WorldWideScience

Sample records for understanding neurodynamical systems

  1. Neurodynamic system theory: scope and limits.

    Science.gov (United States)

    Erdi, P

    1993-06-01

    This paper proposes that neurodynamic system theory may be used to connect structural and functional aspects of neural organization. The paper claims that generalized causal dynamic models are proper tools for describing the self-organizing mechanism of the nervous system. In particular, it is pointed out that ontogeny, development, normal performance, learning, and plasticity, can be treated by coherent concepts and formalism. Taking into account the self-referential character of the brain, autopoiesis, endophysics and hermeneutics are offered as elements of a poststructuralist brain (-mind-computer) theory.

  2. Extended method of moments for deterministic analysis of stochastic multistable neurodynamical systems

    International Nuclear Information System (INIS)

    Deco, Gustavo; Marti, Daniel

    2007-01-01

    The analysis of transitions in stochastic neurodynamical systems is essential to understand the computational principles that underlie those perceptual and cognitive processes involving multistable phenomena, like decision making and bistable perception. To investigate the role of noise in a multistable neurodynamical system described by coupled differential equations, one usually considers numerical simulations, which are time consuming because of the need for sufficiently many trials to capture the statistics of the influence of the fluctuations on that system. An alternative analytical approach involves the derivation of deterministic differential equations for the moments of the distribution of the activity of the neuronal populations. However, the application of the method of moments is restricted by the assumption that the distribution of the state variables of the system takes on a unimodal Gaussian shape. We extend in this paper the classical moments method to the case of bimodal distribution of the state variables, such that a reduced system of deterministic coupled differential equations can be derived for the desired regime of multistability

  3. Extended method of moments for deterministic analysis of stochastic multistable neurodynamical systems

    Science.gov (United States)

    Deco, Gustavo; Martí, Daniel

    2007-03-01

    The analysis of transitions in stochastic neurodynamical systems is essential to understand the computational principles that underlie those perceptual and cognitive processes involving multistable phenomena, like decision making and bistable perception. To investigate the role of noise in a multistable neurodynamical system described by coupled differential equations, one usually considers numerical simulations, which are time consuming because of the need for sufficiently many trials to capture the statistics of the influence of the fluctuations on that system. An alternative analytical approach involves the derivation of deterministic differential equations for the moments of the distribution of the activity of the neuronal populations. However, the application of the method of moments is restricted by the assumption that the distribution of the state variables of the system takes on a unimodal Gaussian shape. We extend in this paper the classical moments method to the case of bimodal distribution of the state variables, such that a reduced system of deterministic coupled differential equations can be derived for the desired regime of multistability.

  4. Wavelet analysis in neurodynamics

    International Nuclear Information System (INIS)

    Pavlov, Aleksei N; Hramov, Aleksandr E; Koronovskii, Aleksei A; Sitnikova, Evgenija Yu; Makarov, Valeri A; Ovchinnikov, Alexey A

    2012-01-01

    Results obtained using continuous and discrete wavelet transforms as applied to problems in neurodynamics are reviewed, with the emphasis on the potential of wavelet analysis for decoding signal information from neural systems and networks. The following areas of application are considered: (1) the microscopic dynamics of single cells and intracellular processes, (2) sensory data processing, (3) the group dynamics of neuronal ensembles, and (4) the macrodynamics of rhythmical brain activity (using multichannel EEG recordings). The detection and classification of various oscillatory patterns of brain electrical activity and the development of continuous wavelet-based brain activity monitoring systems are also discussed as possibilities. (reviews of topical problems)

  5. Tool-Body Assimilation Model Based on Body Babbling and Neurodynamical System

    Directory of Open Access Journals (Sweden)

    Kuniyuki Takahashi

    2015-01-01

    Full Text Available We propose the new method of tool use with a tool-body assimilation model based on body babbling and a neurodynamical system for robots to use tools. Almost all existing studies for robots to use tools require predetermined motions and tool features; the motion patterns are limited and the robots cannot use novel tools. Other studies fully search for all available parameters for novel tools, but this leads to massive amounts of calculations. To solve these problems, we took the following approach: we used a humanoid robot model to generate random motions based on human body babbling. These rich motion experiences were used to train recurrent and deep neural networks for modeling a body image. Tool features were self-organized in parametric bias, modulating the body image according to the tool in use. Finally, we designed a neural network for the robot to generate motion only from the target image. Experiments were conducted with multiple tools for manipulating a cylindrical target object. The results show that the tool-body assimilation model is capable of motion generation.

  6. Neurodynamics of Cognition and Consciousness

    CERN Document Server

    Perlovsky, Leonid I

    2007-01-01

    This book addresses dynamical aspects of brain functions and cognition. Experimental evidence in humans and other mammalians indicates that complex neurodynamics is crucial for the emergence of higher-level cognition and consciousness. Dynamical neural systems with encoding in limit cycle and non-convergent attractors have gained increasing popularity in the past decade. The role of synchronization, desynchronization, and intermittent synchronization on cognition has been studied extensively by various authors, in particular by authors contributing to the present volume. This volume gives an overview of recent advances in this interdisciplinary field of cognitive and computer science related to dynamics of cognition, including experimental studies, dynamical modelling and interpretation of cognitive experiments, and theoretical approaches. The following topics are covered in this book: spatio-temporal dynamics of neural correlates of higher-level cognition; dynamical neural memories, including continuous and ...

  7. Wavelet-based coherence between large-scale resting-state networks : neurodynamics marker for autism?

    NARCIS (Netherlands)

    Bernas, Antoine; Barendse, Evelien M; Zinger, Svitlana; Aldenkamp, Albert P.

    Neurodynamics is poorly understood and has raised interest of neuroscientists over the past decade. When a brain pathology cannot be described through structural or functional brain analyses, neurodynamics based descriptors might be the only option to understand a pathology and maybe predict its

  8. A Collaborative Neurodynamic Approach to Multiple-Objective Distributed Optimization.

    Science.gov (United States)

    Yang, Shaofu; Liu, Qingshan; Wang, Jun

    2018-04-01

    This paper is concerned with multiple-objective distributed optimization. Based on objective weighting and decision space decomposition, a collaborative neurodynamic approach to multiobjective distributed optimization is presented. In the approach, a system of collaborative neural networks is developed to search for Pareto optimal solutions, where each neural network is associated with one objective function and given constraints. Sufficient conditions are derived for ascertaining the convergence to a Pareto optimal solution of the collaborative neurodynamic system. In addition, it is proved that each connected subsystem can generate a Pareto optimal solution when the communication topology is disconnected. Then, a switching-topology-based method is proposed to compute multiple Pareto optimal solutions for discretized approximation of Pareto front. Finally, simulation results are discussed to substantiate the performance of the collaborative neurodynamic approach. A portfolio selection application is also given.

  9. Healthcare Teams Neurodynamically Reorganize When Resolving Uncertainty

    Directory of Open Access Journals (Sweden)

    Ronald Stevens

    2016-11-01

    Full Text Available Research on the microscale neural dynamics of social interactions has yet to be translated into improvements in the assembly, training and evaluation of teams. This is partially due to the scale of neural involvements in team activities, spanning the millisecond oscillations in individual brains to the minutes/hours performance behaviors of the team. We have used intermediate neurodynamic representations to show that healthcare teams enter persistent (50–100 s neurodynamic states when they encounter and resolve uncertainty while managing simulated patients. Each of the second symbols was developed situating the electroencephalogram (EEG power of each team member in the contexts of those of other team members and the task. These representations were acquired from EEG headsets with 19 recording electrodes for each of the 1–40 Hz frequencies. Estimates of the information in each symbol stream were calculated from a 60 s moving window of Shannon entropy that was updated each second, providing a quantitative neurodynamic history of the team’s performance. Neurodynamic organizations fluctuated with the task demands with increased organization (i.e., lower entropy occurring when the team needed to resolve uncertainty. These results show that intermediate neurodynamic representations can provide a quantitative bridge between the micro and macro scales of teamwork.

