and non-vascular biomass had recovered less than vascular plant biomass. Soil nitrogen availability did not differ between burned and unburned sites. Graminoids showed allocation changes consistent with nitrogen stress. These patterns are similar to those seen following other, smaller tundra fires. Soil nitrogen limitation and the persistence of resprouters will likely lead to recovery of mixed shrub-sedge tussock tundra, unless permafrost thaws, as climate warms, more extensively than has yet occurred.

  11. The response of Arctic vegetation and soils following an unusually severe tundra fire

    Science.gov (United States)

    Bret-Harte, M. Syndonia; Mack, Michelle C.; Shaver, Gaius R.; Huebner, Diane C.; Johnston, Miriam; Mojica, Camilo A.; Pizano, Camila; Reiskind, Julia A.

    2013-01-01

    Fire causes dramatic short-term changes in vegetation and ecosystem function, and may promote rapid vegetation change by creating recruitment opportunities. Climate warming likely will increase the frequency of wildfire in the Arctic, where it is not common now. In 2007, the unusually severe Anaktuvuk River fire burned 1039 km2 of tundra on Alaska's North Slope. Four years later, we harvested plant biomass and soils across a gradient of burn severity, to assess recovery. In burned areas, above-ground net primary productivity of vascular plants equalled that in unburned areas, though total live biomass was less. Graminoid biomass had recovered to unburned levels, but shrubs had not. Virtually all vascular plant biomass had resprouted from surviving underground parts; no non-native species were seen. However, bryophytes were mostly disturbance-adapted species, and non-vascular biomass had recovered less than vascular plant biomass. Soil nitrogen availability did not differ between burned and unburned sites. Graminoids showed allocation changes consistent with nitrogen stress. These patterns are similar to those seen following other, smaller tundra fires. Soil nitrogen limitation and the persistence of resprouters will likely lead to recovery of mixed shrub–sedge tussock tundra, unless permafrost thaws, as climate warms, more extensively than has yet occurred. PMID:23836794

  12. Off-season biogenic volatile organic compound emissions from heath mesocosms: responses to vegetation cutting.

    Science.gov (United States)

    Rinnan, Riikka; Gierth, Diana; Bilde, Merete; Rosenørn, Thomas; Michelsen, Anders

    2013-01-01

    Biogenic volatile organic compounds (BVOCs) affect both atmospheric processes and ecological interactions. Our primary aim was to differentiate between BVOC emissions from above- and belowground plant parts and heath soil outside the growing season. The second aim was to assess emissions from herbivory, mimicked by cutting the plants. Mesocosms from a temperate Deschampsia flexuosa-dominated heath ecosystem and a subarctic mixed heath ecosystem were either left intact, the aboveground vegetation was cut, or all plant parts (including roots) were removed. For 3-5 weeks, BVOC emissions were measured in growth chambers by an enclosure method using gas chromatography-mass spectrometry. CO2 exchange, soil microbial biomass, and soil carbon and nitrogen concentrations were also analyzed. Vegetation cutting increased BVOC emissions by more than 20-fold, and the induced compounds were mainly eight-carbon compounds and sesquiterpenes. In the Deschampsia heath, the overall low BVOC emissions originated mainly from soil. In the mixed heath, root, and soil emissions were negligible. Net BVOC emissions from roots and soil of these well-drained heaths do not significantly contribute to ecosystem emissions, at least outside the growing season. If insect outbreaks become more frequent with climate change, ecosystem BVOC emissions will periodically increase due to herbivory.

  13. Green Infrastructure Increases Biogeochemical Responsiveness, Vegetation Growth and Decreases Runoff in a Semi-Arid City, Tucson, AZ, USA

    Science.gov (United States)

    Meixner, T.; Papuga, S. A.; Luketich, A. M.; Rockhill, T.; Gallo, E. L.; Anderson, J.; Salgado, L.; Pope, K.; Gupta, N.; Korgaonkar, Y.; Guertin, D. P.

    2017-12-01

    Green Infrastructure (GI) is often viewed as a mechanism to minimize the effects of urbanization on hydrology, water quality, and other ecosystem services (including the urban heat island). Quantifying the effects of GI requires field measurements of the dimensions of biogeochemical, ecosystem, and hydrologic function that we expect GI to impact. Here we investigated the effect of GI features in Tucson, Arizona which has a low intensity winter precipitation regime and a high intensity summer regime. We focused on understanding the effect of GI on soil hydraulic and biogeochemical properties as well as the effect on vegetation and canopy temperature. Our results demonstrate profound changes in biogeochemical and hydrologic properties and vegetation growth between GI systems and nearby control sites. In terms of hydrologic properties GI soils had increased water holding capacity and hydraulic conductivity. GI soils also have higher total carbon, total nitrogen, and organic matter in general than control soils. Furthermore, we tested the sampled soils (control and GI) for differences in biogeochemical response upon wetting. GI soils had larger respiration responses indicating greater biogeochemical activity overall. Long-term Lidar surveys were used to investigate the differential canopy growth of GI systems versus control sites. The results of this analysis indicate that while a significant amount of time is needed to observe differences in canopy growth GI features due increase tree size and thus likely impact street scale ambient temperatures. Additionally monitoring of transpiration, soil moisture, and canopy temperature demonstrates that GI features increase vegetation growth and transpiration and reduce canopy temperatures. These biogeochemical and ecohydrologic results indicate that GI can increase the biogeochemical processing of soils and increase tree growth and thus reduce urban ambient temperatures.

  14. Vegetation response to invasive Tamarix control in southwestern U.S. rivers: a collaborative study including 416 sites.

    Science.gov (United States)

    González, Eduardo; Sher, Anna A; Anderson, Robert M; Bay, Robin F; Bean, Daniel W; Bissonnete, Gabriel J; Bourgeois, Bérenger; Cooper, David J; Dohrenwend, Kara; Eichhorst, Kim D; El Waer, Hisham; Kennard, Deborah K; Harms-Weissinger, Rebecca; Henry, Annie L; Makarick, Lori J; Ostoja, Steven M; Reynolds, Lindsay V; Robinson, W Wright; Shafroth, Patrick B

    2017-09-01

    Most studies assessing vegetation response following control of invasive Tamarix trees along southwestern U.S. rivers have been small in scale (e.g., river reach), or at a regional scale but with poor spatial-temporal replication, and most have not included testing the effects of a now widely used biological control. We monitored plant composition following Tamarix control along hydrologic, soil, and climatic gradients in 244 treated and 172 reference sites across six U.S. states. This represents the largest comprehensive assessment to date on the vegetation response to the four most common Tamarix control treatments. Biocontrol by a defoliating beetle (treatment 1) reduced the abundance of Tamarix less than active removal by mechanically using hand and chain-saws (2), heavy machinery (3) or burning (4). Tamarix abundance also decreased with lower temperatures, higher precipitation, and follow-up treatments for Tamarix resprouting. Native cover generally increased over time in active Tamarix removal sites, however, the increases observed were small and was not consistently increased by active revegetation. Overall, native cover was correlated to permanent stream flow, lower grazing pressure, lower soil salinity and temperatures, and higher precipitation. Species diversity also increased where Tamarix was removed. However, Tamarix treatments, especially those generating the highest disturbance (burning and heavy machinery), also often promoted secondary invasions of exotic forbs. The abundance of hydrophytic species was much lower in treated than in reference sites, suggesting that management of southwestern U.S. rivers has focused too much on weed control, overlooking restoration of fluvial processes that provide habitat for hydrophytic and floodplain vegetation. These results can help inform future management of Tamarix-infested rivers to restore hydrogeomorphic processes, increase native biodiversity and reduce abundance of noxious species. © 2017 by the

  15. Vegetation dynamic characteristics and its responses to climate change in Jinghe River watershed of Loess Plateau, China

    Science.gov (United States)

    Chang, F.; Liu, W.; Zhou, H.; Ning, T.; Wang, Y.

    2017-12-01

    The Jinghe River is a second-order tributary of the Yellow River, and located in the middle-south part of the Loess Plateau. The watershed area is 45421km², with the mean annual precipitation (P) being about 508mm and aridity index 2.09. For a long time, soil and water loss in this watershed is severe, resulting in very fragile ecological environment. The GIMMS-normalized vegetation index NDVI is used to reflect condition of vegetation cover, and P and Penman potential evapotranspiration (ET) to represent climate water and heat conditions. The annual actual ET is estimated as the difference between P and runoff (ignoring the change of watershed water storage during each hydrological year, May to April of the following year). These concepts were introduced to discuss the dynamic characteristics of vegetation cover and its response to climate change. Results showed that the mean annual NDVI value was 0.51, showing a stable increasing trend from 2000 with an annual increasing rate of 8.7×10¯³. This result is consistent with the implementation of the project that converts farmland to forests and grassland and has achieved remarkable success in the Loess Plateau since 1999. It also indicates that the positive impact of human activity has been strengthened under the background of climate change. From 1982 to 2012, the annual actual ET was 464mm, accounting for 93.6% of annual P over the same period. The NDVI value of main growing season (5-9 months) is significantly correlated with annual P and annual humid index (ratio of annual P to annual potential ET). Vegetation water consumption is the main part of land surface ET, and the relationship between annual actual ET and NDVI value over the same period is also significant. The NDVI value, P and potential ET variation varied substantially within the Jinghe River watershed, and their relationships in different regions at an inter-annual scale are different. Currently, we are investigating the influence of the changes in

  16. Historical landscape elements in preserving steppic species - vegetation responses on micro-topography and human disturbances

    Science.gov (United States)

    Deák, Balázs; Valkó, Orsolya; Török, Péter; Tóthmérész, Béla

    2017-04-01

    Land use changes of past centuries resulted in a considerable loss and isolation of grassland habitats worldwide which also led to a serious loss in ecosystem functions. In intensively used agricultural landscapes remnants of natural flora persisted only in small habitat islands embedded in a hostile matrix, which are inadequate for arable farming or construction. In the steppe zone of Eurasia burial mounds, so-called kurgans, have a great potential to preserve the natural flora and habitats and act as local biodiversity hotspots. Their special micro-topography and historical origin makes kurgans characteristic landscape elements of the steppe region. These features also result in a specific soil development and micro-climate, which makes kurgans especially adequate habitats for several steppe specialist plant species. Furthermore, they are proper objects for studying the effects of present and past human disturbances on the vegetation of semi-natural habitats. Exploration of the main factors driving biodiversity in isolated habitat fragments is crucial for understanding the ecological processes shaping their vegetation and for designing effective strategies for their protection. We surveyed the vegetation of 44 isolated kurgans in East-Hungary and studied the effects of habitat area, slope, recent disturbance, past destruction and the level of woody encroachment on the species richness and cover of grassland specialist and weedy species. We used model selection techniques and linear models for testing relevant factors affecting specialist species in grassland fragments. We found that the biodiversity conservation potential of kurgans is supported by their steep slopes, which provide adequate habitat conditions and micro-climate for steppic specialist plant species. By harbouring several grassland specialist species, kurgans have a great potential for preserving the natural species pool of even considerably altered agricultural landscapes, and can mitigate the

  17. BOREAS TE-09 in situ Understory Spectral Reflectance within the NSA

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains forest understory spectral reflectance data collected by BOREAS TE-09 at the ground level in the Old Jack Pine, Young Jack Pine nd Young Aspen boreal forest...

  18. BOREAS TE-09 in situ Understory Spectral Reflectance within the NSA

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Contains forest understory spectral reflectance data collected by BOREAS TE-09 at the ground level in the Old Jack Pine, Young Jack Pine nd Young Aspen...

  19. LBA-ECO CD-05 Forest Understory Fuel Loads, Paragominas, Para, Brazil: 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains estimates of understory fuel loads (forest litter) at six locations near Paragominas in Northeastern Amazonia. Samples were collected from...

  20. Attempting to restore herbaceous understories in Wyoming big sagebrush communities with mowing and seeding

    Science.gov (United States)

    Shrub steppe communities with depleted perennial herbaceous understories need to be restored to increase resilience, provide quality wildlife habitat, and improve ecosystem function. Mowing has been applied to Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle &Young) steppe...

  1. Static terrestrial laser scanning of juvenile understory trees for field phenotyping

    Science.gov (United States)

    Wang, Huanhuan; Lin, Yi

    2014-11-01

    This study was to attempt the cutting-edge 3D remote sensing technique of static terrestrial laser scanning (TLS) for parametric 3D reconstruction of juvenile understory trees. The data for test was collected with a Leica HDS6100 TLS system in a single-scan way. The geometrical structures of juvenile understory trees are extracted by model fitting. Cones are used to model trunks and branches. Principal component analysis (PCA) is adopted to calculate their major axes. Coordinate transformation and orthogonal projection are used to estimate the parameters of the cones. Then, AutoCAD is utilized to simulate the morphological characteristics of the understory trees, and to add secondary branches and leaves in a random way. Comparison of the reference values and the estimated values gives the regression equation and shows that the proposed algorithm of extracting parameters is credible. The results have basically verified the applicability of TLS for field phenotyping of juvenile understory trees.

  2. Response of Riparian Vegetation in Australia's Largest River Basin to Inter and Intra-Annual Climate Variability and Flooding as Quantified with Landsat and MODIS

    Science.gov (United States)

    Broich, M.; Tulbure, M. G.

    2015-12-01

    Australia is a continent subject to high rainfall variability, which has major influences on runoff and vegetation dynamics. However, the resulting spatial-temporal pattern of flooding and its influence on riparian vegetation has not been quantified in a spatially explicit way. Here we focused on the floodplains of the entire Murray-Darling Basin (MDB), an area that covers over 1M km^2, as a case study. The MDB is the country's primary agricultural area with scarce water resources subject to competing demands and impacted by climate change and more recently by the Millennium Drought (1999-2009). Riparian vegetation in the MDB floodplain suffered extensive decline providing a dramatic degradation of riparian vegetation. We quantified the spatial-temporal impact of rainfall, temperature and flooding patters on vegetation dynamics at the sub- continental to local scales and across inter to intra-annual time scales based on three decades of Landsat (25k images), Bureau of Meteorology data and one decade of MODIS data. Vegetation response varied in space and time and with vegetation types, densities and location relative to areas frequently flooded. Vegetation degradation trends were observed over riparian forests and woodlands in areas where flooding regimes have changed to less frequent and smaller inundation extents. Conversely, herbaceous vegetation phenology followed primarily a 'boom' and 'bust' cycle, related to inter-annual rainfall variability. Spatial patters of vegetation degradation changed along the N-S rainfall gradient but flooding regimes and vegetation degradation patterns also varied at finer scale, highlighting the importance of a spatially explicit, internally consistent analysis and setting the stage for investigating further cross-scale relationships. Results are of interest for land and water management decisions. The approach developed here can be applied to other areas globally such as the Nile river basin and Okavango River delta in Africa or

  3. Response of Riparian Vegetation in AUSTRALIA"S Largest River Basin to Inter and Intra-Annual Climate Variability and Flooding as Quantified with Landsat and Modis

    Science.gov (United States)

    Broich, M.; Tulbure, M. G.

    2016-06-01

    Australia is a continent subject to high rainfall variability, which has major influences on runoff and vegetation dynamics. However, the resulting spatial-temporal pattern of flooding and its influence on riparian vegetation has not been quantified in a spatially explicit way. Here we focused on the floodplains of the entire Murray-Darling Basin (MDB), an area that covers over 1M km2, as a case study. The MDB is the country's primary agricultural area with scarce water resources subject to competing demands and impacted by climate change and more recently by the Millennium Drought (1999-2009). Riparian vegetation in the MDB floodplain suffered extensive decline providing a dramatic degradation of riparian vegetation. We quantified the spatial-temporal impact of rainfall, temperature and flooding patters on vegetation dynamics at the subcontinental to local scales and across inter to intra-annual time scales based on three decades of Landsat (25k images), Bureau of Meteorology data and one decade of MODIS data. Vegetation response varied in space and time and with vegetation types, densities and location relative to areas frequently flooded. Vegetation degradation trends were observed over riparian forests and woodlands in areas where flooding regimes have changed to less frequent and smaller inundation extents. Conversely, herbaceous vegetation phenology followed primarily a `boom' and `bust' cycle, related to inter-annual rainfall variability. Spatial patters of vegetation degradation changed along the N-S rainfall gradient but flooding regimes and vegetation degradation patterns also varied at finer scale, highlighting the importance of a spatially explicit, internally consistent analysis and setting the stage for investigating further cross-scale relationships. Results are of interest for land and water management decisions. The approach developed here can be applied to other areas globally such as the Nile river basin and Okavango River delta in Africa or the

  4. RESPONSE OF RIPARIAN VEGETATION IN AUSTRALIA"S LARGEST RIVER BASIN TO INTER AND INTRA-ANNUAL CLIMATE VARIABILITY AND FLOODING AS QUANTIFIED WITH LANDSAT AND MODIS

    Directory of Open Access Journals (Sweden)

    M. Broich

    2016-06-01

    Full Text Available Australia is a continent subject to high rainfall variability, which has major influences on runoff and vegetation dynamics. However, the resulting spatial-temporal pattern of flooding and its influence on riparian vegetation has not been quantified in a spatially explicit way. Here we focused on the floodplains of the entire Murray-Darling Basin (MDB, an area that covers over 1M km2, as a case study. The MDB is the country’s primary agricultural area with scarce water resources subject to competing demands and impacted by climate change and more recently by the Millennium Drought (1999–2009. Riparian vegetation in the MDB floodplain suffered extensive decline providing a dramatic degradation of riparian vegetation. We quantified the spatial-temporal impact of rainfall, temperature and flooding patters on vegetation dynamics at the subcontinental to local scales and across inter to intra-annual time scales based on three decades of Landsat (25k images, Bureau of Meteorology data and one decade of MODIS data. Vegetation response varied in space and time and with vegetation types, densities and location relative to areas frequently flooded. Vegetation degradation trends were observed over riparian forests and woodlands in areas where flooding regimes have changed to less frequent and smaller inundation extents. Conversely, herbaceous vegetation phenology followed primarily a ‘boom’ and ‘bust’ cycle, related to inter-annual rainfall variability. Spatial patters of vegetation degradation changed along the N-S rainfall gradient but flooding regimes and vegetation degradation patterns also varied at finer scale, highlighting the importance of a spatially explicit, internally consistent analysis and setting the stage for investigating further cross-scale relationships. Results are of interest for land and water management decisions. The approach developed here can be applied to other areas globally such as the Nile river basin and

  5. Edge effects on growth and biomass partitioning of an Amazonian understory herb (Heliconia acuminata; Heliconiaceae).

    Science.gov (United States)

    Bruna, Emilio M; de Andrade, Ana Segalin

    2011-10-01

    After deforestation, environmental changes in the remaining forest fragments are often most intense near the forest edge, but few studies have evaluated plant growth or plasticity of plant growth in response to edge effects. In a 2-year common garden experiment, we compared biomass allocation and growth of Heliconia acuminata with identical genotypes grown in 50 × 35 m common gardens on a 25-year-old edge and in a forest interior site. Genetically identical plants transplanted to the forest edge and understory exhibited different patterns of growth and biomass allocation. However, individuals with identical genotypes in the same garden often had very different responses. Plants on forest edges also had higher growth rates and increased biomass at the end of the experiment, almost certainly due to the increased light on the forest edge. With over 70000 km of forest edge created annually in the Brazilian Amazon, phenotypic plasticity may play an important role in mediating plant responses to these novel environmental conditions.

  6. Response of Spectral Reflectances and Vegetation Indices on Varying Juniper Cone Densities

    Directory of Open Access Journals (Sweden)

    Guillermo E. Ponce-Campos

    2013-10-01

    Full Text Available Juniper trees are widely distributed throughout the world and are common sources of allergies when microscopic pollen grains are transported by wind and inhaled. In this study, we investigated the spectral influences of pollen-discharging male juniper cones within a juniper canopy. This was done through a controlled outdoor experiment involving ASD FieldSpec Pro Spectroradiometer measurements over juniper canopies of varying cone densities. Broadband and narrowband spectral reflectance and vegetation index (VI patterns were evaluated as to their sensitivity and their ability to discriminate the presence of cones. The overall aim of this research was to assess remotely sensed phenological capabilities to detect pollen-bearing juniper trees for public health applications. A general decrease in reflectance values with increasing juniper cone density was found, particularly in the Green (545–565 nm and NIR (750–1,350 nm regions. In contrast, reflectances in the shortwave-infrared (SWIR, 2,000 nm to 2,350 nm region decreased from no cone presence to intermediate amounts (90 g/m2 and then increased from intermediate levels to the highest cone densities (200 g/m2. Reflectance patterns in the Red (620–700 nm were more complex due to shifting contrast patterns in absorptance between cones and juniper foliage, where juniper foliage is more absorbing than cones only within the intense narrowband region of maximum chlorophyll absorption near 680 nm. Overall, narrowband reflectances were more sensitive to cone density changes than the equivalent MODIS broadbands. In all VIs analyzed, there were significant relationships with cone density levels, particularly with the narrowband versions and the two-band vegetation index (TBVI based on Green and Red bands, a promising outcome for the use of phenocams in juniper phenology trait studies. These results indicate that spectral indices are sensitive to certain juniper phenologic traits that can potentially be

  7. Response of riparian vegetation across Australia's largest river basin to inter and intra-annual flooding: dynamics quantified from time series of Landsat and MODIS data

    Science.gov (United States)

    Broich, M.; Tulbure, M. G.; Keith, D.; Kingsford, R.; Lucas, R.; Lippmann, T.

    2014-12-01

    Australia is a continent subject to high rainfall variability. The resulting spatial-temporal pattern of flooding and its influence on riparian vegetation has not been quantified. Here we focused on the floodplains of the entire Murray-Darling Basin (MDB; 72 Landsat path-rows) of Australia as a case study. The MDB is the country's primary agricultural area with scarce water resources impacted by climate change and extensive zones with degrading riparian vegetation. We advance our understanding of the relationship between climate-driven flooding dynamics and vegetation response at the sub-continental to local and inter to intra-annual scale based on two decades of Landsat and one decade of MODIS imagery. We Landsat TM and ETM+ data to synoptically map spatially detailed dynamics of flooding with an internally consistent machine learning algorithm. We derived riparian phenology (Fig 1) from MODIS data and attributed differences in vegetation response to flooding dynamics, vegetation types and sub-basin land use. Vegetation community response to flooding varied in space and time and with vegetation types, densities and location relative to areas frequently flooded. Phenological degradation trends were observed over riparian forests and woodlands in the middle and lower parts of the basin that are primarily farmed and were we identified flooding regimes to have changed the most to less frequent and smaller inundation extents. Conversely, herbaceous vegetation phenology followed primarily a boom and bust cycle related to less extensive flooding dynamics. This pattern was found across different areas of the basin. As expected, flooding regimes and vegetation response patterns were fine grained confirming the choice of a spatially explicit, internally consistent analysis leading the path for ongoing monitoring. Remote sensing-based monitoring of the response of riparian vegetation to flooding can be used to quantify spatially explicit changes in vegetation community

  8. A dynamic ecosystem process model for understanding interactions between permafrost thawing and vegetation responses in the arctic

    Science.gov (United States)

    Xu, C.; Travis, B. J.; Fisher, R. A.; Wilson, C. J.; McDowell, N.

