WorldWideScience

Sample records for understory species arnica

  1. CYTOTOXICITY OF FLAVONOIDS AND SESQUITERPENE LACTONES FROM ARNICA SPECIES AGAINST THE GLC(4) AND THE COLO-320 CELL-LINES

    NARCIS (Netherlands)

    WOERDENBAG, HJ; MERFORT, [No Value; PASSREITER, CM; SCHMIDT, TJ; WILLUHN, G; VANUDEN, W; PRAS, N; KAMPINGA, HH; KONINGS, AWT

    1994-01-01

    The cytotoxicity of 21 flavonoids and 5 sesquiterpene lactones, as present in Arnica species, was studied in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. Following continuous incubation,

  2. Monoterpene emissions from an understory species, Pteridium aquilinum

    Science.gov (United States)

    Madronich, Monica B.; Greenberg, James P.; Wessman, Carol A.; Guenther, Alex B.

    2012-07-01

    Monoterpene emissions from the dominant understory species Pteridium aquilinum (Bracken fern) in a mixed temperate forest were measured in the field during the summers of 2006, 2007 and 2008. The results showed that Bracken fern emitted monoterpenes at different rates depending if the plants were located in the understory or in open areas. Understory plants emitted monoterpene levels ranging from 0.002 to 13 μgC gdw-1 h-1. Open area plants emitted monoterpene levels ranging from 0.005 to 2.21 μgC gdw-1 h-1. During the summer of 2008 greenhouse studies were performed to complement the field studies. Only 3% of the greenhouse Bracken fern plants emitted substantial amounts of monoterpenes. The average emission, 0.15 μgC gdw-1 h-1 ± 0.9 μgC gdw-1 h-1, was much lower than that observed in the field. The factors controlling monoterpene emissions are not clear, but this study provides evidence of the potential importance of understory vegetation to ecosystem total hydrocarbon emissions and emphasizes the need for longer-term field studies.

  3. Understory species richness in an urban forest fragment, Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Cristina Ramos de Souza

    2009-09-01

    Full Text Available This study characterizes the floristic composition of the understory of Parque Estadual de Dois Irmãos, (08°01’15.1”S and 34°56’3.2”W, an area of about 370ha characterized as a lowland ombrophilous dense forest. The study included individuals with heights of up to 4.0m, such as treelets, shrubs, sub-bushes and terricolous herb plants, in fertile conditions. The collections were made every two weeks along a period of 24 months. A total of 108 species, belonging to 86 genera and 49 families, were recorded. The families with the highest number of species were Rubiaceae (14, Fabaceae (9 Melastomataceae (8, Asteraceae (8, Myrtaceae (6, and Poaceae (4. The Fabaceae, Melastomataceae, Myrtaceae and Rubiaceae presented the highest number of understory species in this fragment. Generally, among the studies made in the Atlantic forest areas in Pernambuco, the presence of a set of tree species common to these forests is evidenced.

  4. Spatial Autocorrelation Patterns of Understory Plant Species in a Subtropical Rainforest at Lanjenchi, Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Su-Wei Fan

    2010-06-01

    Full Text Available Many studies described relationships between plant species and intrinsic or exogenous factors, but few quantified spatial scales of species patterns. In this study, quantitative methods were used to explore the spatial scale of understory species (including resident and transient species, in order to identify the influential factors of species distribution. Resident species (including herbaceous species, climbers and tree ferns < 1 m high were investigated on seven transects, each 5-meter wide and 300-meter long, at Lanjenchi plot in Nanjenshan Reserve, southern Taiwan. Transient species (seedling of canopy, subcanopy and shrub species < 1 cm diameter at breast height were censused in three of the seven transects. The herb coverage and seedling abundance were calculated for each 5 × 5 m quadrat along the transects, and Moran’s I and Galiano’s new local variance (NLV indices were then used to identify the spatial scale of autocorrelation for each species. Patterns of species abundance of understory layer varied among species at fine scale within 50 meters. Resident species showed a higher proportion of significant autocorrelation than the transient species. Species with large size or prolonged fronds or stems tended to show larger scales in autocorrelation. However, dispersal syndromes and fruit types did not relate to any species’ spatial patterns. Several species showed a significant autocorrelation at a 180-meter class which happened to correspond to the local replicates of topographical features in hilltops. The spatial patterns of understory species at Lanjenchi plot are mainly influenced by species’ intrinsic traits and topographical characteristics.

  5. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa

    Science.gov (United States)

    Champagne, Juilette; Paine, C. E. Timothy; Schoolmaster, Donald; Stejskal, Robert; Volařík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim

    2016-01-01

    Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory.

  6. Contrasting structure and composition of the understory in species-rich tropical rain forests.

    Science.gov (United States)

    LaFrankie, James V; Ashton, Peter S; Chuyong, George B; Co, Leonardo; Condit, Richard; Davies, Stuart J; Foster, Robin; Hubbell, Stephen P; Kenfack, David; Lagunzad, Daniel; Losos, Elizabeth C; Nor, Noor Supardi Md; Tan, Sylvester; Thomas, Duncan W; Valencia, Renato; Villa, Gorky

    2006-09-01

    In large samples of trees > or = 1 cm dbh (more than 1 million trees and 3000 species), in six lowland tropical forests on three continents, we assigned species with >30 individuals to one of six classes of stature at maturity (SAM). We then compared the proportional representation of understory trees (1-2 cm dbh) among these classes. The understory of the three Asian sites was predominantly composed of the saplings of large-canopy trees whereas the African and American sites were more richly stocked with trees of the smaller SAM classes. Differences in class representation were related to taxonomic families that were present exclusively in one continent or another. Families found in the Asian plots but not in the American plot (e.g., Dipterocarpaceae, Fagaceae) were predominantly species of the largest SAM classes, whereas families exclusive to the American plots (e.g., Melastomataceae sensu stricto, Piperaceae, and Malvaceae [Bombacacoidea]) were predominantly species of small classes. The African plot was similar to Asia in the absence of those American families rich in understory species, while similar to America in lacking the Asian families rich in canopy species. The numerous understory species of Africa were chiefly derived from families shared with Asia and/or America. The ratio of saplings (1-2 cm dbh) to conspecific canopy trees (>40 cm dbh) was lower in American plots than in the Asian plots. Possible explanations for these differences include phenology, moisture and soil fertility regimes, phyletic constraints, and the role of early successional plants in forest development. These results demonstrate that tropical forests that appear similar in tree number, basal area, and the family taxonomy of canopy trees nonetheless differ in ecological structure in ways that may impact the ecology of pollinators, dispersers, and herbivores and might reflect fundamental differences in canopy tree regeneration.

  7. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in 4 northern hardwood tree species

    International Nuclear Information System (INIS)

    Sefcik, L.T.; Zak, D.R.; Ellsworth, D.S.

    2006-01-01

    Stimulation of photosynthesis in response to elevated carbon dioxide (CO 2 ) varies among tree species and species groups. In this study, seedling responses to elevated atmospheric carbon dioxide (CO 2 ) concentrations and solar irradiance over 2 growing seasons were investigated for shade tolerant Acer saccharum Marsh.; Fagus grandifolia J.F. Ehrh; and shade-intolerant Prunus serotina. Seedlings were exposed to a combination of elevated and ambient concentrations of CO 2 and understory shade in open-top chambers placed in a forest understory. It was observed that the elevated CO 2 treatment increased mean light-saturated net photosynthetic rates by 63 per cent in the shade-tolerant species and 67 per cent in the shade-intolerant species. When measured at the elevated CO 2 , long-term enhancement of photosynthesis was 10 per cent lower than the instantaneous enhancement observed in ambient-CO 2 -grown plants. As the growth irradiance increased, proportional enhancement due to elevated CO 2 decreased from 97 per cent for plants grown in deep shade to 47 per cent for plants grown in moderate shade. Results indicated that in nitrogen (N) limited northern temperate forests, trees grown in deep shade may display greater photosynthetic gains from a CO 2 enriched atmosphere than trees growing in more moderate shade, due to greater down-regulation. It was concluded that if elevated CO 2 levels promote the survival of shade-intolerant species in dim understory light, the future composition and dynamics of successional forest communities may be altered. 70 refs., 2 tabs., 3 figs

  8. Detecting fragmentation extinction thresholds for forest understory plant species in peninsular Spain.

    Directory of Open Access Journals (Sweden)

    Marta Rueda

    Full Text Available Ecological theory predicts that fragmentation aggravates the effects of habitat loss, yet empirical results show mixed evidences, which fail to support the theory instead reinforcing the primary importance of habitat loss. Fragmentation hypotheses have received much attention due to their potential implications for biodiversity conservation, however, animal studies have traditionally been their main focus. Here we assess variation in species sensitivity to forest amount and fragmentation and evaluate if fragmentation is related to extinction thresholds in forest understory herbs and ferns. Our expectation was that forest herbs would be more sensitive to fragmentation than ferns due to their lower dispersal capabilities. Using forest cover percentage and the proportion of this percentage occurring in the largest patch within UTM cells of 10-km resolution covering Peninsular Spain, we partitioned the effects of forest amount versus fragmentation and applied logistic regression to model occurrences of 16 species. For nine models showing robustness according to a set of quality criteria we subsequently defined two empirical fragmentation scenarios, minimum and maximum, and quantified species' sensitivity to forest contraction with no fragmentation, and to fragmentation under constant forest cover. We finally assessed how the extinction threshold of each species (the habitat amount below which it cannot persist varies under no and maximum fragmentation. Consistent with their preference for forest habitats probability occurrences of all species decreased as forest cover contracted. On average, herbs did not show significant sensitivity to fragmentation whereas ferns were favored. In line with theory, fragmentation yielded higher extinction thresholds for two species. For the remaining species, fragmentation had either positive or non-significant effects. We interpret these differences as reflecting species-specific traits and conclude that although

  9. Short-term light and leaf photosynthetic dynamics affect estimates of daily understory photosynthesis in four tree species.

    Science.gov (United States)

    Naumburg, Elke; Ellsworth, David S

    2002-04-01

    Instantaneous measurements of photosynthesis are often implicitly or explicitly scaled to longer time frames to provide an understanding of plant performance in a given environment. For plants growing in a forest understory, results from photosynthetic light response curves in conjunction with diurnal light data are frequently extrapolated to daily photosynthesis (A(day)), ignoring dynamic photosynthetic responses to light. In this study, we evaluated the importance of two factors on A(day) estimates: dynamic physiological responses to photosynthetic photon flux density (PPFD); and time-resolution of the PPFD data used for modeling. We used a dynamic photosynthesis model to investigate how these factors interact with species-specific photosynthetic traits, forest type, and sky conditions to affect the accuracy of A(day) predictions. Increasing time-averaging of PPFD significantly increased the relative overestimation of A(day) similarly for all study species because of the nonlinear response of photosynthesis to PPFD (15% with 5-min PPFD means). Depending on the light environment characteristics and species-specific dynamic responses to PPFD, understory tree A(day) can be overestimated by 6-42% for the study species by ignoring these dynamics. Although these overestimates decrease under cloudy conditions where direct sunlight and consequently understory sunfleck radiation is reduced, they are still significant. Within a species, overestimation of A(day) as a result of ignoring dynamic responses was highly dependent on daily sunfleck PPFD and the frequency and irradiance of sunflecks. Overall, large overestimates of A(day) in understory trees may cause misleading inferences concerning species growth and competition in forest understories with sunlight. We conclude that comparisons of A(day) among co-occurring understory species in deep shade will be enhanced by consideration of sunflecks by using high-resolution PPFD data and understanding the physiological

  10. Linking dominant Hawaiian tree species to understory development in recovering pastures via impacts on soils and litter

    Science.gov (United States)

    Yelenik, Stephanie G.

    2017-01-01

    Large areas of tropical forest have been cleared and planted with exotic grass species for use as cattle pasture. These often remain persistent grasslands after grazer removal, which is problematic for restoring native forest communities. It is often hoped that remnant and/or planted trees can jump-start forest succession; however, there is little mechanistic information on how different canopy species affect community trajectories. To investigate this, I surveyed understory communities, exotic grass biomass, standing litter pools, and soil properties under two dominant canopy trees—Metrosideros polymorpha (‘ōhi‘a) and Acacia koa (koa)—in recovering Hawaiian forests. I then used structural equation models (SEMs) to elucidate direct and indirect effects of trees on native understory. Native understory communities developed under ‘ōhi‘a, which had larger standing litter pools, lower soil nitrogen, and lower exotic grass biomass than koa. This pattern was variable, potentially due to historical site differences and/or distance to intact forest. Koa, in contrast, showed little understory development. Instead, data suggest that increased soil nitrogen under koa leads to high grass biomass that stalls native recruitment. SEMs suggested that indirect effects of trees via litter and soils were as or more important than direct effects for determining native cover. It is suggested that diverse plantings which incorporate species that have high carbon to nitrogen ratios may help ameliorate the negative indirect effects of koa on natural understory regeneration.

  11. Resource Limitations Influence Growth and Vigor of Idaho Fescue, a Common Understory Species in Pacific Northwest Ponderosa Pine Forests

    Directory of Open Access Journals (Sweden)

    Craig A. Carr

    2016-12-01

    Full Text Available Alterations in under-canopy resource availability associated with elevated ponderosa pine (Pinus ponderosa Dougl. abundance can negatively influence understory vegetation. Experimental evidence linking under-canopy resource availability and understory vegetation is scarce. Yet this information would be beneficial in developing management strategies to recover desired understory species. We tested the effects of varying nitrogen (N and light availability on Idaho fescue (Festuca idahoensis Elmer, the dominant understory species in ponderosa pine/Idaho fescue plant associations in eastern Oregon. In a greenhouse experiment, two levels of N (50 kg∙N∙ha−1 and 0 kg∙N∙ha−1 and shade (80% shade and 0% shade were applied in a split-plot design to individual potted plants grown in soil collected from high abundance pine stands. Plants grown in unshaded conditions produced greater root (p = 0.0027 and shoot (p = 0.0017 biomass and higher cover values (p = 0.0378 compared to those in the shaded treatments. The addition of N had little effect on plant growth (p = 0.1602, 0.5129, and 0.0853 for shoot biomass, root biomass, and cover, respectively, suggesting that soils in high-density ponderosa pine stands that lack understory vegetation were not N deficient and Idaho fescue plants grown in these soils were not N limited. Management activities that increase under-canopy light availability will promote the conditions necessary for Idaho fescue recovery. However, successful restoration may be constrained by a lack of residual fescue or the invasion of more competitive understory vegetation.

  12. Waste heaps left by historical Zn-Pb ore mining are hotspots of species diversity of beech forest understory vegetation.

    Science.gov (United States)

    Woch, Marcin W; Stefanowicz, Anna M; Stanek, Małgorzata

    2017-12-01

    Metalliferous mining and smelting industries are associated with very high levels of heavy metal(loid) contamination of the environment. Heavy metals have been proved to significantly influence the species diversity and composition of grassland communities, but little is known on their effects on forest understory vegetation. Therefore, the aim of this study was to investigate the effects of the presence of small heaps of waste rock left by historical Zn-Pb ore mining on understory vegetation. The heaps are scattered over vast areas of beech forests in southern Poland. Three types of study plots were established: (1) on waste heaps themselves, (2) in their vicinity (5-10m from the foot of the heaps, with no waste rock but potentially influenced by the heaps through drainage water), and (3) at least 100m from the foot of the heaps (pseudo-control). In all plots vegetation parameters, i.e., plant species number, cover and community composition, life forms and strategies, as well as basic soil properties were assessed. Although the heaps contained high concentrations of metals, namely Cd, Pb and Zn, they were characterised by higher cover and diversity of understory vegetation, including ancient forest and endangered species, in comparison to their surroundings. They were also characterised by the distinct species composition of their plant communities. This might have resulted from the beneficial influence of high pH and Ca content originating from waste rock composed of dolomite and calcite, as well as from increased habitat heterogeneity, e.g. soil skeleton and steeper slopes. Another important factor influencing the richness and composition of understory was tree cover, which relates to the light transmissibility of the canopy. Our study proved that the disturbance brought about by the former mining and processing of metal ores led to the formation of species-rich understory with high frequency and cover of naturally-valuable species. Copyright © 2017 Elsevier B

  13. Season and light affect constitutive defenses of understory shrub species against folivorous insects

    Science.gov (United States)

    Karolewski, Piotr; Giertych, Marian J.; Żmuda, Michał; Jagodziński, Andrzej M.; Oleksyn, Jacek

    2013-11-01

    Understory shrubs contribute to overall species diversity, providing habitat and forage for animals, influence soil chemistry and forest microclimate. However, very little is known about the chemical defense of various shrub species against folivorous insects. Using six shrub species, we tested how seasonal changes and light conditions affect their constitutive defense to insect damage. We monitored leaf perforation, concentrations of total phenols, condensed tannins, nitrogen (N), and total nonstructural carbohydrates (TNC). Leaf damage caused by insects was low in Sambucus nigra, Cornus sanguinea, and Frangula alnus, intermediate in Corylus avellana and Prunus serotina, and high in Prunus padus. Leaves of all the species, when growing in high light conditions, had high concentrations of defense metabolites. Except for C. avellana, leaves of the other shrub species growing in full sun were less injured than those in shade. This may be due to higher concentrations of defense metabolites and lower concentrations of nitrogen. Similar patterns of the effects of light on metabolites studied and N were observed for leaves with varying location within the crown of individual shrubs (from the top of the south direction to the bottom of the north), as for leaves from shrubs growing in full sun and shrubs in the shade of canopy trees. A probable cause of the greater damage of more sunlit leaves of C. avellana was the fact that they were herbivorized mostly by Altica brevicollis, a specialist insect that prefers plant tissues with a high TNC level and is not very sensitive to a high level of phenolic compounds.

  14. Arnica montana L

    NARCIS (Netherlands)

    Andreas, Ch.H.

    1958-01-01

    Een eventuele veelvormigheid van de wolverlei, Arnica montana L., heeft in ons land, voor zover mij bekend, geen aanleiding gegeven tot een onderverdeling dezer soort. In Portugal is dat wel het geval; A. de Bolos beschreef in 1948 in het tijdschrift Agronomia Lusitanica 2 ondersoorten voor het

  15. Trait variation and functional diversity maintenance of understory herbaceous species coexisting along an elevational gradient in Yulong Mountain, Southwest China

    Directory of Open Access Journals (Sweden)

    Yahuang Luo

    2016-12-01

    Full Text Available Characterizing trait variation across different ecological scales in plant communities has been viewed as a way to gain insights into the mechanisms driving species coexistence. However, little is known about how changes in intraspecific and interspecific traits across sites influence species richness and community assembly, especially in understory herbaceous communities. Here we partitioned the variance of four functional traits (maximum height, leaf thickness, leaf area and specific leaf area across four nested biological scales: individual, species, plot, and elevation to quantify the scale-dependent distributions of understory herbaceous trait variance. We also integrated the comparison of the trait variance ratios to null models to investigate the effects of different ecological processes on community assembly and functional diversity along a 1200-m elevational gradient in Yulong Mountain. We found interspecific trait variation was the main trait variation component for leaf traits, although intraspecific trait variation ranged from 10% to 28% of total variation. In particular, maximum height exhibited high plasticity, and intraspecific variation accounted for 44% of the total variation. Despite the fact that species composition varied across elevation and species richness decreased dramatically along the elevational gradient, there was little variance at our largest (elevation scale in leaf traits and functional diversity remained constant along the elevational gradient, indicating that traits responded to smaller scale influences. External filtering was only observed at high elevations. However, strong internal filtering was detected along the entire elevational gradient in understory herbaceous communities, possibly due to competition. Our results provide evidence that species coexistence in understory herbaceous communities might be structured by differential niche-assembled processes. This approach –– integrating different

  16. Soil properties and understory herbaceous biomass in forests of three species of Quercus in Northeast Portugal

    Directory of Open Access Journals (Sweden)

    Marina Castro

    2014-12-01

    Full Text Available Aim of study: This paper aims to characterize some soil properties within the first 25 cm of the soil profile and the herbaceous biomass in Quercus forests, and the possible relationships between soil properties and understory standing biomass.Area of study: Three monoespecific Quercus forests (Q. suber L., Q. ilex subsp. rotundifolia Lam. and Q. pyrenaica Willd in NE Portugal.Material and methods: During 1999 and 2000 soil properties (pH-KCl, total soil nitrogen (N, soil organic carbon (SOC, C/N ratio, available phosphorus (P, and available potassium (K and herbaceous biomass production of three forest types: Quercus suber L., Quercus ilex subsp. rotundifolia Lam. and Quercus pyrenaica Willd were studied.Main results: The results showed a different pattern of soil fertility (N, SOC, P, K in Quercus forests in NE of Portugal. The C/N ratio and the herbaceous biomass confirmed this pattern. Research highlights: There is a pattern of Quercus sp. distribution that correlates with different soil characteristics by soil characteristics in NE Portugal. Q. pyrenaica ecosystems were found in more favoured areas (mesic conditions; Q. rotundifolia developed in nutrient-poor soils (oligotrophic conditions; and Q. suber were found in intermediate zones.Keywords: fertility; biomass; C/N ratio; cork oak; holm oak; pyrenean oak.

  17. Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    Directory of Open Access Journals (Sweden)

    Maria S Smith

    2013-11-01

    Full Text Available We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons.

  18. Photosynthetic responses of forest understory tree species to long-term exposure to elevated carbon dioxide concentration at the Duke Forest FACE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Springer, C.J. [West Virginia Univ., Morgantown, WV (United States); Thomas, R.B. [Kansas Univ., Lawrence, KS (United States). Dept. of Ecology and Evolutionary Biology

    2007-01-15

    Tree species growing within the forest understory contribute to the overall carbon balance of forest ecosystems in addition to representing many of the species that occur in the overstory of mature ecosystems. This article described a 7 year study investigating the responses of forest understory tree species to increasing concentrations of atmospheric carbon dioxide (CO{sub 2}). The study examined the photosynthetic responses of Acer rubrum L., Carya glabra Mill., Cercis Canadensis L., and Liquidambar styraciflua L. during their seventh year of exposure to elevated CO{sub 2} at the Duke Forest Free Air Carbon Enrichment (FACE) experiment to determine whether photosynthetic down-regulation had occurred, as well as to determine whether the enhancement of photosynthesis observed during the first year of exposure to elevated CO{sub 2} was sustained. The study was conducted to test a previous hypothesis that significant photosynthetic down-regulation would be observed after 7 years of exposure to elevated CO{sub 2}. Photosynthetic CO{sub 2} response and light response curves were measured, as well as chlorophyll fluorescence, chlorophyll concentration and foliar nitrogen (N). Results showed that exposure to elevated CO{sub 2} increased photosynthesis in all species measured after 7 years of treatment. The greatest photosynthetic increase was observed near saturating irradiances. In all species, elevated CO{sub 2} increased electron transport efficiency but did not significantly alter carboxylation efficiency. Quantum yield as estimated by light curves, chlorophyll concentration, and foliar N concentrations was unaffected by elevated CO{sub 2}. It was concluded that there was scant evidence of progressive N limitation of leaf-level processes in the understory species after 7 years of exposure to elevated CO{sub 2} in the experiment. 42 refs., 2 tabs., 4 figs.

  19. Influence of tree species on the herbaceous understory and soil chemical characteristics in a silvopastoral system in semi-arid northeastern Brazil

    Directory of Open Access Journals (Sweden)

    R. S. C. Menezes

    1999-12-01

    Full Text Available Studies from some semi-arid regions of the world have shown the beneficial effect of trees in silvopastoral systems, by promoting the formation of resource islands and increasing the sustainability of the system. No data are available in this respect for tree species of common occurrence in semi-arid Northeastern Brazil. In the present study, conducted in the summer of 1996, three tree species (Zyziphus joazeiro, Spondias tuberosa and Prosopis juliflora: found within Cenchrus ciliaris pastures were selected to evaluate differences on herbaceous understory and soil chemical characteristics between samples taken under the tree canopy and in open grass areas. Transects extending from the tree trunk to open grass areas were established, and soil (0-15 cm and herbaceous understory (standing live biomass in 1 m² plots samples were taken at 0, 25, 50, 100, 150 and 200% of the average canopy radius (average radius was 6.6 ± 0.5, 4.5 ± 0.5, and 5.3 ± 0.8 m for Z. joazeiro, P. juliflora, and S. tuberosa , respectively. Higher levels of soil C, N, P, Ca, Mg, K, and Na were found under the canopies of Z. joazeiro and P. juliflora: trees, as compared to open grass areas. Only soil Mg organic P were higher under the canopies of S. tuberosa trees, as compared to open grass areas. Herbaceous understory biomass was significantly lower under the canopy of S. tuberosa and P. juliflora trees (107 and 96 g m-2, respectively relatively to open grass areas (145 and 194 g m-2. No herbaceous biomass differences were found between Z. joazeiro canopies and open grass areas (107 and 87 g m-2, respectively. Among the three tree species studied, Z. joazeiro was the one that presented the greatest potential for use in a silvopastoral system at the study site, since it had a larger nutrient stock in the soil without negatively affecting herbaceous understory biomass, relatively to open grass areas.

  20. Essential oil of Arnica montana and Arnica chamissonis

    Directory of Open Access Journals (Sweden)

    Ristić Mihailo

    2007-01-01

    Full Text Available The essential oil isolated from flowers of Arnica montana and A chamissonis grown on Tara mountain and neighbourhood of Užice was analyzed. Three samples of A. montana and three of A. chamissonis were tested. The oil was isolated by distillation in a Clevenger type apparatus and analyzed by gas chromatography. The content of the oil was lower than 0.1% (up to 0.08% in all the samples. Among about hundred recorded constituents, 84 were identified and quantified. Sum of contents of identified components ranged between 96.1 and 98.8%. The most abundant constituents of the A. montana oil were p-caryophyllene (31.5-34.6%, germacrene D (12.5-16.3%, trans-a-ionone (3.9-4.3% and decanal (2.7-5.3%, while, in the case of A. chamissonis these were germacrene D (18.0-38.3%, a-pinene (6.6-19.1%, p-cymene (2.9-9.0% and P-caryophyllene (2.7-4.7%. Along with detail chemical analysis of essential oil of these two commercially important herbal drugs it should be noticed that gas chromatographic technique can be used for differentiation of A. montana and A. chamissonis.

  1. Influence of Afforestation on the Species Diversity of the Soil Seed Bank and Understory Vegetation in the Hill-Gullied Loess Plateau, China.

    Science.gov (United States)

    Wang, Ning; Jiao, Juying; Jia, Yanfeng; Wang, Dongli

    2017-10-24

    The Chinese Loess Plateau region has long been suffering from serious soil erosion. Thus, large-scale afforestation has continued during the past decades in order to control soil erosion. Afforestation can dramatically alter nutrient cycles, affect soil-carbon storage, and change hydrology. However, it is unknown how afforestation influences species diversity of the soil seed bank and understory vegetation compared with spontaneous restoration of abandoned land. Forest land with trees planted 30 years ago, abandoned slope land restored spontaneously for 30 years, and the corresponding slopes with remnant natural vegetation were selected as sampling sites. The species richness both in the soil seed bank and vegetation was significantly higher on the afforested slope compared to the spontaneously restored abandoned land. The species similarity between the afforested slope and the remnant slope land was high both in the soil seed bank and standing vegetation compared to the abandoned land. The soil seed bank density varied from 1778 ± 187 to 3896 ± 221 seeds/m², and more than half of it was constituted by annual and biennial species, with no significant difference among sampling habitats. However, the afforested slope had higher seed density of grass and shrub/subshrubs compared to the abandoned slope. The present study indicates that in the study region, characterized by serious soil erosion, afforestation can better facilitate vegetation succession compared to spontaneously restoration of abandoned slope land.

  2. Understory succession in post-agricultural oak plantations

    DEFF Research Database (Denmark)

    Brunet, Jörg; Valtinat, Karin; Mayr, Marian Lajos

    2011-01-01

    The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post-agricultural planta......The herbaceous understory forms the richest stratum in temperate broadleaved forests in terms of plant diversity. Understanding the process of understory succession is thus of critical importance for the development of management guidelines for biodiversity restoration in post...... forested stands, which maintained differences in species composition. The development of a shrub layer seemed to imply a competitive advantage for forest specialists compared to generalist species. For successful recovery of a rich understory, we suggest that post-arable plantations should be established...

  3. Estimating aboveground live understory vegetation carbon in the United States

    Science.gov (United States)

    Johnson, Kristofer D.; Domke, Grant M.; Russell, Matthew B.; Walters, Brian; Hom, John; Peduzzi, Alicia; Birdsey, Richard; Dolan, Katelyn; Huang, Wenli

    2017-12-01

    Despite the key role that understory vegetation plays in ecosystems and the terrestrial carbon cycle, it is often overlooked and has few quantitative measurements, especially at national scales. To understand the contribution of understory carbon to the United States (US) carbon budget, we developed an approach that relies on field measurements of understory vegetation cover and height on US Department of Agriculture Forest Service, Forest Inventory and Analysis (FIA) subplots. Allometric models were developed to estimate aboveground understory carbon. A spatial model based on stand characteristics and remotely sensed data was also applied to estimate understory carbon on all FIA plots. We found that most understory carbon was comprised of woody shrub species (64%), followed by nonwoody forbs and graminoid species (35%) and seedlings (1%). The largest estimates were found in temperate or warm humid locations such as the Pacific Northwest and southeastern US, thus following the same broad trend as aboveground tree biomass. The average understory aboveground carbon density was estimated to be 0.977 Mg ha-1, for a total estimate of 272 Tg carbon across all managed forest land in the US (approximately 2% of the total aboveground live tree carbon pool). This estimate is more than twice as low as previous FIA modeled estimates that did not rely on understory measurements, suggesting that this pool may currently be overestimated in US National Greenhouse Gas reporting.

  4. Effect of removal of hesperis matronalis (Dame's rocket) on species cover of forest understory vegetation in NW indiana

    Science.gov (United States)

    Pavlovic, N.B.; Leicht-Young, S. A.; Frohnapple, K.J.; Grundel, R.

    2009-01-01

    Exotic invasive plant species differ in their effects on indigenous vegetation as evidenced by research evaluating community response to their removal. We used a removal approach to quantify the response of a mesic woodland to the removal versus retention of an invasive plant, Hesperis matronalis (dame's rocket) from paired treatment plots over 3 y. Cover of H. matronalis did not differ between control and treatment plots prior to removal, declined in the removal plots and remained significantly lower in cover compared to the control plots. Removal did not significantly affect species richness and species diversity (evenness, Shannon and Simpson) at the plot scale, but did result in increased species richness overall in the removal plots in the last sampling year when compared to control plots. Non-metric multidimensional scaling ordination analysis indicated a significant compositional change in the spring plant composition of plots over the 3 y, reflecting an increase in exotic woody species. Exotic woody plants, especially Rosa multiflora and Euonymus alatus, increased in cover in response to H. matronalis removal. In the 3 y, neither native nor exotic forbs, nor native woody plants responded to the removal of H. matronalis in a statistically significant manner. The increasing cover of woody invasive plants in response to the removal of H. matronalis has important management implications for restoration of degraded communities.

  5. [Distribution patterns of canopy and understory tree species at local scale in a Tierra Firme forest, the Colombian Amazonia].

    Science.gov (United States)

    Barreto-Silva, Juan Sebastian; López, Dairon Cárdenas; Montoya, Alvaro Javier Duque

    2014-03-01

    The effect of environmental variation on the structure of tree communities in tropical forests is still under debate. There is evidence that in landscapes like Tierra Firme forest, where the environmental gradient decreases at a local level, the effect of soil on the distribution patterns of plant species is minimal, happens to be random or is due to biological processes. In contrast, in studies with different kinds of plants from tropical forests, a greater effect on floristic composition of varying soil and topography has been reported. To assess this, the current study was carried out in a permanent plot of ten hectares in the Amacayacu National Park, Colombian Amazonia. To run the analysis, floristic and environmental variations were obtained according to tree species abundance categories and growth forms. In order to quantify the role played by both environmental filtering and dispersal limitation, the variation of the spatial configuration was included. We used Detrended Correspondence Analysis and Canonical Correspondence Analysis, followed by a variation partitioning, to analyze the species distribution patterns. The spatial template was evaluated using the Principal Coordinates of Neighbor Matrix method. We recorded 14 074 individuals from 1 053 species and 80 families. The most abundant families were Myristicaceae, Moraceae, Meliaceae, Arecaceae and Lecythidaceae, coinciding with other studies from Northwest Amazonia. Beta diversity was relatively low within the plot. Soils were very poor, had high aluminum concentration and were predominantly clayey. The floristic differences explained along the ten hectares plot were mainly associated to biological processes, such as dispersal limitation. The largest proportion of community variation in our dataset was unexplained by either environmental or spatial data. In conclusion, these results support random processes as the major drivers of the spatial variation of tree species at a local scale on Tierra Firme

  6. Arnica Tincture Cures Cutaneous Leishmaniasis in Golden Hamsters

    Directory of Open Access Journals (Sweden)

    Sara M. Robledo

    2018-01-01

    Full Text Available In search for potential therapeutic alternatives to existing treatments for cutaneous Leishmaniasis, we have investigated the effect of Arnica tincture Ph. Eur. (a 70% hydroethanolic tincture prepared from flowerheads of Arnica montana L. on the lesions caused by infection with Leishmania braziliensis in a model with golden hamsters. The animals were treated topically with a daily single dose of the preparation for 28 days. Subsequently, the healing process was monitored by recording the lesion size in intervals of 15 days up to day 90. As a result, Arnica tincture fully cured three out of five hamsters while one animal showed an improvement and another one suffered from a relapse. This result was slightly better than that obtained with the positive control, meglumine antimonate, which cured two of five hamsters while the other three showed a relapse after 90 days. This result encourages us to further investigate the potential of Arnica tincture in the treatment of cutaneous Leishmaniasis.

  7. Influence of light and soil moisture on Sierran mixed-conifer understory communities.

    Science.gov (United States)

    Malcolm North; Brian Oakley; Rob Fiegener; Andrew Gray; Michael. Barbour

    2005-01-01

    Sierra Nevada forests have high understory species richness yet we do not know which site factors influence herb and shrub distribution or abundance. We examined the understory of an old-growth mixed-conifer Sierran forest and its distribution in relation to microsite conditions. The forest has high species richness (98 species sampled), most of which are herbs with...

  8. HABITAT CHARACTERISTICS AND THE EFFECT OF VARIOUS NUTRIENT SOLUTIONS ON GROWTH AND MINERAL-NUTRITION OF ARNICA-MONTANA L GROWN ON NATURAL SOIL

    NARCIS (Netherlands)

    PEGTEL, DM

    1994-01-01

    Arnica montana, one of the character species of the replacement plant community Violion caninae on sandy acid humic podzol, is declining in the Netherlands since 1950. Locally, it is even extinct. This process of decline may be attributed to (i) autonomic succession; (ii) increased rate of

  9. Assessing tolerance of longleaf pine understory herbaceous plants to herbicide applications in a container nursery

    Science.gov (United States)

    D. Paul Jackson; Scott A. Enebak; James West; Drew Hinnant

    2015-01-01

    Renewed efforts in longleaf pine (Pinus palustris Mill.) ecosystem restoration has increased interest in the commercial production of understory herbaceous species. Successful establishment of understory herbaceous species is enhanced when using quality nursery-grown plants that have a better chance of survival after outplanting. Nursery growing practices have not been...

  10. Understory biomass from southern pine forests as a fuel source

    Energy Technology Data Exchange (ETDEWEB)

    Ku, T.T. [Univ. of Arkansas, Monticello, AR (United States); Baker, J.B. [USDA Forest Service, Monticello, AR (United States)

    1993-12-31

    The energy crisis in the US in the late 1970s led to accelerated research on renewable energy resources. The use of woody biomass, harvested from pine forests in the southern US, as a renewable energy source would not only provide an efficient energy alternative to forest industries, but its use would also reduce understory competition and accelerate growth of overstory crop trees. This study was initiated in the early 1980s to investigate the feasibility and applicability of the use of understory vegetation as a possible energy fuel resource. All woody understory vegetation [<14 cm (<5.5 in) in dbh], on 0.2 ha (0.5 ac) plots that represented a range of stand/site conditions of pine stands located in twelve southern Arkansas counties and two northern Louisiana parishes were characterized, quantified, and harvested. Based on the biomass yield from 720 subplots nested within 40 main plots, the top five dominant species in the understory, based on number and size were: Red maple, red oaks, pines, sweetgum, and winged elm. Some other species occurring, but in smaller proportions, were flowering dogwood, beautyberry, white oaks, black gum, wax myrtle, hickories, persimmon, and ashes. Most of these species are deciduous hardwoods that provide high BTU output upon burning. The average yield of chipped understory biomass was 23.5 T/ha with no difference occurring between summer and winter harvests. A predictive model of understory biomass production was developed using a step-wise multivariate regression analysis. In relation to forest type, high density pine stands produced 53% more understory biomass than high density pine-hardwood stands. The average moisture content of biomass was significantly lower when harvested in winter than when harvested in summer.

  11. Mapping snags and understory shrubs for LiDAR based assessment of wildlife habitat suitability

    Science.gov (United States)

    Sebastian Martinuzzi; Lee A. Vierling; William A. Gould; Michael J. Falkowski; Jeffrey S. Evans; Andrew T. Hudak; Kerri T. Vierling

    2009-01-01

    The lack of maps depicting forest three-dimensional structure, particularly as pertaining to snags and understory shrub species distribution, is a major limitation for managing wildlife habitat in forests. Developing new techniques to remotely map snags and understory shrubs is therefore an important need. To address this, we first evaluated the use of LiDAR data for...

  12. Early understory biomass response to organic matter removal and soil compaction

    Science.gov (United States)

    Felix Jr. Ponder

    2008-01-01

    In the Missouri Ozarks, 6 and 8 years after treatment, understory biomass differences between bole only harvesting (BO) and whole-tree plus forest floor harvesting were not different; neither were there understory biomass differences between no compaction and severe compaction. Separation of the biomass into broad species categories (trees, shrubs, annuals, perennials...

  13. Dry coniferous forest restoration and understory plant diversity: The importance of community heterogeneity and the scale of observation

    Science.gov (United States)

    Erich Kyle Dodson; David W. Peterson

    2010-01-01

    Maintaining understory plant species diversity is an important management goal as forest restoration and fuel reduction treatments are applied extensively to dry coniferous forests of western North America. However, understory diversity is a function of both local species richness (number of species in a sample unit) and community heterogeneity (beta diversity) at...

  14. Examining spring phenology of forest understory using digital photography

    Science.gov (United States)

    Liang Liang; Mark D. Schwartz; Songlin. Fei

    2011-01-01

    Phenology is an important indicator of forest health in relation to energy/nutrient cycles and species interactions. Accurate characterization of forest understory phenology is a crucial part of forest phenology observation. In this study, ground plots set up in a temperate mixed forest in Wisconsin were observed with a visible-light digital camera during spring 2007....

  15. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation.

    Science.gov (United States)

    Fu, Xiaoli; Yang, Fengting; Wang, Jianlei; Di, Yuebao; Dai, Xiaoqin; Zhang, Xinyu; Wang, Huimin

    2015-01-01

    Experiments with potted plants and removed understories have indicated that understory vegetation often affects the chemical and microbial properties of soil. In this study, we examined the mechanism and extent of the influence of understory vegetation on the chemical and microbial properties of soil in plantation forests. The relationships between the vegetational structure (diversity for different functional layers, aboveground biomass of understory vegetation, and species number) and soil properties (pH, microbial community structure, and levels of soil organic carbon, total nitrogen, and inorganic nitrogen) were analyzed across six reforestation types (three pure needleleaf forests, a needle-broadleaf mixed forest, a broadleaf forest, and a shrubland). Twenty-seven years after reforestation, soil pH significantly decreased by an average of 0.95 across reforestation types. Soil pH was positively correlated with the aboveground biomass of the understory. The levels of total, bacterial, and fungal phospholipid fatty acids, and the fungal:bacterial ratios were similar in the shrubland and the broadleaf forest. Both the aboveground biomass of the understory and the diversity of the tree layer positively influenced the fungal:bacterial ratio. Improving the aboveground biomass of the understory could alleviate soil acidification. An increase in the aboveground biomass of the understory, rather than in understory diversity, enhanced the functional traits of the soil microbial communities. The replacement of pure plantations with mixed-species stands, as well as the enhancement of understory recruitment, can improve the ecological functions of a plantation, as measured by the alleviation of soil acidification and increased fungal dominance. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Arnica Ointment 10% Does Not Improve Upper Blepharoplasty Outcome : A Randomized, Placebo-Controlled Trial

    NARCIS (Netherlands)

    van Exsel, Denise C. E.; Pool, Shariselle M. W.; van Uchelen, Jeroen H.; Edens, Mireille A.; van der Lei, Berend; Melenhorst, Wynand B. W. H.

    Background: It has been suggested that arnica can reduce postoperative edema and ecchymosis associated with cosmetic surgical procedures and improve outcome. Despite a high incidence of arnica use among upper blepharoplasty patients, evidence to support its treatment effect is lacking. The authors

  17. The formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2010-01-01

    Alterations to natural herbivore and disturbance regimes often allow a select suite of forest understory plant species to dramatically spread and form persistent, mono-dominant thickets. Following their expansion, this newly established understory canopy can alter tree seedling recruitment rates and exert considerable control over the rate and direction of secondary...

  18. The formation of dense understory layers in the forest worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2010-01-01

    Alterations to natural herbivore and disturbance regimes often allow a select suite of forest understory plant species to dramatically spread and form persistent, mono-dominant thickets. Following their expansion, this newly established understory canopy can alter tree seedling recruitment rates and exert considerable control over the rate and direction of secondary...

  19. Multi-scale spatial controls of understory vegetation in Douglas-fir–western hemlock forests of western Oregon, USA

    Science.gov (United States)

    Julia I. Burton; Lisa M. Ganio; Klaus J. Puettmann

    2014-01-01

    Forest understory vegetation is influenced by broad-scale variation in climate, intermediate scale variation in topography, disturbance and neighborhood interactions. However, little is known about how these multi-scale controls interact to influence observed spatial patterns. We examined relationships between the aggregated cover of understory plant species (%...

  20. Rainforest understory beetles of the Neotropics: Mizotrechus Bates 1872, a generic synopsis with descriptions of new species from Central America and northern South America (Coleoptera, Carabidae, Perigonini

    Directory of Open Access Journals (Sweden)

    Terry Erwin

    2011-11-01

    Full Text Available Information on the single previously described species, Mizotrechus novemstriatus Bates 1872 (type locality: Brazil – Amazonas, Tefé, is updated and 17 new species for the genus from Nicaragua, Costa Rica, Panamá, Colombia, Venezuela, and Guyane are described. The species records in the literature and on determined specimens in some collections of M. novemstriatus Bates from Central America are not that species; currently, M. novemstriatus is known only from its type locality in Amazonian Brazil. For the new species described, their known general distributions are as follows: Mizotrechus batesi sp. n. (Guyane, Mizotrechus bellorum sp. n. (Guyane, Mizotrechus brulei sp. n. (Guyane, Mizotrechus belevedere sp. n. (Guyane, Mizotrechus costaricensis sp. n. (Costa Rica, Mizotrechus dalensi sp. n. (Guyane, Mizotrechus edithpiafae sp. n. (provenance unknown, Mizotrechus fortunensis sp. n. (Panamá, Mizotrechus gorgona. sp. n. (Colombia, Mizotrechus grossus sp. n. (Guyane, Mizotrechus jefe sp. n. (Panamá, Mizotrechus marielaforetae sp. n. (Guyane, Mizotrechus minutus sp. n. (Guyane, Mizotrechus neblinensis sp. n. (Guyane, Venezuela, Mizotrechus poirieri sp. n. (Guyane, and Mizotrechus woldai sp. n. (Panamá. Long-term use of flight intercept traps in Guyane provided so many new species that apparently the use of FITs is the way to collect adults of this taxon, previously known from very few specimens. Many more species of this genus can be expected to be discovered throughout the Neotropics; the present contribution is a preliminary synopsis with identification key and adult images of all known species. Likely numerous species are yet to be discovered throughout tropical climes.

  1. CO2 enrichment accelerates successional development of an understory plant community

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Lara [University of Tennessee, Knoxville (UTK); Belote, R. Travis Travis [Wilderness Society, The; Kardol, Paul [ORNL; Weltzin, Jake [ORNL; Norby, Richard J [ORNL

    2010-01-01

    Rising concentrations of atmospheric carbon dioxide ([CO{sub 2}]) may influence forest successional development and species composition of understory plant communities by altering biomass production of plant species of functional groups. Here, we describe how elevated [CO{sub 2}] (eCO{sub 2}) affects aboveground biomass within the understory community of a temperate deciduous forest at the Oak Ridge National Laboratory sweetgum (Liquidambar styraciflua) free-air carbon dioxide enrichment (FACE) facility in eastern Tennessee, USA. We asked if (i) CO{sub 2} enrichment affected total understory biomass and (ii) whether total biomass responses could be explained by changes in understory species composition or changes in relative abundance of functional groups through time. The FACE experiment started in 1998 with three rings receiving ambient [CO{sub 2}] (aCO{sub 2}) and two rings receiving eCO{sub 2}. From 2001 to 2003, we estimated species-specific, woody versus herbaceous and total aboveground biomass by harvesting four 1 x 0.5-m subplots within the established understory plant community in each FACE plot. In 2008, we estimated herbaceous biomass as previously but used allometric relationships to estimate woody biomass across two 5 x 5-m quadrats in each FACE plot. Across years, aboveground biomass of the understory community was on average 25% greater in eCO{sub 2} than in aCO{sub 2} plots. We could not detect differences in plant species composition between aCO{sub 2} and eCO{sub 2} treatments. However, we did observe shifts in the relative abundance of plant functional groups, which reflect important structural changes in the understory community. In 2001-03, little of the understory biomass was in woody species; herbaceous species made up 94% of the total understory biomass across [CO{sub 2}] treatments. Through time, woody species increased in importance, mostly in eCO{sub 2}, and in 2008, the contribution of herbaceous species to total understory biomass was

  2. Retrieval of seasonal dynamics of forest understory reflectance from semi-arid to boreal forests using MODIS BRDF data

    Science.gov (United States)

    Pisek, Jan; Chen, Jing; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael; Karnieli, Arnon; Sprintsin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi

    2016-04-01

    Ground vegetation (understory) provides an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal, and temperate forests. Accurate knowledge about forest understory reflectance is urgently needed in various forest reflectance modelling efforts. However, systematic collections of understory reflectance data covering different sites and ecosystems are almost missing. Measurement of understory reflectance is a real challenge because of an extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum, spectral separability issues of over- and understory and its variable nature. Understory can consist of several sub-layers (regenerated tree, shrub, grasses or dwarf shrub, mosses, lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional challenges are introduced by patchiness of ground vegetation, ground surface roughness, and understory-overstory relations. Due to this variability, remote sensing might be the only means to provide consistent data at spatially relevant scales. In this presentation, we report on retrieving seasonal courses of understory Normalized Difference Vegetation Index (NDVI) from multi-angular MODIS BRDF/Albedo data. We compared satellite-based seasonal courses of understory NDVI against an extended collection of different types of forest sites with available in-situ understory reflectance measurements. These sites are distributed along a wide latitudinal gradient on the Northern hemisphere: a sparse and dense black spruce forests in Alaska and Canada, a northern European boreal forest in Finland, hemiboreal needleleaf and deciduous stands in Estonia, a mixed temperate forest in Switzerland, a cool temperate deciduous broadleaf forest in Korea, and a semi-arid pine plantation in Israel. Our results indicated the retrieval method performs well particularly over open forests of different types. We also demonstrated

  3. Soil and phytosociological characterization of an area with predominance of arnica (Lychnophora pohlii sch. bip.

    Directory of Open Access Journals (Sweden)

    André Rodrigues da Cunha Gianotti

    2013-06-01

    Full Text Available Lychnophora pohlii Sch. Bip. (Asteraceae, known as "Arnica mineira", is widely used in folk medicine and very abundant in the altitude vegetation of rocky grassland. The aim of this work was to study the density of this species and its relationship with soil parameters in rocky grassland in Diamantina, in the Upper Jequitinhonha region, Minas Gerais. Ten contiguous 20 x 50 m plots were marked (total sampled area 10,000 m² on the campus Juscelino Kubitschek of the Federal University of Jequitinhonha and Mucuri Valleys (UFVJM. The plants in these plots were evaluated for frequency, dominance and density. The relationship between the density of this species with nine soil physical and chemical properties was analyzed by means of canonical correspondence analysis (CCA. The highest plant abundance (I of the species Lychnophora pohlii Sch. Bip. was found in the vegetation sampling areas: plot 6 with 255 plants, plot 7 with 173, plot 8 with 189, plot 9 with 159, and plot 1 with 151 plants. In these areas, the floristic soil characteristics were similar, resulting in spatial proximity in the ACC diagrams. The density of Lychnophora pohlii was higher in plots with higher pH, P-rem and base saturation, the variables most strongly correlated with the first axis of canonical correspondence analysis.

  4. [Effects of understory removal on soil greenhouse gas emissions in Carya cathayensis stands].

    Science.gov (United States)

    Liu, Juan; Chen, Xue-shuang; Wu, Jia-sen; Jiang, Pei-kun; Zhou, Guo-mo; Li, Yong-fu

    2015-03-01

    CO2, N2O and CH4 are important greenhouse gases, and soils in forest ecosystems are their important sources. Carya cathayensis is a unique tree species with seeds used for high-grade dry fruit and oil production. Understory vegetation management plays an important role in soil greenhouse gases emission of Carya cathayensis stands. A one-year in situ experiment was conducted to study the effects of understory removal on soil CO2, N2O and CH4 emissions in C. cathayensis plantation by closed static chamber technique and gas chromatography method. Soil CO2 flux had a similar seasonal trend in the understory removal and preservation treatments, which was high in summer and autumn, and low in winter and spring. N2O emission occurred mainly in summer, while CH4 emission showed no seasonal trend. Understory removal significantly decreased soil CO, emission, increased N2O emission and CH4 uptake, but had no significant effect on soil water soluble organic carbon and microbial biomass carbon. The global warming potential of soil greenhouse gases emitted in the understory removal. treatment was 15.12 t CO2-e . hm-2 a-1, which was significantly lower than that in understory preservation treatment (17.04 t CO2-e . hm-2 . a-1).

  5. Sucesso reprodutivo de espécies distílicas de psychotria (rubiaceae em sub-bosque de floresta atlântica Reproductive success of distylous species of psychotria (rubiaceae of understory atlantic forest

    Directory of Open Access Journals (Sweden)

    Celice Alexandre Silva

    2013-04-01

    Full Text Available As espécies distílicas Psychotria conjugens, P. hastisepala e P. sessilis (Rubiaceae são típicas de sub-bosques sombreados. Ocorrem no maior fragmento de Floresta Estacional Semidecidual de Viçosa, Minas Gerais, Sudeste brasileiro - a Mata do Paraíso, com 194 ha. A distilia caracteriza-se pela presença dos morfos florais longistilos (L e brevistilos (B em indivíduos distintos e pela dependência de polinizações intermorfos (L x B ou B x L para a produção de frutos; é esperada a proporção equilibrada (isopletia dos indivíduos na população. Foram objetivos deste trabalho verificar, nas espécies citadas, a proporção dos morfos florais em uma área de 7 ha e a dependência por polinizadores, testando a incompatibilidade intramorfos (L x L e B x B por meio de polinizações manuais in vivo, a viabilidade dos grãos de pólen e dimorfismo dos grãos entre os morfos florais; e quantificar as produções de frutos e de sementes por morfo. Os morfos florais das espécies se encontram em proporções equilibradas. Houve incompatibilidade e a viabilidade dos grãos de pólen foi alta (> 64%. Verificou-se dimorfismo dos grãos, e os maiores diâmetros foram os de B. As produções de frutos e de sementes (uma ou duas dos morfos de P. sessilis e de P. conjugens foram semelhantes e, em P. hastisepala, foram maiores em B. Na Mata do Paraíso, as condições adequadas, como o hábitat, a isopletia e a atuação de polinizadores, são fatores que parecem favorecer o sucesso reprodutivo e, consequentemente, a manutenção local das espécies estudadas.The distylous species of Psychotria conjugens, P. hastisepala e P. sessilis (Rubiaceae are typical of understory shady. It occurs in the largest fragment (194 ha of semideciduous forest in Viçosa, Minas Gerais State, southeastern Brazil, where the present study was carried out. The distyly is characterized by the presence of pin (L and thrum (B floral morphs in different individual and the

  6. Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores.

    Science.gov (United States)

    Coverdale, Tyler C; Kartzinel, Tyler R; Grabowski, Kathryn L; Shriver, Robert K; Hassan, Abdikadir A; Goheen, Jacob R; Palmer, Todd M; Pringle, Robert M

    2016-11-01

    Positive indirect effects of consumers on their resources can stabilize food webs by preventing overexploitation, but the coupling of trophic and non-trophic interactions remains poorly integrated into our understanding of community dynamics. Elephants engineer African savanna ecosystems by toppling trees and breaking branches, and although their negative effects on trees are well documented, their effects on small-statured plants remain poorly understood. Using data on 117 understory plant taxa collected over 7 yr within 36 1-ha experimental plots in a semi-arid Kenyan savanna, we measured the strength and direction of elephant impacts on understory vegetation. We found that elephants had neutral effects on most (83-89%) species, with a similar frequency of positive and negative responses among the remainder. Overall, estimated understory biomass was 5-14% greater in the presence of elephants across a range of rainfall levels. Whereas direct consumption likely accounts for the negative effects, positive effects are presumably indirect. We hypothesized that elephants create associational refuges for understory plants by damaging tree canopies in ways that physically inhibit feeding by other large herbivores. As predicted, understory biomass and species richness beneath elephant-damaged trees were 55% and 21% greater, respectively, than under undamaged trees. Experimentally simulated elephant damage increased understory biomass by 37% and species richness by 49% after 1 yr. Conversely, experimentally removing elephant damaged branches decreased understory biomass by 39% and richness by 30% relative to sham-manipulated trees. Camera-trap surveys revealed that elephant damage reduced the frequency of herbivory by 71%, whereas we detected no significant effect of damage on temperature, light, or soil moisture. We conclude that elephants locally facilitate understory plants by creating refuges from herbivory, which countervails the direct negative effects of

  7. Providing habitat for native mammals through understory enhancement in forestry plantations.

    Science.gov (United States)

    Simonetti, Javier A; Grez, Audrey A; Estades, Cristián F

    2013-10-01

    The Convention on Biological Diversity (CBD) expects forestry plantations to contribute to biodiversity conservation. A well-developed understory in forestry plantations might serve as a surrogate habitat for native species and mitigate the negative effect of plantations on species richness. We experimentally tested this hypothesis by removing the understory in Monterey pine (Pinus radiata) plantations in central Chile and assessing changes in species richness and abundance of medium-sized mammals. Frequency of occurrence of mammals, including kodkods (Leopardus guigna), culpeo foxes (Pseudalopex culpaeus), lesser grisons (Conepatus chinga), and Southern pudu deer (Pudu puda), was low in forest stands with little to no understory relative to stands with well-developed undergrowth vegetation. After removing the understory, their frequency of occurrence decreased significantly, whereas in control stands, where understory was not removed, their frequency did not change. This result strongly supports the idea that facilitating the development of undergrowth vegetation may turn forestry stands into secondary habitats as opposed to their containing no habitat for native mammals. This forestry practice could contribute to conservation of biological diversity as it pertains to CBD targets. © 2013 Society for Conservation Biology.

  8. Fuels planning: science synthesis and integration; environmental consequences fact sheet 10: The Understory Response Model

    Science.gov (United States)

    Steve Sutherland; Melanie Miller

    2005-01-01

    The Understory Response Model is a species-specific computer model that qualitatively predicts change in total species biomass for grasses, forbs, and shrubs after thinning, prescribed fire, or wildfire. The model examines the effect of fuels management on plant survivorship and reproduction. This fact sheet identifies the intended users and uses, required inputs, what...

  9. Germinação de aquênios de arnica (Lychnophora pinaster Mart. armazenados em diferentes condições Seed germination of arnica (Lychnophora pinaster Mart stored at different conditions

    Directory of Open Access Journals (Sweden)

    Paulo Régis Bandeira de Melo

    2007-02-01

    ções de armazenamento e, nestas condições, pode-se armazenar aquênios de arnica por um período de seis meses. Houve um aumento da germinação ao longo do período de armazenamento.Early seed collection may contribute to decrease its deterioration rate preserving physiological quality. Seed formation in arnica (Lychnophora pinaster Mart., takes place throughout the fructification period. As arnica plant is of medicinal importance and is under threaten there is a need of monitoring seed quality during storage to guarantee reproduction and perpetuation of the species. This work was performed with the objective of verifying germination performance of arnica seeds collected at two maturation stages and stored at different conditions. The seeds used in this study were collected in December 2003 at Itumirim, State of Minas Gerais-Brazil at two maturation stage. After collection, the seeds were dried, cleaned and separated with a vertical blower. The seeds were placed in two types of packing (paper and plastic and stored under different atmospheres (cold chamber 10ºC/50%RH and room temperature, during 6 months. The germination test was performed in incubator (BOD at alternate temperature (20-30ºC and photoperiod of 12 hours. The substrate used was paper towel and the seeds were placed in gerbox. Four replication of 100 seeds for each treatment were used. The sanitary quality of the seed was performed by "Blotter test" with 4 replications of 50 seeds for each treatment. Moisture content, sanitary quality and physiological quality were evaluated during 0, 2, 4 and 6 months. There was not significant differences among the four storage conditions and, under these conditions, arnica seeds can be stored by a period of six months. There was an increase in the germination along the storage period.

  10. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    Science.gov (United States)

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  11. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae outbreak in pine forests.

    Directory of Open Access Journals (Sweden)

    Gregory J Pec

    Full Text Available The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae in lodgepole pine (Pinus contorta forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  12. Classification and ordination of understory vegetation using multivariate techniques in the Pinus wallichiana forests of Swat Valley, northern Pakistan

    Science.gov (United States)

    Rahman, Inayat Ur; Khan, Nasrullah; Ali, Kishwar

    2017-04-01

    An understory vegetation survey of the Pinus wallichiana-dominated temperate forests of Swat District was carried out to inspect the structure, composition and ecological associations of the forest vegetation. A quadrat method of sampling was used to record the floristic and phytosociological data necessary for the analysis using 300 quadrats of 10 × 10 m each. Some vegetation parameters viz. frequency and density for trees (overstory vegetation) as well as for the understory vegetation were recorded. The results revealed that in total, 92 species belonging to 77 different genera and 45 families existed in the area. The largest families were Asteraceae, Rosaceae and Lamiaceae with 12, ten and nine species, respectively. Ward's agglomerative cluster analysis for tree species resulted in three floristically and ecologically distinct community types along different topographic and soil variables. Importance value indices (IVI) were also calculated for understory vegetation and were subjected to ordination techniques, i.e. canonical correspondence analysis (CCA) and detrended correspondence analysis (DCA). DCA bi-plots for stands show that most of the stands were scattered around the centre of the DCA bi-plot, identified by two slightly scattered clusters. DCA for species bi-plot clearly identified three clusters of species revealing three types of understory communities in the study area. Results of the CCA were somewhat different from the DCA showing the impact of environmental variables on the understory species. CCA results reveal that three environmental variables, i.e. altitude, slope and P (mg/kg), have a strong influence on distribution of stands and species. Impact of tree species on the understory vegetation was also tested by CCA which showed that four tree species, i.e. P. wallichiana A.B. Jackson, Juglans regia Linn., Quercus dilatata Lindl. ex Royle and Cedrus deodara (Roxb. ex Lamb.) G. Don, have strong influences on associated understory vegetation. It

  13. Understory Changes in Fraxinus excelsior Stands in Response to Dieback in Latvia

    Directory of Open Access Journals (Sweden)

    Pušpure Ilze

    2016-06-01

    Full Text Available Intense dieback of Fraxinus excelsior L. has been causing rapid changes in advance growth of trees and understory shrub growth of the affected stands. In this study, changes in composition and density of understory were studied in 15 permanent plots (each 235.6 m2, repeatedly sampled in 2005, 2010, and 2015. Within each plot, the number and average height of understory individuals were determined. The successional changes in understory were assessed by Detrended Correspondence Analysis. In total, 11 advance growth and 20 undergrowth species were recorded. A significant increase in the density of understory was observed only in 2015, mainly due to understorey growth of Corylus avellana L., Padus avium Mill., and Lonicera xylosteum L. Regarding advanced growth, the highest density was observed for Ulmus glabra Huds., F. excelsior and Acer platanoides L.; the density of A. platanoides and F. excelsior increased particularly in the period from 2010–2015. The observed successional changes suggested individuality of development of the affected stands according to the composition of the remaining and neighbouring canopy trees.

  14. Can the Understory Affect the Hymenoptera Parasitoids in a Eucalyptus Plantation?

    Directory of Open Access Journals (Sweden)

    Onice Teresinha Dall'Oglio

    Full Text Available The understory in forest plantations can increase richness and diversity of natural enemies due to greater plant species richness. The objective of this study was to test the hypothesis that the presence of the understory and climatic season in the region (wet or dry can increase the richness and abundance of Hymenoptera parasitoids in Eucalyptus plantations, in the municipality of Belo Oriente, Minas Gerais State, Brazil. In each eucalyptus cultivation (five areas of cultivation ten Malaise traps were installed, five with the understory and five without it. A total of 9,639 individuals from 30 families of the Hymenoptera parasitoids were collected, with Mymaridae, Scelionidae, Encyrtidae and Braconidae being the most collected ones with 4,934, 1,212, 619 and 612 individuals, respectively. The eucalyptus stands with and without the understory showed percentage of individuals 45.65% and 54.35% collected, respectively. The understory did not represent a positive effect on the overall abundance of the individuals Hymenoptera in the E. grandis stands, but rather exerted a positive effect on the specific families of the parasitoids of this order.