  10. A categorical approach to neurodynamical modelling of musical tonality

    Czech Academy of Sciences Publication Activity Database

    Hadrava, Michal; Hlinka, Jaroslav

    2015-01-01

    Roč. 16, suppl. 1 (2015), P101 ISSN 1471-2202 R&D Projects: GA ČR GA13-23940S Institutional support: RVO:67985807 Keywords : neurodynamics * music * tonality * category theory Subject RIV: FH - Neurology

  11. Are Neurodynamic Organizations A Fundamental Property of Teamwork?

    Directory of Open Access Journals (Sweden)

    Ronald H. Stevens

    2017-05-01

    Full Text Available When performing a task it is important for teams to optimize their strategies and actions to maximize value and avoid the cost of surprise. The decisions teams make sometimes have unintended consequences and they must then reorganize their thinking, roles and/or configuration into corrective structures more appropriate for the situation. In this study we ask: What are the neurodynamic properties of these reorganizations and how do they relate to the moment-by-moment, and longer, performance-outcomes of teams?. We describe an information-organization approach for detecting and quantitating the fluctuating neurodynamic organizations in teams. Neurodynamic organization is the propensity of team members to enter into prolonged (minutes metastable neurodynamic relationships as they encounter and resolve disturbances to their normal rhythms. Team neurodynamic organizations were detected and modeled by transforming the physical units of each team member's EEG power levels into Shannon entropy-derived information units about the team's organization and synchronization. Entropy is a measure of the variability or uncertainty of information in a data stream. This physical unit to information unit transformation bridges micro level social coordination events with macro level expert observations of team behavior allowing multimodal comparisons across the neural, cognitive and behavioral time scales of teamwork. The measures included the entropy of each team member's data stream, the overall team entropy and the mutual information between dyad pairs of the team. Mutual information can be thought of as periods related to team member synchrony. Comparisons between individual entropy and mutual information levels for the dyad combinations of three-person teams provided quantitative estimates of the proportion of a person's neurodynamic organizations that represented periods of synchrony with other team members, which in aggregate provided measures of the overall

  12. Are Neurodynamic Organizations A Fundamental Property of Teamwork?

    Science.gov (United States)

    Stevens, Ronald H.; Galloway, Trysha L.

    2017-01-01

    When performing a task it is important for teams to optimize their strategies and actions to maximize value and avoid the cost of surprise. The decisions teams make sometimes have unintended consequences and they must then reorganize their thinking, roles and/or configuration into corrective structures more appropriate for the situation. In this study we ask: What are the neurodynamic properties of these reorganizations and how do they relate to the moment-by-moment, and longer, performance-outcomes of teams?. We describe an information-organization approach for detecting and quantitating the fluctuating neurodynamic organizations in teams. Neurodynamic organization is the propensity of team members to enter into prolonged (minutes) metastable neurodynamic relationships as they encounter and resolve disturbances to their normal rhythms. Team neurodynamic organizations were detected and modeled by transforming the physical units of each team member's EEG power levels into Shannon entropy-derived information units about the team's organization and synchronization. Entropy is a measure of the variability or uncertainty of information in a data stream. This physical unit to information unit transformation bridges micro level social coordination events with macro level expert observations of team behavior allowing multimodal comparisons across the neural, cognitive and behavioral time scales of teamwork. The measures included the entropy of each team member's data stream, the overall team entropy and the mutual information between dyad pairs of the team. Mutual information can be thought of as periods related to team member synchrony. Comparisons between individual entropy and mutual information levels for the dyad combinations of three-person teams provided quantitative estimates of the proportion of a person's neurodynamic organizations that represented periods of synchrony with other team members, which in aggregate provided measures of the overall degree of

  13. Understanding land administration systems

    DEFF Research Database (Denmark)

    P. Williamson, Ian; Enemark, Stig; Wallace, Judy

    2008-01-01

    This paper introduces basic land administration theory and highlights four key concepts that are fundamental to understanding modern land administration systems. Readers may recall the first part of the paper in October issue of Coordinates. Here is the concluding part that focuses on the changing...

  14. Understanding land administration systems

    DEFF Research Database (Denmark)

    P. Williamson, Ian; Enemark, Stig; Wallace, Judy

    2008-01-01

    This paper introduces basic land administration theory and highlights four key concepts that are fundamental to understanding modern land administration systems - firstly the land management paradigm and its influence on the land administration framework, secondly the role that the cadastre plays...... in contributing to sustainable development, thirdly the changing nature of ownership and the role of land markets, and lastly a land management vision that promotes land administration in support of sustainable development and spatial enablement of society. We present here the first part of the paper. The second...

  15. Understanding renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Quaschning, Volker

    2005-01-15

    Beginning with an overview of renewable energy sources including biomass, hydroelectricity, geothermal, tidal, wind and solar power, this book explores the fundamentals of different renewable energy systems. The main focus is on technologies with high development potential such as solar thermal systems, photovoltaics and wind power. This text not only describes technological aspects, but also deals consciously with problems of the energy industry. In this way, the topics are treated in a holistic manner, bringing together maths, engineering, climate studies and economics, and enabling readers to gain a broad understanding of renewable energy technologies and their potential. The book also contains a free CD-ROM resource, which includes a variety of specialist simulation software and detailed figures from the book. (Author)

  16. Shape understanding system machine understanding and human understanding

    CERN Document Server

    Les, Zbigniew

    2015-01-01

    This is the third book presenting selected results of research on the further development of the shape understanding system (SUS) carried out by authors in the newly founded Queen Jadwiga Research Institute of Understanding. In this book the new term Machine Understanding is introduced referring to a new area of research aiming to investigate the possibility of building machines with the ability to understand. It is presented that SUS needs to some extent mimic human understanding and for this reason machines are evaluated according to the rules applied for the evaluation of human understanding. The book shows how to formulate problems and how it can be tested if the machine is able to solve these problems.    

  17. Neurodynamics of up and down Transitions in Network Model

    Directory of Open Access Journals (Sweden)

    Xuying Xu

    2013-01-01

    Full Text Available This paper focuses on the neurodynamical research of a small neural network that consists of 25 neurons. We study the periodic spontaneous activity and transitions between up and down states without synaptic input. The results demonstrate that these transitions are bidirectional or unidirectional with the parameters changing, which not only reveals the function of the cortex, but also cohere with the experiment results.