    2010-12-01

    The arctic is expected to play an important role in the Earth’s future climate due to the large carbon stocks that are stored in permafrost and peatlands, a substantial proportion of which may be released to the atmosphere due to permafrost thawing. There may be positive feedbacks of permafrost thawing on plant growth by releasing stored nitrogen and increasing rooting depth; however, vegetation response to other changing variables such as CO2 and temperature can also modify soil hydrology and energy fluxes, leading to either positive or negative feedbacks on permafrost thawing. Disentangling the interactions between permafrost thawing and vegetation growth is critical for assessing the potential role of arctic regions on current and future global carbon cycling. We have developed a mechanistic, regional, and spatially explicit dynamic ecosystem process model through the integration of a 3-D soil hydrology and biogeochemistry model (Arctic Hydrology, ARCHY) and a dynamic vegetation model (Ecosystem Demography, ED), to quantify the importance of plant-permafrost interactions to soil and plant carbon storage. This model integrates important processes including photosynthesis, transpiration, respiration, 3-D competition for light, 3-D soil hydrology, energy fluxes (ice melting in the soil and solar radiation interception by canopy), nitrogen cycles (microbial decomposition, nitrogen transportation in soil, passive and active nitrogen uptake by plants), species migration, and drought-related mortality. A sensitivity analysis has been implemented to assess the importance of the hydrological cycle, the nitrogen cycle and energy fluxes in regulating the above and below-ground carbon cycles in arctic regions. Our model can fill an important gap between field and global land surface models for assessing plot and regional level hypotheses in the context of global climate.

  9. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Blok, Daan; Heijmans, Monique M P D; Berendse, Frank [Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA, Wageningen (Netherlands); Schaepman-Strub, Gabriela [Institute of Evolutionary Biology and Environmental Studies, University of Zuerich, Winterthurerstrasse 190, 8057 Zuerich (Switzerland); Bartholomeus, Harm [Centre for Geo-Information, Wageningen University, PO Box 47, 6700 AA, Wageningen (Netherlands); Maximov, Trofim C, E-mail: daan.blok@wur.nl [Biological Problems of the Cryolithozone, Russian Academy of Sciences, Siberian Division, 41, Lenin Prospekt, Yakutsk, The Republic of Sakha, Yakutia 677980 (Russian Federation)

    2011-07-15

    Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature. An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming. However, it is unknown how albedo and NDVI are affected by shrub cover and inter-annual variations in the summer climate. Here, we examine the relationship between deciduous shrub fractional cover, NDVI and albedo using field data collected at a tundra site in NE Siberia. Field data showed that NDVI increased and albedo decreased with increasing deciduous shrub cover. We then selected four Arctic tundra study areas and compiled annual growing season maximum NDVI and minimum albedo maps from MODIS satellite data (2000-10) and related these satellite products to tundra vegetation types (shrub, graminoid, barren and wetland tundra) and regional summer temperature. We observed that maximum NDVI was greatest in shrub tundra and that inter-annual variation was negatively related to summer minimum albedo but showed no consistent relationship with summer temperature. Shrub tundra showed higher albedo than wetland and barren tundra in all four study areas. These results suggest that a northwards shift of shrub tundra might not lead to a decrease in summer minimum albedo during the snow-free season when replacing wetland tundra. A fully integrative study is however needed to link results from satellite data with in situ observations across the Arctic to test the effect of increasing shrub cover on summer albedo in different tundra vegetation types.

  10. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature

    International Nuclear Information System (INIS)

    Blok, Daan; Heijmans, Monique M P D; Berendse, Frank; Schaepman-Strub, Gabriela; Bartholomeus, Harm; Maximov, Trofim C

    2011-01-01

    Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature. An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming. However, it is unknown how albedo and NDVI are affected by shrub cover and inter-annual variations in the summer climate. Here, we examine the relationship between deciduous shrub fractional cover, NDVI and albedo using field data collected at a tundra site in NE Siberia. Field data showed that NDVI increased and albedo decreased with increasing deciduous shrub cover. We then selected four Arctic tundra study areas and compiled annual growing season maximum NDVI and minimum albedo maps from MODIS satellite data (2000-10) and related these satellite products to tundra vegetation types (shrub, graminoid, barren and wetland tundra) and regional summer temperature. We observed that maximum NDVI was greatest in shrub tundra and that inter-annual variation was negatively related to summer minimum albedo but showed no consistent relationship with summer temperature. Shrub tundra showed higher albedo than wetland and barren tundra in all four study areas. These results suggest that a northwards shift of shrub tundra might not lead to a decrease in summer minimum albedo during the snow-free season when replacing wetland tundra. A fully integrative study is however needed to link results from satellite data with in situ observations across the Arctic to test the effect of increasing shrub cover on summer albedo in different tundra vegetation types.

  11. [Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015.

    Science.gov (United States)

    Wang, Zhi Peng; Zhang, Xian Zhou; He, Yong Tao; Li, Meng; Shi, Pei Li; Zu, Jia Xing; Niu, Ben

    2018-01-01

    Precipitation change is an important factor in the inter-annual variation of grassland growth on the Tibetan Plateau. The total amount, distribution pattern and concentration time are three basic characteristics of precipitation change. The temporal and spatial characteristics of precipitation change were analyzed based on climate data of 145 meteorological stations on the Tibetan Plateau and nearby areas from 2000 to 2015. The total precipitation amount was characterized by annual precipitation, distribution pattern of precipitation during the year was characterized by improved precipitation concentration index (PCI), and precipitation centroid (PC) was defined to indicate the change in precipitation concentrated time. To better illustrate the response of grassland to precipitation change, vegetation growth status was characterized by the maximum value of normalized difference vegetation index (NDVI max ). Results indicated that the annual precipitation and PCI had an apparent gradient across the whole plateau and the latest PC occurred in the southern plateau. NDVI max of alpine shrub grassland was significantly correlated with the change of PCI,increased with even distribution of precipitation during growth period, and limited by the total annual precipitation. Alpine meadow did not show significantly correlations with these three indices. The inter-annual variability of NDVI max of steppe was controlled by both PCI and PC. NDVI max of alpine desert grassland was mainly controlled by annual precipitation. In addition to annual total amount of precipitation, the distribution characteristics of precipitation should be further considered when the influence of precipitation change on different types of vegetation on the Qinghai Tibet Plateau was studied.

  12. Quantifying the functional responses of vegetation to drought and oxygen stress in temperate ecosystems.

    NARCIS (Netherlands)

    Douma, J.C.; Bardin, V.; Bartholomeus, R.P.; van Bodegom, P.M.

    2012-01-01

    Our understanding of the generality of plant functional responses to water availability is limited; current field studies use either very rough approximations of water and oxygen availability or only focus on water-stressed ecosystems. Studies that relate species' responses to a surplus of water are

  13. Quantifying the functional responses of vegetation to drought and oxygen stress in temperate ecosystems

    NARCIS (Netherlands)

    Douma, J.C.; Bardin, V.; Bartholomeus, R.P.; Bodegom, van P.M.

    2012-01-01

    1. Our understanding of the generality of plant functional responses to water availability is limited; current field studies use either very rough approximations of water and oxygen availability or only focus on water-stressed ecosystems. Studies that relate species' responses to a surplus of water

  14. Do temporal changes in vegetation structure additional to time since fire predict changes in bird occurrence?

    Science.gov (United States)

    Lindenmayer, David B; Candy, Steven G; MacGregor, Christopher I; Banks, Sam C; Westgate, Martin; Ikin, Karen; Pierson, Jennifer; Tulloch, Ayesha; Barton, Philip

    2016-10-01

    Fire is a major ecological process in ecosystems globally. Its impacts on fauna can be both direct (e.g., mortality) and indirect (e.g., altered habitat), resulting in population recovery being driven by several possible mechanisms. Separating direct from indirect impacts of fire on faunal population recovery can be valuable in guiding management of biodiversity in fire-prone environments. However, resolving the influence of direct and indirect processes remains a key challenge because many processes affecting fauna can change concomitantly with time since fire. We explore the mechanisms influencing bird response to fire by posing the question, can temporal changes in vegetation structure predict changes in bird occurrence on sites, and can these be separated from other temporal changes using the surrogate of time since fire? We conducted a 12-yr study of bird and vegetation responses to fire at 124 sites across six vegetation classes in Booderee National Park, Australia. Approximately half of these sites, established in 2002, were burned by a large (>3000 ha) wildfire in 2003. To disentangle collinear effects of temporal changes in vegetation and direct demographic effects on population recovery that are subsumed by time since fire, we incorporated both longitudinal and cross-sectional vegetation effects in addition to time since fire within logistic structural equation models. We identified temporal changes in vegetation structure and richness of plant and bird species that characterized burned and unburned sites in all vegetation classes. For nine bird species, a significant component of the year trend was driven by temporal trends in one of three vegetation variables (number of understory or midstory plant species, or midstory cover). By contrast, we could not separate temporal effects between time since fire and vegetation attributes for bird species richness, reporting rate, and the occurrence of 11 other bird species. Our findings help identify species for

  15. Emergency Response Proficiency Test for Japanese Laboratories: Determination of Selected Radionuclides in Water, Soil, Vegetation and Aerosol Filters

    International Nuclear Information System (INIS)

    2013-01-01

    Reliable determination of natural and artificial radionuclides in environmental samples is necessary for compliance with radiation protection and environmental regulations. The IAEA assists Member State laboratories in maintaining and improving their readiness in this regard by producing reference materials, by developing standardized analytical methods, and by conducting interlaboratory comparisons and proficiency tests as tools for quality control. To fulfil this obligation and ensure a reliable, rapid and consistent worldwide response, the IAEA Terrestrial Environment Laboratory in Seibersdorf, Austria, organizes interlaboratory comparisons and proficiency tests. In addition, the IAEA coordinates the worldwide network of Analytical Laboratories for the Measurement of Environmental Radioactivity (ALMERA). After the accident at the Fukushima Daiichi nuclear power plant in March 2011, Japan requested the IAEA to organize an emergency response proficiency test for Japanese laboratories with the aim of assessing their capacity to rapidly and accurately measure radionuclides in environmental samples. The IAEA responded to the request by assembling a special sample set covering the main environmental samples and radionuclides of interest in the case of a nuclear emergency situation. Water, soil, vegetation and aerosol filter samples were made available to Japanese laboratories for analysis by gamma ray spectrometry. This report presents the results of the IAEA-TEL-2011-08 emergency response proficiency test for Japanese laboratories on the determination of selected radionuclides in water, soil, vegetation and aerosol filters. The report includes descriptions of the methodologies and data evaluation approach used, as well as summary evaluations of each radionuclide and individual evaluation reports of each laboratory. This proficiency test was designed to identify analytical problems and to support Member State laboratories in their efforts to improve the quality of

  16. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China

    Science.gov (United States)

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y. Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325

  17. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.

    Directory of Open Access Journals (Sweden)

    Yanjing Lou

    Full Text Available Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.

  18. Within- and across-species responses of plant traits and litter decomposition to elevation across contrasting vegetation types in subarctic tundra.

    Directory of Open Access Journals (Sweden)

    Maja K Sundqvist

    Full Text Available Elevational gradients are increasingly recognized as a valuable tool for understanding how community and ecosystem properties respond to climatic factors, but little is known about how plant traits and their effects on ecosystem processes respond to elevation. We studied the response of plant leaf and litter traits, and litter decomposability across a gradient of elevation, and thus temperature, in subarctic tundra in northern Sweden for each of two contrasting vegetation types, heath and meadow, dominated by dwarf shrubs and herbaceous plants respectively. This was done at each of three levels; across species, within individual species, and the plant community using a community weighted average approach. Several leaf and litter traits shifted with increasing elevation in a manner consistent with greater conservation of nutrients at all three levels, and the most consistent response was an increase in tissue N to P ratio. However, litter decomposition was less directly responsive to elevation because the leaf and litter traits which were most responsive to elevation were not necessarily those responsible for driving decomposition. At the community level, the response to elevation of foliar and litter traits, and decomposability, varied greatly among the two vegetation types, highlighting the importance of vegetation type in determining ecological responses to climatic factors such as temperature. Finally our results highlight how understanding the responses of leaf and litter characteristics of functionally distinct vegetation types, and the processes that they drive, to temperature helps provide insights about how future climate change could affect tundra ecosystems.

  19. Short-term vegetation response following mechanical control of saltcedar (Tamarix spp.) on the Virgin River, Nevada, USA

    Science.gov (United States)

    Ostoja, Steven M.; Brooks, Matthew L.; Dudley, Tom; Lee, Steven R.

    2014-01-01

    Tamarisk (a.k.a. saltcedar, Tamarix spp.) is an invasive plant species that occurs throughout western riparian and wetland ecosystems. It is implicated in alterations of ecosystem structure and function and is the subject of many local control projects, including removal using heavy equipment. We evaluated short-term vegetation responses to mechanical Tamarix spp. removal at sites ranging from 2 to 5 yr post-treatment along the Virgin River in Nevada, USA. Treatments resulted in lower density and cover (but not eradication) of Tamarix spp., increased cover of the native shrub Pluchea sericia (arrow weed), decreased density and cover of all woody species combined, increased density of both native annual forbs and the nonnative annual Salsola tragus (prickly Russian-thistle), and lower density of nonnative annual grasses. The treated plots had lower mean woody species richness, but greater herbaceous species richness and diversity. Among herbaceous species, native taxa increased in richness whereas nonnative species increased in both species richness and diversity. Thus, efforts to remove Tamarix,/i> spp. at the Virgin River reduced vegetative cover contributing to fuel loads and probability of fire, and resulted in positive effects for native plant diversity, with mixed effects on other nonnative species. However, absolute abundances of native species

  20. Temporal and Spatial Variations of Vegetation Cover in Xinjiang from 2002 to 2015 and Their Response to Climate

    Science.gov (United States)

    Liu, S. S.; Zhang, Q.; Li, X. C.; Song, W. J.; Yang, J. N.; Liu, X. J.

    2017-07-01

    In this paper, the dataset of normalized difference vegetation indexes (NDVIs) in the arid region in Xinjiang from 2002 to 2015 as well as the climate data from 52 meteorological stations are utilized and the temporal and spatial variations of NDVI in recent years and their response to temperature and precipitation are analyzed in combination with various methods such as the maximum value analysis, correlation analysis and spatial analysis. It is concluded that in the past 14 years, the annual maximum NDVIs of Xinjiang presented a moderate rising tendency; Under the influence of the global background, the temperature and precipitation also showed different degrees of increase, which showed a significant increase in temperature. The annual maximum NDVI had a significant correlation with the annual precipitation (correlation coefficient: 0.634), but no obvious correlation was identified between the annual maximum NDVI and the annual average temperature (correlation coefficient: 0.279). To this end, regarding to the climatic factors, the influence of precipitation on the vegetation cover is higher than that of temperature.

  1. Involvement of BcElp4 in vegetative development, various environmental stress response and virulence of Botrytis cinerea.

    Science.gov (United States)

    Shao, Wenyong; Lv, Chiyuan; Zhang, Yu; Wang, Jin; Chen, Changjun

    2017-07-01

    The Saccharomyces cerevisiae Elongator complex consisting of the six Elp1-Elp6 proteins has been proposed to participate in three distinct cellular processes: transcriptional elongation, polarized exocytosis and formation of modified wobble uridines in tRNA. In this study, we investigated the function of BcElp4 in Botrytis cinerea, which is homologous to S. cerevisiae Elp4. A bcelp4 deletion mutant was significantly impaired in vegetative growth, sclerotia formation and melanin biosynthesis. This mutant exhibited decreased sensitivity to osmotic and oxidative stresses as well as cell way-damaging agent. Pathogenicity assays revealed that BcElp4 is involved in the virulence of B. cinerea. In addition, the deletion of bcelp4 led to increased aerial mycelia development. All these defects were restored by genetic complementation of the bcelp4 deletion mutant with the wild-type bcelp4 gene. The results of this study indicated that BcElp4 is involved in regulation of vegetative development, various environmental stress response and virulence in B. cinerea. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Improving simulated long-term responses of vegetation to temperature and precipitation extremes using the ACME land model

    Science.gov (United States)

    Ricciuto, D. M.; Warren, J.; Guha, A.

    2017-12-01

    While carbon and energy fluxes in current Earth system models generally have reasonable instantaneous responses to extreme temperature and precipitation events, they often do not adequately represent the long-term impacts of these events. For example, simulated net primary productivity (NPP) may decrease during an extreme heat wave or drought, but may recover rapidly to pre-event levels following the conclusion of the extreme event. However, field measurements indicate that long-lasting damage to leaves and other plant components often occur, potentially affecting the carbon and energy balance for months after the extreme event. The duration and frequency of such extreme conditions is likely to shift in the future, and therefore it is critical for Earth system models to better represent these processes for more accurate predictions of future vegetation productivity and land-atmosphere feedbacks. Here we modify the structure of the Accelerated Climate Model for Energy (ACME) land surface model to represent long-term impacts and test the improved model against observations from experiments that applied extreme conditions in growth chambers. Additionally, we test the model against eddy covariance measurements that followed extreme conditions at selected locations in North America, and against satellite-measured vegetation indices following regional extreme events.

  3. Prescribed grazing for management of invasive vegetation in a hardwood forest understory

    Science.gov (United States)

    Ronald A. Rathfon; Songlin Fei; Jason Tower; Kenneth Andries; Michael. Neary

    2014-01-01

    Land managers considering prescribed grazing (PG) face a lack of information on animal stocking rates, timing of grazing, and duration of grazing to achieve desired conditions in natural ecosystems under invasion stress from a variety of nonnative invasive plant (NNIP) species. In this study we tested PG treatments using goats for reducing NNIP brush species and...

  4. Understory vegetation in reclaimed and unreclaimed post-mining forest stands

    Czech Academy of Sciences Publication Activity Database

    Mudrák, Ondřej; Frouz, J.; Velichová, V.

    2010-01-01

    Roč. 36, č. 6 (2010), s. 783-790 ISSN 0925-8574 Institutional research plan: CEZ:AV0Z60050516 Keywords : coal * restoration * succession Subject RIV: EH - Ecology, Behaviour Impact factor: 2.203, year: 2010

  5. Livestock impacts for management of reclaimed land at Navajo Mine: Vegetation responses

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.K. [New Mexico State Univ., Las Cruces, NM (United States); Buchanan, B.A. [Buchanan Consultants, Ltd., Farmington, NM (United States); Estrada, O. [Navajo Mine, Fruitland, NM (United States)

    1997-12-31

    The post-mining land use for Navajo Mine, a large surface coal mine in northwest New Mexico, is livestock grazing. Reclamation began in the early 1970`s and has been primarily directed toward the development of a grassland with shrubs. However, none of these lands were grazed before 1994 and none have been released back to the Navajo Nation. Therefore, it is not known how these reclaimed lands will respond to livestock impacts once the lands are released. Livestock impacts include grazing, trampling, and adding feces and urine. Cattle impacts were applied in 1994 to a land that had been reclaimed in 1978, 1991 and 1992. Vegetation monitoring procedures were implemented to detect and document successful and unsuccessful impact practices for both impacted areas and areas excluded from cattle. After three impact seasons, there were similar levels of perennial plant cover, production, and density on impacted lands compared to excluded lands. Based on age structure analysis, there is a trend that establishment of seedlings is stimulated by cattle. Cattle also decrease the amount of previous years` growth of standing phytomass with a trend to stimulate new growth. It is possible that some of the previous year`s growth was reduced by cattle trampling as much as by grazing because cattle generally prefer to eat the current year`s growth before it cures. No differences in number of seedheads per plant, animal sign, plant pedestals, and soil rills could be detected after three seasons of impacting.

  6. Functional traits of the understory plant community of a pyrogenic longleaf pine forest across environmental gradients.

    Science.gov (United States)

    Ames, Gregory M; Anderson, Steven M; Ungberg, Eric A; Wright, Justin P

    2017-08-01

    Understanding and predicting the response of plant communities to environmental changes and disturbances such as fire requires an understanding of the functional traits present in the system, including within and across species variability, and their dynamics over time. These data are difficult to obtain as few studies provide comprehensive information for more than a few traits or species, rarely cover more than a single growing season, and usually present only summary statistics of trait values. As part of a larger study seeking to understand the dynamics of plant communities in response to different prescribed fire regimes, we measured the functional traits of the understory plant communities located in over 140 permanent plots spanning strong gradients in soil moisture in a pyrogenic longleaf pine forest in North Carolina, USA, over a four-year period from 2011 and 2014. We present over 120,000 individual trait measurements from over 130 plant species representing 91 genera from 47 families. We include data on the following 18 traits: specific leaf area, leaf dry matter content, leaf area, leaf length, leaf width, leaf perimeter, plant height, leaf nitrogen, leaf carbon, leaf carbon to nitrogen ratio, water use efficiency, time to ignition, maximum flame height, maximum burn temperature, mass-specific burn time, mass-specific smolder time, branching architecture, and the ratio of leaf matter consumed by fire. We also include information on locations, soil moisture, relative elevation, soil bulk density, and fire histories for each site. © 2017 by the Ecological Society of America.

  7. VEGETATION RESPONSE TO CLIMATE CHANGE IN THE SOUTHERN PART OF QINGHAI-TIBET PLATEAU AT BASINAL SCALE

    Directory of Open Access Journals (Sweden)

    X. Liu

    2018-04-01

    Full Text Available Global climate change has significantly affected vegetation variation in the third-polar region of the world – the Qinghai-Tibet Plateau. As one of the most important indicators of vegetation variation (growth, coverage and tempo-spatial change, the Normalized Difference Vegetation Index (NDVI is widely employed to study the response of vegetation to climate change. However, a long-term series analysis cannot be achieved because a single data source is constrained by time sequence. Therefore, a new framework was presented in this paper to extend the product series of monthly NDVI, taking as an example the Yarlung Zangbo River Basin, one of the most important river basins in the Qinghai-Tibet Plateau. NDVI products were acquired from two public sources: Global Inventory Modeling and Mapping Studies (GIMMS Advanced Very High Resolution Radiometer (AVHRR and Moderate-Resolution Imaging spectroradiometer (MODIS. After having been extended using the new framework, the new time series of NDVI covers a 384 months period (1982–2013, 84 months longer than previous time series of NDVI product, greatly facilitating NDVI related scientific research. In the new framework, the Gauss Filtering Method was employed to filter out noise in the NDVI product. Next, the standard method was introduced to enhance the comparability of the two data sources, and a pixel-based regression method was used to construct NDVI-extending models with one pixel after another. The extended series of NDVI fit well with original AVHRR-NDVI. With the extended time-series, temporal trends and spatial heterogeneity of NDVI in the study area were studied. Principal influencing factors on NDVI were further determined. The monthly NDVI is highly correlated with air temperature and precipitation in terms of climatic change wherein the spatially averaged NDVI slightly increases in the summer and has increased in temperature and decreased in precipitation in the 32 years period. The

  8. Regional climate and vegetation response to orbital forcing within the mid-Pliocene Warm Period: A study using HadCM3

    Science.gov (United States)

    Prescott, C. L.; Dolan, A. M.; Haywood, A. M.; Hunter, S. J.; Tindall, J. C.