  15. Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability.

    Science.gov (United States)

    Delagrange, Sylvain; Messier, Christian; Lechowicz, Martin J; Dizengremel, Pierre

    2004-07-01

    In a 4-year study, we investigated changes in leaf physiology, crown morphology and whole-tree biomass allocation in seedlings and saplings of shade-tolerant sugar maple (Acer saccharum Marsh.) and intermediate shade-tolerant yellow birch (Betula alleghaniensis Britt.) growing in natural understory light (0.5 to 35% of full sunlight) or in understory light reduced by 50% with shade nets to simulate the effect of gap closure. Leaf physiological parameters were mainly influenced by the light gradient, whereas crown morphological and whole-tree allocational parameters were mainly influenced by tree size. No single physiological, morphological or allocational trait was identified that could explain the difference in shade tolerance between the species. Yellow birch had higher growth rates, biomass allocation to branches and leaf physiological plasticity and lower crown morphological plasticity in unmodified understory light than sugar maple. Sugar maple did not display significant physiological plasticity, but showed variation with tree size in both crown morphology and whole-tree biomass allocation. When sugar maple was small, a greater proportion of whole-tree biomass was allocated to roots. However, physiological differences between the species decreased with decreasing light and most morphological and allocational differences tended to disappear with increasing tree size, suggesting that many species differences in shade-tolerance are expressed mainly during the seedling stage. Understory trees of both species survived for 4 years under shade nets, possibly because of higher plasticity when small and the use of stored reserves when taller. Copyright 2004 Heron Publishing

  16. Post-Fire Peat Land Understory Plant in Rimba Panjang, Sumatera, Indonesia

    Science.gov (United States)

    Firdaus, L. N.; Nursal; Wulandari, Sri; Syafi'i, Wan; Fauziah, Yuslim

    2017-12-01

    The existence of understory plants during early post-fire succession is essential in term of natural post-fire ecological restoration. More than fifty percent of fire incidents in Riau, Sumatera, Indonesia occurred in shallow peat lands which have the huge impact on vegetation damage. This study aims to explore the understory plants species and diversity in post-fire peat land at Rimba Panjang, Kampar Regency, Sumatera, Indonesia. By using survey method, the observations were conducted on 150 plots which were distributed randomly over four locations based on the year after fire: 2009, 2014, 2015 and 2016. We found respectively 12, 14, 19 and 17 species at that sites with respective Shannon Wiener diversity index were 1.72, 2.00, 2.14 and 2.40. All the sites were dominated by Stenochlaena palustris (Burm.). Coverage percentage of understory vegetation were respectively 28.87%, 25.50%, 51.60% and 54.13%. Overall, we found 31 species of 17 familia. The result showed that the species composition, diversity index and coverage percentage of understory plant are likely to decrease in line with the length of time after the fire. Post peatland fires in Rimba Panjang are still having the characteristics of the peat swamp habitat which was dominated by Stenochlaena palustris (Burm.). Ecological restoration of that habitat is still possible, but it is necessary to consider technological and socio-economical aspects of local communities.

  17. Understory response following varying levels of overstory removal in mixed conifer stands

    Science.gov (United States)

    Fabian C.C. Uzoh; Leroy K. Dolph; John R. Anstead

    1997-01-01

    Diameter growth rates of understory trees were measured for periods both before and after overstory removal on six study areas in northern California. All the species responded with increased diameter growth after adjusting to their new environments. Linear regression equations that predict post treatment diameter growth increment of the residual trees are presented...

  18. Perioperative Arnica montana for Reduction of Ecchymosis in Rhinoplasty Surgery.

    Science.gov (United States)

    Chaiet, Scott R; Marcus, Benjamin C

    2016-05-01

    Studies of homeopathic therapies to decrease postrhinoplasty ecchymosis have previously used subjective measurements, limiting their clinical significance. Recently, Arnica montana was shown to decrease postoperative ecchymosis after rhytidectomy, using an objective measuring tool. We believe that oral A. montana, given perioperatively, can be objectively shown to reduce extent and intensity of postoperative ecchymosis in rhinoplasty surgery. Subjects scheduled for rhinoplasty surgery with nasal bone osteotomies by a single surgeon were prospectively randomized to receive either oral perioperative A. montana (Alpine Pharmaceuticals, San Rafael, Calif) or placebo in a double-blinded fashion. Ecchymosis was measured in digital "three-quarter"-view photographs at 3 postoperative time points. Each bruise was outlined with Adobe Photoshop (Adobe Systems Incorporated, San Jose, Calif), and the extent was scaled to a standardized reference card. Cyan, magenta, yellow, black, and luminosity were analyzed in the bruised and control areas to calculate change in intensity. P value of ecchymosis after osteotomies in rhinoplasty surgery, which may dramatically affect patient satisfaction.

  19. Comparative life history and physiology of two understory Neotropical herbs.

    Science.gov (United States)

    Mulkey, Stephen S; Smith, Alan P; Wright, S Joseph

    1991-10-01

    Demography and physiology of two broad-leaved understory tropical herbs (Marantaceae) were studied in gaps and shaded understory in large-scale irrigated and control treatments during the dry season at Barro Colorado Island (BCI), Panama. Because photosynthetic acclimation potential may not predict light environments where tropical species are found, we studied a suite of physiological features to determine if they uniquely reflect the distribution of each species. Calathea inocephala and Pleiostachya pruinosa grow and reproduce in gaps, persist in shade, and have equivalent rates of leaf production. Calathea leaves survived 2 to 3 times as long as leaves of Pleiostachya and plants of Pleiostachya were 6 to 8 times more likely to die as plants of Calathea during 3.5 years of study. Pleiostachya had lowest survival in shade and when not irrigated during the dry season, while Calathea survived well in both habitats and both treatments. Pleiostachya had higher photosynthetic capacity and stomatal conductance than Calathea and acclimated to gaps by producing leaves with higher photosynthetic capacity. Calathea had lower mesophyll CO 2 concentrations than Pleiostachya. Both species had similar dark respiration rates and light compensation points, and water-use and nitrogen-use efficiencies were inversely related between species. Species showed no differences in leaf osmotic potentials at full turgor. Calathea roots were deeper and had tuberous swellings.Leaf-level assimilation and potential water loss are consistent with where these species are found, but photosynthetic acclimation to high light does not reflect both species' abilities to grow and reproduce in gaps. Pleiostachya's gap-dependent, rapid growth and reproduction require high rates of carbon gain in short-lived leaves, which can amortize their cost quickly. High rates of water loss are associated with reduced longevity during drought. Calathea's roots may confer greater capacitance, while its leaves are

  20. Understory bamboo discrimination using a winter image

    NARCIS (Netherlands)

    Wang, T.; Skidmore, A.K.; Toxopeus, A.G.; Liu, X.

    2009-01-01

    In this study, a new approach is presented that combines forest phenology and Landsat vegetation indices to estimate evergreen understory bamboo coverage in a mixed temperate forest. It was found that vegetation indices, especially the normalized difference vegetation index (NDVI) derived from

  1. Inflammatory Process Modulation by Homeopathic Arnica montana 6CH: The Role of Individual Variation

    Directory of Open Access Journals (Sweden)

    Ana Paula Kawakami

    2011-01-01

    Full Text Available The effects of Arnica montana 6cH on the individual modulation of acute inflammation kinetics in rats were evaluated. Adult male Wistar rats were inoculated with 1% carrageenan into the footpad and treated with Arnica montana 6cH, dexamethasone (4.0 mg/kg; positive control or 5% hydroalcoholic solution (negative control, per os, each 15 minutes, between 30 and 180 minutes after the irritant inoculation. Histopathological and immunohistochemistry procedures were done in order to get a panel of inflammatory positive cells for CD3 (T lymphocytes, CD45RA (B lymphocytes, CD18 (beta 2 integrin, CD163 (ED2 protein, CD54 (ICAM-1, and MAC 387 (monocytes and macrophages. The statistical treatment of data included a posteriori classification of animals from each group (N=20 in two subgroups presenting spontaneous precocious or late oedema. Animals that presented precocious oedema were less responsible to Arnica montana 6cH in relation to hemodynamic changes. Instead, rats that exhibited late oedema presented less intense oedema (P=.01, lower percentage of mast cell degranulation (P=.0001, and increase in lymphatic vessels diameter (P=.05. The data suggest an individually qualitative adjustment of inflammatory vascular events by Arnica montana 6cH.

  2. Is There a Role for Arnica and Bromelain in Prevention of Post-Procedure Ecchymosis or Edema? A Systematic Review of the Literature.

    Science.gov (United States)

    Ho, Derek; Jagdeo, Jared; Waldorf, Heidi A

    2016-04-01

    The management of postprocedure skin care is of significant interest to dermatologists and other physicians. Ecchymosis and edema are common temporary postprocedure unwanted effects. Two botanically-derived products, arnica and bromelain, are used internationally by physicians to limit ecchymosis and edema that occur secondary to cosmetic, laser, and surgical skin procedures. The authors review the published literature and provide evidence-based recommendations on arnica and bromelain for prevention and treatment of postprocedure ecchymosis and edema. A search of the computerized bibliographic databases Medline, EMBASE, Scopus, and CINAHL was performed on March 23, 2015. The key terms used were "arnica," and "bromelain." This review contains clinical trials that evaluated prevention and/or treatment of postprocedure ecchymosis or edema with oral arnica (11), topical arnica (2), and oral bromelain (7). No studies on topical bromelain were found. Clinical trials on arnica and bromelain have demonstrated mixed results. Some randomized controlled trials reported improvement postprocedure with arnica (4/13) and bromelain (5/7). Based upon published studies, there is insufficient data to support use of arnica and bromelain post procedure, and the authors recommend additional research to determine the efficacy and safety of arnica and bromelain to prevent and/or treat ecchymosis and edema in patients.

  3. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China.

    Science.gov (United States)

    Zhou, Lili; Cai, Liping; He, Zongming; Wang, Rongwei; Wu, Pengfei; Ma, Xiangqing

    2016-12-01

    Sustainable forestry requires adopting more ecosystem-informed perspectives. Tree thinning improves forest productivity by encouraging the development of the understory, which in turn improves species diversity and nutrient cycling, thereby altering the ecophysiological environment of the stand. This study aimed to quantify tree growth, understory vegetation, and soil quality of 9- and 16-year-old Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations in South China, 1-7 years after pre-commercial thinning. The quadratic mean diameter (QMD) and individual tree volume were greatly increased and compensated for the reduced stand yield in thinned stands. In 2011, the stand volume in unthinned and thinned stands were 276.33 and 226.46 and 251.30 and 243.64 m 3  ha -1 , respectively, for young and middle stage. Therefore, we predicted that over time, the stand volume in thinned stands should exceed that in unthinned stands. The composition, diversity, and biomass of understory vegetation of the plantation monocultures significantly increased after thinning. The effects of thinning management on understory development were dynamic and apparent within 1-2 years post-thinning. Some light-demanding plant species such as Styrax faberi, Callicarpa formosana, Lophatherum gracile, and Gahnia tristis emerged in the shrub and herb layer and became dominant with the larger gaps in the canopy in thinned stands. The trigger effects of thinning management on understory and tree growth were more pronounced in the young stage. The beneficial effects on soil physical and chemical properties were measurable at later stages (7 years after thinning). The strong positive relationship between understory biomass and volume increment (at the tree and stand levels) indicated that understory improvement after thinning did not restrict productivity within Chinese fir stands but rather, benefited soil water content and nutrient status and promoted tree growth.

  4. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds.

    Science.gov (United States)

    Hamraz, Hamid; Contreras, Marco A; Zhang, Jun

    2017-07-28

    Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory trees because of the occlusion effect of higher canopy layers. Although understory trees provide limited financial value, they are an essential component of ecosystem functioning by offering habitat for numerous wildlife species and influencing stand development. Here we model the occlusion effect in terms of point density. We estimate the fractions of points representing different canopy layers (one overstory and multiple understory) and also pinpoint the required density for reasonable tree segmentation (where accuracy plateaus). We show that at a density of ~170 pt/m² understory trees can likely be segmented as accurately as overstory trees. Given the advancements of LiDAR sensor technology, point clouds will affordably reach this required density. Using modern computational approaches for big data, the denser point clouds can efficiently be processed to ultimately allow accurate remote quantification of forest resources. The methodology can also be adopted for other similar remote sensing or advanced imaging applications such as geological subsurface modelling or biomedical tissue analysis.

  5. Performance of tropical legumes grown as understory of a eucalypt plantation in a seasonally dry area of the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Maria Luiza F. Nicodemo

    2015-09-01

    Full Text Available Nine tropical legumes were grown outside the canopy and in the understory of an 8-year-old Eucalyptus grandis stand in order to assess their seasonal production and forage quality for 4 evaluation periods. Incident photosynthetically active radiation in the understory was 18% of that outside the canopy. In the understory, production of Lablab purpureus, Centrosema schiedeanum, Clitoria ternatea, Pueraria phaseoloides, Alysicarpus vaginalis, Aeschynomene villosa, Estilosantes Campo Grande (Stylosanthes capitata + S. macrocephala, Calopogonium mucunoides and Arachis pintoi was <1 kg/ha/d for most samples. Even considering this low production, the large area available for animal production in forest plantations might justify the interest in legumes because of their high nutritive value. Lablab purpureus produced the greatest amount of dry matter in the understory in the establishment phase (12.1 kg/ha/d, but did not persist. It could be a suitable candidate for a cover legume species mixture to provide early growth. Centrosema schiedeanum developed rapidly and showed a high capacity for ground cover (>70% and persistence, and had high nitrogen concentration, thus demonstrating good potential for protecting soils and promoting nutrient cycling in forest plantations. Another species with potential is A. pintoi, which established slowly but towards the end of the experiment showed moderate to high understory ground cover.Keywords: Dry matter production, forage quality, shade, silvopastoral system.DOI: 10.17138/TGFT(3151-160

  6. Antimicrobial Activities of Silver Nanoparticles Synthesized by Using Water Extract of Arnicae anthodium

    OpenAIRE

    Dobrucka, Renata; Długaszewska, Jolanta

    2015-01-01

    Green synthesis of nanoparticles has gained significant importance in recent years and has become the one of the most preferred methods. Also, green synthesis of nanoparticles is valuable branch of nanotechnology. Plant extracts are eco-friendly and can be an economic option for synthesis of nanoparticles. This study presents method the synthesis of silver nanoparticles using water extract of Arnicae anthodium. Formation of silver nanoparticles was confirmed by UV–visble spectroscopy, Fourier...

  7. Site quality influence over understory plant diversity in old-growth and harvested Nothofagus pumilio forests

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, E. A.; Lencinas, M. V.; Martinez-Pastur, G. J.

    2013-05-01

    Aim of study: The effects and interactions of shelter wood forest harvesting and site qualities over understory plant species diversity and composition were compared among primary and harvested Nothofagus pumilio forests. Area of study: Tierra del Fuego (Argentina), on three pure conditions (one and six year-old harvested, and primary without previous harvesting forests) and three site qualities (high, medium and low). Material and Methods: Understory richness and cover (%) were registered in five replicates of 1 hectare each per treatment. Taxonomic species were classified in categories (groups, origin and life forms). Two-way ANOVAs and multivariate analyses were conducted. Main results: Shelterwood harvesting and site quality significantly influenced understory cover and richness, which allow the introduction of native and exotic species and increasing of dicot and monocot covers. In dicots, monocots, exotics and total groups, higher richness and covers were related to time. Meanwhile, cover reached similar high values in all site qualities on dicot, native and total groups. On the other hand, monocot and exotic richness and cover remain similar in primary and recently harvested forests, and greatly increased in old harvested forests. Mosses and ferns were among the most sensitive groups. Research highlights: Impacts of shelterwood cut depend on site quality of the stands and time since harvesting occurs. For this, different site quality stands should received differential attention in the development of conservation strategies, as well as variations in the shelterwood implementation (as irregularity and patchiness) should be considered to better promote understory plant species conservation inside managed areas. (Author) 45 refs.

  8. Horse grazing systems: understory biomass and plant biodiversity of a Pinus radiata stand

    OpenAIRE

    Rigueiro-Rodríguez,Antonio; Mouhbi,Rabia; Santiago-Freijanes,José Javier; González-Hernández,María del Pilar; Mosquera-Losada,María Rosa

    2012-01-01

    Horse grazing systems may affect productivity and biodiversity of understory developed under Pinus radiata D. Don silvopastoral systems, while acting as a tool to reduce the risk of fire. This study compared continuous and rotational grazing systems effect upon biomass, fractions of stem, sprouts, leaves and woody parts of Ulex europaeus L. and alpha (Species Richness, Shannon-Wiener) and beta (Jaccard and Magurran) biodiversity for a period of four years in a P. radiata silvopastoral system....

  9. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta Forests.

    Directory of Open Access Journals (Sweden)

    Anne C S McIntosh

    Full Text Available Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs and multiple carbon-source substrate-induced respiration (MSIR of the forest floor microbial community environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis showed that two above-ground (mean tree diameter, litter cover and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs properties were associated with variation in understory plant community composition. These results provide

  10. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests.

    Science.gov (United States)

    McIntosh, Anne C S; Macdonald, S Ellen; Quideau, Sylvie A

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  11. Composition and diversity of understory plants in the tropical rain ...

    African Journals Online (AJOL)

    The study assessed the composition and diversity pattern of understory in Oban division of CRNP with a view to established the contribution of the understory to diversity of the area. The study was conducted in four land use types: primary forest (core), secondary forest (buffer), farm fallow and plantation. Ten transects of ...

  12. Performance and population dynamics of a native understory herb differ between young and old forest stands in the Southern Appalachians

    Science.gov (United States)

    Michelle M. Jackson; Scott M. Pearson; Monica G. Turner

    2013-01-01

    Anthropogenic disturbances (e.g., logging) can strongly affect the composition and structure of forest understory herb communities, with land-use legacies often persisting for decades or even centuries. Many studies of forest plant response to land-use history have focused on species distributions and abundances, and argued broadly for either dispersal or establishment...

  13. Influence of precommercial thinning and herbicides on understory vegetation of young-growth Sitka spruce forest in southeastern Alaska

    Science.gov (United States)

    Elizabeth C. Cole; Thomas A. Hanley; Michael Newton

    2010-01-01

    The effects of precommercial thinning on the understory vegetative cover of 16- to 18-year-old spruce-hemlock (Picea sitchensis (Bong.) Carriere--Tsuga heterophylla (Raf.) Sarg.) stands were studied in seven replicate areas over seven growing seasons postthinning. Vegetative cover was analyzed at the class level, but species-...

  14. Understory fuel variation at the Carolina Sandhills National Wildlife Refuge: a description of chemical and physical properties

    Science.gov (United States)

    Evelyn S. Wenk; G. Geoff Wang; Joan L. Walker

    2013-01-01

    Upland forest in the Carolina Sandhills National Wildlife Refuge is characterized by a longleaf pine (Pinus palustris) canopy with a variable understory and ground-layer species composition. The system was historically maintained by fire and has been managed with prescribed fire in recent decades. A management goal is to reduce turkey oak (...

  15. Family richness and biomass of understory invertebrates in early and late successional habitats of northern New Hampshire

    Science.gov (United States)

    Matthew K. Wilson; Winsor H. Lowe; Keith Nislow

    2014-01-01

    In the northeastern United States, many vertebrate species rely on early successional forest habitats (ESHs). ESHs may also support higher invertebrate diversity and abundance than late successional habitats (LSHs). We assessed the differences in family-level richness and biomass of understory terrestrial invertebrates during the summer season in paired ESH (3-7 years...

  16. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China

    NARCIS (Netherlands)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-01-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in

  17. Preliminary Results: Effects of Fertilization, Herbicide Application, and Prescribed Burning on Understory Regeneration on Pine Plantations in East Texas

    Science.gov (United States)

    Betsy Ott; Brian Oswald; Hans Williams; Kenneth Farrish

    2002-01-01

    Biodiversity and species rareness are increasingly the focal points for assessment of habitat quality. Managed pine plantations are often viewed as monocultures with little of value beyond their timber crop. The purpose of this study is to assess vegetative biodiversity in the understory of two pine plantations in which different vegetative control mechanisms are...

  18. Breeding biology of an afrotropical forest understory bird community in northeastern Tanzania

    Science.gov (United States)

    Mkongewa, Victor J.; Newmark, William D.; Stanley, Thomas R.

    2013-01-01

    Many aspects of the breeding biology of Afrotropical forest birds are poorly known. Here we provide a description based on the monitoring of 1461 active nests over eight breeding seasons about one or more aspects of the breeding biology for 28 coexisting understory bird species on the Amani Plateau in the East Usambara Mountains, Tanzania. Mean nest height and mean distance of nest from forest edge varied widely among species with most species constructing nests across a broad vertical and forest edge to interior gradient. However, there were important exceptions with all sunbird species and several dove and waxbill species constructing nests in close proximity to the forest edge. For 17 common species for which we recorded two or more active nests, mean clutch size across species was 1.9 eggs per clutch, the lowest site-specific mean clutch size yet reported for a tropical forest bird community. For nine bird species, a subset of the 17 common species, length of breeding season, defined as the difference between the earliest and latest recorded incubation onset date, ranged from 88–139 days. Most of these nine species displayed a unimodal distribution in incubation onset dates across a breeding season which extended from the end of August through middle January. In summary, a wide variation exists in most aspects of the breeding biology within an understory forest bird community in the East Usambara Mountains.

  19. Impact of ozone on understory plants of the aspen zone

    Energy Technology Data Exchange (ETDEWEB)

    Harward, M.R.; Treshow, M.

    1971-01-01

    The purpose of this study was to learn how ozone might affect the growth and reproduction of understory species of the aspen community, and thereby influence its stability and composition. Plants of 15 representative species of the aspen community were grown in chambers and fumigated 4 hours each day, 5 days per week throughout their growing seasons. These included: Achillea millifolium, Chenopodium album, Chenopodium fremontii, Cruciferae sp., Descurainia pinnata, Descurainia sp., Geranium fremontii, Isatis tinctoria, Ligusticum porteri, Lepidium virginicum, Madia glomerata, Polygonum aviculare, Polygonum douglasii, Phacelia heterophylla, Viola italica. Plants were exposed to 30 pphm, 15 pphm, ambient air reaching 5-7 pphm for 2 hours per day, and filtered air. The study was repeated for 3 seasons. Ambient air caused a significant reduction of total plant weight only of Lepidium virginicum. Six species produced fruit and seeds. At 15 pphm, seed production by Madia glomerata and Polygonum douglasii was significantly reduced. At 30 pphm, seed production was also reduced in Polygonum aviculare and Lepidium virginicum. The two most significant conclusions to emerge from the study were first that several species were more sensitive to ozone than might have been suspected. Second, this sensitivity varied sufficiently that major shifts in community composition would be probable following only a year or two of exposure. More tolerant species have no doubt already become dominant over more sensitive species in natural plant communities exposed to elevated ozone concentrations. It must be stressed that the species studied did not necessarily represent the most ozone sensitive members of the community, or the most tolerant.

  20. Responses of a Federally Endangered Songbird to Understory Thinning in Oak-Juniper Woodlands

    Science.gov (United States)

    Long, Ashley M.; Marshall, Mike E.; Morrison, Michael L.; Hays, K. Brian; Farrell, Shannon L.

    2017-04-01

    Wildlife conservation and management on military lands must be accomplished in the context of military readiness, which often includes ground-based training that is perceived to conflict with wildlife needs and environmental regulations. From 2008‒2012, we examined territory density, pairing success, and fledging success of the federally endangered golden-cheeked warbler ( Setophaga chrysoparia; hereafter warbler) in relation to removal of small-diameter trees from the understory of mature oak-juniper ( Quercus-Juniperus) woodland at the 87,890 ha Fort Hood Military Reservation in central Texas. Understory thinning created troop maneuver lanes, but left canopy vegetation intact. Warbler density, pairing success, and fledging success were similar across thinned and control sites. We found that warbler pairing and fledging success were best predicted by Ecological site (hereafter Ecosite), an indicator of hardwood tree species composition. Warbler pairing and fledging success were about 1.5 and 1.6 times higher, respectively, for territories dominated by the Low Stony Hill Ecosite than territories dominated by the Redlands Ecosite. Our results indicate that understory thinning for military training purposes did not have a negative effect on warblers at Fort Hood in the manner tested, and suggest that removal of smaller trees from the understory in a way that replicates historic conditions may elicit neutral responses from this forest-dependent songbird. Quantifying wildlife responses to military activities provides the Department of Defense and US Fish and Wildlife Service with data to guide conservation of threatened and endangered species on Department of Defense facilities while maintaining the military mission, and supports wildlife management efforts on other public and private lands.

  1. Measuring and modeling the spatial pattern of understory bamboo across landscapes: Implications for giant panda habitat

    Science.gov (United States)

    Linderman, Marc Alan

    habitat research and management. The success here to map bamboo has important implications for giant panda conservation and provides a good foundation for developing methods to map the spatial distributions of understory plant species. Knowledge of the spatial distribution of bamboo is necessary to accurately measure the quantity and landscape characteristics of giant panda habitat. (Abstract shortened by UMI.)

  2. The Frequency and Fate of Understory Forest Fires in Amazonia

    Science.gov (United States)

    Morton, D. C.; le page, Y.; Wang, D.; Chen, Y.; Randerson, J. T.; Collatz, G. J.; Giglio, L.; Hurtt, G. C.; DeFries, R. S.

    2012-12-01

    Fires for deforestation or agricultural management frequently escape their intended boundaries and burn standing Amazon forests. The extent and frequency of understory forest fires are critical to assess forest carbon emissions and the long-term legacy of understory fires in Amazonia. Patterns of understory fire activity under current climate conditions also offer a blueprint for potential changes in Amazon forests under scenarios of future climate and land use. Here, we estimated of the extent and frequency of understory forest fires for the entire arc of deforestation in southern Amazonia using a time series of annual Moderate Resolution Imaging Spectroradiometer (MODIS) data. Understory forest fires burned more than 80,000 km2 during 1999-2010. Fires were widespread along the southern and eastern extents of Amazon forests during the four years with highest fire activity (1999, 2005, 2007, 2010). The interannual variability in understory fires offered new insights into fire-climate dynamics in Amazonia over a range of temporal scales, based on the combination of burned area, MODIS active fire detections, and reanalysis climate data. Initial fire exposure reduces aboveground carbon stocks, and frequent fires are one possible mechanism for long-term changes the structure of Amazon forests. Repeated burning was concentrated in southeastern Amazonia, and >95% of all repeated fires occurred in the Brazilian states of Mato Grosso and Pará. Forests that burned two or more times during this period accounted for 16% of understory fire activity. Finally, deforestation of burned forests was rare, suggesting that forest degradation from understory fires was an independent source of carbon emissions during this period. Modeling the time scales of carbon loss and recovery in burned forests is therefore critical to estimate the net carbon emissions from these fires. The results of this study suggest that understory fires operate as a large-scale edge effect in Amazonia, as

  3. Identification of Bioactivity, Volatile and Fatty Acid Profile in Supercritical Fluid Extracts of Mexican arnica

    Directory of Open Access Journals (Sweden)

    J. Saúl García-Pérez

    2016-09-01

    Full Text Available Supercritical fluid extraction (SFE is a sustainable technique used for the extraction of lipophilic metabolites such as pigments and fatty acids. Arnica plant is considered a potential candidate material with high antioxidant and antimicrobial activities. Therefore, in this study, a locally available Heterotheca inuloides, also known as Mexican arnica, was analyzed for the extraction of high-value compounds. Based on different pressure (P, temperature (T, and co-solvent (CoS, four treatments (T were prepared. A maximum 7.13% yield was recovered from T2 (T = 60 °C, P = 10 MPa, CoS = 8 g/min, followed by 6.69% from T4 (T = 60 °C, P = 30 MPa, CoS = 4 g/min. Some bioactive sesquiterpenoids such as 7-hydroxycadalene, caryophyllene and δ-cadinene were identified in the extracts by GC/MS. The fatty acid profile revealed that the main components were palmitic acid (C16:0, followed by linoleic acid (C18:2ω6c, α-linolenic acid (C18:3ω3 and stearic acid (C18:0 differing in percent yield per treatment. Antibacterial activities were determined by the agar diffusion method, indicating that all the treatments exerted strong antibacterial activity against S. aureus, C. albicans, and E. coli strains. The antioxidant capacity of the extracts was also measured by three in vitro assays, DPPH, TEAC and FRAP, using Trolox as a standard. Results showed high antioxidant capacity enabling pharmaceutical applications of Mexican arnica.

  4. The effect of land-use on the diversity and mass-abundance relationships of understory avian insectivores in Sri Lanka and southern India.

    Science.gov (United States)

    Sreekar, Rachakonda; Srinivasan, Umesh; Mammides, Christos; Chen, Jin; Manage Goodale, Uromi; Kotagama, Sarath Wimalabandara; Sidhu, Swati; Goodale, Eben

    2015-06-25

    Understory avian insectivores are especially sensitive to deforestation, although regional differences in how these species respond to human disturbance may be linked to varying land-use histories. South Asia experienced widespread conversion of forest to agriculture in the nineteenth century, providing a comparison to tropical areas deforested more recently. In Sri Lanka and the Western Ghats of India, we compared understory insectivores to other guilds, and to insectivores with different vertical strata preferences, both inside mixed-species flocks and for the whole bird community. Overall species richness did not change across the land-use gradient, although there was substantial turnover in species composition between land-use types. We found that the proportion of species represented by insectivores was ~1.14 times higher in forest compared to agriculture, and the proportion of insectivores represented by understory species was ~1.32 times higher in forests. Mass-abundance relationships were very different when analyzed on mixed-species flocks compared to the total community, perhaps indicating reduced competition in these mutualisms. We show that South Asia fits the worldwide pattern of understory insectivores declining with increased land-use intensity, and conclude that these species can be used globally as indicator and/or umbrella species for conservation across different disturbance time scales.

  5. Hepatotoxicity associated with consumption of arnica. Case report

    Directory of Open Access Journals (Sweden)

    Edwin Oveimar Muñoz

    2010-03-01

    Full Text Available Objective: To report a case of Toxic hepatitis associate with consumption of Arnica. Methods: The patient was accepted at consult and revised his medical history in third care attention medical center in February of 2010. Moreover was consulted systematically the bibliography at Pubmed since 1966. Results: against popular belief, the herbs remedies are far from to be safety; it has high hepatic toxicity risk in many with fatality consequences. Conclusion: A main reasons for the consumption of herbáis remedies is its widely availed and its use without medical order.

  6. Impact of oil palm agriculture on understory amphibians and reptiles: A Mesoamerican perspective

    Directory of Open Access Journals (Sweden)

    Nina Gallmetzer

    2015-07-01

    Full Text Available Oil palm plantations expand rapidly in tropical regions, including the Neotropics. This study, quantifies the impact on the herpetofauna of the Pacific lowlands of Costa Rica. Amphibians and reptiles were sampled along transects in forest interior (FI, at forest margins (FM and in oil palm plantations (OP. While no significant difference in species richness was found between FI and FM, OP were characterized by a strongly impoverished fauna. Total species richness of amphibians and reptiles was reduced to 45.3% and 49.8% compared to FI, respectively. Species assemblages in OP differed from forest habitats and were characterized by disturbance-tolerant species and a severe loss of endemic species. In amphibians, functional diversity declined dramatically towards OP indicating a decrease of their ecological function. The almost complete absence of leaf litter, understory vegetation and woody debris and the more open canopy may be responsible for the depauperate herpetofauna in OP. Enhancing understory vegetation could help making plantations a less hostile environment for some species. Still, those management measures might not be enough to promote forest specialists. Therefore, to maintain a diverse herpetofauna in tropical human-modified landscapes, the protection of any forested habitats such as secondary forests and strips of gallery forests is essential.

  7. Contributions of understory and/or overstory vegetations to soil microbial PLFA and nematode diversities in Eucalyptus monocultures.

    Science.gov (United States)

    Zhao, Jie; Wan, Songze; Zhang, Chenlu; Liu, Zhanfeng; Zhou, Lixia; Fu, Shenglei

    2014-01-01

    Ecological interactions between aboveground and belowground biodiversity have received many attentions in the recent decades. Although soil biodiversity declined with the decrease of plant diversity, many previous studies found plant species identities were more important than plant diversity in controlling soil biodiversity. This study focused on the responses of soil biodiversity to the altering of plant functional groups, namely overstory and understory vegetations, rather than plant diversity gradient. We conducted an experiment by removing overstory and/or understory vegetation to compare their effects on soil microbial phospholipid fatty acid (PLFA) and nematode diversities in eucalyptus monocultures. Our results indicated that both overstory and understory vegetations could affect soil microbial PLFA and nematode diversities, which manifested as the decrease in Shannon-Wiener diversity index (H') and Pielou evenness index (J) and the increase in Simpson dominance index (λ) after vegetation removal. Soil microclimate change explained part of variance of soil biodiversity indices. Both overstory and understory vegetations positively correlated with soil microbial PLFA and nematode diversities. In addition, the alteration of soil biodiversity might be due to a mixing effect of bottom-up control and soil microclimate change after vegetation removal in the studied plantations. Given the studied ecosystem is common in humid subtropical and tropical region of the world, our findings might have great potential to extrapolate to large scales and could be conducive to ecosystem management and service.

  8. Contributions of understory and/or overstory vegetations to soil microbial PLFA and nematode diversities in Eucalyptus monocultures.

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    Full Text Available Ecological interactions between aboveground and belowground biodiversity have received many attentions in the recent decades. Although soil biodiversity declined with the decrease of plant diversity, many previous studies found plant species identities were more important than plant diversity in controlling soil biodiversity. This study focused on the responses of soil biodiversity to the altering of plant functional groups, namely overstory and understory vegetations, rather than plant diversity gradient. We conducted an experiment by removing overstory and/or understory vegetation to compare their effects on soil microbial phospholipid fatty acid (PLFA and nematode diversities in eucalyptus monocultures. Our results indicated that both overstory and understory vegetations could affect soil microbial PLFA and nematode diversities, which manifested as the decrease in Shannon-Wiener diversity index (H' and Pielou evenness index (J and the increase in Simpson dominance index (λ after vegetation removal. Soil microclimate change explained part of variance of soil biodiversity indices. Both overstory and understory vegetations positively correlated with soil microbial PLFA and nematode diversities. In addition, the alteration of soil biodiversity might be due to a mixing effect of bottom-up control and soil microclimate change after vegetation removal in the studied plantations. Given the studied ecosystem is common in humid subtropical and tropical region of the world, our findings might have great potential to extrapolate to large scales and could be conducive to ecosystem management and service.

  9. Análise da variabilidade genética de arnica (Lychnophora ericoides Less. - Asteraceae usando marcadores RAPDs Genetic variability analysis of arnica (Lychnophora ericoides Less. - Asteraceae using RAPD markers

    Directory of Open Access Journals (Sweden)

    Luciana Queiroz Melo

    2009-03-01

    Full Text Available O objetivo deste trabalho foi analisar e quantificar a variabilidade genética entre e dentro das populações de arnica por meio de marcadores RAPD. Foram amostradas quatro populações na região geoeconômica do Distrito Federal: Parque Nacional de Brasília (2, Fazenda Água Limpa - UnB (1 e Reserva do Instituto Brasileiro de Geografia e Estatística (IBGE (1. Folhas de 24 indivíduos de cada região foram coletadas, totalizando 96 indivíduos. Num total de 105 iniciadores testados foram selecionados 15, totalizando 60 bandas polimórficas. Marcadores RAPDs selecionados foram analisados com a utilização dos programas NTSYS e Amova. O dendrograma obtido pelo método UPGMA e coeficiente de dissimilaridade Dice evidenciou quatro agrupamentos consistentes, com índice de dissimilaridade variando entre 62 a 71%. O teste de Mantel aplicado estabeleceu uma correlação cofenética com valores de r = 0.82, significando que as distâncias geográficas entre as populações amostradas estão correlacionadas com a distância genética. A análise de AMOVA mostrou uma percentagem variabilidade genética entre populações de 35,7% e dentro de populações de 64,3%, evidenciando uma alta variação entre populações, sendo um importante resultado para definição de uma estratégia de conservação da espécie que se encontra em situação vulnerável à extinção.The main objective of this research was to analyze and quantify the genetic variability within and between populations of arnica using RAPD markers. Four populations from Federal District area, Brazil were sampled: Parque Nacional de Brasília - (2 , Fazenda Água Limpa -UnB (1, and Reserva do Instituto Brasileiro de Geografia e Estatística (IBGE (1. Leaves from twenty-four individuals from each population were collected and preserved under refrigeration. Fifteen primers were selected from 105 tested, totalizing 60 polymorphic bands. Scored RAPD markers were analyzed using NTSYS and Amova

  10. BOREAS TE-9 In Situ Understory Spectral Reflectance Within the NSA

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Supronowicz, Jan; Edwards, Geoffrey; Viau, Alain; Thomson, Keith

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. Spectral reflection coefficients of the forest understory at the ground level, in three boreal forest sites of Northern Manitoba (56 N latitude and 98 W longitude), were obtained and analyzed in 1994. In particular, angular variation of the reflection coefficients in the old jack pine and young jack pine forests, as well as nadir reflection coefficient in the young aspen forest, were investigated. The complexity of understory composition and the light patterns limited quantitative conclusions; however, a number of interesting trends in the behavior of the measured values can be inferred. In particular, the unique spectral profiles of lichens show very strongly in the old jack pine understory, yet are definitely less conspicuous for young jack pine, and virtually absent in the aspen forest. The angular variation of the reflection coefficient by the young pine understory seems to be significantly toned down by fine-structured branches and their shadows. Our study also indicates how difficult the ground reflection coefficient problem in a forest is, compared to certain previously investigated areas that have a more uniform appearance, such as prairie grassland, bare soil, or agricultural crops. This is due to several factors, generally typical of a forest environment, that may influence the overall understory reflection coefficient, including: (1) a strong diversity of the forest floor due to the presence of dead tree trunks, holes in the ground, patches of different types of vegetation or litter, etc.; (2) pronounced 3-D structures at the ground level, such as shrubs, bushes, and young trees; and (3) an irregular shadow mosaic, which not only varies with the time of the day, causing intensity variations, but likely also effectively modifies the spectrum of the

  11. LEAF AREA INDEX (LAI) CHANGE DETECTION ON LOBLOLLY PINE FOREST STANDS WITH COMPLETE UNDERSTORY REMOVAL

    Science.gov (United States)

    The confounding effect of understory vegetation contributions to satellite derived estimates of leaf area index (LAI) was investigated on two loblolly pine (Pinus taeda) forest stands located in the southeastern United States. Previous studies have shown that understory can a...

  12. Prescribed burning and clear-cutting effects on understory vegetation in a Pinus canariensis stand (Gran Canaria).

    Science.gov (United States)

    Arévalo, José Ramón; Fernández-Lugo, Silvia; García-Domínguez, Celia; Naranjo-Cigala, Agustín; Grillo, Federico; Calvo, Leonor

    2014-01-01

    Prescribed fires are a powerful tool for reducing fire hazards by decreasing amounts of fuel. The main objective is to analyze the effects of prescribed burning on the understory vegetation composition as well as on the soil characteristics of a reforested stand of Pinus canariensis. The study attempts to identify the effects of the preburning treatment of cutting understory vegetation on the floristic parameters of the vegetation community. This study was carried out for two years following a prescribed fire in a Canarian pine stand. Cutting and burning treatment affected species composition and increased diversity. Burnt and cut plots were characterized by a diverse array of herbaceous species and by a lower abundance of Teline microphylla (endemic legume), although burning apparently induced its germination. Cut treatment was more consistently differentiated from the control plots than burnt treatment. Soil K decreased after both treatments, pH slightly decreased after cutting, while P and Ca increased after fire. From an ecological point of view, prescribed burning is a better management practice than cutting the woody species of the understory. However, long-term studies would be necessary to evaluate the effects of fire intensity, season and frequency in which the prescribed burning is applied.

  13. Prescribed Burning and Clear-Cutting Effects on Understory Vegetation in a Pinus canariensis Stand (Gran Canaria

    Directory of Open Access Journals (Sweden)

    José Ramón Arévalo

    2014-01-01

    Full Text Available Prescribed fires are a powerful tool for reducing fire hazards by decreasing amounts of fuel. The main objective is to analyze the effects of prescribed burning on the understory vegetation composition as well as on the soil characteristics of a reforested stand of Pinus canariensis. The study attempts to identify the effects of the preburning treatment of cutting understory vegetation on the floristic parameters of the vegetation community. This study was carried out for two years following a prescribed fire in a Canarian pine stand. Cutting and burning treatment affected species composition and increased diversity. Burnt and cut plots were characterized by a diverse array of herbaceous species and by a lower abundance of Teline microphylla (endemic legume, although burning apparently induced its germination. Cut treatment was more consistently differentiated from the control plots than burnt treatment. Soil K decreased after both treatments, pH slightly decreased after cutting, while P and Ca increased after fire. From an ecological point of view, prescribed burning is a better management practice than cutting the woody species of the understory. However, long-term studies would be necessary to evaluate the effects of fire intensity, season and frequency in which the prescribed burning is applied.

  14. Effect of vehicles on topical application of aloe vera and arnica montana components.

    Science.gov (United States)

    Bergamante, Valentina; Ceschel, Gian Carlo; Marazzita, Sergio; Ronchi, Celestino; Fini, Adamo

    2007-10-01

    In this study two types of gels and microemulsions are investigated for their ability to dissolve, release, and induce the permeation of helenalin, a flavonoid responsible for the anti-inflammatory activity of arnica montana extract, and aloin, an anthrone-C-glucosyls with antibacterial activity present in aloe vera extract. The release of these agents from each vehicle was followed by HPLC, and transcutaneous permeation was examined using a modified Franz cell and a porcine skin membrane. The study showed that a microemulsion can be a good vehicle to increase the permeation of helenalin, while the gel formulation, containing Sepigel 305, proved able to reduce the release and permeation of aloin, with a consequent activity limited to the surface of application, without any permeation. This is in accordance with the necessity to avoid this process, since human skin fibroblasts can metabolize absorbed aloin into a structurally related compound that increases the sensitivity of skin to ultraviolet light.

  15. Direct and indirect effects of a dense understory on tree seedling recruitment in temperate forests: habitat-mediated predation versus competition

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2008-01-01

    In forests characterized by a dense woody and herbaceous understory layer, seedling recruitment is often directly suppressed via interspecific competition. Alternatively, these dense layers may indirectly lower tree recruitment by providing a haven for seed and seedling predators that prey on neighboring plant species. To simultaneously...

  16. Long-term demographic consequences of habitat fragmentation to a tropical understory bird community

    Science.gov (United States)

    Korfanta, N.M.; Newmark, W.D.; Kauffman, M.J.

    2012-01-01

    Tropical deforestation continues to cause population declines and local extinctions in centers of avian diversity and endemism. Although local species extinctions stem from reductions in demographic rates, little is known about how habitat fragmentation influences survival of tropical bird populations or the relative importance of survival and fecundity in ultimately shaping communities. We analyzed 22 years of mark-recapture data to assess how fragmentation influenced apparent survival, recruitment, and realized population growth rate within 22 forest understory bird species in the Usambara Mountains, Tanzania. This represents the first such effort, in either tropical or temperate systems, to characterize the effect of deforestation on avian survival across such a broad suite of species. Long-term demographic analysis of this suite of species experiencing the same fragmented environment revealed considerable variability in species' responses to fragmentation, in addition to general patterns that emerged from comparison among species. Across the understory bird community as a whole, we found significantly lower apparent survival and realized population growth rate in small fragments relative to large, demonstrating fragmentation effects to demographic rates long after habitat loss. Demographic rates were depressed across five feeding guilds, suggesting that fragmentation sensitivity was not limited to insectivores. Seniority analyses, together with a positive effect of fragmentation on recruitment, indicated that depressed apparent survival was the primary driver of population declines and observed extinctions. We also found a landscape effect, with lower vital rates in one mountain range relative to another, suggesting that fragmentation effects may add to other large-scale drivers of population decline. Overall, realized population growth rate (λ) estimates were < 1 for most species, suggesting that future population persistence even within large forest

  17. Skin penetration behaviour of sesquiterpene lactones from different Arnica preparations using a validated GC-MSD method.

    Science.gov (United States)

    Wagner, Steffen; Merfort, Irmgard

    2007-01-04

    Preparations of Arnica montana L. are widely used for the topical treatment of inflammatory diseases. The anti-inflammatory activity is mainly attributed to their sesquiterpene lactones (SLs) from the helenalin and 11alpha,13-dihydrohelenalin type. To study the penetration kinetics of SLs in Arnica preparations, a stripping method with adhesive tape and pig skin as a model was used. For the determination of SLs in the stripped layers of the stratum corneum (SC), a gas chromatography/mass spectrometry method was developed and validated. Thereby the amount of helenalin derivatives was calculated as helenalin isobutyrate, and 11alpha,13-dihydrohelenalin derivatives as 11alpha,13-dihydrohelenalin methacrylate. This GC-MSD method is suitable also to determine low amounts of SLs in Arnica preparations. The penetration behaviour of one gel preparation and two ointment preparations was investigated. The SLs of all preparations show a comparable penetration in and a permeation through the stratum corneum, the uppermost part of the skin. Interestingly, the gel preparation showed a decrease of the penetration rate over 4h, whereas the penetration rate of ointments kept constant over time. Moreover, we could demonstrate that the totally penetrated amount of SLs only depends on the kind of the formulation and of the SLs-content in the formulation but not on the SLs composition or on the used extraction agent.

  18. Topical Application of Arnica and Mucopolysaccharide Polysulfate Attenuates Periorbital Edema and Ecchymosis in Open Rhinoplasty: A Randomized Controlled Clinical Study.

    Science.gov (United States)

    Simsek, Gokce; Sari, Elif; Kilic, Rahmi; Bayar Muluk, Nuray

    2016-03-01

    The purpose of this study was to investigate the effects of local arnica and mucopolysaccharide polysulfate treatment on the regression of postoperative edema and ecchymosis in patients who have undergone open technique rhinoplasty. One hundred eight patients were included in the study. Participants were randomized into three groups, all of whom had undergone rhinoplasty. Group 1 (n = 36) received postoperative arnica cream treatment, and group 2 (n = 36) received postoperative mucopolysaccharide polysulfate cream treatment. Group 3 (n = 36, control group) consisted of patients who received no postoperative local treatments. Patients were evaluated for 24 hours on days 2, 5, 7, and 10 after the operation. For the evaluation of postoperative edema and ecchymosis, a scale ranging from 0 to 4 was used, and the groups were compared. In groups 1 and 2, postoperative ecchymosis was significantly less than in the control group during postoperative days 1, 5, and 7 (p ecchymosis was significantly different between groups 1 and 2 (p > 0.005). The authors' results suggest that a rapid regression of edema and ecchymosis may be achieved by local treatments of arnica and mucopolysaccharide polysulfate cream. In addition, there are no significant differences between these two treatment regimens. Therapeutic, II.

  19. Little response of true fir saplings to understory shrub removal

    Science.gov (United States)

    William W. Oliver; Fabian C.C. Uzoh

    2002-01-01

    The ability of white fir and California red fir to become established, persist, and eventually dominate montane shrub fields is well known. When the firs have eventually dominated do the understory shrubs continue to inhibit growth? In a small study in the southern Cascade Range of northeastern California, we tested the growth response of a thinned stand of saplings to...

  20. Long-term demographic consequences of habitat fragmentation to a tropical understory bird community.

    Science.gov (United States)

    Korfanta, Nicole M; Newmark, William D; Kauffman, Matthew J

    2012-12-01

    Tropical deforestation continues to cause population declines and local extinctions in centers of avian diversity and endemism. Although local species extinctions stem from reductions in demographic rates, little is known about how habitat fragmentation influences survival of tropical bird populations or the relative importance of survival and fecundity in ultimately shaping communities. We analyzed 22 years of mark-recapture data to assess how fragmentation influenced apparent survival, recruitment, and realized population growth rate within 22 forest understory bird species in the Usambara Mountains, Tanzania. This represents the first such effort, in either tropical or temperate systems, to characterize the effect of deforestation on avian survival across such a broad suite of species. Long-term demographic analysis of this suite of species experiencing the same fragmented environment revealed considerable variability in species' responses to fragmentation, in addition to general patterns that emerged from comparison among species. Across the understory bird community as a whole, we found significantly lower apparent survival and realized population growth rate in small fragments relative to large, demonstrating fragmentation effects to demographic rates long after habitat loss, Demographic rates were depressed across five feeding guilds, suggesting that fragmentation sensitivity was not limited to insectivores. Seniority analyses, together with a positive effect of fragmentation on recruitment, indicated that depressed apparent survival was the primary driver of population declines and observed extinctions. We also found a landscape effect, with lower vital rates in one mountain range relative to another, suggesting that fragmentation effects may add to other large-scale drivers of population decline. Overall, realized population growth rate (lambda) estimates were fragments, is uncertain in this biodiversity hotspot.

  1. Mechanisms for success after long-term nutrient enrichment in a boreal forest understory.

    Directory of Open Access Journals (Sweden)

    Tess Nahanni Grainger

    Full Text Available Global levels of reactive nitrogen are predicted to rise in the coming decades as a result of increased deposition from the burning of fossil fuels and the large-scale conversion of nitrogen into a useable form for agriculture. Many plant communities respond strongly to increases in soil nitrogen, particularly in northern ecosystems where nitrogen levels are naturally very low. An experiment in northern Canada that was initiated in 1990 has been investigating the effects of long-term nutrient enrichment (fertilizer added annually on a boreal forest understory community. We used this experiment to investigate why some species increase in abundance under nutrient enrichment whereas others decline. We focused on four species that differed in their responses to fertilization: Mertensia paniculata and Epilobium angustifolium increased in abundance, Achillea millefolium remained relatively constant and Festuca altaica declined. We hypothesized that the two species that were successful in the new high-nutrient, light-limited environment would be taller, have higher specific leaf area, change phenology by growing earlier in the season and be more morphologically plastic than their less successful counterparts. We compared plant height, specific leaf area, growth spurt date and allocation to leaves in plants grown in control and fertilized plots. We demonstrated that each of the two species that came to dominate fertilized plots has a different combination of traits and responses that likely gave them a competitive advantage; M. paniculata has the highest specific leaf area of the four species whereas E. angustifolium is tallest and exhibits morphological plasticity when fertilized by increasing biomass allocation to leaves. These results indicate that rather than one strategy determining success when nutrients become available, a variety of traits and responses may contribute to a species' ability to persist in a nutrient-enriched boreal forest

  2. Interactions between plant size and canopy openness influence vital rates and life-history tradeoffs in two neotropical understory herbs.

    Science.gov (United States)

    Westerband, Andrea C; Horvitz, Carol C

    2015-08-01

    • For tropical forest understory plants, the ability to grow, survive, and reproduce is limited by the availability of light. The extent to which reproduction incurs a survival or growth cost may change with light availability, plant size, and adaptation to shade, and may vary among similar species.• We estimated size-specific rates of growth, survival, and reproduction (vital rates), for two neotropical understory herbs (order Zingiberales) in a premontane tropical rainforest in Costa Rica. During three annual censuses we monitored 1278 plants, measuring leaf area, number of inflorescences, and canopy openness. We fit regression models of all vital rates and evaluated them over a range of light levels. The best fitting models were selected using Akaike's Information Criterion.• All vital rates were significantly influenced by size in both species, but not always by light. Increasing light resulted in higher growth and a higher probability of reproduction in both species, but lower survival in one species. Both species grew at small sizes but shrank at larger sizes. The size at which shrinkage began differed among species and light environments. Vital rates of large individuals were more sensitive to changes in light than small individuals.• Increasing light does not always positively influence vital rates; the extent to which light affects vital rates depends on plant size. Differences among species in their abilities to thrive under different light conditions and thus occupy distinct niches may contribute to the maintenance of species diversity. © 2015 Botanical Society of America, Inc.

  3. The environment, not space, dominantly structures the landscape patterns of the richness and composition of the tropical understory vegetation.

    Directory of Open Access Journals (Sweden)

    Yue-Hua Hu

    Full Text Available The mechanisms driving the spatial patterns of species richness and composition are essential to the understanding of biodiversity. Numerous studies separately identify the contributions of the environment (niche process and space (neutral process to the species richness or composition at different scales, but few studies have investigated the contributions of both types of processes in the two types of data at the landscape scale. In this study, we partitioned the spatial variations in all, exotic and native understory plant species richness and composition constrained by environmental variables and space in 134 plots that were spread across 10 counties in Hainan Island in southern China. The 134 plots included 70 rubber (Hevea brasiliensis plantation plots, 50 eucalyptus (Eucalyptus urophylla plantation plots, and 14 secondary forest plots. RDA based variation partitioning was run to assess the contribution of environment and space to species richness and composition. The results showed that the environmental variables alone explained a large proportion of the variations in both the species richness and composition of all, native, and exotic species. The RDA results indicated that overstory composition (forest type here plays a leading role in determining species richness and composition patterns. The alpha and beta diversities of the secondary forest plots were markedly higher than that of the two plantations. In conclusion, niche differentiation processes are the principal mechanisms that shape the alpha and beta diversities of understory plant species in Hainan Island.

  4. Driving Factors of Understory Evapotranspiration within a Siberian Larch Forest

    Science.gov (United States)

    Tobio, A.; Loranty, M. M.; Kropp, H.; Pena, H., III; Alexander, H. D.; Natali, S.; Kholodov, A. L.; Spawn, S.; Farmer, S.

    2017-12-01

    Amplified rates of climate change are causing alterations in vegetation productivity, hydrologic cycling, and wildfire severity and intensity in arctic ecosystems. Boreal larch forests in northeastern Siberia are a critical but understudied ecosystem that are affected by these modifications. These forests cover 2.5 million km2 with densities ranging from spare to thick. The current average canopy cover is at around 17% and is expected to increase with the observed increases in vegetation productivity and wildfire. These projected changes in forest density can alter the proportional contributions of over- and understory vegetation to whole ecosystem evapotranspiration. Low density boreal forests have much higher rates of understory evapotranspiration and can contribute as much as 80% to total ecosystem evapotranspiration, while the understory in high density forests is responsible for only around 15% of total ecosystem evapotranspiration. The objective of this research is to understand why there are changes in understory evapotranspiration with varying overstory density by looking at light levels, biomass, vegetation, and air and soil differences. To better learn about these differences in understory evapotranspiration in boreal larch forests the driving factors of evapotranspiration were measured within a burn scar with varying densities of high, medium, and low. Water fluxes were conducted using the static chamber technique under different environmental conditions. Furthermore, controlling factors of evapotranspiration such as photosynethically active radiation, vapor pressure deficit, soil moisture, moss cover, biomass, and leaf area index were measured or derived. In general, we found that low density areas have highest rates of evapotranspiration due to larger amount of biomass, and increased access to light, despite low levels of soil moisture. These results can help us understand how and why total ecosystem water exchange will change in boreal larch forests

  5. Trophic flexibility and the persistence of understory birds in intensively logged rainforest.

    Science.gov (United States)

    Edwards, David P; Woodcock, Paul; Newton, Rob J; Edwards, Felicity A; Andrews, David J R; Docherty, Teegan D S; Mitchell, Simon L; Ota, Takahiro; Benedick, Suzan; Bottrell, Simon H; Hamer, Keith C

    2013-10-01

    Effects of logging on species composition in tropical rainforests are well known but may fail to reveal key changes in species interactions. We used nitrogen stable-isotope analysis of 73 species of understory birds to quantify trophic responses to repeated intensive logging of rainforest in northern Borneo and to test 4 hypotheses: logging has significant effects on trophic positions and trophic-niche widths of species, and the persistence of species in degraded forest is related to their trophic positions and trophic-niche widths in primary forest. Species fed from higher up the food chain and had narrower trophic-niche widths in degraded forest. Species with narrow trophic-niche widths in primary forest were less likely to persist after logging, a result that indicates a higher vulnerability of dietary specialists to local extinction following habitat disturbance. Persistence of species in degraded forest was not related to a species' trophic position. These results indicate changes in trophic organization that were not apparent from changes in species composition and highlight the importance of focusing on trophic flexibility over the prevailing emphasis on membership of static feeding guilds. Our results thus support the notion that alterations to trophic organization and interactions within tropical forests may be a pervasive and functionally important hidden effect of forest degradation. © 2013 Society for Conservation Biology.

  6. Warming climate may negatively affect native forest understory plant richness and composition by increasing invasions of non-native plants

    Science.gov (United States)

    Dovciak, M.; Wason, J. W., III; Frair, J.; Lesser, M.; Hurst, J.

    2016-12-01

    Warming climate is often expected to cause poleward and upslope migrations of native plant species and facilitate the spread of non-native plants, and thus affect the composition and diversity of forest understory plant communities. However, changing climate can often interact with other components of global environmental change, and especially so with land use, which often varies along extant climatic gradients making it more difficult to predict species and biodiversity responses to changing climate. We used large national databases (USDA FIA, NLCD, and PRISM) within GLM and NMDS analytical frameworks to study the effects of climate (temperature and precipitation), and land management (type, fragmentation, time since disturbance) on the diversity and composition of native and non-native plant species in forest understories across large geographical (environmental) gradients of the northeastern United States. We tested how non-native and native species diversity and composition responded to existing climate gradients and land-use drivers, and we approximated how changing climate may affect both native and non-native species composition and richness under different climate change scenarios (+1.5, 2, and 4.8 degrees C). Many understory forest plant communities already contain large proportions of non-native plants, particularly so in relatively warmer and drier areas, at lower elevations, and in areas with more substantial land-use histories. On the other hand, cooler and moister areas, higher elevations, and areas used predominantly for forestry or nature conservation (i.e., large contiguous forest cover) were characterized by a low proportion of non-native plant species in terms of both species cover and richness. In contrast to native plants, non-native plant richness was related positively to mean annual temperature and negatively to precipitation. Mountain areas appeared to serve as refugia for native forest understory species under the current climate, but

  7. Patterns of Understory Diversity in Mixed Coniferous Forests of Southern California Impacted by Air Pollution

    Directory of Open Access Journals (Sweden)

    Edith B. Allen

    2007-01-01

    Full Text Available The forests of the San Bernardino Mountains have been subject to ozone and nitrogen (N deposition for some 60 years. Much work has been done to assess the impacts of these pollutants on trees, but little is known about how the diverse understory flora has fared. Understory vegetation has declined in diversity in response to elevated N in the eastern U.S. and Europe. Six sites along an ozone and N deposition gradient that had been part of a long-term study on response of plants to air pollution beginning in 1973 were resampled in 2003. Historic ozone data and leaf injury scores confirmed the gradient. Present-day ozone levels were almost half of these, and recent atmospheric N pollution concentrations confirmed the continued air pollution gradient. Both total and extractable soil N were higher in sites on the western end of the gradient closer to the urban source of pollution, pH was lower, and soil carbon (C and litter were higher. The gradient also had decreasing precipitation and increasing elevation from west to east. However, the dominant tree species were the same across the gradient.

  8. Restoring Native Forest Understory: The Influence of Ferns and Light in a Hawaiian Experiment

    Directory of Open Access Journals (Sweden)

    Robert Shallenberger

    2013-03-01

    Full Text Available Ecological restoration is an increasingly important component of sustainable land management. We explore potential facilitative relationships for enhancing the cost-effectiveness of restoring native forest understory, focusing on two factors: (1 overstory shade and (2 possible facilitation by a fern (Dryopteris wallichiana, one of few native colonists of pasture in our montane Hawaiˈi study system. We planted 720 understory tree seedlings and over 4000 seeds of six species under six planting treatments: a full factorial combination of low, medium and high light, situating plantings in either the presence or absence of a mature fern. After three years, 75% of outplanted seedlings survived. Seedling survivorship was significantly higher in the presence of a fern (79% vs. 71% without a fern and in medium and low light conditions (81% vs. 64% in high light. Relative height was highest at low to medium light levels. After 2.2 years, 2.8% of the planted seeds germinated. We observed no significant differences in seed germination relative to light level or fern presence. Analyzing several approaches, we found nursery germination of seeds followed by outplanting ca. 20% less costly than direct seeding in the field. This study opens new questions about facilitation mechanisms that have the potential to increase the extent and effectiveness of restoration efforts.

  9. Airborne laser scanner (LiDAR) proxies for understory light conditions

    DEFF Research Database (Denmark)

    Alexander, Cici; Moeslund, Jesper Erenskjold; Bøcher, Peder Klith

    2013-01-01

    on the average Ellenberg indicator values for light for the plant species present in a given plot. The correlations of Ellenberg values with ALS-based canopy closure were higher (r2: 0.47) than those with ALS-based canopy cover (r2: 0.26) and densiometer readings (r2: 0.41) for the forest sites. ALS-based canopy......Canopy cover and canopy closure are two closely related measures of vegetation structure. They are used for estimating understory light conditions and their influence on a broad range of biological components in forest ecosystems, from the demography and population dynamics of individual species...... to community structure. Angular canopy closure is more closely related to the direct and indirect light experienced by a plant or an animal than vertical canopy cover, but more challenging to estimate. We used airborne laser scanner (ALS) data to estimate canopy cover for 210 5-m radius vegetation plots...