  18. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  19. Applications of chaotic neurodynamics in pattern recognition

    Science.gov (United States)

    Baird, Bill; Freeman, Walter J.; Eeckman, Frank H.; Yao, Yong

    1991-08-01

    Network algorithms and architectures for pattern recognition derived from neural models of the olfactory system are reviewed. These span a range from highly abstract to physiologically detailed, and employ the kind of dynamical complexity observed in olfactory cortex, ranging from oscillation to chaos. A simple architecture and algorithm for analytically guaranteed associative memory storage of analog patterns, continuous sequences, and chaotic attractors in the same network is described. A matrix inversion determines network weights, given prototype patterns to be stored. There are N units of capacity in an N node network with 3N2 weights. It costs one unit per static attractor, two per Fourier component of each sequence, and three to four per chaotic attractor. There are no spurious attractors, and for sequences there is a Liapunov function in a special coordinate system which governs the approach of transient states to stored trajectories. Unsupervised or supervised incremental learning algorithms for pattern classification, such as competitive learning or bootstrap Widrow-Hoff can easily be implemented. The architecture can be ''folded'' into a recurrent network with higher order weights that can be used as a model of cortex that stores oscillatory and chaotic attractors by a Hebb rule. Network performance is demonstrated by application to the problem of real-time handwritten digit recognition. An effective system with on-line learning has been written by Eeckman and Baird for the Macintosh. It utilizes static, oscillatory, and/or chaotic attractors of two kinds--Lorenze attractors, or attractors resulting from chaotically interacting oscillatory modes. The successful application to an industrial pattern recognition problem of a network architecture of considerable physiological and dynamical complexity, developed by Freeman and Yao, is described. The data sets of the problem come in three classes of difficulty, and performance of the biological network is

  20. Output Feedback-Based Boundary Control of Uncertain Coupled Semilinear Parabolic PDE Using Neurodynamic Programming.

    Science.gov (United States)

    Talaei, Behzad; Jagannathan, Sarangapani; Singler, John

    2018-04-01

    In this paper, neurodynamic programming-based output feedback boundary control of distributed parameter systems governed by uncertain coupled semilinear parabolic partial differential equations (PDEs) under Neumann or Dirichlet boundary control conditions is introduced. First, Hamilton-Jacobi-Bellman (HJB) equation is formulated in the original PDE domain and the optimal control policy is derived using the value functional as the solution of the HJB equation. Subsequently, a novel observer is developed to estimate the system states given the uncertain nonlinearity in PDE dynamics and measured outputs. Consequently, the suboptimal boundary control policy is obtained by forward-in-time estimation of the value functional using a neural network (NN)-based online approximator and estimated state vector obtained from the NN observer. Novel adaptive tuning laws in continuous time are proposed for learning the value functional online to satisfy the HJB equation along system trajectories while ensuring the closed-loop stability. Local uniformly ultimate boundedness of the closed-loop system is verified by using Lyapunov theory. The performance of the proposed controller is verified via simulation on an unstable coupled diffusion reaction process.

  1. An Online Energy Management Control for Hybrid Electric Vehicles Based on Neuro-Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Feiyan Qin

    2018-03-01

    Full Text Available Hybrid electric vehicles are a compromise between traditional vehicles and pure electric vehicles and can be part of the solution to the energy shortage problem. Energy management strategies (EMSs are highly related to energy utilization in HEVs’ fuel economy. In this research, we have employed a neuro-dynamic programming (NDP method to simultaneously optimize fuel economy and battery state of charge (SOC. In this NDP method, the critic network is a multi-resolution wavelet neural network based on the Meyer wavelet function, and the action network is a conventional wavelet neural network based on the Morlet function. The weights and parameters of both networks are obtained by an algorithm of backpropagation type. The NDP-based EMS has been applied to a parallel HEV and compared with a previously reported NDP EMS and a stochastic dynamic programing-based method. Simulation results under ADVISOR2002 have shown that the proposed NDP approach achieves better performance than both the methods. These indicate that the proposed NDP EMS, and the CWNN and MRWNN, are effective in approximating a nonlinear system.

  2. Immediate Effects of Neurodynamic Sliding versus Muscle Stretching on Hamstring Flexibility in Subjects with Short Hamstring Syndrome

    Science.gov (United States)

    Castellote-Caballero, Yolanda; Valenza, Maríe C.; Puentedura, Emilio J.; Fernández-de-las-Peñas, César; Alburquerque-Sendín, Francisco

    2014-01-01

    Background. Hamstring injuries continue to affect active individuals and although inadequate muscle extensibility remains a commonly accepted factor, little is known about the most effective method to improve flexibility. Purpose. To determine if an isolated neurodynamic sciatic sliding technique would improve hamstring flexibility to a greater degree than stretching or a placebo intervention in asymptomatic subjects with short hamstring syndrome (SHS). Study Design. Randomized double-blinded controlled trial. Methods. One hundred and twenty subjects with SHS were randomized to 1 of 3 groups: neurodynamic sliding, hamstring stretching, and placebo control. Each subject's dominant leg was measured for straight leg raise (SLR) range of motion (ROM) before and after interventions. Data were analyzed with a 3 × 2 mixed model ANOVA followed by simple main effects analyses. Results. At the end of the study, more ROM was observed in the Neurodynamic and Stretching groups compared to the Control group and more ROM in the Neurodynamic group compared to Stretching group. Conclusion. Findings suggest that a neurodynamic sliding technique will increase hamstring flexibility to a greater degree than static hamstring stretching in healthy subjects with SHS. Clinical Relevance. The use of neurodynamic sliding techniques to improve hamstring flexibility in sports may lead to a decreased incidence in injuries; however, this needs to be formally tested. PMID:26464889

  3. Immediate Effects of Neurodynamic Sliding versus Muscle Stretching on Hamstring Flexibility in Subjects with Short Hamstring Syndrome

    Directory of Open Access Journals (Sweden)

    Yolanda Castellote-Caballero

    2014-01-01

    Full Text Available Background. Hamstring injuries continue to affect active individuals and although inadequate muscle extensibility remains a commonly accepted factor, little is known about the most effective method to improve flexibility. Purpose. To determine if an isolated neurodynamic sciatic sliding technique would improve hamstring flexibility to a greater degree than stretching or a placebo intervention in asymptomatic subjects with short hamstring syndrome (SHS. Study Design. Randomized double-blinded controlled trial. Methods. One hundred and twenty subjects with SHS were randomized to 1 of 3 groups: neurodynamic sliding, hamstring stretching, and placebo control. Each subject’s dominant leg was measured for straight leg raise (SLR range of motion (ROM before and after interventions. Data were analyzed with a 3×2 mixed model ANOVA followed by simple main effects analyses. Results. At the end of the study, more ROM was observed in the Neurodynamic and Stretching groups compared to the Control group and more ROM in the Neurodynamic group compared to Stretching group. Conclusion. Findings suggest that a neurodynamic sliding technique will increase hamstring flexibility to a greater degree than static hamstring stretching in healthy subjects with SHS. Clinical Relevance. The use of neurodynamic sliding techniques to improve hamstring flexibility in sports may lead to a decreased incidence in injuries; however, this needs to be formally tested.

  4. Constrained Quadratic Programming and Neurodynamics-Based Solver for Energy Optimization of Biped Walking Robots

    Directory of Open Access Journals (Sweden)

    Liyang Wang

    2017-01-01

    Full Text Available The application of biped robots is always trapped by their high energy consumption. This paper makes a contribution by optimizing the joint torques to decrease the energy consumption without changing the biped gaits. In this work, a constrained quadratic programming (QP problem for energy optimization is formulated. A neurodynamics-based solver is presented to solve the QP problem. Differing from the existing literatures, the proposed neurodynamics-based energy optimization (NEO strategy minimizes the energy consumption and guarantees the following three important constraints simultaneously: (i the force-moment equilibrium equation of biped robots, (ii frictions applied by each leg on the ground to hold the biped robot without slippage and tipping over, and (iii physical limits of the motors. Simulations demonstrate that the proposed strategy is effective for energy-efficient biped walking.

  5. Understanding terminological systems. I: Terminology and typology

    NARCIS (Netherlands)

    de Keizer, N. F.; Abu-Hanna, A.; Zwetsloot-Schonk, J. H.