    2018-02-01

    Regional climate and environmental variability in response to orbital forcing during interglacial events within the mid-Piacenzian (Pliocene) Warm Period (mPWP; 3.264-3.025 Ma) has been rarely studied using climate and vegetation models. Here we use climate and vegetation model simulations to predict changes in regional vegetation patterns in response to orbital forcing for four different interglacial events within the mPWP (Marine Isotope Stages (MIS) G17, K1, KM3 and KM5c). The efficacy of model-predicted changes in regional vegetation is assessed by reference to selected high temporal resolution palaeobotanical studies that are theoretically capable of discerning vegetation patterns for the selected interglacial stages. Annual mean surface air temperatures for the studied interglacials are between 0.4 °C to 0.7 °C higher than a comparable Pliocene experiment using modern orbital parameters. Increased spring/summer and reduced autumn/winter insolation in the Northern Hemisphere during MIS G17, K1 and KM3 enhances seasonality in surface air temperature. The two most robust and notable regional responses to this in vegetation cover occur in North America and continental Eurasia, where forests are replaced by more open-types of vegetation (grasslands and shrubland). In these regions our model results appear to be inconsistent with local palaeobotanical data. The orbitally driven changes in seasonal temperature and precipitation lead to a 30% annual reduction in available deep soil moisture (2.0 m from surface), a critical parameter for forest growth, and subsequent reduction in the geographical coverage of forest-type vegetation; a phenomenon not seen in comparable simulations of Pliocene climate and vegetation run with a modern orbital configuration. Our results demonstrate the importance of examining model performance under a range of realistic orbital forcing scenarios within any defined time interval (e.g. mPWP). Additional orbitally resolved records of

  9. Phenological synchrony and seasonality of understory Rubiaceae in the Atlantic Forest, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Heitor Scarpati Liuth

    2013-03-01

    Full Text Available In tropical forests with low seasonality, climatic variables generally exert a weak influence on the phenology of species. The seasonality of phenophases in closely related taxa can be controlled by phylogenetic constraints in such environments. In this study, our aim was to describe the phenology of Rubiaceae in the understory of the Atlantic Forest in the southern part of Bahia, Brazil, as well as to evaluate the seasonality and phenological synchrony of this family. For two years, we observed 90 individuals belonging to 13 species, in an area of 0.2 ha. Leaf flushing and leaf fall did not demonstrate any seasonality, were continuous for most species and correlated with few of the climatic variables. Flowering was seasonal and correlated positively with all climatic variables. Species exhibited seasonality for this phenophase with high flowering overlap among species of Psychotria, indicating an aggregated pattern for this genus. Fruiting was also seasonal and correlated with all the climatic variables, unripe fruit development peaking at the beginning of the season during which humidity is highest and fruit ripening peaking in the season during which humidity is slightly lower. The vegetative and flowering patterns observed in the study area are commonly seen in other tropical forests. The reproductive seasonality of this family can facilitate the attraction of biotic agents, as postulated in the facilitation hypothesis. Our results demonstrate that climatic variables influenced the phenological patterns observed here, although the high reproductive seasonality and interspecific synchrony, especially in congeneric species, raises the possibility that phylogenetic proximity plays a role in the pattern of the family Rubiaceae.

  10. Hydrological and vegetational response to the Younger Dryas climatic oscillations: a high resolution case study from Quoyloo Meadow, Orkney, Scotland

    Science.gov (United States)

    Maas, David; Abrook, Ashley; Timms, Rhys; Matthews, Ian; Palmer, Adrian; Milner, Alice; Candy, Ian; Sachse, Dirk

    2016-04-01

    The Younger Dryas (Loch Lomond) Stadial is a well defined period of cold climate that in North West Europe punctuated the climatic amelioration during the Last Glacial - Interglacial Transition (LGIT ca. 16-8 ka). A palaeolake record from Quoyloo Meadow, Orkney Islands (N59.067, E-3.309) has been analysed for pollen and stable isotopes on biomarker lipids. n-Alkanes from terrestrial and aquatic sources are present throughout the core. The average chain length (ACL) is relatively low during the interstadial (~28.0) and shows a distinct increase during the Younger Dryas (to 29.0 +), attributed to an increase in grasses and drought resistant shrubs (e.g. Artemisia, Castañeda et al., 2009, Bunting, 1994). At the beginning of the Holocene, the ACL rapidly drops to 28.3 and from thereon gently increases again to ~29.0. There is a continued odd-over-even n-alkane predominance, although even n-alkanes are present in greater quantities in the interstadial, indicating an increasing terrestrial contribution in the Holocene. Ongoing deuterium isotope measurements of the n-alkanes will give independent evidence for palaeohydrological changes and can be compared to the other proxy evidence within the same core. Using a combination of nC29 and nC23 (terrestrial and aquatic end-members, respectively), a change in relative humidity (rH) can be qualified. This is based on the idea that terrestrial vegetation is affected by evapotranspiration processes, whereas aquatic vegetation is not (Rach et al., 2014). This data is supported by a high resolution palynological study; the contiguously sampled record demonstrates ecosystem/environmental responses to millennial-scale climatic change and allows for the possible detection of vegetation shifts at the sub-millennial scale. Vegetation aside, the pollen data can further aid in the interpretation of the recorded n-alkanes and isotopic analyses. This data is placed within a chronological framework derived from a high resolution crypto- and

  11. Metabolic responses of Lactobacillus plantarum strains during fermentation and storage of vegetable and fruit juices.

    Science.gov (United States)

    Filannino, P; Cardinali, G; Rizzello, C G; Buchin, S; De Angelis, M; Gobbetti, M; Di Cagno, R

    2014-04-01

    Strains of Lactobacillus plantarum were grown and stored in cherry (ChJ), pineapple (PJ), carrot (CJ), and tomato (TJ) juices to mimic the chemical composition of the respective matrices. Wheat flour hydrolysate (WFH), whey milk (W), and MRS broth were also used as representatives of other ecosystems. The growth rates and cell densities of L. plantarum strains during fermentation (24 h at 30°C) and storage (21 days at 4°C) differed only in part, being mainly influenced by the matrix. ChJ and PJ were the most stressful juices for growth and survival. Overall, the growth in juices was negatively correlated with the initial concentration of malic acid and carbohydrates. The consumption of malic acid was noticeable for all juices, but mainly during fermentation and storage of ChJ. Decreases of branched-chain amino acids (BCAA)-with the concomitant increase of their respective branched alcohols-and His and increases of Glu and gamma-aminobutyric acid (GABA) were the main traits of the catabolism of free amino acids (FAA), which were mainly evident under less acidic conditions (CJ and TJ). The increase of Tyr was found only during storage of ChJ. Some aldehydes (e.g., 3-methyl-butanal) were reduced to the corresponding alcohols (e.g., 3-methyl-1-butanol). After both fermentation and storage, acetic acid increased in all fermented juices, which implied the activation of the acetate kinase route. Diacetyl was the ketone found at the highest level, and butyric acid increased in almost all fermented juices. Data were processed through multidimensional statistical analyses. Except for CJ, the juices (mainly ChJ) seemed to induce specific metabolic traits, which differed in part among the strains. This study provided more in-depth knowledge on the metabolic mechanisms of growth and maintenance of L. plantarum in vegetable and fruit habitats, which also provided helpful information to select the most suitable starters for fermentation of targeted matrices.

  12. Rapid vegetation response to Lateglacial and early Holocene climatic fluctuation in the South Carpathian Mountains (Romania)

    Science.gov (United States)

    Magyari, E. K.; Jakab, G.; Bálint, M.; Kern, Z.; Buczkó, K.; Braun, M.

    2012-03-01

    High-resolution pollen, conifer stomata and plant macrofossil analyses of two glacial lake sediments (1740 and 1990 m a.s.l.) are used to reconstruct Lateglacial (LG) and early Holocene (EH) vegetation and tree line changes in the Retezat Mountains. Our results show that during the LG, tree line was between 1750 and 1800 m a.s.l. formed by Larix decidua, Pinus mugo and Picea abies. Early LG spread to high altitudes suggests refugia of these tree species in the mountain. The Younger Dryas cooling resulted in regional steppe-tundra expansion, but tree line position and composition showed little change. The abundance of trees and shrubs decreased at 1740 m a.s.l., but species richness increased with the arrival of Pinus cembra. Our data support climate-model hindcasts for only modest decrease in accumulated growing season heat at mid-high altitudes. Regionally the pollen records suggest enhanced aridity and seasonality. In the EH, tree line reached 2000 m a.s.l. (higher than today) by ˜11,100 cal yr BP. P. mugo, P. cembra, P. abies established around the upper lake suggesting rapid increase in summer temperatures. The EH maximum of L. decidua between 11,200-10,600 cal yr BP was connected to high summer insolation. High altitude expansion of Abies alba between 10,600-10,300 cal yr BP suggested summer mean temperatures ˜2.8 °C higher then today. In comparison with other mountain sites in Europe, LG interstadial tree line was at similar altitude in the S Alps and ˜350 m higher in the Pirin Mountains. LG tree line fluctuation had similar low amplitude in the SE Alps, Retezat and Pirin Mts suggesting relatively weak influence of the North Atlantic thermohaline circulation changes on growing season temperatures.

  13. Whole-plant water flux in understory red maple exposed to altered precipitation regimes.

    Science.gov (United States)

    Wullschleger, Stan D.; Hanson, Paul J.; Tschaplinski, Tim J.

    1998-02-01

    . Estimates of the decoupling coefficient (Omega) ranged between 0.64 and 0.72 for saplings in the three TDE treatment plots. We conclude that red maple saplings growing in the understory of an upland oak forest are responsive to their edaphic and climatic surroundings, and because of either their small stature or their shallow root distribution, or both, are likely to be impacted by precipitation changes similar to those predicted by global climate models.

  14. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content.

    Science.gov (United States)

    Sarker, Umakanta; Oba, Shinya

    2018-06-30

    Four selected vegetable amaranths were grown under four soil water content to evaluate their response in nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and total antioxidant activity (TAC). Vegetable amaranth was significantly affected by variety, soil water content and variety × soil water content interactions for all the traits studied. Increase in water stress, resulted in significant changes in proximate compositions, minerals (macro and micro), leaf pigments, vitamin, total polyphenol content (TPC), and total flavonoid content (TFC) of vegetable amaranth. Accessions VA14 and VA16 performed better for all the traits studied. Correlation study revealed a strong antioxidant scavenging activity of leaf pigments, ascorbic acid, TPC and TFC. Vegetable amaranth can tolerate soil water stress without compromising the high quality of the final product in terms of nutrients and antioxidant profiles. Therefore, it could be a promising alternative crop in semi-arid and dry areas and also during dry seasons. Copyright © 2018. Published by Elsevier Ltd.

  15. Page 1 Microwave response of green vegetation 215 With a view to ...

    Indian Academy of Sciences (India)

    medium is generally computed by using the reciprocity relation e = (1 — Y) (10). **. In active and passive remote sensing studies the microwave response is measured in terms of brightness temperature of the target medium. The brightness tempera-. O 44 x -- SOYA BEAN. () —- GRASS LEAF. O 40 tn —- CORN LEAF.

  16. Coordinated responses of soil communities to elevation in three subarctic vegetation types

    NARCIS (Netherlands)

    Veen, G. F. (Ciska); De Long, Jonathan R.; Kardol, Paul; Sundqvist, Maja K; Snoek, L. Basten; Wardle, David A

    2017-01-01

    Global warming has begun to have a major impact on the species composition and functioning of plant and soil communities. However, long-term community and ecosystem responses to increased temperature are still poorly understood. In this study, we used a well-established elevational gradient in

  17. Comparative Drought Responses of Quercus ilex L. and Pinus sylvestris L. in a Montane Forest Undergoing a Vegetation Shift

    Directory of Open Access Journals (Sweden)

    David Aguadé

    2015-07-01

    Full Text Available Different functional and structural strategies to cope with water shortage exist both within and across plant communities. The current trend towards increasing drought in many regions could drive some species to their physiological limits of drought tolerance, potentially leading to mortality episodes and vegetation shifts. In this paper, we study the drought responses of Quercus ilex and Pinus sylvestris in a montane Mediterranean forest where the former species is replacing the latter in association with recent episodes of drought-induced mortality. Our aim was to compare the physiological responses to variations in soil water content (SWC and vapor pressure deficit (VPD of the two species when living together in a mixed stand or separately in pure stands, where the canopies of both species are completely exposed to high radiation and VPD. P. sylvestris showed typical isohydric behavior, with greater losses of stomatal conductance with declining SWC and greater reductions of stored non-structural carbohydrates during drought, consistent with carbon starvation being an important factor in the mortality of this species. On the other hand, Q. ilex trees showed a more anisohydric behavior, experiencing more negative water potentials and higher levels of xylem embolism under extreme drought, presumably putting them at higher risk of hydraulic failure. In addition, our results show relatively small changes in the physiological responses of Q. ilex in mixed vs. pure stands, suggesting that the current replacement of P. sylvestris by Q. ilex will continue.

  18. Metabolic Responses of Lactobacillus plantarum Strains during Fermentation and Storage of Vegetable and Fruit Juices

    Science.gov (United States)

    Filannino, P.; Cardinali, G.; Rizzello, C. G.; Buchin, S.; De Angelis, M.; Gobbetti, M.

    2014-01-01

    Strains of Lactobacillus plantarum were grown and stored in cherry (ChJ), pineapple (PJ), carrot (CJ), and tomato (TJ) juices to mimic the chemical composition of the respective matrices. Wheat flour hydrolysate (WFH), whey milk (W), and MRS broth were also used as representatives of other ecosystems. The growth rates and cell densities of L. plantarum strains during fermentation (24 h at 30°C) and storage (21 days at 4°C) differed only in part, being mainly influenced by the matrix. ChJ and PJ were the most stressful juices for growth and survival. Overall, the growth in juices was negatively correlated with the initial concentration of malic acid and carbohydrates. The consumption of malic acid was noticeable for all juices, but mainly during fermentation and storage of ChJ. Decreases of branched-chain amino acids (BCAA)—with the concomitant increase of their respective branched alcohols—and His and increases of Glu and gamma-aminobutyric acid (GABA) were the main traits of the catabolism of free amino acids (FAA), which were mainly evident under less acidic conditions (CJ and TJ). The increase of Tyr was found only during storage of ChJ. Some aldehydes (e.g., 3-methyl-butanal) were reduced to the corresponding alcohols (e.g., 3-methyl-1-butanol). After both fermentation and storage, acetic acid increased in all fermented juices, which implied the activation of the acetate kinase route. Diacetyl was the ketone found at the highest level, and butyric acid increased in almost all fermented juices. Data were processed through multidimensional statistical analyses. Except for CJ, the juices (mainly ChJ) seemed to induce specific metabolic traits, which differed in part among the strains. This study provided more in-depth knowledge on the metabolic mechanisms of growth and maintenance of L. plantarum in vegetable and fruit habitats, which also provided helpful information to select the most suitable starters for fermentation of targeted matrices. PMID:24487533

  19. Neurophysiological and behavioral responses to music therapy in vegetative and minimally conscious states

    DEFF Research Database (Denmark)

    O'Kelly, Julian; James, L.; Palaniappan, R.

    2013-01-01

    for preferred music (p = 0.029) across the VS cohort. Two VS cases are presented with concurrent changes (p ≤ 0.05) across measures indicative of discriminatory responses to both music therapy procedures. A MCS case study highlights how more sensitive selective attention may distinguish MCS from VS. Further......Assessment of awareness for those with disorders of consciousness (DOC) is a challenging undertaking, due to the complex presentation of the population, where misdiagnosis rates remain high. Music therapy may be effective in the assessment and rehabilitation with this population due to effects...... of musical stimuli on arousal, attention and emotion, irrespective of verbal or motor deficits, however, an evidence base is lacking. To address this, a neurophysiological and behavioural study was undertaken comparing EEG, heart rate variability, respiration and behavioural responses of 20 healthy subjects...

  20. Faunal and vegetation monitoring in response to harbor dredging in the Port of Miami

    Science.gov (United States)

    Daniels, Andre; Stevenson, Rachael; Smith, Erin; Robblee, Michael

    2018-04-11

    Seagrasses are highly productive ecosystems. A before-after-control-impact (BACI) design was used to examine effects of dredging on seagrasses and the animals that inhabit them. The control site North Biscayne Bay and the affected site Port of Miami had seagrass densities decrease during both the before, Fish and Invertebrate Assessment Network 2006-2011, and after, Faunal Monitoring in Response to Harbor Dredging 2014-2016, studies. Turbidity levels increased at North Biscayne Bay and Port of Miami basins during the Faunal Monitoring in Response to Harbor Dredging study, especially in 2016. Animal populations decreased significantly in North Biscayne Bay and Port of Miami in the Faunal Monitoring in Response to Harbor Dredging study compared to the Fish and Invertebrate Assessment Network study. Predictive modeling shows that numbers of animal populations will likely continue to decrease if the negative trends in seagrass densities continue unabated. There could be effects on several fisheries vital to the south Florida economy. Additional research could determine if animal populations and seagrass densities have rebounded or continued to decrease.

  1. Response of Spartina alterniflora vegetation to oiling and burning of applied oil

    Energy Technology Data Exchange (ETDEWEB)

    Lindau, C.W.; Delaune, R.D.; Jugsujinda, A.; Sajo, E. [Louisiana State Univ., Baton Rouge, LA (United States). Wetland Biogeochemistry Inst.

    1999-12-01

    A field study evaluated Spartina alterniflora sensitivity to oiling and to in situ burning of applied crude oil. Experimental plots (2.4 m x 2.4 m x 0.6 m) were constructed in the salt marsh for control, oiling (natural clean-up) and oiling/burning treatments. South Louisiana Crude was applied to oiling and oiling/burning treatment plots at 2 l m{sup -2} and the burn conducted. S. alterniflora responses (height, live stem density, carbon fixation and biomass) were measured for 50 weeks after the August burn. Oiling and oiling/burning had short-term detrimental effects on the salt marsh. One year after the late summer burn, S. alterniflora responses measured in the oiled and oiled/burned plots were not significantly different compared to control values. Results suggest that, under our experimental conditions, intervention may not be required for marsh recovery. However, if spill conditions require a rapid response to control contaminant spread or protect other sensitive resources, burning may be a clean-up operation to consider. (Author)

  2. Trophic flexibility and the persistence of understory birds in intensively logged rainforest.

    Science.gov (United States)

    Edwards, David P; Woodcock, Paul; Newton, Rob J; Edwards, Felicity A; Andrews, David J R; Docherty, Teegan D S; Mitchell, Simon L; Ota, Takahiro; Benedick, Suzan; Bottrell, Simon H; Hamer, Keith C

    2013-10-01

    Effects of logging on species composition in tropical rainforests are well known but may fail to reveal key changes in species interactions. We used nitrogen stable-isotope analysis of 73 species of understory birds to quantify trophic responses to repeated intensive logging of rainforest in northern Borneo and to test 4 hypotheses: logging has significant effects on trophic positions and trophic-niche widths of species, and the persistence of species in degraded forest is related to their trophic positions and trophic-niche widths in primary forest. Species fed from higher up the food chain and had narrower trophic-niche widths in degraded forest. Species with narrow trophic-niche widths in primary forest were less likely to persist after logging, a result that indicates a higher vulnerability of dietary specialists to local extinction following habitat disturbance. Persistence of species in degraded forest was not related to a species' trophic position. These results indicate changes in trophic organization that were not apparent from changes in species composition and highlight the importance of focusing on trophic flexibility over the prevailing emphasis on membership of static feeding guilds. Our results thus support the notion that alterations to trophic organization and interactions within tropical forests may be a pervasive and functionally important hidden effect of forest degradation. © 2013 Society for Conservation Biology.

  3. Soil Response to Natural Vegetation Dynamics During the Late Holocene in Minnesota, USA, and Implications for SOM Accumulation and Loss

    Science.gov (United States)

    Mason, J. A.; Kasmerchak, C. S.; Keita, H.; Gruley, K. E.

    2016-12-01

    We studied soil response to late Holocene shifts in the dynamic boundary between forest and grassland, in two contrasting landscapes of Minnesota, USA. On both the glaciated landscape of northwestern Minnesota and steep bedrock slopes of southeastern Minnesota, forest has replaced grassland in the late Holocene (after 4 ka in the NW, during at least the last few 100 yr in the SE). Two distinct soil morphologies coexist in essentially the same climate and parent materials, Mollisols with deep SOM accumulation under grassland and Alfisols with most SOM in thin A horizons under forest. Organic carbon stocks of the Mollisols we sampled (to 1 m depth) are at least 50% greater than those of the Alfisols; thus, replacement of grassland by forest involves substantial SOM loss. Ultimately, the transition from Alfisols to Mollisols can probably be explained by much lower proportions of belowground SOM addition, and possibly less bioturbation, under forest; however, the timescale of this change is of great interest. Mollisols and transitional soils occur under forest today near the 19th century location of the vegetation boundary in NW Minnesota, and in certain slope positions in SE Minnesota. Stable C isotope profiles within those soils record the transition from C4 or mixed C3/C4 vegetation (tallgrass prairie or savanna) to C3 forest vegetation. Combined with 14C dating these data demonstrate a substantial lag in loss of the Mollisol morphology—thick SOM-rich A horizons with highly stable aggregates—after forest occupation. In fact, these thick A horizons may persist even when C4 grass-derived SOM has largely been replaced by SOM added after forest occupation. We are exploring possible explanations for this persistence in NW Minnesota. In SE Minnesota, it is likely related to parent material rich in dolomite fragments, with stable aggregation and SOM accumulation favored by abundant Ca2+and Mg2+. This parent material effect results in localization of high SOM

  4. The importance of parameterization when simulating the hydrologic response of vegetative land-cover change

    Science.gov (United States)

    White, Jeremy; Stengel, Victoria G.; Rendon, Samuel H.; Banta, John

    2017-01-01

    Computer models of hydrologic systems are frequently used to investigate the hydrologic response of land-cover change. If the modeling results are used to inform resource-management decisions, then providing robust estimates of uncertainty in the simulated response is an important consideration. Here we examine the importance of parameterization, a necessarily subjective process, on uncertainty estimates of the simulated hydrologic response of land-cover change. Specifically, we applied the soil water assessment tool (SWAT) model to a 1.4 km2 watershed in southern Texas to investigate the simulated hydrologic response of brush management (the mechanical removal of woody plants), a discrete land-cover change. The watershed was instrumented before and after brush-management activities were undertaken, and estimates of precipitation, streamflow, and evapotranspiration (ET) are available; these data were used to condition and verify the model. The role of parameterization in brush-management simulation was evaluated by constructing two models, one with 12 adjustable parameters (reduced parameterization) and one with 1305 adjustable parameters (full parameterization). Both models were subjected to global sensitivity analysis as well as Monte Carlo and generalized likelihood uncertainty estimation (GLUE) conditioning to identify important model inputs and to estimate uncertainty in several quantities of interest related to brush management. Many realizations from both parameterizations were identified as behavioral in that they reproduce daily mean streamflow acceptably well according to Nash–Sutcliffe model efficiency coefficient, percent bias, and coefficient of determination. However, the total volumetric ET difference resulting from simulated brush management remains highly uncertain after conditioning to daily mean streamflow, indicating that streamflow data alone are not sufficient to inform the model inputs that influence the simulated outcomes of brush

  5. Soil moisture response to experimentally altered snowmelt timing is mediated by soil, vegetation, and regional climate patterns

    Science.gov (United States)

    Conner, Lafe G; Gill, Richard A.; Belnap, Jayne

    2016-01-01

    Soil moisture in seasonally snow-covered environments fluctuates seasonally between wet and dry states. Climate warming is advancing the onset of spring snowmelt and may lengthen the summer-dry state and ultimately cause drier soil conditions. The magnitude of either response may vary across elevation and vegetation types. We situated our study at the lower boundary of persistent snow cover and the upper boundary of subalpine forest with paired treatment blocks in aspen forest and open meadow. In treatments plots, we advanced snowmelt timing by an average of 14 days by adding dust to the snow surface during spring melt. We specifically wanted to know whether early snowmelt would increase the duration of the summer-dry period and cause soils to be drier in the early-snowmelt treatments compared with control plots. We found no difference in the onset of the summer-dry state and no significant differences in soil moisture between treatments. To better understand the reasons soil moisture did not respond to early snowmelt as expected, we examined the mediating influences of soil organic matter, texture, temperature, and the presence or absence of forest. In our study, late-spring precipitation may have moderated the effects of early snowmelt on soil moisture. We conclude that landscape characteristics, including soil, vegetation, and regional weather patterns, may supersede the effects of snowmelt timing in determining growing season soil moisture, and efforts to anticipate the impacts of climate change on seasonally snow-covered ecosystems should take into account these mediating factors. 