  10. Assessment of Mexican Arnica (Heterotheca inuloides Cass) and Rosemary (Rosmarinus officinalis) Extracts on Dopamine and Selected Biomarkers of Oxidative Stress in Stomach and Brain of Salmonella typhimurium Infected rats.

    Science.gov (United States)

    Guzmàn, David Calderón; Herrera, Maribel Ortiz; Brizuela, Norma Osnaya; Mejía, Gerardo Barragàn; García, Ernestina Hernàndez; Olguín, Hugo Juàrez; Peraza, Armando Valenzuela; Ruíz, Norma Labra; Del Angel, Daniel Santamaría

    2017-01-01

    involved in these effects. Abbreviations used: AS: Automated system, ATP: Adenosine triphosphate, CNS: Central nervous system, CFU: Colony-forming unit, DA: Dopamine EDTA: Ethylenediaminetetraacetic acid, 5-HIAA: Äcido 5-hidroxindolacético (serotonina), GABA: γ-aminobutyric acid, GSH: Glutathione, H2O2: Hidrogen peroxide, HCLO4: Perchloric acid, iNOS: Inducible nitric oxide synthase, LPS: Lipopolysaccharides, MAR: Arnica/Rosemary, NaCl: Sodium Chloride, NOGSH: nitrosoglutathione, NOS: Nitric oxide, OPT: Ortho-phtaldialdehyde, Pbs: Phosphate buffered saline, pH: potential of Hydrogen, Pi: Inorganic phosphate, ROS: Reactive oxygen species, RNSs: Reactive nitrogen species Tba: Thiobarbaturic acid, TBARS: Thiobarbituric aid reactive, Tca: Trichloroacetic, Tris-HCL: Tris hydrochloride, TSA: Trypticasein Soya Agar.

  11. Spatial Heterogeneity of the Forest Canopy Scales with the Heterogeneity of an Understory Shrub Based on Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Catherine K. Denny

    2017-04-01

    Full Text Available Spatial heterogeneity of vegetation is an important landscape characteristic, but is difficult to assess due to scale-dependence. Here we examine how spatial patterns in the forest canopy affect those of understory plants, using the shrub Canada buffaloberry (Shepherdia canadensis (L. Nutt. as a focal species. Evergreen and deciduous forest canopy and buffaloberry shrub presence were measured with line-intercept sampling along ten 2-km transects in the Rocky Mountain foothills of west-central Alberta, Canada. Relationships between overstory canopy and understory buffaloberry presence were assessed for scales ranging from 2 m to 502 m. Fractal dimensions of both canopy and buffaloberry were estimated and then related using box-counting methods to evaluate spatial heterogeneity based on patch distribution and abundance. Effects of canopy presence on buffaloberry were scale-dependent, with shrub presence negatively related to evergreen canopy cover and positively related to deciduous cover. The effect of evergreen canopy was significant at a local scale between 2 m and 42 m, while that of deciduous canopy was significant at a meso-scale between 150 m and 358 m. Fractal analysis indicated that buffaloberry heterogeneity positively scaled with evergreen canopy heterogeneity, but was unrelated to that of deciduous canopy. This study demonstrates that evergreen canopy cover is a determinant of buffaloberry heterogeneity, highlighting the importance of spatial scale and canopy composition in understanding canopy-understory relationships.

  12. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities

    Science.gov (United States)

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.; Collins, Cathy D.; Hahn, Philip G.; Mattingly, W. Brett; Veldman, Joseph W.; Walker, Joan L.

    2014-01-01

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of

  13. Land-use history and contemporary management inform an ecological reference model for longleaf pine woodland understory plant communities.

    Directory of Open Access Journals (Sweden)

    Lars A Brudvig

    Full Text Available Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities, and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients-i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes. Our study demonstrates

  14. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities.

    Energy Technology Data Exchange (ETDEWEB)

    Brudvig, Lars A. [Department of Plant Biology, Michigan State University; Orrock, John L. [Department of Zoology, University of Wisconsin; Damschen, Ellen I. [Department of Zoology, University of Wisconsin; et al, et al

    2014-01-23

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils lol(which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together. and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility

  15. Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor.

    Science.gov (United States)

    Fagan, Matthew E; DeFries, Ruth S; Sesnie, Steven E; Arroyo-Mora, J Pablo; Chazdon, Robin L

    2016-07-01

    Re-establishing connectivity between protected areas isolated by habitat clearing is a key conservation goal in the humid tropics. In northeastern Costa Rica, payments for environmental services (PES) and a government ban on deforestation have subsidized forest protection and reforestation in the San Juan-La Selva Biological Corridor (SJLSBC), resulting in a decline in mature forest loss and the expansion of tree plantations. We use field studies and graph models to assess how conservation efforts have altered functional connectivity over the last 25 years for four species of insectivorous understory birds. Field playback studies assessed how reforestation habitat quality affected the willingness of Myrmeciza exsul, Henicorhina leucosticta, Thamnophilus atrinucha, and Glyphorynchus spirurus to travel outside forest habitat for territorial defense. Observed travel distances were greatest in nonnative and native tree plantations with high understory stem density, regardless of overstory composition. In contrast, tree plantations with low stem density had travel responses comparable to open pasture for three of the four bird species. We modeled landscape connectivity for each species using graph models based on varying possible travel distances in tree plantations, gallery forests, and pastures. From 1986 to 2011, connectivity for all species declined in the SJLSBC landscape (5825 km 2 ) by 14% to 21% despite only a 4.9% net loss in forest area and the rapid expansion of tree plantations over 2% of the landscape. Plantation placement in the landscape limited their potential facilitation of connectivity because they were located either far from forest cover or within already contiguous forest areas. We mapped current connectivity bottlenecks and identified priority areas for future reforestation. We estimate that reforestation of priority areas could improve connectivity by 2% with only a 1% gain in forest cover, an impressive gain given the small area reforested

  16. Short-Term Responses of Birds to Forest Gaps and Understory: An Assessment of Reduced-Impact Logging in a Lowland Amazon Forest.

    Science.gov (United States)

    Joseph M. Wunderle Jr.; Luiza Magalli Pinto Henriques; Michael R. Willig

    2006-01-01

    We studied physiognomy-specific (i.e., gaps vs. understory) responses of birds to low harvest (18.7 m3/ha), reduced-impact logging by comparing 3500 mist net captures in control and cut blocks of an Amazonian terra firme forest in Brazil at 20–42 mo postharvest. Species richness did not differ significantly between control (92 species) and cut (85) forest based on...

  17. Behavior of piles and indolbutyric or homeopathic prepared acid Arnica montana spread of false-erica

    Directory of Open Access Journals (Sweden)

    Darcieli Aparecida Cassol

    2017-06-01

    Full Text Available The market for flowers and ornamental plants is growing. Since the false-érica (Cuphea gracilis is a plant with many uses in the landscape, adapting to partial shade or full sun can be used for ground covers or chromatic combinations with other plants. Usually, the false-erica is propagated by seeds or by cuttings. The objective of this study was to evaluate the size of stakes and the concentration of IBA (indole butyric acid and prepared homeopathic base of Arnica montana in rooting false-erica stakes. The collection of cuttings was carried out in arrays plants grown in gardens in standard sizes 6 and 12 cm in length, and were treated with IBA at concentrations of 0; 1.000 and 2.000 mg L-1 in addition to the homeopathic preparation A. montana 12 CH. The experiment was conducted in a completely randomized design in a 2x4 factorial [length x stake stimulant treatment], with 4 replications of 10 cuttings per plot. After 45 days, they were evaluated percentage of rooted and dead cuttings, root length (cm, number of shoots and number of leaves. The concentrations of AIB, and the application of homeopathy stimulated the adventitious rooting processes of this kind.

  18. Phenology of tropical understory trees: patterns and correlates

    Directory of Open Access Journals (Sweden)

    W. Alice Boyle

    2012-12-01

    Full Text Available Reproductive phenologies of plants are constrained by climate in highly seasonal regions. In contrast, plants growing in wet tropical forests are freed from many abiotic constraints, which in canopy tree communities lead to a rich diversity of phenological patterns within and among individuals, species and communities. However, basic descriptions of tropical phenological patterns and the processes that shape them are rare. Here, we document the individual-, population-, and landscape-level phenological patterns of two dominant families of understory woody plants important to avian frugivores, the Melastomataceae and Rubiaceae, along an elevational transect in Costa Rica. The 226 individual plants belonging to 35 species in this study, varied in the number of reproductive bouts/year, and the timing, duration, and synchrony of reproductive stages. This variation was not related to factors related to their interactions with mutualists and antagonists, nor did it appear to be constrained by phylogeny. Diverse phenological patterns among species led to relatively aseasonal patterns at the community and landscape level. Overall, evidence for biotic processes shaping temporal patterns of fruiting phenology was weak or absent. These findings reveal a number of unexplained patterns, and suggest that factors shaping phenology in relatively aseasonal forests operate in idiosyncratic ways at the species level.En regiones con marcada estacionalidad, los patrones fenológicos de las plantas están limitados por el clima. Por el contrario, las plantas que crecen en bosques húmedos tropicales, no tienen tantas limitaciones abióticas y es por esto que el dosel presenta una diversidad muy rica en los patrones fenológicos de individuos, especies y comunidades. Sin embargo, es muy escasa la información sobre la descripción básica de los patrones fenológicos tropicales y de los procesos que los afectan. En este documento, presentamos los patrones fenol

  19. Floristic conservation value, nested understory floras, and the development of second-growth forest.

    Science.gov (United States)

    Spyreas, Greg; Matthews, Jeffrey W

    2006-08-01

    Nestedness analysis can reveal patterns of plant composition and diversity among forest patches. For nested floral assemblages, the plants occupying any one patch are a nested subset of the plants present in successively more speciose patches. Elimination of sensitive understory plants with human disturbance is one of several mechanisms hypothesized to generate nonrandom, nested floral distributions. Hypotheses explaining distributions of understory plants remain unsubstantiated across broad landscapes of varying forest types and disturbance histories. We sampled the vegetation of 51 floodplain and 55 upland forests across Illinois (USA) to examine how the diversity, composition, and nestedness of understory floras related to their overstory growth and structure (basal area), and their overall floristic conservation value (mean C). We found that plant assemblages were nested with respect to site species richness, such that rare plants indicated diverse forests. Floras were also nested with respect to site mean C and basal area (BA). However, in an opposite pattern from what we had expected, floras of high-BA stands were nested subsets of those of low-BA stands. A set of early-successional plants restricted to low-BA stands, and more importantly, the absence of a set of true forest plants in high-BA stands, accounted for this pattern. Additionally, we observed a decrease in species richness with increasing BA. These results are consistent with the hypothesis that recovery of true forest plants does not occur concurrently with overstory regeneration following massive anthropogenic disturbance. Nestedness by site mean C indicates that high conservation value (conservative) plants co-occur in highly diverse stands; these forests are assumed to be less disturbed historically. Because site mean C was uncorrelated with BA, BA-neutral disturbances such as livestock usage are suggested as accounting for between-site differences in mean C. When considered individually

  20. LC-PDA-ESI/MS identification of the phenolic components of three compositae spices: chamomile, tarragon, and Mexican arnica.

    Science.gov (United States)

    Lin, Long-Ze; Harnly, James M

    2012-06-01

    Chamomile (Matricaria chamomilla L.), tarragon (Artemisia dracunculus L.) and Mexican arnica (Heterotheca inuoides) are common compositae spices and herbs found in the US market. They contain flavonoids and hydroxycinnamates that are potentially beneficial to human health. A standardized LC-PDA-ESI/MS profiling method was used to identify 51 flavonoids and 17 hydroxycinnamates. Many of the identifications were confirmed with authentic standards or through references in the literature or the laboratory's database. More than half of the phenol compounds for each spice had not been previously reported. The phenolic profile can be used for plant authentication and to correlate with biological activities.

  1. LBA-ECO CD-05 Forest Understory Fuel Loads, Paragominas, Para, Brazil: 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains estimates of understory fuel loads (forest litter) at six locations near Paragominas in Northeastern Amazonia. Samples were...

  2. Mapping Canopy Damage from Understory Fires in Amazon Forests Using Annual Time Series of Landsat and MODIS Data

    Science.gov (United States)

    Morton, Douglas C.; DeFries, Ruth S.; Nagol, Jyoteshwar; Souza, Carlos M., Jr.; Kasischke, Eric S.; Hurtt, George C.; Dubayah, Ralph

    2011-01-01

    Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars less than 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (greater than 500 ha) burn scars that accounted for the majority of all fire-damaged forest in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 square kilometers) were an order of magnitude higher than during the 1997-1998 El Nino event (124 square kilometers and 39 square kilometers, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by

  3. [Effect of fire on understory birds of a gallery forest in central Brazil].

    Science.gov (United States)

    Marini, M A; Cavalcanti, R B

    1996-11-01

    Habitat burning may cause significant population and community changes in animals and plants, specially when the humans increase fire frequency. We mist-netted the understory birds of a gallery forest from the cerrado region of central Brazil before and after a fire of unknown cause which burned the Ecological Reserve of the University of Brasília, Brasília, DF, in September 1987. We conducted mist-netting mostly during the morning, using 12 mist-nets distributed on 2.5 ha in the interior and border of the forest. We captured 137 individuals of 37 species, 51 individuals of 21 species during 135.5 net/h before the fire, and 98 individuals of 33 species during 233 net/h after the fire. The bird community as a whole did not change after the fire. The observed changes in the bird community were related to the type of habitat used by some species of birds than to their diet. Species typical to gallery forests are probably less adapted to habitat burning than species that occur in other habitats and may be suffering a decrease or a disturbance in their population structure, revealing an important problem of cerrado bird conservation.

  4. Understory vegetation as a useful predictor of natural regeneration and canopy dynamics in Pinus sylvestris forests in Italy

    Science.gov (United States)

    Bucci, Gabriele; Borghetti, Marco

    The relations between understory vegetation, canopy characteristics and natural regeneration have been studied in natural Scots pine forests growing in sub-Mediterranean conditions in Italy. Multivariate ordination techniques (detrended correspondence analysis, DCA, and detrended canonical correspondence analysis, DCCA) have been applied to extract vegetation gradients. The first four DCA axes accounted for 41% of the total variation in vegetation data and DCA ordination patterns have been interpreted by the variability of forest stands, ranging from pioneer pine communities to closed pine stands mixed with hardwood species. Characteristic indicator values (CIVs), computed by understory species abundance using the ELLENBERG'S species scores, have been tentatively used as estimators of environmental variability. Relating vegetation gradients extracted by DCA to CIVs allowed further interpretation of the multivariate ordination patterns. Geographic and edaphic factors had only a minor effect on plant communities in the present study. The competition exerted in mixed stands by hardwood species seems to be the main limiting factor for Scots pine recruitment in the study area. Multivariate synthetic variable and CIVs were found to predict a large proportion of variation in Scots pine recruitment. The application of CIVs for predicting ecological meaningful conditions and their use as a tool for management decisions is discussed.

  5. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Directory of Open Access Journals (Sweden)

    D. Tian

    2017-07-01

    Full Text Available Reactive nitrogen (N increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m  ×  20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings, and ground-cover plants (ferns according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height of 5–10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha−1 yr−1 and N100 fertilized plots (100 kg N ha−1 yr−1, while the growth of median and large trees with a DBH of  >  10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical

  6. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Science.gov (United States)

    Tian, Di; Li, Peng; Fang, Wenjing; Xu, Jun; Luo, Yongkai; Yan, Zhengbing; Zhu, Biao; Wang, Jingjing; Xu, Xiaoniu; Fang, Jingyun

    2017-07-01

    Reactive nitrogen (N) increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m × 20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings), and ground-cover plants (ferns) according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height) of 5-10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha-1 yr-1) and N100 fertilized plots (100 kg N ha-1 yr-1), while the growth of median and large trees with a DBH of > 10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical forest, and that the limitation of other nutrients in the forest

  7. Demographic consequences of inbreeding and outbreeding in Arnica montana: A field experiment

    Science.gov (United States)

    Luijten, S.H.; Kery, M.; Oostermeijer, J.G.B.; Den, Nijs H.J.C.M.

    2002-01-01

    1. The genetic constitution of populations may significantly affect demography. Founder populations or isolated remnants may show inbreeding depression, while established populations can be strongly adapted to the local environment. Gene exchange between populations can lead to better performance if heterozygosity levels are restored (heterosis), or to reduced performance if coadapted gene complexes are disrupted (outbreeding depression). 2. Five populations of the self-incompatible perennial Arnica montana (Asteraceae) were analysed for the demographic consequences of inbreeding and of intra- and interpopulation outcrossing, using both small and large populations as donors for the latter. We analysed seed production and seed weight and monitored growth, survival and flowering of offspring introduced as seeds and as 4-week-old seedlings in a 4-year field experiment. 3. Reduced seed set after selfing was probably due to the self-incompatibility system rather than to inbreeding depression. There was a significant increase for seed set after interpopulation crosses, which resulted from the alleviation of low mate availability in one of the small populations. 4. Significant inbreeding depression was observed for growth rates of plants introduced as seedlings. We found significant heterosis for flowering probability of plants introduced as seeds, but for plants introduced as seedlings, heterosis for seedling size and flowering probability was only marginally significant. Outbreeding depression was not observed. 5. The results of this study are important for reinforcement measures in small, remnant populations. Significant differences among populations for all measured fitness components suggest that reinforcement is best achieved using material from several populations. 6. The observed higher survival of seedlings as compared with seeds suggests that it is better to plant individuals than to sow. Sowing, however, is easier and cheaper, and was more likely to eliminate

  8. Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts

    Directory of Open Access Journals (Sweden)

    Craciunescu Oana

    2012-09-01

    Full Text Available Abstract Background Arnica montana L. and Artemisia absinthium L. (Asteraceae are medicinal plants native to temperate regions of Europe, including Romania, traditionally used for treatment of skin wounds, bruises and contusions. In the present study, A. montana and A. absinthium ethanolic extracts were evaluated for their chemical composition, antioxidant activity and protective effect against H2O2-induced oxidative stress in a mouse fibroblast-like NCTC cell line. Results A. absinthium extract showed a higher antioxidant capacity than A. montana extract as Trolox equivalent antioxidant capacity, Oxygen radical absorbance capacity and 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging activity, in correlation with its flavonoids and phenolic acids content. Both plant extracts had significant effects on the growth of NCTC cells in the range of 10–100 mg/L A. montana and 10–500 mg/L A. absinthium. They also protected fibroblast cells against hydrogen peroxide-induced oxidative damage, at the same doses. The best protection was observed in cell pre-treatment with 10 mg/L A. montana and 10–300 mg/L A. absinthium, respectively, as determined by Neutral red and lactate dehydrogenase assays. In addition, cell pre-treatment with plant extracts, at these concentrations, prevented morphological changes induced by hydrogen peroxide. Flow-cytometry analysis showed that pre-treatment with A. montana and A. absinthium extracts restored the proportion of cells in each phase of the cell cycle. Conclusions A. montana and A. absinthium extracts, rich in flavonoids and phenolic acids, showed a good antioxidant activity and cytoprotective effect against oxidative damage in fibroblast-like cells. These results provide scientific support for the traditional use of A. montana and A. absinthium in treatment of skin disorders.

  9. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China.

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-02-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in temperate northeastern China, dominated by mature forest (Changbaishan Nature Reserve, sampled in 2011 and 2012), secondary forest (Dongling Mountain, sampled in 2011 and 2012), and forest plantation habitats (Bashang Plateau, sampled in 2006 and 2007), respectively. The α-diversity of both taxonomic groups was highest in plantation forests of the Bashang Plateau. Beetle α-diversity was lowest, but plant and beetle species turnover peaked in the secondary forests of Dongling Mountain, while habitats in the Changbaishan Nature Reserve showed the lowest turnover rates for both taxa. Changbaishan Nature Reserve harbored the highest proportion of forest specialists. Our results suggest that in temperate regions of northern China, the protected larch plantation forest established over extensive areas might play a considerable role in maintaining a high biodiversity in relation to understory herbaceous plant species and carabid assemblages, which can be seen as indicators of forest disturbance. The high proportion of phytophagous carabids and the rarity of forest specialists reflect the relatively homogenous, immature status of the forest ecosystems on the Bashang Plateau. China's last remaining large old-growth forests like the ones on Changbaishan represent stable, mature ecosystems which require particular conservation attention.

  10. Recuperation of the Terra Firme Forest Understory Bird Fauna Eight Years after a Wildfire in Eastern Acre, Brazil

    Directory of Open Access Journals (Sweden)

    Tatiana Lemos da Silva

    2015-01-01

    Full Text Available The present study evaluated the characteristics of the understory bird fauna of four fragments of terra firme forest in eastern Acre, Brazil, that were impacted by wildfires in 2005. The study investigated the species richness and the composition of trophic guilds using mist-netting on eight transects (four in burned plots and four in control plots in the same forest fragments. Eight plots (0.12 ha were also established parallel to each transect to record the number of live trees (DBH ≥ 10 cm, palms, and dead trees. Bamboo stems were quantified in 0.024 ha subplots. No significant difference was found between burned and control plots in the species richness or abundance of birds, nor was any significant pattern found in the NMDS ordination of the composition of the communities or guilds. The Principal Components Analysis (PCA found that the burned plots were physiognomically distinct, due principally to the number of bamboo stems and dead trees. Multiple regressions based on the PCA scores and bird species richness and abundance found no significant trends. The findings of the present study indicate that the understory bird assemblage of the areas affected by a single wildfire in 2005 had almost totally recuperated eight years after this event.

  11. Overstory and understory development in thinned and underplanted Oregon Coast Range Douglas-fir stands.

    Science.gov (United States)

    S.S. Chan; D.J. Larson; K.G. Maas-Hebner; W.H. Emmingham; S.R. Johnston; D.A. Mikowski

    2006-01-01

    This study examined thinning effects on overstory and understory development for 8 years after treatment. Three 30- to 33-year-old Oregon Coast Range plantations were partitioned into four overstory treatments: (1) unthinned (~550 trees/ha) (2) light thin (~250 trees/ha), (3) moderate thin (~150 trees/ha), and (4) heavy thin (~75 trees/ha). Two understory treatments...

  12. Dwarf Mistletoe on Red Fir . . . infection and control in understory stands

    Science.gov (United States)

    Robert F. Scharpf

    1969-01-01

    Height and age of understory red fir (Abies magnifica A. Murr.) were related to dwarf mistletoe (Arceuthobiilm campylopodum f. abietinum) infection from the surrounding overstory red fir on four National Forests in California. Percentage of trees infected and intensity of infection increased significantly as height of understory...

  13. Evapotranspiration from understory vegetation in an eastern Siberian boreal larch forest, Agricultural and Forest Meteorology

    NARCIS (Netherlands)

    Iida, S.; Ohta, T.; Matsumoto, K.; Nakai, T.; Kuwada, T.; Konovov, A.V.; Maximov, T.C.; van der Molen, M.K.; Dolman, A.J.; Tanaka, H.; Yabuki, H.

    2009-01-01

    We measured evapotranspiration in an eastern Siberian boreal forest, in which the understory was cowberry and the overstory was larch, during the entire growing seasons of 2005 and 2006. We compared evapotranspiration from the understory vegetation above the forest floor E

  14. Understory vegetation data quality assessment for the Interior West Forest and Inventory Analysis program

    Science.gov (United States)

    Paul L. Patterson; Renee A. O' Brien

    2011-01-01

    The Interior West Forest Inventory and Analysis (IW-FIA) program of the USDA Forest Service collects field data on understory vegetation structure that have broad applications. In IW-FIA one aspect of quality assurance is assessed based on the repeatability of field measurements. The understory vegetation protocol consists of two suites of measurements; (1) the...

  15. Tradeoffs in overstory and understory aboveground net primary productivity in southwestern ponderosa pine stands

    Science.gov (United States)

    Kyla E. Sabo; Stephen C. Hart; Carolyn Hull Sieg; John Duff Bailey

    2008-01-01

    Previous studies in ponderosa pine forests have quantified the relationship between overstory stand characteristics and understory production using tree measurements such as basal area. We built on these past studies by evaluating the tradeoff between overstory and understory aboveground net primary productivity (ANPP) in southwestern ponderosa pine forests at the...

  16. Wood and understory production under a range of ponderosa pine stocking levels, Black Hills, South Dakota

    Science.gov (United States)

    Daniel W. Uresk; Carleton B. Edminster; Kieth E. Severson

    2000-01-01

    Stemwood and understory production (kg ha-1) were estimated during 3 nonconsecutive years on 5 growing stock levels of ponderosa pine including clearcuts and unthinned stands. Stemwood production was consistently greater at mid- and higher pine stocking levels, and understory production was greater in stands with less pine; however, there were no...

  17. Differences in Plant Traits among N-fixing Trees in Hawaii Affect Understory Nitrogen Cycling

    Science.gov (United States)

    August-Schmidt, E.; D'Antonio, C. M.

    2016-12-01

    Nitrogen (N) fixing trees are frequently used to restore soil functions to degraded ecosystems because they can increase soil organic matter and N availability. Although N-fixers are lumped into a single functional group, the quality and quantity of the plant material they produce and the rate at which they accrete and add N to the cycling pool likely vary. This talk will focus on the questions: (1) How does N-cycling differ among N-fixing tree species? And (2) Which plant traits are most important in distinguishing the soil N environment? To address these questions, we investigated planted stands of two Hawaiian native N-fixing trees (Acacia koa and Sophora chrysophylla) and `natural' stands of an invasive N-fixing tree (Morella faya) in burned seasonal submontane woodlands in Hawaii Volcanoes National Park. We measured the relative availability of nitrogen in the soil pool and understory plant community as well as characterizing the rate and amount of N cycling in these stands both in the field and using long term soil incubations in the laboratory. We found that N is cycled very differently under these three N-fixers and that this correlates with differences in their leaf traits. S. chrysophylla had the highest foliar %N and highest specific leaf area, and stands of these trees are associated with faster N-cycling, resulting in greater N availability compared to all other site types. Incubated S. chrysophylla soils mineralized almost twice as much N as any other soil type over the course of the experiment. The comparatively high-N environment under S. chrysophylla suggests that litter quality may be more important than litter quantity in determining nitrogen availability to the understory community.

  18. Estimating Understory Temperatures Using MODIS LST in Mixed Cordilleran Forests

    Directory of Open Access Journals (Sweden)

    David N. Laskin

    2016-08-01

    Full Text Available Satellite remote sensing provides a rapid and broad-scale means for monitoring vegetation phenology and its relationship with fluctuations in air temperature. Investigating the response of plant communities to climate change is needed to gain insight into the potentially detrimental effects on ecosystem processes. While many studies have used satellite-derived land surface temperature (LST as a proxy for air temperature, few studies have attempted to create and validate models of forest understory temperature (Tust, as it is obscured from these space-borne observations. This study worked to predict instantaneous values of Tust using daily Moderate Resolution Imaging Spectroradiometer (MODIS LST data over a 99,000 km2 study area located in the Rocky Mountains of western Alberta, Canada. Specifically, we aimed to identify the forest characteristics that improve estimates of Tust over using LST alone. Our top model predicted Tust to within a mean absolute error (MAE of 1.4 °C with an overall model fit of R2 = 0.89 over two growing seasons. Canopy closure and the LiDAR-derived standard deviation of canopy height metric were found to significantly improve estimations of Tust over MODIS LST alone. These findings demonstrate that canopy structure and forest stand-type function to differentiate understory air temperatures from ambient canopy temperature as seen by the sensor overhead.

  19. Functional traits of the understory plant community of a pyrogenic longleaf pine forest across environmental gradients.

    Science.gov (United States)

    Ames, Gregory M; Anderson, Steven M; Ungberg, Eric A; Wright, Justin P

    2017-08-01

    Understanding and predicting the response of plant communities to environmental changes and disturbances such as fire requires an understanding of the functional traits present in the system, including within and across species variability, and their dynamics over time. These data are difficult to obtain as few studies provide comprehensive information for more than a few traits or species, rarely cover more than a single growing season, and usually present only summary statistics of trait values. As part of a larger study seeking to understand the dynamics of plant communities in response to different prescribed fire regimes, we measured the functional traits of the understory plant communities located in over 140 permanent plots spanning strong gradients in soil moisture in a pyrogenic longleaf pine forest in North Carolina, USA, over a four-year period from 2011 and 2014. We present over 120,000 individual trait measurements from over 130 plant species representing 91 genera from 47 families. We include data on the following 18 traits: specific leaf area, leaf dry matter content, leaf area, leaf length, leaf width, leaf perimeter, plant height, leaf nitrogen, leaf carbon, leaf carbon to nitrogen ratio, water use efficiency, time to ignition, maximum flame height, maximum burn temperature, mass-specific burn time, mass-specific smolder time, branching architecture, and the ratio of leaf matter consumed by fire. We also include information on locations, soil moisture, relative elevation, soil bulk density, and fire histories for each site. © 2017 by the Ecological Society of America.

  20. Effect of shading by the table coral Acropora Hyacinthus on understory corals. [Acropora; Pocillopora

    Energy Technology Data Exchange (ETDEWEB)

    Stimson, J.

    1985-02-01

    Field surveys at Enewetak Atoll, Marshall Islands, show that coral density and diversity is much lower beneath Acropora table corals than in adjacent unshaded areas. Additionally, the understory community is predominantly composed of massive and encrusting species, while branching Acropora and Pocillopora predominate in unshaded areas. Results of experiments in which coral fragments were transferred to the shade of table Acropora and to adjacent unshaded areas show that shading slows the growth and leads to higher mortality of branching species, while massive and encrusting species are unaffected. Light measurements made beneath table Acropora show that illumination and irradiance values fall to levels at which most hermatypic corals do not occur. The fast-growing but fragile table Acropora are abundant in a wide variety of atoll habitats and grow rapidly to form a canopy approx. = 50 cm above the substrate. However, table Acropora also have high mortality rates, so that there is continuous production of unshaded areas. The growth and death of tables thus create local disturbances, and the resulting patchwork of recently shaded and unshaded areas may enhance coral diversity in areas of high coral cover.

  1. Differences in Fine-Root Biomass of Trees and Understory Vegetation among Stand Types in Subtropical Forests.

    Directory of Open Access Journals (Sweden)

    Xiaoli Fu

    Full Text Available Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4% than that at Datian (16.7%. This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer.

  2. Differences in Fine-Root Biomass of Trees and Understory Vegetation among Stand Types in Subtropical Forests.

    Science.gov (United States)

    Fu, Xiaoli; Wang, Jianlei; Di, Yuebao; Wang, Huimin

    2015-01-01

    Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer.

  3. Phenological synchrony and seasonality of understory Rubiaceae in the Atlantic Forest, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Heitor Scarpati Liuth

    2013-03-01

    Full Text Available In tropical forests with low seasonality, climatic variables generally exert a weak influence on the phenology of species. The seasonality of phenophases in closely related taxa can be controlled by phylogenetic constraints in such environments. In this study, our aim was to describe the phenology of Rubiaceae in the understory of the Atlantic Forest in the southern part of Bahia, Brazil, as well as to evaluate the seasonality and phenological synchrony of this family. For two years, we observed 90 individuals belonging to 13 species, in an area of 0.2 ha. Leaf flushing and leaf fall did not demonstrate any seasonality, were continuous for most species and correlated with few of the climatic variables. Flowering was seasonal and correlated positively with all climatic variables. Species exhibited seasonality for this phenophase with high flowering overlap among species of Psychotria, indicating an aggregated pattern for this genus. Fruiting was also seasonal and correlated with all the climatic variables, unripe fruit development peaking at the beginning of the season during which humidity is highest and fruit ripening peaking in the season during which humidity is slightly lower. The vegetative and flowering patterns observed in the study area are commonly seen in other tropical forests. The reproductive seasonality of this family can facilitate the attraction of biotic agents, as postulated in the facilitation hypothesis. Our results demonstrate that climatic variables influenced the phenological patterns observed here, although the high reproductive seasonality and interspecific synchrony, especially in congeneric species, raises the possibility that phylogenetic proximity plays a role in the pattern of the family Rubiaceae.

  4. Comparison of morphine, ketoprofen and Arnica montana 6x and 30x per oral transmucosal or subcutaneous route for control of postoperative pain in cats subjected to hysterectomy with bilateral salpingo-oophorectomy

    Directory of Open Access Journals (Sweden)

    Denise de Fátima Rodrigues

    2016-02-01

    Full Text Available ABSTRACT: The postoperative analgesic effect of Arnica montana (Arnica was compared to morphine and ketoprofen in 50 cats following hysterectomy with bilateral salpingo-oophorectomy (HSO. Cats were randomly allocated to five groups (n=10 and were treated 30 minutes before surgery and over 72 hours with 1ml of Arnica 30x per subcutaneous (SC route (GA30SC; Arnica 30x per oral transmucosal route (P.O. (GA30PO; Arnica 6x P.O. (GA6PO; morphine 0.1mg kg-1 SC (GM SID or ketoprofen 2mg kg-1 SC (GK before and 1mg kg-1 after surgery. Sedation and postoperative pain were assessed by means of a dynamic and interactive visual analogue scale (DIVAS and variable count scale (VCS and hyperalgesia using an esthesiometer. Whenever the VAS and VCS scores attained 33% of the maximum value, rescue analgesia was performed with morphine 0.3mg kg-1 per the intramuscular (IM route. Other variables assessed were vomiting, defecation, urination, body weight and wound healing. Vomiting only occurred in animals treated with morphine. The groups did not differ in defecation, urination, body weight or wound healing. Hyperalgesia was detected only on the occasions that the criterion for rescue analgesia was met. One animal in GK and one in GM required rescue analgesia, differing from groups GA30SC, GA30PO and GA6PO, in which 4, 4 and 5 animals, respectively, required rescue analgesia. It can be concluded that ketoprofen and morphine were more efficacious than Arnica and that there was no difference among the various potencies and routes of administration of Arnica for postoperative analgesia in cats undergoing HSO.

  5. Understory Dwarf Bamboo Affects Microbial Community Structures and Soil Properties in a Betula ermanii Forest in Northern Japan.

    Science.gov (United States)

    Kong, Bihe; Chen, Lei; Kasahara, Yasuhiro; Sumida, Akihiro; Ono, Kiyomi; Wild, Jan; Nagatake, Arata; Hatano, Ryusuke; Hara, Toshihiko

    2017-06-24

    In order to understand the relationships between understory bamboo and soil properties, we compared microbial community structures in the soil of a Betula ermanii boreal forest with Sasa kurilensis present and removed using high-throughput DNA sequencing. The presence of understory S. kurilensis strongly affected soil properties, including total carbon, total nitrogen, nitrate, and the C:N ratio as well as relative soil moisture. Marked differences were also noted in fungal and bacterial communities between plots. The relative abundance of the fungal phylum Ascomycota was 13.9% in the Sasa-intact plot and only 0.54% in the Sasa-removed plot. Among the Ascomycota fungi identified, the most prevalent were members of the family Pezizaceae. We found that the abundance of Pezizaceae, known to act as mycorrhizal fungi, was related to the amount of total carbon in the Sasa-intact plot. The relative abundance of Proteobacteria was significantly higher, whereas those of Planctomycetes and Actinobacteria were lower in the Sasa-intact plot than in the Sasa-removed plot. Furthermore, the results obtained suggest that some species of the phylum Planctomycetes are more likely to occur in the presence of S. kurilensis. Collectively, these results indicate that the presence of S. kurilensis affects microbial communities and soil properties in a B. ermanii boreal forest.

  6. Horse grazing systems: understory biomass and plant biodiversity of a Pinus radiata stand

    Directory of Open Access Journals (Sweden)

    Antonio Rigueiro-Rodríguez

    2012-02-01

    Full Text Available Horse grazing systems may affect productivity and biodiversity of understory developed under Pinus radiata D. Don silvopastoral systems, while acting as a tool to reduce the risk of fire. This study compared continuous and rotational grazing systems effect upon biomass, fractions of stem, sprouts, leaves and woody parts of Ulex europaeus L. and alpha (Species Richness, Shannon-Wiener and beta (Jaccard and Magurran biodiversity for a period of four years in a P. radiata silvopastoral system. The experiment consisted of a randomized block design of two treatments (continuous and rotational grazing. Biomass, and species abundances were measured - biodiversity metrics were calculated based on these results for a two years of grazing and two years of post-grazing periods. Both continuous and rotational grazing systems were useful tools for reducing biomass and, therefore, fire risk. The rotational grazing system caused damage to the U. europaeus shrub, limiting its recovery once grazing was stopped. However, the more intensive grazing of U. europaeus plants under rotational had a positive effect on both alpha and beta biodiversity indexes due to the low capacity of food selection in the whole plot rather than continuous grazing systems. Biomass was not affected by the grazing system; however the rotational grazing system is more appropriate to reduce U. europaeus biomass and therefore forest fire risk at a long term and to enhance pasture biodiversity than the continuous grazing system.

  7. Impacts of cwd on understory biodiversity in forest ecosystems in the qinling mountains, china

    International Nuclear Information System (INIS)

    Yuan, J.; Wei, X.; Shang, Z.; Cheng, F.; Hu, Z.; Zheng, X.; Zhang, S.

    2015-01-01

    The stocks and characteristics of coarse woody debris (CWD) are expected to reflect forest stand features. However, despite their importance, there have been no reports of CWD stocks and characteristics in the Qinling Mountains. We measured the CWD stocks in different CWD types, decay classes and diameter classes of the five forest types in the Qinling Mountains. The highest biomass of CWD was the Pinus tabulaeformis forest (12.57 t-hm /sup -2/), occupied 5.66 percentage in the biomass of this forest, the lowest occupied 1.03 percentage in Betula albo-sinensis forest (1.82 t-hm /sup -2/). Our results revealed that there was a strong correlation between CWD and forest biomass. When the CWD biomass were 9.9 t-hm /sup -2/ and 11.6 hm /sup -2/, the biomass of Pinus armandi forest and P. tabulaeformis forest reached maximum, respectively. CWD is particularly important for biodiversity, but the importance of CWD in the control of diversity in forest systems has not been fully appreciated and certainly has not been evaluated intensively within China, especially in Qinling forests. In our research, we used species richness (S), Shannon-Wiener index (H), Simpson index (D) and Pielou evenness index (J) to assess the diversity of plant community. According to our analysis, we found 1) the effect of CWD biomass on these a diversity index was dependent on tree, shrub and herb in the five forest types, 2) the impacts of CWD biomass on understory biodiversity were more obvious, 3) With the increase of CWD biomass, the species richness (S), Shannon-Wiener index (H) and Simpson index (D) of understory increased significantly. Our results suggested that there was a relatively lower CWD biomass in the Qinling Mountains, but it had significant effects on forest biomass and diversity of plant community. Reserving CWD was important for eco-forestry, but how many and how characteristic of CWD should be retained need further research. Development of CWD reasonable strategies was

  8. Simplifying understory complexity in oil palm plantations is associated with a reduction in the density of a cleptoparasitic spider,Argyrodes miniaceus(Araneae: Theridiidae), in host (Araneae: Nephilinae) webs.

    Science.gov (United States)

    Spear, Dakota M; Foster, William A; Advento, Andreas Dwi; Naim, Mohammad; Caliman, Jean-Pierre; Luke, Sarah H; Snaddon, Jake L; Ps, Sudharto; Turner, Edgar C

    2018-02-01

    Expansion of oil palm agriculture is currently one of the main drivers of habitat modification in Southeast Asia. Habitat modification can have significant effects on biodiversity, ecosystem function, and interactions between species by altering species abundances or the available resources in an ecosystem. Increasing complexity within modified habitats has the potential to maintain biodiversity and preserve species interactions. We investigated trophic interactions between Argyrodes miniaceus, a cleptoparasitic spider, and its Nephila spp . spider hosts in mature oil palm plantations in Sumatra, Indonesia. A. miniaceus co-occupy the webs of Nephila spp . females and survive by stealing prey items caught in the web. We examined the effects of experimentally manipulated understory vegetation complexity on the density and abundance of A. miniaceus in Nephila spp . webs. Experimental understory treatments included enhanced complexity, standard complexity, and reduced complexity understory vegetation, which had been established as part of the ongoing Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Project. A. miniaceus density ranged from 14.4 to 31.4 spiders per square meter of web, with significantly lower densities found in reduced vegetation complexity treatments compared with both enhanced and standard treatment plots. A. miniaceus abundance per plot was also significantly lower in reduced complexity than in standard and enhanced complexity plots. Synthesis and applications : Maintenance of understory vegetation complexity contributes to the preservation of spider host-cleptoparasite relationships in oil palm plantations. Understory structural complexity in these simplified agroecosystems therefore helps to support abundant spider populations, a functionally important taxon in agricultural landscapes. In addition, management for more structurally complex agricultural habitats can support more complex trophic interactions in tropical

  9. BOREAS TE-09 in situ Understory Spectral Reflectance within the NSA

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains forest understory spectral reflectance data collected by BOREAS TE-09 at the ground level in the Old Jack Pine, Young Jack Pine nd Young Aspen boreal forest...

  10. BOREAS TE-09 in situ Understory Spectral Reflectance within the NSA

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Contains forest understory spectral reflectance data collected by BOREAS TE-09 at the ground level in the Old Jack Pine, Young Jack Pine nd Young Aspen...

  11. LBA-ECO CD-05 Forest Understory Fuel Loads, Paragominas, Para, Brazil: 2001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains estimates of understory fuel loads (forest litter) at six locations near Paragominas in Northeastern Amazonia. Samples were collected from...

  12. Attempting to restore herbaceous understories in Wyoming big sagebrush communities with mowing and seeding

    Science.gov (United States)

    Shrub steppe communities with depleted perennial herbaceous understories need to be restored to increase resilience, provide quality wildlife habitat, and improve ecosystem function. Mowing has been applied to Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle &Young) steppe...

  13. Static terrestrial laser scanning of juvenile understory trees for field phenotyping

    Science.gov (United States)

    Wang, Huanhuan; Lin, Yi

    2014-11-01

    This study was to attempt the cutting-edge 3D remote sensing technique of static terrestrial laser scanning (TLS) for parametric 3D reconstruction of juvenile understory trees. The data for test was collected with a Leica HDS6100 TLS system in a single-scan way. The geometrical structures of juvenile understory trees are extracted by model fitting. Cones are used to model trunks and branches. Principal component analysis (PCA) is adopted to calculate their major axes. Coordinate transformation and orthogonal projection are used to estimate the parameters of the cones. Then, AutoCAD is utilized to simulate the morphological characteristics of the understory trees, and to add secondary branches and leaves in a random way. Comparison of the reference values and the estimated values gives the regression equation and shows that the proposed algorithm of extracting parameters is credible. The results have basically verified the applicability of TLS for field phenotyping of juvenile understory trees.

  14. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations.

    Science.gov (United States)

    Pan, Ping; Zhao, Fang; Ning, Jinkui; Zhang, Ling; Ouyang, Xunzhi; Zang, Hao

    2018-01-01

    Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality.

  15. Burn Severity Dominates Understory Plant Community Response to Fire in Xeric Jack Pine Forests

    Directory of Open Access Journals (Sweden)

    Bradley D. Pinno

    2016-04-01

    Full Text Available Fire is the most common disturbance in northern boreal forests, and large fires are often associated with highly variable burn severities across the burnt area. We studied the understory plant community response to a range of burn severities and pre-fire stand age four growing seasons after the 2011 Richardson Fire in xeric jack pine forests of northern Alberta, Canada. Burn severity had the greatest impact on post-fire plant communities, while pre-fire stand age did not have a significant impact. Total plant species richness and cover decreased with disturbance severity, such that the greatest richness was in low severity burns (average 28 species per 1-m2 quadrat and plant cover was lowest in the high severity burns (average 16%. However, the response of individual plant groups differed. Lichens and bryophytes were most common in low severity burns and were effectively eliminated from the regenerating plant community at higher burn severities. In contrast, graminoid cover and richness were positively related to burn severity, while forbs did not respond significantly to burn severity, but were impacted by changes in soil chemistry with increased cover at pH >4.9. Our results indicate the importance of non-vascular plants to the overall plant community in this harsh environment and that the plant community is environmentally limited rather than recruitment or competition limited, as is often the case in more mesic forest types. If fire frequency and severity increase as predicted, we may see a shift in plant communities from stress-tolerant species, such as lichens and ericaceous shrubs, to more colonizing species, such as certain graminoids.

  16. Edge effects on understory epiphytic ferns and epiphyllous bryophytes in moist afromontane forests of Ethiopia

    Directory of Open Access Journals (Sweden)

    Hylander Kristoffer

    2013-12-01

    Full Text Available Most studies on edge effects in tropical forests have been conducted in landscapes with low human population density and in situations where the edges have been left unused after logging of the adjacent area. Here we studied forest margins heavily used by local farmers in a forest/agriculture mosaic landscape in Ethiopia. We compared forest structure and plant species composition across 41 forest-agriculture ecotones from 200 m out into the agricultural area to 200 m into the forest. There are strong edge effects from the edge and into the forest on canopy cover and number of stumps and apparently these forest-agricultural edges are intensively used by humans. They are penetrated by paths, beehives are found in the trees, timber of various dimensions is harvested and there is sometimes substantial cover of perennial wild (or semi-wild crops such as coffee and spices. The number of understory epiphytic fern species as well as number of epiphyllous (i.e., growing on leaves bryophyte species was lower at 20 m than at 75 m from the edge. The number of fern species was higher in newly created edges and thereafter they declined, which indicates an extinction debt. This pattern was not seen for the epiphyllous bryophytes. It is likely that different human management activities are responsible for many of the found edge effects besides wind and sun effects from the edge. Tropical forest margins provide important resources for people in many landscapes. It is important to understand how such use affects the biota of the forests. This study shows that there are substantial edge effects, but that the edge effects do not seem to become worse over time for epiphyllous bryophytes and only slightly so for ferns.

  17. ESTABLISHMENT TECHNIQUES FOR TROPICAL LEGUMES IN THE UNDERSTORY OF A EUCALYPTUS PLANTATION

    Directory of Open Access Journals (Sweden)

    Maria Luiza Franceschi Nicodemo

    2015-04-01

    Full Text Available This study evaluated establishment methods for a mixture of herbaceous forage legumes [Centrosema acutifolium, Clitoria ternatea, Pueraria phaseoloides, Stylosanthes Campo Grande (Stylosanthes capitata + S. macrocephala, Calopogonium mucunoides, Lablab purpureus, Arachis pintoi, and Aeschynomene villosa] under the shade of an Eucalyptus grandis plantation submitted to thinning (40% 8 years after planting in Anhembi, São Paulo (22°40'S, 48°10'W, altitude of 455 m. The experiment started in December 2008 and consisted of the comparison of the following four types of seed incorporation by light disc harrowing: (1 broadcast sowing without seed incorporation; disc harrowing before (2 or after (3 planting, and (4 disc harrowing before and after planting. Ninety days after planting, the number of legume plants/m2 and the percentage of ground cover by the plants varied between the treatments tested; however, the treatments had no effect on the dry matter accumulation of forage legumes. Disc harrowing before planting yielded superior results compared to the treatments without disc harrowing and disc harrowing after planting. At the end of the experimental period, the plots contained Arachis, Centrosema, Stylosanthes, and Pueraria. The dry matter accumulated by Centrosema corresponded to 73% of total dry matter yield of the plots. The participation of Arachis, Centrosema and Stylosanthes in final dry matter composition of the plots varied according to establishment method. The advantages of the use of species mixtures rather than monocultures in the understory of forest plantations were discussed.

  18. Understory plant diversity assessment of Szemao pine (Pinus kesiya var. langbianensis plantations in Yunnan, China

    Directory of Open Access Journals (Sweden)

    Qiu, J. X.

    2012-12-01

    Full Text Available Sustainability is a key objective for managers of both natural forests and plantations, and biodiversity assessments are important tools to improve conservation of endangered species. Szemao pine (Pinus kesiya var. langbianensis is a native Chinese tree species used in plantations. This study evaluated differences in understory diversity among Szemao pine plantations (SP and other local current vegetation types: secondary evergreen forests (SE and abandoned farmlands (AF in Yunnan Province. Sampling was performed at three elevation ranges, where species richness, species cover, and environmental variables in the herb and shrub layers were measured. We found that indexes for average richness and Shannon–Wiener diversity were higher in SE than in SP, which were in turn higher than in AF, while the index for evenness was higher in SP. These indexes increased with elevation in SP and AF, but were higher at low and medium elevations in SE. Inclusion of environmental factors highlighted elevation differences, with water content (at herb layer and soil type (at shrub layer being the most significant variables. In conclusion, plantations of Szemao pine negatively affect understory diversity in Yunnan, and furthermore, only a few rare or threatened species could be found in the plantations. Nature reserves and transplanting could protect threatened species if established before plantations.La sostenibilidad es un objetivo clave para la gestión tanto de bosques naturales como de plantaciones, mientras que los estudios sobre biodiversidad constituyen herramientas muy útiles para mejorar la conservación de especies amenazadas. El pino Szemao (Pinus kesiya var. langbianensis es un árbol nativo de China que se usa en plantaciones. Este estudio evalúa la diversidad del sotobosque en plantaciones de pino Szemao (SP y otros tipos de vegetación local, como bosques secundarios perennifolios (SE y tierras de cultivo abandonadas (AF, en la provincia de

  19. Short-term effects of spring prescribed burning on the understory vegetation of a Pinushalepensis forest in Northeastern Spain.

    Science.gov (United States)

    Fuentes, Laura; Duguy, Beatriz; Nadal-Sala, Daniel

    2018-01-01

    Since the 1970s, fire regimes have been modified in the Northern Mediterranean region due to profound landscape changes mostly driven by socioeconomic factors, such as rural abandonment and large-scale plantations. Both fuel accumulation and the increasing vegetation spatial continuity, combined with the expansion of the wildland-urban interface, have enhanced fire risk and the occurrence of large wildfires. This situation will likely worsen under the projected aridity increase resulting from climate change. Higher fire recurrences, in particular, are expected to cause changes in vegetation composition or structure and affect ecosystems' resilience to fire, which may lead to further land degradation. Prescribed burning is a common fuel reduction technique used for fire prevention, but for conservation and restoration purposes as well. It is still poorly accepted in the Mediterranean region since constrained by critical knowledge gaps about, in particular, its effects on the ecosystems (soil, vegetation). We studied the short-term (10months) effects on the understory vegetation of a spring prescribed burning conducted in a Pinushalepensis forest in Mediterranean climate (Northeastern Spain). Our results show that the understory plant community recovered after the burning without short term significant changes in either species richness, diversity, or floristic composition. Most vegetation structural characteristics were modified though. The burning strongly reduced shrub height, shrub and herbaceous percentage covers, and aerial shrub phytomass; especially its living fine fraction, thus resulting in a less flammable community. The treatment proved to be particularly effective for the short term control of Ulexparviflorus, a highly flammable seeder species. Moreover, the strong reduction of seeder shrubs frequency in relation to resprouters' likely promoted the resilience to fire of this plant community. From a fuel-oriented perspective, the burning caused a strong

  20. Presence of understory shrubs constrains carbon gain in sunflecks by advance-regeneration seedlings: evidence from Quercus Rubra seedling grouwing in understory forest patches with or without evergreen shrubs present

    Science.gov (United States)

    E.T. Nilsen; T.T. Lei; S.W. Semones

    2009-01-01

    We investigated whether dynamic photosynthesis of understory Quercus rubra L. (Fagaceae) seedlings can acclimate to the altered pattern of sunflecks in forest patches with Rhododendron maximum L. (Ericaceae), an understory evergreen shrub. Maximum photosynthesis (A) and total CO2 accumulated during lightflecks was greatest for 400-s lightflecks, intermediate for 150-s...

  1. A homeopathic remedy from arnica, marigold, St. John's wort and comfrey accelerates in vitro wound scratch closure of NIH 3T3 fibroblasts.

    Science.gov (United States)

    Hostanska, Katarina; Rostock, Matthias; Melzer, Joerg; Baumgartner, Stephan; Saller, Reinhard

    2012-07-18

    Drugs of plant origin such as Arnica montana, Calendula officinalis or Hypericum perforatum have been frequently used to promote wound healing. While their effect on wound healing using preparations at pharmacological concentrations was supported by several in vitro and clinical studies, investigations of herbal homeopathic remedies on wound healing process are rare. The objective of this study was to investigate the effect of a commercial low potency homeopathic remedy Similasan® Arnica plus Spray on wound closure in a controlled, blind trial in vitro. We investigated the effect of an ethanolic preparation composed of equal parts of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712-2), its succussed hydroalcoholic solvent (0712-1) and unsuccussed solvent (0712-3) on NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined "wound field". All assays were performed in three independent controlled experiments. None of the three substances affected cell viability and none showed a stimulating effect on cell proliferation. Preparation (0712-2) exerted a stimulating effect on fibroblast migration (31.9%) vs 14.7% with succussed solvent (0712-1) at 1:100 dilutions (p 0.05). Preparation (0712-2) at a dilution of 1:100 promoted in vitro wound closure by 59.5% and differed significantly (p < 0.001) from succussed solvent (0712-1), which caused 22.1% wound closure. Results of this study showed that the low potency homeopathic remedy (0712-2) exerted in vitro wound closure potential in NIH 3T3 fibroblasts. This effect resulted from stimulation of fibroblasts motility rather than of their mitosis.

  2. A homeopathic remedy from arnica, marigold, St. John’s wort and comfrey accelerates in vitro wound scratch closure of NIH 3T3 fibroblasts

    Directory of Open Access Journals (Sweden)

    Hostanska Katarina

    2012-07-01

    Full Text Available Abstract Background Drugs of plant origin such as Arnica montana, Calendula officinalis or Hypericum perforatum have been frequently used to promote wound healing. While their effect on wound healing using preparations at pharmacological concentrations was supported by several in vitro and clinical studies, investigations of herbal homeopathic remedies on wound healing process are rare. The objective of this study was to investigate the effect of a commercial low potency homeopathic remedy Similasan® Arnica plus Spray on wound closure in a controlled, blind trial in vitro. Methods We investigated the effect of an ethanolic preparation composed of equal parts of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712–2, its succussed hydroalcoholic solvent (0712–1 and unsuccussed solvent (0712–3 on NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined “wound field”. All assays were performed in three independent controlled experiments. Results None of the three substances affected cell viability and none showed a stimulating effect on cell proliferation. Preparation (0712–2 exerted a stimulating effect on fibroblast migration (31.9% vs 14.7% with succussed solvent (0712–1 at 1:100 dilutions (p  0.05. Preparation (0712–2 at a dilution of 1:100 promoted in vitro wound closure by 59.5% and differed significantly (p  Conclusion Results of this study showed that the low potency homeopathic remedy (0712–2 exerted in vitro wound closure potential in NIH 3T3 fibroblasts. This effect resulted from stimulation of fibroblasts motility rather than of their mitosis.

  3. A homeopathic remedy from arnica, marigold, St. John’s wort and comfrey accelerates in vitro wound scratch closure of NIH 3T3 fibroblasts

    Science.gov (United States)

    2012-01-01

    Background Drugs of plant origin such as Arnica montana, Calendula officinalis or Hypericum perforatum have been frequently used to promote wound healing. While their effect on wound healing using preparations at pharmacological concentrations was supported by several in vitro and clinical studies, investigations of herbal homeopathic remedies on wound healing process are rare. The objective of this study was to investigate the effect of a commercial low potency homeopathic remedy Similasan® Arnica plus Spray on wound closure in a controlled, blind trial in vitro. Methods We investigated the effect of an ethanolic preparation composed of equal parts of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712–2), its succussed hydroalcoholic solvent (0712–1) and unsuccussed solvent (0712–3) on NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined “wound field”. All assays were performed in three independent controlled experiments. Results None of the three substances affected cell viability and none showed a stimulating effect on cell proliferation. Preparation (0712–2) exerted a stimulating effect on fibroblast migration (31.9%) vs 14.7% with succussed solvent (0712–1) at 1:100 dilutions (p  0.05). Preparation (0712–2) at a dilution of 1:100 promoted in vitro wound closure by 59.5% and differed significantly (p < 0.001) from succussed solvent (0712–1), which caused 22.1% wound closure. Conclusion Results of this study showed that the low potency homeopathic remedy (0712–2) exerted in vitro wound closure potential in NIH 3T3 fibroblasts. This effect resulted from stimulation of fibroblasts motility rather than of their mitosis. PMID:22809174

  4. Ecosystem and understory water and energy exchange for a mature, naturally regenerated pine flatwoods forest in north Florida

    Science.gov (United States)

    Thomas L. Powell; Gregory Starr; Kenneth L. Clark; Timothy A. Martin; Henry L. Gholz

    2005-01-01

    Eddy covariance was used to measure energy fluxes from July 2000 - June 2002 above the tree canopy and above the understory in a mature, naturally regenerated slash pine (Pinus elliottii Engelm. var. elliottii) - longleaf pine (Pinus palustris Mill.) flatwoods forest. Understory latent energy (eE) and sensible...

  5. Analgesia e ação antiinflamatória da Arnica montana 12CH comparativamente ao cetoprofeno em cães Analgesic and anti-inflammatory effects of Arnica montana 12CH in comparison with ketoprofen in dogs

    Directory of Open Access Journals (Sweden)

    Renata Navarro Cassu

    2011-10-01

    Full Text Available Objetivou-se avaliar os efeitos analgésico e antiinflamatório da Arnica montana 12CH comparativamente ao cetoprofeno em cadelas submetidas à ovariossalpingohisterectomia (OSH. Foram avaliadas 16 cadelas, distribuídas aleatoriamente em dois grupos de oito animais cada, tratados por via oral com 1mg kg-1 de cetoprofeno (TC e com cinco glóbulos de Arnica montana 12CH (TA. Decorridos 60 minutos, os animais foram tranquilizados com acepromazina (0,05mg kg-1, IV, seguindo-se indução e manutenção anestésica com propofol (5mg kg-1, IV e isofluorano, respectivamente. Foram mensurados: frequência cardíaca, frequência respiratória, pressão arterial sistólica, concentração final expirada de dióxido de carbono, concentração final expirada de isofluorano, variáveis hemogasométricas, concentração sérica de cortisol, grau de analgesia e de inflamação. Em casos de analgesia insuficiente, foi realizada suplementação com morfina (0,5mg kg-1, IM. A estatística foi realizada com ANOVA e teste de Tukey (PThis study aimed to evaluate the analgesic and anti-inflammatory effects of Arnica montana 12CH comparatively to ketoprofen in dogs undergoing ovariohysterectomy. Sixteen female dogs were randomly distributed in two groups of eight animals and received 1mg kg-1 of ketoprofen (TC and 5 globules of Arnica montana 12CH (TA by oral route. After 60 minutes, the dogs were sedated with acepromazine (0.05mg kg-1, IV, followed by anesthetic induction with propofol (5mg kg-1 IV and maintained with isoflurane. Heart rate, respiratory rate, systolic blood pressure, arterial blood gases, serum cortisol concentration and degree of analgesia and inflammation were measured. Additional morphine (0.5mg kg-1IM was given when the analgesia was insufficient. Statistical analyses were performed by ANOVA and Tukey tests (P<0.05. Cardiopulmonary stability was observed in both treatments during the surgery. The degree of analgesia and inflammation did not

  6. Effects of a wind farm installation on the understory bat community of a highly biodiverse tropical region in Mexico

    Directory of Open Access Journals (Sweden)

    Miguel Briones-Salas

    2017-06-01

    Full Text Available Wind energy has rapidly become an important alternative among renewable energies, and it is generally considered clean. However, little is known about its impact at the level of ecological communities, especially in biodiversity hotspots. The Isthmus of Tehuantepec is a highly biodiverse region in Mesoamerica, and has the highest potential for generating wind energy in Mexico. To assess the effects of installing a wind farm on the understory bat community in a landscape of fragmented habitat, we assessed its diversity and composition over four stages of installation (site preparation, construction, and two stages of operation. We captured 919 bats belonging to 22 species. Species richness, functional diversity and phylogenetic diversity decreased during construction and the first stage of operation. However, these components of biodiversity increased during the second stage of operation, and species composition began to resemble that of the site preparation stage. No species considered as sensitive to disturbance was recorded at any stage. This is the first study to reveal the diversity of a Neotropical bat community after wind turbines begin to operate.

  7. Effects of a wind farm installation on the understory bat community of a highly biodiverse tropical region in Mexico.

    Science.gov (United States)

    Briones-Salas, Miguel; Lavariega, Mario C; Moreno, Claudia E

    2017-01-01

    Wind energy has rapidly become an important alternative among renewable energies, and it is generally considered clean. However, little is known about its impact at the level of ecological communities, especially in biodiversity hotspots. The Isthmus of Tehuantepec is a highly biodiverse region in Mesoamerica, and has the highest potential for generating wind energy in Mexico. To assess the effects of installing a wind farm on the understory bat community in a landscape of fragmented habitat, we assessed its diversity and composition over four stages of installation (site preparation, construction, and two stages of operation). We captured 919 bats belonging to 22 species. Species richness, functional diversity and phylogenetic diversity decreased during construction and the first stage of operation. However, these components of biodiversity increased during the second stage of operation, and species composition began to resemble that of the site preparation stage. No species considered as sensitive to disturbance was recorded at any stage. This is the first study to reveal the diversity of a Neotropical bat community after wind turbines begin to operate.

  8. Carbon and energy fluxes of the understory vegetation of the black spruce ecosystem in interior Alaska

    Science.gov (United States)

    Ikawa, H.; Nakai, T.; Kim, Y.; Busey, R.; Suzuki, R.; Hinzman, L. D.