    2000-01-01

    Terminological systems are an important research issue within the field of medical informatics. For precise understanding of existing terminological systems a referential framework is needed that provides a uniform terminology and typology of terminological systems themselves. In this article a

  6. ViSA: a neurodynamic model for visuo-spatial working memory, attentional blink, and conscious access.

    Science.gov (United States)

    Simione, Luca; Raffone, Antonino; Wolters, Gezinus; Salmas, Paola; Nakatani, Chie; Belardinelli, Marta Olivetti; van Leeuwen, Cees

    2012-10-01

    Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one simultaneously in a spatially distributed fashion, the other sequentially at a single location. To understand their findings in a unified framework, we propose a neurodynamic model for Visual Selection and Awareness (ViSA). ViSA supports the view that neural representations for conscious access and visuo-spatial working memory are globally distributed and are based on recurrent interactions between perceptual and access control processors. Its flexible global workspace mechanisms enable a unitary account of a broad range of effects: It accounts for the limited storage capacity of visuo-spatial working memory, attentional cueing, and efficient selection with multi-object displays, as well as for the attentional blink and associated sparing and masking effects. In particular, the speed of consolidation for storage in visuo-spatial working memory in ViSA is not fixed but depends adaptively on the input and recurrent signaling. Slowing down of consolidation due to weak bottom-up and recurrent input as a result of brief presentation and masking leads to the attentional blink. Thus, ViSA goes beyond earlier 2-stage and neuronal global workspace accounts of conscious processing limitations. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  7. Neurodynamic responses to the femoral slump test in patients with anterior knee pain syndrome.

    Science.gov (United States)

    Lin, Pei-Ling; Shih, Yi-Fen; Chen, Wen-Yin; Ma, Hsiao-Li

    2014-05-01

    Matched-control, cross-sectional study. The purpose of this study was to compare the responses to the femoral slump test (FST), including the change in hip range of motion and level of discomfort, between subjects with and without anterior knee pain. Anterior knee pain syndrome is a common problem among adults. The FST is the neurodynamic test used to assess the mechanosensitivity of the femoral component of the nervous system. However, as of yet, there is no literature discussing the use of the FST in patients with anterior knee pain. Thirty patients with anterior knee pain and 30 control participants, matched by gender, age, and dominant leg, were recruited. The subjects received the FST, during which the hip extension angle and the location and intensity of pain/discomfort were recorded. Reproduction of symptoms that were alleviated by neck extension was interpreted as a positive test. Differences in hip extension angle and pain intensity between groups were examined using a 2-way, repeated-measures analysis of variance and a Kruskal-Wallis analysis. The level of significance was set at α = .05. Subjects with anterior knee pain had a smaller hip extension angle than that of controls (-3.6° ± 5.3° versus 0.6° ± 6.1°; mean difference, 4.2°; 95% confidence interval [CI]: 1.24°, 7.15°; P = .006). Eight patients with anterior knee pain showed a positive FST, and those with a positive FST had a smaller hip extension angle (-5.7° ± 4.5°) than that of controls (mean difference, 6.3°; 95% CI: 0.8°, 11.8°; P = .007). There was no difference in the hip extension angle between the positive and negative FST groups (mean difference, 2.9°; 95% CI: -8.5°, 2.0°) or between the negative FST and control groups (mean difference, 3.4°; 95% CI: -0.4°, 7.3°). Results of this study suggest that altered mechanosensitivity of the femoral nerve occurred in the patients with anterior knee pain who presented with a positive FST. The role of increased mechanosensitivity

  8. Understanding and controlling the enteric nervous system

    NARCIS (Netherlands)

    Boeckxstaens, G. E.

    2002-01-01

    The enteric nervous system or the `Little Brain' of the gut controls gastrointestinal motility and secretion, and is involved in visceral sensation. In this chapter, new developments in understanding the function of the enteric nervous system are described. In particular, the interaction of this

  9. Manual therapy and neurodynamic mobilization in a patient with peroneal nerve paralysis: a case report.

    Science.gov (United States)

    Villafañe, Jorge Hugo; Pillastrini, Paolo; Borboni, Alberto

    2013-09-01

    The purpose of this case report is to describe a therapeutic intervention for peroneal nerve paralysis involving the sciatic nerve. A 24-year-old man presented with peroneal nerve paralysis with decreased sensation, severe pain in the popliteal fossa, and steppage gait, which occurred 3 days prior to the consultation. Magnetic resonance imaging and electromyography confirmed lumbar disk herniation with sciatic common peroneal nerve entrapment in the popliteal fossa. A combined treatment protocol of spinal and fibular head manipulation and neurodynamic mobilization including soft tissue work of the psoas and hamstring muscles was performed. Outcome measures were assessed at pretreatment, 1 week posttreatment, and 3-month follow-up and included numeric pain rating scale, range of motion, pressure pain threshold, and manual muscle testing. Treatment interventions were applied for 3 sessions over a period of 1 week. Results showed reduction of the patient's subjective pain and considerable improvement in range of motion, strength, and sensation in his left foot, which was restored to full function. A combined program of spinal and fibular head manipulation and neurodynamic mobilization reduced pain, increased range of motion and strength, and restored full function to the left leg in this patient who had severe functional impairment related to a compressed left common peroneal nerve.

  10. Japanese Children's Understanding of Notational Systems

    Science.gov (United States)

    Takahashi, Noboru

    2012-01-01

    This study examined Japanese children's understanding of two Japanese notational systems: "hiragana" and "kanji". In three experiments, 126 3- to 6-year-olds were asked to name words written in hiragana or kanji as they appeared with different pictures. Consistent with Bialystok ("Journal of Experimental Child…

  11. Understanding Nuclear Safety Culture: A Systemic Approach

    International Nuclear Information System (INIS)

    Afghan, A.N.

    2016-01-01

    The Fukushima accident was a systemic failure (Report by Director General IAEA on the Fukushima Daiichi Accident). Systemic failure is a failure at system level unlike the currently understood notion which regards it as the failure of component and equipment. Systemic failures are due to the interdependence, complexity and unpredictability within systems and that is why these systems are called complex adaptive systems (CAS), in which “attractors” play an important role. If we want to understand the systemic failures we need to understand CAS and the role of these attractors. The intent of this paper is to identify some typical attractors (including stakeholders) and their role within complex adaptive system. Attractors can be stakeholders, individuals, processes, rules and regulations, SOPs etc., towards which other agents and individuals are attracted. This paper will try to identify attractors in nuclear safety culture and influence of their assumptions on safety culture behavior by taking examples from nuclear industry in Pakistan. For example, if the nuclear regulator is an attractor within nuclear safety culture CAS then how basic assumptions of nuclear plant operators and shift in-charges about “regulator” affect their own safety behavior?

  12. Geochemistry and the Understanding of Groundwater Systems

    Science.gov (United States)

    Glynn, P. D.; Plummer, L. N.; Weissmann, G. S.; Stute, M.

    2009-12-01

    Geochemical techniques and concepts have made major contributions to the understanding of groundwater systems. Advances continue to be made through (1) development of measurement and characterization techniques, (2) improvements in computer technology, networks and numerical modeling, (3) investigation of coupled geologic, hydrologic, geochemical and biologic processes, and (4) scaling of individual observations, processes or subsystem models into larger coherent model frameworks. Many applications benefit from progress in these areas, such as: (1) understanding paleoenvironments, in particular paleoclimate, through the use of groundwater archives, (2) assessing the sustainability (recharge and depletion) of groundwater resources, and (3) their vulnerability to contamination, (4) evaluating the capacity and consequences of subsurface waste isolation (e.g. geologic carbon sequestration, nuclear and chemical waste disposal), (5) assessing the potential for mitigation/transformation of anthropogenic contaminants in groundwater systems, and (6) understanding the effect of groundwater lag times in ecosystem-scale responses to natural events, land-use changes, human impacts, and remediation efforts. Obtaining “representative” groundwater samples is difficult and progress in obtaining “representative” samples, or interpreting them, requires new techniques in characterizing groundwater system heterogeneity. Better characterization and simulation of groundwater system heterogeneity (both physical and geochemical) is critical to interpreting the meaning of groundwater “ages”; to understanding and predicting groundwater flow, solute transport, and geochemical evolution; and to quantifying groundwater recharge and discharge processes. Research advances will also come from greater use and progress (1) in the application of environmental tracers to ground water dating and in the analysis of new geochemical tracers (e.g. compound specific isotopic analyses, noble gas

  13. Dependency visualization for complex system understanding

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J. Allison Cory [Univ. of California, Davis, CA (United States)

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impaired as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.