  6. Seasonality of Overstory and Understory Fluxes in a Semi-Arid Oak Savanna: What can be Learned from Comparing Measured and Modeled Fluxes?

    Science.gov (United States)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Chen, J. M.; Verfaillie, J. G.; Ma, S.; Baldocchi, D. D.

    2011-12-01

    precipitation events, likely produced by an adverse measurement effect. This analysis enabled to pinpoint specific areas where models break, and stress that model capability to reproduce fluxes vary among seasons and ecosystem components. The combined response was such, that comparison decreases when ecosystem fluxes were partitioned between overstory and understory fluxes. Model performance decreases with time scale; while performance was high for some seasons, models were less capable of reproducing the high variability in understory fluxes vs. the conservative overstory fluxes on annual scales. Discrepancies were not always a result of models' faults; comparison largely improved when measurements of overstory fluxes during precipitation events were excluded. Conclusions raised from this research enable to answer the critical question of the level and type of details needed in order to correctly predict ecosystem respond to environmental and climatic change.

  7. Can the Understory Affect the Hymenoptera Parasitoids in a Eucalyptus Plantation?

    Directory of Open Access Journals (Sweden)

    Onice Teresinha Dall'Oglio

    Full Text Available The understory in forest plantations can increase richness and diversity of natural enemies due to greater plant species richness. The objective of this study was to test the hypothesis that the presence of the understory and climatic season in the region (wet or dry can increase the richness and abundance of Hymenoptera parasitoids in Eucalyptus plantations, in the municipality of Belo Oriente, Minas Gerais State, Brazil. In each eucalyptus cultivation (five areas of cultivation ten Malaise traps were installed, five with the understory and five without it. A total of 9,639 individuals from 30 families of the Hymenoptera parasitoids were collected, with Mymaridae, Scelionidae, Encyrtidae and Braconidae being the most collected ones with 4,934, 1,212, 619 and 612 individuals, respectively. The eucalyptus stands with and without the understory showed percentage of individuals 45.65% and 54.35% collected, respectively. The understory did not represent a positive effect on the overall abundance of the individuals Hymenoptera in the E. grandis stands, but rather exerted a positive effect on the specific families of the parasitoids of this order.

  8. Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation.

    Science.gov (United States)

    Deng, Ye; Zhang, Ping; Qin, Yujia; Tu, Qichao; Yang, Yunfeng; He, Zhili; Schadt, Christopher Warren; Zhou, Jizhong

    2016-01-01

    Discerning network interactions among different species/populations in microbial communities has evoked substantial interests in recent years, but little information is available about temporal dynamics of microbial network interactions in response to environmental perturbations. Here, we modified the random matrix theory-based network approach to discern network succession in groundwater microbial communities in response to emulsified vegetable oil (EVO) amendment for uranium bioremediation. Groundwater microbial communities from one control and seven monitor wells were analysed with a functional gene array (GeoChip 3.0), and functional molecular ecological networks (fMENs) at different time points were reconstructed. Our results showed that the network interactions were dramatically altered by EVO amendment. Dynamic and resilient succession was evident: fairly simple at the initial stage (Day 0), increasingly complex at the middle period (Days 4, 17, 31), most complex at Day 80, and then decreasingly complex at a later stage (140-269 days). Unlike previous studies in other habitats, negative interactions predominated in a time-series fMEN, suggesting strong competition among different microbial species in the groundwater systems after EVO injection. Particularly, several keystone sulfate-reducing bacteria showed strong negative interactions with their network neighbours. These results provide mechanistic understanding of the decreased phylogenetic diversity during environmental perturbations. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Response of vegetation to carbon dioxide. Field studies of plant responses to elevated carbon dioxide levels 1984

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    In the present study, CO{sub 2} enrichment has been applied to sweet potatoes and cowpeas in order to investigate its effect on their growth, physiology, and yield under field condition. Objectives were: (1) to establish at Tuskegee Institute the facilities for growing crops in the field under enriched CO{sub 2} atmospheric conditions; (2) to obtain field data on the morphological, physiological, biochemical, growth and yield responses of sweet potatoes and cowpeas to elevated levels of CO{sub 2}; (3) to determine the effects of elevated CO{sub 2} in the rate of nitrogen fixation of cowpeas; (4) to provide data for a generalized crop growth model for predicting yield of both sweet potatoes and cowpeas as a function of atmospheric CO{sub 2} enrichment.

  10. Response of vegetation to carbon dioxide - sorghum at elevated levels of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, R.B.; Chaudhuri, U.N.; Kanemasu, E.T.; Kirkham, M.B.

    1985-12-31

    Enhancement of plant growth is an important effect of the rising concentration of atmospheric CO{sub 2}. Crops vary in response to elevated CO{sub 2}. Growth often appears greater in C{sub 3} plants than in C{sub 4} plants. But relatively little work has been done with C{sub 4} plants, and most of it has been with corn. The few existing C{sub 4} data conflict. Some studies indicate that the yield of C{sub 4} plants at elevated CO{sub 2} is about one-fourth that of C{sub 3} crops, but other studies show that C{sub 4} plants with increased CO{sub 2} yield at a rate the average for all crops.

  11. Response model of vegetation parameters and yield in maize under the influence of Lithovit fertilizer

    Science.gov (United States)

    Gigel, Prisecaru; Florin, Sala

    2017-07-01

    Control of plant nutrition and photosynthetic processes through fertilization is a necessary and current practice, to corn crop. This study aimed to assess the influence of Lithovit fertilizer, a product with a balanced content of nutrients, on chlorophyll content as an indicator of physiological status of plants and production of maize, hybrid Andreea. In the range of concentrations tested (0.3%, 0.5%, 0.75% and 1%), along with a control variant, product Lithovit generated the best results at concentrations of 0.5% and 0.7%, safely statistics (p the values of chlorophyll content in the stages of growth, BBCH 30 (R2 = 0.998, p the production of corn, safely statistics. The behavior of response curves was described by polynomial functions of order 3, which capture the inflection points as a result of how to variation of chlorophyll content, amid treatments applied.

  12. The influence of bark beetles outbreak vs. salvage logging on ground layer vegetation in Central European mountain spruce forests

    Czech Academy of Sciences Publication Activity Database

    Jonášová, Magda; Prach, Karel

    2008-01-01

    Roč. 141, č. 6 (2008), s. 1525-1535 ISSN 0006-3207 R&D Projects: GA AV ČR KJB600870701 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z60050516 Keywords : bark beetle * salvage logging * understory vegetation * mountain spruce forests, disturbance Subject RIV: EF - Botanics Impact factor: 3.566, year: 2008

  13. Presence of understory shrubs constrains carbon gain in sunflecks by advance-regeneration seedlings: evidence from Quercus Rubra seedling grouwing in understory forest patches with or without evergreen shrubs present

    Science.gov (United States)

    E.T. Nilsen; T.T. Lei; S.W. Semones

    2009-01-01

    We investigated whether dynamic photosynthesis of understory Quercus rubra L. (Fagaceae) seedlings can acclimate to the altered pattern of sunflecks in forest patches with Rhododendron maximum L. (Ericaceae), an understory evergreen shrub. Maximum photosynthesis (A) and total CO2 accumulated during lightflecks was greatest for 400-s lightflecks, intermediate for 150-s...

  14. Influence of primitive Biłgoraj horses on the glossy buckthorn (Frangula alnus)-dominated understory in a mixed coniferous forest

    Science.gov (United States)

    Klich, Daniel

    2018-02-01

    Changes in the understory dominated by glossy buckthorn Frangula alnus via the influence of primitive horses were analyzed in a 28-year-old enclosure in the village of Szklarnia at the Biłgoraj Horse-Breeding Centre near Janów Lubelski (eastern Poland). The analysis was conducted in 20 circular plots (30 m2) defined in adjacent, similar forest stands (enclosed and control). Disturbance by the horses, mainly through trampling, caused numerous paths to form within the glossy buckthorn-dominated understory and led to a decrease in density of stems of lower height classes (30-80 and 81-130 cm, respectively). An increase in species diversity at the expense of glossy buckthorn density was also observed. The horses' trampling caused an increase in Padus avium density and the encroachment of other woody plant species that were less shade-tolerant and grew well in soils rich in nutrients. An increase in the density of woody plants over 180 cm above ground was observed within the enclosure, which was probably the result of the horses' excretion of feces. The results presented here provide new insight into the ecological role that horses play in forest-meadow landscape mosaics, which, via altering the development of vegetation, may contribute to an increase in biodiversity within forest habitats.

  15. Understory plant diversity assessment of Szemao pine (Pinus kesiya var. langbianensis plantations in Yunnan, China

    Directory of Open Access Journals (Sweden)

    Qiu, J. X.

    2012-12-01

    Full Text Available Sustainability is a key objective for managers of both natural forests and plantations, and biodiversity assessments are important tools to improve conservation of endangered species. Szemao pine (Pinus kesiya var. langbianensis is a native Chinese tree species used in plantations. This study evaluated differences in understory diversity among Szemao pine plantations (SP and other local current vegetation types: secondary evergreen forests (SE and abandoned farmlands (AF in Yunnan Province. Sampling was performed at three elevation ranges, where species richness, species cover, and environmental variables in the herb and shrub layers were measured. We found that indexes for average richness and Shannon–Wiener diversity were higher in SE than in SP, which were in turn higher than in AF, while the index for evenness was higher in SP. These indexes increased with elevation in SP and AF, but were higher at low and medium elevations in SE. Inclusion of environmental factors highlighted elevation differences, with water content (at herb layer and soil type (at shrub layer being the most significant variables. In conclusion, plantations of Szemao pine negatively affect understory diversity in Yunnan, and furthermore, only a few rare or threatened species could be found in the plantations. Nature reserves and transplanting could protect threatened species if established before plantations.La sostenibilidad es un objetivo clave para la gestión tanto de bosques naturales como de plantaciones, mientras que los estudios sobre biodiversidad constituyen herramientas muy útiles para mejorar la conservación de especies amenazadas. El pino Szemao (Pinus kesiya var. langbianensis es un árbol nativo de China que se usa en plantaciones. Este estudio evalúa la diversidad del sotobosque en plantaciones de pino Szemao (SP y otros tipos de vegetación local, como bosques secundarios perennifolios (SE y tierras de cultivo abandonadas (AF, en la provincia de

  16. Impact of ozone on understory plants of the aspen zone

    Energy Technology Data Exchange (ETDEWEB)

    Harward, M.R.; Treshow, M.

    1971-01-01

    The purpose of this study was to learn how ozone might affect the growth and reproduction of understory species of the aspen community, and thereby influence its stability and composition. Plants of 15 representative species of the aspen community were grown in chambers and fumigated 4 hours each day, 5 days per week throughout their growing seasons. These included: Achillea millifolium, Chenopodium album, Chenopodium fremontii, Cruciferae sp., Descurainia pinnata, Descurainia sp., Geranium fremontii, Isatis tinctoria, Ligusticum porteri, Lepidium virginicum, Madia glomerata, Polygonum aviculare, Polygonum douglasii, Phacelia heterophylla, Viola italica. Plants were exposed to 30 pphm, 15 pphm, ambient air reaching 5-7 pphm for 2 hours per day, and filtered air. The study was repeated for 3 seasons. Ambient air caused a significant reduction of total plant weight only of Lepidium virginicum. Six species produced fruit and seeds. At 15 pphm, seed production by Madia glomerata and Polygonum douglasii was significantly reduced. At 30 pphm, seed production was also reduced in Polygonum aviculare and Lepidium virginicum. The two most significant conclusions to emerge from the study were first that several species were more sensitive to ozone than might have been suspected. Second, this sensitivity varied sufficiently that major shifts in community composition would be probable following only a year or two of exposure. More tolerant species have no doubt already become dominant over more sensitive species in natural plant communities exposed to elevated ozone concentrations. It must be stressed that the species studied did not necessarily represent the most ozone sensitive members of the community, or the most tolerant.

  17. Building the vegetation drought response index for Canada (VegDRI-Canada) to monitor agricultural drought: first results

    Science.gov (United States)

    Tadesse, Tsegaye; Champagne, Catherine; Wardlow, Brian D.; Hadwen, Trevor A.; Brown, Jesslyn; Demisse, Getachew B.; Bayissa, Yared A.; Davidson, Andrew M.

    2017-01-01

    Drought is a natural climatic phenomenon that occurs throughout the world and impacts many sectors of society. To help decision-makers reduce the impacts of drought, it is important to improve monitoring tools that provide relevant and timely information in support of drought mitigation decisions. Given that drought is a complex natural hazard that manifests in different forms, monitoring can be improved by integrating various types of information (e.g., remote sensing and climate) that is timely and region specific to identify where and when droughts are occurring. The Vegetation Drought Response Index for Canada (VegDRI-Canada) is a recently developed drought monitoring tool for Canada. VegDRI-Canada extends the initial VegDRI concept developed for the conterminous United States to a broader transnational coverage across North America. VegDRI-Canada models are similar to those developed for the United States, integrating satellite observations of vegetation status, climate data, and biophysical information on land use and land cover, soil characteristics, and other environmental factors. Collectively, these different types of data are integrated into the hybrid VegDRI-Canada to isolate the effects of drought on vegetation. Twenty-three weekly VegDRI-Canada models were built for the growing season (April–September) through the weekly analysis of these data using a regression tree-based data mining approach. A 15-year time series of VegDRI-Canada results (s to 2014) was produced using these models and the output was validated by randomly selecting 20% of the historical data, as well as holdout year (15% unseen data) across the growing season that the Pearson’s correlation ranged from 0.6 to 0.77. A case study was also conducted to evaluate the VegDRI-Canada results over the prairie region of Canada for two drought years and one non-drought year for three weekly periods of the growing season (i.e., early-, mid-, and late season). The comparison of the Veg

  18. Vegetation community response to tidal marsh restoration of a large river estuary

    Science.gov (United States)

    Belleveau, Lisa J.; Takekawa, John Y.; Woo, Isa; Turner, Kelley L.; Barham, Jesse B.; Takekawa, Jean E.; Ellings, Christopher S.; Chin-Leo, Gerardo

    2015-01-01

    Estuaries are biologically productive and diverse ecosystems that provide ecosystem services including protection of inland areas from flooding, filtering freshwater outflows, and providing habitats for fish and wildlife. Alteration of historic habitats, including diking for agriculture, has decreased the function of many estuarine systems, and recent conservation efforts have been directed at restoring these degraded areas to reestablish their natural resource function. The Nisqually Delta in southern Puget Sound is an estuary that has been highly modified by restricting tidal flow, and recent restoration of the delta contributed to one of the largest tidal salt marsh restorations in the Pacific Northwest. We correlated the response of nine major tidal marsh species to salinities at different elevation zones. Our results indicated that wetland species richness was not related to soil pore-water salinity (R2 = 0.03), but were stratified into different elevation zones (R2 = 0.47). Thus, restoration that fosters a wide range of elevations will provide the most diverse plant habitat, and potentially, the greatest resilience to environmental change.

  19. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes.

    Science.gov (United States)

    Cornelissen, Johannes H C; van Bodegom, Peter M; Aerts, Rien; Callaghan, Terry V; van Logtestijn, Richard S P; Alatalo, Juha; Chapin, F Stuart; Gerdol, Renato; Gudmundsson, Jon; Gwynn-Jones, Dylan; Hartley, Anne E; Hik, David S; Hofgaard, Annika; Jónsdóttir, Ingibjörg S; Karlsson, Staffan; Klein, Julia A; Laundre, Jim; Magnusson, Borgthor; Michelsen, Anders; Molau, Ulf; Onipchenko, Vladimir G; Quested, Helen M; Sandvik, Sylvi M; Schmidt, Inger K; Shaver, Gus R; Solheim, Bjørn; Soudzilovskaia, Nadejda A; Stenström, Anna; Tolvanen, Anne; Totland, Ørjan; Wada, Naoya; Welker, Jeffrey M; Zhao, Xinquan

    2007-07-01

    Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.

  20. Assessment of Regional Vegetation Response to Climate Anomalies: A Case Study for Australia Using GIMMS NDVI Time Series between 1982 and 2006

    Directory of Open Access Journals (Sweden)

    Wanda De Keersmaecker

    2017-01-01

    Full Text Available Within the context of climate change, it is of utmost importance to quantify the stability of ecosystems with respect to climate anomalies. It is well acknowledged that ecosystem stability may change over time. As these temporal stability changes may provide a warning for increased vulnerability of the system, this study provides a methodology to quantify and assess these temporal changes in vegetation stability. Within this framework, vegetation stability changes were quantified over Australia from 1982 to 2006 using GIMMS NDVI and climate time series (i.e., SPEI (Standardized Precipitation and Evaporation Index. Starting from a stability assessment on the complete time series, we aim to assess: (i the magnitude and direction of stability changes; and (ii the similarity in these changes for different stability metrics, i.e., the standard deviation of the NDVI anomaly (SD, auto-correlation at lag one of the NDVI anomaly (AC and the correlation of NDVI anomaly with SPEI (CS. Results show high variability in magnitude and direction for the different stability metrics. Large areas and types of Australian vegetation showed an increase in variability (SD over time; however, vegetation memory (AC decreased. The association of NDVI anomalies with drought events (CS showed a mixed response: the association increased in the western part, while it decreased in the eastern part. This methodology shows the potential for quantifying vegetation responses to major climate shifts and land use change, but results could be enhanced with higher resolution time series data.

  1. A new member of the LIR family from perennial ryegrass is cold-responsive, and promotes vegetative growth in ¤Arabidopsis¤

    DEFF Research Database (Denmark)

    Ciannamea, S.; Jensen, Christian Sig; Agerskov, Henrik

    2007-01-01

    ryegrass was upregulated by vernalization but did not follow a standard vernalization-responsive expression pattern. LpLIR1 expression was restricted to vegetative tissues and absent in apices during floral induction and in flowers. LpLIR1 mRNA levels displayed diurnal fluctuations, which peaked before...

  2. Dry coniferous forest restoration and understory plant diversity: The importance of community heterogeneity and the scale of observation

    Science.gov (United States)

    Erich Kyle Dodson; David W. Peterson

    2010-01-01

    Maintaining understory plant species diversity is an important management goal as forest restoration and fuel reduction treatments are applied extensively to dry coniferous forests of western North America. However, understory diversity is a function of both local species richness (number of species in a sample unit) and community heterogeneity (beta diversity) at...

  3. Ecosystem and understory water and energy exchange for a mature, naturally regenerated pine flatwoods forest in north Florida

    Science.gov (United States)

    Thomas L. Powell; Gregory Starr; Kenneth L. Clark; Timothy A. Martin; Henry L. Gholz

    2005-01-01

    Eddy covariance was used to measure energy fluxes from July 2000 - June 2002 above the tree canopy and above the understory in a mature, naturally regenerated slash pine (Pinus elliottii Engelm. var. elliottii) - longleaf pine (Pinus palustris Mill.) flatwoods forest. Understory latent energy (eE) and sensible...

  4. The formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2010-01-01

    Alterations to natural herbivore and disturbance regimes often allow a select suite of forest understory plant species to dramatically spread and form persistent, mono-dominant thickets. Following their expansion, this newly established understory canopy can alter tree seedling recruitment rates and exert considerable control over the rate and direction of secondary...

  5. The formation of dense understory layers in the forest worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2010-01-01

    Alterations to natural herbivore and disturbance regimes often allow a select suite of forest understory plant species to dramatically spread and form persistent, mono-dominant thickets. Following their expansion, this newly established understory canopy can alter tree seedling recruitment rates and exert considerable control over the rate and direction of secondary...

  6. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa

    Science.gov (United States)

    Champagne, Juilette; Paine, C. E. Timothy; Schoolmaster, Donald; Stejskal, Robert; Volařík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim

    2016-01-01

    Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory.

  7. Historical and contemporary geographic data reveal complex spatial and temporal responses of vegetation to climate and land stewardship

    Science.gov (United States)

    Villarreal, Miguel L.; Norman, Laura M.; Webb, Robert H.; Turner, Raymond M.

    2013-01-01

    Vegetation and land-cover changes are not always directional but follow complex trajectories over space and time, driven by changing anthropogenic and abiotic conditions. We present a multi-observational approach to land-change analysis that addresses the complex geographic and temporal variability of vegetation changes related to climate and land use. Using land-ownership data as a proxy for land-use practices, multitemporal land-cover maps, and repeat photography dating to the late 19th century, we examine changing spatial and temporal distributions of two vegetation types with high conservation value in the southwestern United States: grasslands and riparian vegetation. In contrast to many reported vegetation changes, notably shrub encroachment in desert grasslands, we found an overall increase in grassland area and decline of xeroriparian and riparian vegetation. These observed change patterns were neither temporally directional nor spatially uniform over the landscape. Historical data suggest that long-term vegetation changes coincide with broad climate fluctuations while fine-scale patterns are determined by land-management practices. In some cases, restoration and active management appear to weaken the effects of climate on vegetation; therefore, if land managers in this region act in accord with on-going directional changes, the current drought and associated ecological reorganization may provide an opportunity to achieve desired restoration endpoints.

  8. A review of fire effects on vegetation and soils in the Great Basin Region: response and ecological site characteristics

    Science.gov (United States)

    Richard F. Miller; Jeanne C. Chambers; David A. Pyke; Fred B. Pierson; C. Jason. Williams

    2013-01-01

    This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation...

  9. Skin and plasma carotenoid response to a provided intervention diet high in vegetables and fruit: uptake and depletion kinetics

    Science.gov (United States)

    Background: Objective biomarkers are needed to assess adherence to vegetable and fruit intervention trials. Blood carotenoids are considered the best biomarker of vegetable and fruit intake but collecting blood is invasive and the analyses are relatively expensive for population studies. Resonance ...

  10. Effects of green-leafy vegetable intake on postprandial glycemic and lipidemic responses and α-tocopherol concentration in normal weight and obese men.

    Science.gov (United States)

    Maruyama, Chizuko; Kikuchi, Nahoko; Masuya, Yumiko; Hirota, Saki; Araki, Risa; Maruyama, Taro

    2013-01-01

    Vegetable consumption has been encouraged as a component of nutritional education for obese and insulin-resistant patients. However, the benefits of vegetable intake in a therapeutic diet on postprandial glycemic and lipidemic responses have not been clarified. We studied the effects of the intake of spinach, a green-leafy vegetable rich in dietary fiber and α-tocopherol, with a fat-rich meal on postprandial glycemic and lipidemic changes. Fourteen normal weight and 10 obese men consumed three test meals of bread, as a control, bread and butter, and bread and butter with boiled spinach. Blood samples were obtained prior to and 30, 60, 120, 180 and 240 min after consuming the test meals. Compared with the bread meal, consumption of the bread and butter meal showed a reduced peak glucose response at 30 min in normal (pleafy vegetable intake with a fat-rich meal is effective for supplying postprandial α-tocopherol in obese subjects, but consumption of a regular-sized dish cannot be expected to improve abnormal postprandial hyperglycemic or hyperlipidemic responses.

  11. Vegetation assessment of forests of Pagan Island, Commonwealth of the Northern Mariana Islands

    Science.gov (United States)

    Pratt, Linda W.