    2013-12-01

    Underlain by permafrost, understory vegetation in the boreal forest of the high northern latitudes is likely sensitive to climate change. This study investigated the contribution of the understory vegetation of the black spruce forest (Picea mariana) to net ecosystem exchange (NEE) and vertical energy fluxes at the supersite (65deg 07' 24' N, 147deg 29' 15' W) of the JAMSTEC-IARC Collaboration Study (JICS) located within the property of the Poker Flat Research Range of the University of Alaska Fairbanks in interior Alaska [Sugiura et al., 2011; Nakai et al., 2013]. The understory is dominated by a 0 - 20 cm thick layer of peat moss (Sphagnum fuscum) and feather moss (Hylocomium splendens). Eddy covariance measurements were made at 11 m over the canopy and 1.9 m above the ground in summer 2013. The measurement shows that the peak sink of CO2 from understory during the day typically accounted for 80% of the total NEE of (~ 3 μmol m-2s-1) observed over the canopy. Sensible heat flux was nearly identical between the two heights and latent heat flux observed at 1.9m was slightly higher than that observed at 11m. Higher latent heat flux from understory than the total latent heat flux over the canopy is most likely due to the difference in the footprint of the two measurements, and it is necessary to further evaluate the spatial representativeness of the understory fluxes. Nonetheless, these high flux values from the understory suggest an importance of the understory vegetation in evaluating ecosystem flux of the black spruce forest. Acknowledgement This study is funded by the Japan Aerospace Exploration Agency (JAXA) and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) References Nakai, T., Y. Kim, R. C. Busey, R. Suzuki, S. Nagai, H. Kobayashi, H. Park, K. Sugiura, and A. Ito (2013), Characteristics of evapotranspiration from a permafrost black spruce forest in interior Alaska, Polar Science, 7(2), 136-148, doi:10.1016/j.polar.2013.03.003. Sugiura, K

  9. Photosynthetic performance of invasive Vincetoxicum species (Apocynaceae)

    Science.gov (United States)

    Vincetoxicum rossicum and V. nigrum are perennial invasive vines impacting several ecosystems in the northeastern United States and southeastern Canada, including old-fields and forest understories. The integrity of these ecosystems is threatened by these two Vincetoxicum species. In order to bett...

  10. Ontogenetic stage, plant vigor and sex mediate herbivory loads in a dioecious understory herb

    Science.gov (United States)

    Selaković, Sara; Vujić, Vukica; Stanisavljević, Nemanja; Jovanović, Živko; Radović, Svetlana; Cvetković, Dragana

    2017-11-01

    Plant-herbivore interactions can be mediated by plant apparency, defensive and nutritional quality traits that change through plant ontogeny, resulting in age-specific herbivory. In dioecious species, opposing allocation patterns in defense may lead to sex-biased herbivory. Here, we examine how onto stage and plant sex determine levels of herbivore damage in understory herb Mercurialis perennis under field conditions. We analyzed variation in plant size (height, total leaf area), physical (specific leaf area) and chemical (total phenolic and condensed tannins contents) defense, and nutritional quality (total water, soluble protein and nonstructural carbohydrate contents) during the shift from reproductive to post-reproductive stage. Furthermore, we explored correlations between the analyzed traits and levels of foliar damage. Post-reproductive plants had lower levels of chemical defense, and larger leaf area removed, in spite of having lower nutritive quality. Opposing patterns of intersexual differences were detected in protein and phenolic contents during reproductive stage, while in post-reproductive stage total leaf area was sexually dimorphic. Female-biased herbivory was apparent only after reproduction. Plant size parameters combined with condensed tannins content determined levels of foliar damage during post-reproductive stage, while the only trait covarying with herbivory in reproductive stage was total nonstructural carbohydrate content. Our results support claims of optimal defense theory - sensitive stage of reproduction was better defended. We conclude that different combinations of plant traits mediated interactions with herbivores in mature stages. Differences in reproductive allocation between the sexes may not immediately translate into different levels of damage, stressing the need for considering different ontogenetic stages when exploring sex bias in herbivory.

  11. Dosimetry of irradiated foods and extraction of polyminerals from herbs and seasonings (Guajillo chili, oregano, jamaica, arnica, and camomile); Dosimetria de alimentos irradiados y extraccion de poliminerales de hierbas y condimentos (Chile guajillo, oregano, jamaica, arnica y manzanilla)

    Energy Technology Data Exchange (ETDEWEB)

    Pineda C, S.; Gomez B, C. [Estudiante de la Facultad de Quimica, UNAM (Mexico); Calderon, T.; Cruz Z, E. [Depto. de Quimica Agricola-Geologia-Geoquimica, Universidad Autonoma de Madrid, 28049 (Spain)

    2002-07-01

    Nowadays, in developed countries the irradiation technology is a process used in food treatments for sterilization and diminishing of the microbiological charge, as well as to extend the storage life. In Mexico, the food irradiation, spices and seasonings has been officially approved since 1995, recognizing as an adequate technological process for foods. Taking advantage of knowledge about solids and due to the natural growth of the spices, herbs, etc. these contain minerals which can providing important information of its radiological history, moreover these type of materials do not degrade them preserving by long time periods. In this work, a methodology for the extraction of poly minerals in foods, such as oregano, guajillo chili, jamaica, arnica and camomile is presented. For obtaining the poly mineral, the samples were treated with an ethanol-water solution, in constant stirring during 12 hours at room temperature depending on the sample under treatment. It was used oxygenated water and distilled for washing and acetone for achieving a good drying. The minerals were processed by gamma radiation in the Nuclear Sciences Institute of the UNAM. The brilliance curves of spices and herbs, using a Tl reader of Harshaw 3500 were obtained, the emissions are located between 60 and 350 Centigrade. Previously the extraction of poly mineral was realized and they were divided in same parts for doses between 2 and 10 KGy, this last value according to the Mexican Official Standard considering a fraction without irradiating as reference. The identification of the mineral fraction by diffraction will complement the composition information. We are grateful to the donation of seasonings samples provided by the Tres Villas Natural Seasonings enterprise, Toluca plant, State of Mexico and the Academic Exchange Office at UNAM. (Author)

  12. Influence of primitive Biłgoraj horses on the glossy buckthorn (Frangula alnus)-dominated understory in a mixed coniferous forest

    Science.gov (United States)

    Klich, Daniel

    2018-02-01

    Changes in the understory dominated by glossy buckthorn Frangula alnus via the influence of primitive horses were analyzed in a 28-year-old enclosure in the village of Szklarnia at the Biłgoraj Horse-Breeding Centre near Janów Lubelski (eastern Poland). The analysis was conducted in 20 circular plots (30 m2) defined in adjacent, similar forest stands (enclosed and control). Disturbance by the horses, mainly through trampling, caused numerous paths to form within the glossy buckthorn-dominated understory and led to a decrease in density of stems of lower height classes (30-80 and 81-130 cm, respectively). An increase in species diversity at the expense of glossy buckthorn density was also observed. The horses' trampling caused an increase in Padus avium density and the encroachment of other woody plant species that were less shade-tolerant and grew well in soils rich in nutrients. An increase in the density of woody plants over 180 cm above ground was observed within the enclosure, which was probably the result of the horses' excretion of feces. The results presented here provide new insight into the ecological role that horses play in forest-meadow landscape mosaics, which, via altering the development of vegetation, may contribute to an increase in biodiversity within forest habitats.

  13. Dosimetry of irradiated foods and extraction of polyminerals from herbs and seasonings (Guajillo chili, oregano, jamaica, arnica, and camomile)

    International Nuclear Information System (INIS)

    Pineda C, S.; Gomez B, C.; Calderon, T.; Cruz Z, E.

    2002-01-01

    Nowadays, in developed countries the irradiation technology is a process used in food treatments for sterilization and diminishing of the microbiological charge, as well as to extend the storage life. In Mexico, the food irradiation, spices and seasonings has been officially approved since 1995, recognizing as an adequate technological process for foods. Taking advantage of knowledge about solids and due to the natural growth of the spices, herbs, etc. these contain minerals which can providing important information of its radiological history, moreover these type of materials do not degrade them preserving by long time periods. In this work, a methodology for the extraction of poly minerals in foods, such as oregano, guajillo chili, jamaica, arnica and camomile is presented. For obtaining the poly mineral, the samples were treated with an ethanol-water solution, in constant stirring during 12 hours at room temperature depending on the sample under treatment. It was used oxygenated water and distilled for washing and acetone for achieving a good drying. The minerals were processed by gamma radiation in the Nuclear Sciences Institute of the UNAM. The brilliance curves of spices and herbs, using a Tl reader of Harshaw 3500 were obtained, the emissions are located between 60 and 350 Centigrade. Previously the extraction of poly mineral was realized and they were divided in same parts for doses between 2 and 10 KGy, this last value according to the Mexican Official Standard considering a fraction without irradiating as reference. The identification of the mineral fraction by diffraction will complement the composition information. We are grateful to the donation of seasonings samples provided by the Tres Villas Natural Seasonings enterprise, Toluca plant, State of Mexico and the Academic Exchange Office at UNAM. (Author)

  14. Understory vegetation and site factors : implications for a managed Wisconsin landscape

    Science.gov (United States)

    K.D. Brosofske; J. Chen; Thomas R. Crow

    2001-01-01

    We investigated relationships between edaphic and environmental factors (soil, forest floor, topography, and canopy) and understory vegetation (composition, richness, and Shannon-Wiener diversity index, H')among 77 plots representing seven major patch types comprising a landscape in northern Wisconsin that has a long history of human management. Sampled patch...

  15. Long-Term Responses of Understory Vegetation on a Highly Erosive Louisiana Soil to Fertilization

    Science.gov (United States)

    James D. Haywood; Ronald E. Thill

    1995-01-01

    Responses of vegetation on highly eroded Kisatchie soils to a broadcast application of 600 lb/acre of 16-30-l 3 granular fertilizer were monitored for 12 years. Understory woody and herbaceous vegetation responded to fertilization immediately, and thus the soil surface was protected from erosion sooner in the fertilized area than in the two unfertilized areas. After 1...

  16. The legacy of deer overabundance: long-term delays in herbaceous understory recovery

    Science.gov (United States)

    Thomas H. Pendergast; Shane M. Hanlon; Zachary M. Long; Alex Royo; Walter P. Carson

    2016-01-01

    Decades of white-tailed deer (Odocoileus virginianus (Zimmermann, 1780)) overpopulation have dramatically homogenized forests across much of the eastern United States, creating depauperate forest understory communities. The rate at which these communities recover once deer browsing has been reduced remains an open question. We evaluate overbrowsing...

  17. LEAF AREA INDEX (LAI) CHANGE DETECTION ANALYSIS ON LOBLOLLY PINE (PINUS TAEDA) FOLLOWING COMPLETE UNDERSTORY REMOVAL

    Science.gov (United States)

    The confounding effect of understory vegetation contributions to satellite-derived estimates of leaf area index (LAI) was investigated on two loblolly pine (Pinus taeda) forest stands located in Virginia and North Carolina. In order to separate NDVI contributions of the dominantc...

  18. Western dwarf mistletoe infects understory Jeffrey pine seedlings on Cleveland National Forest, California

    Science.gov (United States)

    Robert F. Scharpf; Detlev Vogler

    1986-01-01

    Many young, understory Jeffrey pines (Pinus jeffreyi Grev. & Balf.) were found to be infected by western dwarf mistletoe (Arceuthobium campylopodum Engelm.) on Laguna Mountain, Cleveland National Forest, in southern California. Under heavily infected overstory, about three-fourths of the young pines (about 15 years old on the...

  19. Infrared heater system for warming tropical forest understory plants and soils

    Science.gov (United States)

    Bruce A. Kimball; Aura M. Alonso-Rodríguez; Molly A. Cavaleri; Sasha C. Reed; Grizelle González; Tana E. Wood

    2018-01-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses...

  20. Understory cover and biomass indices predictions for forest ecosystems of the Northwestern United States

    Science.gov (United States)

    Vasile A. Suchar; Nicholas L. Crookston

    2010-01-01

    The understory community is a critical component of many processes of forest ecosystems. Cover and biomass indices of shrubs and herbs of forested ecosystems of Northwestern United States are presented. Various forest data were recorded for 10,895 plots during a Current Vegetation Survey, over the National Forest lands of entire Pacific Northwest. No significant...

  1. Post-fire logging produces minimal persistent impacts on understory vegetation in northeastern Oregon, USA

    Science.gov (United States)

    David W. Peterson; Erich Dodson

    2016-01-01

    Post-fire forest management commonly requires accepting some negative ecological impacts from management activities in order to achieve management objectives. Managers need to know, however, whether ecological impacts from post-fire management activities are transient or cause long-term ecosystem degradation. We studied the long-term response of understory vegetation...

  2. Responses of Soil Organic Carbon to Long-Term Understory Removal in Subtropical Cinnamomum camphora Stands

    Directory of Open Access Journals (Sweden)

    Yacong Wu

    2014-01-01

    Full Text Available We conducted a study on a 48-year-old Cinnamomum camphora plantation in the subtropics of China, by removing understory gradually and then comparing this treatment with a control (undisturbed. This study analyzed the content and storage soil organic carbon (SOC in a soil depth of 0–60 cm. The results showed that SOC content was lower in understory removal (UR treatment, with a decrease range from 5% to 34%, and a decline of 10.16 g·kg−1 and 8.58 g·kg−1 was noticed in 0–10 cm and 10–20 cm layers, respectively, with significant differences (P<0.05. Carbon storage was reduced in UR, ranging from 2% to 43%, with a particular drastic decline of 15.39 t·hm−2 and 11.58 t·hm−2 in 0–10 cm (P<0.01 and 10–20 cm (P<0.01 layers, respectively. Content of SOC had an extremely significant (P<0.01 correlation with soil nutrients in the two stands, and the correlation coefficients of CK were higher than those of UR. Our data showed that the presence of understory favored the accumulation of soil organic carbon to a large extent. Therefore, long-term practice of understory removal weakens the function of forest ecosystem as a carbon sink.

  3. Development of understory tree vegetation after thinning naturally occurring shortleaf pine forests

    Science.gov (United States)

    K.C. Anup; Thomas B. Lynch; Douglas Stevenson; Duncan Wilson; James M. Guldin; Bob Heinemann; Randy Holeman; Dennis Wilson; Keith Anderson

    2015-01-01

    During the 25 years since establishment of more than 200 growth study plots in even-aged, naturally regenerated shortleaf pine (Pinus echinata Mill.) forests, there has been considerable development of hardwood understory trees, shrubs, and some shortleaf pine regeneration. During the period from 1985-1987, even-aged shortleaf pine growth-study...

  4. Changes in Patterns of Understory Leaf Phenology and Herbivory following Hurricane Damage.

    Science.gov (United States)

    Pilar Angulo-Sandoval; H. Fernandez-Marin; J. K. Zimmerman; T. M. Aide

    2004-01-01

    Hurricanes are important disturbance events in many forested ecosystems. They can have strong effects on both forest structure and animal populations, and yet few studies have considered the impacts on plant–animal interactions. Reduction of canopy cover by severe winds increases light availability to understory plants, providing an opportunity for increased growth. An...

  5. Maintenance of a living understory enhances soil carbon sequestration in subtropical orchards.

    Science.gov (United States)

    Liu, Zhanfeng; Lin, Yongbiao; Lu, Hongfang; Ding, Mingmao; Tan, Yaowen; Xu, Shejin; Fu, Shenglei

    2013-01-01

    Orchard understory represents an important component of the orchards, performing numerous functions related to soil quality, water relations and microclimate, but little attention has been paid on its effect on soil C sequestration. In the face of global climate change, fruit producers also require techniques that increase carbon (C) sequestration in a cost-effective manner. Here we present a case study to compare the effects of understory management (sod culture vs. clean tillage) on soil C sequestration in four subtropical orchards. The results of a 10-year study indicated that the maintenance of sod significantly enhanced the soil C stock in the top 1 m of orchard soils. Relative to clean tillage, sod culture increased annual soil C sequestration by 2.85 t C ha(-1), suggesting that understory management based on sod culture offers promising potential for soil carbon sequestration. Considering that China has the largest area of orchards in the world and that few of these orchards currently have sod understories, the establishment and maintenance of sod in orchards can help China increase C sequestration and greatly contribute to achieving CO2 reduction targets at a regional scale and potentially at a national scale.

  6. Comparative growth performance of different Casuarina species and ...

    African Journals Online (AJOL)

    Variation in growth charactristics, coppicing ability and understory vegetation development was assessed in four Casuarina species (C. equisetifolia, C. junghuhniana, C. cunnighamiana and C. oligodon) grown in Lushoto in the West Usambara Mountains (WUM), Tanzania. The performance of the four species as well as of ...

  7. Effects of the interception of litterfall by the understory on carbon cycling in eucalyptus plantations of South China.

    Directory of Open Access Journals (Sweden)

    Long Yang

    Full Text Available For the purposes of forest restoration, carbon (C fixation, and economic improvement, eucalyptus (Eucalyptus urophylla has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception of litterfall on C cycling in eucalyptus plantations, we quantified the mass of intercepted litter and the influences of litterfall interception on litter decomposition and soil respiration. The total mass of E. urophylla litterfall collected on the understory was similar to that collected by the traditional litter trap method. All of the eucalyptus litterfall is intercepted by the D. dichotoma canopy. Of the litterfall that was intercepted by D. dichotoma, 20-40% and 60-80% was intercepted by the top (50-100 cm and bottom (0-50 cm of the understory canopy, respectively. Intercepted litterfall decomposed faster at the bottom of understory canopy (at the base of the plants than at the top, and decomposition was slower on the soil surface in the absence of understory than on any location in the understory canopy. Soil respiration was highest when both the understory and litter were present and was lowest when both the understory and litter were absent. These results indicate that litterfall interception changed carbon flow between aboveground and belowground through litter decomposition and soil respiration, which changed carbon cycling in eucalyptus plantations. The effects of the understory on litter decomposition and soil respiration should be considered in ecosystem carbon models.

  8. Effects of the interception of litterfall by the understory on carbon cycling in eucalyptus plantations of South China.

    Science.gov (United States)

    Yang, Long; Wang, Jun; Huang, Yuhui; Hui, Dafeng; Wen, Meili

    2014-01-01

    For the purposes of forest restoration, carbon (C) fixation, and economic improvement, eucalyptus (Eucalyptus urophylla) has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception of litterfall on C cycling in eucalyptus plantations, we quantified the mass of intercepted litter and the influences of litterfall interception on litter decomposition and soil respiration. The total mass of E. urophylla litterfall collected on the understory was similar to that collected by the traditional litter trap method. All of the eucalyptus litterfall is intercepted by the D. dichotoma canopy. Of the litterfall that was intercepted by D. dichotoma, 20-40% and 60-80% was intercepted by the top (50-100 cm) and bottom (0-50 cm) of the understory canopy, respectively. Intercepted litterfall decomposed faster at the bottom of understory canopy (at the base of the plants) than at the top, and decomposition was slower on the soil surface in the absence of understory than on any location in the understory canopy. Soil respiration was highest when both the understory and litter were present and was lowest when both the understory and litter were absent. These results indicate that litterfall interception changed carbon flow between aboveground and belowground through litter decomposition and soil respiration, which changed carbon cycling in eucalyptus plantations. The effects of the understory on litter decomposition and soil respiration should be considered in ecosystem carbon models.

  9. Simulating Various Terrestrial and Uav LIDAR Scanning Configurations for Understory Forest Structure Modelling

    Science.gov (United States)

    Hämmerle, M.; Lukač, N.; Chen, K.-C.; Koma, Zs.; Wang, C.-K.; Anders, K.; Höfle, B.

    2017-09-01

    Information about the 3D structure of understory vegetation is of high relevance in forestry research and management (e.g., for complete biomass estimations). However, it has been hardly investigated systematically with state-of-the-art methods such as static terrestrial laser scanning (TLS) or laser scanning from unmanned aerial vehicle platforms (ULS). A prominent challenge for scanning forests is posed by occlusion, calling for proper TLS scan position or ULS flight line configurations in order to achieve an accurate representation of understory vegetation. The aim of our study is to examine the effect of TLS or ULS scanning strategies on (1) the height of individual understory trees and (2) understory canopy height raster models. We simulate full-waveform TLS and ULS point clouds of a virtual forest plot captured from various combinations of max. 12 TLS scan positions or 3 ULS flight lines. The accuracy of the respective datasets is evaluated with reference values given by the virtually scanned 3D triangle mesh tree models. TLS tree height underestimations range up to 1.84 m (15.30 % of tree height) for single TLS scan positions, but combining three scan positions reduces the underestimation to maximum 0.31 m (2.41 %). Combining ULS flight lines also results in improved tree height representation, with a maximum underestimation of 0.24 m (2.15 %). The presented simulation approach offers a complementary source of information for efficient planning of field campaigns aiming at understory vegetation modelling.

  10. Effects of understory vegetation and litter on plant nitrogen (N, phosphorus (P, N:P ratio and their relationships with growth rate of indigenous seedlings in subtropical plantations.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available Establishing seedlings in subtropical plantations is very important for forest health, succession and management. Information on seedling nutrient concentrations is essential for both the selection of suitable indigenous tree species to accelerate succession of the established plantation and sustainable forest management. In this study, we investigated the concentrations of nitrogen ([N], phosphorus ([P], and N:P ratio in leaves, stems and roots of seedlings of three indigenous tree species (Castanopsis chinensis, Michelia chapensis and Psychotria rubra transplanted with removing or retaining understory vegetation and litter at two typical subtropical forest plantations (Eucalyptus plantation and native species plantation. We also measured the relative growth rate (RGR of seedling height, and developed the relationships between RGR and leaf [N], [P] and N:P ratio. Results showed that treatments of understory vegetation and associated litter (i.e. removal or retained generally had no significant effects on leaf [N], [P], N:P ratio and RGR of the transplanted tree seedlings for the experimental period. But among different species, there were significant differences in nutrient concentrations. M. chapensis and P. rubra had higher [N] and [P] compared to C. chinensis. [N] and [P] also varied among different plant tissues with much higher values in leaves than in roots for all indigenous species. RGR of indigenous tree seedlings was mostly positively correlated with leaf [N] and [P], but negatively correlated with leaf N:P ratio. Considering the low [P] and high N:P ratio observed in the introduced indigenous tree seedlings, we propose that the current experimental plantations might be P limited for plant growth.

  11. Influence of understory cover on soil water and evaporation fluxes: a trial

    Science.gov (United States)

    Jiménez-Rodríguez, César; Magdalena Warter, Maria; Coenders-Gerrits, Miriam

    2017-04-01

    Within a forest ecosystem the litter layer is an important hydrological component and contributes towards the water and energy exchange between the sub-canopy and the soil. Evaporation within a forest is made up of different fractions coming from the dry soil, vegetation and litter layers. The quantification and partitioning of each fraction remains difficult as there is hard to estimate correctly the amount of water moved by evaporation or percolation at ecosystem level. With the aim to determine the influence of forest understory on the evaporation fluxes, four ground cover types were selected from the Speulderbos forest in the Netherlands. The mosses species of "Thamariskmoss" (Thuidium thamariscinum), "Rough Stalked Feathermoss" (Brachythecium rutabulum), and "Haircapmoss" (Polytrichum commune) were compared with a litter layer made up of Douglas-Fir needles (Pseudotsuga menziesii). Four PVC basins with 40cm x 60cm were filled with forest soil and sheltered with the selected ground covers. Each box was equipped with a soil moisture sensor, and a set Temperature and Relative Humidity sensors to determine the VPD during the study period. The study period lasts 4 weeks, while the percolation rates were measured in a daily basis. The rainfall events were simulated in the lab, applying the same rain event to each box at the same time. A total amount of 43.12 mm of rain were added to the boxes during the 4 weeks of the experiment, and distributed in 11 rain events which differ in amount and timing between events. The percolation in all the boxes was more than the 50% of the rain events due to the sandy condition of the soil, while the evaporation rates were affected not only by the room atmospheric conditions, but for the cover type present in each box. Except for the Polytrichum moss, a moss known for its water conducting abilities, all cover types showed a decline before and increase after a rain event. This species showed a steady increase in soil water content

  12. Photosynthetic rates influence the population dynamics of understory herbs in stochastic light environments.

    Science.gov (United States)

    Westerband, Andrea C; Horvitz, Carol C

    2017-02-01

    Temporal variability in light from gaps in the tree canopy strongly influences the vital rates of understory plants. From 2012 to 2015, we estimated the size-specific vital rates of two herbs, Calathea crotalifera and Heliconia tortuosa, over a range of light environments. We estimated maximum photosynthetic capacity (A max ) for a subset of individuals each year during three annual censuses, and modelled future size as a linear function of current size (a plant trait that changes ontogenetically), canopy openness (an environmental variable), and A max (a potentially plastic physiological trait). We estimated what the demographic success would be of a population comprised of individuals with a particular fixed A max for each of several levels of canopy openness if the environment remained constant, by evaluating corresponding Integral Projection Models and their deterministic growth rates (λ). We then estimated their demographic success in the stochastic light environment (λ S ) and its elasticities. As light increased, deterministic λ increased for Calathea by 33% but decreased for Heliconia by 52%, and increasing A max had no effect on λ for Calathea but increased λ for Heliconia in low light. As A max increased, λ S increased for Heliconia, but not Calathea. We also investigated whether photosynthetic rates would influence the elasticities of λ S, including its response to perturbation of vital rates in each environment (E S β ), vital rates over all environments (E S ), and variability of vital rates among environments (E S σ ). E S , E S σ , and E S β were influenced by A max for Heliconia but not Calathea. Events that affect some vital rates in high light have a greater impact on overall fitness than events that affect the same vital rates in shady environments, and there is greater potential for selection on traits of large individuals in high light than in low light for Heliconia, while the reverse was true for Calathea. Photosynthetic rates

  13. Dynamics of the evergreen understory at Coweeta Hydrologic Laboratory, North Carolina

    Science.gov (United States)

    Dobbs, Marion Mcnamara

    Much attention today is directed toward vegetation dynamics and related issues of biotic diversity. Both environmental gradients and disturbance/land use history are important determinants of both the distributional pattern and the dynamics of many plant species. The southern Appalachian Mountains constitute a region of high plant and animal diversity and rapidly increasing development pressure with its consequent changes in land use. The remaining forested areas commonly include a significant evergreen understory (undergreen) composed of ericaceous shrubs, predominately Rhododendron maximum , which is believed to be expanding and exerting an inhibitory effect on the establishment of other species, thus impacting forest structure and composition. This study was an attempt to characterize this forest component, temporally and spatially, at the Coweeta Hydrologic Laboratory, North Carolina, in terms of a variety of topographic gradients as well as long-term (century) and short-term (decade) disturbance history, verify expansion, develop a surrogate soil moisture index for use in an explanatory model for undergreen pattern, and examine the feasibility of predicting the pattern of undergreen at one time based on knowledge of topographic relationships gained at an earlier time. A GIS was used for visual and areal comparisons; logistic regression was used for developing spatiotemporal explanatory models. Results indicate that aspect, stream proximity, and elevation are all important in explaining distributional pattern and dynamics of the undergreen at Coweeta, with R. maximum showing preference for moister areas and its common associate, Kalmia latifolia found more frequently in drier areas. The influence of these environmental factors differs between the larger Coweeta Basin, the site of experimental manipulations at the small watershed level since the 1930's, and the physically similar Dryman Fork Basin, relatively undisturbed since that time. There is an apparent

  14. Role of burning season on initial understory vegetation response to prescribed fire in a mixed conifer forest

    Science.gov (United States)

    Knapp, E.E.; Schwilk, D.W.; Kane, J.M.; Keeley, J.E.

    2007-01-01

    Although the majority of fires in the western United States historically occurred during the late summer or early fall when fuels were dry and plants were dormant or nearly so, early-season prescribed burns are often ignited when fuels are still moist and plants are actively growing. The purpose of this study was to determine if burn season influences postfire vegetation recovery. Replicated early-season burn, late-season burn, and unburned control units were established in a mixed conifer forest, and understory vegetation was evaluated before and after treatment. Vegetation generally recovered rapidly after prescribed burning. However, late-season burns resulted in a temporary but significant drop in cover and a decline in species richness at the 1 m 2 scale in the following year. For two of the several taxa that were negatively affected by burning, the reduction in frequency was greater after late-season than early-season burns. Early-season burns may have moderated the effect of fire by consuming less fuel and lessening the amount of soil heating. Our results suggest that, when burned under high fuel loading conditions, many plant species respond more strongly to differences in fire intensity and severity than to timing of the burn relative to stage of plant growth. ?? 2007 NRC.

  15. Impact of the invasive plant Syzigium jambos (Myrtaceae) on patterns of understory seedling abundance in a Tropical Premontane Forest, Costa Rica.

    Science.gov (United States)

    Avalos, Gerardo; Hoell, Kelly; Gardner, Jocelyn; Anderson, Scott; Lee, Conor

    2006-06-01

    Habitat fragmentation, along with other human-induced disturbances, increase the vulnerability of native habitats to be invaded by aggressive, ecologically released, exotic species. Syzigium jambos (L.) Alston (Myrtaceae, Rose Apple) is an important invader still spreading throughout Hawaii, the Antilles, Central and South America. This study examines the effects of S. jambos on plant understory diversity in a 25 ha Tropical Premontane Moist Forest in Atenas, Alajuela, Costa Rica, a protected watershed that supplies drinking water for several human communities. Our final objective is to develop a management strategy combining water protection with the preservation of a representative sample of the original plant diversity in the area. Thirty 2 x 2 m plots were distributed throughout the Municipal Forest maintaining a minimum of 10 m between plots, and 2 m from trails, to sample all understory seedlings and saplings of S. jambos, Coffea arabica (coffee) and tree seedlings. We found a clear dominance of S. jambos over all other understory plants. Of the total 1,285 sampled plants, S. jambos comprised 51%, coffee seedlings represented 14.78%, being the rest tree seedlings. Syzigium jambos had the highest density (5.46 plants/m2, S.D. = 6.44) compared to tree (3.67 plants/m2, S.D. = 3.44) and coffee seedlings (1.58 plants/m2, S.D. = 2.13). There was a highly significant negative relationship between the relative abundance of S. jambos and tree (r2 = 0.52, p or = 2 m). The results show a clear role of S. jambos as an aggressive, invasive species within the Municipal Forest. This invasion is enhanced by both the ecological characteristics of the species and the fragmentation of the forest by coffee farming around the site. Among a variety of management possibilities, an ecosystem-level approach of manually removing S. jambos over time while replanting native species appears to be the preferred strategy, given the intended continued use of the Municipal Forest as a source

  16. LBA-ECO CD-05 Understory Fuel Stick Moisture, km 67 Site, Para, Brazil: 1998-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains moisture content measurements for fuel sticks located in the forest understory of the rainfall exclusion experimental site, Tapajos National...

  17. LBA-ECO CD-05 Understory Fuel Stick Moisture, km 67 Site, Para, Brazil: 1998-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains moisture content measurements for fuel sticks located in the forest understory of the rainfall exclusion experimental site, Tapajos...

  18. Non-native grass invasion associated with increases in insect diversity in temperate forest understory

    Science.gov (United States)

    Metcalf, Judith L.; Emery, Sarah M.

    2015-11-01

    Invasive plants can alter the structure and function of plant communities to such a degree that they can also have significant impacts on the insect communities. Because insects play an important role in many ecosystems, changes in these communities could have important implications, beyond their biodiversity value, for ecosystem function and diversity at other trophic levels. Microstegium vimineum is an annual C4 grass that is invasive in many eastern North American deciduous forests. Because this grass plays an important role in determining the plant community structure in the understory of these forests, it also has the potential to significantly alter understory insect communities. In this study we evaluated the relationship between M. vimineum and understory insect communities in a forest reserve in Kentucky, USA. Total insect abundance, richness and diversity showed a positive association with M. vimineum presence. Trophic analysis showed significantly higher abundances of herbivores where M. vimineum was present. Forb abundance, which serves as the primary food source for herbivorous insects in this system, was lower in sites invaded with M. vimineum. Invasion by this non-native was also associated with significant increases in aboveground plant biomass which was nearly 50% greater in invaded sites. These results indicate that the understory insect community may be responding to increased biomass rather than the loss of native forb food resources, which contradicts other studies that have examined relationships between M. vimineum invasion and insects. Our results provide evidence that invasive plants can provide benefits for other trophic levels, even when native plant biodiversity is lost.

  19. Mistblowing a hardwood understory in West Virginia with "D-T" herbicide

    Science.gov (United States)

    H. Clay Smith; George R., Jr. Trimble

    1970-01-01

    A 40-pound ahg solution of 2,4-D and 2,4,5-T herbicide was successfully mistblown on an undesirable hardwood understory on a good site in West Virginia. After 2 years, many of the stems 1 to 15 feet tall had been killed or severely damaged. The possibilities of obtaining desirable shade-intolerant reproduction on the site were improved by the application of this "...

  20. Mexican Arnica (Heterotheca inuloides Cass. Asteraceae: Astereae): Ethnomedical uses, chemical constituents and biological properties.

    Science.gov (United States)

    Rodríguez-Chávez, José Luis; Egas, Verónica; Linares, Edelmira; Bye, Robert; Hernández, Tzasna; Espinosa-García, Francisco J; Delgado, Guillermo

    2017-01-04

    Heterotheca inuloides Cass. (Asteraceae) has been traditionally used to treat a wide range of diseases in Mexico in the treatment of rheumatism, topical skin inflammation, muscular pain colic, and other painful conditions associated with inflammatory processes, additionally has been used to treat dental diseases, and gastrointestinal disorders. This species has also been used for the treatment of cancer and diabetes. This review provides up-to-date information on the botanical characterization, traditional uses, chemical constituents, as well as the biolological activities of H. inuloides. A literature search was conducted by analyzing the published scientific material. Information related to H. inuloides was collected from various primary information sources, including books, published articles in peer-reviewed journals, monographs, theses and government survey reports. The electronic search of bibliographic information was gathered from accepted scientific databases such as Scienfinder, ISI Web of Science, Scielo, LILACS, Redalyc, Pubmed, SCOPUS and Google Scholar. To date, more than 140 compounds have been identified from H. inuloides, including cadinane sesquiterpenes, flavonoids, phytosterols, triterpenes, benzoic acid derivatives, and other types of compounds. Many biological properties associated with H. inuloides. Many studies have shown that the extracts and some compounds isolated from this plant exhibit a broad spectrum of biological activities such as antioxidant, antitumor, anti-inflammatory, cytotoxic, and chelating activities, as well as insecticidal and phytotoxic activity. To date, reports on the toxicity of H. inuloides are limited. A comprehensive analysis of the literature obtained through the above-mentioned sources confirmed that ethnomedical uses of H. inuloides have been recorded in Mexico to treat rheumatism, pain, and conditions associated with inflammatory processes. Pharmacological studies have demonstrated the activity of certain

  1. Understory avifauna exhibits altered mobbing behavior in tropical forest degraded by selective logging.

    Science.gov (United States)

    Hua, Fangyuan; Sieving, Kathryn E

    2016-11-01

    In understanding the impacts of selective logging on biodiversity, relatively little is known about the critical behavioral link between altered forest conditions and population persistence. Predator-mobbing is a widespread anti-predator behavior in birds that expresses a well-known trade-off influencing prey survival under predation risk. Here, we ask whether the predator-mobbing behavior of understory forest birds is altered by selective logging and associated forest structural changes in the highly endangered lowland rainforest of Sumatra. At four study sites spanning a gradient of logging-induced forest degradation, we used standardized mobbing and owl call playbacks with predator model presentation to elicit the predator-mobbing behavior of understory prey birds, compared birds' mobbing intensity across sites, and related variation in this intensity to forest vegetation structure. We found that selective logging altered birds' predator-mobbing intensity (measured by behavioral conspicuousness and propensity to approach the predator) as well as forest structure, and that vegetative changes to canopy and understory were correlated with contrasting responses by the two major bird foraging guilds, gleaning versus flycatching birds. We additionally discuss the implications of our findings for further hypothesis testing pertaining to the impacts of selective logging on the ecological processes underlying prey mobbing behavior, particularly with regards to predator-prey interactions and prey accruement of energy reserves.

  2. Efeito de dinamizações de Arnica montana L. no metabolismo de chambá (Justicia pectoralis Jacq. Effect of dynamizations of Arnica montana in metabolism of chambá (Justicia pectoralis Jacq.

    Directory of Open Access Journals (Sweden)

    F.M.C. Andrade

    2012-01-01

    Full Text Available Este estudo objetivou avaliar a resposta do crescimento e do metabolismo secundário de Justicia pectoralis, expresso em produção de cumarina, a crescentes dinamizações de A. montana. O experimento foi conduzido na Universidade Federal de Viçosa. O delineamento estatístico foi inteiramente casualizado, com seis repetições e cinco tratamentos, totalizando 30 parcelas experimentais, sendo cada parcela constituída de uma planta por vaso. Os tratamentos foram as dinamizações 3CH, 30CH, 60CH, 100CH e 200CH do preparado homeopático A. montana. Os tratamentos foram aplicados às plantas via pulverização, em intervalos semanais, iniciando logo após o plantio. Após quatro meses do plantio as plantas foram colhidas. As características de crescimento avaliadas foram matérias fresca e seca de folhas e caules, matérias fresca e seca de inflorescências e matérias fresca e seca total. No estudo fitoquímico foi avaliada a produção da cumarina (1-2 benzopirona. Não houve resposta nas variáveis de crescimento aos tratamentos. As dinamizações de A. montana causaram alterações no metabolismo secundário das plantas. Os conteúdos de cumarina das plantas com A. montana 3CH e 30CH foram próximos e mais baixos, aumentando progressivamente a partir de 60CH, chegando ao máximo em 100CH, seguido de redução em 200CH. A preparação homeopática A. montana causa alterações no metabolismo secundário de chambá, sendo as repostas dependentes da dinamização.Were evaluated the responses to dynamizations of Arnica montana in the growth and in the secondary metabolism of Justicia pectoralis expressed as coumarin production. The studies were carried out at the Universidade Federal de Viçosa. The statistical design was completely randomized, with six replicates and five treatments, 30 experimental plots, one plant per pot. The treatments were dynamizations 3CH, 30CH, 60CH, 100CH and 200CH homeopathic preparation of A. montana. The

  3. Diversity, richness, and vertical stratification of bat species in an Atlantic Forest remnant in the Brazilian southern region

    Directory of Open Access Journals (Sweden)

    Marta Elena Fabián

    2013-11-01

    Full Text Available In this study, we evaluated the diversity, richness, and composition of bat species in the canopy and understory of an Atlantic Forest remnant in the Brazilian southern region, in the municipally of Porto Alegre, Rio Grande do Sul. Between July 2010 and June 2011, bats were captured by means of 10 mist nets, 5 in the canopy and 5 in the understory. We calculated the Shannon-Wiener diversity index (H’, the expected richness (Chao 1 and Jackknife 2, and the constancy index of species for the entire area. We applied Fisher’s Exact test to check if the catches were different in the canopy and understory. We captured 107 chiropteran specimens, 20 individuals of 5 species in the canopy and 87 individuals of 7 species in the understory. The diversity index was 1,481 and the expected richness was 9 (Chao 1 and 10 (Jackknife 2. The constancy index showed that Sturnira lilium and Glossophaga soricina are relatively common in the study area. The registered richness represents about 22% of bat species listed for the state of Rio Grande do Sul. Vertical stratification analysis showed that some species are more frequent in the canopy and others in the understory.

  4. Link between defoliation and light treatments on root vitality of five understory shrubs with different resistance to insect herbivory.

    Science.gov (United States)

    Karolewski, Piotr; Zadworny, Marcin; Mucha, Joanna; Napierała-Filipiak, Anna; Oleksyn, Jacek

    2010-08-01

    Understory shrubs are frequently attacked by insect herbivores. However, very little is known regarding possible interactions between light condition, defoliation (D) and fine root vitality (% live roots) and metabolic activity, and whether different plant strategies (compensation, trade-off and equilibrium) to defoliation depend on individual species light requirements. To explore the response of roots to such conditions, an experiment was established in which we experimentally removed 50% of leaves in 1-year-old seedlings of Sambucus nigra, Cornus sanguinea, Prunus serotina, Frangula alnus and Corylus avellana grown in 15% and full sunlight. On average, defoliation leads to a 15% reduction in fine root (vitality (% live roots). However, a statistically significant reduction in root vitality after defoliation was detected only in those species that are less herbivorized in nature (48% in S. nigra and 5% in C. sanguinea). On average, shade conditions (L) resulted in 18% decline in root vitality, and the effects of defoliation were also 22% higher than for plants grown in full light. Root vitality in both treatments (D and L) was significantly correlated with their dry mass, concentration of total phenol (TPh) and carbon to nitrogen ratio, and negatively correlated with nitrogen, soluble carbohydrates, starch and total non-structural carbohydrates (TNC). To a large extent, root vitality and chemistry varied by species. Higher root vitality was related to higher concentrations of phenolics, more than to N and TNC concentrations. Concentrations of phenolics also differed significantly between defoliated plants and controls. However, in defoliated plants, an increase in TPh was observed only in two species, which belong to two different groups in light requirements and susceptibility to insect grazing (C. sanguinea and P. serotina). This study indicated that higher vitality of roots occurred in species that are characterized by higher insect defoliation under natural

  5. Effects of a wide gradient of retained tree structure on understory light in coastal Douglas-fir forests

    International Nuclear Information System (INIS)

    Drever, C.R.; Lertzman, K.P.

    2003-01-01

    We characterize understory light of seven stands that varied along a gradient of tree retention. Using hemispherical canopy photographs and digital image, we estimated gap light or solar radiation reaching the understory through the canopy. Using nonlinear regressions, we related gap light to several structural attributes in the examined silvicultural treatments. The silvicultural treatments affected both the median and range of gap light in the understory. As overstory removal increased from uncut second growth to green-tree retention, the median value of light increased from 8 to 68% full sun, while the range of light increased from 3-22% to 26-88% full sun. We found strong, significant, and negative nonlinear relationships between gap light at a particular microsite (0.04 ha) in the understory and the height, diameter at breast height, density, and volume of surrounding retained trees (r a 2 = 0.77-0.94). These relationships can aid planning of treatments that retain forest structure, such as variable retention, by allowing predictions of understory light from commonly used field data. These predictions allow forest managers to understand some of the ecological consequences and tradeoffs associated with retaining structure during harvesting. (author)

  6. Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds

    Science.gov (United States)

    Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun

    2017-08-01

    Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest - a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types.

  7. Remote sensing of temperate coniferous forest lead area index - The influence of canopy closure, understory vegetation and background reflectance

    Science.gov (United States)

    Spanner, Michael A.; Pierce, Lars L.; Running, Steven W.; Peterson, David L.

    1990-01-01

    Consideration is given to the effects of canopy closure, understory vegetation, and background reflectance on the relationship between Landsat TM data and the leaf area index (LAI) of temperate coniferous forests in the western U.S. A methodology for correcting TM data for atmospheric conditions and sun-surface-sensor geometry is discussed. Strong inverse curvilinear relationships were found between coniferous forest LAI and TM bands 3 and 5. It is suggested that these inverse relationships are due to increased reflectance of understory vegetation and background in open stands of lower LAI and decreased reflectance of the overstory in closed canopy stands with higher LAI.

  8. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange.

    Science.gov (United States)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra C; Costa E Silva, Filipe; Pereira, Joao S; Werner, Christiane

    2014-01-01

    Semi-arid ecosystems contribute about 40% to global net primary production (GPP) even though water is a major factor limiting carbon uptake. Evapotranspiration (ET) accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE) were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated. The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43 and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss) similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to drought.

  9. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Directory of Open Access Journals (Sweden)

    Maren eDubbert

    2014-10-01

    Full Text Available Semi-arid ecosystems contribute about 40% to global net primary production (GPP even though water is a major factor limiting carbon uptake. Evapotranspiration (ET accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated.The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43% and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to

  10. Elevated native terrestrial snail abundance and diversity in association with an invasive understory shrub, Berberis thunbergii, in a North American deciduous forest

    Science.gov (United States)

    Utz, Ryan M.; Pearce, Timothy A.; Lewis, Danielle L.; Mannino, Joseph C.

    2018-01-01

    Invasive terrestrial plants often substantially reshape environments, yet how such invasions affect terrestrial snail assemblages remains understudied. We investigated how snail assemblages in deciduous forest soils with dense Berberis thunbergii (Japanese barberry), an invasive shrub in eastern North America, differ from forest areas lacking the shrub. Leaf litter and soil samples were collected from forest patches with dense B. thunbergii understories and adjacent control areas within two exurban forest tracts in western Pennsylvania, U.S.A. Snails were identified to species and quantified by standard diversity metrics. Contrary to our expectations, snails were significantly more abundant and diverse in B. thunbergii-invaded areas. Despite differences in abundance, the snail community composition did not differ between invaded and control habitats. The terrestrial snail assemblage we observed, which was composed entirely of native species, appears to respond favorably to B. thunbergii invasion and therefore may not be negatively impacted by physicochemical changes to soils typically observed in association with the plant. Such findings could reflect the fact that B. thunbergii likely creates more favorable habitat for snails by creating cooler, more humid, and more alkaline soil environments. However, the snail assemblages we retrieved may consist mostly of species with high tolerance to environmental degradation due to a legacy of land use change and acid deposition in the region.

  11. Understory vegetation response after 30 years of interval prescribed burning in two ponderosa pine sites in northern Arizona, USA

    Science.gov (United States)

    Catherine A. Scudieri; Carolyn Hull Sieg; Sally M. Haase; Andrea E. Thode; Stephen S. Sackett

    2010-01-01

    Southwestern USA ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.) forests evolved with frequent surface fires and have changed dramatically over the last century. Overstory tree density has sharply increased while abundance of understory vegetation has declined primarily due to the near cessation of fires. We...

  12. Estimating individual tree mid- and understory rank-size distributions from airborne laser scanning in semi-arid forests

    Science.gov (United States)

    Tyson L. Swetnam; Donald A. Falk; Ann M. Lynch; Stephen R. Yool

    2014-01-01

    Limitations inherent to airborne laser scanning (ALS) technology and the complex sorting and packing relationships of forests complicate accurate remote sensing of mid- and understory trees, especially in denser forest stands. Self-similarities in rank-sized individual tree distributions (ITD), e.g. bole diameter or height, are a well-understood property of natural,...

  13. Spectral contribution of understory to forest reflectance in a boreal site: an analysis of EO-1 Hyperion data

    Czech Academy of Sciences Publication Activity Database

    Rautianien, M.; Lukeš, Petr

    2015-01-01

    Roč. 171, dec (2015), s. 98-104 ISSN 0034-4257 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : forest reflectance model * hyperspectral * boreal * leaf area index * understory Subject RIV: EH - Ecology, Behaviour Impact factor: 5.881, year: 2015

  14. On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2006-01-01

    The mechanistic basis underpinning forest succession is the gap-phase paradigm in which overstory disturbance interacts with seedling and sapling shade tolerance to determine successional trajectories. The theory, and ensuing simulation models, typically assume that understory plants have little impact on the advance regeneration layer's composition. We challenge...

  15. Changes in habitat use at rainforest edges through succession: A case study of understory birds in the Brazilian Amazon

    Science.gov (United States)

    Luke L. Powell; Gustavo Zurita; Jared D.  Wolfe; Erik I.  Johnson; Philip C  Stouffer

    2015-01-01

    Primary tropical rain forests are being rapidly perforated with new edges via roads, logging, and pastures, and vast areas of secondary forest accumulate following abandonment of agricultural lands. To determine how insectivorous Amazonian understory birds respond to edges between primary rain forest and three age classes of secondary forest, we radio-tracked two...

  16. Historical jigsaw puzzles: piecing together the understory of Garry Oak (Quercus garryana) ecosystems and the implications for restoration

    Science.gov (United States)

    Carrina Maslovat

    2002-01-01

    Ecosystem restoration requires a set of reference vegetation conditions which are difficult to find for Garry oak (Quercus garryana) ecosystems in Canada because contemporary sites have been drastically altered. A survey of historical information provides only limited clues about the original understory vegetation. Although there is considerable...

  17. Understory Vegetation 3 Years after Implementing Uneven-Aged Silviculture in a Shortleaf Pine-Oak Stand

    Science.gov (United States)

    Michael G. Shelton; Paul A. Murphy

    1997-01-01

    The effects of retaining overstory hardwoods on understory vegetation were determined after implementing uneven-aged silviculture usingsingle-tree selection in a shortleaf pine-oak stand (Pinus echinata Mill. and Quercus spp.) in the Ouachita Mountains. Treatments were the following hardwood basal areas (square feet per acre) and...

  18. Long-term overstory and understory change following logging and fire exclusion in a Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    Eric E. Knapp; Carl N. Skinner; Malcolm P. North; Becky L. Estes

    2013-01-01

    In many forests of the western US, increased potential for fires of uncharacteristic intensity and severity is frequently attributed to structural changes brought about by fire exclusion, past land management practices, and climate. Extent of forest change and effect on understory vegetation over time are not well understood, but such information is useful to forest...

  19. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    Science.gov (United States)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  20. Infrared heater system for warming tropical forest understory plants and soils.

    Science.gov (United States)

    Kimball, Bruce A; Alonso-Rodríguez, Aura M; Cavaleri, Molly A; Reed, Sasha C; González, Grizelle; Wood, Tana E

    2018-02-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses to Altered Climate Experiment (TRACE) in the Luquillo Experimental Forest in Puerto Rico. Three replicate heated 4-m-diameter plots were warmed to maintain a 4°C increase in understory vegetation compared to three unheated control plots, as sensed by IR thermometers. The equipment was larger than any used previously and was subjected to challenges different from those of many temperate ecosystem warming systems, including frequent power surges and outages, high humidity, heavy rains, hurricanes, saturated clayey soils, and steep slopes. The system was able to maintain the target 4.0°C increase in hourly average vegetation temperatures to within ± 0.1°C. The vegetation was heterogeneous and on a 21° slope, which decreased uniformity of the warming treatment on the plots; yet, the green leaves were fairly uniformly warmed, and there was little difference among 0-10 cm depth soil temperatures at the plot centers, edges, and midway between. Soil temperatures at the 40-50 cm depth increased about 3°C compared to the controls after a month of warming. As expected, the soil in the heated plots dried faster than that of the control plots, but the average soil moisture remained adequate for the plants. The TRACE heating system produced an adequately uniform warming precisely controlled down to at least 50-cm soil depth, thereby creating a treatment that allows for assessing mechanistic responses of tropical plants and soil to warming, with applicability to other ecosystems. No physical obstacles to scaling the approach to taller vegetation (i.e., trees) and larger plots were observed.

  1. Effects of an exotic plant invasion on native understory plants in a tropical dry forest.

    Science.gov (United States)

    Prasad, Ayesha E

    2010-06-01

    The dry forests of southern India, which are endangered tropical ecosystems and among the world's most important tiger (Panthera tigris) habitats, are extensively invaded by exotic plants. Yet, experimental studies exploring the impacts of these invasions on native plants in these forests are scarce. Consequently, little is known about associated implications for the long-term conservation of tigers and other biodiversity in these habitats. I studied the impacts of the exotic plant Lantana camara on understory vegetation in a dry-forest tiger habitat in southern India. I compared the richness, composition, and abundance of tree seedlings, herbs, and shrubs and the abundance of grass among plots in which Lantana was cleared or left standing. These plots were distributed across two blocks-livestock free and livestock grazed. Removal of Lantana had an immediate positive effect on herb-shrub richness in the livestock-free block, but had no effect on that of tree seedlings in either livestock block. Tree-seedling and herb-shrub composition differed significantly between Lantana treatment and livestock block, and Lantana removal significantly decreased survival of tree seedlings. Nevertheless, the absence of trees, in any stage between seedling and adult, indicates that Lantana may stall tree regeneration. Lantana removal decreased the abundance of all understory strata, probably because forage plants beneath Lantana are less accessible to herbivores, and plants in Lantana-free open plots experienced greater herbivory. Reduced access to forage in invaded habitats could negatively affect ungulate populations and ultimately compromise the ability of these forests to sustain prey-dependent large carnivores. Additional research focused on understanding and mitigating threats posed by exotic plants may be crucial to the long-term protection of these forests as viable tiger habitats.

  2. Effect of preharvest understory treatment and group opening size on four-year survival of advance reproduction in the Boston Mountains of Arkansas

    Science.gov (United States)

    Martin A. Spetich; David L. Graney

    2003-01-01

    The purpose of this study was to examine survival of regeneration in small openings. Six forest stands were located in 1990 and three understory treatments were applied to each in early 1991. In each stand, six sizes of openings were created in 1992 ranging in size from 0.025 ac to 0.50 ac. Understory treatments consisted of: 1) no control of competing regeneration, 2...

  3. Photochemical efficiency of adult and young leaves of the neotropical understory shrub Psychotria limonensis (Rubiaceaein response to changes in the light environment

    Directory of Open Access Journals (Sweden)

    Gerardo Avalos

    2004-12-01

    Full Text Available We explored the short-term adjustment in photochemical efficiency (Fv /Fm in adult and young leaves of the understory neotropical shrub Psychotria limonensis Krause (Rubiaceaein response to rapid changes in the light environment.Leaves were collected from 20 individual plants growing under sun and shade conditions on Gigante Peninsula,Barro Colorado Natural Monument (Republic of Panama,during the wet season of 1996. Leaves were distributed in four sequences of light treatments (AB leaves were expanded under sun and were transferred to shade,BA leaves experienced the opposite transfer,and the controls AA and BB leaves that were expanded and maintained under sun or shade conditions.Adult and young leaves did not differ in overall photochemical efficiency.Instead,differences were found among light environments,for which leaves transferred from shade to sun showed the lowest F v /F m ratios.There was no relationship between photochemical efficiency and leaf temperature.In P.limonensis,understory plants are susceptible of photoinhibition independently of the leaf ontogenetic stage.The approach utilized in this experiment allowed the rapid exploration of this capacity, and could be applied to poorly studied understory species. Rev.Biol.Trop.52(4:839-844.Epub 2005 Jun 24.Se exploró el ajuste a corto plazo en la eficiencia fotosintética (Fv /Fm en hojas jovenes y adultas del arbusto del sotobosque neotropical Psychotria limonensis Krause (Rubiaceaeen respuesta a cambios rápidos de luz ambiental. Las hojas fueron recolectadas de 20 plantas individuales bajo condiciones de sol y sombra en Peninsula Gigante, Monumento Natural Barro Colorado (Panamá,durante la estación lluviosa de 1996.Las hojas fueron distribuidas en una secuencia cuatro tratamientos de luz (AB las hojas fueron expandidas bajo el sol y fueron transferidas a la sombra,BA las hojas experimentaron la transferencia contraria,y las hojas controles AA y BB que fueron expandidas y mantenidas

  4. Remember redcedar! An overlooked species reveals its potential

    Science.gov (United States)

    Joan O' Callaghan; Leslie Brodie; Constance Harrington; Peter Gould; Warren Devine

    2012-01-01

    People have long valued mature western redcedar for its strong, lightweight wood that is rot-resistant.The species has cultural importance for Northwest tribes who use the tree’s bark and roots as well as the wood. Redcedar is very shade-tolerant and is often found in the understory and midstory of Pacific Northwest forests. It is also very adaptable and can grow on a...

  5. Relative role of understory and overstory in carbon and nitrogen cycling in a southern Appalachian spruce-fir forest

    Energy Technology Data Exchange (ETDEWEB)

    Moore, P.T.; Van Miegroet, H. [Utah State Univ., Logan, UT (United States). Dept. of Wildland Resources and the Ecology Center; Nicholas, N.S. [Yosemite National Park, El Portal, CA (United States). Resources Management and Science Div.

    2007-12-15

    This study examined pools and fluxes of biomass, carbon (C) and nitrogen (N) in the overstory and understory of a southern Appalachian red spruce and Fraser fir forest after adelgid-induced fir mortality and spruce windthrow. Standing biomass and fluxes of all growth forms from periodic stand inventories, vegetation surveys, and allometric equations were estimated. Plant- and tissue-specific C and N concentrations were used to calculate total C and N pools and fluxes. Results of the study showed that total aboveground biomass re-attained values observed before the disturbances. Overstory biomass production and N uptake exceeded values observed in earlier reports. The woody overstory accounted for 3 per cent of all aboveground biomass as well as 10 per cent of annual productivity, and 19 per cent of total N uptake. It was concluded that the N-rich understory vegetation plays a significant role in N cycling, and contributed to overall productivity of the system. Further research is needed to examine the relationships between the over- and understories in order to investigate future changes in nutrient cycling. 60 refs., 2 tabs., 4 figs.

  6. Whole-plant water flux in understory red maple exposed to altered precipitation regimes.

    Science.gov (United States)

    Wullschleger, Stan D.; Hanson, Paul J.; Tschaplinski, Tim J.

    1998-02-01

    Sap flow gauges were used to estimate whole-plant water flux for five stem-diameter classes of red maple (Acer rubrum L.) growing in the understory of an upland oak forest and exposed to one of three large-scale (0.64 ha) manipulations of soil water content. This Throughfall Displacement Experiment (TDE) used subcanopy troughs to intercept roughly 30% of the throughfall on a "dry" plot and a series of pipes to move this collected precipitation across an "ambient" plot and onto a "wet" plot. Saplings with a stem diameter larger than 10 cm lost water at rates 50-fold greater than saplings with a stem diameter of 1 to 2 cm (326 versus 6.4 mol H(2)O tree(-1) day(-1)). These size-class differences were driven largely by differences in leaf area and cross-sectional sapwood area, because rates of water flux expressed per unit leaf area (6.90 mol H(2)O m(-2) day(-1)) or sapwood area (288 mol H(2)O dm(-2) day(-1)) were similar among saplings of the five size classes. Daily and hourly rates of transpiration expressed per unit leaf area varied throughout much of the season, as did soil matrix potentials, and treatment differences due to the TDE were observed during two of the seven sampling periods. On July 6, midday rates of transpiration averaged 1.88 mol H(2)O m(-2) h(-1) for saplings in the "wet" plot, 1.22 mol H(2)O m(-2) h(-1) for saplings in the "ambient" plot, and 0.76 mol H(2)O m(-2) h(-1) for saplings in the "dry" plot. During the early afternoon of August 28, transpiration rates were sevenfold lower for saplings in the "dry" plot compared to saplings in the "wet" plot and 2.5-fold lower compared to saplings in the "ambient" plot. Treatment differences in crown conductance followed a pattern similar to that of transpiration, with values that averaged 60% lower for saplings in the "dry" plot compared to saplings in the "wet" plot and 35% lower compared to saplings in the "ambient" plot. Stomatal and boundary layer conductances were roughly equal in magnitude

  7. Fuel treatment effects on soil chemistry and foliar physiology of three coniferous species at the Teakettle Experimental Forest, California, USA

    Science.gov (United States)

    Rakesh Minocha; Swathi A. Turlapati; Stephanie Long; Malcolm. North

    2013-01-01

    A full factorial design crossing overstory (O) and understory (U) thinning and prescribed burning (B) was started at Teakettle Experimental Forest, California, in 2001 with the aim of achieving shifts in species composition to favor fire-resistant pines over fir. The goal of the present study was to evaluate the use of metabolic changes as early indicators for...

  8. Edge effects on growth and biomass partitioning of an Amazonian understory herb (Heliconia acuminata; Heliconiaceae).

    Science.gov (United States)

    Bruna, Emilio M; de Andrade, Ana Segalin

    2011-10-01

    After deforestation, environmental changes in the remaining forest fragments are often most intense near the forest edge, but few studies have evaluated plant growth or plasticity of plant growth in response to edge effects. In a 2-year common garden experiment, we compared biomass allocation and growth of Heliconia acuminata with identical genotypes grown in 50 × 35 m common gardens on a 25-year-old edge and in a forest interior site. Genetically identical plants transplanted to the forest edge and understory exhibited different patterns of growth and biomass allocation. However, individuals with identical genotypes in the same garden often had very different responses. Plants on forest edges also had higher growth rates and increased biomass at the end of the experiment, almost certainly due to the increased light on the forest edge. With over 70000 km of forest edge created annually in the Brazilian Amazon, phenotypic plasticity may play an important role in mediating plant responses to these novel environmental conditions.

  9. Predicting the probability of seed germination in Pinus sylvestris L. and four competitor shrub species after fire

    OpenAIRE

    Rosario Nuñez, M.; Bravo, Felipe; Calvo, Leonor

    2003-01-01

    International audience; Knowledge of the regeneration of competing shrub species after wildfire in Scots pine stands is essential for the regeneration of this tree species. The germination capability of seeds is modified by the temperature reached during a fire and the length of time that seeds are subjected to high temperatures. The probability of germination was studied in the laboratory for Scots pine (Pinus sylvestris) and four shrub species characteristic of the understory in Scots pine ...

  10. Floristic composition of the dry tropical forest in biological reserve (sanctuary "Los Besotes" and phenology of the dominant arboreal species (Valledupar, Cesar, Colombia

    Directory of Open Access Journals (Sweden)

    Mary Lee Berdugo Lattke

    2015-01-01

    Full Text Available Based on the floristic composition and structural aspects, the formation tropical dry forest of the reserve "Los Besotes" (Valledupar, Cesar; 248 y 1046m of altitude was characterized. In 35 individuals from nine dominant tree species in two forest types, the phenological characteristics were assessed. Seven monitoring were performed along one year according to the scheme of distribution of rainfall. The leaf fall in the forests of Myrcianthes aff. fragrans and Brosimum alicastrum did not exceed 20% regardless of the climatic period (drought or rainy seasons. In others dominant understory species the leaf fall was less than 40%, thus species of the canopy are classified as evergreen while those of the understory as semideciduous. Blooming peaked during the dry season while fruit production peaked during the two rainy seasons. In the forest ofBursera simaruba and Pterocarpus acapulcensis the leaf fall exceeded 60% in the dry season, while in the rainy season was only 30%. The leaf fall increased to 60% in others dominant understory species. Both canopy as well as understory species are deciduous. Blooming was observed during the dry season (December to March, and July, but it is also likely to occur in October; fruit production was observed at the end of the rainy season. In the tropical dry forest formation evergreen plant communities with low values of leaf fall (40% and deciduous communities with values greater than 60% are recognized.