  14. Understanding and Modeling Teams As Dynamical Systems

    Science.gov (United States)

    Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.

    2017-01-01

    By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231

  15. Understanding Arsenic Dynamics in Agronomic Systems to ...

    Science.gov (United States)

    This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems. The past two decades have seen important advances in our understanding of how biogeochemical and physiological processes influence human exposure to soil arsenic, and thus must now prompt an informed reconsideration and unification of regulations to protect the quality of agricultural and residential soils. Consumption of staple foods such as rice, beverages such as apple juice, or vegetables grown in historically arsenic-contaminated soils is now recognized as a tangible route of arsenic exposure that, in many cases, is more significant than exposure from drinking water. Understanding the sources of arsenic to crop plants and the factors that influence them is key to reducing exposure now and preventing exposure in future. In addition to the abundant natural sources of arsenic, there are a large number of industrial and agricultural sources of arsenic to the soil; from mining wastes, coal fly

  16. Understanding Complex Construction Systems Through Modularity

    DEFF Research Database (Denmark)

    Jensen, Tor Clarke; Bekdik, Baris; Thuesen, Christian

    2014-01-01

    This paper develops a framework for understanding complexity in construction projects by combining theories of complexity management and modularization. The framework incorporates three dimensions of product, process, and organizational modularity with the case of gypsum wall elements. The analysis...... system, rather than a modular, although the industry forces modular organizational structures. This creates a high complexity degree caused by the non-alignment of building parts and organizations and the frequent swapping of modules....... finds that the main driver of complexity is the fragmentation of the design and production, which causes the production modules to construct and install new product types and variants for each project as the designers are swapped for every project. The many interfaces are characteristics of an integral...

  17. Radionuclides in groundwater flow system understanding

    Science.gov (United States)

    Erőss, Anita; Csondor, Katalin; Horváth, Ákos; Mádl-Szőnyi, Judit; Surbeck, Heinz

    2017-04-01

    Using radionuclides is a novel approach to characterize fluids of groundwater flow systems and understand their mixing. Particularly, in regional discharge areas, where different order flow systems convey waters with different temperature, composition and redox-state to the discharge zone. Radium and uranium are redox-sensitive parameters, which causes fractionation along groundwater flow paths. Discharging waters of regional flow systems are characterized by elevated total dissolved solid content (TDS), temperature and by reducing conditions, and therefore with negligible uranium content, whereas local flow systems have lower TDS and temperature and represent oxidizing environments, and therefore their radium content is low. Due to the short transit time, radon may appear in local systems' discharge, where its source is the soil zone. However, our studies revealed the importance of FeOOH precipitates as local radon sources throughout the adsorption of radium transported by the thermal waters of regional flow systems. These precipitates can form either by direct oxidizing of thermal waters at discharge, or by mixing of waters with different redox state. Therefore elevated radon content often occurs in regional discharge areas as well. This study compares the results of geochemical studies in three thermal karst areas in Hungary, focusing on radionuclides as natural tracers. In the Buda Thermal Karst, the waters of the distinct discharge areas are characterized by different temperature and chemical composition. In the central discharge area both lukewarm (20-35°C, 770-980 mg/l TDS) and thermal waters (40-65°C, 800-1350 mg/l TDS), in the South only thermal water discharge (33-43°C, 1450-1700 mg/l TDS) occur. Radionuclides helped to identify mixing of fluids and to infer the temperature and chemical composition of the end members for the central discharge area. For the southern discharge zone mixing components could not be identified, which suggests different cave

  18. Engaging Systems Understanding through Games (Invited)

    Science.gov (United States)

    Pfirman, S. L.; Lee, J. J.; Eklund, K.; Turrin, M.; O'Garra, T.; Orlove, B. S.

    2013-12-01

    The Polar Learning And Responding (PoLAR) Climate Change Education Partnership (CCEP), supported by the National Science Foundation's CCEP Phase II program, uses novel educational approaches to engage adult learners and to inform public understanding about climate change. Both previous studies and our experience show that games and game-like activities lead people to explore systems and motivate problem-solving. This presentation focuses on three games developed by the PoLAR team: a multiplayer card game, a strategy board game, and a serious game, and discusses them within the larger framework of research and evaluation of learning outcomes. In the multiplayer card game EcoChains: Arctic Crisis, players learn how to build marine food chains, then strategize ways to make them resilient to a variety of natural and anthropogenic events. In the strategy board game Arctic SMARTIC (Strategic MAnagement of Resources in TImes of Change), participants take on roles, set developmental priorities, and then negotiate to resolve conflicts and deal with climate change scenarios. In the serious game FUTURE COAST, players explore "what if" scenarios in a collaborative narrative environment. Grounded on the award-winning WORLD WITHOUT OIL, which employed a similar story frame to impart energy concepts and realities, FUTURE COAST uses voicemails from the future to impel players through complexities of disrupted systems and realities of human interactions when facing change. Launching February 2014, FUTURE COAST is played online and in field events; players create media designed to be spreadable through their social networks. As players envision possible futures, they create diverse communities of practice that synthesize across human-environment interactions. Playtests highlight how the game evokes systems thinking, and engages and problem-solves via narrative: * 'While I was initially unsure how I'd contribute to a group I'd never met, the project itself proved so engaging that I

  19. The validity of upper-limb neurodynamic tests for detecting peripheral neuropathic pain.

    Science.gov (United States)

    Nee, Robert J; Jull, Gwendolen A; Vicenzino, Bill; Coppieters, Michel W

    2012-05-01

    The validity of upper-limb neurodynamic tests (ULNTs) for detecting peripheral neuropathic pain (PNP) was assessed by reviewing the evidence on plausibility, the definition of a positive test, reliability, and concurrent validity. Evidence was identified by a structured search for peer-reviewed articles published in English before May 2011. The quality of concurrent validity studies was assessed with the Quality Assessment of Diagnostic Accuracy Studies tool, where appropriate. Biomechanical and experimental pain data support the plausibility of ULNTs. Evidence suggests that a positive ULNT should at least partially reproduce the patient's symptoms and that structural differentiation should change these symptoms. Data indicate that this definition of a positive ULNT is reliable when used clinically. Limited evidence suggests that the median nerve test, but not the radial nerve test, helps determine whether a patient has cervical radiculopathy. The median nerve test does not help diagnose carpal tunnel syndrome. These findings should be interpreted cautiously, because diagnostic accuracy might have been distorted by the investigators' definitions of a positive ULNT. Furthermore, patients with PNP who presented with increased nerve mechanosensitivity rather than conduction loss might have been incorrectly classified by electrophysiological reference standards as not having PNP. The only evidence for concurrent validity of the ulnar nerve test was a case study on cubital tunnel syndrome. We recommend that researchers develop more comprehensive reference standards for PNP to accurately assess the concurrent validity of ULNTs and continue investigating the predictive validity of ULNTs for prognosis or treatment response.

  20. Collective neurodynamic optimization for economic emission dispatch problem considering valve point effect in microgrid.