    2011-01-01

    As part of the Marianas Expedition Wildlife Surveys-2010, the forest vegetation of the island of Pagan, Commonwealth of the Northern Mariana Islands (CNMI), was sampled with a series of systematic plots along 13 transects established for monitoring forest bird populations. Shrubland and grassland were also sampled in the northern half of the island. Data collected were woody plant density, tree diameter at breast height, woody plant density in height classes below 2 m, and ground cover measured with the point-intercept method. Coconut forests (Cocos nucifera) were generally found to have low native tree diversity, little regeneration of trees and shrubs in the forest understory, and little live ground cover. The sole exception was a coconut-dominated forest of the northeast side of the island that exhibited high native tree diversity and a large number of young native trees in the understory. Ironwood (Casuarina equisetifolia) forests on the northern half of the island were nearly monocultures with almost no trees other than ironwood in vegetation plots, few woody plants in the understory, and low ground cover dominated by native ferns. Mixed native forests of both northern and southern sections of the island had a diversity of native tree species in both the canopy and the sparse understory. Ground cover of native forests in the north had a mix of native and alien species, but that of the southern half of the island was dominated by native ferns and woody plants.

  12. Vulnerability and Resilience of Temperate Forest Landscapes to Broad-Scale Deforestation in Response to Changing Fire Regimes and Altered Post-Fire Vegetation Dynamics

    Science.gov (United States)

    Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.

    2015-12-01

    In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.

  13. Pattern of NDVI-based vegetation greening along an altitudinal gradient in the eastern Himalayas and its response to global warming.

    Science.gov (United States)

    Li, Haidong; Jiang, Jiang; Chen, Bin; Li, Yingkui; Xu, Yuyue; Shen, Weishou

    2016-03-01

    The eastern Himalayas, especially the Yarlung Zangbo Grand Canyon Nature Reserve (YNR), is a global hotspot of biodiversity because of a wide variety of climatic conditions and elevations ranging from 500 to > 7000 m above sea level (a.s.l.). The mountain ecosystems at different elevations are vulnerable to climate change; however, there has been little research into the patterns of vegetation greening and their response to global warming. The objective of this paper is to examine the pattern of vegetation greening in different altitudinal zones in the YNR and its relationship with vegetation types and climatic factors. Specifically, the inter-annual change of the normalized difference vegetation index (NDVI) and its variation along altitudinal gradient between 1999 and 2013 was investigated using SPOT-VGT NDVI data and ASTER global digital elevation model (GDEM) data. We found that annual NDVI increased by 17.58% in the YNR from 1999 to 2013, especially in regions dominated by broad-leaved and coniferous forests at lower elevations. The vegetation greening rate decreased significantly as elevation increased, with a threshold elevation of approximately 3000 m. Rising temperature played a dominant role in driving the increase in NDVI, while precipitation has no statistical relationship with changes in NDVI in this region. This study provides useful information to develop an integrated management and conservation plan for climate change adaptation and promote biodiversity conservation in the YNR.

  14. A model of regional vegetation dynamics and its application to the study of Northeast China Transect (NECT) responses to global change

    Science.gov (United States)

    Gao, Qiong; Yu, Mei

    1998-06-01

    We developed a dynamic regional vegetation model to address problems of responses of regional vegetation to elevated ambient CO2 and climatic change. The model takes into consideration both local ecosystem processes within a patch or grid cell, such as plant growth and death, and mass and energy flow, such as plant migration, across adjacent grid cells. The model is able to couple vegetation structure dynamics and primary production processes. The normalized differential vegetation index from meteorological satellite AVHRR was used to parameterize the model. Plant migration rates were derived based on effective seedling distribution around parent plants. The model was applied to Northeast China Transect at a spatial resolution of 10 min latitude by 10 min longitude per grid cell and a temporal resolution of 1 month. The results indicated that with doubled CO2 concentration, a 20% increase in precipitation and a 4°C increase in temperature, the model predicted that net primary productivity (NPP) of Larix forests, conifer-broadleaf mixed forests, Aneurolepidium chinense steppes, Stipa grandis steppes, and wetland and salty meadows would decrease by 15% to 20%. However, NPP of deciduous broadleaf forests, woodland and shrubs, Stipa baicalensis meadow steppes, and desert grasslands would increase by 20% to 115%, as predicted by the model for the same climatic scenario. The average NPP of natural vegetation over the whole transect would decrease slightly, largely because of the compensation between the positive effects of increased CO2 and precipitation and the negative effect of increased evapotranspiration induced by increased temperature.

  15. Vegetation survey of PEN Branch wetlands

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizes a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.

  16. Influence of understory cover on soil water and evaporation fluxes: a trial

    Science.gov (United States)

    Jiménez-Rodríguez, César; Magdalena Warter, Maria; Coenders-Gerrits, Miriam

    2017-04-01

    Within a forest ecosystem the litter layer is an important hydrological component and contributes towards the water and energy exchange between the sub-canopy and the soil. Evaporation within a forest is made up of different fractions coming from the dry soil, vegetation and litter layers. The quantification and partitioning of each fraction remains difficult as there is hard to estimate correctly the amount of water moved by evaporation or percolation at ecosystem level. With the aim to determine the influence of forest understory on the evaporation fluxes, four ground cover types were selected from the Speulderbos forest in the Netherlands. The mosses species of "Thamariskmoss" (Thuidium thamariscinum), "Rough Stalked Feathermoss" (Brachythecium rutabulum), and "Haircapmoss" (Polytrichum commune) were compared with a litter layer made up of Douglas-Fir needles (Pseudotsuga menziesii). Four PVC basins with 40cm x 60cm were filled with forest soil and sheltered with the selected ground covers. Each box was equipped with a soil moisture sensor, and a set Temperature and Relative Humidity sensors to determine the VPD during the study period. The study period lasts 4 weeks, while the percolation rates were measured in a daily basis. The rainfall events were simulated in the lab, applying the same rain event to each box at the same time. A total amount of 43.12 mm of rain were added to the boxes during the 4 weeks of the experiment, and distributed in 11 rain events which differ in amount and timing between events. The percolation in all the boxes was more than the 50% of the rain events due to the sandy condition of the soil, while the evaporation rates were affected not only by the room atmospheric conditions, but for the cover type present in each box. Except for the Polytrichum moss, a moss known for its water conducting abilities, all cover types showed a decline before and increase after a rain event. This species showed a steady increase in soil water content

  17. Dynamics of the evergreen understory at Coweeta Hydrologic Laboratory, North Carolina

    Science.gov (United States)

    Dobbs, Marion Mcnamara

    Much attention today is directed toward vegetation dynamics and related issues of biotic diversity. Both environmental gradients and disturbance/land use history are important determinants of both the distributional pattern and the dynamics of many plant species. The southern Appalachian Mountains constitute a region of high plant and animal diversity and rapidly increasing development pressure with its consequent changes in land use. The remaining forested areas commonly include a significant evergreen understory (undergreen) composed of ericaceous shrubs, predominately Rhododendron maximum , which is believed to be expanding and exerting an inhibitory effect on the establishment of other species, thus impacting forest structure and composition. This study was an attempt to characterize this forest component, temporally and spatially, at the Coweeta Hydrologic Laboratory, North Carolina, in terms of a variety of topographic gradients as well as long-term (century) and short-term (decade) disturbance history, verify expansion, develop a surrogate soil moisture index for use in an explanatory model for undergreen pattern, and examine the feasibility of predicting the pattern of undergreen at one time based on knowledge of topographic relationships gained at an earlier time. A GIS was used for visual and areal comparisons; logistic regression was used for developing spatiotemporal explanatory models. Results indicate that aspect, stream proximity, and elevation are all important in explaining distributional pattern and dynamics of the undergreen at Coweeta, with R. maximum showing preference for moister areas and its common associate, Kalmia latifolia found more frequently in drier areas. The influence of these environmental factors differs between the larger Coweeta Basin, the site of experimental manipulations at the small watershed level since the 1930's, and the physically similar Dryman Fork Basin, relatively undisturbed since that time. There is an apparent

  18. Urban outdoor water use and response to drought assessed through mobile energy balance and vegetation greenness measurements

    Science.gov (United States)

    Urban vegetation provides many highly valued ecosystem services but also requires extensive urban water resources. Increasingly, cities are experiencing water limitations and managing outdoor urban water use is an important concern. Quantifying the water lost via evapotranspiration (ET) is critical ...

  19. Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability.

    Science.gov (United States)

    Delagrange, Sylvain; Messier, Christian; Lechowicz, Martin J; Dizengremel, Pierre

    2004-07-01

    In a 4-year study, we investigated changes in leaf physiology, crown morphology and whole-tree biomass allocation in seedlings and saplings of shade-tolerant sugar maple (Acer saccharum Marsh.) and intermediate shade-tolerant yellow birch (Betula alleghaniensis Britt.) growing in natural understory light (0.5 to 35% of full sunlight) or in understory light reduced by 50% with shade nets to simulate the effect of gap closure. Leaf physiological parameters were mainly influenced by the light gradient, whereas crown morphological and whole-tree allocational parameters were mainly influenced by tree size. No single physiological, morphological or allocational trait was identified that could explain the difference in shade tolerance between the species. Yellow birch had higher growth rates, biomass allocation to branches and leaf physiological plasticity and lower crown morphological plasticity in unmodified understory light than sugar maple. Sugar maple did not display significant physiological plasticity, but showed variation with tree size in both crown morphology and whole-tree biomass allocation. When sugar maple was small, a greater proportion of whole-tree biomass was allocated to roots. However, physiological differences between the species decreased with decreasing light and most morphological and allocational differences tended to disappear with increasing tree size, suggesting that many species differences in shade-tolerance are expressed mainly during the seedling stage. Understory trees of both species survived for 4 years under shade nets, possibly because of higher plasticity when small and the use of stored reserves when taller. Copyright 2004 Heron Publishing

  20. The legacy of deer overabundance: long-term delays in herbaceous understory recovery

    Science.gov (United States)

    Thomas H. Pendergast; Shane M. Hanlon; Zachary M. Long; Alex Royo; Walter P. Carson

    2016-01-01

    Decades of white-tailed deer (Odocoileus virginianus (Zimmermann, 1780)) overpopulation have dramatically homogenized forests across much of the eastern United States, creating depauperate forest understory communities. The rate at which these communities recover once deer browsing has been reduced remains an open question. We evaluate overbrowsing...

  1. Western dwarf mistletoe infects understory Jeffrey pine seedlings on Cleveland National Forest, California

    Science.gov (United States)

    Robert F. Scharpf; Detlev Vogler

    1986-01-01

    Many young, understory Jeffrey pines (Pinus jeffreyi Grev. & Balf.) were found to be infected by western dwarf mistletoe (Arceuthobium campylopodum Engelm.) on Laguna Mountain, Cleveland National Forest, in southern California. Under heavily infected overstory, about three-fourths of the young pines (about 15 years old on the...

  2. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds.

    Science.gov (United States)

    Hamraz, Hamid; Contreras, Marco A; Zhang, Jun

    2017-07-28

    Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory trees because of the occlusion effect of higher canopy layers. Although understory trees provide limited financial value, they are an essential component of ecosystem functioning by offering habitat for numerous wildlife species and influencing stand development. Here we model the occlusion effect in terms of point density. We estimate the fractions of points representing different canopy layers (one overstory and multiple understory) and also pinpoint the required density for reasonable tree segmentation (where accuracy plateaus). We show that at a density of ~170 pt/m² understory trees can likely be segmented as accurately as overstory trees. Given the advancements of LiDAR sensor technology, point clouds will affordably reach this required density. Using modern computational approaches for big data, the denser point clouds can efficiently be processed to ultimately allow accurate remote quantification of forest resources. The methodology can also be adopted for other similar remote sensing or advanced imaging applications such as geological subsurface modelling or biomedical tissue analysis.

  3. Changes in Patterns of Understory Leaf Phenology and Herbivory following Hurricane Damage.

    Science.gov (United States)

    Pilar Angulo-Sandoval; H. Fernandez-Marin; J. K. Zimmerman; T. M. Aide

    2004-01-01

    Hurricanes are important disturbance events in many forested ecosystems. They can have strong effects on both forest structure and animal populations, and yet few studies have considered the impacts on plant–animal interactions. Reduction of canopy cover by severe winds increases light availability to understory plants, providing an opportunity for increased growth. An...

  4. Maintenance of a living understory enhances soil carbon sequestration in subtropical orchards.

    Science.gov (United States)

    Liu, Zhanfeng; Lin, Yongbiao; Lu, Hongfang; Ding, Mingmao; Tan, Yaowen; Xu, Shejin; Fu, Shenglei

    2013-01-01

    Orchard understory represents an important component of the orchards, performing numerous functions related to soil quality, water relations and microclimate, but little attention has been paid on its effect on soil C sequestration. In the face of global climate change, fruit producers also require techniques that increase carbon (C) sequestration in a cost-effective manner. Here we present a case study to compare the effects of understory management (sod culture vs. clean tillage) on soil C sequestration in four subtropical orchards. The results of a 10-year study indicated that the maintenance of sod significantly enhanced the soil C stock in the top 1 m of orchard soils. Relative to clean tillage, sod culture increased annual soil C sequestration by 2.85 t C ha(-1), suggesting that understory management based on sod culture offers promising potential for soil carbon sequestration. Considering that China has the largest area of orchards in the world and that few of these orchards currently have sod understories, the establishment and maintenance of sod in orchards can help China increase C sequestration and greatly contribute to achieving CO2 reduction targets at a regional scale and potentially at a national scale.

  5. Comparing the response of birds and butterflies to vegetation-based mountain ecotones using boundary detection approaches.

    Directory of Open Access Journals (Sweden)

    Rafi Kent

    Full Text Available Mountains provide an opportunity to examine changes in biodiversity across environmental gradients and areas of transition (ecotones. Mountain ecotones separate vegetation belts. Here, we aimed to examine whether transition areas for birds and butterflies spatially correspond with ecotones between three previously described altitudinal vegetation belts on Mt. Hermon, northern Israel. These include the Mediterranean Maquis, xero-montane open forest and Tragacanthic mountain steppe vegetation belts. We sampled the abundance of bird and butterfly species in 34 sampling locations along an elevational gradient between 500 and 2200 m. We applied wombling, a boundary-detection technique, which detects rapid changes in a continuous variable, in order to locate the transition areas for bird and butterfly communities and compare the location of these areas with the location of vegetation belts as described in earlier studies of Mt. Hermon. We found some correspondence between the areas of transition of both bird and butterfly communities and the ecotones between vegetation belts. For birds and butterflies, important transitions occurred at the lower vegetation ecotone between Mediterranean maquis and the xero-montane open forest vegetation belts, and between the xero-montane open forest and the mountain steppe Tragacanthic belts. While patterns of species turnover with elevation were similar for birds and butterflies, the change in species richness and diversity with elevation differed substantially between the two taxa. Birds and butterflies responded quite similarly to the elevational gradient and to the shift between vegetation belts in terms of species turnover rates. While the mechanisms generating these patterns may differ, the resulting areas of peak turnover in species show correspondence among three different taxa (plants, birds and butterflies.

  6. Comparing the response of birds and butterflies to vegetation-based mountain ecotones using boundary detection approaches.

    Science.gov (United States)

    Kent, Rafi; Levanoni, Oded; Banker, Eran; Pe'er, Guy; Kark, Salit

    2013-01-01

    Mountains provide an opportunity to examine changes in biodiversity across environmental gradients and areas of transition (ecotones). Mountain ecotones separate vegetation belts. Here, we aimed to examine whether transition areas for birds and butterflies spatially correspond with ecotones between three previously described altitudinal vegetation belts on Mt. Hermon, northern Israel. These include the Mediterranean Maquis, xero-montane open forest and Tragacanthic mountain steppe vegetation belts. We sampled the abundance of bird and butterfly species in 34 sampling locations along an elevational gradient between 500 and 2200 m. We applied wombling, a boundary-detection technique, which detects rapid changes in a continuous variable, in order to locate the transition areas for bird and butterfly communities and compare the location of these areas with the location of vegetation belts as described in earlier studies of Mt. Hermon. We found some correspondence between the areas of transition of both bird and butterfly communities and the ecotones between vegetation belts. For birds and butterflies, important transitions occurred at the lower vegetation ecotone between Mediterranean maquis and the xero-montane open forest vegetation belts, and between the xero-montane open forest and the mountain steppe Tragacanthic belts. While patterns of species turnover with elevation were similar for birds and butterflies, the change in species richness and diversity with elevation differed substantially between the two taxa. Birds and butterflies responded quite similarly to the elevational gradient and to the shift between vegetation belts in terms of species turnover rates. While the mechanisms generating these patterns may differ, the resulting areas of peak turnover in species show correspondence among three different taxa (plants, birds and butterflies).

  7. Edge effects on understory epiphytic ferns and epiphyllous bryophytes in moist afromontane forests of Ethiopia

    Directory of Open Access Journals (Sweden)

    Hylander Kristoffer

    2013-12-01

    Full Text Available Most studies on edge effects in tropical forests have been conducted in landscapes with low human population density and in situations where the edges have been left unused after logging of the adjacent area. Here we studied forest margins heavily used by local farmers in a forest/agriculture mosaic landscape in Ethiopia. We compared forest structure and plant species composition across 41 forest-agriculture ecotones from 200 m out into the agricultural area to 200 m into the forest. There are strong edge effects from the edge and into the forest on canopy cover and number of stumps and apparently these forest-agricultural edges are intensively used by humans. They are penetrated by paths, beehives are found in the trees, timber of various dimensions is harvested and there is sometimes substantial cover of perennial wild (or semi-wild crops such as coffee and spices. The number of understory epiphytic fern species as well as number of epiphyllous (i.e., growing on leaves bryophyte species was lower at 20 m than at 75 m from the edge. The number of fern species was higher in newly created edges and thereafter they declined, which indicates an extinction debt. This pattern was not seen for the epiphyllous bryophytes. It is likely that different human management activities are responsible for many of the found edge effects besides wind and sun effects from the edge. Tropical forest margins provide important resources for people in many landscapes. It is important to understand how such use affects the biota of the forests. This study shows that there are substantial edge effects, but that the edge effects do not seem to become worse over time for epiphyllous bryophytes and only slightly so for ferns.

  8. Climatic consequences of adopting drought-tolerant vegetation over Los Angeles as a response to California drought

    Science.gov (United States)

    Vahmani, P.; Ban-Weiss, G.

    2016-08-01

    During 2012-2014, drought in California resulted in policies to reduce water consumption. One measure pursued was replacing lawns with landscapes that minimize water consumption, such as drought-tolerant vegetation. If implemented at broad scale, this strategy would result in reductions in irrigation and changes in land surface characteristics. In this study, we employ a modified regional climate model to assess the climatic consequences of adopting drought-tolerant vegetation over the Los Angeles metropolitan area. Transforming lawns to drought-tolerant vegetation resulted in daytime warming of up to 1.9°C, largely due to decreases in irrigation that shifted surface energy partitioning toward higher sensible and lower latent heat flux. During nighttime, however, adopting drought-tolerant vegetation caused mean cooling of 3.2°C, due to changes in soil thermodynamic properties and heat exchange dynamics between the surface and subsurface. Our results show that nocturnal cooling effects, which are larger in magnitude and of great importance for public health during heat events, could counterbalance the daytime warming attributed to the studied water conservation strategy. A more aggressive implementation, assuming all urban vegetation was replaced with drought-tolerant vegetation, resulted in an average daytime cooling of 0.2°C, largely due to strengthened sea breeze patterns, highlighting the important role of land surface roughness in this coastal megacity.

  9. Response of pollen diversity to the climate-driven altitudinal shift of vegetation in the Colombian Andes.

    Science.gov (United States)

    Weng, Chengyu; Hooghiemstra, Henry; Duivenvoorden, Joost F

    2007-02-28

    Change in diversity of fossil pollen through time is used as a surrogate for biodiversity history. However, there have been few studies to explore the sensitivity of the measured pollen diversity to vegetation changes and the relationship between pollen diversity and plant diversity. This paper presents results of a study to assess the relationship between pollen diversity and relative abundance of pollen from different altitudinal vegetation belts (subandean forest, Andean forest, subparamo and grassparamo) in three records from the tropical Andes in Colombia. The results indicated that plant diversity in the vegetation declined with altitude and pollen diversity is positively correlated to the abundance of pollen from lower altitude vegetation belts and negatively correlated to that from the grassparamo. These results, therefore, suggest that pollen diversity coarsely reflects the diversity of the surrounding vegetation. Using this interpretation, we were able to predict changes in plant diversity over the past 430000 years in the Colombian Andes. Results indicated that under warmer climatic conditions, more species-diverse vegetation of low elevation moved upslope to contribute more pollen diversity to the study sites, and under colder conditions, species-poor grassparamo moved downslope and observed pollen diversity was lower. This study concludes that fossil pollen diversity may provide an important proxy to reconstruct the temporal changes in plant diversity.

  10. Interactions between vegetation and hydrology: 1) Forest structure and throughfall 2) Spruce expansion following wetland drying

    Science.gov (United States)

    Smeltz, T. Scott

    Chapter 1: We developed a non-linear regression model from first principals to predict the percent of precipitation interception from forest canopies using lidar as a measure of forest structure. To find the best parameters for the model, we measured thoroughfall of rain (n = 21), fresh snow (n = 21), and old snow (n = 26) on plots in the boreal forest of the upper Eklutna Valley, Alaska. We calculated a set of twelve lidar metrics for each plot, and found the combined metric of mean height * cover to be the lidar metric most highly correlated to ln(throughfall) for rain (r = -0.81), fresh snow (r = -0.79), and old snow (r = -0.73). Using mean height * cover in the interception model, we predicted mean interception for rainfall (20% +/- 3%), fresh snow (29% +/- 4%), and old snow (20% +/- 3%) across the vegetated portion of the upper Eklutna Valley. Chapter 2: Climate changes and subsequent landscape-level responses have been documented throughout Alaska. We investigated the expansion of black (Picea mariana) and white spruce (Picea glauca) into open, herbaceous palustrine wetlands on Joint Base Elemendorf-Richardson (JBER) in south-central Alaska. We classified random points in wetlands across JBER using imagery from 1950, 1981, and 2012 to identify the extent and rate of spruce expansion. Additionally, we sampled 75 field plots in wetlands to age spruce trees and survey understory vegetation. We found tree cover in wetlands to have increased substantially from 1950-2012 (44% to 87%) with expansion over time fitting a logistic growth model well. Aged tree cores showed a recruitment pulse beginning the in 1930's and had a cumulative age distribution matching the logistic growth model of tree cover over time. The logistic growth model suggest spruce expansion began slowly in the early 1800's, coincident with the start of the current warming trend in Alaska. Using one representative wetland, we classified points on a 10 m spaced regular grid in 1950, 1981, and 2012 to

  11. Effects of the interception of litterfall by the understory on carbon cycling in eucalyptus plantations of South China.

    Directory of Open Access Journals (Sweden)

    Long Yang

    Full Text Available For the purposes of forest restoration, carbon (C fixation, and economic improvement, eucalyptus (Eucalyptus urophylla has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception of litterfall on C cycling in eucalyptus plantations, we quantified the mass of intercepted litter and the influences of litterfall interception on litter decomposition and soil respiration. The total mass of E. urophylla litterfall collected on the understory was similar to that collected by the traditional litter trap method. All of the eucalyptus litterfall is intercepted by the D. dichotoma canopy. Of the litterfall that was intercepted by D. dichotoma, 20-40% and 60-80% was intercepted by the top (50-100 cm and bottom (0-50 cm of the understory canopy, respectively. Intercepted litterfall decomposed faster at the bottom of understory canopy (at the base of the plants than at the top, and decomposition was slower on the soil surface in the absence of understory than on any location in the understory canopy. Soil respiration was highest when both the understory and litter were present and was lowest when both the understory and litter were absent. These results indicate that litterfall interception changed carbon flow between aboveground and belowground through litter decomposition and soil respiration, which changed carbon cycling in eucalyptus plantations. The effects of the understory on litter decomposition and soil respiration should be considered in ecosystem carbon models.