  11. Low plant density enhances gene dispersal in the Amazonian understory herb Heliconia acuminata.

    Science.gov (United States)

    Côrtes, Marina C; Uriarte, María; Lemes, Maristerra R; Gribel, Rogério; Kress, W John; Smouse, Peter E; Bruna, Emilio M

    2013-11-01

    In theory, conservation genetics predicts that forest fragmentation will reduce gene dispersal, but in practice, genetic and ecological processes are also dependent on other population characteristics. We used Bayesian genetic analyses to characterize parentage and propagule dispersal in Heliconia acuminata L. C. Richard (Heliconiaceae), a common Amazonian understory plant that is pollinated and dispersed by birds. We studied these processes in two continuous forest sites and three 1-ha fragments in Brazil's Biological Dynamics of Forest Fragments Project. These sites showed variation in the density of H. acuminata. Ten microsatellite markers were used to genotype flowering adults and seedling recruits and to quantify realized pollen and seed dispersal distances, immigration of propagules from outside populations, and reproductive dominance among parents. We tested whether gene dispersal is more dependent on fragmentation or density of reproductive plants. Low plant densities were associated with elevated immigration rates and greater propagule dispersal distances. Reproductive dominance among inside-plot parents was higher for low-density than for high-density populations. Elevated local flower and fruit availability is probably leading to spatially more proximal bird foraging and propagule dispersal in areas with high density of reproductive plants. Nevertheless, genetic diversity, inbreeding coefficients and fine-scale spatial genetic structure were similar across populations, despite differences in gene dispersal. This result may indicate that the opposing processes of longer dispersal events in low-density populations vs. higher diversity of contributing parents in high-density populations balance the resulting genetic outcomes and prevent genetic erosion in small populations and fragments.

  12. Comparison of clonal diversity in mountain and Piedmont populations of Trillium cuneatum (Melanthiaceae-Trilliaceae), a forest understory species.

    Science.gov (United States)

    Gonzales, Eva; Hamrick, J L; Smouse, Peter E

    2008-10-01

    The balance between clonal and sexual reproduction can vary widely among plant populations, and the extent of clonality may be influenced by the combined effects of historical land use and variation in environmental conditions. We investigated patterns of clonal spread in five Trillium cuneatum populations, two in the Appalachian Mountains characterized by mesic, cooler conditions, and three at lower elevations experiencing warmer, drier conditions and greater disturbance. Using a new measure of the genet effective number and innovative orthogonal contrast methods, we quantified genet structure, contrasting clonal growth in the mountains with that in the Piedmont. Asexual propagation was more common in the Piedmont, where 25% of the sampled ramets were clonally derived, but was much less frequent in the mountains (7% clonal replicates). Hierarchical partitioning of variation in genet diversity showed that the majority (75.8%) of the variation resulted from more vegetative replication in the Piedmont. Most of the remaining variation (21.6%) was attributable to differences between urban and rural Piedmont populations, and a small, statistically nonsignificant fraction of the variation (2.6%) was due to interpopulation differences within the mountains. Higher frequency of cloning may enhance both genetic and demographic population viability in fragmented Piedmont habitats.

  13. Demography and mobility of three common understory butterfly species from tropical rain forest of Papua New Guinea

    Czech Academy of Sciences Publication Activity Database

    Vlašánek, Petr; Novotný, Vojtěch

    2015-01-01

    Roč. 57, č. 2 (2015), s. 445-455 ISSN 1438-3896 R&D Projects: GA ČR(CZ) GA14-04258S; GA MŠk(CZ) LH11008 Grant - others:National Science Foundation(US) DEB 0841885; GA JU(CZ) 121/2010/P; GA JU(CZ) 136/2010/P; European Social Fund(CZ) CZ.1.07/2.3.00/20.0064 Institutional support: RVO:60077344 Keywords : Jolly-Seber * Lepidoptera * mark-release-recapture Subject RIV: EH - Ecology , Behaviour Impact factor: 1.698, year: 2015 http://link.springer.com/article/10.1007%2Fs10144-015-0480-7

  14. Stable isotope-based approach to validate effects of understory vegetation on shallow soil water movement in a Japanese cypress plantation

    Science.gov (United States)

    Sakashita, W.; Onda, Y.; Boutefnouchet, M. R.; Kato, H.; Gomi, T.

    2017-12-01

    Evapotranspiration is an important controlling factor of the hydrological cycle in forested watershed. In general, the evapotranspiration is partitioned into three components (evaporation, transpiration, and interception). In a Japanese cypress plantation, our previous work using hydrometric method revealed that total evapotranspiration rate was 47.5% of the total rainfall amount during the growing season. This research also provided the contribution rates of three evapotranspiration components. Our previous study reported the difference of forest floor evaporation between pre-thinning and post-thinning periods (pre-thinning: Nov 2010-Oct 2011; post-thinning: Nov 2011-Oct 2012), indicating that a significant change appeared in the evaporation flux after the thinning. To examine the long-term changes of evapotranspiration, we have to consider the influence of increased understory vegetation. However, hydrometric-based method using such as weighting lysimeter is sensitive to vegetation conditions inside and outside lysimeter. This disadvantage makes it difficult to evaluate the contribution rates of each evapotranspiration components. In this study, we focus on the isotope-based method to obtain each flux of evapotranspiration under the condition including understory vegetation. Our study site is Mt. Karasawa, Tochigi Prefecture, in central Japan (139°36'E, 36°22'N; 198 m a.s.l.), and we prepare both sparse and dense areas of understory vegetation. In these two plots, we collect soil water samples from shallow depth profiles after various intensity precipitation events. Throughfall and understory-intercepted water are also obtained. Stable water isotope measurements of these samples may provide information about (a) effects of understory vegetation on shallow soil water movement and (b) interception flux of understory vegetation. In this paper, we report the results and interpretations of our measurements.

  15. Phylogeographic patterns of the Aconitum nemorum species group (Ranunculaceae) shaped by geological and climatic events in the Tianshan Mountains and their surroundings

    Science.gov (United States)

    Xiao-Long Jiang; Ming-Li Zhang; Hong-Xiang Zhang; Stewart C. Sanderson

    2014-01-01

    To investigate the impacts of ancient geological and climatic events on the evolutionary history of the Aconitum nemorum species group, including A. nemorum s. str., A. karakolicum, and A. soongoricum; a total of 18 natural populations with 146 individuals were sampled, mainly from grassy slopes or the coniferous forest understory of the Tianshan Mountain Range and its...

  16. Impact of herbaceous understory vegetation to ecosystem water cycle, productivity and infiltration in a semi arid oak woodland assessed by stable oxygen isotopes

    Science.gov (United States)

    Dubbert, Maren; Piayda, Arndt; Silva, Filipe Costa e.; Correia, Alexandra C.; Pereira, Joao S.; Cuntz, Matthias; Werner, Christiane

    2015-04-01

    Water is one of the key factors driving ecosystem productivity, especially in water-limited ecosystems. Thus a separation of these component fluxes is needed to gain a functional understanding on the development of net ecosystem water and carbon fluxes. Oxygen isotope signatures are valuable tracers for such water movements within the ecosystem because of the distinct isotopic compositions of water in the soil and vegetation. Here, a novel approach was used (Dubbert et al., 2013), combining a custom build flow-through gas-exchange branch chamber with a Cavity Ring-Down Spectrometer in a Mediterranean cork-oak woodland where two vegetation layers respond differently to drought: oak-trees (Quercus suber L.) avoid drought due to their access to ground water while herbaceous plants survive the summer as seeds. We used this approach to quantify the impact of the understory herbaceous vegetation on ecosystem carbon and water fluxes throughout the year and disentangle how ET components of the ecosystem relate to carbon dioxide exchange. Partitioning ecosystem ET and NEE into its three sources revealed that understory vegetation contributed markedly to ecosystem ET and gross primary production (GPP; max. 43 and 51%, respectively). It reached similar water-use efficiencies (WUE) as cork-oak trees and significantly contributed to the ecosystem sink-strength in spring and fall. The understory vegetation layer further strongly inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish ecosystem WUE during water-limited times (Dubbert et al., 2014a). Although, during most of the year, interactions with trees neither facilitated nor hampered the development of the understory vegetation, strong competition for water could be observed at the end of the growing period, which shortened the life-cycle of understory plants and significantly reduced the carbon uptake of the ecosystem in spring (Dubbert et al., 2014b). Finally, herbaceous understory

  17. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling

    OpenAIRE

    Mao, Bing; Mao, Rong; Zeng, De-Hui

    2017-01-01

    Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N ...

  18. Five-year growth responses of Douglas-fir, western hemlock, and western redcedar seedlings to manipulated levels of overstory and understory competition.

    Science.gov (United States)

    T.B. Harrington

    2006-01-01

    Douglas-fir, western hemlock, and western redcedar seedlings were planted in 2001 within clearcuts, shelterwoods, or thinned stands of second-growth Douglas-fir. Understory vegetation was left untreated or removed to provide areas of vegetation control (AVC) of 0, 50, or 100 percent of seedling growing space. Third-year stem volume of seedlings growing in clearcuts...

  19. Chronic over browsing and biodiversity collapse in a forest understory in Pennsylvania: Results from a 60 year-old deer exclusion plot

    Science.gov (United States)

    Chandra Goetsch; Jennifer Wigg; Alejandro A. Royo; Todd Ristau; Walter P. Carson

    2011-01-01

    We evaluated the impact of chronic deer over browsing on the diversity and abundance of understory forbs and shrubs within a forest stand in the Allegheny High Plateau Region of Pennsylvania by comparing vegetation inside a 60-year-old exclosure to vegetation within an adjacent reference site. This is the oldest known exclosure in the Eastern Deciduous Forest. Browsing...

  20. Biomass and element pools of understory vegetation in the catchments of Čertovo Lake and Plešné Lake in the Bohemian Forest

    Czech Academy of Sciences Publication Activity Database

    Svoboda, M.; Matějka, K.; Kopáček, Jiří

    2006-01-01

    Roč. 61, Suppl. 20 (2006), S509-S521 ISSN 0006-3088 R&D Projects: GA ČR GA206/03/1583 Grant - others:MA(CZ) NAZV QG50105 Institutional research plan: CEZ:AV0Z60170517 Keywords : Norway spruce forest * understory vegetation Subject RIV: EH - Ecology, Behaviour Impact factor: 0.213, year: 2006

  1. Discerning responses of down wood and understory vegetation abundance to riparian buffer width and thinning treatments: an equivalence-inequivalence approach

    Science.gov (United States)

    Paul D. Anderson; Mark A. Meleason

    2009-01-01

    We investigated buffer width and thinning effects on the abundance of down wood and understory vegetation in headwater stream catchments of 40- to 65-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests in western Oregon, USA. Small-wood cover became more homogeneous among stream reaches within 5 years following thinning, primarily...

  2. Influence of skid trails and haul roads on understory plant richness and composition in managed forest landscapes in Upper Michigan, USA

    Science.gov (United States)

    David S. Buckley; Thomas R. Crow; Elizabeth A. Nauertz; Kurt E. Schulz

    2003-01-01

    We evaluated impacts of disturbance in interior haul roads and skid trails on understory vegetation by documenting the areal extent of these features and plant composition along 10 m x 100 m belt transects. Ten belt transects were sampled in each of three comparable northern hardwood forests under even-aged management. These forests were approximately 80 years old and...

  3. Influence of light conditions on the allometry and growth of the understory palm Geonoma undata subsp. edulis (Arecaceae) of neotropical cloud forests.

    Science.gov (United States)

    Sylvester, Olivia; Avalos, Gerardo

    2013-12-01

    Knowledge on the growth responses of understory palms to changing light conditions within neotropical cloud forests is limited. The low light regime of these environments, in addition to persistent cloudiness, low ambient temperatures, and slow nutrient cycles, imposes significant constraints on biomass accumulation. Here, we evaluate how changes in the understory light conditions influenced the allometry and growth of G. undata subsp. edulis in two cloud forests in Costa Rica. We examined the structural relationships between stem diameter, stem height, and crown area in reproductive and nonreproductive individuals. We related the variation in stem growth and crown area with allometry, leaf production and longevity, and light conditions that we measured using hemispherical photographs over 1 year. The allometric and growth pattern of G. undata subsp. edulis was characterized by its investment in crown area, which was strongly and positively related to increments in palm height and reproduction. Growth, measured as the increase in crown area and stem height, was not explained by the variation in the light regime spanning 1 year. However, reproductive individuals were generally taller, more slender, and had larger leaf areas than nonreproductive individuals. Our results demonstrated that stem growth responses were mostly controlled by initial crown size rather than by temporal differences in the understory light regimes of cloud forests. These results suggest that cloud forest understory palms have a limited capacity to respond to light changes and rely mostly on an opportunistic strategy for biomass accumulation and reproduction.

  4. Žarnica: Electric light:

    OpenAIRE

    Južnič, Stanislav

    1997-01-01

    We describe the invention of the incandescent light, mostly after Edison's experiments in vacuum. In the first part of this article we are dealing with the inventions made in USA. Razprava opisuje odkritje in razvoj žarnice, predvsem po odkritju prednosti žarenja v vakuumu. V prvem delu opisujemo predvsem raziskovanja v ZDA.

  5. Trade-offs between light interception and leaf water shedding: a comparison of shade- and sun-adapted species in a subtropical rainforest.

    Science.gov (United States)

    Meng, Fengqun; Cao, Rui; Yang, Dongmei; Niklas, Karl J; Sun, Shucun

    2014-01-01

    Species in high-rainfall regions have two major alternative approaches to quickly drain off water, i.e., increasing leaf inclination angles relative to the horizontal plane, or developing long leaf drip tips. We hypothesized that shade-adapted species will have more pronounced leaf drip tips but not greater inclination angles (which can reduce the ability to intercept light) compared to sun-adapted species and that length of leaf drip tips will be negatively correlated with photosynthetic capacity [characterized by light-saturated net photosynthetic rates (Amax), associated light compensation points (LCP), and light saturation points (LSP)]. We tested this hypothesis by measuring morphological and physiological traits that are associated with light-interception and water shedding for seven shade-adapted shrub species, ten sun-adapted understory shrub species, and 15 sun-adapted tree species in a subtropical Chinese rainforest, where mean annual precipitation is around 1,600 mm. Shade-adapted understory species had lower LMA, Amax, LSP, and LCP compared to understory or canopy sun-adapted species; their leaf and twig inclination angles were significantly smaller and leaf drip tips were significantly longer than those in sun-adapted species. This suggests that shade-adapted understory species tend to develop pronounced leaf drip tips but not large leaf inclination angles to shed water. The length of leaf drip tips was negatively correlated with leaf inclination angles and photosynthetic capacity. These relationships were consistent between ordinary regression and phylogenetic generalized least squares analyses. Our study illustrates the trade-offs between light interception and leaf water shedding and indicates that length of leaf drip tips can be used as an indicator of adaptation to shady conditions and overall photosynthetic performance of shrub species in subtropical rainforests.

  6. Leaf Serration in Seedlings of Hetero blastic Woody Species Enhance Plasticity and Performance in Gaps But Not in the Under story

    International Nuclear Information System (INIS)

    Gamage, H.K.; Gamage, H.K.

    2010-01-01

    Leaf heteroblasty refers to dramatic ontogenetic changes in leaf size and shape, in contrast to homoblasty that exhibits little change, between seedling and adult stages. This study examined whether the plasticity in leaf morphology of heteroblastic species would be an advantage for their survival and growth over homoblastic congeners to changes in light. Two congeneric pairs of homoblastic (Hoheria lyallii, Aristotelia serrata) and heteroblastic species (H. sexstylosa, A. fruticosa) were grown for 18 months in canopy gap and forest understory sites in a temperate rainforest in New Zealand. Heteroblastic species that initially had serrated leaves reduced leaf serration in the understory, but increased in the gaps. Heteroblastic species also produced thicker leaves and had higher stomatal pore area (density x aperture length), maximum photosynthetic rate, survival, and greater biomass allocation to shoots than homoblastic relatives in the gaps. Findings indicate that increased leaf serration in heteroblastic species is an advantage over homoblastic congeners in high light.

  7. Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types

    Directory of Open Access Journals (Sweden)

    A. Bargsten

    2010-05-01

    Full Text Available Nitric oxide (NO plays an important role in the photochemistry of the troposphere. NO from soil contributes up to 40% to the global budget of atmospheric NO. Soil NO emissions are primarily caused by biological activity (nitrification and denitrification, that occurs in the uppermost centimeter of the soil, a soil region often characterized by high contents of organic material. Most studies of NO emission potentials to date have investigated mineral soil layers. In our study we sampled soil organic matter under different understories (moss, grass, spruce and blueberries in a humid mountainous Norway spruce forest plantation in the Fichtelgebirge (Germany. We performed laboratory incubation and flushing experiments using a customized chamber technique to determine the response of net potential NO flux to physical and chemical soil conditions (water content and temperature, bulk density, particle density, pH, C/N ratio, organic C, soil ammonium, soil nitrate. Net potential NO fluxes (in terms of mass of N from soil samples taken under different understories ranged from 1.7–9.8 ng m−2 s−1 (soil sampled under grass and moss cover, 55.4–59.3 ng m−2 s−1 (soil sampled under spruce cover, and 43.7–114.6 ng m−2 s−1 (soil sampled under blueberry cover at optimum water content and a soil temperature of 10 °C. The water content for optimum net potential NO flux ranged between 0.76 and 0.8 gravimetric soil moisture for moss covered soils, between 1.0 and 1.1 for grass covered soils, 1.1 and 1.2 for spruce covered soils, and 1.3 and 1.9 for blueberry covered soils. Effects of soil physical and chemical characteristics on net potential NO flux were statistically significant (0.01 probability level only for NH4+. Therefore, as an alternative explanation for the differences in soil biogenic NO emission we consider more biological factors like understory

  8. Effect of long-term understory prescribed burning on standing and down dead woody material in dry upland oak forests

    Science.gov (United States)

    Polo, John A.; Hallgren, S.W.; Leslie,, David M.

    2013-01-01

    Dead woody material, long ignored or viewed as a nuisance for forest management, has gained appreciation for its many roles in the forest including wildlife habitat, nutrient storage and cycling, energy for trophic webs, protection of soil, fuel for fire and carbon storage. The growing interest in managing dead woody material has created strong demand for greater understanding of factors controlling amounts and turnover. Prescribed burning, an important management tool, may have strong effects of dead woody material given fire’s capacity to create and consume dead woody material. We determined effects of long-term understory prescribed burning on standing and down woody material in upland oak forests in south-central North America. We hypothesized that as frequency of fire increased in these stands the amount of deadwood would decrease and the fine woody material would decrease more rapidly than coarse woody material. The study was conducted in forests dominated by post oak (Quercus stellata) and blackjack oak (Quercus marilandica) in wildlife management areas where understory prescribed burning had been practiced for over 20 years and the range of burn frequencies was 0 (unburned) fires per decade (FPD) to 4.6 FPD. The amount of deadwood was low compared with more productive forests in southeastern North America. The biomass (24.7 Mg ha-1) and carbon stocks (11.7 Mg ha-1) were distributed among standing dead (22%), coarse woody debris (CWD, dia. > 7.5 cm., 12%), fine woody debris (FWD, dia. of standing and down dead woody material. There were two explanations for the lack of a detectable effect. First, a high incidence of severe weather including ice storms and strong winds that produce large amounts of deadwood intermittently in an irregular pattern across the landscape may preclude detecting a strong effect of understory prescribed burning. Second, fire suppression during the first one-half of the 20th Century may have led to encroachment of woody plants into

  9. Impact of the invasive plant Syzigium jambos (Myrtaceae on patterns of understory seedling abundance in a Tropical Premontane Forest, Costa Rica

    Directory of Open Access Journals (Sweden)

    Gerardo Avalos

    2006-06-01

    Full Text Available Habitat fragmentation, along with other human-induced disturbances, increase the vulnerability of native habitats to be invaded by aggressive, ecologically released, exotic species. Syzigium jambos (L. Alston (Myrtaceae, Rose Apple is an important invader still spreading throughout Hawaii, the Antilles, Central and South America. This study examines the effects of S. jambos on plant understory diversity in a 25 ha Tropical Premontane Moist Forest in Atenas, Alajuela, Costa Rica, a protected watershed that supplies drinking water for several human communities. Our final objective is to develop a management strategy combining water protection with the preservation of a representative sample of the original plant diversity in the area. Thirty 2 X 2 m plots were distributed throughout the Municipal Forest maintaining a minimum of 10 m between plots, and 2 m from trails, to sample all understory seedlings and saplings of S. jambos, Coffea arabica (coffee and tree seedlings. We found a clear dominance of S. jambos over all other understory plants. Of the total 1 285 sampled plants, S. jambos comprised 51%, coffee seedlings represented 14,78%, being the rest tree seedlings. Syzigium jambos had the highest density (5.46 plants/m2, S.D. = 6.44 compared to tree (3.67 plants/ m2, S.D. = 3.44 and coffee seedlings (1.58 plants/ m2, S.D. = 2.13. There was a highly significant negative relationship between the relative abundance of S. jambos and tree (r2 = 0.52, p La fragmentación del hábitat, junto con otros disturbios antropogénicos, aumentan la vulnerabilidad de los ambientes nativos a la invasión por especies exóticas, agresivas y sin controles ecológicos. Syzigium jambos (L. Alston (Myrtaceae, Manzana Rosa es una invasora importante que todavía está extendiendose en Hawaii, Las Antillas, Centro y Suramérica. Este estudio examina los efectos de S. jambos sobre la diversidad de plantas del sotobosque en un Bosque Húmedo Premontano de 25 ha en

  10. Intra-annual Dynamics of Xylem Formation in Liquidambar formosana Subjected to Canopy and Understory N Addition

    Directory of Open Access Journals (Sweden)

    Shaokang Zhang

    2018-02-01

    Full Text Available Increasing N deposition caused by intensive anthropogenic activities is expected to affect forest growth. However, the effects of N deposition on trees are still controversial due to the wide variability in results and experimental methods used. We conducted an experiment involving both canopy and understory N addition to investigate the effects of N-addition on intra-annual xylem formation of Chinese sweetgum (Liquidambar formosana in a warm-temperate forest of Central China. Since 2013, 50 kg N ha-1 year-1 (2.5 times the current natural N deposition was applied monthly from April to December. In 2014 and 2015, the timing and dynamics of xylem formation were monitored weekly during March–December by microcoring the stems of control and treated trees. Similar dynamics of wood formation were observed between canopy and understory N addition. Xylem formation of all the experimental trees started in March and lasted for 119–292 days. Compared to the control, no change was observed in the timing and dynamics of wood formation in N-treated trees. Tree ring-width ranged between 1701 and 4774 μm, with a rate of xylem production of 10.52–26.64 μm day-1. The radial growth of trees was not modified by the treatments. Our findings suggest that short-term N addition is unable to affect the dynamics of xylem formation in Chinese sweetgum in Central China. The effects of N on tree growth observed in previous studies might be related to the duration of the experiment or the imbalance between the amount of natural deposition and N added during treatments.

  11. Intra-annual Dynamics of Xylem Formation inLiquidambar formosanaSubjected to Canopy and Understory N Addition.

    Science.gov (United States)

    Zhang, Shaokang; Rossi, Sergio; Huang, Jian-Guo; Jiang, Shaowei; Yu, Biyun; Zhang, Wei; Ye, Qing

    2018-01-01

    Increasing N deposition caused by intensive anthropogenic activities is expected to affect forest growth. However, the effects of N deposition on trees are still controversial due to the wide variability in results and experimental methods used. We conducted an experiment involving both canopy and understory N addition to investigate the effects of N-addition on intra-annual xylem formation of Chinese sweetgum ( Liquidambar formosana ) in a warm-temperate forest of Central China. Since 2013, 50 kg N ha -1 year -1 (2.5 times the current natural N deposition) was applied monthly from April to December. In 2014 and 2015, the timing and dynamics of xylem formation were monitored weekly during March-December by microcoring the stems of control and treated trees. Similar dynamics of wood formation were observed between canopy and understory N addition. Xylem formation of all the experimental trees started in March and lasted for 119-292 days. Compared to the control, no change was observed in the timing and dynamics of wood formation in N-treated trees. Tree ring-width ranged between 1701 and 4774 μm, with a rate of xylem production of 10.52-26.64 μm day -1 . The radial growth of trees was not modified by the treatments. Our findings suggest that short-term N addition is unable to affect the dynamics of xylem formation in Chinese sweetgum in Central China. The effects of N on tree growth observed in previous studies might be related to the duration of the experiment or the imbalance between the amount of natural deposition and N added during treatments.

  12. Intra-annual Dynamics of Xylem Formation in Liquidambar formosana Subjected to Canopy and Understory N Addition

    Science.gov (United States)

    Zhang, Shaokang; Rossi, Sergio; Huang, Jian-Guo; Jiang, Shaowei; Yu, Biyun; Zhang, Wei; Ye, Qing

    2018-01-01

    Increasing N deposition caused by intensive anthropogenic activities is expected to affect forest growth. However, the effects of N deposition on trees are still controversial due to the wide variability in results and experimental methods used. We conducted an experiment involving both canopy and understory N addition to investigate the effects of N-addition on intra-annual xylem formation of Chinese sweetgum (Liquidambar formosana) in a warm-temperate forest of Central China. Since 2013, 50 kg N ha-1 year-1 (2.5 times the current natural N deposition) was applied monthly from April to December. In 2014 and 2015, the timing and dynamics of xylem formation were monitored weekly during March–December by microcoring the stems of control and treated trees. Similar dynamics of wood formation were observed between canopy and understory N addition. Xylem formation of all the experimental trees started in March and lasted for 119–292 days. Compared to the control, no change was observed in the timing and dynamics of wood formation in N-treated trees. Tree ring-width ranged between 1701 and 4774 μm, with a rate of xylem production of 10.52–26.64 μm day-1. The radial growth of trees was not modified by the treatments. Our findings suggest that short-term N addition is unable to affect the dynamics of xylem formation in Chinese sweetgum in Central China. The effects of N on tree growth observed in previous studies might be related to the duration of the experiment or the imbalance between the amount of natural deposition and N added during treatments. PMID:29467775

  13. Characterizing drought-induced changes in active microbial communities and recently assimilated carbon transferred belowground in a forest understory

    Science.gov (United States)

    von Rein, Isabell; Kayler, Zachary; Gessler, Arthur

    2013-04-01

    Greenhouse gas induced global warming is expected to result in droughts of longer duration and higher intensity. Since droughts can disturb ecosystem interconnections, the investigation of ecosystem responses is crucial. Nonetheless, little is known about how changes in water availability affect ecosystem interconnections, e.g. the plant-microorganism response towards a drought event. We hypothesize that there is a shift in the microbial community structure and activity under drought when compared to a well-watered control. Moreover, we assume that changes seen at the microbial level are linked to plant carbon (C) assimilation and transport. We expect reduced C assimilation in plants under drought and a subsequent weakening in the coupling between the plant and belowground processes. How do microbial communities that depend on the rhizodeposited C provided by plants react to a reduction in exudate availability? To answer this question, three intact soil monoliths (70x70x20cm) with their natural understory vegetation were taken from a spruce forest in Hainich, Germany and transferred to a climate chamber. Half of the monoliths are exposed to drought whereas the other half is kept well-watered. The monoliths are pulse labeled with 13CO2 and the label is traced through the plant-soil system. Plants, roots and soil are sampled after labeling and analyzed for their isotopic composition. Pyrosequencing and PLFA-SIP (Phospholipid fatty acids stable isotope probing) are performed to detect changes in the microbial community structure and in the composition of the metabolically active microorganisms, respectively. We will discuss our first results concerning the effects of drought on understory carbon partitioning and the impact of drought on carbon availability to soil microorganisms.

  14. Prescribed grazing for management of invasive vegetation in a hardwood forest understory

    Science.gov (United States)

    Ronald A. Rathfon; Songlin Fei; Jason Tower; Kenneth Andries; Michael. Neary

    2014-01-01

    Land managers considering prescribed grazing (PG) face a lack of information on animal stocking rates, timing of grazing, and duration of grazing to achieve desired conditions in natural ecosystems under invasion stress from a variety of nonnative invasive plant (NNIP) species. In this study we tested PG treatments using goats for reducing NNIP brush species and...

  15. Effect of overstory on the seasonal variability of understory herbs in ...

    African Journals Online (AJOL)

    SAM

    2014-03-12

    ), soil attributes and ... species richness was in June, when spring ephemeral, early and late-summer plant grew at the same time. ..... The ecological significance of the herbaceous layer in temperate forest ecosystems.

  16. Species richness and relative species abundance of Nymphalidae (Lepidoptera) in three forests with different perturbations in the North-Central Caribbean of Costa Rica.

    Science.gov (United States)

    Stephen, Carolyn; Sánchez, Ragde

    2014-09-01

    Measurements of species richness and species abundance can have important implications for regulations and conservation. This study investigated species richness and abundance of butterflies in the family Nymphalidae at undisturbed, and disturbed habitats in Tirimbina Biological Reserve and Nogal Private Reserve, Sarapiquí, Costa Rica. Traps baited with rotten banana were placed in the canopy and the understory of three habitats: within mature forest, at a river/forest border, and at a banana plantation/forest border. In total, 71 species and 487 individuals were caught and identified during May and June 2011 and May 2013. Species richness and species abundance were found to increase significantly at perturbed habitats (p < 0.0001, p < 0.0001, respectively). The edge effect, in which species richness and abundance increase due to greater complementary resources from different habitats, could be one possible explanation for increased species richness and abundance.

  17. Functional Traits, Flocking Propensity, and Perceived Predation Risk in an Amazonian Understory Bird Community.

    Science.gov (United States)

    Martínez, Ari E; Gomez, Juan P; Ponciano, José Miguel; Robinson, Scott K

    2016-05-01

    Within a community, different species might share similar predation risks, and, thus, the ability of species to signal and interpret heterospecific threat information may determine species' associations. We combined observational, experimental, and phylogenetic approaches to determine the extent to which evolutionary history and functional traits determined flocking propensity and perceived predation risk (response to heterospecific alarm calls) in a lowland Amazonian bird community. We predicted that small birds that feed myopically and out in the open would have higher flocking propensities and account for a higher proportion of positive responses to alarms. Using generalized linear models and the incorporation of phylogeny on data from 56 species, our results suggest that phylogenetic relationships alongside body size, foraging height, vegetation density, and response to alarm calls influence flocking propensity. Conversely, phylogenetic relationships did not influence response to heterospecific alarm calls. Among functional traits, however, foraging strategy, foraging density, and flocking propensity partially explained responses to alarm calls. Our results suggest that flocking propensity and perceived predation risk are positively related and that functional ecological traits and evolutionary history may explain certain species' associations.

  18. Effects of dwarf-bamboo understory on tree seedling emergence and survival in a mixed-oak forest in northern Japan: a multi-site experimental study

    Czech Academy of Sciences Publication Activity Database

    Doležal, Jiří; Matsuki, S.; Hara, T.

    2009-01-01

    Roč. 10, č. 2 (2009), s. 225-235 ISSN 1585-8553 R&D Projects: GA ČR GA206/05/0119; GA AV ČR IAA600050802 Institutional research plan: CEZ:AV0Z60050516 Keywords : Dwarf-bamboo understory * Forest regeneration * Seedling recruitment and survival Subject RIV: EF - Botanics Impact factor: 0.792, year: 2009

  19. Performance of Planted Herbaceous Species in Longleaf Pine (Pinus palustris Mill.) Plantations: Overstory Effects of Competition and Needlefall

    Energy Technology Data Exchange (ETDEWEB)

    Dagley, C.M.

    2001-07-03

    Research to determine the separate effects of above-ground and below-ground competition and needlefall of over-story pines on under-story plant performance. Periodic monitoring of over-story crown closure, soil water content, temperature, and nutrients were conducted. Results indicate competition for light had a more determental effect on performance of herbaceous species in longleaf pine plantations than that resulting from competition for below-ground resources.

  20. Forest floor depth mediates understory vigor in xeric Pinus palustris ecosystems

    Science.gov (United States)

    J. Kevin Hiers; Joseph J. O' Brien; Rodney E. Will; Robert J. Mitchell

    2007-01-01

    Longleaf pine (Pinus palustris) woodlands and savannas are among the most frequently burned ecosystems in the world with fire return intervals of 1–10 years. This fire regime has maintained high levels of biodiversity in terms of both species richness and endemism. Land use changes have reduced the area of this ecosystem by .95%, and inadequate fire...

  1. Seventy years of understory development by elevation class in a New Hampshire mixed forest: management implications

    Science.gov (United States)

    William B. Leak

    2009-01-01

    New England forest managers are faced with numerous environmental issues, such as global warming, nutrient depletion, and species declines that could influence the choice of appropriate silvicultural techniques and objectives. On the Bartlett Experimental Forest, New Hampshire, 70 years of change on more than 400 remeasured cruise plots by elevation classes ranging...

  2. The relationship between the understory shrub component of coastal forests and the conservation of forest carnivores

    Science.gov (United States)

    Keith M. Slauson; William J. Zielinski

    2007-01-01

    The physical structure of vegetation is an important predictor of habitat for wildlife species. The coastal forests of the Redwood region are highly productive, supporting structurally-diverse forest habitats. The major elements of structural diversity in these forests include trees, shrubs, and herbaceous plants, which together create three-dimensional complexity. In...

  3. Seasonality of Overstory and Understory Fluxes in a Semi-Arid Oak Savanna: What can be Learned from Comparing Measured and Modeled Fluxes?

    Science.gov (United States)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Chen, J. M.; Verfaillie, J. G.; Ma, S.; Baldocchi, D. D.

    2011-12-01

    Semi-arid climates experience large seasonal and inter-annual variability in radiation and precipitation, creating natural conditions adequate to study how year-to-year changes affect atmosphere-biosphere fluxes. Especially, savanna ecosystems, that combine tree and below-canopy components, create a unique environment in which phenology dramatically changes between seasons. We used a 10-year flux database in order to define seasonal and interannual variability of climatic inputs and fluxes, and evaluate model capability to reproduce observed variability. This is based on the perception that model capability to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site is a low density and low LAI (0.8) semi-arid savanna, located at Tonzi Ranch, Northern California. In this system, trees are active during the warm season (Mar - Oct), and grasses are active during the wet season (Dec - May). Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Fluxes were simulated using bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Models were partly capable of reproducing fluxes on daily scales (R2=0.66). We then compared model outputs for different ecosystem components and seasons, and found distinct seasons with high correlations while other seasons were purely represented. Comparison was much higher for ET than for GPP. The understory was better simulated than the overstory. CANOAK overestimated spring understory fluxes, probably due to the capability to directly calculated 3D radiative transfer. BEPS underestimated spring understory fluxes, following the pre-description of grass die-off. Both models underestimated peak spring overstory fluxes. During winter tree dormant, modeled fluxes were null, but occasional high fluxes of both ET and GPP were measured following

  4. Frugivory in Lacistema hasslerianum Chodat (Lacistemaceae), a gallery forest understory treelet in Central Brazil.

    Science.gov (United States)

    Melo, C; Oliveira, P E

    2009-02-01

    The objectives of this study were to know and to characterize the behavioural patterns of frugivorous birds in Lacistema hasslerianum. The study was carried out in the Panga Ecological Station (Uberlândia, Minas Gerais State). During the frutification time (September-October), L. hasslerianum was observed for 31.25 hours and received 58 visits by five species of birds. Tyrannidae was the best represented family (2 species). Pipridae was the most frequent visitor in L. hasslerianum (68.97% of visits). The number of consumed fruits was correlated with the time of permanence on the plant. The main foraging tactic was 'Stalling' (58.62%) and the most frequent fruit consumption strategy was 'swallower' (45.25%), which indicates a high seed dispersal potential. Antilophia galeata (Pipridae), although a territorial bird, presented the best dispersal efficiency for Lacistema hasslerianum, because of its consumption rate (2.82 whole fruits consumed/minute).

  5. Frugivory in Lacistema hasslerianum Chodat (Lacistemaceae, a gallery forest understory treelet in Central Brazil

    Directory of Open Access Journals (Sweden)

    C. Melo

    Full Text Available The objectives of this study were to know and to characterize the behavioural patterns of frugivorous birds in Lacistema hasslerianum. The study was carried out in the Panga Ecological Station (Uberlândia, Minas Gerais State. During the frutification time (September-October, L. hasslerianum was observed for 31.25 hours and received 58 visits by five species of birds. Tyrannidae was the best represented family (2 species. Pipridae was the most frequent visitor in L. hasslerianum (68.97% of visits. The number of consumed fruits was correlated with the time of permanence on the plant. The main foraging tactic was "Stalling" (58.62% and the most frequent fruit consumption strategy was "swallower" (45.25%, which indicates a high seed dispersal potential. Antilophia galeata (Pipridae, although a territorial bird, presented the best dispersal efficiency for Lacistema hasslerianum, because of its consumption rate (2.82 whole fruits consumed/minute.

  6. Annual variation in canopy openness, air temperature and humidity inthe understory of three forested sites in southern Bahia State, Brazil

    Directory of Open Access Journals (Sweden)

    Marayana Prado Pinheiro

    2013-01-01

    Full Text Available Aiming at contributing to the knowledge of physical factors affecting community structure in Atlantic Forest remnants of southern Bahia state, Brazil, we analyzed the annual variation in the understory microclimate of a hillside forest fragment in the ‘Reserva Particular do Patrimônio Natural Serra do Teimoso’ (RST and a rustic cacao agroforestry system (Cabruca, located nearby the RST. Canopy openness (CO, air temperature (Ta, air relative humidity (RH and vapor pressure deficit (VPD data were collected between April, 2005 and April, 2006 at the base (RSTB, 340 m and the top (RSTT, 640 m of the RST and at the Cabruca (CB, 250 m. Data of rainfall, Ta, RH and VPD were also collected in an open area (OA, 270 m. The highest rainfalls (> 100 mm occurred in November, 2005 and April, 2006, whereas October, 2005 was the driest month (< 20 mm. CO ranged between 2.5 % in the CB (April, 2006 and 7.7 % in the RST (October, 2005. Low rainfall in October, 2005 affected VPDmax in all sites. Those effects were more pronounced in OA, followed by CB, RSTB and RSTT. During the period of measurements, the values of Ta, RH and VPD in CB were closer to the values measured in OA than to the values measured inside the forest.

  7. The ghosts of trees past: savanna trees create enduring legacies in plant species composition.

    Science.gov (United States)

    Stahlheber, Karen A; Crispin, Kimberly L; Anton, Cassidy; D'Antonio, Carla M

    2015-09-01

    Isolated trees in savannas worldwide are known to modify their local environment and interact directly with neighboring plants. Less is known about how related tree species differ in their impacts on surrounding communities, how the effects of trees vary between years, and how composition might change following loss of the tree. To address these knowledge gaps, we explored the following questions: How do savanna trees influence the surrounding composition of herbaceous plants? Is the influence of trees consistent across different species and years? How does this change following the death of the tree? We surveyed herbaceous species composition and environmental attributes surrounding living and dead evergreen and deciduous Quercus trees in California (USA) savannas across several years that differed in their total precipitation. Oak trees of all species created distinct, homogenous understory communities dominated by exotic grasses across several sites. The composition of the low-diversity understory communities showed less interannual variation than open grassland, despite a two-fold difference in precipitation between the driest and wettest year. Vegetation composition was correlated with variation in soil properties, which were strongly affected by trees. Oaks also influenced the communities beyond the edge of the crown, but this depended on site and oak species. Low-diversity understory communities persisted up to 43 years following the death of the tree. A gradual decline in the effect of trees on the physical, environment following death did not result in vegetation becoming more similar to open grassland over time. The presence of long-lasting legacies of past tree crowns highlights the difficulty of assigning control of the current distribution of herbaceous species in grassland to their contemporary environment.

  8. Variation in Vegetation Structure and Soil Properties, and the Relation Between Understory Plants and Environmental Variables Under Different Phyllostachys pubescens Forests in Southeastern China

    Science.gov (United States)

    Zhang, Changshun; Xie, Gaodi; Fan, Shaohui; Zhen, Lin

    2010-04-01

    Biodiversity maintenance and soil improvement are key sustainable forestry objectives. Research on the effects of bamboo forest management on plant diversity and soil properties are therefore necessary in bamboo-growing regions, such as southeastern China’s Shunchang County, that have not been studied from this perspective. We analyzed the effects of different Phyllostachys pubescens proportions in managed forests on vegetation structure and soil properties using pure Cunninghamia lanceolata forests as a contrast, and analyzed the relation between understory plants and environmental variables (i.e., topography, stand and soil characteristics) by canonical correspondence analysis (CCA). The forest with 80% P. pubescens and 20% hardwoods (such as Phoebe bournei, Jatropha curcas, Schima superba) maintained the highest plant diversity and best soil properties, with significantly higher plant diversity than the C. lanceolata forest, and better soil physicochemical and biological properties. The distribution of understory plants is highly related to environmental factors. Silvicultural disturbance strongly influenced the ability of different bamboo forests to maintain biodiversity and soil quality under extensive management, and the forest responses to management were consistent with the intermediate-disturbance hypothesis (i.e., diversity and soil properties were best at intermediate disturbance levels). Our results suggest that biodiversity maintenance and soil improvement are important management goals for sustainable bamboo management. To achieve those objectives, managers should balance the inputs and outputs of nutrients and protect understory plants by using appropriate fertilizer (e.g., organic fertilizer), adjusting stand structure, modifying utilization model and the harvest time, and controlling the intensity of culms and shoots harvests.

  9. Water use by a warm-temperate deciduous forest under the influence of the Asian monsoon: contributions of the overstory and understory to forest water use.

    Science.gov (United States)

    Jung, Eun-Young; Otieno, Dennis; Kwon, Hyojung; Lee, Bora; Lim, Jong-Hwan; Kim, Joon; Tenhunen, John

    2013-09-01

    The warm temperate deciduous forests in Asia have a relatively dense understory, hence, it is imperative that we understand the dynamics of transpiration in both the overstory (E O) and understory (E U) of forest stands under the influence of the Asian monsoon in order to improve the accuracy of forest water use budgeting and to identify key factors controlling forest water use under climate change. In this study, E O and E U of a temperate deciduous forest stand located in South Korea were measured during the growing season of 2008 using sap flow methods. The objectives of this study were (1) to quantify the total transpiration of the forest stand, i.e., overstory and understory, (2) to determine their relative contribution to ecosystem evapotranspiration (E eco), and (3) to identify factors controlling the transpiration of each layer. E O and E U were 174 and 22 mm, respectively. Total transpiration accounted for 55 % of the total E eco, revealing the importance of unaccounted contributions to E eco (i.e., soil evaporation and wet canopy evaporation). During the monsoon period, there was a strong reduction in the total transpiration, likely because of reductions in photosynthetic active radiation, vapor pressure deficit and plant area index. The ratio of E U to E O declined during the same period, indicating an effect of monsoon on the partitioning of E eco in its two components. The seasonal pattern of E O was synchronized with the overstory canopy development, which equally had a strong regulatory influence on E U.

  10. Above- and belowground competition from longleaf pine plantations limits performance of reintroduced herbaceous species.

    Energy Technology Data Exchange (ETDEWEB)

    T.B. Harrington; C.M. Dagley; M.B. Edwards.

    2003-10-01

    Although overstory trees limit the abundance and species richness of herbaceous vegetation in longleaf pine (Pinus palustris Mill.) plantations, the responsible mechanisms are poorly understood because of confounding among limiting factors. In fall 1998, research was initiated to determine the separate effects of above- and belowground competition and needlefall from overstory pines on understory plant performance. Three 13- to 15-yr-old plantations near Aiken, SC, were thinned to 0, 25, 50, or 100% of nonthinned basal area (19.5 m2 ha-1). Combinations of trenching (to eliminate root competition) and needlefall were applied to areas within each plot, and containerized seedlings of 14 perennial herbaceous species and longleaf pine were planted within each. Overstory crown closure ranged from 0 to 81%, and soil water and available nitrogen varied consistently with pine stocking, trenching, or their combination. Cover of planted species decreased an average of 16.5 and 14.1% as a result of above- and below-ground competition, respectively. Depending on species, needlefall effects were positive, negative, or negligible. Results indicate that understory restoration will be most successful when herbaceous species are established within canopy openings (0.1-0.2 ha) managed to minimize negative effects from above- and belowground competition and needlefall.

  11. Coyote removal, understory cover, and survival of white-tailed deer neonates: Coyote Control and Fawn Survival

    Energy Technology Data Exchange (ETDEWEB)

    Kilgo, John C. [USDA Forest Service; Southern Research Station, New Ellenton, SC (United States); Vukovich, Mark [USDA Forest Service; Southern Research Station, New Ellenton, SC (United States); Ray, H. Scott [USDA Forest Service, Savannah River; New Ellenton, SC (United States); Shaw, Christopher E. [USDA Forest Service; Southern Research Station, New Ellenton, SC (United States); Ruth, Charles [South Carolina Dept. of Natural Resources, Columbia, SC (United States)

    2014-09-01

    Predation by coyotes (Canis latrans) on white-tailed deer (Odocoileus virginianus) neonates has led to reduced recruitment in many deer populations in southeastern North America. This low recruitment combined with liberal antlerless deer harvest has resulted in declines in some deer populations, and consequently, increased interest in coyote population control. We investigated whether neonate survival increased after coyote removal, whether coyote predation on neonates was additive to other mortality sources, and whether understory vegetation density affected neonate survival. We monitored neonate survival for 4 years prior to (2006–2009) and 3 years during (2010–2012) intensive coyote removal on 3 32-km2 units on the United States Department of Energy’s Savannah River Site, South Carolina. We removed 474 coyotes (1.63 coyotes/km2 per unit per year), reducing coyote abundance by 78% from pre-removal levels. The best model (wi = 0.927) describing survival probability among 216 radio-collared neonates included a within-year quadratic time trend variable, date of birth, removal treatment, and a varying removal year effect. Under this model, survival differed between pre-treatment and removal periods and it differed among years during the removal period, being >100% greater than pre-treatment survival (0.228) during the first removal year (0.513), similar to pre-treatment survival during the second removal year (0.202), and intermediate during the third removal year (0.431). Despite an initial increase, the overall effect of coyote removal on neonate survival was modest. Mortality rate attributable to coyote predation was lowest during the first removal year (0.357) when survival was greatest, but the mortality rate from all other causes did not differ between the pretreatment period and any year during removals, indicating that coyote predation acted as an additive source of mortality. Survival probability was not related to

  12. Florística e estrutura da vegetação arbustivo-arbórea do sub-bosque de um povoamento de Eucalyptus grandis W. Hill ex Maiden em Viçosa, MG, Brasil Floristic and structure of tree-shrub vegetation in understory of Eucalyptus grandis W. Hill ex Maiden stands, in Viçosa, MG, Brazil

    Directory of Open Access Journals (Sweden)

    Priscila Bezerra de Souza

    2007-01-01

    Full Text Available Este estudo teve como objetivo conhecer a composição florística e a estrutura da vegetação arbustivo-arbórea no sub-bosque de povoamento de Eucalyptus grandis na Reserva Florestal da Mata do Paraíso, em Viçosa, MG. Foram demarcadas 40 parcelas contíguas de 5 x 5 m, dispostas em transectos de 5 x 50 m, nas quais foram medidos, identificados e classificados quanto às síndromes de dispersão de sementes e às categorias sucessionais. Foram amostrados 884 indivíduos pertencentes a 50 espécies e 22 famílias. As espécies que se destacaram em valor de importância foram Psychotria sessilis, Siparuna guianensis e Erythroxylum pelleterianum, principalmente com relação à elevada densidade. Predominaram em densidade espécies secundárias tardias com síndromes de dispersão zoocórica. A riqueza florística encontrada pode ser considerada alta, por se tratar de sub-bosque de Eucalyptus grandis, e reflete o potencial da utilização dessa espécie como catalisadora de vegetação arbustivo-arbórea nativa em áreas degradadas.The objective of the present study was to analyze the floristic composition and structure of tree-shrub vegetation in understory of Eucalyptus grandis W. former Hill Maiden, Paraíso Forest Reserve, Viçosa, MG. Forty adjacent 5 x 5 m plots were demarcated and arranged in 5 x 50 m transects, in which individuals were measured, identified and classified in relation to seed dispersal syndromes and successional categories. Eight hundred and eighty four individuals belonging to 50 species and 22 families were recorded. The species with the highest Importance Value were Psychotria sessilis, Siparuna guianensis and Erythroxylum pelleterianum, particularly with regard to high density. Late secondary species with zoochorous dispersal syndromes prevailed in density. The founded floristic richness can be considered high for a Eucalyptus grandis understory and reflects the potential for using the species as catalyst for native

  13. Endangered Species

    Science.gov (United States)

    EPA's Endangered Species Protection Program helps promote recovery of listed species. The ESPP determines if pesticide use in a geographic area may affect any listed species. Find needed limits on pesticide use in Endangered Species Protection Bulletins.

  14. Temperature regulates positively photoblastic seed germination in four ficus (moraceae) tree species from contrasting habitats in a seasonal tropical rainforest.

    Science.gov (United States)

    Chen, Hui; Cao, Min; Baskin, Jerry M; Baskin, Carol C

    2013-08-01

    Differences in seed germination responses of trees in tropical forests to temperature and light quality may contribute to their coexistence. We investigated the effects of temperature and red:far-red light (R:FR ratio) on seed germination of two gap-demanding species (Ficus hispida and F. racemosa) and two shade-tolerant species (F. altissima and F. auriculata) in a tropical seasonal rainforest in southwest China. A R:FR ratio gradient was created by filtering fluorescent light through polyester filters. Four temperature treatments were used to test the effect of temperature on seed germination of the four Ficus tree species across the R:FR gradient. Seeds of the four Ficus species were positively photoblastic. Seed germination of F. hispida and F. racemosa was not affected across the R:FR ratio gradient (0.25-1.19) at 25/35°C, but it was inhibited under low R:FR at 22/23°C. By contrast, germination percentages of F. altissima and F. auriculata were not inhibited along the entire light gradient in all temperature treatments. Differences in germination responses of Ficus species might contribute to differences in their habitat preferences. The inhibitory effect of understory temperatures in the forest might be a new mechanism that prevents positively photoblastic seeds of the gap-demanding species such as F. hispida and F. racemosa from germinating in the understory and in small canopy gaps.

  15. The role of disturbance severity and canopy closure on standing crop of understory plant species in ponderosa pine stands in northern Arizona, USA

    Science.gov (United States)

    Kyla E. Sabo; Carolyn Hull Sieg; Stephen C. Hart; John Duff Bailey

    2009-01-01

    Concerns about the long-term sustainability of overstocked dry conifer forests in western North America have provided impetus for treatments designed to enhance their productivity and native biodiversity. Dense forests are increasingly prone to large stand-replacing fires; yet, thinning and burning treatments, especially combined with other disturbances such as drought...

  16. Long-term Seedling Dynamics of Tree Species in a Subtropical Rain Forest, Taiwan

    Directory of Open Access Journals (Sweden)

    Chia-Hao Chang-Yang

    2013-03-01

    Full Text Available Knowledge of demographical rates at seedling stage is critical for understanding forest composition and dynamics. We monitored the seedling dynamics of tree species in a subtropical rain forest in Fushan, northern Taiwan (24°45’ N, 121°35’ E during an 8-yr period (2003–2010. There were great temporal fluctuations in the seedling density, which might be largely driven by the pulses of seedling recruitment. Interspecific variation in the seedling abundance, however, was not related to the reproductive adult abundance. Previous studies showed that frequent typhoon disturbances contributed to the high canopy openness and high understory light availability at Fushan, which might benefit tree regeneration. But our results do not support this idea. Most of the newly recruited seedlings died within six months and only grew 1.55 ± 0.20 cm per year, which might be suppressed by the dense understory vegetation. Our results suggested that the majority of tree species in Fushan were recruitment limited, which might have important consequences for species coexistence. High temporal variability in recruitment density and low growth rates of seedlings emphasize the importance of long-term studies to our understandings of forest dynamics.

  17. Conservation biology of Chionodoxa lochiae and Scilla morrisii (Asparagaceae: Two priority bulbous plant species of the European Union in Cyprus

    Directory of Open Access Journals (Sweden)

    Marios Andreou

    2015-01-01

    Full Text Available This paper presents data regarding conservation biology of Chionodoxa lochiae and Scilla morrisii; two threatened endemic plants of Cyprus, which are included as priority species in Annex II of the Habitats Directive. The population size and geographical distribution of the species were monitored for three years. C. lochiae was recorded in ten locations and S. morrisii was recorded in five locations. C. lochiae occurs in Pinus forests with/without Quercus alnifolia understory or in forest margins and riparian vegetation with Platanus orientalis. Favorable habitat of S. morrisii is the understory of Quercus infectoria stands and the Pistacia terebinthus-Quercus coccifera-Styrax officinalis shrubs. The distribution pattern of the species seems to follow habitat availability. Fecundity and Relative Reproductive Success of C. lochiae were stable and low, while in S. morrisii were constantly high. The lack of pollinators seems to be the main cause of the low sexual reproduction of C. lochiae. The germination strategy for both species is dependent on temperature. Some of the seeds are dormant and dormancy is broken by nitrates. The investigation of certain aspects of the biology of the two species yielded the information needed to identify the critical aspects affecting their survival and to propose sound conservation measures.

  18. Abundance, distribution and feeding patterns of a temperate reef fish in subtidal environments of the Chilean coast: the importance of understory algal turf Abundancia, distribución y patrones alimentarios de un pez de arrecifes templados en ambientes submareales de la costa de Chile: la importancia de la capa de algas del subdosel

    Directory of Open Access Journals (Sweden)

    ÁLVARO T. PALMA

    2002-03-01

    Full Text Available Cheilodactylus variegatus is an abundant carnivorous demersal reef fish that lives in the shallow subtidal of the north-central Chilean coast. Characteristically, these environments are dominated by kelp forests of Lessonia trabeculata. This species preys on a great variety of benthic invertebrates, and shows particularly high consumption rates on amphipod crustaceans. In our study, two widely separated populations of C. variegatus were considered (central and northern Chile. Individuals that form part of these populations show considerable differences in their distribution, abundance and trophic behavior. In the northern zone, the species is abundant and both juveniles and adults are distributed along the whole bathymetric gradient. This contrasts with populations found in central Chile, which are more sparse and lack juveniles. The distribution and abundance patterns appear to be influenced mainly by the great abundance of diverse understory macroalgae in the northern subtidal, which harbors a large number of invertebrates, especially amphipods. In contrast, the understory algal abundance of the central zone is much lower, and does not show a direct relationship with the lesser abundance of amphipods. In general, C. variegatus maintains a high consumption rate on amphipods throughout its ontogeny but it includes several other prey items in later ontogenetic stages. The different understory algal assemblages, and their associated fauna, are likely to be the main factors influencing the patterns of abundance and distribution observed between these two geographically distinct fish populationsCheilodactylus variegatus es un pez demersal abundante que habita el submareal somero de la costa norte y central de Chile. Es característico de estos ambientes el estar dominados por praderas del alga Lessonia trabeculata. Esta especie incorpora en su dieta una variada gama de invertebrados bentónicos, mostrando una tasa particularmente alta de consumo de

  19. Phenotypic plasticity and population differentiation in an ongoing species invasion.

    Directory of Open Access Journals (Sweden)

    Silvia Matesanz

    Full Text Available The ability to succeed in diverse conditions is a key factor allowing introduced species to successfully invade and spread across new areas. Two non-exclusive factors have been suggested to promote this ability: adaptive phenotypic plasticity of individuals, and the evolution of locally adapted populations in the new range. We investigated these individual and population-level factors in Polygonum cespitosum, an Asian annual that has recently become invasive in northeastern North America. We characterized individual fitness, life-history, and functional plasticity in response to two contrasting glasshouse habitat treatments (full sun/dry soil and understory shade/moist soil in 165 genotypes sampled from nine geographically separate populations representing the range of light and soil moisture conditions the species inhabits in this region. Polygonum cespitosum genotypes from these introduced-range populations expressed broadly similar plasticity patterns. In response to full sun, dry conditions, genotypes from all populations increased photosynthetic rate, water use efficiency, and allocation to root tissues, dramatically increasing reproductive fitness compared to phenotypes expressed in simulated understory shade. Although there were subtle among-population differences in mean trait values as well as in the slope of plastic responses, these population differences did not reflect local adaptation to environmental conditions measured at the population sites of origin. Instead, certain populations expressed higher fitness in both glasshouse habitat treatments. We also compared the introduced-range populations to a single population from the native Asian range, and found that the native population had delayed phenology, limited functional plasticity, and lower fitness in both experimental environments compared with the introduced-range populations. Our results indicate that the future spread of P. cespitosum in its introduced range will likely be

  20. On the relationship between bird and woody plant species diversity in the Uttara Kannada district of south India.

    Science.gov (United States)

    Daniels, R J; Joshi, N V; Gadgil, M

    1992-06-15

    Bird species richness is inversely related to woody plant species diversity and vertical stratification in the natural vegetation of Uttara Kannada, the district with the largest contiguous tract of humid tropical forest in peninsular India. This inverse relationship may be explained by the fact that although the peninsular Indian evergreen forests are rich in woody plant species when compared with the drier vegetation, they harbor an impoverished bird fauna due to their smaller overall extent and greater isolation. Much of this impoverishment is accounted for by the absence of many species of understory timaliids characteristic of the humid evergreen forests of the Eastern Himalayas and Southeast Asia. The plantations of Uttara Kannada largely derive their bird fauna from the drier vegetation and exhibit the commoner trend of a positive correlation between bird species richness and vertical stratification of the vegetation.

  1. Invasive Species

    Science.gov (United States)

    Invasive species have significantly changed the Great Lakes ecosystem. An invasive species is a plant or animal that is not native to an ecosystem, and whose introduction is likely to cause economic, human health, or environmental damage.

  2. Emissions of carbon species, organic polar compounds, potassium, and mercury from prescribed burning activities

    Science.gov (United States)

    Zhang, Y.; Obrist, D.; Zielinska, B.; Gerler, A.

    2012-04-01

    Biomass burning is an important emission source of pollutants to the atmosphere, but few studies have focused on the chemical composition of emissions from prescribed burning activities. Here we present results from a sampling campaign to quantify particulate-phase emissions from various types of prescribed fires including carbon species (Elemental Carbon: EC; Organic Carbon: OC; and Total Carbon: TC); polar organic compounds (12 different compounds and four functional classes); water-soluble potassium (K+); and mercury (Hg). We measured emissions from the following types of prescribed biomass burning in the Lake Tahoe basin located on the California/Nevada border: (i) log piles stacked and dried in the field; (ii) log piles along with green understory vegetation; and (iii) understory green vegetation and surface litter; further emissions were collected from burns conducted in a wood stove: (iv) dried wooden logs; (v) green foliage of understory vegetation collected from the field; and (vi) surface organic litter collected from the field; finally, samples were also taken from (vii) ambient air in residential areas during peak domestic wood combustion season. Results show that OC/EC ratios of prescribed burns in the field ranged from 4 to 10, but lower values (around 1) were observed in controlled stove fires. These results are consistent with an excess of OC emissions over EC found in wildfires. OC/EC ratios, however, showed clear separations between controlled wood stove combustion (higher EC) and prescribed burns in the field (lower EC). We attribute this difference to a higher combustion temperatures and dominance of flaming combustion in wood stove fires. OC positively and linearly correlated to the sum of polar organic compounds across all burn types (r2 of 0.82). The most prevalent group of polar compounds emitted during prescribed fires was resin acids (dehydroabietic, pimaric, and abietic acids), followed by levoglucosan plus mannositol. Negligible

  3. Initial response to understory plant diversity and overstory tree diameter growth to a green tree retention harvest

    Science.gov (United States)

    Malcolm North; Jiquan Chen; Gordon Smith; Lucy Krakowlak; Jerry Franklin

    1996-01-01

    The increasing use of harvest techniques other than clearcutting in forests west of the Cascade mountains has created an urgent need to understand the effects of these practices on ecosystem species composition and structure. One common alternative, "green tree retention" (GTR), leaves some live trees on a harvest site to more closely mimic a moderate-...