    Science.gov (United States)

    Wang, Tiancai; He, Xing; Huang, Tingwen; Li, Chuandong; Zhang, Wei

    2017-09-01

    The economic emission dispatch (EED) problem aims to control generation cost and reduce the impact of waste gas on the environment. It has multiple constraints and nonconvex objectives. To solve it, the collective neurodynamic optimization (CNO) method, which combines heuristic approach and projection neural network (PNN), is attempted to optimize scheduling of an electrical microgrid with ten thermal generators and minimize the plus of generation and emission cost. As the objective function has non-derivative points considering valve point effect (VPE), differential inclusion approach is employed in the PNN model introduced to deal with them. Under certain conditions, the local optimality and convergence of the dynamic model for the optimization problem is analyzed. The capability of the algorithm is verified in a complicated situation, where transmission loss and prohibited operating zones are considered. In addition, the dynamic variation of load power at demand side is considered and the optimal scheduling of generators within 24 h is described. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Understanding cities as social-ecological systems

    CSIR Research Space (South Africa)

    Du Plessis, C

    2008-09-01

    Full Text Available This paper builds on earlier ecological approaches to urban development, as well as more recent thinking in the fields of sustainability science, resilience thinking and complexity theory, to propose a conceptual framework for understanding cities...

  2. Understanding aging in containment cooling systems

    International Nuclear Information System (INIS)

    Lofaro, R.J.

    1993-01-01

    A study has been performed to assess the effects of aging in nuclear power plant containment cooling systems. Failure records from national databases, as well as plant specific data were reviewed and analyzed to identify aging characteristics for this system. The predominant aging mechanisms were determined, along with the most frequently failed components and their associated failure modes. This paper discusses the aging mechanisms present in the containment spray system and the containment fan cooler system, which are two systems used to provide the containment cooling function. The failure modes, along with the relative frequency of each is also discussed

  3. Optical engineering: understanding optical system by experiments

    Science.gov (United States)

    Scharf, Toralf

    2017-08-01

    Students have to be educated in theoretical and practical matters. Only one of them does not allow attacking complex problems in research, development, and management. After their study, students should be able to design, construct and analyze technical problems at highest levels of complexity. Who never experienced the difficulty of setting up measurements will not be able to understand, plan and manage such complex tasks in her/his future career. At EPFL a course was developed for bachelor education and is based on three pillars: concrete actions (enactive) to be done by the students, a synthesis of their work by writing a report (considered as the iconic part) and inputs from the teacher to generalize the findings and link it to a possible complete abstract description (symbolic). Intensive tutoring allowed an intermodal transfer between these categories. This EIS method originally introduced by Jerome Bruner for small children is particular well adapted for engineer education for which theoretical understanding often is not enough. The symbiosis of ex-cathedra lecture and practical work in a classroom-like situation presents an innovative step towards integrated learning that complements perfectly more abstract course principles like online courses.

  4. Understanding The Resistance to Health Information Systems

    OpenAIRE

    David Ackah; Angelito E Alvarado; Heru Santoso Wahito Nugroho; Sanglar Polnok; Wiwin Martiningsih

    2017-01-01

    User resistance is users’ opposition to system implementation. Resistance often occurs as a result of a mismatch between management goals and employee preferences. There are two types of resistance to health iformation system namely active resistance and passive resistance. The manifestation of active resistance are being critical,  blaming/accusing, blocking, fault finding, sabotaging, undermining, ridiculing, intimidating/threatening, starting rumors, appealing to fear, manipulating arguing...

  5. Formal system of communication and understanding. II

    Energy Technology Data Exchange (ETDEWEB)

    Zsuzsanna, M

    1982-01-01

    For pt.I see IBID., no.5, p.252-8 (1982). In this article G. Pask's (1975) formal theory of dialogues and talk is summarized. Part II describes the talk-environment and modelling. The conscious systems and machine-intelligence are mainly dealt with. Finally a couple of cases with Pask's theory implemented are looked at. 7 references.

  6. Production monitoring system for understanding product robustness

    DEFF Research Database (Denmark)

    Boorla, Srinivasa Murthy; Howard, Thomas J.

    2016-01-01

    study is used to demonstrate how the monitoring system can be used to efficiently guide corrective action to improve product performance. It is claimed that the monitoring system can be used to dramatically cut the time taken to identify, planand execute corrective action related to typical quality......In the current quality paradigm, the performance of a product is kept within specification by ensuring that its parts are within specification. Product performance is then validated after final assembly. However, this does not control how robust the product performance is, i.e. how much...... it will vary between the specification limits. In this paper, a model for predicting product performance is proposed, taking into account design, assembly and process parameters live from production. This empowers production to maintain final product performance, instead of part quality. The PRECI‐IN case...

  7. Understanding The Resistance to Health Information Systems

    Directory of Open Access Journals (Sweden)

    David Ackah

    2017-07-01

    Full Text Available User resistance is users’ opposition to system implementation. Resistance often occurs as a result of a mismatch between management goals and employee preferences. There are two types of resistance to health iformation system namely active resistance and passive resistance. The manifestation of active resistance are being critical,  blaming/accusing, blocking, fault finding, sabotaging, undermining, ridiculing, intimidating/threatening, starting rumors, appealing to fear, manipulating arguing, using facts selectively, distorting facts and  raising objections. The manifestation of passive resistance are agreeing verbally but not following through, failing to implement change, procrastinating/dragging feet, feigning ignorance, withholding information, suggestions, help or support, and standing by and allowing the change to fail.

  8. Understanding the Lunar System Architecture Design Space

    Science.gov (United States)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  9. Understanding Digital Learning from the Perspective of Systems Dynamics

    Science.gov (United States)

    Kok, Ayse

    2009-01-01

    The System Dynamics approach can be seen as a new way of understanding dynamical phenonema (natural, physical, biological, etc.) that occur in our daily lives taking into consideration not only single pairs of cause-effect variables, but the functioning of the system as a whole. This approach also provides the students with a new understanding in…

  10. EDITORIAL: Special issue on applied neurodynamics: from neural dynamics to neural engineering Special issue on applied neurodynamics: from neural dynamics to neural engineering

    Science.gov (United States)

    Chiel, Hillel J.; Thomas, Peter J.

    2011-12-01

    is, as we agreed provisionally to say, knowledge which is likely, now or in the comparatively near future, to contribute to the material comfort of mankind, so that mere intellectual satisfaction is irrelevant, then the great bulk of higher mathematics is useless. Modern geometry and algebra, the theory of numbers, the theory of aggregates and functions, relativity, quantum mechanics—no one of them stands the test much better than another, and there is no real mathematician whose life can be justified on this ground. If this be the test, then Abel, Riemann and Poincaré wasted their lives; their contribution to human comfort was negligible, and the world would have been as happy a place without them.'. Ironically, the famous Rivest, Shamir and Adleman (RSA) algorithm, which currently underpins much of modern cryptography, depends on fundamental ideas from number theory (Cormen et al 2001). Finally, the indeterminacy of the quantum states of light, atoms and molecules, a source of great theoretical interest in the first quarter of the last century, is now in the process of being harnessed for creating algorithms, and novel computers, that can solve problems that could not be addressed by current computing devices (Steane 1998, Ralph and Pryde 2010). Thus, perhaps we should not be surprised that a focus on whether a three-body system (such as the sun, earth and moon) would remain stable over time ultimately became the basis for a new geometrical way of thinking about nonlinear dynamical systems, and that this approach has begun to find practical applications in the understanding and control of nervous systems, including novel ideas for brain-computer interfaces. Classical dynamical systems theory began with the work of Newton on the motion of the planets. He was able to solve a two-body problem, the motion of the earth around the sun (Newton 1687, Chandrasekhar 1995). Finding explicit solutions for the slightly more complicated problem of three bodies (for example

  11. Understanding Service-Oriented Systems Using Dynamic Analysis

    NARCIS (Netherlands)

    Espinha, T.; Zaidman, A.; Gross, H.G.