  12. Effects of the interception of litterfall by the understory on carbon cycling in eucalyptus plantations of South China.

    Science.gov (United States)

    Yang, Long; Wang, Jun; Huang, Yuhui; Hui, Dafeng; Wen, Meili

    2014-01-01

    For the purposes of forest restoration, carbon (C) fixation, and economic improvement, eucalyptus (Eucalyptus urophylla) has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception of litterfall on C cycling in eucalyptus plantations, we quantified the mass of intercepted litter and the influences of litterfall interception on litter decomposition and soil respiration. The total mass of E. urophylla litterfall collected on the understory was similar to that collected by the traditional litter trap method. All of the eucalyptus litterfall is intercepted by the D. dichotoma canopy. Of the litterfall that was intercepted by D. dichotoma, 20-40% and 60-80% was intercepted by the top (50-100 cm) and bottom (0-50 cm) of the understory canopy, respectively. Intercepted litterfall decomposed faster at the bottom of understory canopy (at the base of the plants) than at the top, and decomposition was slower on the soil surface in the absence of understory than on any location in the understory canopy. Soil respiration was highest when both the understory and litter were present and was lowest when both the understory and litter were absent. These results indicate that litterfall interception changed carbon flow between aboveground and belowground through litter decomposition and soil respiration, which changed carbon cycling in eucalyptus plantations. The effects of the understory on litter decomposition and soil respiration should be considered in ecosystem carbon models.

  13. Radionuclide concentrations in vegetation at the Los Alamos National Laboratory in 1998

    International Nuclear Information System (INIS)

    Gonzales, G.J.; Fresquez, P.R.; Mullen, M.A.; Naranjo, L. Jr.

    2000-01-01

    This report summarizes and evaluates the concentrations of 3 H, 137 Cs, 238 Pu, 239,240 Pu, 241 Am, 90 Sr, and total U in understory and overstory vegetation collected from Los Alamos National Laboratory (LANL), its perimeter, and regional background areas in 1998. Comparisons to conservative toxicity reference value safe limits were also made. The arithmetic mean LANL radionuclide concentrations in understory were 501 pCi L -1 for 3 H, 0.581 pCi ash g -1 for 137 Cs, 0.001 pCi ash g -1 for 238 Pu, 0.008 pCi ash g -1 for 239,240 Pu, 0.007 pCi ash g -1 for 241 Am, 1.46 pCi ash g -1 for 90 Sr, and 0.233 microg ash g -1 for total uranium. The mean LANL radionuclide concentrations in overstory were 463 pCi L -1 for 3 H, 1.51 pCi ash g -1 for 137 Cs, 0.0004 pCi ash g -1 238 Pu, 0.008 pCi ash g -1 for 239,240 Pu, 0.014 pCi ash g -1 for 241 Am, 1.97 pCi ash g -1 for 90 Sr, and 0.388 microg ash g -1 for total uranium. Concentrations of radionuclides and total U in both understory and overstory vegetation at LANL generally were not statistically higher than in perimeter and regional background vegetation (α = 0.05). The exceptions were LANL 3 H > perimeter 3 H (understory) and LANL 3 H background 3 H (overstory). All maximum radionuclide concentrations were lower than toxicity reference values. With the exception of total U, the relationship between contaminant concentration in soil vs. vegetation was insignificant (α = 0.05). Generally, as the concentration of total U in soil decreased, the concentration in vegetation increased. This held true for both understory and overstory and regardless of whether data were separated by general location (LANL, perimeter, and background) or not. There was no apparent relationship between contaminant concentrations in understory vs. overstory

  14. Phenology of tropical understory trees: patterns and correlates

    Directory of Open Access Journals (Sweden)

    W. Alice Boyle

    2012-12-01

    Full Text Available Reproductive phenologies of plants are constrained by climate in highly seasonal regions. In contrast, plants growing in wet tropical forests are freed from many abiotic constraints, which in canopy tree communities lead to a rich diversity of phenological patterns within and among individuals, species and communities. However, basic descriptions of tropical phenological patterns and the processes that shape them are rare. Here, we document the individual-, population-, and landscape-level phenological patterns of two dominant families of understory woody plants important to avian frugivores, the Melastomataceae and Rubiaceae, along an elevational transect in Costa Rica. The 226 individual plants belonging to 35 species in this study, varied in the number of reproductive bouts/year, and the timing, duration, and synchrony of reproductive stages. This variation was not related to factors related to their interactions with mutualists and antagonists, nor did it appear to be constrained by phylogeny. Diverse phenological patterns among species led to relatively aseasonal patterns at the community and landscape level. Overall, evidence for biotic processes shaping temporal patterns of fruiting phenology was weak or absent. These findings reveal a number of unexplained patterns, and suggest that factors shaping phenology in relatively aseasonal forests operate in idiosyncratic ways at the species level.En regiones con marcada estacionalidad, los patrones fenológicos de las plantas están limitados por el clima. Por el contrario, las plantas que crecen en bosques húmedos tropicales, no tienen tantas limitaciones abióticas y es por esto que el dosel presenta una diversidad muy rica en los patrones fenológicos de individuos, especies y comunidades. Sin embargo, es muy escasa la información sobre la descripción básica de los patrones fenológicos tropicales y de los procesos que los afectan. En este documento, presentamos los patrones fenol

  15. Remotely monitoring change in vegetation cover on the Montebello Islands, Western Australia, in response to introduced rodent eradication.

    Directory of Open Access Journals (Sweden)

    Cheryl Lohr

    Full Text Available The Montebello archipelago consists of 218 islands; 80 km from the north-west coast of Western Australia. Before 1912 the islands had a diverse terrestrial fauna. By 1952 several species were locally extinct. Between 1996 and 2011 rodents and cats were eradicated, and 5 mammal and 2 bird species were translocated to the islands. Monitoring of the broader terrestrial ecosystem over time has been limited. We used 20 dry-season Landsat images from 1988 to 2013 and estimation of green fraction cover in nadir photographs taken at 27 sites within the Montebello islands and six sites on Thevenard Island to assess change in vegetation density over time. Analysis of data averaged across the 26-year period suggests that 719 ha out of 2169 ha have increased in vegetation cover by up to 32%, 955 ha have remained stable and 0.6 ha have declined in vegetation cover. Over 492 ha (22% had no vegetation cover at any time during the period analysed. Chronological clustering analysis identified two breakpoints in the average vegetation cover data occurring in 1997 and 2003, near the beginning and end of the rodent eradication activities. On many islands vegetation cover was declining prior to 1996 but increased after rodents were eradicated from the islands. Data for North West and Trimouille islands were analysed independently because of the potential confounding effect of native fauna being introduced to these islands. Mala (Lagorchestes hirsutus and Shark Bay mice (Pseudomys fieldi both appear to suppress native plant recruitment but not to the same degree as introduced rodents. Future research should assess whether the increase in vegetation cover on the Montebello islands is due to an increase in native or introduced plants.

  16. Remotely monitoring change in vegetation cover on the Montebello Islands, Western Australia, in response to introduced rodent eradication.

    Science.gov (United States)

    Lohr, Cheryl; Van Dongen, Ricky; Huntley, Bart; Gibson, Lesley; Morris, Keith

    2014-01-01

    The Montebello archipelago consists of 218 islands; 80 km from the north-west coast of Western Australia. Before 1912 the islands had a diverse terrestrial fauna. By 1952 several species were locally extinct. Between 1996 and 2011 rodents and cats were eradicated, and 5 mammal and 2 bird species were translocated to the islands. Monitoring of the broader terrestrial ecosystem over time has been limited. We used 20 dry-season Landsat images from 1988 to 2013 and estimation of green fraction cover in nadir photographs taken at 27 sites within the Montebello islands and six sites on Thevenard Island to assess change in vegetation density over time. Analysis of data averaged across the 26-year period suggests that 719 ha out of 2169 ha have increased in vegetation cover by up to 32%, 955 ha have remained stable and 0.6 ha have declined in vegetation cover. Over 492 ha (22%) had no vegetation cover at any time during the period analysed. Chronological clustering analysis identified two breakpoints in the average vegetation cover data occurring in 1997 and 2003, near the beginning and end of the rodent eradication activities. On many islands vegetation cover was declining prior to 1996 but increased after rodents were eradicated from the islands. Data for North West and Trimouille islands were analysed independently because of the potential confounding effect of native fauna being introduced to these islands. Mala (Lagorchestes hirsutus) and Shark Bay mice (Pseudomys fieldi) both appear to suppress native plant recruitment but not to the same degree as introduced rodents. Future research should assess whether the increase in vegetation cover on the Montebello islands is due to an increase in native or introduced plants.

  17. Vegetation response to the "African Humid Period" termination in Central Cameroon (7° N – new pollen insight from Lake Mbalang

    Directory of Open Access Journals (Sweden)

    M. Servant

    2010-05-01

    Full Text Available A new pollen sequence from the Lake Mbalang (7°19´ N, 13°44´ E, 1110 m a.s.l. located on the eastern Adamawa plateau, in Central Cameroon, is presented in this paper to analyze the Holocene African Humid Period (AHP termination and related vegetation changes at 7° N in tropical Africa, completing an important transect for exploring shifts in the northern margin of the African Monsoon. This sequence, spanning the last 7000 cal yr BP, shows that the vegetation response to this transitional climatic period was marked by significant successional changes within the broad context of long-term aridification. Semi-deciduous/sub-montane forest retreat in this area is initially registered as early as ca. 6100 cal yr BP and modern savannah was definitely established at ca. 3000 cal yr BP and stabilized at ca. 2400 cal yr BP; but a slight forest regeneration episode is observed between ca. 5200 and ca. 4200 cal yr BP. In this area with modern high rainfall, increasing in the length of the dry season during the AHP termination linked to a contraction of the northern margin of the Intertropical Convergence Zone (ITCZ from ca. 6100 cal yr BP onward, probably associated with decreasing in cloud cover and/or fog frequency, has primarily controlled vegetation dynamics and above all the disappearance of the forested environment on the Adamawa plateau. Compared to previous studies undertaken in northern tropical and Central Africa, this work clearly shows that the response of vegetation to transitional periods between climatic extremes such as the AHP termination might be different in timing, mode and amplitude according to the regional climate of the study sites, but also according to the stability of vegetation before and during these climatic transitions.

  18. Vegetation response of a dry shrubland community to feral goat management on the island of Moloka‘i, Hawai‘i

    Science.gov (United States)

    Jacobi, James D.; Stock, Jonathan

    2017-12-14

    The Hawaiian Islands are well known for their unique ecosystem assemblages that have a high proportion of endemic flora and fauna. However, since human colonization of this archipelago—starting with the arrival of Polynesian sailors approximately 1,200 years ago, and particularly following western contact in 1778—thousands of non-native species have been introduced to the Islands and many of these alien species have had severe impacts on the native ecosystems. Particularly damaging to these ecosystems are large mammals, including goats (Capra hircus), pigs (Sus scrofa), cattle (Bos taurus), deer (Axis axis and Odocoileus hemionus), and sheep (Ovis spp.), which are collectively referred to here as ungulates; they cause extensive damage to the native vegetation by their browsing, grazing, and trampling. Similar impacts have been documented elsewhere, including New Zealand and many other island ecosystems.Previous studies in Hawai‘i have utilized fenced exclosures to assess the impacts of feral or wild ungulates on vegetation and the recovery potential for the native plant communities by comparing plant community composition, structure, and cover inside the fenced area (without ungulates) over time to the vegetation condition outside of the protection of the fence. In some cases, the native vegetation recovered once the animals were removed. However, in other situations alien plants were more competitive and dominated the revegetation process after the impacts of ungulates had been reduced or eliminated.This report describes the response of a highly degraded lowland dry habitat plant community located on the south slope of east Moloka‘i, Hawai‘i, to reduction of browsing and grazing impacts caused by feral goats. For this study, vegetation response inside a fenced exclosure was compared to vegetation change in the area outside of the fence that was still accessible to goats. This study is part of the larger U.S. Geological Survey Ridge-to-Reef (USGS-R2R

  19. Morphological and photosynthetic variations in the process of spermatia formation from vegetative cells in Porphyra yezoensis Ueda (Bangiales, Rhodophyta) and their responses to desiccation.

    Science.gov (United States)

    Yang, Rui-Ling; Zhou, Wei; Shen, Song-Dong; Wang, Guang-Ce; He, Lin-Wen; Pan, Guang-Hua

    2012-05-01

    Porphyra yezoensis has a macroscopic foliage gametophyte phase with only a single cell layer, and is ideally suited for the study of the sexual differentiation process, from the vegetative cell to the spermatia. Firstly, we compared variations in the responses of the vegetative and male sectors to desiccation. Later, cell tracking experiments were carried out during the formation of spermatia from vegetative cells. The two sectors showed similar tolerance to desiccation, and the formation of spermatia from vegetative cells was independent of the degree of desiccation. Both light and scanning electron microscopy (SEM) observations of the differentiation process showed that the formation of spermatia could be divided into six phases: the one-cell, two-cell, four-cell, eight-cell, pre-release and spermatia phases. Photomicrographs of Fluorescent Brightener staining showed that the released spermatia had no cell walls. Photosynthetic data showed that there was a significant rise in Y(II) in the four-cell phase, indicating an increase in photosynthetic efficiency of PSII during this phase. We propose that this photosynthetic rise may be substantial and provide the increased energy needed for the formation and release of spermatia in P. yezoensis.

  20. Hyperspectral remote sensing of the responses of vegetation ecosystems to physical and biological changes of the environment

    Science.gov (United States)

    Krezhova, Dora; Krezhov, Kiril; Maneva, Svetla; Moskova, Irina; Petrov, Nikolay

    2016-07-01

    Hyperspectral remote sensing technique, based on reflectance measurements acquired in a high number of contiguous spectral bands in the visible and near infrared spectral ranges, was used to detect the influence of some environmental changes to vegetation ecosystems. Adverse physical and biological conditions give rise to morphological, physiological, and biochemical changes in the plants that affect the manner in which they interact with the light. All green vegetation species have unique spectral features, mainly because of the chlorophyll and carotenoid, and other pigments, and water content. Because spectral reflectance is a function of the illumination conditions, tissue optical properties and biochemical content of the plants it may be used to collect information on several important biophysical parameters such as color and the spectral signature of features, vegetation chlorophyll absorption characteristics, vegetation moisture content, etc. Remotely sensed data collected by means of a portable fiber-optics spectrometer in the spectral range 350-1100 nm were used to extract information on the influence of some environmental changes. Stress factors such as enhanced UV-radiation, salinity, viral infections, were applied to some young plants species (potato, tomato, plums). The test data were subjected to different digital image processing techniques. This included statistical (Student's t-criterion), first derivative and cluster analyses and some vegetation indices. Statistical analyses were carried out in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (680-720 nm) and near infrared (720-780 nm). The strong relationship, which was found between the results from the remote sensing technique and some biochemical and serological analyses (stress markers, DAS-ELISA), indicates the importance of hyperspectral reflectance data for conducting, easily and without damage, rapid assessments of plant biophysical

  1. Canopy arthropod responses to thinning and burning treatments in old-growth mixed-conifer forest in the Sierra Nevada, California

    Science.gov (United States)

    Thomas Rambo; Timothy Schowalter; Malcolm North

    2014-01-01

    We compared canopy arthropod responses to common fuels reduction treatments at Teakettle Experimental Forest in the south-central Sierra Nevada of California. We sampled arthropod communities among four dominant overstory conifer species and three dominant understory angiosperm species before and after overstory or understory thinning or no thinning treatments followed...

  2. Radionuclide Concentrations in Soils and Vegetation at Low-Level Radioactive Waste Disposal Area G during the 1997 Growing Season

    Energy Technology Data Exchange (ETDEWEB)

    L. Naranjo, Jr.; P. R. Fresquez; R. J. Wechsler

    1998-08-01

    Soil and overstory and understory vegetation (washed and unwashed) collected at eight locations within and around Area G-a low-level radioactive solid-waste disposal facility at Los Alamos National Laboratory-were analyzed for 3H, 238Pu, 239Pu, 137CS, 234U, 235U, 228AC, Be, 214Bi, 60Co, 40& 54Mn, 22Na, 214Pb and 208Tl. In general, most radionuclide concentrations, with the exception of 3Ef and ~9Pu, in soils and overstory and understory vegetation collected from within and around Area G were within upper (95'%) level background concentrations. Although 3H concentrations in vegetation from most sites were significantly higher than background (>2 pCi mL-l), concentrations decreased markedly in comparison to last year's results. The highest `H concentration in vegetation was detected from a juniper tree that was growing over tritium shaft /+150; it contained 530,000 pCi 3H mL-l. Also, as in the pas~ the transuranic waste pad area contained the highest levels of 239Pu in soils and in understory vegetation as compared to other areas at Area G.

  3. LBA-ECO CD-05 Understory Fuel Stick Moisture, km 67 Site, Para, Brazil: 1998-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains moisture content measurements for fuel sticks located in the forest understory of the rainfall exclusion experimental site, Tapajos National...

  4. LBA-ECO CD-05 Understory Fuel Stick Moisture, km 67 Site, Para, Brazil: 1998-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains moisture content measurements for fuel sticks located in the forest understory of the rainfall exclusion experimental site, Tapajos...

  5. Plant growth response to direct and indirect temperature effects varies by vegetation type and elevation in a subarctic tundra

    NARCIS (Netherlands)

    De Long, Jonathan R.; Kardol, P.; Sundqvist, Maja K.; Veen, G. F.; Wardle, David A.

    2015-01-01

    There has been growing recent use of elevational gradients as tools for assessing effects of temperature changes on vegetation properties, because these gradients enable temperature effects to be considered over larger spatial and temporal scales than is possible through conventional experiments.

  6. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. III. Vegetation water stress

    Science.gov (United States)

    Porporato, A.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I.

    The reduction of soil moisture content during droughts lowers the plant water potential and decreases transpiration; this in turn causes a reduction of cell turgor and relative water content which brings about a sequence of damages of increasing seriousness. A review of the literature on plant physiology and water stress shows that vegetation water stress can be assumed to start at the soil moisture level corresponding to incipient stomatal closure and reach a maximum intensity at the wilting point. The mean crossing properties of these soil moisture levels crucial for water stress are derived analytically for the stochastic model of soil moisture dynamics described in Part II (F. Laio, A. Porporato, L. Ridolfi, I. Rodriguez-Iturbe. Adv. Water Res. 24 (7) (2001) 707-723). These properties are then used to propose a measure of vegetation water stress which combines the mean intensity, duration, and frequency of periods of soil water deficit. The characteristics of vegetation water stress are then studied under different climatic conditions, showing how the interplay between plant, soil, and environment can lead to optimal conditions for vegetation.

  7. Vegetation response to southern California drought during the Medieval Climate Anomaly and early Little Ice Age (AD 800–1600)

    Science.gov (United States)

    Heusser, Linda E.; Hendy, Ingrid L.; Barron, John A.

    2015-01-01

    High-resolution studies of pollen in laminated sediments deposited in Santa Barbara Basin (SBB) core SPR0901-02KC reflect decadal-scale fluctuations in precipitation spanning the interval from AD 800–1600. From AD 800–1090 during the Medieval Climate Anomaly (MCA) SBB sediments were dominated by xeric vegetation types (drought-resistant coastal sagebrush and chaparral) implying reduced precipitation in the southern California region. Drought-adapted vegetation abruptly decreased at AD 1090 and was rapidly replaced by mesic oak (Quercus) woodlands associated with an increased pollen flux into the basin. After a mesic interval lasting ∼100 years, pollen flux and the relative abundance of Quercus pollen dropped abruptly at AD 1200 when the rapid rise of chaparral suggests a significant drought similar to that of the MCA (∼AD 800–1090). This brief resurgence of drought-adapted vegetation between AD 1200–1270 marked the end of the MCA droughts. A gradual increase in mesic vegetation followed, characterizing cool hydroclimates of the Little Ice Age (LIA) in coastal southern California.

  8. Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel

    Science.gov (United States)

    Willem J.D. van Leeuwen; Grant M. Casady; Daniel G. Neary; Susana Bautista; Jose Antonio Alloza; Yohay Carmel; Lea Wittenberg; Dan Malkinson; Barron J. Orr

    2010-01-01

    Due to the challenges faced by resource managers in maintaining post-fire ecosystem health, there is a need for methods to assess the ecological consequences of disturbances. This research examines an approach for assessing changes in post-fire vegetation dynamics for sites in Spain, Israel and the USA that burned in 1998, 1999 and 2002 respectively. Moderate...

  9. Self efficacy for fruit, vegetable and water intakes: expanded and abbreviated scales from item response modeling analyses

    Science.gov (United States)

    Our objective was to improve an existing measure of fruit and vegetable intake self efficacy, by including items that varied on levels of difficulty, and testing a corresponding measure of water intake self efficacy. A cross sectional assessment was used. Items were modified to have easy, moderate, ...

  10. Response of dry grassland vegetation to fluctuations in weather conditions: a 9-year case study in Prague (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Dostálek, J.; Frantík, Tomáš

    2011-01-01

    Roč. 66, č. 5 (2011), s. 837-847 ISSN 0006-3088 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : climate change * dry grassland * vegetation coverage Subject RIV: EF - Botanics Impact factor: 0.557, year: 2011

  11. Monitoring of vegetation response to elk population and habitat management in Rocky Mountain National Park, 2008–14

    Science.gov (United States)

    Zeigenfuss, Linda C.; Johnson, Therese L.

    2015-12-17

    Since 2008, Rocky Mountain National Park in Colorado has been implementing an elk and vegetation management plan with the goal of managing elk populations and their habitats to improve the condition of key vegetation communities on elk winter range. Management actions that have been taken thus far include small reductions in the elk herd through culling of animals and temporary fencing of large areas of willow and aspen habitat to protect them from elk browsing. As part of the park’s elk and vegetation management plan (EVMP), a monitoring program was established to assess effectiveness of management actions in achieving vegetation goals. We collected data to monitor offtake (consumption) of upland herbaceous plants and willow annually from 2008 to 2014 and to assess aspen stand structure and regeneration and willow cover and height in 2013, 5 years after plan implementation. Loss of many willow and a few aspen monitoring sites to a fire in late 2012 complicated data collection and interpretation of results but will provide opportunities to observe habitat recovery following fire and in the presence and absence of elk herbivory, which will offer important insights into the use of prescribed fire as an additional management tool in these habitats.

  12. Skin and plasma carotenoid response to a provided intervention diet high in vegetables and fruit: uptake and depletion kinetics.

    Science.gov (United States)

    Jahns, Lisa; Johnson, LuAnn K; Mayne, Susan T; Cartmel, Brenda; Picklo, Matthew J; Ermakov, Igor V; Gellermann, Werner; Whigham, Leah D

    2014-09-01

    Objective biomarkers are needed to assess adherence to vegetable and fruit intervention trials. Blood carotenoids are considered the best biomarker of vegetable and fruit intake, but collecting blood is invasive and the analyses are relatively expensive for population studies. Resonance Raman spectroscopy (RRS) is an innovative method for assessing carotenoids in skin noninvasively. Our objective was to compare blood carotenoid concentrations with skin carotenoid assessments by RRS during a controlled feeding intervention. Twenty-nine participants consumed low-carotenoid diets (6 wk, phases 1 and 3), a provided diet containing 6-cup equivalents (1046 g/d) of vegetables and fruit (8 wk, phase 2), and usual diet (final 8 wk, phase 4). At baseline, skin and plasma total carotenoid values were correlated (r = 0.61, P Skin and plasma carotenoid values decreased (P 200% at the end of phase 2. Plasma carotenoids returned to baseline concentrations by the middle of phase 3 and skin carotenoid concentrations by the middle of phase 4. Skin carotenoid status predicted plasma values by using a mixed linear model including all time points (r = 0.72, P skin carotenoid status closely follow changes in plasma across a broad range of intakes. At the individual level, skin carotenoids predicted plasma values (r = 0.70, P Skin carotenoid status assessed by resonance Raman spectroscopy is a noninvasive, objective biomarker of changes in vegetable and fruit intake. © 2014 American Society for Nutrition.