  4. Species-specific variation in nesting and postfledging resource selection for two forest breeding migrant songbirds.

    Directory of Open Access Journals (Sweden)

    Julianna M A Jenkins

    Full Text Available Habitat selection is a fundamental component of community ecology, population ecology, and evolutionary biology and can be especially important to species with complex annual habitat requirements, such as migratory birds. Resource preferences on the breeding grounds may change during the postfledging period for migrant songbirds, however, the degree to which selection changes, timing of change, and whether all or only a few species alter their resource use is unclear. We compared resource selection for nest sites and resource selection by postfledging juvenile ovenbirds (Seiurus aurocapilla and Acadian flycatchers (Empidonax virescens followed with radio telemetry in Missouri mature forest fragments from 2012-2015. We used Bayesian discrete choice modeling to evaluate support for local vegetation characteristics on the probability of selection for nest sites and locations utilized by different ages of postfledging juveniles. Patterns of resource selection variation were species-specific. Resource selection models indicated that Acadian flycatcher habitat selection criteria were similar for nesting and dependent postfledging juveniles and selection criteria diverged when juveniles became independent from adults. After independence, flycatcher resource selection was more associated with understory foliage density. Ovenbirds differed in selection criteria between the nesting and postfledging periods. Fledgling ovenbirds selected areas with higher densities of understory structure compared to nest sites, and the effect of foliage density on selection increased as juveniles aged and gained independence. The differences observed between two sympatric forest nesting species, in both the timing and degree of change in resource selection criteria over the course of the breeding season, illustrates the importance of considering species-specific traits and postfledging requirements when developing conservation efforts, especially when foraging guilds or

  5. Developing and Testing a Robust, Multi-Scale Framework for the Recovery of Longleaf Pine Understory Communities

    Science.gov (United States)

    2015-05-01

    recovery strategies will be effective, and (4) devising metrics to quantify recovery progress. To understand recovery of longleaf pine ( Pinus palustris...Seed bank germination in longleaf pine forests with a forested history or an agricultural history. Figure 3.2.3. Relationships between the number...of prescribed fires and A) number of germinants and B) number of species recruited from the seed bank samples. Figure 3.2.4. Geographic variation in

  6. The impact of forest roads on understory plant diversity in temperate hornbeam-beech forests of Northern Iran.

    Science.gov (United States)

    Deljouei, Azade; Abdi, Ehsan; Marcantonio, Matteo; Majnounian, Baris; Amici, Valerio; Sohrabi, Hormoz

    2017-08-01

    Forest roads alter the biotic and abiotic components of ecosystems, modifying temperature, humidity, wind speed, and light availability that, in turn, cause changes in plant community composition and diversity. We aim at investigating and comparing the diversity of herbaceous species along main and secondary forest roads in a temperate-managed hornbeam-beech forest, north of Iran. Sixteen transects along main and secondary forest roads were established (eight transects along main roads and eight along secondary roads). To eliminate the effect of forest type, all transects were located in Carpinetum-Fagetum forests, the dominant forest type in the study area. The total length of each transect was 200 m (100 m toward up slope and 100 m toward down slope), and plots were established along it at different distances from road edge. The diversity of herbaceous plant species was calculated in each plot using Shannon-Wiener index, species richness, and Pielou's index. The results showed that diversity index decreased when distance from road edge increases. This decreasing trend continued up to 60 m from forest road margin, and after this threshold, the index slightly increased. Depending on the type of road (main or secondary) as well as cut or fill slopes, the area showing a statistical different plant composition and diversity measured through Shannon-Wiener, species richness, and Pielou's index is up to 10 m. The length depth of the road edge effect found in main and secondary forest roads was small, but it could have cumulative effects on forest microclimate and forest-associated biota at the island scale. Forest managers should account for the effect of road buildings on plant communities.

  7. Long-term understory vegetation dynamics and responses to ungulate exclusion in the dry forest of Mona Island

    Science.gov (United States)

    J. Rojas-Sandoval; E.J. Melendez-Ackerman; J. Fumero-Caban; M. Garcia-Bermudez; J. Sustache; S. Aragon; M. Morales-Vargas; G. Olivieri; D.S. Fernandez

    2016-01-01

    Mona Island protects one of the most important remnants of Caribbean dry forests and hosts a high diversity of rare and endangered plant and animal species. Feral ungulates (goats and pigs) were introduced to the island ~500 y ago, and their populations may be threatening the conservation of Mona Island’s native biodiversity. In this study, we used permanent fenced and...

  8. Herbivory and pollen limitation at the upper elevational range limit of two forest understory plants of eastern North America.

    Science.gov (United States)

    Rivest, Sébastien; Vellend, Mark

    2018-01-01

    Studies of species' range limits focus most often on abiotic factors, although the strength of biotic interactions might also vary along environmental gradients and have strong demographic effects. For example, pollinator abundance might decrease at range limits due to harsh environmental conditions, and reduced plant density can reduce attractiveness to pollinators and increase or decrease herbivory. We tested for variation in the strength of pollen limitation and herbivory by ungulates along a gradient leading to the upper elevational range limits of Trillium erectum (Melanthiaceae) and Erythronium americanum (Liliaceae) in Mont Mégantic National Park, Québec, Canada. In T. erectum, pollen limitation was higher at the range limit, but seed set decreased only slightly with elevation and only in one of two years. In contrast, herbivory of T. erectum increased from elevations to >60% at the upper elevational range limit. In E. americanum , we found no evidence of pollen limitation despite a significant decrease in seed set with elevation, and herbivory was low across the entire gradient. Overall, our results demonstrate the potential for relatively strong negative interactions (herbivory) and weak positive interactions (pollination) at plant range edges, although this was clearly species specific. To the extent that these interactions have important demographic consequences-highly likely for herbivory on Trillium , based on previous studies-such interactions might play a role in determining plant species' range limits along putatively climatic gradients.

  9. Species richness and relative species abundance of Nymphalidae (Lepidoptera in three forests with different perturbations in the North-Central Caribbean of Costa Rica

    Directory of Open Access Journals (Sweden)

    Carolyn Stephen

    2014-09-01

    Full Text Available Measurements of species richness and species abundance can have important implications for regulations and conservation. This study investigated species richness and abundance of butterflies in the family Nymphalidae at undisturbed, and disturbed habitats in Tirimbina Biological Reserve and Nogal Private Reserve, Sarapiquí, Costa Rica. Traps baited with rotten banana were placed in the canopy and the understory of three habitats: within mature forest, at a river/forest border, and at a banana plantation/forest border. In total, 71 species and 487 individuals were caught and identified during May and June 2011 and May 2013. Species richness and species abundance were found to increase significantly at perturbed habitats (p<0.0001, p<0.0001, respectively. The edge effect, in which species richness and abundance increase due to greater complementary resources from different habitats, could be one possible explanation for increased species richness and abundance. Rev. Biol. Trop. 62 (3: 919-928. Epub 2014 September 01.

  10. Differential Allocation to Photosynthetic and Non-Photosynthetic Nitrogen Fractions among Native and Invasive Species

    Science.gov (United States)

    Funk, Jennifer L.; Glenwinkel, Lori A.; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the “high-return” end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids. PMID:23700483

  11. Uncertainty of future projections of species distributions in mountainous regions.

    Directory of Open Access Journals (Sweden)

    Ying Tang

    Full Text Available Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline

  12. Influência da cobertura e do solo na composição florística do sub-bosque em uma floresta estacional semidecidual em Viçosa, MG, Brasil Cover and soil influence at understory of a Seasonal Tropical Forest, Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    João Augusto Alves Meira-Neto

    2005-09-01

    ésio e potássio estavam correlacionados positivamente entre si e negativamente aos teores de alumínio. A cobertura revelou-se correlacionada negativamente aos teores de alumínio. Foram detectados cinco grupos de espécies segundo as preferências que apresentaram aos teores de cálcio, magnésio, potássio, alumínio e a valores de cobertura. Os teores de alumínio revelaram-se os maiores determinantes da variação encontrada na vegetação de sub-bosque. As variáveis pedológicas mostraram-se mais importantes que a variação de cobertura encontrada no sub-bosque para determinar alterações estruturais no estrato herbáceo-arbustivo.Plant-light ecological relations have been studied since the early 20th century. Light within forests has been studied since then. At community level, light environment analysis has been carried out by indirect cover measurement, but without any photogrammetric methods. This work aims to apply the canopy photogrammetric method in light environment studies of understory. Correlations among edaphic, cover and species variations were investigated to understand the understory environment. These studies were carried out in a sampled area for understory phytosociological analysis. The black and white canopy photographs were taken for cover estimation. Photographs were taken in dry and rainy seasons at 100 sample quadrats. Soil samples were taken at these quadrats. The cover average for sampled species was calculated and "t" student test was applied for testing the significance of difference between specific and populational means. Correspondence Canonical Analysis was applied to determine correlations among species, edaphic factors and cover. Cover was not significantly different in dry and rainy seasons. Only three species Heisteria silviani, Calathea brasiliensis and Psychotria conjugens, had mean cover greater than the populational mean. Other three species, Olyra micrantha, Lacistema pubescens and Pteris denticulata, had mean cover

  13. The initial phase of a Longleaf Pine-Wiregrass Savanna restoration: species establishment and community responses.

    Energy Technology Data Exchange (ETDEWEB)

    Aschenbach, Todd, A; Foster, Bryan, L.; Imm, Donald, W.

    2010-09-01

    AbstractAbstract The significant loss of the longleaf pine-wiregrass ecosystem in the southeastern United States has serious implications for biodiversity and ecosystem functioning. In response to this loss, we have initiated a long-term and landscape-scale restoration experiment at the 80,125 ha (310 mi2) Department of Energy Savannah River Site (SRS) located near Aiken, South Carolina. Aristida beyrichiana (wiregrass), an important and dominant grass (i.e., a “matrix” species) of the longleaf pine savanna understory, and 31 other herbaceous “non-matrix” species were planted at six locations throughout SRS in 2002 and 2003. Of the 36,056 transplanted seedlings, 75% were still alive in June 2004, while mean 1–2 year survival across all planted species was 48%. Lespedeza hirta (hairy lespedeza) exhibited the greatest overall survival per 3 ×3 m cell at 95%, whereas Schizachyrium spp. (little bluestem) exhibited the greatest mean cover among individual species at 5.9%. Wiregrass survival and cover were significantly reduced when planted with non-matrix species. Aggregate cover of all planted species in restored cells averaged 25.9% in 2006. High rates of survival and growth of the planted species resulted in greater species richness (SR), diversity, and vegetative cover in restored cells. Results suggest that the loss of the longleaf pine-wiregrass ecosystem may be ameliorated through restoration efforts and illustrate the positive impact of restoration plantings on biodiversity and vegetative cover.

  14. Influence of Removal of a Non-native Tree Species Mimosa caesalpiniifolia Benth. on the Regenerating Plant Communities in a Tropical Semideciduous Forest Under Restoration in Brazil.

    Science.gov (United States)

    Podadera, Diego S; Engel, Vera L; Parrotta, John A; Machado, Deivid L; Sato, Luciane M; Durigan, Giselda

    2015-11-01

    Exotic species are used to trigger facilitation in restoration plantings, but this positive effect may not be permanent and these species may have negative effects later on. Since such species can provide a marketable product (firewood), their harvest may represent an advantageous strategy to achieve both ecological and economic benefits. In this study, we looked at the effect of removal of a non-native tree species (Mimosa caesalpiniifolia) on the understory of a semideciduous forest undergoing restoration. We assessed two 14-year-old plantation systems (modified "taungya" agroforestry system; and mixed plantation using commercial timber and firewood tree species) established at two sites with contrasting soil properties in São Paulo state, Brazil. The experimental design included randomized blocks with split plots. The natural regeneration of woody species (height ≥0.2 m) was compared between managed (all M. caesalpiniifolia trees removed) and unmanaged plots during the first year after the intervention. The removal of M. caesalpiniifolia increased species diversity but decreased stand basal area. Nevertheless, the basal area loss was recovered after 1 year. The management treatment affected tree species regeneration differently between species groups. The results of this study suggest that removal of M. caesalpiniifolia benefited the understory and possibly accelerated the succession process. Further monitoring studies are needed to evaluate the longer term effects on stand structure and composition. The lack of negative effects of tree removal on the natural regeneration indicates that such interventions can be recommended, especially considering the expectations of economic revenues from tree harvesting in restoration plantings.

  15. Influence of Removal of a Non-native Tree Species Mimosa caesalpiniifolia Benth. on the Regenerating Plant Communities in a Tropical Semideciduous Forest Under Restoration in Brazil

    Science.gov (United States)

    Podadera, Diego S.; Engel, Vera L.; Parrotta, John A.; Machado, Deivid L.; Sato, Luciane M.; Durigan, Giselda

    2015-11-01

    Exotic species are used to trigger facilitation in restoration plantings, but this positive effect may not be permanent and these species may have negative effects later on. Since such species can provide a marketable product (firewood), their harvest may represent an advantageous strategy to achieve both ecological and economic benefits. In this study, we looked at the effect of removal of a non-native tree species ( Mimosa caesalpiniifolia) on the understory of a semideciduous forest undergoing restoration. We assessed two 14-year-old plantation systems (modified "taungya" agroforestry system; and mixed plantation using commercial timber and firewood tree species) established at two sites with contrasting soil properties in São Paulo state, Brazil. The experimental design included randomized blocks with split plots. The natural regeneration of woody species (height ≥0.2 m) was compared between managed (all M. caesalpiniifolia trees removed) and unmanaged plots during the first year after the intervention. The removal of M. caesalpiniifolia increased species diversity but decreased stand basal area. Nevertheless, the basal area loss was recovered after 1 year. The management treatment affected tree species regeneration differently between species groups. The results of this study suggest that removal of M. caesalpiniifolia benefited the understory and possibly accelerated the succession process. Further monitoring studies are needed to evaluate the longer term effects on stand structure and composition. The lack of negative effects of tree removal on the natural regeneration indicates that such interventions can be recommended, especially considering the expectations of economic revenues from tree harvesting in restoration plantings.

  16. Determination of Tree and Understory Water Sources and Residence Times Using Stable Isotopes in a Southern Appalachian Forest

    Science.gov (United States)

    Stewart, A. N.; Knoepp, J.; Miniat, C.; Oishi, A. C.; Emanuel, R. E.

    2017-12-01

    The development of accurate hydrologic models is key to describing changes in hydrologic processes due to land use and climate change. Hydrologic models typically simplify biological processes associated with plant water uptake and transpiration, assuming that roots take up water from the same moisture pool that feeds the stream; however, this assumption is not valid for all systems. Novel combinations of climate and forest composition and structure, caused by ecosystem succession, management decisions, and climate variability, will require a better understanding of sources of water for transpiration in order to accurately estimate impact on forest water yield. Here we examine red maple (Acer rubrum), rhododendron (Rhododendron maximum), tulip poplar (Liriodendron tulipifera), and white oak (Quercus alba) trees at Coweeta Hydrologic Laboratory, a long-term hydrological and ecological research site in western NC, USA, and explore whether source water use differs by species and landscape position. We analyzed stable isotopes of water (18O and 2H) in tree cores, stream water, soil water, and precipitation using laser spectrometry and compare the isotopic composition of the various pools. We place these results in broader context using meteorological and ecophysiological data collected nearby. These findings have implications for plant water stress and drought vulnerability. They also contribute to process-based knowledge of plant water use that better captures the sensitivity of transpiration to physical and biological controls at the sub-catchment scale. This work aims to help establish novel ways to model transpiration and improve understanding of water balance, biogeochemical cycling, and transport of nutrients to streams.

  17. Uso de florestas secundárias por aves de sub-bosque em uma paisagem fragmentada na Amazônia central Use of secondary forests by understory birds in a fragmented landscape in central Amazonia

    Directory of Open Access Journals (Sweden)

    João Vitor Campos e Silva

    2012-03-01

    secondary forests that are established in the abandoned areas. The trend is an increase in secondary forests cover, resulting in a mosaic of primary forest (FP and fragments separated by an array of secondary forests (FS. In this scenario, the prediction of a massive extinction could be wrong if many species could survive in the secondary forests. To assess the importance of FS for the understory birds we sampled areas in regeneration and a continuous forest of a fragmented landscape. We conducted mist netting (24 nets/day for six consecutive days/month, for 8 months (May-November in 2009. Some forest species as do not seem to be adapted to the secondary forest environment and their occurrences are restricted to continuous forest environments. But most focal species showed no significant difference in apparent survival rates between the enviroments, suggesting that these species inhabit the secondary forest and the primary forest similarly. Because most of the matrix in fragmented landscapes are composed by secondary forests, such results highlights the conservation value that these habitats present in the long term. Thus, FS should be regarded as dynamic matrix that not only allows the movement of individuals but also function as habitat for many species typical of FP.

  18. Leaf anatomical traits of non-arboreal savanna species along a gradient of tree encroachment

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Souza Pinheiro

    2017-10-01

    Full Text Available ABSTRACT In the Brazilian savanna (Cerrado of Brazil, fire suppression has transformed typical savanna formations (TS into forested savanna (FS due to the phenomenon of encroachment. Under encroachment, non-arboreal plants begin to receive less light due to greater tree density and canopy closure. Here we aim to evaluate if leaf anatomical traits of non-arboreal species differ according to the degree of tree encroachment at the Assis Ecological Station - São Paulo, Brazil. To this end, we evaluated leaf tissue thickness and specific leaf area (SLA in representative non-arboreal species occurring along a gradient of tree encroachment. Leaves of TS species showed a trend towards xeromorphism, with traits reported to facilitate survival under high luminosity, such as thick leaves, thick epidermis and mesophyll, and low SLA. In contrast, FS species exhibited mesomorphic leaves, with thin mesophyll and high SLA, which are able to capture diffuse light in denser environments. Thus, non-arboreal understory species with mesomorphic leaf traits should be favored in environments with denser vegetation in contrast to typical savanna species. The results suggest that typical non-arboreal savanna species would not survive under tree encroachment due to the low competitiveness of their leaf anatomical strategies in shady environments.

  19. Chamaedorea: diverse species in diverse habitats

    Directory of Open Access Journals (Sweden)

    1992-01-01

    Full Text Available DIVERSES ESPÈCES DANS DIVERS HABITATS. Des espèces extraordinairement diverses se trouvant dans des habitats également divers caractérisent Chamaedorea, un genre qui compte environ 90 espèces dioïques limitées aux sous-bois des forêts néo-tropicales constamment dans la pluie et les nuages du Mexique à la Bolivie et à l’Équateur. Une vaste gamme de formes biologiques, de tiges, de feuilles, d’inflorescences, de fleurs, et de fruits reflète la diversité des espèces. Bien que le genre soit plus riche en espèces dans les forêts denses et humides situées entre 800-1,500 mètres d’altitude, quelques espèces exceptionnelles se trouvent dans des forêts moins denses et/ou occasionnellement sèches, sur des substances dures ou dans d’autres habitats inhabituels. DIVERSAS ESPECIES EN DIVERSOS HÁBITATS. Especies notablemente diversas presentes en habitats igualmente diversos caracterizan a Chamaedorea, un genero de aproximadamente 90 especies dioicas limitadas al sotobosque de los bosques lluviosos y nubosos neotropicales desde Mexico hasta Bolivia y Ecuador. Una amplia gama de formas biológicas, tallos, hojas, inflorescencias, flores, y frutos refleja la diversidad de las especies. Aunque el género es más rico en especies en los bosques densos y húmedos de 800-1,500 metros de altura, unas pocas especies excepcionales ocurren en bosques abiertos o ocasionalmente secos, en substrato severo o en otros habitats extraordinarios. Remarkably diverse species occurring in equally diverse habitats characterize Chamaedorea, a genus of about 90, dioecious species restricted to the understory of neotropical rain and cloud forests from Mexico to Bolivia and Ecuador. A vast array of habits, stems, leaves, inflorescences, flowers, and fruits reflect the diversity of species. Although the genus is most species-rich in dense, moist or wet, diverse forests from 800-1,500 meters elevation, a few exceptional species occur in open and/or seasonally

  20. Comunidade de aves de sub-bosque em uma área de entorno do Parque Nacional do Itatiaia, Rio de Janeiro, Brasil Understory bird community in a surrounded area of Itatiaia National Park, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Eliana R. Maia-Gouvêa

    2005-12-01

    Full Text Available Este trabalho foi realizado em mata secundária no Município de Itatiaia, Estado do Rio de Janeiro (22º30'S e 44º30'W próximo ao Parque Nacional do Itatiaia, com o objeitvo de descrever a comunidade de aves ali presente. Foram amostrados três tipos vegetacionais distintos: reflorestamento, bosque e pomar, tendo sido realizadas 19 excursões entre 1984 e 1999. As aves foram amostradas através de capturas com redes de neblina e anilhamento, tendo sido utilizadas de 15 a 31 redes de 12 x 2 m e malha 36 mm. Foram também obtidas medidas morfométricas (comprimento total, asa, bico, cauda e tarso e dados biológicos (sexo, idade reprodução e muda. Depois de 5.621,79 horas-rede, foi registrado um total de 553 capturas, com 71 recapturas (12,84%; 417 indivíduos foram anilhados, e 65 beija-flores deixaram de ser marcados por falta de anilhas específicas. A comunidade estudada esteve representada por 77 espécies e 18 famílias, apresentando índice de diversidade H' = -1,594 e a curva do coletor com tendência à estabilização. As famílias com maior número de espécies foram Emberizidae (n = 21; 27,27% e Tyrannidae (n = 15; 19,48%. As espécies com maior abundância relativa foram Turdus leucomelas (n = 40; 9,59% e Turdus rufiventris (n = 36; 8,63%. Seis das espécies amostradas (7,8% são endêmicas do bioma Mata Atlântica. Na estação chuvosa foram amostradas 68 espécies, e na estação seca, 42; e as capturas estiveram relacionadas com as chuvas (rs = -0,6778; p = 0,05. O período reprodutivo ocorreu de outubro a março estando correlacionado com o início da estação chuvosa (rs = -0,702; p = 0,052.This study was conduced in a second growth woodland close to Itatiaia National Park (22º30'S e 44º30'W, Rio de Janeiro state, Brazil, and aimed to describe the understory bird community living in this area. We sampled three different vegetation types, reforestation, wood and orchard, through 19 field trips between 1984 and 1999. Birds

  1. (Annonaceae) species

    African Journals Online (AJOL)

    Aghomotsegin

    2016-03-09

    Mar 9, 2016 ... 2Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor. Darul Ehsan, Malaysia. ... The genus Xylopia comprises about 170 species and they are widely .... American Type Culture Collection (ATCC) while VRSA156 and. VISA24 were lab ...

  2. Tracking lags in historical plant species' shifts in relation to regional climate change.

    Science.gov (United States)

    Ash, Jeremy D; Givnish, Thomas J; Waller, Donald M

    2017-03-01

    Can species shift their distributions fast enough to track changes in climate? We used abundance data from the 1950s and the 2000s in Wisconsin to measure shifts in the distribution and abundance of 78 forest-understory plant species over the last half-century and compare these shifts to changes in climate. We estimated temporal shifts in the geographic distribution of each species using vectors to connect abundance-weighted centroids from the 1950s and 2000s. These shifts in distribution reflect colonization, extirpation, and changes in abundance within sites, separately quantified here. We then applied climate analog analyses to compute vectors representing the climate change that each species experienced. Species shifted mostly to the northwest (mean: 49 ± 29 km) primarily reflecting processes of colonization and changes in local abundance. Analog climates for these species shifted even further to the northwest, however, exceeding species' shifts by an average of 90 ± 40 km. Most species thus failed to match recent rates of climate change. These lags decline in species that have colonized more sites and those with broader site occupancy, larger seed mass, and higher habitat fidelity. Thus, species' traits appear to affect their responses to climate change, but relationships are weak. As climate change accelerates, these lags will likely increase, potentially threatening the persistence of species lacking the capacity to disperse to new sites or locally adapt. However, species with greater lags have not yet declined more in abundance. The extent of these threats will likely depend on how other drivers of ecological change and interactions among species affect their responses to climate change. © 2016 John Wiley & Sons Ltd.

  3. An updated checklist and key to the open-panicled species of Poa L. (Poaceae) in Peru including three new species, Poa ramoniana, Poa tayacajaensis, and Poa urubambensis

    Science.gov (United States)

    Sylvester, Steven P.; Soreng, Robert J.; Peterson, Paul M.; Sylvester, Mitsy D.P.V.

    2016-01-01

    Abstract We provide an updated checklist and key to the 30 Poa species with open panicles from Peru which includes previously circumscribed Dissanthelium and Aphanelytrum species, new taxon records, and three undescribed species. Poa compressa, Poa grisebachii, and Poa leioclada are recorded from Peru for the first time. A number of species are placed in synonymy: Poa carazensis, Poa ferreyrae and Poa tovarii are synonymized under the name Poa fibrifera; Poa adusta (tentatively) and Poa pilgeri are synonymized under Poa candamoana; Poa superata is synonymized under Poa grisebachii; and Poa paramoensis is synonymized under Poa huancavelicae. Included within this treatment are three new species, Poa ramoniana, Poa tayacajaensis and Poa urubambensis, which are described and illustrated. Poa ramoniana, found growing near lakes in high elevation Puna grasslands of Junín, is similar to a small form of Poa glaberrima, but differs in having rhizomes and growing to only 5 cm tall. Poa tayacajaensis, found from shrublands on Andean slopes of Huancavelica and Huánuco, bears similarities to Poa aequatoriensis but differs in having shorter lemmas which are pubescent between the veins, densely scabrous sheaths with smooth, glabrous throats, and shorter ligules. Poa urubambensis, a common element of the undisturbed Polylepis forest understory of the Cordillera Urubamba, Cusco, is distinct from all other members of open-panicled Poa’s by having glabrous lemmas with a smooth and glabrous callus, and notably small anthers. The type material for the name Poa adusta is discussed and a lectotype is selected. PMID:27489489

  4. Effects of elevated CO{sub 2} and temperature on photosynthesis and leaf traits of an understory dwarf bamboo in subalpine forest zone, China

    Energy Technology Data Exchange (ETDEWEB)

    Yongping Li; Yuanbin Zhang; Xiaolu Zhang; Chunyang Li [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu (China); Korpelainenc, H. [Univ. of Helsinki. Dept. of Agricultural Sciences, Helsinki (Finland); Berningerd, F. [Univ. of Helsinki. Dept. of Forest Sciences, Helsinki (Finland)

    2013-06-01

    The dwarf bamboo (Fargesia rufa Yi), growing understory in subalpine dark coniferous forest, is one of the main foods for giant panda, and it influences the regeneration of subalpine coniferous forests in southwestern China. To investigate the effects of elevated CO{sub 2}, temperature and their combination, the dwarf bamboo plantlets were exposed to two CO{sub 2} regimes (ambient and double ambient CO{sub 2} concentration) and two temperatures (ambient and +2.2 deg. C) in growth chambers. Gas exchange, leaf traits and carbohydrates concentration were measured after the 150-day experiment. Elevated CO{sub 2} significantly increased the net photosynthetic rate (A{sub net}), intrinsic water-use efficiency (WUE{sub i}) and carbon isotope composition ({delta}{sup 13}C) and decreased stomatal conductance (g{sub s}) and total chlorophyll concentration based on mass (Chl{sub m}) and area (Chl{sub a}). On the other hand, elevated CO{sub 2} decreased specific leaf area (SLA), which was increased by elevated temperature. Elevated CO{sub 2} also increased foliar carbon concentration based on mass (C{sub m}) and area (C{sub a}), nitrogen concentration based on area (N{sub a}), carbohydrates concentration (i.e. sucrose, sugar, starch and non-structural carbohydrates) and the slope of the A{sub net}-N{sub a} relationship. However, elevated temperature decreased C{sub m}, C{sub a} and N{sub a}. The combination of elevated CO{sub 2} and temperature hardly affected SLA, C{sub m}, C{sub a}, N{sub m}, N{sub a}, Chl{sub m} and Chl{sub a}. Variables A{sub net} and N{sub a} had positive linear relationships in all treatments. Our results showed that photosynthetic acclimation did not occur in dwarf bamboo at elevated CO{sub 2} and it could adjust physiology and morphology to enable the capture of more light, to increase WUE and improve nutritional conditions. (Author)

  5. Species-specific Mechanisms Contributing to the Mesophication of Upland Oak Stands in the Absence of Fire

    Science.gov (United States)

    Babl, E. K.; Alexander, H. D.; Siegert, C. M.; Willis, J. L.; Berry, A. I.

    2017-12-01

    Upland oak forests of the eastern United States are shifting dominance towards shade-tolerant, fire-intolerant species. This shift is hypothesized to be driven by anthropogenic fire suppression and lead to mesophication, a positive feedback loop where shade-tolerant, fire-sensitive species (i.e. mesophytes) create a cool, moist understory, reducing forest flammability and promoting their own proliferation at the expense of pyrophytic, shade-intolerant species such as oaks. There have been few empirical studies identifying mechanisms of mesophication, and these studies have yet to extensively explore potential mesophytes other than red maple (Acer rubrum). To address this issue, we sampled four hypothesized mesophytes (A. rubrum, A. saccharum, Carya glabra, and Fagus grandifolia) and two upland oak species (Quercus alba and Q. montana) across a gradient of sizes (20-60 cm DBH) in western Kentucky. We quantified canopy, bark, and leaf litter traits among upland oaks and mesophytes that may lead to differences in forest flammability. Preliminary results show that mesophytes had thinner and smoother bark than upland oaks and an increased canopy volume (normalized to stem volume), traits known to influence water movement through the canopy and understory microclimate. Maple leaf litter also decomposed faster, which could decrease fuel loads; after 6 months, red and sugar maple leaf litter lost 37% of original mass compared to 32%, 22%, and 14% mass loss in hickory, oak, and American beech litter, respectively. Furthermore, volumetric soil moisture of the soil organic layer beneath the canopies of mesophytes was 62% moister two days following a rainfall event compared to oaks. These differences in soil organic layer water retention after rainfall could lead to fuel discontinuity. These findings suggest that mesophytes may alter future forest flammability through their bark, canopy, and leaf litter traits which may modify fuel moisture, loads, and continuity and that a

  6. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Directory of Open Access Journals (Sweden)

    Bing Mao

    Full Text Available Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  7. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Science.gov (United States)

    Mao, Bing; Mao, Rong; Zeng, De-Hui

    2017-01-01

    Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  8. Life history and past demography maintain genetic structure, outcrossing rate, contemporary pollen gene flow of an understory herb in a highly fragmented rainforest

    Directory of Open Access Journals (Sweden)

    Pilar Suárez-Montes

    2016-12-01

    Full Text Available Introduction Theory predicts that habitat fragmentation, by reducing population size and increasing isolation among remnant populations, can alter their genetic diversity and structure. A cascade of effects is expected: genetic drift and inbreeding after a population bottleneck, changes in biotic interactions that may affect, as in the case of plants, pollen dynamics, mating system, reproductive success. The detection of the effects of contemporary habitat fragmentation on the genetic structure of populations are conditioned by the magnitude of change, given the few number of generations since the onset of fragmentation, especially for long-lived organisms. However, the present-day genetic structure of populations may bear the signature of past demography events. Here, we examine the effects of rainforest fragmentation on the genetic diversity, population structure, mating system (outcrossing rate, indirect gene flow and contemporary pollen dynamics in the understory herb Aphelandra aurantiaca. Also, we assessed its present-day genetic structure under different past demographic scenarios. Methods Twelve populations of A. aurantiaca were sampled in large (4, medium (3, and small (5 forest fragments in the lowland tropical rainforest at Los Tuxtlas region. Variation at 11 microsatellite loci was assessed in 28–30 reproductive plants per population. In two medium- and two large-size fragments we estimated the density of reproductive plants, and the mating system by analyzing the progeny of different mother plants per population. Results Despite prevailing habitat fragmentation, populations of A. aurantiaca possess high genetic variation (He = 0.61, weak genetic structure (Rst = 0.037, and slight inbreeding in small fragments. Effective population sizes (Ne were large, but slightly lower in small fragments. Migrants derive mostly from large and medium size fragments. Gene dispersal is highly restricted but long distance gene dispersal events

  9. Life history and past demography maintain genetic structure, outcrossing rate, contemporary pollen gene flow of an understory herb in a highly fragmented rainforest.

    Science.gov (United States)

    Suárez-Montes, Pilar; Chávez-Pesqueira, Mariana; Núñez-Farfán, Juan

    2016-01-01

    Theory predicts that habitat fragmentation, by reducing population size and increasing isolation among remnant populations, can alter their genetic diversity and structure. A cascade of effects is expected: genetic drift and inbreeding after a population bottleneck, changes in biotic interactions that may affect, as in the case of plants, pollen dynamics, mating system, reproductive success. The detection of the effects of contemporary habitat fragmentation on the genetic structure of populations are conditioned by the magnitude of change, given the few number of generations since the onset of fragmentation, especially for long-lived organisms. However, the present-day genetic structure of populations may bear the signature of past demography events. Here, we examine the effects of rainforest fragmentation on the genetic diversity, population structure, mating system (outcrossing rate), indirect gene flow and contemporary pollen dynamics in the understory herb Aphelandra aurantiaca . Also, we assessed its present-day genetic structure under different past demographic scenarios. Twelve populations of A. aurantiaca were sampled in large (4), medium (3), and small (5) forest fragments in the lowland tropical rainforest at Los Tuxtlas region. Variation at 11 microsatellite loci was assessed in 28-30 reproductive plants per population. In two medium- and two large-size fragments we estimated the density of reproductive plants, and the mating system by analyzing the progeny of different mother plants per population. Despite prevailing habitat fragmentation, populations of A. aurantiaca possess high genetic variation ( H e  = 0.61), weak genetic structure ( R st  = 0.037), and slight inbreeding in small fragments. Effective population sizes ( N e ) were large, but slightly lower in small fragments. Migrants derive mostly from large and medium size fragments. Gene dispersal is highly restricted but long distance gene dispersal events were detected. Aphelandra

  10. Species turnover in tropical montane forest avifauna links to climatic correlates

    Directory of Open Access Journals (Sweden)

    Chi-Feng Tsai

    2015-01-01

    Full Text Available We examined avifauna richness and composition in Taiwan’s tropical montane forests, and compared to historical records dated 22 years ago. A richness attrition of 44 species caused a discrepancy of 30.2%, and an estimated yearly turnover of 2.2%. More resident species that were narrower or lower in elevation distribution, insectivores/omnivores, small to medium-sized, forest/open-field dwelling, and canopy/ground foragers, vanished; whereas piscivores, carnivores, riparian- and shrub-dwellers, ground and mid-layer foragers, and migrants suffered by higher proportions. Occurrence frequencies of persistent species remained constant but varied among ecological groups, indicating an increased homogeneity for smaller-sized insectivores/omnivores dwelling in the forest canopy, shrub, or understory. While the overall annual temperature slightly increased, a relatively stable mean temperature was replaced by an ascending trend from the mid-1990s until 2002, followed by a cooling down. Mean maximum temperatures increased but minimums decreased gradually over years, resulting in increasing temperature differences up to over 16 °C. This accompanied an increase of extreme typhoons affecting Taiwan or directly striking these montane forests during the last decade. These results, given no direct human disturbances were noted, suggest a link between the species turnover and recent climate change, and convey warning signs of conservation concerns for tropical montane assemblages.

  11. Assessing the impact of revegetation and weed control on urban sensitive bird species.

    Science.gov (United States)

    Archibald, Carla L; McKinney, Matthew; Mustin, Karen; Shanahan, Danielle F; Possingham, Hugh P

    2017-06-01

    Nature in cities is concentrated in urban green spaces, which are key areas for urban biodiversity and also important areas to connect people with nature. To conserve urban biodiversity within these natural refugia, habitat restoration such as weed control and revegetation is often implemented. These actions are expected to benefit biodiversity, although species known to be affected by urbanization may not be interacting with restoration in the ways we anticipate. In this study, we use a case study to explore how urban restoration activities impact different bird species. Birds were grouped into urban sensitivity categories and species abundance, and richness was then calculated using a hierarchical species community model for individual species responses, with "urban class" used as the hierarchical parameter. We highlight variable responses of birds to revegetation and weed control based on their level of urban sensitivity. Revegetation of open grassy areas delivers significant bird conservation outcomes, but the effects of weed control are neutral or in some cases negative. Specifically, the species most reliant on remnant vegetation in cities seem to remain stable or decline in abundance in areas with weed control, which we suspect is the result of a simplification of the understorey. The literature reports mixed benefits of weed control between taxa and between locations. We recommend, in our case study site, that weed control be implemented in concert with replanting of native vegetation to provide the understory structure preferred by urban sensitive birds. Understanding the impacts of revegetation and weed control on different bird species is important information for practitioners to make restoration decisions about the allocation of funds for conservation action. This new knowledge can be used both for threatened species and invasive species management.

  12. Effects of rhododendron removal on the water use of hardwood species following eastern hemlock mortality

    Science.gov (United States)

    Hawthorne, S. N.; Miniat, C.; Elliott, K.

    2017-12-01

    Forest disturbance that alters vegetation species composition can affect ecosystem productivity and function. The loss of eastern hemlock (Tsuga canadensis) to hemlock woolly adelgid infestations in southern Appalachian Mountains has resulted in more than a two-fold increase in growth of co-occurring rhododendron (Rhododendron maximum) understory, evergreen shrubs. In contrast, the growth of hardwood species increased by 1.2 fold during the same 5 year period following infestation. This study examines the effects of mechanically removing the rhododendron shrub layer on water use and growth of hardwood species. The treatment—hypothesized to speed ecosystem recovery of structure and function—involved cutting, spreading and burning rhododendron stems to remove both rhododendron and soil O-horizon. Sap flow, soil moisture and micro-climate (humidity, temperature) were measured in a pair of reference and treated plots. Preliminary results from the relatively dry summer/fall 2016 have shown that the mean daily transpiration (Et) of the treated plot was 24% greater than the mean daily Et of hardwood trees in the reference plot (t-test, p increase tree growth and recruitment. Thus, in the wake of hemlock loss, recovery of riparian forest structure and function may be aided with shrub layer removal.

  13. Thresholds of species loss in Amazonian deforestation frontier landscapes.

    Science.gov (United States)

    Ochoa-Quintero, Jose Manuel; Gardner, Toby A; Rosa, Isabel; Ferraz, Silvio Frosini de Barros; Sutherland, William J

    2015-04-01

    In the Brazilian Amazon, private land accounts for the majority of remaining native vegetation. Understanding how land-use change affects the composition and distribution of biodiversity in farmlands is critical for improving conservation strategies in the face of rapid agricultural expansion. Working across an area exceeding 3 million ha in the southwestern state of Rondônia, we assessed how the extent and configuration of remnant forest in replicate 10,000-ha landscapes has affected the occurrence of a suite of Amazonian mammals and birds. In each of 31 landscapes, we used field sampling and semistructured interviews with landowners to determine the presence of 28 large and medium sized mammals and birds, as well as a further 7 understory birds. We then combined results of field surveys and interviews with a probabilistic model of deforestation. We found strong evidence for a threshold response of sampled biodiversity to landscape level forest cover; landscapes with deforested landscapes many species are susceptible to extirpation following relatively small additional reductions in forest area. In the model of deforestation by 2030 the number of 10,000-ha landscapes under a conservative threshold of 43% forest cover almost doubled, such that only 22% of landscapes would likely to be able to sustain at least 75% of the 35 focal species we sampled. Brazilian law requires rural property owners in the Amazon to retain 80% forest cover, although this is rarely achieved. Prioritizing efforts to ensure that entire landscapes, rather than individual farms, retain at least 50% forest cover may help safeguard native biodiversity in private forest reserves in the Amazon. © 2015 Society for Conservation Biology.

  14. Wildlife species associated with non-coniferous vegetation in Pacific Northwest conifer forests: A review

    Science.gov (United States)

    Hagar, J.C.

    2007-01-01

    Non-coniferous vegetation, including herbs, shrubs, and broad-leaved trees, makes a vital contribution to ecosystem function and diversity in Pacific Northwest conifer forests. However, forest management has largely been indifferent or detrimental to shrubs and trees that have low commercial value, in spite of a paradigm shift towards more holistic management in recent decades. Forest management practices that are detrimental to broad-leaved trees and shrubs are likely to decrease habitat diversity for wildlife, but the number of species that may be affected has not previously been enumerated. I reviewed life history accounts for forest-dwelling vertebrate wildlife species and derived a list of 78 species in Oregon and Washington that are associated with non-coniferous vegetation. The diversity of direct and indirect food resources provided was the primary functional basis for associations of most species with non-coniferous vegetation. Thus, a diversity of herbs and broad-leaved trees and shrubs provides the foundation for food webs that contribute to diversity at multiple trophic levels in Pacific Northwest conifer forests. Given the number of species associated with non-coniferous vegetation in conifer-dominated forests, maintaining habitats that support diverse plant communities, particularly broad-leaved trees and shrubs, will be an important component of management strategies intended to foster biodiversity. Silvicultural practices such as modified planting densities, and pre-commercial and commercial thinning, can be used to control stand density in order to favor the development of understory herbs, shrubs, and a diversity of tree species within managed stands. Allowing shrubs and hardwood trees to develop and persist in early seral stands by curtailing vegetation control also would benefit many species associated with non-coniferous vegetation.

  15. Comparative measurements of transpiration an canopy conductance in two mixed deciduous woodlands differing in structure and species composition

    DEFF Research Database (Denmark)

    Herbst, Mathias; Rosier, Paul T.W.; Morecroft, Michael D.

    2008-01-01

    a continuous hazel (Corylus avellana L.) understory. Wytham Woods, which had an LAI of 3.6, was dominated by ash (Fraxinus excelsior L.) and sycamore (Acer pseudoplatanus L.) and had only a sparse understory. Annual canopy transpiration was 367 mm for Grimsbury Wood and 397 mm for Wytham Woods. These values...

  16. Survival and growth of three endangered oak species in a Mexican montane cloud forest

    Directory of Open Access Journals (Sweden)

    Ofelia Andrea Valdés-Rodríguez

    2017-07-01

    Full Text Available Cloud forests are amongst the world’s most impacted and endangered forest types, with Mexican cloud forests amongst the most degraded. These species rich forests are characterized by a diversity of congeneric oak species which dominate the canopy of mature forests. An improved understanding of the establishment requirements of oak seedlings in cloud forests is needed for conservation and restoration purposes. The aim of this study was to assess the influence of light conditions during early establishment of three endangered Quercus species. Seedling growth and biomass allocation in Quercus insignis M. Martens & Galeotti, Q. sartorii Liebm. and Q. xalapensis Bonpl. was determined under two light levels: light gap (1338 µmol m-2 s-1 and closed canopy (118 µmol m-2 s-1 in a cloud forest in Veracruz, Mexico. Growth and development were evaluated over the first 13 months. Results suggest there was a significant effect of light conditions on growth rate and biomass allocation. Although survival rate was similar among both environments, the three species showed lower growth rates under the closed canopy during the first nine months, while elongation rate was higher during the last three months under this environment compared to the light gap. Across all species, fresh biomass and dry biomass of roots, stem and leaves were almost 50% higher in light gap than under closed canopy. Q. insignis produced more biomass in shoots and roots than Q. sartorii and Q. xalapensis, which may increase its establishment success in shaded conditions. Results suggest that these three oak species are suited to planting in small gaps, but also in shaded understory conditions, as high early survival (>90% may allow enrichment planting in advance of gap creation.

  17. Over-browsing in Pennsylvania creates a depauperate forest dominated by an understory tree: results from a 60-year-old deer exclosure

    Science.gov (United States)

    Morgan Kain; Loretta Battaglia; Alejandro Royo; Walter P. Carson

    2011-01-01

    We evaluated the impact of long-term over-browsing by white-tailed deer on the diversity and density of trees in a forest in the Allegheny High Plateau region of central Pennsylvania.We compared tree diversity and density inside a 60 year-old deer exclosure to an adjacent reference site. Browsing caused a 55-100% decline in density of four tree species (Prunus...

  18. Ecological distribution of leaf stomata and trichomes among tree species in a Malaysian lowland tropical rain forest.

    Science.gov (United States)

    Ichie, Tomoaki; Inoue, Yuta; Takahashi, Narumi; Kamiya, Koichi; Kenzo, Tanaka

    2016-07-01

    The vertical structure of a tropical rain forest is complex and multilayered, with strong variation of micro-environment with height up to the canopy. We investigated the relation between morphological traits of leaf surfaces and tree ecological characteristics in a Malaysian tropical rain forest. The shapes and densities of stomata and trichomes on the abaxial leaf surfaces and their relation with leaf characteristics such as leaf area and leaf mass per area (LMA) were studied in 136 tree species in 35 families with different growth forms in the tropical moist forest. Leaf physiological properties were also measured in 50 canopy and emergent species. Most tree species had flat type (40.4 %) or mound type (39.7 %) stomata. In addition, 84 species (61.76 %) in 22 families had trichomes, including those with glandular (17.65 %) and non-glandular trichomes (44.11 %). Most leaf characteristics significantly varied among the growth form types: species in canopy and emergent layers and canopy gap conditions had higher stomatal density, stomatal pore index (SPI), trichome density and LMA than species in understory and subcanopy layers, though the relation of phylogenetically independent contrasts to each characteristic was not statistically significant, except for leaf stomatal density, SPI and LMA. Intrinsic water use efficiency in canopy and emergent tree species with higher trichome densities was greater than in species with lower trichome densities. These results suggest that tree species in tropical rain forests adapt to a spatial difference in their growth forms, which are considerably affected by phylogenetic context, by having different stomatal and trichome shapes and/or densities.

  19. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    Science.gov (United States)

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high

  20. A trans-Amazonian screening of mtDNA reveals deep intraspecific divergence in forest birds and suggests a vast underestimation of species diversity.

    Directory of Open Access Journals (Sweden)

    Borja Milá

    Full Text Available The Amazonian avifauna remains severely understudied relative to that of the temperate zone, and its species richness is thought to be underestimated by current taxonomy. Recent molecular systematic studies using mtDNA sequence reveal that traditionally accepted species-level taxa often conceal genetically divergent subspecific lineages found to represent new species upon close taxonomic scrutiny, suggesting that intraspecific mtDNA variation could be useful in species discovery. Surveys of mtDNA variation in Holarctic species have revealed patterns of variation that are largely congruent with species boundaries. However, little information exists on intraspecific divergence in most Amazonian species. Here we screen intraspecific mtDNA genetic variation in 41 Amazonian forest understory species belonging to 36 genera and 17 families in 6 orders, using 758 individual samples from Ecuador and French Guiana. For 13 of these species, we also analyzed trans-Andean populations from the Ecuadorian Chocó. A consistent pattern of deep intraspecific divergence among trans-Amazonian haplogroups was found for 33 of the 41 taxa, and genetic differentiation and genetic diversity among them was highly variable, suggesting a complex range of evolutionary histories. Mean sequence divergence within families was the same as that found in North American birds (13%, yet mean intraspecific divergence in Neotropical species was an order of magnitude larger (2.13% vs. 0.23%, with mean distance between intraspecific lineages reaching 3.56%. We found no clear relationship between genetic distances and differentiation in plumage color. Our results identify numerous genetically and phenotypically divergent lineages which may result in new species-level designations upon closer taxonomic scrutiny and thorough sampling, although lineages in the tropical region could be older than those in the temperate zone without necessarily representing separate species. In

  1. Tropical Forest Fragmentation Limits Movements, but Not Occurrence of a Generalist Pollinator Species.

    Directory of Open Access Journals (Sweden)

    Noelia L Volpe

    Full Text Available Habitat loss and fragmentation influence species distributions and therefore ecological processes that depend upon them. Pollination may be particularly susceptible to fragmentation, as it depends on frequent pollinator movement. Unfortunately, most pollinators are too small to track efficiently which has precluded testing the hypothesis that habitat fragmentation reduces or eliminates pollen flow by disrupting pollinator movement. We used radio-telemetry to examine space use of the green hermit hummingbird (Phaethornis guy, an important 'hub' pollinator of understory flowering plants across substantial portions of the neotropics and the primary pollinator of a keystone plant which shows reduced pollination success in fragmented landscapes. We found that green hermits strongly avoided crossing large stretches of non-forested matrix and preferred to move along stream corridors. Forest gaps as small as 50 m diminished the odds of movement by 50%. Green hermits occurred almost exclusively inside the forest, with the odds of occurrence being 8 times higher at points with >95% canopy cover compared with points having <5% canopy cover. Nevertheless, surprisingly. the species occurred in fragmented landscapes with low amounts of forest (~30% within a 2 km radius. Our results indicate that although green hermits are present even in landscapes with low amounts of tropical forest, movement within these landscapes ends up strongly constrained by forest gaps. Restricted movement of pollinators may be an underappreciated mechanism for widespread declines in pollination and plant fitness in fragmented landscapes, even when in the presence of appropriate pollinators.

  2. Acceleration and novelty: community restoration speeds recovery and transforms species composition in Andean cloud forest.

    Science.gov (United States)

    Wilson, Sarah Jane; Rhemtulla, Jeanine M

    2016-01-01

    Community-based tropical forest restoration projects, often promoted as a win-win solution for local communities and the environment, have increased dramatically in number in the past decade. Many such projects are underway in Andean cloud forests, which, given their extremely high biodiversity and history of extensive clearing, are understudied. This study investigates the efficacy of community-based tree-planting projects to accelerate cloud forest recovery, as compared to unassisted natural regeneration. This study takes place in northwest Andean Ecuador, where the majority of the original, highly diverse cloud forests have been cleared, in five communities that initiated tree-planting projects to restore forests in 2003. In 2011, we identified tree species along transects in planted forests (n = 5), naturally regenerating forests (n = 5), and primary forests (n = 5). We also surveyed 120 households about their restoration methods, tree preferences, and forest uses. We found that tree diversity was higher in planted than in unplanted secondary forest, but both were less diverse than primary forests. Ordination analysis showed that all three forests had distinct species compositions, although planted forests shared more species with primary forests than did unplanted forests. Planted forests also contained more animal-dispersed species in both the planted canopy and in the unplanted, regenerating understory than unplanted forests, and contained the highest proportion of species with use value for local people. While restoring forest increased biodiversity and accelerated forest recovery, restored forests may also represent novel ecosystems that are distinct from the region's previous ecosystems and, given their usefulness to people, are likely to be more common in the future.

  3. Status of herbicide technology for control of tree species and to reduce shrub and grass competition

    Science.gov (United States)

    Maxwell L., Jr. McCormack

    1977-01-01

    The values of herbicides as silvicultural tools are summarized. Treatments are discussed with reference to chemicals and methods of application as they pertain to control of grass and herbaceous weeds, understory vegetation, and overstory vegetation.

  4. Species concept and speciation

    Directory of Open Access Journals (Sweden)

    Amal Y. Aldhebiani

    2018-03-01

    Full Text Available Defining and recognizing a species has been a controversial issue for a long time. To determine the variation and the limitation between species, many concepts have been proposed. When a taxonomist study a particular taxa, he/she must adopted a species concept and provide a species limitation to define this taxa. In this paper some of species concepts are discussed starting from the typological species concepts to the phylogenetic concept. Positive and negative aspects of these concepts are represented in addition to their application.

  5. Effects of invasive alien kahili ginger (Hedychium gardnerianum) on native plant species regeneration in a Hawaiian rainforest

    Science.gov (United States)

    Minden, V.; Jacobi, J.D.; Porembski, S.; Boehmer, H.J.

    2010-01-01

    Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non-native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m. a.s.l.; precipitation approximately 2770mm yr-1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum-domimted herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using nonparametric H-tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger-dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure. ?? 2009 International Association for Vegetation Science.

  6. Do seasonal changes in light availability influence the inverse leafing phenology of the neotropical dry forest understory shrub Bonellia nervosa (Theophrastaceae?

    Directory of Open Access Journals (Sweden)

    Oscar M Chaves

    2008-03-01

    Full Text Available In tropical dry forests most plants are deciduous during the dry season and flush leaves with the onset of the rains. In Costa Rica, the only species displaying the opposite pattern is Bonellia nervosa. To determine if seasonal changes in light availability are associated with the leaf and reproductive phenology of this species, we monitored leaf production, survival, and life span, as well as flower and fruit production from April 2000 to October 2001 in Santa Rosa National Park. Leaf flushing and flower bud production took place shortly after the autumnal equinox when day length starts to decrease. Leaves began expansion at the end of the wet season, and plants reached 70 % of their maximum leaf area at the beginning of the dry season, maintaining their foliage throughout the entire dry period. Leaf shedding occurred gradually during the first three months of the wet season. Leaf flushing and shedding showed high synchrony, with leaf numbers being related to light availability. Maximum leaf production coincided with peaks in radiation during the middle of the dry season. Decreasing day length induces highly synchronous flower bud emergence in dry forest species, but this is the first study indicating induction of leaf flushing by declining day length. Rev. Biol. Trop. 56 (1: 257-268. Epub 2008 March 31.En los bosques tropicales secos la mayoría de las plantas pierden sus hojas durante la estación seca y las producen con el inicio de las lluvias. En Costa Rica la única especie que muestra el patrón fenológico inverso es Bonellia nervosa. Para determinar si los cambios estacionales en la disponibilidad de luz estaban asociados con la fenología foliar y reproductiva en esta especie, monitoreamos la producción y sobrevivencia de hojas, así como la producción de flores y frutos de abril del 2000 a octubre del 2001 en el Parque Nacional Santa Rosa. La producción de hojas y botones florales ocurrió poco después del equinoccio de oto

  7. Altitudinal Patterns of Species Diversity and Phylogenetic Diversity across Temperate Mountain Forests of Northern China.

    Directory of Open Access Journals (Sweden)

    Wenxin Zhang

    Full Text Available The spatial patterns of biodiversity and their underlying mechanisms have been an active area of research for a long time. In this study, a total of 63 samples (20m × 30m were systematically established along elevation gradients on Mount Tai and Mount Lao, China. We explored altitudinal patterns of plant diversity in the two mountain systems. In order to understand the mechanisms driving current diversity patterns, we used phylogenetic approaches to detect the spatial patterns of phylogenetic diversity and phylogenetic structure along two elevation gradients. We found that total species richness had a monotonically decreasing pattern and tree richness had a unimodal pattern along the elevation gradients in the two study areas. However, altitudinal patterns in shrub richness and herbs richness were not consistent on the two mountains. At low elevation, anthropogenic disturbances contributed to the increase of plant diversity, especially for shrubs and herbs in understory layers, which are more sensitive to changes in microenvironment. The phylogenetic structure of plant communities exhibited an inverted hump-shaped pattern along the elevation gradient on Mount Tai, which demonstrates that environmental filtering is the main driver of plant community assembly at high and low elevations and inter-specific competition may be the main driver of plant community assembly in the middle elevations. However, the phylogenetic structure of plant communities did not display a clear pattern on Mount Lao where the climate is milder. Phylogenetic beta diversity and species beta diversity consistently increased with increasing altitudinal divergence in the two study areas. However, the altitudinal patterns of species richness did not completely mirror phylogenetic diversity patterns. Conservation areas should be selected taking into consideration the preservation of high species richness, while maximizing phylogenetic diversity to improve the potential for

  8. Endangered Species Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of the Endangered Species Act (ESA) is to protect and recover imperiled species and the ecosystems upon which they depend. The U.S. Fish and Wildlife...

  9. Endangered Species Protection Bulletins

    Science.gov (United States)

    Endangered Species Protection Bulletins set forth geographically specific pesticide use limitations for the protection of threatened and endangered (listed) species and their designated critical habitat. Find out how to get and use Bulletins.

  10. National invasive species program

    Science.gov (United States)

    Anna Rinick

    2007-01-01

    The structure and function of the National Invasive Species Council was presented below. The names and contact information for the USDA Invasive Species coordinators as of February 2006 were presented on the next page.

  11. Seasonal moisture fluctuations four species of pocosin vegetation

    Science.gov (United States)

    George W. Wendel; Theodore G. Storey

    1962-01-01

    During the most severe burning conditions practically all of the living understory vegetation on pocosins may be consumed by fire (9). Even under less severe conditions leaves and branch tips are readily consumed. Whether the moisture content in the living vegetation is high, as it is in the spring, or low, as in the winter, exerts a strong influence on fuel...

  12. Species choice, provenance and species trials among native Brazilian species

    Energy Technology Data Exchange (ETDEWEB)

    Drumond, M.A.

    1982-01-01

    Six papers from the conference are presented. Drumond, M.A., Potential of species native to the semi-arid tropics, 766-781, (Refs. 18), reports on Anadenanthera macrocarpa, Mimosa species, Schinopsis brasiliensis, Spondias tuberosa, Ziziphus joazeiro, Cnidoscolus phyllacanthus, Bursera leptophleos (leptophloeos), Tabebuia impetiginosa, Astronium urundeuva, and Mimosa caesalpinia. Monteiro, R.F.R., Speltz, R.M., Gurgel, J.T. do A.; Silvicultural performance of 24 provenances of Araucaria angustifolia in Parana, 814-824, (Refs. 8). Pires, C.L. da S., Kalil Filho, A.N., Rosa, P.R.F. da, Parente, P.R., Zanatto, A.C.S.; Provenance trials of Cordia alliodora in the State of Sao Paulo, 988-995, (Refs. 9). Nogueira, J.C.B., Siqueira, A.C.M.F., Garrido, M.A.O., Gurgel Garrido, L.M. do A., Rosa, P.R.F., Moraes, J.L. de, Zandarin, M.A., Gurgel Filho, O.A., Trials of some native species in various regions of the State of Sao Paulo, 1051-1063, (Refs. 9) describes Centrolobium tomentosum, Peltophorum dubium, Tabebuia vellosoi, Cariniana legalis, and Balfourodendron riedelianum. Batista, M.P., Borges, J.F., Franco, M.A.B.; Early growth of a native species in comparison with exotics in northeastern Para, Brazil, 1105-1110, (Refs. 3). Jacaranda copaia is compared with Gmelina arborea, Pinus caribaea various hondurensis, Eucalyptus deglupta, and E. urophylla. Lima, P.C.F., Souza, S.M. de, Drumond, M.A.; Trials of native forest species at Petrolina, Pernambuco, 1139-1148, (Refs. 8), deals with Anadenanthera macrocarpa, Piptadenia obliqua, Pithecellobium foliolosum, Astronium urundeuva, Schinopsis brasiliensis, Cassia excelsa, Caesalpinia pyramidalis, Parkia platycephala, Pseudobombax simplicifolium, Tabebuia impetiginosa, Caesalpinia ferrea, and Aspidosperma pyrifolium. 18 references.

  13. Efficacy and environmental fate of imazapyr from directed helicopter applications targeting Tamarix species infestations in Colorado.

    Science.gov (United States)

    Douglass, Cameron H; Nissen, Scott J; Kniss, Andrew R

    2016-02-01

    Aerial imazapyr applications are the most common and cost-effective method for controlling invasive tamarisk, but few studies have investigated whether or how infestation and site characteristics influence control and non-target impacts. This study used vertical stands with filter papers, plus soil and tree canopy sampling, to investigate how tamarisk canopies affected retention of applied imazapyr, soil herbicide residues and tree mortality. Tamarisk canopies captured 71% of aerially applied imazapyr, resulting in significantly lower soil residues beneath the tree canopy. Although initial imazapyr soil residue levels outside the tree canopy were 4 times greater than those inside, soil degradation occurred 2.4 times faster outside the tamarisk canopy and resulted in lower herbicide residues. Tamarisk mortality within 3 years was 70%, but variability in control appeared to be affected by non-linear stand boundaries and tall site obstructions. These same factors also increased variability in the actual quantity of herbicide applied, exacerbating collateral impacts on desirable understory species. While aerial imazapyr applications are highly effective in controlling tamarisk, our study provides evidence for the importance of evaluating overall site suitability for this management strategy so the probability of unintended ecological effects can be minimized. © 2015 Society of Chemical Industry.

  14. Detection of cryptic species

    International Nuclear Information System (INIS)

    Cockburn, A.F.; Jensen, T.; Seawright, J.A.

    1998-01-01

    Morphologically similar cryptic species are common in insects. In Anopheles mosquitoes morphologically described species are complexes of cryptic species. Cryptic species are of great practical importance for two reasons: first, one or more species of the complex might not be a pest and control efforts directed at the complex as a whole would therefore be partly wasted; and second, genetic (and perhaps biological) control strategies directed against one species of the complex would not affect other species of the complex. At least one SIT effort has failed because the released sterile insect were of a different species and therefore did not mate with the wild insects being targeted. We use a multidisciplinary approach for detection of cryptic species complexes, focusing first on identifying variability in wild populations using RFLPs of mitochondrial and ribosomal RNA genes (mtDNA and rDNA); followed by confirmation using a variety of other techniques. For rapid identification of wild individuals of field collections, we use a DNA dot blot assay. DNA probes can be isolated by differential screening, however we are currently focusing on the sequencing of the rDNA extragenic spacers. These regions are repeated several hundred times per genome in mosquitoes and evolve rapidly. Molecular drive tends to keen the individual genes homogeneous within a species. (author)

  15. Changes in the structure and dynamics of marine assemblages dominated by Bifurcaria bifurcata and Cystoseira species over three decades (1977-2007)

    Science.gov (United States)

    Méndez-Sandín, Miguel; Fernández, Consolación

    2016-06-01

    Two low intertidal assemblages dominated in 1977 by Bifurcaria bifurcata and Cystoseira baccata-Saccorhiza polyschides in the North coast of Spain show changes in the structure and dynamics after 30 years. A re-survey in 2007 detected phenological changes affecting the annual cycle of dominant canopy species. B. bifurcata has shortened its growth period and undergone a decrease in biomass, while C. baccata lengthened its period of growth and increased its biomass. Also important were the disappearance of Saccorhiza polyschides and the increase of Cystoseira tamariscifolia. These changes affect the rest of the species of the assemblages, with a shift in the main understory species and an increase in crustose coralline algae although the overall biomass of the subcanopy was similar. The species richness shows a sharp increase, at the expense of increasing epiphytes and simpler functional and morphological groups. These biological changes agree with the general trends of increasing sea surface temperature and the relaxation of the summer upwelling affecting the North coast of Spain, but the results were unexpected in the case of Bifurcaria bifurcata.

  16. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance.

    Science.gov (United States)

    Mensah, Sylvanus; Veldtman, Ruan; Assogbadjo, Achille E; Glèlè Kakaï, Romain; Seifert, Thomas

    2016-10-01

    maximum plant height, reflecting the importance of forest vertical stratification for diversity-carbon relationship. We therefore argue for stronger complementary effects that would be induced also by complementary light-use efficiency of tree and species growing in the understory layer.