    2011-01-01

    When trying to understand a system that is based on the principles of Service-Oriented Architecture (SOA), it is typically not enough to understand the individual services in the architecture, but also the interactions between the services. In this paper, we present a technique based on dynamic

  12. Efficacy of Manual Therapy Including Neurodynamic Techniques for the Treatment of Carpal Tunnel Syndrome: A Randomized Controlled Trial.

    Science.gov (United States)

    Wolny, Tomasz; Saulicz, Edward; Linek, Paweł; Shacklock, Michael; Myśliwiec, Andrzej

    2017-05-01

    The purpose of this randomized trial was to compare the efficacy of manual therapy, including the use of neurodynamic techniques, with electrophysical modalities on patients with mild and moderate carpal tunnel syndrome (CTS). The study included 140 CTS patients who were randomly assigned to the manual therapy (MT) group, which included the use of neurodynamic techniques, functional massage, and carpal bone mobilizations techniques, or to the electrophysical modalities (EM) group, which included laser and ultrasound therapy. Nerve conduction, pain severity, symptom severity, and functional status measured by the Boston Carpal Tunnel Questionnaire were assessed before and after treatment. Therapy was conducted twice weekly and both groups received 20 therapy sessions. A baseline assessment revealed group differences in sensory conduction of the median nerve (P < .01) but not in motor conduction (P = .82). Four weeks after the last treatment procedure, nerve conduction was examined again. In the MT group, median nerve sensory conduction velocity increased by 34% and motor conduction velocity by 6% (in both cases, P < .01). There was no change in median nerve sensory and motor conduction velocities in the EM. Distal motor latency was decreased (P < .01) in both groups. A baseline assessment revealed no group differences in pain severity, symptom severity, or functional status. Immediately after therapy, analysis of variance revealed group differences in pain severity (P < .01), with a reduction in pain in both groups (MT: 290%, P < .01; EM: 47%, P < .01). There were group differences in symptom severity (P < .01) and function (P < .01) on the Boston Carpal Tunnel Questionnaire. Both groups had an improvement in functional status (MT: 47%, P < .01; EM: 9%, P < .01) and a reduction in subjective CTS symptoms (MT: 67%, P < .01; EM: 15%, P < .01). Both therapies had a positive effect on nerve conduction, pain reduction, functional status, and subjective symptoms in

  13. Brain resting-state networks in adolescents with high-functioning autism: Analysis of spatial connectivity and temporal neurodynamics.

    Science.gov (United States)

    Bernas, Antoine; Barendse, Evelien M; Aldenkamp, Albert P; Backes, Walter H; Hofman, Paul A M; Hendriks, Marc P H; Kessels, Roy P C; Willems, Frans M J; de With, Peter H N; Zinger, Svitlana; Jansen, Jacobus F A

    2018-02-01

    Autism spectrum disorder (ASD) is mainly characterized by functional and communication impairments as well as restrictive and repetitive behavior. The leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, which can be assessed using functional magnetic resonance imaging (fMRI). Even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic, or resting-state, connectivity. Global default connectivity in individuals with autism versus controls is not well characterized, especially for a high-functioning young population. The aim of this study is to test whether high-functioning adolescents with ASD (HFA) have an abnormal resting-state functional connectivity. We performed spatial and temporal analyses on resting-state networks (RSNs) in 13 HFA adolescents and 13 IQ- and age-matched controls. For the spatial analysis, we used probabilistic independent component analysis (ICA) and a permutation statistical method to reveal the RSN differences between the groups. For the temporal analysis, we applied Granger causality to find differences in temporal neurodynamics. Controls and HFA display very similar patterns and strengths of resting-state connectivity. We do not find any significant differences between HFA adolescents and controls in the spatial resting-state connectivity. However, in the temporal dynamics of this connectivity, we did find differences in the causal effect properties of RSNs originating in temporal and prefrontal cortices. The results show a difference between HFA and controls in the temporal neurodynamics from the ventral attention network to the salience-executive network: a pathway involving cognitive, executive, and emotion-related cortices. We hypothesized that this weaker dynamic pathway is due to a subtle trigger challenging the cognitive state prior to the resting state.

  14. Understanding Patterns for System-of-Systems Integration

    DEFF Research Database (Denmark)

    Kazman, Rick; Nielsen, Claus Ballegård; Schmid, Klaus

    Creating a successful system of systems—one that meets the needs of its stakeholders today and can evolve and scale to sustain those stakeholders into the future—is a very complex engineering challenge. In a system of systems (SoS), one of the biggest challenges is in achieving cooperation and in...

  15. Learning and Understanding System Stability Using Illustrative Dynamic Texture Examples

    Science.gov (United States)

    Liu, Huaping; Xiao, Wei; Zhao, Hongyan; Sun, Fuchun

    2014-01-01

    System stability is a basic concept in courses on dynamic system analysis and control for undergraduate students with computer science backgrounds. Typically, this was taught using a simple simulation example of an inverted pendulum. Unfortunately, many difficult issues arise in the learning and understanding of the concepts of stability,…

  16. Understanding information retrieval systems management, types, and standards

    CERN Document Server

    Bates, Marcia J

    2011-01-01

    In order to be effective for their users, information retrieval (IR) systems should be adapted to the specific needs of particular environments. The huge and growing array of types of information retrieval systems in use today is on display in Understanding Information Retrieval Systems: Management, Types, and Standards, which addresses over 20 types of IR systems. These various system types, in turn, present both technical and management challenges, which are also addressed in this volume. In order to be interoperable in a networked environment, IR systems must be able to use various types of

  17. Understanding complex urban systems multidisciplinary approaches to modeling

    CERN Document Server

    Gurr, Jens; Schmidt, J

    2014-01-01

    Understanding Complex Urban Systems takes as its point of departure the insight that the challenges of global urbanization and the complexity of urban systems cannot be understood – let alone ‘managed’ – by sectoral and disciplinary approaches alone. But while there has recently been significant progress in broadening and refining the methodologies for the quantitative modeling of complex urban systems, in deepening the theoretical understanding of cities as complex systems, or in illuminating the implications for urban planning, there is still a lack of well-founded conceptual thinking on the methodological foundations and the strategies of modeling urban complexity across the disciplines. Bringing together experts from the fields of urban and spatial planning, ecology, urban geography, real estate analysis, organizational cybernetics, stochastic optimization, and literary studies, as well as specialists in various systems approaches and in transdisciplinary methodologies of urban analysis, the volum...

  18. Towards a systems understanding of plant-microbe interactions

    Directory of Open Access Journals (Sweden)

    Akira eMine

    2014-08-01

    Full Text Available Plants are closely associated with microorganisms including pathogens and mutualists that influence plant fitness. Molecular genetic approaches have uncovered a number of signaling components from both plants and microbes and their mode of actions. However, signaling pathways are highly interconnected and influenced by diverse sets of environmental factors. Therefore, it is important to have systems views in order to understand the true nature of plant-microbe interactions. Indeed, systems biology approaches have revealed previously overlooked or misinterpreted properties of the plant immune signaling network. Experimental reconstruction of biological networks using exhaustive combinatorial mutants is particularly powerful to elucidate network structure and properties and relationships among network components. Recent advances in metagenomics of microbial communities associated with plants further point to the importance of systems approaches and open a research area of microbial community reconstruction. In this review, we highlight the importance of a systems understanding of plant-microbe interactions, with a special emphasis on reconstruction strategies.