  13. Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil

    NARCIS (Netherlands)

    Vermeulen, G.D.; Mosquera Losada, J.

    2009-01-01

    Some organic arable and vegetable farms in the Netherlands use cm-precise guidance of machinery to restrict wheel traffic to fixed traffic lanes and to achieve non-trafficked cropping zones with optimized soil structure in between the lanes. Contrary to controlled traffic farming (CTF) the traffic

  14. Photosynthetic response, survival, and growth of three ponderosa pine stocktypes under water stress enhanced by vegetative competition

    Science.gov (United States)

    Jeremiah R. Pinto; John D. Marshall; R. Kasten Dumroese; Anthony S. Davis; Douglas R. Cobos

    2012-01-01

    Selecting the proper stock type for reforestation on dry sites can be critical for the long-term survival and growth of seedlings. In this study, we use a novel approach to understand stock type selection on a site where drought was induced with vegetative competition. Three ponderosa pine (Pinus ponderosa Lawson & C. Lawson var. ponderosa C. Lawson) seedling stock...

  15. The Response of Subalpine Vegetation to Climate Change and Bark Beetle Infestations: A Multi-Scale Interaction.

    Science.gov (United States)

    Foster, A.; Shuman, J. K.; Shugart, H. H., Jr.; Negrón, J. F.

    2015-12-01

    Mean annual temperatures in the western United States have increased in the last few decades, and are predicted to continue warming. In the subalpine zone of the Rocky Mountains, this warming is also predicted to increase the frequency and severity of spruce beetle outbreaks. Climate change itself may affect this vegetation, potentially leading to shifts in species compositions. These forests are a crucial part of the US's carbon budget, thus it is important to analyze how climate change and bark beetles in conjunction will affect the biomass and species composition of vegetation in subalpine zone. UVAFME is an individual-based gap model that simulates biomass and species composition of a forest. This model has been quantitatively tested at various Rocky Mountain sites in the Front Range, and has been shown to accurately simulate the vegetation dynamics in the region. UVAFME has been updated with a spruce beetle subroutine that calculates the probability for beetle infestation of each tree on a plot. This probability is based on site, climate, and individual tree characteristics, such as temperature; stand structure; and tree stress level, size, and age. These governing characteristics are based on data from the US Forest Service, and other studies on spruce susceptibility and spruce beetle phenology. UVAFME is then run with multiple climate change and beetle scenarios to determine the net effect of both variables on subalpine vegetation. These results are compared among the different scenarios and to current forest inventory data. We project that increasing temperatures due to climate change will cause an increase in the frequency and severity of spruce beetle outbreaks, leading to a decrease in the biomass and dominance of Engelmann spruce. These results are an important step in understanding the possible futures for the vegetation of subalpine zone in the Rocky Mountains.

  16. Impact of the invasive plant Syzigium jambos (Myrtaceae) on patterns of understory seedling abundance in a Tropical Premontane Forest, Costa Rica.

    Science.gov (United States)

    Avalos, Gerardo; Hoell, Kelly; Gardner, Jocelyn; Anderson, Scott; Lee, Conor

    2006-06-01

    Habitat fragmentation, along with other human-induced disturbances, increase the vulnerability of native habitats to be invaded by aggressive, ecologically released, exotic species. Syzigium jambos (L.) Alston (Myrtaceae, Rose Apple) is an important invader still spreading throughout Hawaii, the Antilles, Central and South America. This study examines the effects of S. jambos on plant understory diversity in a 25 ha Tropical Premontane Moist Forest in Atenas, Alajuela, Costa Rica, a protected watershed that supplies drinking water for several human communities. Our final objective is to develop a management strategy combining water protection with the preservation of a representative sample of the original plant diversity in the area. Thirty 2 x 2 m plots were distributed throughout the Municipal Forest maintaining a minimum of 10 m between plots, and 2 m from trails, to sample all understory seedlings and saplings of S. jambos, Coffea arabica (coffee) and tree seedlings. We found a clear dominance of S. jambos over all other understory plants. Of the total 1,285 sampled plants, S. jambos comprised 51%, coffee seedlings represented 14.78%, being the rest tree seedlings. Syzigium jambos had the highest density (5.46 plants/m2, S.D. = 6.44) compared to tree (3.67 plants/m2, S.D. = 3.44) and coffee seedlings (1.58 plants/m2, S.D. = 2.13). There was a highly significant negative relationship between the relative abundance of S. jambos and tree (r2 = 0.52, p or = 2 m). The results show a clear role of S. jambos as an aggressive, invasive species within the Municipal Forest. This invasion is enhanced by both the ecological characteristics of the species and the fragmentation of the forest by coffee farming around the site. Among a variety of management possibilities, an ecosystem-level approach of manually removing S. jambos over time while replanting native species appears to be the preferred strategy, given the intended continued use of the Municipal Forest as a source

  17. Quantifying vegetation response to grazing intensity and precipitation on Chihuahuan Desert Rangeland using remote sensing and GIS

    Science.gov (United States)

    Mohamed, Ahmed H.

    High spatial resolution satellite imagery is a promising data source for studying vegetation dynamics. The overall goal for this study was to use QuickBird high spatial resolution satellite imagery to develop methods for vegetation analysis and tracking livestock distribution. I hypothesized that using these technologies would create appropriate new management tool that provides spatial, temporal, and current information for extensive rangeland pastures. This research was conducted on four large scale pastures at the Chihuahuan Desert Rangeland Research Center (CDRRC) in south central New Mexico. Two QuickBird ortho-ready standard satellite images (DigitalGlobe Inc., Longmont, Colorado, USA) were acquired for the study area in May of 2006 and 2009. The image covered an area of 4381 ha and had a 60 cm panchromatic resolution and 2.4 m multispectral resolution. A 4-band pan-sharpened image with spatial resolution of 60 cm was produced for each QuickBird image. Per-pixel spectral based classification algorithms were used to classify the two images and map the primary vegetation types in the study area. Post-classification change detection was conducted between the May 2006 image and the May 2009 image. GPS collars were used to track 2 cows in each pasture for 10 weeks during the winter of 2010. Forage production for the primary perennial grasses was estimated from 40 permanent vegetation plots across the study area in May 2009. Spectral-based classification techniques were very effective in classifying QuickBird satellite imagery. Overall accuracy of the classified map ranged from 89 to 95 %. Increasing honey mesquite (Prosopis glandulosa Torr.) canopy cover corresponded to lower perennial grass forage production. Improvement in range condition in terms of declining shrub cover and bare ground and increased grass-mix vegetation was noted in conservatively grazed (35% utilization) pastures. However, only slight changes were observed in lightly grazed pastures. Grazing

  18. Vegetable Fermentation

    OpenAIRE

    Eifert, Joell

    2014-01-01

    People have been fermenting vegetables for centuries to increase the stability of fresh foods, to make the foods safer to eat in the absence of refrigeration and to enhance their flavor. Today, vegetable fermentation is done on a large-scale setting in factories as well as in households across the world. In the United States, the primary vegetables fermented are cucumbers (pickles), cabbage (sauerkraut and Kimchi) and olives. In many parts of the world, especially in developing countries wher...

  19. Coyote removal, understory cover, and survival of white-tailed deer neonates: Coyote Control and Fawn Survival

    Energy Technology Data Exchange (ETDEWEB)

    Kilgo, John C. [USDA Forest Service; Southern Research Station, New Ellenton, SC (United States); Vukovich, Mark [USDA Forest Service; Southern Research Station, New Ellenton, SC (United States); Ray, H. Scott [USDA Forest Service, Savannah River; New Ellenton, SC (United States); Shaw, Christopher E. [USDA Forest Service; Southern Research Station, New Ellenton, SC (United States); Ruth, Charles [South Carolina Dept. of Natural Resources, Columbia, SC (United States)

    2014-09-01

    Predation by coyotes (Canis latrans) on white-tailed deer (Odocoileus virginianus) neonates has led to reduced recruitment in many deer populations in southeastern North America. This low recruitment combined with liberal antlerless deer harvest has resulted in declines in some deer populations, and consequently, increased interest in coyote population control. We investigated whether neonate survival increased after coyote removal, whether coyote predation on neonates was additive to other mortality sources, and whether understory vegetation density affected neonate survival. We monitored neonate survival for 4 years prior to (2006–2009) and 3 years during (2010–2012) intensive coyote removal on 3 32-km2 units on the United States Department of Energy’s Savannah River Site, South Carolina. We removed 474 coyotes (1.63 coyotes/km2 per unit per year), reducing coyote abundance by 78% from pre-removal levels. The best model (wi = 0.927) describing survival probability among 216 radio-collared neonates included a within-year quadratic time trend variable, date of birth, removal treatment, and a varying removal year effect. Under this model, survival differed between pre-treatment and removal periods and it differed among years during the removal period, being >100% greater than pre-treatment survival (0.228) during the first removal year (0.513), similar to pre-treatment survival during the second removal year (0.202), and intermediate during the third removal year (0.431). Despite an initial increase, the overall effect of coyote removal on neonate survival was modest. Mortality rate attributable to coyote predation was lowest during the first removal year (0.357) when survival was greatest, but the mortality rate from all other causes did not differ between the pretreatment period and any year during removals, indicating that coyote predation acted as an additive source of mortality. Survival probability was not related to

  20. Site quality influence over understory plant diversity in old-growth and harvested Nothofagus pumilio forests

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, E. A.; Lencinas, M. V.; Martinez-Pastur, G. J.

    2013-05-01

    Aim of study: The effects and interactions of shelter wood forest harvesting and site qualities over understory plant species diversity and composition were compared among primary and harvested Nothofagus pumilio forests. Area of study: Tierra del Fuego (Argentina), on three pure conditions (one and six year-old harvested, and primary without previous harvesting forests) and three site qualities (high, medium and low). Material and Methods: Understory richness and cover (%) were registered in five replicates of 1 hectare each per treatment. Taxonomic species were classified in categories (groups, origin and life forms). Two-way ANOVAs and multivariate analyses were conducted. Main results: Shelterwood harvesting and site quality significantly influenced understory cover and richness, which allow the introduction of native and exotic species and increasing of dicot and monocot covers. In dicots, monocots, exotics and total groups, higher richness and covers were related to time. Meanwhile, cover reached similar high values in all site qualities on dicot, native and total groups. On the other hand, monocot and exotic richness and cover remain similar in primary and recently harvested forests, and greatly increased in old harvested forests. Mosses and ferns were among the most sensitive groups. Research highlights: Impacts of shelterwood cut depend on site quality of the stands and time since harvesting occurs. For this, different site quality stands should received differential attention in the development of conservation strategies, as well as variations in the shelterwood implementation (as irregularity and patchiness) should be considered to better promote understory plant species conservation inside managed areas. (Author) 45 refs.

  1. Non-native grass invasion associated with increases in insect diversity in temperate forest understory

    Science.gov (United States)

    Metcalf, Judith L.; Emery, Sarah M.

    2015-11-01

    Invasive plants can alter the structure and function of plant communities to such a degree that they can also have significant impacts on the insect communities. Because insects play an important role in many ecosystems, changes in these communities could have important implications, beyond their biodiversity value, for ecosystem function and diversity at other trophic levels. Microstegium vimineum is an annual C4 grass that is invasive in many eastern North American deciduous forests. Because this grass plays an important role in determining the plant community structure in the understory of these forests, it also has the potential to significantly alter understory insect communities. In this study we evaluated the relationship between M. vimineum and understory insect communities in a forest reserve in Kentucky, USA. Total insect abundance, richness and diversity showed a positive association with M. vimineum presence. Trophic analysis showed significantly higher abundances of herbivores where M. vimineum was present. Forb abundance, which serves as the primary food source for herbivorous insects in this system, was lower in sites invaded with M. vimineum. Invasion by this non-native was also associated with significant increases in aboveground plant biomass which was nearly 50% greater in invaded sites. These results indicate that the understory insect community may be responding to increased biomass rather than the loss of native forb food resources, which contradicts other studies that have examined relationships between M. vimineum invasion and insects. Our results provide evidence that invasive plants can provide benefits for other trophic levels, even when native plant biodiversity is lost.

  2. Contrasting structure and composition of the understory in species-rich tropical rain forests.

    Science.gov (United States)

    LaFrankie, James V; Ashton, Peter S; Chuyong, George B; Co, Leonardo; Condit, Richard; Davies, Stuart J; Foster, Robin; Hubbell, Stephen P; Kenfack, David; Lagunzad, Daniel; Losos, Elizabeth C; Nor, Noor Supardi Md; Tan, Sylvester; Thomas, Duncan W; Valencia, Renato; Villa, Gorky

    2006-09-01

    In large samples of trees > or = 1 cm dbh (more than 1 million trees and 3000 species), in six lowland tropical forests on three continents, we assigned species with >30 individuals to one of six classes of stature at maturity (SAM). We then compared the proportional representation of understory trees (1-2 cm dbh) among these classes. The understory of the three Asian sites was predominantly composed of the saplings of large-canopy trees whereas the African and American sites were more richly stocked with trees of the smaller SAM classes. Differences in class representation were related to taxonomic families that were present exclusively in one continent or another. Families found in the Asian plots but not in the American plot (e.g., Dipterocarpaceae, Fagaceae) were predominantly species of the largest SAM classes, whereas families exclusive to the American plots (e.g., Melastomataceae sensu stricto, Piperaceae, and Malvaceae [Bombacacoidea]) were predominantly species of small classes. The African plot was similar to Asia in the absence of those American families rich in understory species, while similar to America in lacking the Asian families rich in canopy species. The numerous understory species of Africa were chiefly derived from families shared with Asia and/or America. The ratio of saplings (1-2 cm dbh) to conspecific canopy trees (>40 cm dbh) was lower in American plots than in the Asian plots. Possible explanations for these differences include phenology, moisture and soil fertility regimes, phyletic constraints, and the role of early successional plants in forest development. These results demonstrate that tropical forests that appear similar in tree number, basal area, and the family taxonomy of canopy trees nonetheless differ in ecological structure in ways that may impact the ecology of pollinators, dispersers, and herbivores and might reflect fundamental differences in canopy tree regeneration.

  3. Mistblowing a hardwood understory in West Virginia with "D-T" herbicide

    Science.gov (United States)

    H. Clay Smith; George R., Jr. Trimble

    1970-01-01

    A 40-pound ahg solution of 2,4-D and 2,4,5-T herbicide was successfully mistblown on an undesirable hardwood understory on a good site in West Virginia. After 2 years, many of the stems 1 to 15 feet tall had been killed or severely damaged. The possibilities of obtaining desirable shade-intolerant reproduction on the site were improved by the application of this "...

  4. Horse grazing systems: understory biomass and plant biodiversity of a Pinus radiata stand

    OpenAIRE

    Rigueiro-Rodríguez,Antonio; Mouhbi,Rabia; Santiago-Freijanes,José Javier; González-Hernández,María del Pilar; Mosquera-Losada,María Rosa

    2012-01-01

    Horse grazing systems may affect productivity and biodiversity of understory developed under Pinus radiata D. Don silvopastoral systems, while acting as a tool to reduce the risk of fire. This study compared continuous and rotational grazing systems effect upon biomass, fractions of stem, sprouts, leaves and woody parts of Ulex europaeus L. and alpha (Species Richness, Shannon-Wiener) and beta (Jaccard and Magurran) biodiversity for a period of four years in a P. radiata silvopastoral system....

  5. Topoedaphic and Forest Controls on Post-Fire Vegetation Assemblies Are Modified by Fire History and Burn Severity in the Northwestern Canadian Boreal Forest

    OpenAIRE

    Ellen Whitman; Marc-André Parisien; Dan K. Thompson; Mike D. Flannigan

    2018-01-01

    Wildfires, which constitute the most extensive natural disturbance of the boreal biome, produce a broad range of ecological impacts to vegetation and soils that may influence post-fire vegetation assemblies and seedling recruitment. We inventoried post-fire understory vascular plant communities and tree seedling recruitment in the northwestern Canadian boreal forest and characterized the relative importance of fire effects and fire history, as well as non-fire drivers (i.e., the topoedaphic c...

  6. [Physiological responses of sugar beet (Beta vulgaris) to drought stress during vegetative development period under drip irrigation].

    Science.gov (United States)

    Li, Yang-yang; Geng, Qing-yun; Fei, Cong; Fan, Huai

    2016-01-01

    Sugar beet (Beta vulgaris cv. Beta 356) was subjected to drought stress during vegetative development by maintaining the soil water content in the 0-40 cm soil depth at 70%, 50% or 30% of field capacity to study the physiological traits of the leaves. Results showed that the compensation index was the highest in the 50% field capacity treatment. Malonaldehyde (MDA) content, relative conductivity, catalase (CAT) activity, and soluble sugar content began to increase 24 h after rehydration. Proline content began to increase 48 h after rehydration. In contrast, no compensation effect was observed in peroxidase (POD) activity after rehydration. Among the active oxygen scavenging enzymes, CAT was most sensitive to drought stress. Supplemental irrigation should be carried out promptly when the soil water content dropped to 50% of field capacity during vegetative development. Rehydration could promote self-repair functions in leaves, thus reducing the effects of drought on sugar beet yield and sugar content.

  7. The historical ecology of Namibian rangelands: vegetation change since 1876 in response to local and global drivers.

    Science.gov (United States)

    Rohde, Richard F; Hoffman, M Timm

    2012-02-01

    The influence of both local and global drivers on long-term changes in the vegetation of Namibia's extensive rangelands was investigated. Fifty-two historical photographs of the Palgrave Expedition of 1876 were re-photographed and used to document changes over more than 130 years, in grass, shrub and tree cover within three major biomes along a 1200km climatic gradient in central and southern Namibia. We showed that patterns of change are correlated with mean annual precipitation (MAP) and that below a threshold of around 250mm, vegetation has remained remarkably stable regardless of land-use or tenure regime. Above this threshold, an increase in tree cover is linked to the rainfall gradient, the legacies of historical events in the late 19th century, subsequent transformations in land-use and increased atmospheric CO(2). We discuss these findings in relation to pastoral and settler societies, paleo- and historical climatic trends and predictions of vegetation change under future global warming scenarios. We argue that changes in land-use associated with colonialism (decimation of megaherbivores and wildlife browsers; fire suppression, cattle ranching), as well as the effects of CO(2) fertilisation provide the most parsimonious explanations for vegetation change. We found no evidence that aridification, as projected under future climate change scenarios, has started in the region. This study provided empirical evidence and theoretical insights into the relative importance of local and global drivers of change in the savanna environments of central and southern Namibia and global savanna ecosystems more generally. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Climatic consequences of adopting drought-tolerant vegetation over Los Angeles as a response to California drought

    OpenAIRE

    Vahmani, P; Ban-Weiss, G

    2016-01-01

    ©2016. American Geophysical Union. All Rights Reserved. During 2012–2014, drought in California resulted in policies to reduce water consumption. One measure pursued was replacing lawns with landscapes that minimize water consumption, such as drought-tolerant vegetation. If implemented at broad scale, this strategy would result in reductions in irrigation and changes in land surface characteristics. In this study, we employ a modified regional climate model to assess the climatic consequences...

  9. Responses of soil microbial and nematode communities to aluminum toxicity in vegetated oil-shale-waste lands.

    Science.gov (United States)

    Shao, Yuanhu; Zhang, Weixin; Liu, Zhanfeng; Sun, Yuxin; Chen, Dima; Wu, Jianping; Zhou, Lixia; Xia, Hanping; Neher, Deborah A; Fu, Shenglei

    2012-11-01

    Both soil nematodes and microorganisms have been shown to be sensitive bioindicators of soil recovery in metal-contaminated habitats; however, the underlying processes are poorly understood. We investigated the relationship among soil microbial community composition, nematode community structure and soil aluminum (Al) content in different vegetated aluminum-rich ecosystems. Our results demonstrated that there were greater soil bacterial, fungal and arbuscular mycorrhizal fungal biomass in Syzygium cumini plantation, greater abundance of soil nematodes in Acacia auriculiformis plantation, and greater abundance of soil predatory and herbivorous nematodes in Schima wallichii plantation. The concentration of water-soluble Al was normally greater in vegetated than non-vegetated soil. The residual Al and total Al concentrations showed a significant decrease after planting S. cumini plantation onto the shale dump. Acid extractable, reducible and oxidisable Al concentrations were greater in S. wallichii plantation. Stepwise linear regression analysis suggests the concentrations of water-soluble Al and total Al content explain the most variance associated with nematode assembly; whereas, the abundance of early-successional nematode taxa was explained mostly by soil moisture, soil organic C and total N rather than the concentrations of different forms of Al. In contrast, no significant main effects of either Al or soil physico-chemical characteristics on soil microbial biomass were observed. Our study suggests that vegetation was the primary driver on soil nematodes and microorganisms and it also could regulate the sensitivity of bio-indicator role mainly through the alteration of soil Al and physico-chemical characteristics, and S. cumini is effective for amending the Al contaminated soils.

  10. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration

    Science.gov (United States)

    Zhang, Yunlin; Liu, Xiaohan; Qin, Boqiang; Shi, Kun; Deng, Jianming; Zhou, Yongqiang

    2016-01-01

    Terrestrial and aquatic ecosystem degradation is widely recognized as a major global environmental and development problem. Although great efforts have been made to prevent aquatic ecosystem degradation, the degree, extent and impacts of this phenomenon remain controversial and unclear, such as its driving mechanisms. Here, we present results from a 17-year field investigation (1998–2014) of water quality and a 12-year remote sensing mapping (2003–2014) of the aquatic vegetation presence frequency (VPF) in Eastern Lake Taihu, a macrophyte-dominated bay of Lake Taihu in China. In the past 17 years, nutrient concentrations and water level (WL) have significantly increased, but the Secchi disk depth (SDD) has significantly decreased. These changes were associated with increased lake eutrophication and a degraded underwater light climate that further inhibited the growth of aquatic vegetation. In Eastern Lake Taihu, increased nutrients, chlorophyll a and WL, and a decreased SDD were all significantly correlated with a decreased VPF. NH4+-N concentration and SDD/WL were the most important controlling factors for VPF. Therefore, increased anthropogenic nutrient inputs and a degraded underwater light climate surely result in a decreased VPF. These results elucidate the driving mechanism of aquatic vegetation degradation and will facilitate Lake Taihu ecological restoration. PMID:27041062

  11. Vegetation responses to the last glacial and early Holocene environmental changes in the northern Leizhou Peninsula, south China

    Science.gov (United States)

    Xue, Jibin; Zhong, Wei; Xie, Lichun; Unkel, Ingmar

    2015-09-01

    A well-dated palynological record spanning the interval ~ 40,500-7060 cal yr BP, retrieved from a peatland on the Leizhou Peninsula in south China, clearly shows regional vegetation and climate changes during the last glacial period. Pollen data showed that the study region was mainly covered by subtropical evergreen trees during Marine Isotope Stage 3 (MIS 3), indicating a subtropical climate with relatively high temperature and precipitation. During MIS 2, subtropical evergreen-deciduous forest with large areas of grassland occurred, implying cooler and drier conditions. Some tropical forest elements increased during the early Holocene, indicating a warm and wet trend. Several millennial-scale oscillations of the pollen records appeared to correlate with the cold anomalies in the North Atlantic region. Our records agree well with many records from other regions, but they are a bit different than that inferred from the neighboring Huguang Maar Lake. Furthermore, our results suggest that the vegetation surrounding Xialu peatland was strongly influenced by the migration of the intertropical convergence zone (ITCZ) and variability in the East Asian summer monsoon (EASM). Changes of atmospheric CO2 concentration (pCO2) levels may have also affected the long-term vegetation changes in the study region.