  17. Development and characterization of novel microsatellite markers in Trillium govanianum: a threatened plant species from North-Western Himalaya.

    Science.gov (United States)

    Sharma, Vikas; Wani, Mohammad Saleem; Singh, Vijay; Kaur, Kuljit; Gupta, Raghbir Chand

    2017-07-01

    Trillium govanianum is a temperate forest understory plant species of high value belonging to the family Melanthiaceae. It is endemic to Himalayan region and facing a bottleneck situation due to reckless extractions from its natural strands. In the present study, 21 microsatellite markers were developed and characterized in 20 accessions of T. govanianum. Collectively, the polymorphic markers amplified 31 alleles in a range of 2-4 with an average of 2.6 alleles per marker. The mean observed heterozygosity (H o ), expected heterozygosity (H e ), and Shannon information index (I) were 0.46, 0.48, and 0.73, respectively. Average polymorphism information content (PIC) was 0.385. The cross-transferability in a related species, namely, Polygonatum verticillatum, showed amplification of ten markers. The newly developed microsatellite markers efficiently distinguished the different accessions on the basis of their geographic origin. Thus, these microsatellites can be useful in exploring genetic diversity in various existing populations of T. govanianum in north-western Himalaya, which may be useful for their conservation, management, and improvement in future.

  18. Performance of seedlings of a shade-tolerant tropical tree species after moderate addition of N and P

    Science.gov (United States)

    Cárate Tandalla, Daisy; Leuschner, Christoph; Homeier, Jürgen

    2015-12-01

    Nitrogen deposition to tropical forests is predicted to increase in future in many regions due to agricultural intensification. We conducted a seedling transplantation experiment in a tropical premontane forest in Ecuador with a locally abundant late-successional tree species (Pouteria torta, Sapotaceae) aimed at detecting species-specific responses to moderate N and P addition and to understand how increasing nutrient availability will affect regeneration. From locally collected seeds, 320 seedlings were produced and transplanted to the plots of the Ecuadorian Nutrient Manipulation Experiment (NUMEX) with three treatments (moderate N addition: 50 kg N ha-1 yr-1, moderate P addition: 10 kg P ha-1 yr-1 and combined N and P addition) and a control (80 plants per treatment). After 12 months, mortality, relative growth rate, leaf nutrient content and leaf herbivory rate were measured. N and NP addition significantly increased the mortality rate (70 % vs. 54 % in the control). However, N and P addition also increased the diameter growth rate of the surviving seedlings. N and P addition did not alter foliar nutrient concentrations and leaf N:P ratio, but N addition decreased the leaf C:N ratio and increased SLA. P addition (but not N addition) resulted in higher leaf area loss to herbivore consumption and also shifted carbon allocation to root growth. This fertilization experiment with a common rainforest tree species conducted in old-growth forest shows that already moderate doses of added N and P are affecting seedling performance which most likely will have consequences for the competitive strength in the understory and the recruitment success of P. torta. Simultaneous increases in growth, herbivory and mortality rates make it difficult to assess the species' overall performance and predict how a future increase in nutrient deposition will alter the abundance of this species in the Andean tropical montane forests.

  19. Support your local species

    DEFF Research Database (Denmark)

    Stärk, Johanna

    Nearly a quarter of all animal species within the European Union are threatened with extinction. Protecting many of these species will require the full spectrum of conservation actions from in-situ to ex-situ management. Holding an estimated 44% of EU Red Listed terrestrial vertebrates, zoos hereby...

  20. New Species of Agaricales

    Science.gov (United States)

    Kim, Yang Sup; Park, Ki Moon; Kim, Wan Gyu; Yoo, Kwan Hee; Park, In Cheol

    2009-01-01

    Clitocybe alboinfundibulliforme sp. nov. is widely distributed in Korea. Volvariella koreana sp. nov. is rarely distributed in Korea. These taxa were occasionally found together at the same place. Both of these species seem to be associated with each other. These two species are fully described and illustrated in this paper. PMID:23983550

  1. (WF n ) species

    Indian Academy of Sciences (India)

    potential, electron affinity, absolute electronegativity and chemical hardness are also evaluated which provide insights into chemical ..... η = 1/2 (IP − EA). (3). Absolute electronegativity measures the ability of species to attract electron and correlates inversely with the proton affinity. The increase in χ of WFn species with the ...

  2. Arctic species resilience

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Forchhammer, Mads C.; Jeppesen, Erik

    the predicted increase in climate variability. Whereas species may show relatively high phenological resilience to climate change per se, the resilience of systems may be more constrained by the inherent dependence through consumer-resource interactions across trophic levels. During the last 15 years...... and resources. This poster will present the conceptual framework for this project focusing on species resilience....

  3. Aquatic species and habitats

    Science.gov (United States)

    Danny C. Lee; James R. Sedell; Bruce E. Rieman; Russell F. Thurow; Jack E. Williams

    1998-01-01

    Continuing human activities threaten the highly prized aquatic resources of the interior Columbia basin. Precipitous declines in native species, particularly Pacific salmon, and a large influx of introduced species have radically altered the composition and distribution of native fishes. Fortunately, areas of relatively high aquatic integrity remain, much of it on...

  4. Chapter 16: Species Diversity

    African Journals Online (AJOL)

    zargaran

    2012-05-03

    May 3, 2012 ... In this survey, the oak gall wasps (Hymenoptera: Cynipidae: Cynipini) were collected from oak forests of West-Azerbaijan Province in six sites, from April to October. Species richness, heterogeneity, evenness and true diversity were measured. Based on the result of this study, 37 of oak gall wasps species ...

  5. Management of invasive species

    DEFF Research Database (Denmark)

    Schou, Jesper Sølver; Jensen, Frank

    In this paper, we conduct a number of cost-benefit analyses to clarify whether the establishment of invasive species should be prevented or the damage of such species should be mitigated after introduction. We use the potential establishment of ragweed in Denmark as an empirical case. The main...... of information externalities, altruistic preferences, possible catastrophic events and ethical considerations....

  6. The Origin of Species

    NARCIS (Netherlands)

    Darwin, Charles

    2005-01-01

    In The Origin of Species Darwin outlined his theory of evolution, which proposed that species had been evolving and differentiating over time under the influence of natural selection. On its publication it became hugely influential, bringing about a seismic shift in the scientific view of humanitys

  7. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    Directory of Open Access Journals (Sweden)

    C. Máguas

    2011-12-01

    Full Text Available In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy. Species comparison revealed that variability in pre-dawn water potential (Ψpre and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya and phreatophyte (Salix repens species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic

  8. Leaf non-structural carbohydrate allocation and C:N:P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species.

    Science.gov (United States)

    Xie, Hongtao; Yu, Mukui; Cheng, Xiangrong

    2018-03-01

    Light availability greatly affects plant growth and development. In shaded environments, plants must respond to reduced light intensity to ensure a regular rate of photosynthesis to maintain the dynamic balance of nutrients, such as leaf non-structural carbohydrates (NSCs), carbon (C), nitrogen (N) and phosphorus (P). To improve our understanding of the nutrient utilization strategies of understory shade-tolerant plants, we compared the variations in leaf NSCs, C, N and P in response to heterogeneous controlled light conditions between two subtropical evergreen broadleaf shade-tolerant species, Elaeocarpus sylvestris (E. sylvestris) and Illicium henryi (I. henryi). Light intensity treatments were applied at five levels (100%, 52%, 33%, 15% and 6% full sunlight) for 30 weeks to identify the effects of reduced light intensity on leaf NSC allocation patterns and leaf C:N:P stoichiometry characteristics. We found that leaf soluble sugar, starch and NSC concentrations in E. sylvestris showed decreasing trends with reduced light intensity, whereas I. henryi presented slightly increasing trends from 100% to 15% full sunlight and then significant decreases at extremely low light intensity (6% full sunlight). The soluble sugar/starch ratio of E. sylvestris decreased with decreasing light intensity, whereas that of I. henryi remained stable. Moreover, both species exhibited increasing trends in leaf N and P concentrations but limited leaf N:P and C:P ratio fluctuations with decreasing light intensity, revealing their adaptive strategies for poor light environments and their growth strategies under ideal light environments. There were highly significant correlations between leaf NSC variables and C:N:P stoichiometric variables in both species, revealing a trade-off in photosynthesis production between leaf NSC and carbon allocation. Thus, shade-tolerant plants readjusted their allocation of leaf NSCs, C, N and P in response to light acclimation. Redundancy analysis showed

  9. Burmeistera minutiflora (Campanulaceae-Lobelioideae, a new species from the high Andes of Antioquia (Colombia with the smallest flowers in the genus

    Directory of Open Access Journals (Sweden)

    Garzón Venegas, Javier

    2012-12-01

    Full Text Available Burmeistera minutiflora (Campanulaceae-Lobelioideae, a new species of sect. Barbatae, is here described, illustrated, and keyed out with respect to other species of the genus with small flowers (i.e. corolla tube < 1 cm long. The new species is a small herb that grows in the understory of remnants of cloud montane forests of the Western cordillera of Antioquia, Colombia. The dimensions of the corolla and the berries correspond without doubts to the smallest size of reproductive structures in the genus. The small floral size contrasts with the colorful, bright red and yellow corollas.

    Se describe Burmeistera minutiflora (Campanulaceae-Lobelioideae, una nueva especie de la sect. Barbatae, y se ilustra e incluye en una clave en la que se contrasta con otras especies de flores diminutas (i.e. con corola < 1 cm. La nueva especie es una hierba pequeña, que crece en el sotobosque de remanentes de bosques nublados de la Cordillera Occidental de Antioquia, Colombia. Las pequeñas dimensiones de la corola y de las bayas corresponden si lugar a dudas a las estructuras reproductivas de menor tamaño conocidas en el género. El pequeño tamaño de las flores contrasta con la vivacidad de las corolas rojas brillantes y amarillas.

  10. The species in primatology.

    Science.gov (United States)

    Groves, Colin

    2014-01-01

    Biologists of the late eighteenth and early nineteenth centuries all bandied about the term "species," but very rarely actually said what they meant by it. Often, however, one can get inside their thinking by piecing together some of their remarks. One of the most nearly explicit-appropriately, for the man who wrote a book called The Origin of Species - was Charles Darwin: "Practically, when a naturalist can unite two forms together by others having intermediate characters, he treats the one as a variety of the other… He later translated this into evolutionary terms: "Hereafter, we shall be compelled to acknowledge that the only distinction between species and well-marked varieties is, that the latter are known, or believed, to be connected at the present day by intermediate gradations, whereas species were formerly thus connected"(1:484-5.) Copyright © 2014 Wiley Periodicals, Inc.

  11. Hierarchical species distribution models

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  12. Endangered Species: Pesticide Restrictions

    Science.gov (United States)

    Our goal is to protect threatened and endangered species and their habitats, without placing unnecessary burden on agriculture and pesticide users. Pesticide limitations are developed to ensure safe use of pesticides in order to meet this goal.

  13. Threatened & Endangered Species Occurrences

    Data.gov (United States)

    Kansas Data Access and Support Center — The database consists of a single statewide coverage of location records for 54 species contained in the Kansas Natural Heritage Inventory database of the Kansas...

  14. Wood Species Recognition System

    OpenAIRE

    Bremananth R; Nithya B; Saipriya R

    2009-01-01

    The proposed system identifies the species of the wood using the textural features present in its barks. Each species of a wood has its own unique patterns in its bark, which enabled the proposed system to identify it accurately. Automatic wood recognition system has not yet been well established mainly due to lack of research in this area and the difficulty in obtaining the wood database. In our work, a wood recognition system has been designed based on pre-processing te...

  15. Sub specie aeternitatis

    Directory of Open Access Journals (Sweden)

    Laura Gioeni

    2012-10-01

    Full Text Available Per delineare il rapporto tra etica ed estetica nell'architettura e rispondere alla domanda principale «che cosa è o dovrebbe essere un buon architetto?», il saggio discute la tesi di Wittgenstein secondo cui «l'opera d'arte è l'oggetto visto sub specie aeternitatis e la vita buona è il mondo visto sub specie aeternitatis. Questa è la connessione tra arte ed etica».

  16. Performance of seedlings of a shade-tolerant tropical tree species after moderate addition of N and P

    Directory of Open Access Journals (Sweden)

    Daisy eCárate Tandalla

    2015-12-01

    Full Text Available Nitrogen deposition to tropical forests is predicted to increase in future in many regions due to agricultural intensification. We conducted a seedling transplantation experiment in a tropical premontane forest in Ecuador with a locally abundant late-successional tree species (Pouteria torta, Sapotaceae aimed at detecting species-specific responses to moderate N and P addition and to understand how increasing nutrient availability will affect regeneration. From locally collected seeds, 320 seedlings were produced and transplanted to the plots of the Ecuadorian Nutrient Manipulation Experiment (NUMEX with three treatments (moderate N addition: 50 kg N ha-1 yr-1, moderate P addition: 10 kg P ha-1 yr-1 and combined N and P addition and a control (80 plants per treatment. After 12 months, mortality, relative growth rate, leaf nutrient content and leaf herbivory rate were measured.N and NP addition significantly increased the mortality rate (70 % vs. 54 % in the control. However, N and P addition also increased the diameter growth rate of the surviving seedlings. N and P addition did not alter foliar nutrient concentrations and leaf N:P ratio, but N addition decreased the leaf C:N ratio and increased SLA. P addition (but not N addition resulted in higher leaf area loss to herbivore consumption and also shifted carbon allocation to root growth. This fertilization experiment with a common rainforest tree species conducted in old-growth forest shows that already moderate doses of added N and P are affecting seedling performance which most likely will have consequences for the competitive strength in the understory and the recruitment success of P. torta. Simultaneous increases in growth, herbivory and mortality rates make it difficult to assess the species’ overall performance and predict how a future increase in nutrient deposition will alter the abundance of this species in the Andean tropical montane forests.

  17. Responses of five small mammal species to micro-scale variations in vegetation structure in secondary Atlantic Forest remnants, Brazil

    Directory of Open Access Journals (Sweden)

    Meyer-Lucht Yvonne

    2008-05-01

    Full Text Available Abstract Background The Brazilian Atlantic Forest is highly endangered and only about 7% of the original forest remains, most of which consists of fragments of secondary forest. Small mammals in the Atlantic Forest have differential responses to this process of fragmentation and conversion of forest into anthropogenic habitats, and have varying abilities to occupy the surrounding altered habitats. We investigated the influence of vegetation structure on the micro-scale distribution of five small mammal species in six secondary forest remnants in a landscape of fragmented Atlantic Forest. We tested whether the occurrence of small mammal species is influenced by vegetation structure, aiming to ascertain whether species with different degrees of vulnerability to forest fragmentation (not vulnerable: A. montensis, O. nigripes and G. microtarsus; vulnerable: M. incanus and D. sublineatus; classification of vulnerability was based on the results of previous studies are associated with distinct vegetation characteristics. Results Although vegetation structure differed among fragments, micro-scale distribution of most of the species was influenced by vegetation structure in a similar way in different fragments. Among the three species that were previously shown not to be vulnerable to forest fragmentation, A. montensis and G. microtarsus were present at locations with an open canopy and the occurrence of O. nigripes was associated to a low canopy and a dense understory. On the other hand, from the two species that were shown to be vulnerable to fragmentation, M. incanus was captured most often at locations with a closed canopy while the distribution of D. sublineatus was not clearly influenced by micro-scale variation in vegetation structure. Conclusion Results indicate the importance of micro-scale variation in vegetation structure for the distribution of small mammal species in secondary forest fragments. Species that are not vulnerable to

  18. Genomic definition of species

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Drmanac, R.

    1991-07-01

    The subject of this paper is the definition of species based on the assumption that genome is the fundamental level for the origin and maintenance of biological diversity. For this view to be logically consistent it is necessary to assume the existence and operation of the new law which we call genome law. For this reason the genome law is included in the explanation of species phenomenon presented here even if its precise formulation and elaboration are left for the future. The intellectual underpinnings of this definition can be traced to Goldschmidt. We wish to explore some philosophical aspects of the definition of species in terms of the genome. The point of proposing the definition on these grounds is that any real advance in evolutionary theory has to be correct in both its philosophy and its science.

  19. Bounding species distribution models

    Directory of Open Access Journals (Sweden)

    Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE

    2011-10-01

    Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].

  20. Bounding Species Distribution Models

    Science.gov (United States)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  1. Prices and species diversity

    DEFF Research Database (Denmark)

    Sauer, Johannes

    . Based on a biologically defined species diver-sity index we incorporate biodiversity either as a desirable output or biodiversity loss as a detrimental input. Beside quantitative shadow price measures the main contribu-tion of the work is the evidence that parametric scores of environmental efficiency...... of biodiversity and the appropriate incorporation in stochastic fron-tier models to achieve more realistic measures of production efficiency. We use the empirical example of tobacco production drawing from as well as affecting species diversity in the surrounding forests. We apply a shadow profit distance...

  2. Translating Dyslexia across Species

    Science.gov (United States)

    Gabel, Lisa A.; Manglani, Monica; Escalona, Nicholas; Cysner, Jessica; Hamilton, Rachel; Pfaffmann, Jeffrey; Johnson, Evelyn

    2016-01-01

    Direct relationships between induced mutation in the "DCDC2" candidate dyslexia susceptibility gene in mice and changes in behavioral measures of visual spatial learning have been reported. We were interested in determining whether performance on a visual-spatial learning and memory task could be translated across species (study 1) and…

  3. on candida species

    African Journals Online (AJOL)

    Abstract. Background: Candida species (sp) is implicated in causing opportunistic disseminated mycotic complications in stage II. HIV patients. Cleistopholis patens is a West African medicinal tree reported to have significant antifungal activity against C. albicans. Objectives: This study aimed to determine the anti-candidal ...

  4. Species Distribution Modelling

    DEFF Research Database (Denmark)

    Gomes, Vitor H. F.; Ijff, Stephanie D.; Raes, Niels

    2018-01-01

    Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SD...

  5. Chapter 16: Species Diversity

    African Journals Online (AJOL)

    zargaran

    2012-05-03

    May 3, 2012 ... 2008; Zargaran et al., 2008), the oak cynipid gall wasps diversity is yet to be studied. Nazemi et al. (2008) reported species richness of oak gall wasps from. Kurdistan, Ilam and Kermanshah provinces of Iran. Reducing the oak gall wasps diversity will be as an alarm for environmental health of oak forests.

  6. Man as a Species.

    Science.gov (United States)

    Solem, Alan; And Others

    Written in 1964, the document represents experimental material of the Anthropology Curriculum Study Project. The objectives of the project were to discuss the evolution of man as distinguished from the evolution of other species and as related to culture, and to emphasize human diversity. Three brief essays are presented. The first, "The…

  7. Reactive Oxygen Species

    DEFF Research Database (Denmark)

    Franchina, Davide G.; Dostert, Catherine; Brenner, Dirk

    2018-01-01

    oxygen species (ROS), which have long been known to trigger cell death. However, there is now evidence that ROS also act as intracellular signaling molecules both in steady-state and upon antigen recognition. The levels and localization of ROS contribute to the redox modeling of effector proteins...

  8. Future species composition will affect forest water use after loss of eastern hemlock from southern Appalachian forests.

    Science.gov (United States)

    Brantley, Steven; Ford, Chelcy R; Vose, James M

    2013-06-01

    Infestation of eastern hemlock (Tsuga canadensis (L.) Carr.) with hemlock woolly adelgid (HWA, Adelges tsugae) has caused widespread mortality of this key canopy species throughout much of the southern Appalachian Mountains in the past decade. Because eastern hemlock is heavily concentrated in riparian habitats, maintains a dense canopy, and has an evergreen leaf habit, its loss is expected to have a major impact on forest processes, including transpiration (E(t)). Our goal was to estimate changes in stand-level E(t) since HWA infestation, and predict future effects of forest regeneration on forest E(t) in declining eastern hemlock stands where hemlock represented 50-60% of forest basal area. We used a combination of community surveys, sap flux measurements, and empirical models relating sap flux-scaled leaf-level transpiration (E(L)) to climate to estimate the change in E(t) after hemlock mortality and forecast how forest E(t) will change in the future in response to eastern hemlock loss. From 2004 to 2011, eastern hemlock mortality reduced annual forest E(t) by 22% and reduced winter E(t) by 74%. As hemlock mortality increased, growth of deciduous tree species--especially sweet birch (Betula lenta L.), red maple (Acer rubrum L.), yellow poplar (Liriodendron tulipifera L.), and the evergreen understory shrub rosebay rhododendron (Rhododendron maximum L.)--also increased, and these species will probably dominate post-hemlock riparian forests. All of these species have higher daytime E(L) rates than hemlock, and replacement of hemlock with species that have less conservative transpiration rates will result in rapid recovery of annual stand E(t). Further, we predict that annual stand E(t) will eventually surpass E(t) levels observed before hemlock was infested with HWA. This long-term increase in forest E(t) may eventually reduce stream discharge, especially during the growing season. However, the dominance of deciduous species in the canopy will result in a

  9. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    Science.gov (United States)

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade

  10. Positive feedback in species communities

    NARCIS (Netherlands)

    Gerla, D.J.

    2012-01-01

    Sometimes the eventual population densities in a species community depend on the initial densities or the arrival times of species. If arrival times determine species composition, a priority effect has occurred. Priority effects may occur if the species community exhibits alternative stable states

  11. Soil-to-plant transfer of elements is not linear: Results for five elements relevant to radioactive waste in five boreal forest species.

    Science.gov (United States)

    Tuovinen, Tiina S; Roivainen, Päivi; Makkonen, Sari; Kolehmainen, Mikko; Holopainen, Toini; Juutilainen, Jukka

    2011-12-01

    Element-specific concentration ratios (CRs) assuming that plant uptake of elements is linear are commonly used in radioecological modelling to describe the soil-to-plant transfer of elements. The goal of this study was to investigate the validity of the linearity assumption in boreal forest plants, for which only limited relevant data are available. The soil-to-plant transfer of three essential (Mo, Ni, Zn) and two non-essential (Pb, U) elements relevant to the safety of radioactive waste disposal was studied. Three understory species (blueberry, narrow buckler fern and May lily) and two tree species (Norway spruce and rowan) were included. Examining CRs as a function of soil concentration showed that CR was not constant but decreased with increasing soil concentrations for all elements and plant species. A non-linear equation fitted fairly well with the empirical data; the R(2)-values for this equation were constantly higher than those for the linear fit. The difference between the two fits was most evident at low soil concentrations where the use of constant CRs underestimated transfer from soil to plants. Site-specific factors affected the transfer of Mo and Ni. The results suggested that systematic variation with soil concentrations explains a part of the large variation of empirically determined CRs, and the accuracy of modelling the soil-to-plant transfer might be improved by using non-linear methods. Non-linearity of soil-to-plant transfer has been previously reported for a few different species, elements and environments. The present study systematically tested the linearity assumption for five elements (both essential and non-essential) and in five boreal forest species representing different growth traits and phylogenies. The data supported non-linearity in all cases. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Soil-to-plant transfer of elements is not linear: Results for five elements relevant to radioactive waste in five boreal forest species

    International Nuclear Information System (INIS)

    Tuovinen, Tiina S.; Roivainen, Päivi; Makkonen, Sari; Kolehmainen, Mikko; Holopainen, Toini; Juutilainen, Jukka

    2011-01-01

    Element-specific concentration ratios (CRs) assuming that plant uptake of elements is linear are commonly used in radioecological modelling to describe the soil-to-plant transfer of elements. The goal of this study was to investigate the validity of the linearity assumption in boreal forest plants, for which only limited relevant data are available. The soil-to-plant transfer of three essential (Mo, Ni, Zn) and two non-essential (Pb, U) elements relevant to the safety of radioactive waste disposal was studied. Three understory species (blueberry, narrow buckler fern and May lily) and two tree species (Norway spruce and rowan) were included. Examining CRs as a function of soil concentration showed that CR was not constant but decreased with increasing soil concentrations for all elements and plant species. A non-linear equation fitted fairly well with the empirical data; the R 2 -values for this equation were constantly higher than those for the linear fit. The difference between the two fits was most evident at low soil concentrations where the use of constant CRs underestimated transfer from soil to plants. Site-specific factors affected the transfer of Mo and Ni. The results suggested that systematic variation with soil concentrations explains a part of the large variation of empirically determined CRs, and the accuracy of modelling the soil-to-plant transfer might be improved by using non-linear methods. Non-linearity of soil-to-plant transfer has been previously reported for a few different species, elements and environments. The present study systematically tested the linearity assumption for five elements (both essential and non-essential) and in five boreal forest species representing different growth traits and phylogenies. The data supported non-linearity in all cases.

  13. Growth and photosynthetic performance of five tree seedlings species in response to natural light regimes from the Central Pacific of Costa Rica.

    Science.gov (United States)

    Guzmán, J Antonio; Cordero, Roberto A

    2013-09-01

    Environmental heterogeneity mostly dominated by differing light regimes affects the expression of phenotypic plasticity, which is important for plant growth and survival, especially in the forest understory. The knowledge about these responses to this heterogeneity is a key factor for forest restoration initiatives. In this study, we determine several phenotypic responses to contrasting light conditions in five native tree seedling species of La Cangreja National Park, Central Pacific of Costa Rica, four of them with threatened or relict populations. After 14 weeks at a medium gap condition (24% of full sun), seedlings were transferred and acclimated for 11 weeks to three different natural light regimes: large gap (LG), medium gap (MG) and small gap (SG), corresponding to 52%, 24%, 9% of the mean direct and indirect radiation at each site from full sun. Growth, biomass allocation and leaf gas exchange were measured after the acclimation period. Four species strongly reduced relative growth rate (RGR) in the lower light condition. Total biomass (TB) and RGR were different in Hymenaea courbaril and Platymiscium curiense. H. courbaril and Astronium graveolens had significant changes in the maximum assimilation rate, with a mean value in the LG of 11.02 and 7.70 micromolCO2/m2s, respectively. P. curuense showed the same trend and significant changes in RGR and biomass allocation. Aspidosperma myristicifolium and Plinia puriscalensis showed no adjustments to the light regimes in any of the measured variables. This study remarks the importance of determining the growth and physiological performance of these tree native species. It also demonstrates that the most threatened species are those with the less plastic responses to the light regimes, which stresses the difficult situation of their natural populations. This study highlights an urgent definition of the conservation and restoration needs of the degraded forests of the Costa Rican Central Pacific area, where these

  14. Growth and photosynthetic performance of five tree seedlings species in response to natural light regimes from the Central Pacific of Costa Rica

    Directory of Open Access Journals (Sweden)

    J. Antonio Guzmán Q.

    2013-09-01

    Full Text Available Environmental heterogeneity mostly dominated by differing light regimes affects the expression of phenotypic plasticity, which is important for plant growth and survival, especially in the forest understory. The knowledge about these responses to this heterogeneity is a key factor for forest restoration initiatives. In this study, we determine several phenotypic responses to contrasting light conditions in five native tree seedling species of La Cangreja National Park, Central Pacific of Costa Rica, four of them with threatened or relict populations. After 14 weeks at a medium gap condition (24% of full sun, seedlings were transferred and acclimated for 11 weeks to three different natural light regimes: large gap (LG, medium gap (MG and small gap (SG, corresponding to 52%, 24%, 9% of the mean direct and indirect radiation at each site from full sun. Growth, biomass allocation and leaf gas exchange were measured after the acclimation period. Four species strongly reduced relative growth rate (RGR in the lower light condition. Total biomass (TB and RGR were different in Hymenaea courbaril and Platymiscium curiense. H. courbaril and Astronium graveolens had significant changes in the maximum assimilation rate, with a mean value in the LG of 11.02 and 7.70µmolCO2/m²s, respectively. P. curuense showed the same trend and significant changes in RGR and biomass allocation. Aspidosperma myristicifolium and Plinia puriscalensis showed no adjustments to the light regimes in any of the measured variables. This study remarks the importance of determining the growth and physiological performance of these tree native species. It also demonstrates that the most threatened species are those with the less plastic responses to the light regimes, which stresses the difficult situation of their natural populations. This study highlights an urgent definition of the conservation and restoration needs of the degraded forests of the Costa Rican Central Pacific area

  15. Soil-to-plant transfer of elements is not linear: Results for five elements relevant to radioactive waste in five boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Tuovinen, Tiina S.; Roivainen, Paeivi, E-mail: paivi.roivainen@uef.fi; Makkonen, Sari; Kolehmainen, Mikko; Holopainen, Toini; Juutilainen, Jukka

    2011-12-01

    Element-specific concentration ratios (CRs) assuming that plant uptake of elements is linear are commonly used in radioecological modelling to describe the soil-to-plant transfer of elements. The goal of this study was to investigate the validity of the linearity assumption in boreal forest plants, for which only limited relevant data are available. The soil-to-plant transfer of three essential (Mo, Ni, Zn) and two non-essential (Pb, U) elements relevant to the safety of radioactive waste disposal was studied. Three understory species (blueberry, narrow buckler fern and May lily) and two tree species (Norway spruce and rowan) were included. Examining CRs as a function of soil concentration showed that CR was not constant but decreased with increasing soil concentrations for all elements and plant species. A non-linear equation fitted fairly well with the empirical data; the R{sup 2}-values for this equation were constantly higher than those for the linear fit. The difference between the two fits was most evident at low soil concentrations where the use of constant CRs underestimated transfer from soil to plants. Site-specific factors affected the transfer of Mo and Ni. The results suggested that systematic variation with soil concentrations explains a part of the large variation of empirically determined CRs, and the accuracy of modelling the soil-to-plant transfer might be improved by using non-linear methods. Non-linearity of soil-to-plant transfer has been previously reported for a few different species, elements and environments. The present study systematically tested the linearity assumption for five elements (both essential and non-essential) and in five boreal forest species representing different growth traits and phylogenies. The data supported non-linearity in all cases.

  16. Prior indigenous technological species

    Science.gov (United States)

    Wright, Jason T.

    2018-01-01

    One of the primary open questions of astrobiology is whether there is extant or extinct life elsewhere the solar system. Implicit in much of this work is that we are looking for microbial or, at best, unintelligent life, even though technological artefacts might be much easier to find. Search for Extraterrestrial Intelligence (SETI) work on searches for alien artefacts in the solar system typically presumes that such artefacts would be of extrasolar origin, even though life is known to have existed in the solar system, on Earth, for eons. But if a prior technological, perhaps spacefaring, species ever arose in the solar system, it might have produced artefacts or other technosignatures that have survived to present day, meaning solar system artefact SETI provides a potential path to resolving astrobiology's question. Here, I discuss the origins and possible locations for technosignatures of such a prior indigenous technological species, which might have arisen on ancient Earth or another body, such as a pre-greenhouse Venus or a wet Mars. In the case of Venus, the arrival of its global greenhouse and potential resurfacing might have erased all evidence of its existence on the Venusian surface. In the case of Earth, erosion and, ultimately, plate tectonics may have erased most such evidence if the species lived Gyr ago. Remaining indigenous technosignatures might be expected to be extremely old, limiting the places they might still be found to beneath the surfaces of Mars and the Moon, or in the outer solar system.

  17. Determination of the inorganic components in the Brazilian medicinal plants from 'in natura' and capsule forms, using X-ray fluorescence techniques (WD and ED systems). Quantitative inorganic profile definition; Determinacao de componentes inorganicos em plantas medicinais, comercializadas em formas de po (capsulas) e 'in natura', utilizando a tecnica de fluorescencia de raios X por dispersao de comprimento de onda (WDXRF) e por dispersao de energia (EDXRF). Definicao de perfis inorganicos quantitativos

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Manuel Octavio Marques

    2004-07-01

    The Na, Mg, P, S, CI, K, Ca, Mn, Fe, Ni, Cu, Zn, Rb and Sr concentrations in the Stryphnodendron barbatiman (Barbatimao), Malva officinalis (Malva), Salvia officinalis (Salvia), Ginkgo folium (Ginkgo biloba), Echinodorus macrophylius (Chapeu de couro), Paulina cupana (Guarana), Valeriana officinalis (Valeriana), Cordia salicifolia (Porangaba), Calendula officinalis (Calendula), Solidago microglossa (Arnica), Arnica montana (Arnica) and Schinus molle (Aroeira) species were concentrations. The specimens were sampled 'in natura' (leaves, flowers, barks and seeds) and capsule (powder) forms from different commercial labels. The elemental determination was outlined by wavelength dispersive (WDXRF) and energy dispersive (EDXRF) X-ray fluorescence techniques using, respectively, linear regression and fundamental parameter methods. The repeatability and accuracy of the methods were evaluated using the certified reference material NIST 1547 - 'Peach Leaves'. Statistical treatments, such as Chauvenet and Cochrane, ANOVA and Z-score tests, were applied. A quantitative inorganic profile was obtained for each specie from 'in natura' and capsule forms. Different inorganic compositions were observed in the different parts (leaves, flowers, barks and seeds) of the Schinus molle (Aroeira), Arnica montana (Arnica), Calendula officinalis (Calendula) and Echinodorus macrophylius (Chapeu de couro) species. (author)

  18. Determination of the inorganic components in the Brazilian medicinal plants from 'in natura' and capsule forms, using X-ray fluorescence techniques (WD and ED systems). Quantitative inorganic profile definition

    International Nuclear Information System (INIS)

    Ferreira, Manuel Octavio Marques

    2004-01-01

    The Na, Mg, P, S, CI, K, Ca, Mn, Fe, Ni, Cu, Zn, Rb and Sr concentrations in the Stryphnodendron barbatiman (Barbatimao), Malva officinalis (Malva), Salvia officinalis (Salvia), Ginkgo folium (Ginkgo biloba), Echinodorus macrophylius (Chapeu de couro), Paulina cupana (Guarana), Valeriana officinalis (Valeriana), Cordia salicifolia (Porangaba), Calendula officinalis (Calendula), Solidago microglossa (Arnica), Arnica montana (Arnica) and Schinus molle (Aroeira) species were concentrations. The specimens were sampled 'in natura' (leaves, flowers, barks and seeds) and capsule (powder) forms from different commercial labels. The elemental determination was outlined by wavelength dispersive (WDXRF) and energy dispersive (EDXRF) X-ray fluorescence techniques using, respectively, linear regression and fundamental parameter methods. The repeatability and accuracy of the methods were evaluated using the certified reference material NIST 1547 - 'Peach Leaves'. Statistical treatments, such as Chauvenet and Cochrane, ANOVA and Z-score tests, were applied. A quantitative inorganic profile was obtained for each specie from 'in natura' and capsule forms. Different inorganic compositions were observed in the different parts (leaves, flowers, barks and seeds) of the Schinus molle (Aroeira), Arnica montana (Arnica), Calendula officinalis (Calendula) and Echinodorus macrophylius (Chapeu de couro) species. (author)

  19. Estimating Effects of Species Interactions on Populations of Endangered Species.

    Science.gov (United States)

    Roth, Tobias; Bühler, Christoph; Amrhein, Valentin

    2016-04-01

    Global change causes community composition to change considerably through time, with ever-new combinations of interacting species. To study the consequences of newly established species interactions, one available source of data could be observational surveys from biodiversity monitoring. However, approaches using observational data would need to account for niche differences between species and for imperfect detection of individuals. To estimate population sizes of interacting species, we extended N-mixture models that were developed to estimate true population sizes in single species. Simulations revealed that our model is able to disentangle direct effects of dominant on subordinate species from indirect effects of dominant species on detection probability of subordinate species. For illustration, we applied our model to data from a Swiss amphibian monitoring program and showed that sizes of expanding water frog populations were negatively related to population sizes of endangered yellow-bellied toads and common midwife toads and partly of natterjack toads. Unlike other studies that analyzed presence and absence of species, our model suggests that the spread of water frogs in Central Europe is one of the reasons for the decline of endangered toad species. Thus, studying population impacts of dominant species on population sizes of endangered species using data from biodiversity monitoring programs should help to inform conservation policy and to decide whether competing species should be subject to population management.

  20. The functional biogeography of species

    DEFF Research Database (Denmark)

    Carstensen, Daniel W.; Dalsgaard, Bo; Svenning, Jens-Christian

    2013-01-01

    Biogeographical systems can be analyzed as networks of species and geographical units. Within such a biogeographical network, individual species may differ fundamentally in their linkage pattern, and therefore hold different topological roles. To advance our understanding of the relationship...... between species traits and large-scale species distribution patterns in archipelagos, we use a network approach to classify birds as one of four biogeographical species roles: peripherals, connectors, module hubs, and network hubs. These roles are based upon the position of species within the modular...... network of islands and species in Wallacea and the West Indies. We test whether species traits - including habitat requirements, altitudinal range-span, feeding guild, trophic level, and body length - correlate with species roles. In both archipelagos, habitat requirements, altitudinal range-span and body...

  1. Penicillium species causing onychomycosis.

    Directory of Open Access Journals (Sweden)

    Ramani R

    1994-04-01

    Full Text Available Onychomycosis caused by mould infection is rare. A 40 year old male patient presented with dystrophic finger nails and multiple, erythematous lesions with slightly raised borders and scaling all over the body. The patient was a known diabetic. He did not respond to griseofulvin. Samples from nails and skin scales were cultured. From the nails, Penicillium species and from the skin scales. Trichophyton rubrum were isolated. Ketoconazole therapy (200 mg twice daily x 4 mths led to complete cure with negative cultures and normalization of nails.

  2. Species concepts, species delimitation and the inherent limitations ...

    Indian Academy of Sciences (India)

    Frank Zachos

    genes” (ibid., italics in the original). Hill focuses on birds, but in principle the concept could be applicable more widely. It is similar to the Genetic and the Differential Fitness Species ..... into account social and financial ramifications of species status (as when the habitat of an endangered species needs protection) not only ...

  3. Species concepts, species delimitation and the inherent limitations ...

    Indian Academy of Sciences (India)

    Frank Zachos

    The nuisance of having to deal with so many species concepts can be reinterpreted as a situation in which various lines ... understanding of the species category and its ontology, but the most pressing practical problem remains ..... into account social and financial ramifications of species status (as when the habitat of an.

  4. Save Our Species: Protecting Endangered Species from Pesticides.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This full-size poster profiles 11 wildlife species that are endangered. Color illustrations of animals and plants are accompanied by narrative describing their habitats and reasons for endangerment. The reverse side of the poster contains information on the Endangered Species Act, why protecting endangered and threatened species is important, how…

  5. Identification of malassezia species

    Directory of Open Access Journals (Sweden)

    Kindo A

    2004-01-01

    Full Text Available Malassezia spp. are lipophilic unipolar yeasts recognized as commensals of skin that may be pathogenic under certain conditions. The genus Malassezia now comprises of seven species. This study was aimed at using a simple practical approach to speciate Malassezia yeasts from clinical material. Seventy skin scrapings from patients with pityriasis versicolor infection, positive in 10% potassium hydroxide (KOH, were cultured onto modified Dixon′s agar (mDixon′s agar and Sabouraud dextrose agar (SDA and incubated at 32ºC. Speciation was done on the basis of Gram stain morphology, catalase test, and utilization of Tweens. Out of 70 scrapings 48 (68.75% showed growth on mDixon′s agar. The commonest isolate was M. sympodialis (28, 58% followed by M. globosa (19, 40% and one isolate was (2% of M. restricta. M. sympodialis was the commonest species affecting our population and there was no isolation of M. obtusa, M. slooffiae, M. pachydermatis and M. furfur.

  6. Endangered Species Act Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Critical habitat (CH) is designated for the survival and recovery of species listed as threatened or endangered under the Endangered Species Act (ESA). Critical...

  7. New species of Malaysian ferns

    NARCIS (Netherlands)

    Holttum, R.E.

    1962-01-01

    The present paper includes descriptions of several new species of ferns found among recent collections from various parts of Malaysia; also two new combinations of names of species which are of interest on account of their taxonomic history.

  8. 75 FR 81793 - Endangered and Threatened Wildlife and Plants; Listing Seven Brazilian Bird Species as Endangered...

    Science.gov (United States)

    2010-12-28

    ... northeastern Argentina (Morellato and Haddad 2000, pp. 786-787; Conservation International 2007a, p. 1; H[ouml... and Life History The black-hooded antwren inhabits lush understories of remnant old- growth and early... and Life History The Brazilian merganser is highly adapted to mountainous, highly oxygenated clear...

  9. New Malesian species of Viscaceae

    NARCIS (Netherlands)

    Barlow, Bryan A.

    1996-01-01

    Three new Malesian species of Viscaceae are described. Ginalloa flagellaris Barlow is distinguished as a species from New Guinea and New Britain, previously included within G. arnottiana Korthals. Viscum exile Barlow is recognized as a new species endemic to Celebes, related to V. ovalifolium.

  10. 75 FR 78974 - Endangered Species

    Science.gov (United States)

    2010-12-17

    ...-XA086 Endangered Species AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... the Endangered Species Act of 1973, as amended (16 U.S.C. 1531 et seq.) and the regulations governing the taking, importing, and exporting of endangered and threatened species (50 CFR 222-226). Permit...

  11. California Endangered Species Resource Guide.

    Science.gov (United States)

    California State Dept. of Education, Los Angeles.

    This document was developed in response to California Senate Bill No. 885, "The Endangered Species Education Project," that called for a statewide program in which schools adopt a local endangered species, research past and current efforts to preserve the species' habitat, develop and implement an action plan to educate the community…

  12. 76 FR 2348 - Endangered Species

    Science.gov (United States)

    2011-01-13

    .... 15596] Endangered Species AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... requested permit has been issued under the authority of the Endangered Species Act of 1973, as amended (ESA... endangered and threatened species (50 CFR parts 222-226). The North Carolina Aquarium at Fort Fisher has been...

  13. Electrosmog and species conservation

    International Nuclear Information System (INIS)

    Balmori, Alfonso

    2014-01-01

    Despite the widespread use of wireless telephone networks around the world, authorities and researchers have paid little attention to the potential harmful effects of mobile phone radiation on wildlife. This paper briefly reviews the available scientific information on this topic and recommends further studies and specific lines of research to confirm or refute the experimental results to date. Controls must be introduced and technology rendered safe for the environment, particularly, threatened species. - Highlights: • Studies have shown effects in both animals and plants. • Two thirds of the studies reported ecological effects. • There is little research in this area and further research is needed. • The technology must be safe. • Controls should be introduced to mitigate the possible effects

  14. Native species that can replace exotic species in landscaping

    Directory of Open Access Journals (Sweden)

    Elisabeth Regina Tempel Stumpf

    2015-08-01

    Full Text Available Beyond aesthetics, the contemporary landscaping intends to provide other benefits for humans and environment, especially related to the environmental quality of urban spaces and conservation of the species. A trend in this direction is the reduction in the use of exotic plants in their designs, since, over time, they can become agents of replacement of native flora, as it has occurred in Rio Grande do Sul with many species introduced by settlers. However, the use of exotic species is unjustifiable, because the flora diversity of the Bioma Pampa offers many native species with appropriate features to the ornamental use. The commercial cultivation and the implantation of native species in landscaped areas constitute innovations for plant nurseries and landscapers and can provide a positive reduction in extractivism, contributing to dissemination, exploitation and preservation of native flora, and also decrease the impact of chemical products on environment. So, this work intends to identify native species of Bioma Pampa with features and uses similar to the most used exotic species at Brazilian landscaping. The species were selected from consulting books about native plants of Bioma Pampa and plants used at Brazilian landscaping, considering the similarity on habit and architecture, as well as characteristics of leafs, flowers and/or fruits and environmental conditions of occurrence and cultivation. There were identified 34 native species able to properly replace exotic species commonly used. The results show that many native species of Bioma Pampa have interesting ornamental features to landscape gardening, allowing them to replace exotic species that are traditionally cultivated.

  15. Species of Wadicosa (Araneae, Lycosidae): a new species from Madagascar.

    Science.gov (United States)

    Kronestedt, Torbjörn

    2017-05-10

    Since establishing the wolf spider genus Wadicosa Zyuzin, 1985 (Zyuzin 1985), eleven species have been accepted in it, either by transfer from Lycosa Latreille, 1804 or Pardosa C.L. Koch, 1847 or by original designation (WSC 2017). However, according to Kronestedt (1987), additional species wait to be formally transferred to Wadicosa. The genus is restricted to the Old World, with one species, Wadicosa jocquei Kronestedt, 2015, recently described from Madagascar and surrounding islands.

  16. Ring species as demonstrations of the continuum of species formation

    DEFF Research Database (Denmark)

    Pereira, Ricardo José Do Nascimento; Wake, David B.

    2015-01-01

    In the mid-20th century, Ernst Mayr (1942) and Theodosius Dobzhansky (1958) championed the significance of 'circular overlaps' or 'ring species' as the perfect demonstration of the gradual nature of species formation. As an ancestral species expands its range, wrapping around a geographic barrier...... in this issue of Molecular Ecology by Fuchs et al. (2015), focused on the entire genealogy of a bulbul (Alophoixus) species complex, offers key insights into the evolutionary processes underlying diversification of this Indo-Malayan bird. Their findings fulfil most of the criteria that can be expected for ring...

  17. Population genetics and cryptic species

    International Nuclear Information System (INIS)

    McPheron, Bruce A.

    2000-01-01

    Does the definition of a species matter for pest management purposes? Taxonomists provide us with tools - usually morphological characters - to identify a group of organisms that we call a species. The implication of this identification is that all of the individuals that fit the provided description are members of the species in question. The taxonomists have considered the range of variation among individuals in defining the species, but this variation is often forgotten when we take the concept of species to the level of management. Just as there is morphological variation among individuals, there is also variation in practically any character we might imagine, which has implications for the short and long term success of our management tactics. The rich literature on insecticide resistance should be a constant reminder of the fact that the pressure on pest survival and reproduction applied by our management approaches frequently leads to evolutionary changes within the pest species. The degree of variation within a particular species is a defining characteristic of that species. This level of variability may have very important implications for successful management, so it is very important to measure variation and, whenever possible, the genetic basis of that variation, in a target species. Population genetic approaches can provide evidence of genetic structure (or lack thereof) among populations of a species. These types of data can be used to discuss the movement of pest populations on a local or global scale. In other cases, we may have a complex of species that share some, but not all, characteristics. Species complexes that share morphological characters (i.e., cannot be easily distinguished) but not biological characters are referred to as sibling or cryptic species

  18. Relationships of leaf dark respiration with light environment and tissue nitrogen content in juveniles of 11 cold-temperate tree species.

    Science.gov (United States)

    Lusk, C H; Reich, P B

    2000-05-01

    It has been argued that plants adapted to low light should have lower carbon losses via dark respiration (Rd) than those not so adapted, and similarly, all species would be expected to down-regulate Rd in deep shade, because the associated advantages of high metabolic potential cannot be realized in such habitats. In order to test these hypotheses, and to explore the determinants of intraspecific variation in respiration rates, we measured Rd, leaf mass per unit area (LMA), and nitrogen content of mature foliage in juveniles of 11 cold-temperate tree species (angiosperms and conifers), growing in diverse light environments in forest understories in northern Minnesota. Among the seven angiosperm species, respiration on mass, area, and nitrogen bases showed significant negative overall relationships with shade tolerance level. Mass-based respiration rates (Rd mass ) of angiosperms as a group showed a significant positive overall relationship with an index of light availability (percentage canopy openness, %CO). Rd mass of most conifers also showed evidence of acclimation of Rd mass to light availability. LMA of all species also increased with increasing %CO, but this response was generally much stronger in angiosperms than in conifers. As a result, the response of area-based respiration (Rd area ) to %CO was dominated by ΔRd mass for conifers, and by ΔLMA for most angiosperms, i.e., functional types differed in the components of acclimation of Rd area to light availability. Among the seven angiosperm species, the relationships of leaf N on a mass basis (N mass ) with %CO were modulated by shade tolerance: negative slopes in shade-tolerant species may be related to the steep increases in LMA of these taxa along gradients of increasing light intensity, and associated dilution of N-rich, metabolically active tissue by increasing investment in leaf structural components. Although N mass was therefore an unreliable predictor of variation in Rd mass along light gradients

  19. Armillaria species in coniferous stands

    Directory of Open Access Journals (Sweden)

    Anna Żółciak

    2013-12-01

    Full Text Available Identification of the Armillaria species in selected coniferous stands (Scots pine stands, Norway spruce stands and fir stands was the aim of the work carried out on the basis of mating tests and consideration of macroscopic traits of fruit-bodies. One species of Armillaria [A. ostoyae (Romagnesi Herink] was found in Scots pine stands, three species [A. ostoyae, A. cepistipes Velenovský and A. borealis Marxmüller et Korhonen] were found in Norway spruce stands and two species [A. ostoyae and A. cepistipes] were found in fir stands.

  20. Uncommon Species and Other Features

    Data.gov (United States)

    Vermont Center for Geographic Information — The Vermont Fish and Wildlife Department's Natural Heritage Inventory (NHI) maintains a database of uncommon, rare, threatened and endangered species and natural...

  1. Balance of bacterial species in the gut

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Balance of bacterial species in the gut. Protective. Lactobacillus species. Bifidobacterium species. Selected E. coli. Saccharomyces boulardii. Clostridium butyricum.

  2. Removing other Tree Species does not benefit the Timber Species ...

    African Journals Online (AJOL)

    The endemic canopy tree Cephalosphaera usambarensis is a valuable timber species in montane rainforest of Tanzania. Here we evaluate an experiment in which mature trees of species other than C. usambarensis were removed from an area in the East Usambara Mountains. We compared stage/size structure of the ...

  3. Lutzomyia sand fly diversity and rates of infection by Wolbachia and an exotic Leishmania species on Barro Colorado Island, Panama.

    Directory of Open Access Journals (Sweden)

    Jorge Azpurua

    2010-03-01

    Full Text Available Sand flies (Diptera, Psychodidae, Phlebotominae in the genus Lutzomyia are the predominant vectors of the protozoan disease leishmaniasis in the New World. Within the watershed of the Panama Canal, the cutaneous form of leishmaniasis is a continuous health threat for residents, tourists and members of an international research community. Here we report the results of screening a tropical forest assemblage of sand fly species for infection by both Leishmania and a microbe that can potentially serve in vector population control, the cytoplasmically transmitted rickettsia, Wolbachia pipientis. Knowing accurately which Lutzomyia species are present, what their evolutionary relationships are, and how they are infected by strains of both Leishmania and Wolbachia is of critical value for building strategies to mitigate the impact of this disease in humans.We collected, sorted and then used DNA sequences to determine the diversity and probable phylogenetic relationships of the Phlebotominae occurring in the understory of Barro Colorado Island in the Republic of Panama. Sequence from CO1, the DNA barcoding gene, supported 18 morphology-based species determinations while revealing the presence of two possible "cryptic" species, one (Lu. sp. nr vespertilionis within the Vespertilionis group, the other (Lu. gomezi within the Lutzomyia-cruciata series. Using ITS-1 and "minicircle" primers we detected Leishmania DNA in 43.3% of Lu. trapidoi, 26.3% of Lu. gomezi individuals and in 0% of the other 18 sand fly species. Identical ITS-1 sequence was obtained from the Leishmania infecting Lu. trapidoi and Lu. gomezi, sequence which was 93% similar to Leishmania (viannia naiffi in GenBank, a species previously unknown in Panama, but recognized as a type of cutaneous leishmaniasis vectored broadly across northern and central South America. Distinct strains of the intracellular bacterium Wolbachia were detected in three of 20 sand fly species, including Lu. trapidoi

  4. Fuzzy species among recombinogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fraser Christophe

    2005-03-01

    Full Text Available Abstract Background It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species. Results Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'. Conclusion A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.

  5. Post-fire erosion control mulches alter belowground processes and nitrate reductase activity of a perennial forb, heartleaf arnica (Arnica cordifolia)

    Science.gov (United States)

    Erin M. Berryman; Penelope Morgan; Peter R. Robichaud; Deborah Page-Dumroese

    2014-01-01

    Four years post-wildfire, we measured soil and plant properties on hillslopes treated with two different mulches (agricultural wheat straw and wood strands) and a control (unmulched, but burned). Soil total N was about 40% higher and microbial respiration of a standard wood substrate was nearly twice as high in the mulched plots compared to the unmulched plots. Greater...

  6. A conservation planning tool for greater sage-grouse using indices of species distribution, resilience, and resistance.

    Science.gov (United States)

    Ricca, Mark A; Coates, Peter S; Gustafson, K Benjamin; Brussee, Brianne E; Chambers, Jeanne C; Espinosa, Shawn P; Gardner, Scott C; Lisius, Sherri; Ziegler, Pilar; Delehanty, David J; Casazza, Michael L

    2018-02-14

    Managers require quantitative yet tractable tools that can identify areas for restoration yielding effective benefits for targeted wildlife species and the ecosystems they inhabit. As a contemporary example of high national significance for conservation, the persistence of greater sage-grouse (Centrocercus urophasianus, hereafter 'sage-grouse') in the Great Basin ecoregion is compromised, in part, by strongly interacting stressors of conifer encroachment, annual grass invasion, and larger and more frequent wildfires occurring in sagebrush ecosystems. Associated restoration treatments to a sagebrush-dominated state are often costly and risk yielding relatively little ecological benefit to sage-grouse if implemented without first estimating how sage-grouse may respond to treatments, or considering underlying processes influencing sagebrush ecosystem resilience to disturbance and resistance to invasive species. We describe example applications of a spatially-explicit conservation planning tool (CPT) to inform initial prioritization of treatments focused on: 1) removal of conifers (i.e., pinyon-juniper); and 2) post-wildfire restoration aimed at improving habitat conditions for the Bi-State Distinct Population Segment of sage-grouse (an allopatric sub-population at the southwestern edge of the species' range along the California-Nevada state line). The CPT is designed to measure ecological benefits to sage-grouse for a given management action by employing a composite index comprised of resource selection functions and estimates of abundance and space use. For pinyon-juniper removal, we simulated changes in land cover composition following the removal of sparsely distributed trees with low canopy cover and intact understories, and ranked treatments on the basis of spatially-explicit changes in ecological benefits per dollar-unit of cost. For wildfire restoration, we formulated a spatially-explicit conditional model to simulate scenarios for land cover changes (e

  7. 50 CFR Table 2c to Part 679 - Species Codes: FMP Forage Fish Species (all species of the following families)

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Species Codes: FMP Forage Fish Species (all species of the following families) 2c Table 2c to Part 679 Wildlife and Fisheries FISHERY...: FMP Forage Fish Species (all species of the following families) Species Description Code Bristlemouths...

  8. Insular species swarm goes underground

    DEFF Research Database (Denmark)

    P. S. Reboleira, Ana Sofia; Enghoff, Henrik

    2014-01-01

    -group, an insular species swarm distributed in the archipelagos of Madeira and the Canary Islands. We discuss the differences between the new species and their relatives and present information on the subterranean environment of Madeira. An updated overview of the subterranean biodiversity of millipedes...

  9. 76 FR 74778 - Endangered Species

    Science.gov (United States)

    2011-12-01

    .... 16439] Endangered Species AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... has been issued under the authority of the Endangered Species Act of 1973, as amended (ESA; 16 U.S.C. 1531 et seq.) and the regulations governing the taking, importing, and exporting of endangered and...

  10. 76 FR 1405 - Endangered Species

    Science.gov (United States)

    2011-01-10

    ...-XA128 Endangered Species AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and..., importing, and exporting of endangered and threatened species (50 CFR parts 222-226). The five-year permit... above- named organization. The requested permit has been issued under the authority of the Endangered...

  11. SE-590 Lab-Measured Reflectances (OTTER)

    Data.gov (United States)

    National Aeronautics and Space Administration — Laboratory hemispherical reflectance spectra measurements taken to eliminate the effects of atmosphere, understory, exposed soils, mixed species and canopy...

  12. Species delimitation and global biosecurity.

    Science.gov (United States)

    Boykin, Laura M; Armstrong, Karen F; Kubatko, Laura; De Barro, Paul

    2012-01-01

    Species delimitation directly impacts on global biosecurity. It is a critical element in the decisions made by national governments in regard to the flow of trade and to the biosecurity measures imposed to protect countries from the threat of invasive species. Here we outline a novel approach to species delimitation, "tip to root", for two highly invasive insect pests, Bemisia tabaci (sweetpotato whitefly) and Lymantria dispar (Asian gypsy moth). Both species are of concern to biosecurity, but illustrate the extremes of phylogenetic resolution that present the most complex delimitation issues for biosecurity; B. tabaci having extremely high intra-specific genetic variability and L. dispar composed of relatively indistinct subspecies. This study tests a series of analytical options to determine their applicability as tools to provide more rigorous species delimitation measures and consequently more defensible species assignments and identification of unknowns for biosecurity. Data from established DNA barcode datasets (COI), which are becoming increasingly considered for adoption in biosecurity, were used here as an example. The analytical approaches included the commonly used Kimura two-parameter (K2P) inter-species distance plus four more stringent measures of taxon distinctiveness, (1) Rosenberg's reciprocal monophyly, (P(AB)),1 (2) Rodrigo's (P(randomly distinct)),2 (3) genealogical sorting index, (gsi),3 and (4) General mixed Yule-coalescent (GMYC).4,5 For both insect datasets, a comparative analysis of the methods revealed that the K2P distance method does not capture the same level of species distinctiveness revealed by the other three measures; in B. tabaci there are more distinct groups than previously identified using the K2P distances and for L. dipsar far less variation is apparent within the predefined subspecies. A consensus for the results from P(AB), P(randomly distinct) and gsi offers greater statistical confidence as to where genetic limits might

  13. Species recognition and cryptic species in the Tuber indicum complex.

    Directory of Open Access Journals (Sweden)

    Juan Chen

    Full Text Available Morphological delimitation of Asian black truffles, including Tuber himalayense, T. indicum, T. sinense, T. pseudohimalayense, T. formosanum and T. pseudoexcavatum, has remained problematic and even phylogenetic analyses have been controversial. In this study, we combined five years of field investigation in China with morphological study and DNA sequences analyses (ITS, LSU and β-tubulin of 131 Tuber specimens to show that T. pseudohimalayense and T. pseudoexcavatum are the same species. T. formosanum is a separate species based on its host plants and geographic distribution, combined with minor morphological difference from T. indicum. T. sinense should be treated as a synonym of T. indicum. Our results demonstrate that the present T. indicum, a single described morphological species, should include at least two separate phylogenetic species. These findings are of high importance for truffle taxonomy and reveal and preserve the richness of truffle diversity.

  14. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko

    2018-02-14

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  15. Molecular Typing of Nocardia Species

    Directory of Open Access Journals (Sweden)

    Seyyed Saeed Eshraghi

    2012-03-01

    Full Text Available Identification of clinically significant Nocardia species is essential for the definitive diagnosis, predict antimicrobial susceptibility, epidemiological purposes, and for an effective treatment. Conventional identification of Nocardia species in routine medical laboratories which is based on phenotypic (cellular morphology, colonial characteristics, biochemical and enzymatic profiles, and chemotaxonomic characteristics is often laborious, and time-consuming. The procedure requires expertise, and newer species can be difficult to differentiate with accuracy from other related species. Alternative methods of identification, such as high performance liquid chromatography (HPLC and molecular biology techniques allow a better characterization of species. The taxonomy of the genus Nocardia has been dramatically been revised during the last decade and more than 30 valid human clinical significance species of Nocardia have been reported. The use of molecular approaches, including 16S rRNA gene sequencing, restriction fragment length polymorphism (RFLP or PCR restriction endonuclease analysis has been the focus of recent investigations to distinguish the isolates of Nocardia from other actinomycetes genera. The methods have revolutionized the characterization of the Nocardiae by providing rapid, sensitive, and accurate identification procedures. The present review describes the currently known medically important pathogenic species of Nocardia.

  16. Species-area relationships are controlled by species traits.

    Science.gov (United States)

    Franzén, Markus; Schweiger, Oliver; Betzholtz, Per-Eric

    2012-01-01

    The species-area relationship (SAR) is one of the most thoroughly investigated empirical relationships in ecology. Two theories have been proposed to explain SARs: classical island biogeography theory and niche theory. Classical island biogeography theory considers the processes of persistence, extinction, and colonization, whereas niche theory focuses on species requirements, such as habitat and resource use. Recent studies have called for the unification of these two theories to better explain the underlying mechanisms that generates SARs. In this context, species traits that can be related to each theory seem promising. Here we analyzed the SARs of butterfly and moth assemblages on islands differing in size and isolation. We tested whether species traits modify the SAR and the response to isolation. In addition to the expected overall effects on the area, traits related to each of the two theories increased the model fit, from 69% up to 90%. Steeper slopes have been shown to have a particularly higher sensitivity to area, which was indicated by species with restricted range (slope = 0.82), narrow dietary niche (slope= 0.59), low abundance (slope= 0.52), and low reproductive potential (slope = 0.51). We concluded that considering species traits by analyzing SARs yields considerable potential for unifying island biogeography theory and niche theory, and that the systematic and predictable effects observed when considering traits can help to guide conservation and management actions.

  17. Evolution of mutualism between species

    Energy Technology Data Exchange (ETDEWEB)

    Post, W.M.; Travis, C.C.; DeAngelis, D.L.