  12. Spatial Autocorrelation Patterns of Understory Plant Species in a Subtropical Rainforest at Lanjenchi, Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Su-Wei Fan

    2010-06-01

    Full Text Available Many studies described relationships between plant species and intrinsic or exogenous factors, but few quantified spatial scales of species patterns. In this study, quantitative methods were used to explore the spatial scale of understory species (including resident and transient species, in order to identify the influential factors of species distribution. Resident species (including herbaceous species, climbers and tree ferns < 1 m high were investigated on seven transects, each 5-meter wide and 300-meter long, at Lanjenchi plot in Nanjenshan Reserve, southern Taiwan. Transient species (seedling of canopy, subcanopy and shrub species < 1 cm diameter at breast height were censused in three of the seven transects. The herb coverage and seedling abundance were calculated for each 5 × 5 m quadrat along the transects, and Moran’s I and Galiano’s new local variance (NLV indices were then used to identify the spatial scale of autocorrelation for each species. Patterns of species abundance of understory layer varied among species at fine scale within 50 meters. Resident species showed a higher proportion of significant autocorrelation than the transient species. Species with large size or prolonged fronds or stems tended to show larger scales in autocorrelation. However, dispersal syndromes and fruit types did not relate to any species’ spatial patterns. Several species showed a significant autocorrelation at a 180-meter class which happened to correspond to the local replicates of topographical features in hilltops. The spatial patterns of understory species at Lanjenchi plot are mainly influenced by species’ intrinsic traits and topographical characteristics.

  13. Photosynthetic rates influence the population dynamics of understory herbs in stochastic light environments.

    Science.gov (United States)

    Westerband, Andrea C; Horvitz, Carol C

    2017-02-01

    Temporal variability in light from gaps in the tree canopy strongly influences the vital rates of understory plants. From 2012 to 2015, we estimated the size-specific vital rates of two herbs, Calathea crotalifera and Heliconia tortuosa, over a range of light environments. We estimated maximum photosynthetic capacity (A max ) for a subset of individuals each year during three annual censuses, and modelled future size as a linear function of current size (a plant trait that changes ontogenetically), canopy openness (an environmental variable), and A max (a potentially plastic physiological trait). We estimated what the demographic success would be of a population comprised of individuals with a particular fixed A max for each of several levels of canopy openness if the environment remained constant, by evaluating corresponding Integral Projection Models and their deterministic growth rates (λ). We then estimated their demographic success in the stochastic light environment (λ S ) and its elasticities. As light increased, deterministic λ increased for Calathea by 33% but decreased for Heliconia by 52%, and increasing A max had no effect on λ for Calathea but increased λ for Heliconia in low light. As A max increased, λ S increased for Heliconia, but not Calathea. We also investigated whether photosynthetic rates would influence the elasticities of λ S, including its response to perturbation of vital rates in each environment (E S β ), vital rates over all environments (E S ), and variability of vital rates among environments (E S σ ). E S , E S σ , and E S β were influenced by A max for Heliconia but not Calathea. Events that affect some vital rates in high light have a greater impact on overall fitness than events that affect the same vital rates in shady environments, and there is greater potential for selection on traits of large individuals in high light than in low light for Heliconia, while the reverse was true for Calathea. Photosynthetic rates

  14. Response of terrestrial vegetation to water and energy: the contribution of earth observation to estimate and understand Water Use Efficiency at multiple scales

    Science.gov (United States)

    Menenti, M. C.; Jia, L.

    2007-12-01

    Climate variability implies variable water availability and drought hazards in many parts of the world. Vegetation species, especially taking into account significant biodiversity, react very differently to water scarcity. The amount of biomass produced per unit volume of water transpired changes significantly across and within species, according to genetic characteristics. The latter represent the most significant resource towards adaptation of agriculture to climate change. On the other hand it remains difficult both to assess Water Use Efficiency (WUE) at larger spatial scales and to model WUE in a way sufficiently simple to allow inclusion in the large area and global climate models used to assess impacts and evaluate adaptation options. WUE is a ratio of extensive quantities and provides directly an upscaling constraint for all variables involved in related parameterizations. The first challenge is to observe WUE at any spatial scale larger than a single plant. At this scale biomass can be determined by direct sampling and transpiration can be measured to a satisfactory level of accuracy with sap- flow devices. At larger spatial scales no direct experimental method is available and heterogeneity makes attribution of estimated total water flux to specific vegetation types within the area observed rather difficult. Use of radiometric data collected from aircrafts and satellites is a practical approach to estimate and map both water flux and biomass, thus leading to WUE. When using satellite data this approach makes frequent observations and monitoring in time possible. This review presentation summarizes current approaches and trends in the estimation of vegetation-atmosphere water exchange and of biomass. Analysis of time series of indicators of vegetation response to water availability in terms of both ET and biomass will be presented on the basis of case- studies in Africa, South America, Europe and China.

  15. Assessing plant senescence reflectance index-retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian Grassland

    Science.gov (United States)

    Ren, Shilong; Chen, Xiaoqiu; An, Shuai

    2017-04-01

    Plant phenology is a key link for controlling interactions between climate change and biogeochemical cycles. Satellite-derived normalized difference vegetation index (NDVI) has been extensively used to detect plant phenology at regional scales. Here, we introduced a new vegetation index, plant senescence reflectance index (PSRI), and determined PSRI-derived start (SOS) and end (EOS) dates of the growing season using Moderate Resolution Imaging Spectroradiometer data from 2000 to 2011 in the Inner Mongolian Grassland. Then, we validated the reliability of PSRI-derived SOS and EOS dates using NDVI-derived SOS and EOS dates. Moreover, we conducted temporal and spatial correlation analyses between PSRI-derived SOS/EOS date and climatic factors and revealed spatiotemporal patterns of PSRI-derived SOS and EOS dates across the entire research region at pixel scales. Results show that PSRI has similar performance with NDVI in extracting SOS and EOS dates in the Inner Mongolian Grassland. Precipitation regime is the key climate driver of interannual variation of grassland phenology, while temperature and precipitation regimes are the crucial controlling factors of spatial differentiation of grassland phenology. Thus, PSRI-derived vegetation phenology can effectively reflect land surface vegetation dynamics and its response to climate change. Moreover, a significant linear trend of PSRI-derived SOS and EOS dates was detected only at small portions of pixels, which is consistent with that of greenup and brownoff dates of herbaceous plant species in the Inner Mongolian Grassland. Overall, PSRI is a useful and robust metric in addition to NDVI for monitoring land surface grassland phenology.

  16. Response of vegetation to carbon dioxide - effect of elevated levels of CO{sub 2} on winter wheat under two moisture regimes

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, U.N.; Burnett, R.B.; Kanemasu, E.T.; Kirkham, M.B.

    1987-12-31

    This report deals with the second-year (1985-86) findings of an on going experiment with winter wheat (Triticum aestivum L.) at different carbon dioxide (CO{sub 2}) levels and under two moisture regimes. The results for the first year are given in the U.S. Department of Energy, Carbon Dioxide Research Division Response of Vegetation to Carbon Dioxide. The purpose of the second year`s experiment was to verify the results of 1984-85. However, based on the performance and the results of 1984-85 experiments, a few modifications were made.

  17. Snowpack redistribution, vegetation feedbacks, and advective heat transport controls on ground thermal regimes and hydrologic response in zero-order hillslope drainage features

    Science.gov (United States)

    Rushlow, C. R.; Godsey, S.; Sawyer, A. H.

    2017-12-01

    The impact of intensification of the Arctic hydrologic cycle depends on regional and local changes in precipitation, evaporation, and ground thaw. Upland Arctic hillslope hydrology may differ from responses in other Arctic systems because of changes in hydrologic connectivity and ground thermal response to warming. Here we examine hydrologic and ground thermal patterns from six zero-order hillslope features called water tracks on Alaska's North Slope. We find that water tracks' hydrologic response is slower than that of nearby streams and rivers, suggesting that water tracks are responsible for the prolonged summer flood response in larger water bodies rather than the immediate post-storm response as previously expected. We also compare non-water track hillslope and water track ground thermal regimes, and in contrast to water tracks in the High Arctic, we find that the upland water tracks thaw more deeply than non-track hillslope, and remain thawed for up to two months longer than hillslope soils in the winter. Finally, we use the multi-phase model SUTRA-ICE to examine the relative roles of varying winter snowpack thickness, vegetation feedbacks on ground thermal characteristics, and advective heat transport on the observed ground thermal regimes. Wind redistributes snow from non-track hillslopes into water tracks because of slight topographic depressions and differences in vegetation characteristics in the water tracks. These deeper snowpacks can better insulate the ground from cold winter air temperatures. Past work has suggested that advective heat transport in Arctic systems is minimal because of low hydraulic conductivity below a shallow organic soil horizon. However, we explore whether the persistence of flows for weeks or months longer in water tracks than non-track hillslopes may lead to significant advective heat transport in these systems.

  18. MICROCLIMATIC RESPONSES OF PLANT COMMUNITIES TO CLIMATIC CHANGES: A STUDY CASE IN THE MEDITERRANEAN COASTAL VEGETATION NEAR ROME

    Directory of Open Access Journals (Sweden)

    S. GUIDOTTI

    2010-04-01

    Full Text Available The aim of this study is to investigate the microclimates of the different plant communities in the Castelporziano Estate to identify changes at short and medium time, caused by interacting factors at local scale like anthropic disturbance, climatic change and territory management. Air temperature and humidity, soil temperature and PAR (Photosynthetic Active Radiation were monthly monitored. Measurements were taken in 21 stations, 6 of which along a transect in the vegetation of the dunes and the other 15 stations in forest associations. The dataset have been processed using different statistical treatments: (1 analysis of variance to evaluate the homeostatic capacity of the different communities; (2 analysis of microclimatic deviations values from mesoclimatic data, represented by Castelporziano Estate meteo-climatic stations, to detect microclimatic differences; (3 Multivariate Cluster Analysis to classify the different microclimates. Three main results were obtained: (1 comparison between microclimatic parameters measured during 2007-2008 and previous ones (2003 showed a general tendency of all forest types to shift towards xerophile conditions: air humidity decreased in a large percentage (20%. The woodland with major risk is the Lauro-Carpinetum that looses the 18% of air humidity in a very short period (5 years; (2 vegetation of the dunes displays homeostatic capacity in relationship with structural complexity increasing from pioneer communities of Cakiletum maritimae to mature stands of Viburno- Quercetum ilicis; (3 Cluster Analysis, performed on microclimatic data, allowed to classify vegetation in three different groups, confirming the same patterns obtained by floristic composition. Microclimate resulted a valid and robust tool to detect the ecological status of species and communities, and to follow their temporal changes.

  19. MICROCLIMATIC RESPONSES OF PLANT COMMUNITIES TO CLIMATIC CHANGES: A STUDY CASE IN THE MEDITERRANEAN COASTAL VEGETATION NEAR ROME

    Directory of Open Access Journals (Sweden)

    S. PIGNATTI

    2010-01-01

    Full Text Available The aim of this study is to investigate the microclimates of the different plant communities in the Castelporziano Estate to identify changes at short and medium time, caused by interacting factors at local scale like anthropic disturbance, climatic change and territory management. Air temperature and humidity, soil temperature and PAR (Photosynthetic Active Radiation were monthly monitored. Measurements were taken in 21 stations, 6 of which along a transect in the vegetation of the dunes and the other 15 stations in forest associations. The dataset have been processed using different statistical treatments: (1 analysis of variance to evaluate the homeostatic capacity of the different communities; (2 analysis of microclimatic deviations values from mesoclimatic data, represented by Castelporziano Estate meteo-climatic stations, to detect microclimatic differences; (3 Multivariate Cluster Analysis to classify the different microclimates. Three main results were obtained: (1 comparison between microclimatic parameters measured during 2007-2008 and previous ones (2003 showed a general tendency of all forest types to shift towards xerophile conditions: air humidity decreased in a large percentage (20%. The woodland with major risk is the Lauro-Carpinetum that looses the 18% of air humidity in a very short period (5 years; (2 vegetation of the dunes displays homeostatic capacity in relationship with structural complexity increasing from pioneer communities of Cakiletum maritimae to mature stands of Viburno- Quercetum ilicis; (3 Cluster Analysis, performed on microclimatic data, allowed to classify vegetation in three different groups, confirming the same patterns obtained by floristic composition. Microclimate resulted a valid and robust tool to detect the ecological status of species and communities, and to follow their temporal changes.

  20. Spatiotemporal Dynamics in Vegetation GPP over the Great Khingan Mountains Using GLASS Products from 1982 to 2015

    Directory of Open Access Journals (Sweden)

    Ling Hu

    2018-03-01

    Full Text Available Gross primary productivity (GPP is an important parameter that represents the productivity of vegetation and responses to various ecological environments. The Greater Khingan Mountain (GKM is one of the most important state-owned forest bases, and boreal forests, including the largest primeval cold-temperature bright coniferous forest in China, are widely distributed in the GKM. This study aimed to reveal spatiotemporal vegetation variations in the GKM on the basis of GPP products that were generated by the Global LAnd Surface Satellite (GLASS program from 1982 to 2015. First, we explored the spatiotemporal distribution of vegetation across the GKM. Then we analyzed the relationships between GPP variation and driving factors, including meteorological elements, growing season length (GSL, and Fraction of Photosynthetically Active Radiation (FPAR, to investigate the dominant factor for GPP dynamics. Results demonstrated that (1 the spatial distribution of accumulated GPP (AG in spring, summer, autumn, and the growing season varied due to three main reasons: understory vegetation, altitude, and land cover; (2 interannual AG in summer, autumn, and the growing season significantly increased at the regional scale during the past 34 years under climate warming and drying; (3 interannual changes of accumulated GPP in the growing season (AGG at the pixel scale displayed a rapid expansion in areas with a significant increasing trend (p < 0.05 during the period of 1982–2015 and this trend was caused by the natural forest protection project launched in 1998; and finally, (4 an analysis of driving factors showed that daily sunshine duration in summer was the most important factor for GPP in the GKM and this is different from previous studies, which reported that the GSL plays a crucial role in other areas.

  1. Consumption of fruit and vegetables and risk of frailty: a dose-response analysis of 3 prospective cohorts of community-dwelling older adults.

    Science.gov (United States)

    García-Esquinas, Esther; Rahi, Berna; Peres, Karine; Colpo, Marco; Dartigues, Jean-François; Bandinelli, Stefania; Feart, Catherine; Rodríguez-Artalejo, Fernando

    2016-07-01

    Consuming fruit and vegetables (FVs) may protect against frailty, but to our knowledge no study has yet assessed their prospective dose-response relation. We sought to examine the dose-response association between FV consumption and the risk of frailty in older adults. Data were taken from 3 independent cohorts of community-dwelling older adults: the Seniors-ENRICA (Study on Nutrition and Cardiovascular Risk Factors in Spain) cohort (n = 1872), Three-City (3C) Bordeaux cohort (n = 581), and integrated multidisciplinary approach cohort (n = 473). Baseline food consumption was assessed with a validated computerized diet history (Seniors-ENRICA) or with a food-frequency questionnaire (3C Bordeaux and AMI). In all cohorts, incident frailty was assessed with the use of the Fried criteria. Results across cohorts were pooled with the use of a random-effects model. During a mean 2.5-y follow-up, 300 incident frailty cases occurred. Fully adjusted models showed that the pooled ORs (95% CIs) of incident frailty comparing participants who consumed 1, 2, or ≥3 portions of fruit/d to those with no consumption were, respectively, 0.59 (0.27, 0.90), 0.58 (0.29, 0.86), and 0.48 (0.20, 0.75), with a P-trend of 0.04. The corresponding values for vegetables were 0.69 (0.42, 0.97), 0.56 (0.35, 0.77), and 0.52 (0.13, 0.92), with a P-trend consumption of fruit and risk of exhaustion, low physical activity, and slow walking speed, whereas the consumption of vegetables was associated with a decreased risk of exhaustion and unintentional weight loss. Among community-dwelling older adults, FV consumption was associated with a lower short-term risk of frailty in a dose-response manner, and the strongest association was obtained with 3 portions of fruit/d and 2 portions of vegetables/d. © 2016 American Society for Nutrition.

  2. Urban outdoor water use and response to drought assessed through mobile energy balance and vegetation greenness measurements

    Science.gov (United States)

    Liang, L. L.; Anderson, R. G.; Shiflett, S. A.; Jenerette, G. D.

    2017-08-01

    Urban vegetation provides many highly valued ecosystem services but also requires extensive urban water resources. Increasingly, cities are experiencing water limitations and managing outdoor urban water use is an important concern. Quantifying the water lost via evapotranspiration (ET) is critical for urban water management and conservation, especially in arid or semi-arid regions. In this study, we deployed a mobile energy balance platform to measure evaporative fraction throughout Riverside, California, a warm, semi-arid, city. We observed the relationship between evaporative fraction and satellite derived vegetation index across 29 sites, which was then used to map whole-city ET for a representative mid-summer period. Resulting ET distributions were strongly associated with both neighborhood population density and income. By comparing 2014 and 2015 summer-period water uses, our results show 7.8% reductions in evapotranspiration, which were also correlated with neighborhood demographic characteristics. Our findings suggest a mobile energy balance measurement platform coupled with satellite imagery could serve as an effective tool in assessing the outdoor water use at neighborhood to whole city scales.

  3. PHYSIOLOGICAL AND PHENOLOGICAL VEGETATIVE RESPONSES OF Campomanesia adamantium (Cambess O. Berg (Myrtaceae TO THE HYDRIC SEASONALITY OF RUPESTRIAN FIELDS

    Directory of Open Access Journals (Sweden)

    Vinícius Coelho Kuster

    Full Text Available ABSTRACT The rupestrian fields have two well-defined seasons throughout the year, with rainfall rates that reflect the rainy and dry seasons. This distinction in water availability affects the morphology, physiology and chemistry of plants, among other characteristics. Thus, it is aimed at evaluating the leaf water status, vegetative phenology and photosynthetic behavior of Campomanesia adamantium from a rupestrian field during the dry and rainy season. The study was conducted in Serra do Cipó, Minas Gerais, Brazil. From November 2011 to November 2012 it was examined vegetative phenophases and development of six individuals. Water potential, stomatal conductance, quantum yield and concentration of pigments were evaluated from four leaves of 3rd node per individual (n = 4-5 in the dry and rainy seasons. C. adamantium is an evergreen type and presents mature leaves and sprouting throughout the year. This species showed strategies that reduce water loss during the dry season in rupestrian field, such as decrease in stomatal conductance throughout the day, also associated with a reduction in leaf water potential. However, low water availability did not affect the photosynthetic performance, which enables the construction of new leaves and renovation of the crown even in dry periods. Finally, little reduction in the values of Fv/Fm throughout the day and increase the values of ΔF/Fm' in warmer times, both in the dry season, reiterates the ability of C. adamantium to adjust their physiology to seasonal water deficit of the rupestrian field.

  4. The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Science.gov (United States)

    Sánchez Goñi, María Fernanda; Desprat, Stéphanie; Daniau, Anne-Laure; Bassinot, Frank C.; Polanco-Martínez, Josué M.; Harrison, Sandy P.; Allen, Judy R. M.; Anderson, R. Scott; Behling, Hermann; Bonnefille, Raymonde; Burjachs, Francesc; Carrión, José S.; Cheddadi, Rachid; Clark, James S.; Combourieu-Nebout, Nathalie; Mustaphi, Colin. J. Courtney; Debusk, Georg H.; Dupont, Lydie M.; Finch, Jemma M.; Fletcher, William J.; Giardini, Marco; González, Catalina; Gosling, William D.; Grigg, Laurie D.; Grimm, Eric C.; Hayashi, Ryoma; Helmens, Karin; Heusser, Linda E.; Hill, Trevor; Hope, Geoffrey; Huntley, Brian; Igarashi, Yaeko; Irino, Tomohisa; Jacobs, Bonnie; Jiménez-Moreno, Gonzalo; Kawai, Sayuri; Kershaw, A. Peter; Kumon, Fujio; Lawson, Ian T.; Ledru, Marie-Pierre; Lézine, Anne-Marie; Liew, Ping Mei; Magri, Donatella; Marchant, Robert; Margari, Vasiliki; Mayle, Francis E.; Merna McKenzie, G.; Moss, Patrick; Müller, Stefanie; Müller, Ulrich C.; Naughton, Filipa; Newnham, Rewi M.; Oba, Tadamichi; Pérez-Obiol, Ramón; Pini, Roberta; Ravazzi, Cesare; Roucoux, Katy H.; Rucina, Stephen M.; Scott, Louis; Takahara, Hikaru; Tzedakis, Polichronis C.; Urrego, Dunia H.; van Geel, Bas; Valencia, B. Guido; Vandergoes, Marcus J.; Vincens, Annie; Whitlock, Cathy L.; Willard, Debra A.; Yamamoto, Masanobu

    2017-09-01

    Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard-Oeschger (D-O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D-O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73-15 ka) with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U/230Th, optically stimulated luminescence (OSL), 40Ar/39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at https://doi.org/10.1594/PANGAEA.870867.

  5. Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa

    Science.gov (United States)

    Berke, Melissa A.; Johnson, Thomas C.; Werne, Josef P.; Grice, Kliti; Schouten, Stefan; Sinninghe Damsté, Jaap S.

    2012-11-01

    New molecular proxies of temperature and hydrology are helping to constrain tropical climate change and elucidate possible forcing mechanisms during the Holocene. Here, we examine a ˜14,000 year record of climate variability from Lake Victoria, East Africa, the world's second largest freshwater lake by surface area. We determined variations in local hydroclimate using compound specific δD of terrestrial leaf waxes, and compared these results to a new record of temperature utilizing the TEX86 paleotemperature proxy, based on aquatic Thaumarchaeotal membrane lipids. In order to assess the impact of changing climate on the terrestrial environment, we generated a record of compound specific δ13C from terrestrial leaf waxes, a proxy for ecosystem-level C3/C4 plant abundances, and compared the results to previously published pollen-inferred regional vegetation shifts. We observe a general coherence between temperature and rainfall, with a warm, wet interval peaking ˜10-9 ka and subsequent gradual cooling and drying over the remainder of the Holocene. These results, particularly those of rainfall, are in general agreement with other tropical African climate records, indicating a somewhat consistent view of climate over a wide region of tropical East Africa. The δ13C record from Lake Victoria leaf waxes does not appear to reflect changes in regional climate or vegetation. However, palynological analyses document an abrupt shift from a Poaceae (grasses)-dominated ecosystem during the cooler, arid late Pleistocene to a Moraceae-dominated (trees/shrubs) landscape during the warm, wet early Holocene. We theorize that these proxies are reflecting vegetation in different locations around Lake Victoria. Our results suggest a predominantly insolation-forced climate, with warm, wet conditions peaking at the maximum interhemispheric seasonal insolation contrast, likely intensifying monsoonal precipitation, while maximum aridity coincides with the rainy season insolation and the

  6. Altering Their Ecological Niche: Investigating the Response of Avian Migrants to Changes in Vegetation Phenology at Northern Latitudes

    Science.gov (United States)

    Budde, M. E.; Ward, D. H.; Ely, C. R.; Handel, C. M.; Hupp, J. W.

    2009-12-01

    The impacts of global climate change are expected to be most severe at high northern latitudes. There is now strong evidence to support the hypothesis that such changes have had dramatic effects on the phenology of spring vegetative<