    1980-01-01

    Recent theoretical work on mutualism, the interaction between species populations that is mutually beneficial, is reviewed. Several ecological facts that should be addressed in the construction of dynamic models for mutualism are examined. Basic terminology is clarified. (PSB)

  18. The Candida Pathogenic Species Complex

    Science.gov (United States)

    Turner, Siobhán A.; Butler, Geraldine

    2014-01-01

    Candida species are the most common causes of fungal infection. Approximately 90% of infections are caused by five species: Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei. Three (C. albicans, C. tropicalis, and C. parapsilosis) belong to the CTG clade, in which the CTG codon is translated as serine and not leucine. C. albicans remains the most commonly isolated but is decreasing relative to the other species. The increasing incidence of C. glabrata is related to its reduced susceptibility to azole drugs. Genome analysis suggests that virulence in the CTG clade is associated with expansion of gene families, particularly of cell wall genes. Similar independent processes took place in the C. glabrata species group. Gene loss and expansion in an ancestor of C. glabrata may have resulted in preadaptations that enabled pathogenicity. PMID:25183855

  19. Achromobacter species in cystic fibrosis

    DEFF Research Database (Denmark)

    Hansen, C R; Pressler, T; Ridderberg, W

    2013-01-01

    Achromobacter species leads to chronic infection in an increasing number of CF patients. We report 2 cases of Achromobacter ruhlandii cross-infection between patients after well-described indirect contact....

  20. Infrared spectra of mineral species

    CERN Document Server

    Chukanov, Nikita V

    2014-01-01

    This book details more than 3,000 IR spectra of more than 2,000 mineral species collected during last 30 years. It features full descriptions and analytical data of each sample for which IR spectrum was obtained.

  1. Earth Day: All Species Projects.

    Science.gov (United States)

    Kraft, Marty

    1994-01-01

    Describes the All Species Project, an interdisciplinary program that attempts to build a sense of community and understanding of the natural world by integrating ideas from art, science, anthropology, counseling, theater, and any other area deemed applicable. (MDH)

  2. EAMJ Species April 10.indd

    African Journals Online (AJOL)

    2010-04-04

    albicans Candida species. (17). In the setting of candidemia and deep infections susceptibility testing may be of benefit especially in cases where initial therapy has failed, the results may guide on suitable adjustment of therapy.

  3. Theoretical microbial ecology without species

    Science.gov (United States)

    Tikhonov, Mikhail

    2017-09-01

    Ecosystems are commonly conceptualized as networks of interacting species. However, partitioning natural diversity of organisms into discrete units is notoriously problematic and mounting experimental evidence raises the intriguing question whether this perspective is appropriate for the microbial world. Here an alternative formalism is proposed that does not require postulating the existence of species as fundamental ecological variables and provides a naturally hierarchical description of community dynamics. This formalism allows approaching the species problem from the opposite direction. While the classical models treat a world of imperfectly clustered organism types as a perturbation around well-clustered species, the presented approach allows gradually adding structure to a fully disordered background. The relevance of this theoretical construct for describing highly diverse natural ecosystems is discussed.

  4. Phenotypic Plasticity and Species Coexistence.

    Science.gov (United States)

    Turcotte, Martin M; Levine, Jonathan M

    2016-10-01

    Ecologists are increasingly interested in predicting how intraspecific variation and changing trait values impact species interactions and community composition. For many traits, much of this variation is caused by phenotypic plasticity, and thus the impact of plasticity on species coexistence deserves robust quantification. Partly due to a lack of sound theoretical expectations, empirical studies make contradictory claims regarding plasticity effects on coexistence. Our critical review of this literature, framed in modern coexistence theory, reveals that plasticity affects species interactions in ways that could impact stabilizing niche differences and competitive asymmetries. However, almost no study integrates these measures to quantify the net effect of plasticity on species coexistence. To address this challenge, we outline novel empirical approaches grounded in modern theory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Species delimitation in the Stenocereus griseus (Cactaceae species complex reveals a new species, S. huastecorum.

    Directory of Open Access Journals (Sweden)

    Hernán Alvarado-Sizzo

    Full Text Available The Stenocereus griseus species complex (SGSC has long been considered taxonomically challenging because the number of taxa belonging to the complex and their geographical boundaries remain poorly understood. Bayesian clustering and genetic distance-based methods were used based on nine microsatellite loci in 377 individuals of three main putative species of the complex. The resulting genetic clusters were assessed for ecological niche divergence and areolar morphology, particularly spination patterns. We based our species boundaries on concordance between genetic, ecological, and morphological data, and were able to resolve four species, three of them corresponding to S. pruinosus from central Mexico, S. laevigatus from southern Mexico, and S. griseus from northern South America. A fourth species, previously considered to be S. griseus and commonly misidentified as S. pruinosus in northern Mexico showed significant genetic, ecological, and morphological differentiation suggesting that it should be considered a new species, S. huastecorum, which we describe here. We show that population genetic analyses, ecological niche modeling, and morphological studies are complementary approaches for delimiting species in taxonomically challenging plant groups such as the SGSC.

  6. Chapter 07: Species description pages

    Science.gov (United States)

    Alex C. Wiedenhoeft

    2011-01-01

    These pages are written to be the final step in the identification process; you will be directed to them by the key in Chapter 6. Each species or group of similar species in the same genus has its own set of pages. The information in the first page describes the characteristics of the wood covered in the manual. The page shows images of similar or confusable woods,...

  7. Species Egalitarianism and the Environment

    Directory of Open Access Journals (Sweden)

    Kristin Tiili

    2014-06-01

    Full Text Available A general anthropocentric view of the human species affects the environment and is a major contributing factor in the environmental crisis we are currently facing. A species egalitarian society would have positive effects on the crisis, and particularly in regards to short term goals of decreasing greenhouse gases in the atmosphere. Additionally it would increase the quality of life and alleviate the suffering of countless beings, nonhuman animals and humans alike.

  8. Seed dormancy in alpine species

    OpenAIRE

    Schwienbacher, Erich; Navarro-Cano, Jose Antonio; Neuner, Gilbert; Erschbamer, Brigitta

    2011-01-01

    In alpine species the classification of the various mechanisms underlying seed dormancy has been rather questionable and controversial. Thus, we investigated 28 alpine species to evaluate the prevailing types of dormancy. Embryo type and water impermeability of seed coats gave an indication of the potential seed dormancy class. To ascertain the actual dormancy class and level, we performed germination experiments comparing the behavior of seeds without storage, after cold-dry storage, after c...

  9. Endangered Lilium Species of Turkey

    Directory of Open Access Journals (Sweden)

    Sevim Demir

    2018-01-01

    Full Text Available Turkey, which is among the major gene centers of the world and has a special place in plant genetic diversity. However, many plant genetic resources, including geophytes, are under genetic erosion because of the environmental and other problems and therefore face with the danger of extinction. Lilium ciliatum is endemic to North East Anatolia. IUCN (International Union for the Conservation of Natural Resources Red List Category of this species is Endangered (EN. Lilium ciliatum naturally grown in Zigana pass, Bayburt, Trabzon, Bulancak, Giresun and Gümüşhane is endangered and major threats of L. ciliatum are road construction and human disturbance related to ecotourism and recreation. It was reported that Lilium carniolicum naturally grown in Turkey is endangered although it isn’t in the IUCN Red List. Distribution areas of L. carniolicum are Trabzon, Rize, Artvin and it is also endemic to North East Anatolia. These species have high potential for use as ornamental plants with their colorful big flowers. In addition, the bulbs of these species are also used in the cosmetic industry and medicine. These are the main properties that increase the importance of L. ciliatum and L. carniolicum species. Therefore it is very important to protect the habitats of these species, ensure the continuity of their generations. The disappearance of these endemic species from our country means to disappear from the world. This review has been given in order to give some information about the endangered Lilium species of Turkey and conservation actions on these species in Turkey flora and take attention to the issue.

  10. Collective behaviour across animal species.

    Science.gov (United States)

    DeLellis, Pietro; Polverino, Giovanni; Ustuner, Gozde; Abaid, Nicole; Macrì, Simone; Bollt, Erik M; Porfiri, Maurizio

    2014-01-16

    We posit a new geometric perspective to define, detect, and classify inherent patterns of collective behaviour across a variety of animal species. We show that machine learning techniques, and specifically the isometric mapping algorithm, allow the identification and interpretation of different types of collective behaviour in five social animal species. These results offer a first glimpse at the transformative potential of machine learning for ethology, similar to its impact on robotics, where it enabled robots to recognize objects and navigate the environment.

  11. Echinacea species of medicinal use

    OpenAIRE

    Leon Sorin MUNTEAN; Dan VARBAN; Sorin MUNTEAN; Mircea TAMAS; Rodica VARBAN

    1998-01-01

    Echinacea species come from North America. Preparations of Echinacea pallida Nutt. and Echinacea purpurea (L.) Moench are used in healing many diseases owing to their immunostimulative, antivirus and bacteria, scarifying and anti-inflammatory properties. Echinacea pallida Nutt. displays tap root, linear spear-shaped leaves. Seedling plantation with both species is performed in May and spacing of 50 cm between rows and 30 cm between plants per row. Harvest takes place in the 2-nd year of flowe...

  12. Keystone species and food webs.

    Science.gov (United States)

    Jordán, Ferenc

    2009-06-27

    Different species are of different importance in maintaining ecosystem functions in natural communities. Quantitative approaches are needed to identify unusually important or influential, 'keystone' species particularly for conservation purposes. Since the importance of some species may largely be the consequence of their rich interaction structure, one possible quantitative approach to identify the most influential species is to study their position in the network of interspecific interactions. In this paper, I discuss the role of network analysis (and centrality indices in particular) in this process and present a new and simple approach to characterizing the interaction structures of each species in a complex network. Understanding the linkage between structure and dynamics is a condition to test the results of topological studies, I briefly overview our current knowledge on this issue. The study of key nodes in networks has become an increasingly general interest in several disciplines: I will discuss some parallels. Finally, I will argue that conservation biology needs to devote more attention to identify and conserve keystone species and relatively less attention to rarity.

  13. The Colletotrichum gloeosporioides species complex.

    Science.gov (United States)

    Weir, B S; Johnston, P R; Damm, U

    2012-09-15

    The limit of the Colletotrichum gloeosporioides species complex is defined genetically, based on a strongly supported clade within the Colletotrichum ITS gene tree. All taxa accepted within this clade are morphologically more or less typical of the broadly defined C. gloeosporioides, as it has been applied in the literature for the past 50 years. We accept 22 species plus one subspecies within the C. gloeosporioides complex. These include C. asianum, C. cordylinicola, C. fructicola, C. gloeosporioides, C. horii, C. kahawae subsp. kahawae, C. musae, C. nupharicola, C. psidii, C. siamense, C. theobromicola, C. tropicale, and C. xanthorrhoeae, along with the taxa described here as new, C. aenigma, C. aeschynomenes, C. alatae, C. alienum, C. aotearoa, C. clidemiae, C. kahawae subsp. ciggaro, C. salsolae, and C. ti, plus the nom. nov. C. queenslandicum (for C. gloeosporioides var. minus). All of the taxa are defined genetically on the basis of multi-gene phylogenies. Brief morphological descriptions are provided for species where no modern description is available. Many of the species are unable to be reliably distinguished using ITS, the official barcoding gene for fungi. Particularly problematic are a set of species genetically close to C. musae and another set of species genetically close to C. kahawae, referred to here as the Musae clade and the Kahawae clade, respectively. Each clade contains several species that are phylogenetically well supported in multi-gene analyses, but within the clades branch lengths are short because of the small number of phylogenetically informative characters, and in a few cases individual gene trees are incongruent. Some single genes or combinations of genes, such as glyceraldehyde-3-phosphate dehydrogenase and glutamine synthetase, can be used to reliably distinguish most taxa and will need to be developed as secondary barcodes for species level identification, which is important because many of these fungi are of biosecurity

  14. Are hybrid species more fit than ancestral parent species in the current hybrid species habitats?

    NARCIS (Netherlands)

    Donovan, L.A.; Rosenthal, D.R.; Sanchez-Velenosi, M.; Rieseberg, L.H.; Ludwig, F.

    2010-01-01

    Hybrid speciation is thought to be facilitated by escape of early generation hybrids into new habitats, subsequent environmental selection and adaptation. Here, we ask whether two homoploid hybrid plant species (Helianthus anomalus, H. deserticola) diverged sufficiently from their ancestral parent

  15. Terrestrial animals as invasive species and as species at risk from invasions

    Science.gov (United States)

    Deborah M. Finch; Dean Pearson; Joseph Wunderle; Wayne Arendt

    2010-01-01

    Including terrestrial animal species in the invasive species strategy plan is an important step in invasive species management. Invasions by nonindigenous species threaten nearly 50 percent of imperiled native species in the United States and are the Nation's second leading cause of species endangerment. Invasion and conversion of native habitats by exotic species...

  16. How does molecular-assisted identification affect our estimation of α, β and γ biodiversity? An example from understory red seaweeds (Rhodophyta) of Laminaria kelp forests in Brittany, France.

    Science.gov (United States)

    Robuchon, Marine; Valero, Myriam; Gey, Delphine; Le Gall, Line

    2015-04-01

    Using two distinct identification methods, one based on morphological characters only and the other combining morphological and molecular characters (integrative identification method), we investigated the differences in the biodiversity patterns of red seaweed communities associated with kelp forests at various spatial scales: the regional diversity of Brittany, France (γ-diversity), the local diversity at different Breton sites (α-diversity) and the differentiation in species diversity and abundances among those sites (β-diversity). To characterise α and β diversities, we conducted an initial survey in winter 2011 at 20 sites belonging to four different sub-regions, with specimens collected from six quadrats of 0.10 m(2) at each site, three in the tidal zone dominated by Laminaria digitata and three in the zone dominated by Laminaria hyperborea. To further characterise the regional diversity, we carried out another survey combining several sampling methods (quadrats and visual census) in different seasons (winter, spring and summer) and different years (2011 and 2012). In all, we collected 1990 specimens that were assigned to 76 taxa with the identification method based on morphological characters and 139 taxa using the integrative method. For γ and α diversity, the use of molecular characters revealed several cases of cryptic diversity and both increased the number of identified taxa and improved their taxonomic resolution. However, the addition of molecular characters for specimen identification only slightly affected estimates of β-diversity.

  17. Malassezia Species and Pityriasis Versicolor

    Directory of Open Access Journals (Sweden)

    Gulin Rodoplu

    2016-01-01

    Full Text Available Malassezia species are found in part of the normal human cutaneous commensal flora, however it has been known for many years that the Malassezia yeasts are associated with a number of different human diseases ranging from pityriasis versicolor to seborrhoeic dermatitis. In addition, since the 1980s, they have been reported as causing opportunistic systemic infections. The taxonomy of Malassezia spp. has recently been modified to include 13 obligatorily lipophilic species, plus one non-obligatorily lipophilic species, which only rarely colonizes human hosts and currently the genus consist 14 species as M. furfur, M. pachydermatis, M. sympodialis, M. globosa, M. obtusa, M. slooffiae, M. restricta, M. dermatis, M. japonica, M. nana, M. yamatoensis, M. caprae, M. equina, M. cuniculi. Fastidious growth requirements of Malassezia yeasts defied the initial attempts to culture these organisms and their true identification and the relationship between different species only became apparent with the application of modern molecular techniques. The causative fungus is seen especially in such seborrheic areas as the scalp, face, trunk and upper back. Under the influence of various exogenous or endogenous predisposing factors, these yeasts change from the blastospore form to the mycelial form and become pathogenic. Diagnosis of pityriasis versicolor which is caused by Malassezia species is generally easy and lies on the basis of its clinical appearance and can be confirmed by mycological examination. The diagnosisis is mainly based on direct examination with potassium hydroxide (KOH and demonstration that represents pseudohyphae and blastoconidia as the typical %u201Cspaghetti and meatballs%u201D pattern. Characteristic features of the genus Malassezia include a distinctive morphology and an affinity for lipids in culture. Culture is necessary to recover the infecting strain, especially for epidemiologic purposes and also to test its antifungal susceptibility

  18. Turbulent dispersal promotes species coexistence

    Science.gov (United States)

    Berkley, Heather A; Kendall, Bruce E; Mitarai, Satoshi; Siegel, David A

    2010-01-01

    Several recent advances in coexistence theory emphasize the importance of space and dispersal, but focus on average dispersal rates and require spatial heterogeneity, spatio-temporal variability or dispersal-competition tradeoffs to allow coexistence. We analyse a model with stochastic juvenile dispersal (driven by turbulent flow in the coastal ocean) and show that a low-productivity species can coexist with a high-productivity species by having dispersal patterns sufficiently uncorrelated from those of its competitor, even though, on average, dispersal statistics are identical and subsequent demography and competition is spatially homogeneous. This produces a spatial storage effect, with an ephemeral partitioning of a ‘spatial niche’, and is the first demonstration of a physical mechanism for a pure spatiotemporal environmental response. ‘Turbulent coexistence’ is widely applicable to marine species with pelagic larval dispersal and relatively sessile adult life stages (and perhaps some wind-dispersed species) and complements other spatial and temporal storage effects previously documented for such species. PMID:20455921

  19. Tiarosporella species: Distribution and significance

    Directory of Open Access Journals (Sweden)

    Karadžić Dragan

    2003-01-01

    Full Text Available The genus Tiarosporella consists of eight species of which four occur on conifers. These fungi differ in conidial size and in the form of appendages that occur on the distal end of the conidia (pycnospore. In Europe only the two species have been recorded. T. parca occurs on the species of the genus Picea (P. abies and P. omorika, while T. durmitorensis infests fir (Abies alba. T. parca can be considered, as an endophyte, and it sporulates only when the needles die due to a stress or old age. T. durmitorensis is a very aggressive pathogen colonizing fir needles of all ages. Together with other fungi, it leads to tree death. So far, T. durmitotensis has been found only in European silver fir stands in the National Park "Durmitor" and in the National Park "Biogradska Gora".

  20. Scandinavian Oncophorus (Bryopsida, Oncophoraceae: species, cryptic species, and intraspecific variation

    Directory of Open Access Journals (Sweden)

    Lars Hedenäs

    2017-05-01

    Full Text Available Scandinavian members of the acrocarpous moss genus Oncophorus were revised after field observations had suggested unrecognized diversity. Based on molecular (nuclear: internal transcribed spacers 1 and 2, ITS; plastid: trnGUCC G2 intron, trnG, rps4 gene + trnS-rps4 spacer, rps4 and morphological evidence, four morphologically distinguishable species are recognized, Oncophorus elongatus (I.Hagen Hedenäs, O. integerrimus Hedenäs sp. nov. (syn. O. virens var. elongatus Limpr., O. virens (Hedw. Brid., and O. wahlenbergii Brid. (O. sardous Herzog, syn. nov.. Oncophorus elongatus was earlier recognized, but much of its variation was hidden within O. wahlenbergii. Its circumscription is here expanded to include plants with long leaves having mostly denticulate or sharply denticulate upper margins and with long and narrow marginal cells in the basal portion of the sheathing leaf lamina. The new species O. integerrimus sp. nov. differs from O. virens in having more loosely incurved leaves and entire or almost entire upper leaf margins. Besides these characters, the species in the respective pairs differ in quantitative features of the leaf lamina cells. Several cryptic entities were found, in several cases as molecularly distinct as some of the morphologically recognizable species, and phylogeographic structure is present within O. elongatus and O. virens.

  1. New species of Elattostachys (Blume) Radlk. (Sapindaceae)

    NARCIS (Netherlands)

    Adema, Frits

    1992-01-01

    Seven new species of Elattostachys (Blume) Radlk. are described, five from New Guinea and one each from Celebes and the Solomon Islands. A key to the species of Celebes and one to the species of New Guinea is given.

  2. Enolonium Species-Umpoled Enolates

    DEFF Research Database (Denmark)

    Arava, Shlomy; Kumar, Jayprakash N.; Maksymenko, Shimon

    2017-01-01

    Enolonium species/iodo(III) enolates of carbonyl compounds have been suggested to be intermediates in a wide variety of hypervalent iodine induced chemical transformations of ketones, including α-C-O, α-C-N, α-C-C, and alpha-carbon- halide bond formation, but they have never been characterized. W....... Our results open up chemical space for designing a variety of new transformations. We showcase the ability of enolonium species to react with prenyl, crotyl, cinnamyl, and allyl silanes with absolute regioselectivity in up to 92% yield....

  3. Seven new Malesian species of Ficus (Moraceae)

    NARCIS (Netherlands)

    Berg, C.C.

    2012-01-01

    Descriptions of seven new species, Ficus buntaensis, F. flavistipulata, F. jambiensis, F. porata, F. samarana, F. sorongensis and F. temburongensis are presented and the related species briefly discussed.

  4. Contact sensitization from Compositae-containing herbal remedies and cosmetics.

    Science.gov (United States)

    Paulsen, Evy

    2002-10-01

    The Compositae (Asteraceae) family of plants is currently an important cause of allergic plant contact dermatitis in Europe. The family comprises some of the oldest and most valued medicinal plants, and the increasing popularity of herbal medicine and cosmetics may theoretically result in a growing number of Compositae sensitizations from these sources. According to the literature at least 15 species, including among others arnica (Arnica montana), German and Roman chamomile (Chamomilla recutita and Chamaemelum nobile), marigold (Calendula officinalis), Echinacea and elecampane (Inula helenium), have been suspected of sensitization or elicitation of Compositae dermatitis. Epidemiological data are available for 2 species only, arnica and German chamomile, the rest of the evidence being anecdotal. Based on this, sensitization seems to occur relatively frequently with a few species such as arnica and elecampane, and occurs rarely with the majority, especially the widely used German chamomile. Sesquiterpene lactones are the most important allergens, but there are a few cases of sensitization from a coumarin, a sesquiterpene alcohol and a thiophene. The risk of elicitation of dermatitis by using Compositae-containing products in Compositae-sensitive individuals is by-and-large unknown.

  5. Alien species recorded in the United Arab Emirates: an initial list of terrestrial and freshwater species

    Directory of Open Access Journals (Sweden)

    Pritpal Soorae

    2015-10-01

    Full Text Available Little is documented on the alien terrestrial and freshwater species in the United Arab Emirates. To address this, an assessment of terrestrial and freshwater alien species was conducted using various techniques such as a questionnaire, fieldwork data, networking with relevant people, and a detailed literature review. The results of the initial assessment show that there are 146 alien species recorded in the following seven major taxonomic groups: invertebrates 49 species, freshwater fish five species, amphibian one species, reptiles six species, birds 71 species, mammals six species and plants eight species. To inform decision makers a full list of the 146 species identified in this assessment is presented. 

  6. and tulbaghia species (wild garlic)

    African Journals Online (AJOL)

    Mgina

    Tulbaghia (wild Garlic) is a plant genus most closely related to the genus Allium both in the family Alliaceae and is ... that have been identified in the Alliaceae family. ... characteristic odours and the medicinal properties of both the Tulbaghia and Allium species. This review will focus mainly on the genus Tulbaghia and its.

  7. SARS – virus jumps species

    Indian Academy of Sciences (India)

    SARS – virus jumps species. Coronavirus reshuffles genes; Rotteir et al, Rotterdam showed the virus to jump from cats to mouse cells after single gene mutation ? Human disease due to virus jumping from wild or domestic animals; Present favourite animal - the cat; - edible or domestic.

  8. Thromboelastography in Selected Avian Species

    DEFF Research Database (Denmark)

    Andersen, Sophie Susanna Strindberg; Nielsen, Tenna W; Ribeiro, Ângela M

    2015-01-01

    ) (n = 13), helmeted Guinea fowl ( Numida meleagris ) (n = 12), Amazon parrots (Amazona species) (n = 9), Humboldt penguins ( Spheniscus humboldti ) (n = 6), and domestic chickens (n = 16). Activated partial thromboplastin time, prothrombin time, and fibrinogen were measured as a means of comparison...

  9. Molecular Epidemiology of Fonsecaea Species

    NARCIS (Netherlands)

    Najafzadeh, M.J.; Sun, J.; Vicente, V.A.; Klaassen, C.H.W.; Bonifaz, A.; Gerrits van den Ende, A.H.G.; Menken, S.B.J.; de Hoog, G.S.

    2011-01-01

    To assess population diversities among 81 strains of fungi in the genus Fonsecaea that had been identified down to species level, we applied amplified fragment-length polymorphism (AFLP) technology and sequenced the internal transcribed spacer regions and the partial cell division cycle, β-tubulin,

  10. Man...An Endangered Species?

    Science.gov (United States)

    Department of the Interior, Washington, DC.

    The general theme of this 1968 yearbook is that man is a threatened species, facing overpopulation and unbridled technology - both self induced. The presentation is broad, relating to many aspects of conservation and natural resources in the United States in a descriptive, non-technical style. The yearbook is divided into major topics: Land…

  11. Influenza vaccines for avian species

    Science.gov (United States)

    Beginning in Southeast Asia, in 2003, a multi-national epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity an...

  12. storey and canopy tree species

    African Journals Online (AJOL)

    different tree species. The data presented here would therefore help in the planning and management of tropical forest reserves and development of management inteiventions to enhance forest productivity and ecological balance. Materials and methods. Study site. Kalinzu Forest Reserve is a tropical rain forest locate<.! in.

  13. The Netherlands’ marine Cladophora species

    NARCIS (Netherlands)

    Slootweg, A.F.G.

    1947-01-01

    When studying the marine species of the genus Cladophora in the Netherlands, I had the disposal of the material of the National Herbarium at Leiden, the herbaria of the Universities of Amsterdam, Groningen and Utrecht and those of the “Zoölogisch Station” at Den Helder and the “Koninklijke

  14. Perpetual flowering in strawberry species

    Science.gov (United States)

    Studies have revealed genetic control of flowering patterns for seasonal flowering (SF) and perpetual flowering (PF) genotypes in the common garden strawberry, with associated links to gene homeologs in diploid alpine strawberry, F. vesca L. Within the genus Fragaria, 22 species and multiple subspec...

  15. Georgia Species at Risk Project

    Science.gov (United States)

    2009-06-01

    well-developed. Shrub and herb layers may be sparse or moderately dense. Within its range, Sabal minor may be a prominent shrub. Species richness...lanuginosa), Ulmus alata and Viburnum rufidulum. Common vines include Berchemia scandens and Cocculus carolinus. This community occurs on

  16. Endangered Species: An Educator's Handbook.

    Science.gov (United States)

    Smith, Jean, M., Comp.

    Presented are two articles, an annotated bibliography, and other information useful in teaching about endangered species, especially those found in Florida. The articles provide an ethical rationale, teaching suggestions, and a discussion of the value of wildlife. Descriptions of over 100 pertinent books, periodicals, movies, and filmstrips are in…

  17. Methylated DNA in Borrelia species.

    OpenAIRE

    Hughes, C A; Johnson, R C

    1990-01-01

    The DNA of Borrelia species was examined for the presence of methylated GATC sequences. The relapsing-fever Borrelia sp., B. coriaceae, and only 3 of 22 strains of B. burgdorferi contained adenine methylation systems. B. anserina lacked an adenine methylation system. Fundamental differences in DNA methylation exist among members of the genus Borrelia.

  18. Species recovery in the united states: Increasing the effectiveness of the endangered species act

    OpenAIRE

    Evans, DM; Che-Castaldo, JP; Crouse, D; Davis, FW; Epanchin-Niell, R; Flather, CH; Frohlich, RK; Goble, DD; Li, YW; Male, TD; Master, LL; Moskwik, MP; Neel, MC; Noon, BR; Parmesan, C

    2016-01-01

    © The Ecological Society of America. The Endangered Species Act (ESA) has succeeded in shielding hundreds of species from extinction and improving species recovery over time. However, recovery for most species officially protected by the ESA - i.e., listed species-has been harder to achieve than initially envisioned. Threats to species are persistent and pervasive, funding has been insufficient, the distribution of money among listed species is highly uneven, and at least 10 times more specie...

  19. Optimal conservation of migratory species.

    Directory of Open Access Journals (Sweden)

    Tara G Martin

    Full Text Available BACKGROUND: Migratory animals comprise a significant portion of biodiversity worldwide with annual investment for their conservation exceeding several billion dollars. Designing effective conservation plans presents enormous challenges. Migratory species are influenced by multiple events across land and sea-regions that are often separated by thousands of kilometres and span international borders. To date, conservation strategies for migratory species fail to take into account how migratory animals are spatially connected between different periods of the annual cycle (i.e. migratory connectivity bringing into question the utility and efficiency of current conservation efforts. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the first framework for determining an optimal conservation strategy for a migratory species. Employing a decision theoretic approach using dynamic optimization, we address the problem of how to allocate resources for habitat conservation for a Neotropical-Nearctic migratory bird, the American redstart Setophaga ruticilla, whose winter habitat is under threat. Our first conservation strategy used the acquisition of winter habitat based on land cost, relative bird density, and the rate of habitat loss to maximize the abundance of birds on the wintering grounds. Our second strategy maximized bird abundance across the entire range of the species by adding the constraint of maintaining a minimum percentage of birds within each breeding region in North America using information on migratory connectivity as estimated from stable-hydrogen isotopes in feathers. We show that failure to take into account migratory connectivity may doom some regional populations to extinction, whereas including information on migratory connectivity results in the protection of the species across its entire range. CONCLUSIONS/SIGNIFICANCE: We demonstrate that conservation strategies for migratory animals depend critically upon two factors: knowledge of

  20. Species recovery in the United States: Increasing the effectiveness of the Endangered Species Act

    Science.gov (United States)

    Daniel M. Evans; Judy P. Che-Castaldo; Deborah Crouse; Frank W. Davis; Rebecca Epanchin-Niell; Curtis H. Flather; R. Kipp Frohlich; Dale D. Goble; Ya-Wei Li; Timothy D. Male; Lawrence L. Master; Matthew P. Moskwik; Maile C. Neel; Barry R. Noon; Camille Parmesan; Mark W. Schwartz; J. Michael Scott; Byron K. Williams

    2016-01-01

    The Endangered Species Act (ESA) has succeeded in shielding hundreds of species from extinction and improving species recovery over time. However, recovery for most species officially protected by the ESA - i.e., listed species - has been harder to achieve than initially envisioned. Threats to species are persistent and pervasive, funding has been insufficient...

  1. Synopsis of the Oxyethira flavicornis species group with new Japanese Oxyethira species (Trichoptera, Hydroptilidae

    Directory of Open Access Journals (Sweden)

    Oláh, J.

    2013-06-01

    Full Text Available A brief synopsis of the Oxyethira flavicornis species group is produced by the examination of type materials. Diagrammatic drawings with similar style were prepared for all the known and for the new species. Short description of genus Oxyethira, subgenus Oxyethira, species group of Oxyethira flavicornis are presented together with the description of five species clusters: O. datra new species cluster, O. ecornuta new species cluster, O. flavicornis new species cluster, O. hiroshima new species cluster, O. tiunovae new species cluster. Five new species are described from the O. flavicornis species group: O chitosea sp. n., O. hena sp. n., O. hiroshima sp. n., O. kakida sp. n., O. mekunna sp. n. One new species is described from the Oxyethira grisea species group: Oxyethira ozea sp. n. and two new species from the Oxyethira ramosa species group: Oxyethira miea sp. n., Oxyethira okinawa sp. n.

  2. Allelopathy of plant species of pharmaceutical importance to cultivated species

    Directory of Open Access Journals (Sweden)

    Álisson Sobrinho Maranho

    2012-11-01

    Full Text Available This study aimed to identify possible allelopathic effects of leaf aqueous extracts of Baccharis dracunculifolia DC., Pilocarpus pennatifolius Lem., Cyperus rotundus L., Morus rubra L., Casearia sylvestris Sw., and Plectranthus barbatus Andr. on the germination and initial growth of Lactuca sativa L., Brassica oleracea L. cv. capitata, B. oleracea L. cv. italica, B. pekinenses L., B. campestris L., Lycopersicum esculentum Miller, and Eruca sativa L. To obtain the aqueous extracts, leaves previously dried at a 1g.10mL-1 concentration were used, diluted in six solutions (10, 30, 50, 70, 90, and 100% and compared to control, distilled water, with five replications of 10 seeds for all vegetable species. The aqueous extracts of all species showed allelopathic potential for germination of seeds, the germination speed index, and the initial growth of shoots and roots of vegetable crops. The aqueous extracts of C. rotundus and P. barbatus promoted lower and higher allelopathic effects, respectively, and the vegetal structure mostly affected by the extracts was the primary root. The results indicate the existence of allelopathic potential in the species tested, so there’s a need for adopting care procedures when cultivating vegetables with them.

  3. Floral reward in Ranunculaceae species

    Directory of Open Access Journals (Sweden)

    Bożena Denisow

    2016-04-01

    Full Text Available Floral reward is important in ecological and evolutionary perspectives and essential in pollination biology. For example, floral traits, nectar and pollen features are essential for understanding the functional ecology, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. We believe to present a synthetic description in the field of floral reward in Ranunculaceae family important in pollination biology and indicating connections between ecological and evolutionary approaches. The links between insect visitors’ behaviour and floral reward type and characteristics exist. Ranunculaceae is a family of aboot 1700 species (aboot 60 genera, distributed worldwide, however the most abundant representatives are in temperate and cool regions of the northern and southern hemispheres. The flowers are usually radially symmetric (zygomorphic and bisexual, but in Aconitum, Aquilegia are bilaterally symmetric (zygomorphic. Most Ranunculaceae flowers offer no nectar, only pollen (e.g., Ranunculus, Adonis vernalis, Thalictrum, but numerous species create trophic niches for different wild pollinators (e.g. Osmia, Megachile, Bombus, Andrena (Denisow et al. 2008. Pollen is a source of protein, vitamins, mineral salts, organic acids and hormones, but the nutritional value varies greatly between different plant species. The pollen production can differ significantly between Ranunculacea species. The mass of pollen produced in anthers differ due to variations in the number of developed anthers. For example, interspecies differences are considerable, 49 anthers are noted in Aquilegia vulgaris, 70 anthers in Ranunculus lanuginosus, 120 in Adonis vernalis. A significant intra-species differences’ in the number of anthers are also noted (e.g. 41 to 61 in Aquilegia vulgaris, 23-45 in Ranunculus cassubicus. Pollen production can be up to 62 kg per ha for Ranunculus acer

  4. Bias and misleading concepts in an Arnica research study. Comments to improve experimental Homeopathy

    Directory of Open Access Journals (Sweden)

    Salvatore Chirumbolo

    2018-01-01

    Full Text Available Basic experimental models in Homeopathy are of major interest because they could get insightful data about the ability of high dilutions to work in a biological system. Due to the extreme difficulty in the highlighting any possible effect and trusting its reliability, methods should be particularly stringent and highly standardized. Confounders, handling process, pre-analytical errors, misleading statistics and misinterpretations may lead to experimental biases. This article tries to elucidate those factors causing bias, taking into account some recent reported evidence in the field.

  5. Demographic consequences of inbreeding and outbreeding in Arnica montana: a field experiment.

    NARCIS (Netherlands)

    Luijten, S.H.; Kery, M.; Oostermeijer, J.G.B.; den Nijs, J.C.M.

    2002-01-01

    1. The genetic constitution of populations may significantly affect demography. Founder populations or isolated remnants may show inbreeding depression, while established populations can be strongly adapted to the local environment. Gene exchange between populations can lead to better performance if

  6. The myth of plant species saturation

    Science.gov (United States)

    Thomas J. Stohlgren; David T. Barnett; Catherine S. Jarnevich; Curtis Flather; John Kartesz

    2008-01-01

    Plant species assemblages, communities or regional floras might be termed saturated when additional immigrant species are unsuccessful at establishing due to competitive exclusion or other inter-specific interactions, or when the immigration of species is off-set by extirpation of species. This is clearly not the case for state, regional or national floras in the USA...

  7. What is a Species? An Endless Debate

    Indian Academy of Sciences (India)

    Srimath

    compatibility. Hennigian species. Hennig, 1950. Species are reproductively isolated natural concept. Willmann, 1985 populations or group of populations. They originate via the dissolution of the stem species in speciation event and cease to exist either through extinction or speciation. Ecological species. Van Valen, 1976.

  8. Charcoal anatomy of forest species

    Directory of Open Access Journals (Sweden)

    Graciela Inés Bolzon de Muñiz1

    2012-09-01

    Full Text Available Vegetal charcoal retains the anatomical structure of the wood and may permit its botanical identification, which depends on species characteristics, the charcoal fragments size and preservation state. Anatomical characterization of ten forest species charcoal was done envisaging the identification and control of illegal charcoal. Differences between gymnosperms and angiosperms are evident in carbonized wood. Vessel diameter was statistically different between wood and charcoal in Vatairea guianensis, Mezilaurus itauba, Calophyllum brasiliense e Qualea cf. acuminata, and vessel frequency in Vatairea guianensis, Manilkara huberi, Qualea cf. acuminata e Simarouba amara. The anatomical structure from wood, in general aspects, is constant during carbonization process using temperature of 450°C, being possible to identify the material by using its cellular components.

  9. Dynamic conservation for migratory species.

    Science.gov (United States)

    Reynolds, Mark D; Sullivan, Brian L; Hallstein, Eric; Matsumoto, Sandra; Kelling, Steve; Merrifield, Matthew; Fink, Daniel; Johnston, Alison; Hochachka, Wesley M; Bruns, Nicholas E; Reiter, Matthew E; Veloz, Sam; Hickey, Catherine; Elliott, Nathan; Martin, Leslie; Fitzpatrick, John W; Spraycar, Paul; Golet, Gregory H; McColl, Christopher; Morrison, Scott A

    2017-08-01

    In an era of unprecedented and rapid global change, dynamic conservation strategies that tailor the delivery of habitat to when and where it is most needed can be critical for the persistence of species, especially those with diverse and dispersed habitat requirements. We demonstrate the effectiveness of such a strategy for migratory waterbirds. We analyzed citizen science and satellite data to develop predictive models of bird populations and the availability of wetlands, which we used to determine temporal and spatial gaps in habitat during a vital stage of the annual migration. We then filled those gaps using a reverse auction marketplace to incent qualifying landowners to create temporary wetlands on their properties. This approach is a cost-effective way of adaptively meeting habitat needs for migratory species, optimizes conservation outcomes relative to investment, and can be applied broadly to other conservation challenges.

  10. Echinococcus species in African wildlife.

    Science.gov (United States)

    Hüttner, M; Romig, T

    2009-09-01

    Cystic echinococcosis, caused by different species of the Echinococcus granulosus complex, is an important zoonotic disease with a particular impact on pastoralist societies. In addition to the widespread taxa with synanthropic transmission, a number of Echinococcus species were described from African wild carnivores early in the 20th century. For lack of study material, most of these were later tentatively synonymized with E. granulosus. Early infection experiments with wildlife isolates gave ambiguous results due to the use of unspecified parasite material, and only recently molecular methods provided the opportunity to shed light on the confusing scenery e.g. by characterizing E. felidis from the African lion. Here we will summarize the convoluted history of Echinococcus research in sub-Saharan Africa and highlight the necessity of molecular surveys to establish the life cycles and estimate the zoonotic potential of these parasites.

  11. Ranking species in mutualistic networks

    Science.gov (United States)

    Domínguez-García, Virginia; Muñoz, Miguel A.

    2015-02-01

    Understanding the architectural subtleties of ecological networks, believed to confer them enhanced stability and robustness, is a subject of outmost relevance. Mutualistic interactions have been profusely studied and their corresponding bipartite networks, such as plant-pollinator networks, have been reported to exhibit a characteristic ``nested'' structure. Assessing the importance of any given species in mutualistic networks is a key task when evaluating extinction risks and possible cascade effects. Inspired in a recently introduced algorithm -similar in spirit to Google's PageRank but with a built-in non-linearity- here we propose a method which -by exploiting their nested architecture- allows us to derive a sound ranking of species importance in mutualistic networks. This method clearly outperforms other existing ranking schemes and can become very useful for ecosystem management and biodiversity preservation, where decisions on what aspects of ecosystems to explicitly protect need to be made.

  12. Haemolytic glycoglycerolipids from Gymnodinium species.

    Science.gov (United States)

    Parrish, C C; Bodennec, G; Gentien, P

    1998-03-01

    Glycoglycerolipids derived from microalgae can be a source of biologically active substances including toxins. Such glycolipids were analysed in two isolates of toxic marine dinoflagellates from European waters. The lipids of Gymnodinium mikimotoi contained 17% of monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), while in Gymnodinium sp. the proportion was 35%. MGDG and DGDG from both species were haemolytic. The major unsaturated fatty acid in both algal glycolipids was 18:5 omega 3.

  13. Population Genomics of Paramecium Species.

    Science.gov (United States)

    Johri, Parul; Krenek, Sascha; Marinov, Georgi K; Doak, Thomas G; Berendonk, Thomas U; Lynch, Michael

    2017-05-01

    Population-genomic analyses are essential to understanding factors shaping genomic variation and lineage-specific sequence constraints. The dearth of such analyses for unicellular eukaryotes prompted us to assess genomic variation in Paramecium, one of the most well-studied ciliate genera. The Paramecium aurelia complex consists of ∼15 morphologically indistinguishable species that diverged subsequent to two rounds of whole-genome duplications (WGDs, as long as 320 MYA) and possess extremely streamlined genomes. We examine patterns of both nuclear and mitochondrial polymorphism, by sequencing whole genomes of 10-13 worldwide isolates of each of three species belonging to the P. aurelia complex: P. tetraurelia, P. biaurelia, P. sexaurelia, as well as two outgroup species that do not share the WGDs: P. caudatum and P. multimicronucleatum. An apparent absence of global geographic population structure suggests continuous or recent dispersal of Paramecium over long distances. Intergenic regions are highly constrained relative to coding sequences, especially in P. caudatum and P. multimicronucleatum that have shorter intergenic distances. Sequence diversity and divergence are reduced up to ∼100-150 bp both upstream and downstream of genes, suggesting strong constraints imposed by the presence of densely packed regulatory modules. In addition, comparison of sequence variation at non-synonymous and synonymous sites suggests similar recent selective pressures on paralogs within and orthologs across the deeply diverging species. This study presents the first genome-wide population-genomic analysis in ciliates and provides a valuable resource for future studies in evolutionary and functional genetics in Paramecium. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Candida Species Biofilms’ Antifungal Resistance

    Science.gov (United States)

    Silva, Sónia; Rodrigues, Célia F.; Araújo, Daniela; Rodrigues, Maria Elisa; Henriques, Mariana

    2017-01-01

    Candida infections (candidiasis) are the most prevalent opportunistic fungal infection on humans and, as such, a major public health problem. In recent decades, candidiasis has been associated to Candida species other than Candida albicans. Moreover, biofilms have been considered the most prevalent growth form of Candida cells and a strong causative agent of the intensification of antifungal resistance. As yet, no specific resistance factor has been identified as the sole responsible for the increased recalcitrance to antifungal agents exhibited by biofilms. Instead, biofilm antifungal resistance is a complex multifactorial phenomenon, which still remains to be fully elucidated and understood. The different mechanisms, which may be responsible for the intrinsic resistance of Candida species biofilms, include the high density of cells within the biofilm, the growth and nutrient limitation, the effects of the biofilm matrix, the presence of persister cells, the antifungal resistance gene expression and the increase of sterols on the membrane of biofilm cells. Thus, this review intends to provide information on the recent advances about Candida species biofilm antifungal resistance and its implication on intensification of the candidiasis. PMID:29371527

  15. Endophthalmitis caused by Klebsiella species.

    Science.gov (United States)

    Sridhar, Jayanth; Flynn, Harry W; Kuriyan, Ajay E; Dubovy, Sander; Miller, Darlene

    2014-09-01

    To report the clinical presentation, antibiotic sensitivities, treatment strategies, and visual outcomes associated with endophthalmitis caused by Klebsiella species. A noncomparative consecutive case series. Microbiology database records were retrospectively reviewed for all patients with endophthalmitis caused by Klebsiella species from 1990 to 2012 at a large university referral center. The corresponding clinical records were then reviewed to evaluate the endophthalmitis clinical features and treatment outcomes. Seven patients were identified. Clinical settings included endogenous (n = 3), posttraumatic (n = 2), trabeculectomy bleb-associated (n = 1), and postpenetrating keratoplasty (n = 1). Five patients presented with hypopyon. Presenting visual acuity ranged from 20/60 to light perception in nonendogenous cases and 1/200 to light perception in endogenous cases. Klebsiella was sensitive to aminoglycosides, third-generation cephalosporins, and second- and third-generation fluoroquinolones in all cases. Initial treatment strategies were vitreous tap and injection (n = 4), pars plana vitrectomy with intravitreal antibiotics (n = 2), and anterior chamber tap and injection (n = 1). All three endogenous cases later underwent enucleation or evisceration. In nonendogenous cases, the final visual acuity was 20/70 or better in all 4 patients. Endophthalmitis caused by Klebsiella species is associated with poor visual outcomes. Endogenous cases had high rates of enucleation or evisceration.

  16. Canopy arthropod responses to thinning and burning treatments in old-growth mixed-conifer forest in the Sierra Nevada, California

    Science.gov (United States)

    Thomas Rambo; Timothy Schowalter; Malcolm North

    2014-01-01

    We compared canopy arthropod responses to common fuels reduction treatments at Teakettle Experimental Forest in the south-central Sierra Nevada of California. We sampled arthropod communities among four dominant overstory conifer species and three dominant understory angiosperm species before and after overstory or understory thinning or no thinning treatments followed...

  17. Could there be a superhuman species?

    OpenAIRE

    Oderberg, David S.

    2014-01-01

    Transhumanism is the school of thought that advocates the use of technology to enhance the human species, to the point where some supporters consider that a new species altogether could arise. Even some critics think this at least a technological possibility. Some supporters also believe the emergence of a new, improved, superhuman species raises no special ethical questions. Through an examination of the metaphysics of species, and an analysis of the essence of the human species, I argue tha...

  18. Linking Keystone Species and Functional Groups: A New Operational Definition of the Keystone Species Concept

    OpenAIRE

    Robert D. Davic

    2003-01-01

    The concept of the "keystone species" is redefined to allow for the a priori prediction of these species within ecosystems. A keystone species is held to be a strongly interacting species whose top-down effect on species diversity and competition is large relative to its biomass dominance within a functional group. This operational definition links the community importance of keystone species to a specific ecosystem process, e.g., the regulation of species diversity, within functional groups ...

  19. Plant Species Sensitivity Distributions for ozone exposure

    International Nuclear Information System (INIS)

    Goethem, T.M.W.J. van; Azevedo, L.B.; Zelm, R. van; Hayes, F.; Ashmore, M.R.; Huijbregts, M.A.J.

    2013-01-01

    This study derived Species Sensitivity Distributions (SSD), representing a cumulative stressor-response distribution based on single-species sensitivity data, for ozone exposure on natural vegetation. SSDs were constructed for three species groups, i.e. trees, annual grassland and perennial grassland species, using species-specific exposure–response data. The SSDs were applied in two ways. First, critical levels were calculated for each species group and compared to current critical levels for ozone exposure. Second, spatially explicit estimates of the potentially affected fraction of plant species in Northwestern Europe were calculated, based on ambient ozone concentrations. We found that the SSD-based critical levels were lower than for the current critical levels for ozone exposure, with conventional critical levels for ozone relating to 8–20% affected plant species. Our study shows that the SSD concept can be successfully applied to both derive critical ozone levels and estimate the potentially affected species fraction of plant communities along specific ozone gradients. -- Highlights: ► Plant Species Sensitivity Distributions were derived for ozone exposure. ► Annual grassland species, as a species assemblage, tend to be most sensitive to ozone. ► Conventional critical levels for ozone relate to 8–20% affected plant species. ► The affected fraction of plant species for current ozone exposure in Northwestern Europe is estimated. -- Species Sensitivity Distributions offer opportunities in ozone risk assessment to both derive critical levels and estimate the affected fraction of a plant community

  20. Alien species in the Finnish weed flora

    Directory of Open Access Journals (Sweden)

    T. HYVÖNEN

    2008-12-01

    Full Text Available The present study aimed at assessing the invasion of alien weed species in Finland based on a review of their occurrence in the Finnish weed flora. The evaluation was conducted for the three phases of the invasion process, i.e. introduction, naturalization and invasion. The literature review revealed that 815 alien weed species occur in Finland of which 314 are regarded as naturalized. Based on their occurrence in different climate zones, the risk of naturalization of new harmful alien weed species was deemed low for those species not currently found in Finland, but higher for species occurring as casual aliens in Finland. In the latter group, 10 species of concern were detected. Exploration of the distribution patterns of naturalized species within Finland revealed species occupancy to be dependent on the residence time of the species. Established neophytes can be expected to extend their ranges and to increase occupation of agricultural habitats in the future.;

  1. Natural Constraints to Species Diversification.

    Directory of Open Access Journals (Sweden)

    Eric Lewitus

    2016-08-01

    Full Text Available Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the

  2. The Invasive Species Forecasting System

    Science.gov (United States)

    Schnase, John; Most, Neal; Gill, Roger; Ma, Peter

    2011-01-01

    The Invasive Species Forecasting System (ISFS) provides computational support for the generic work processes found in many regional-scale ecosystem modeling applications. Decision support tools built using ISFS allow a user to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of management concern, such as a national park, monument, forest, or refuge. This type of decision product helps resource managers plan invasive species protection, monitoring, and control strategies for the lands they manage. Until now, scientists and resource managers have lacked the data-assembly and computing capabilities to produce these maps quickly and cost efficiently. ISFS focuses on regional-scale habitat suitability modeling for invasive terrestrial plants. ISFS s component architecture emphasizes simplicity and adaptability. Its core services can be easily adapted to produce model-based decision support tools tailored to particular parks, monuments, forests, refuges, and related management units. ISFS can be used to build standalone run-time tools that require no connection to the Internet, as well as fully Internet-based decision support applications. ISFS provides the core data structures, operating system interfaces, network interfaces, and inter-component constraints comprising the canonical workflow for habitat suitability modeling. The predictors, analysis methods, and geographic extents involved in any particular model run are elements of the user space and arbitrarily configurable by the user. ISFS provides small, lightweight, readily hardened core components of general utility. These components can be adapted to unanticipated uses, are tailorable, and require at most a loosely coupled, nonproprietary connection to the Web. Users can invoke capabilities from a command line; programmers can integrate ISFS's core components into more complex systems and services. Taken together, these

  3. Natural Constraints to Species Diversification.

    Science.gov (United States)

    Lewitus, Eric; Morlon, Hélène

    2016-08-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of

  4. Crystallite sizes of porites species

    International Nuclear Information System (INIS)

    Fadhlia Zafarina Zakaria; Julynnie Wajir; Fauziah Abdul Aziz

    2009-01-01

    This study was designed to investigate the crystallite sizes of Porites species. A set of 9 Porites skeletons i.e. Porites australiensis, Porites cylindrica, Porites lutea, Porites lichen, Porites digitata, Porites nigrescens, Porites rus, Porites annae and Porites sp. were studied by using X-Ray Diffraction method. The values of FWHM and theta (θ) are used in Scherrer equation to determine the crystallite sizes of all Porites samples. It was found that the crystallite sizes were in the range of 1000.78 - 1706.04 Angstrom. (author)

  5. VIDAS Listeria species Xpress (LSX).

    Science.gov (United States)

    Johnson, Ronald; Mills, John

    2013-01-01

    The AOAC GovVal study compared the VIDAS Listeria species Xpress (LSX) to the Health Products and Food Branch MFHPB-30 reference method for detection of Listeria on stainless steel. The LSX method utilizes a novel and proprietary enrichment media, Listeria Xpress broth, enabling detection of Listeria species in environmental samples with the automated VIDAS in a minimum of 26 h. The LSX method also includes the use of the chromogenic media, chromID Ottaviani Agosti Agar (OAA) and chromID Lmono for confirmation of LSX presumptive results. In previous AOAC validation studies comparing VIDAS LSX to the U.S. Food and Drug Administration's Bacteriological Analytical Manual (FDA-BAM) and the U.S. Department of Agriculture-Food Safety and Inspection Service (USDA-FSIS) reference methods, the LSX method was approved as AOAC Official Method 2010.02 for the detection of Listeria species in dairy products, vegetables, seafood, raw meats and poultry, and processed meats and poultry, and as AOAC Performance Tested Method 100501 in a variety of foods and on environmental surfaces. The GovVal comparative study included 20 replicate test portions each at two contamination levels for stainless steel where fractionally positive results (5-15 positive results/20 replicate portions tested) were obtained by at least one method at one level. Five uncontaminated controls were included. In the stainless steel artificially contaminated surface study, there were 25 confirmed positives by the VIDAS LSX assay and 22 confirmed positives by the standard culture methods. Chi-square analysis indicated no statistical differences between the VIDAS LSX method and the MFHPB-30 standard methods at the 5% level of significance. Confirmation of presumptive LSX results with the chromogenic OAA and Lmono media was shown to be equivalent to the appropriate reference method agars. The data in this study demonstrate that the VIDAS LSX method is an acceptable alternative method to the MFHPB-30 standard

  6. Arsenic Detoxification by Geobacter Species.

    Science.gov (United States)

    Dang, Yan; Walker, David J F; Vautour, Kaitlin E; Dixon, Steven; Holmes, Dawn E

    2017-02-15

    Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different Geobacter genomes and found

  7. Reactive oxygen species in periodontitis

    Directory of Open Access Journals (Sweden)

    Parveen Dahiya

    2013-01-01

    Full Text Available Recent epidemiological studies reveal that more than two-third of the world′s population suffers from one of the chronic forms of periodontal disease. The primary etiological agent of this inflammatory disease is a polymicrobial complex, predominantly Gram negative anaerobic or facultative bacteria within the sub-gingival biofilm. These bacterial species initiate the production of various cytokines such as interleukin-8 and TNF-α, further causing an increase in number and activity of polymorphonucleocytes (PMN along with these cytokines, PMNs also produce reactive oxygen species (ROS superoxide via the respiratory burst mechanism as the part of the defence response to infection. ROS just like the interleukins have deleterious effects on tissue cells when produced in excess. To counter the harmful effects of ROS, human body has its own defence mechanisms to eliminate them as soon as they are formed. The aim of this review is to focus on the role of different free radicals, ROS, and antioxidants in the pathophysiology of periodontal tissue destruction.

  8. Phytochemistry of European Primula species.

    Science.gov (United States)

    Colombo, Paola S; Flamini, Guido; Rodondi, Graziella; Giuliani, Claudia; Santagostini, Laura; Fico, Gelsomina

    2017-11-01

    The genus Primula is the largest among the Primulaceae and is widespread mainly in the cold and temperate regions of the Northern Hemisphere. Since the beginning of the Twentieth century, several studies on the phytochemical composition of different species of Primula have been carried out. The main constituents examined were tissue and epicuticular flavonoids and saponins, which are of therapeutic significance. Only in recent years studies of the volatiles emitted by leaves and flowers have been carried out as well, but they are restricted to a small number of species. Only a few authors have documented the morphology and function of glandular trichomes in relation to the production of flavonoids and volatile organic compounds (VOCs). The use of Primula in folk medicine is described in the literature. Investigation of the biological and pharmacological activities of Primula are reported. This study aims at providing a collection of publications on the genus Primula along with a critical revision of literature data. It focuses on the possible taxonomic significance of the secondary metabolites and on their ecological role as attractors for pollinators and deterrents against herbivores and parasites, in order to build the base for further studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Functional morphology of two Lepismium species (Rhipsalideae, Cactaceae Morfología funcional de dos especies de Lepismium (Rhipsalideae, Cactaceae

    Directory of Open Access Journals (Sweden)

    María Regina Torres-Boeger

    2010-08-01

    Full Text Available The morphology and anatomy of stem segments of 2 species of Lepismium (Cactaceae, which grow naturally in the Araucaria forest understory, in the state of Paraná, Brazil, are compared. The goal of this study was to identify morphological traits adapted to epiphytism and to the low light condition of the studied environment. Twenty-five segments of Lepismium cruciforme and L. lumbricoides were collected and various morphological and anatomical features were measured. Differences (p Se compara la morfología y la anatomía de los segmentos del tallo de 2 especies de Lepismium, que crecen naturalmente en el sotobosque del bosque de Araucaria, en el estado de Paraná. El objetivo de este estudio fue identificar rasgos morfológicos de adaptación para el epifitismo y para condiciones de poca luz del ambiente estudiado. Se recolectaron 25 ejemplares de L. cruciforme y de L. lumbricoides y se midieron rasgos tanto morfológicos como anatómicos de los tallos. Se encontraron diferencias (p < 0.05 entre las especies considerando los valores promedio del volumen total, del área total fotosintética, del grosor de la epidermis y de la hipodermis, del área del esclerénquima / área transversal total de los segmentos del tallo y del área del parénquima / área transversal total, caracteres que se correlacionan a sus diferencias en forma. Las características xeromórficas encontradas en Lepismium, la mayor parte de ellas típicas de cactáceas de zonas áridas, han favorecido el desarrollo del hábito epifítico y la ocupación de bosques húmedos. Como epífitas, están sujetas a un cierto grado de escasez de agua, aunque no a las condiciones tan severas como la mayoría de las cactáceas terrestres. Los valores promedio para el grosor de la hipodermis, el contenido de agua, la cantidad de esclerénquima y las densidad estomática son más similares a las plantas mesomórficas, y se pueden correlacionar al epifitismo, demostrando que estas especies

  10. Influence of microtopography on soil chemistry and understory riparian vegetation

    Science.gov (United States)

    Irene M. Unger; Rose-Marie Muzika

    2008-01-01

    The success of riparian forest restoration efforts depends in part on an understanding of the relationship between soil characteristics and vegetation patterns and how these change with site conditions. To examine these relationships for floodplains in northern Missouri, we chose three unchannelized streams as study areas. A sampling grid was established at two plots...

  11. SIS - Species and Stock Administrative Data Set

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Species and Stock Administrative data set within the Species Information System (SIS) defines entities within the database that serve as the basis for recording...

  12. Genome size differences in Hyalella cryptic species.

    Science.gov (United States)

    Vergilino, Roland; Dionne, Kaven; Nozais, Christian; Dufresne, France; Belzile, Claude

    2012-02-01

    The Hyalella azteca (Saussure) complex includes numerous amphipod cryptic species in freshwater habitats in America as revealed by DNA barcoding surveys. Two ecomorphs (small and large) have evolved numerous times in this complex. Few phenotypic criteria have been found to differentiate between the numerous species of this complex. The present study aims to explore genome size differences between some species of the H. azteca complex co-occurring in a Canadian boreal lake using flow cytometry. Nuclear DNA content was estimated for 50 individuals belonging to six COI haplotypes corresponding to four provisional species of the H. azteca complex. Species from the large ecomorph had C-values significantly larger than species from the small ecomorph, whereas slight differences were found among species of the small ecomorph. These differences in genome sizes might be linked to ecological and physiological differences among species of the H. azteca complex.

  13. Approaching invasive species in Madagascar | Kull | Madagascar ...

    African Journals Online (AJOL)

    invasive', the topic of invasive species has until recently received less attention here than in other island contexts. Some species, often alien to Madagascar and introduced by humans, have expanded their range rapidly and have had both ...

  14. Tetrameranthus (Annonaceae) revisited including a new species

    Science.gov (United States)

    Westra, Lubbert Y.T.; Maas, Paul J. M.

    2012-01-01

    Abstract The taxonomic revision of the infrequently collected genus Tetrameranthus by Westra (1985) is updated. A new species is described from French Guiana and Amapá, Brazil, increasing the number of species in this genus to seven. PMID:22645410

  15. Tetrameranthus (Annonaceae revisited including a new species

    Directory of Open Access Journals (Sweden)

    Lubbert Y.Th. Westra

    2012-04-01

    Full Text Available The taxonomic revision of the infrequently collected genus Tetrameranthus by Westra (1985 is updated. A new species is described from French Guiana and Amapá, Brazil, increasing the number of species in this genus to seven.

  16. Endangered species toxicity extrapolation using ICE models

    Science.gov (United States)

    The National Research Council’s (NRC) report on assessing pesticide risks to threatened and endangered species (T&E) included the recommendation of using interspecies correlation models (ICE) as an alternative to general safety factors for extrapolating across species. ...

  17. New species of Cystolepiota from China

    Directory of Open Access Journals (Sweden)

    Meng-Lin Xu

    2016-10-01

    Full Text Available In this paper, a new species, Cystolepiota pseudofumosifolia, is introduced. C. pseudofumosifolia is characterized by granulose or powdery pileus with an anatomic structure that is loosely globose, as well as ellipsoid cells in chains in the pileus covering the cheilocystidia. This new species is compared to the related and similar Cystolepiota species in morphology and molecular phylogeny based on Internal transcribed spacer sequences. Both types of data support our specimens as a new species in the genus Cystolepiota.

  18. Linking Keystone Species and Functional Groups: A New Operational Definition of the Keystone Species Concept

    Directory of Open Access Journals (Sweden)

    Robert D. Davic

    2003-07-01

    Full Text Available The concept of the "keystone species" is redefined to allow for the a priori prediction of these species within ecosystems. A keystone species is held to be a strongly interacting species whose top-down effect on species diversity and competition is large relative to its biomass dominance within a functional group. This operational definition links the community importance of keystone species to a specific ecosystem process, e.g., the regulation of species diversity, within functional groups at lower trophic levels that are structured by competition for a limited resource. The a priori prediction of keystone species has applied value for the conservation of natural areas.

  19. Unimodal models to relate species to environment

    NARCIS (Netherlands)

    Braak, ter C.J.F.

    1987-01-01

    To assess the impact of environmental change on biological communities knowledge about species-environment relationships is indispensable. Ecologists attempt to uncover the relationships between species and environment from data obtained from field surveys. In the survey, species are scored on their

  20. Invasive Species Science Update (No. 9)

    Science.gov (United States)

    Justin Runyon

    2017-01-01

    This newsletter is designed to keep managers and other users up-to-date with recently completed and ongoing research by RMRS scientists, as well as to highlight breaking news related to invasive species issues. The newsletter is produced by the RMRS Invasive Species Working Group (ISWG), a core group of scientists who volunteer to disseminate RMRS invasive species...