  19. A systemic approach to understanding mental health and services.

    Science.gov (United States)

    Cohen, Mark

    2017-10-01

    In the UK mental health and associated NHS services face considerable challenges. This paper aims to form an understanding both of the complexity of context in which services operate and the means by which services have sought to meet these challenges. Systemic principles as have been applied to public service organisations with reference to interpersonal relations, the wider social culture and its manifestation in service provision. The analysis suggests that the wider culture has shaped service demand and the approaches adopted by services resulting in a number of unintended consequences, reinforcing loops, increased workload demands and the limited value of services. The systemic modelling of this situation provides a necessary overview prior to future policy development. The paper concludes that mental health and attendant services requires a systemic understanding and a whole system approach to reform. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. Database management systems understanding and applying database technology

    CERN Document Server

    Gorman, Michael M

    1991-01-01

    Database Management Systems: Understanding and Applying Database Technology focuses on the processes, methodologies, techniques, and approaches involved in database management systems (DBMSs).The book first takes a look at ANSI database standards and DBMS applications and components. Discussion focus on application components and DBMS components, implementing the dynamic relationship application, problems and benefits of dynamic relationship DBMSs, nature of a dynamic relationship application, ANSI/NDL, and DBMS standards. The manuscript then ponders on logical database, interrogation, and phy

  1. Understanding Learner Agency as a Complex Dynamic System

    Science.gov (United States)

    Mercer, Sarah

    2011-01-01

    This paper attempts to contribute to a fuller understanding of the nature of language learner agency by considering it as a complex dynamic system. The purpose of the study was to explore detailed situated data to examine to what extent it is feasible to view learner agency through the lens of complexity theory. Data were generated through a…

  2. Dynamic systems for everyone understanding how our world works

    CERN Document Server

    Ghosh, Asish

    2015-01-01

    This book is a study of the interactions between different types of systems, their environment, and their subsystems.  The author explains how basic systems principles are applied in engineered (mechanical, electromechanical, etc.) systems and then guides the reader to understand how the same principles can be applied to social, political, economic systems, as well as in everyday life.  Readers from a variety of disciplines will benefit from the understanding of system behaviors and will be able to apply those principles in various contexts.  The book includes many examples covering various types of systems.  The treatment of the subject is non-mathematical, and the book considers some of the latest concepts in the systems discipline, such as agent-based systems, optimization, and discrete events and procedures.  ·         Shows how system knowledge may be applied in many different areas without the need for deep mathematical knowledge; ·         Demonstrates how to model and simulate s...

  3. Understanding energy technology developments from an innovation system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M.; Nygaard Madsen, A. [Risoe National Lab., DTU, Systems Analysis Dept., Roskilde (Denmark); Gregersen, Birgitte [Aalborg Univ., Department of Business Studies (Denmark)

    2007-05-15

    With the increased market-orientation and privatisation of the energy area, the perspective of innovation is becoming more and more relevant for understanding the dynamics of change and technology development in the area. A better understanding of the systemic and complex processes of innovation is needed. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark. The study focuses on five technology areas: bio fuels, hydrogen technology, wind energy, solar cells and energy-efficient end-use technologies. The main result of the analysis is that the technology areas are quite diverse in a number of innovation-relevant issues like actor set-up, institutional structure, maturity, and connections between market and non-market aspects. The paper constitutes background for discussing the framework conditions for transition to sustainable energy technologies and strengths and weaknesses of the innovation systems. (au)

  4. Understanding complex urban systems integrating multidisciplinary data in urban models

    CERN Document Server

    Gebetsroither-Geringer, Ernst; Atun, Funda; Werner, Liss

    2016-01-01

    This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers—including municipal politicians, spatial planners, and citizen groups—in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches—and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Age...

  5. Systematic approach to understanding the pathogenesis of systemic sclerosis.

    Science.gov (United States)

    Zuo, Xiaoxia; Zhang, Lihua; Luo, Hui; Li, Yisha; Zhu, Honglin

    2017-10-01

    Systemic sclerosis (SSc) is a complex heterogeneous autoimmune disease. Progressive organ fibrosis is a major contributor to SSc mortality. Despite extensive efforts, the underlying mechanism of SSc remains unclear. Efforts to understand the pathogenesis of SSc have included genomics, epigenetics, transcriptomic, proteomic and metabolomic studies in the last decade. This review focuses on recent studies in SSc research based on multi-omics. The combination of these technologies can help us understand the pathogenesis of SSc. This review aims to provide important information for disease identification, therapeutic targets and potential biomarkers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Life and Understanding: The Origins of "Understanding" in Self-Organizing Nervous Systems.

    Science.gov (United States)

    Yufik, Yan M; Friston, Karl

    2016-01-01

    This article is motivated by a formulation of biotic self-organization in Friston (2013), where the emergence of "life" in coupled material entities (e.g., macromolecules) was predicated on bounded subsets that maintain a degree of statistical independence from the rest of the network. Boundary elements in such systems constitute a Markov blanket ; separating the internal states of a system from its surrounding states. In this article, we ask whether Markov blankets operate in the nervous system and underlie the development of intelligence, enabling a progression from the ability to sense the environment to the ability to understand it. Markov blankets have been previously hypothesized to form in neuronal networks as a result of phase transitions that cause network subsets to fold into bounded assemblies, or packets (Yufik and Sheridan, 1997; Yufik, 1998a). The ensuing neuronal packets hypothesis builds on the notion of neuronal assemblies (Hebb, 1949, 1980), treating such assemblies as flexible but stable biophysical structures capable of withstanding entropic erosion. In other words, structures that maintain their integrity under changing conditions. In this treatment, neuronal packets give rise to perception of "objects"; i.e., quasi-stable (stimulus bound) feature groupings that are conserved over multiple presentations (e.g., the experience of perceiving "apple" can be interrupted and resumed many times). Monitoring the variations in such groups enables the apprehension of behavior; i.e., attributing to objects the ability to undergo changes without loss of self-identity. Ultimately, "understanding" involves self-directed composition and manipulation of the ensuing "mental models" that are constituted by neuronal packets, whose dynamics capture relationships among objects: that is, dependencies in the behavior of objects under varying conditions. For example, movement is known to involve rotation of population vectors in the motor cortex (Georgopoulos et al

  7. Epigenetics: Its Understanding Is Crucial to a Sustainable Healthcare System

    Directory of Open Access Journals (Sweden)

    Michelle Thunders

    2015-04-01

    Full Text Available Understanding the molecular impact of lifestyle factors has never been so important; a period in time where there are so many adults above retirement age has been previously unknown. As a species, our life expectancy is increasing yet the period of our lives where we enjoy good health is not expanding proportionately. Over the next 50 years we will need to almost double the percentage of GDP spent on health care, largely due to the increasing incidence of obesity related chronic diseases. A greater understanding and implementation of an integrated approach to health is required. Research exploring the impact of nutritional and exercise intervention on the epigenetically flexible genome is up front in terms of addressing healthy aging. Alongside this, we need a greater understanding of the interaction with our immune and nervous systems in preserving and maintaining health and cognition.

  8. Understanding Global Change: Frameworks and Models for Teaching Systems Thinking

    Science.gov (United States)

    Bean, J. R.; Mitchell, K.; Zoehfeld, K.; Oshry, A.; Menicucci, A. J.; White, L. D.; Marshall, C. R.

    2017-12-01

    The scientific and education communities must impart to teachers, students, and the public an understanding of how the various factors that drive climate and global change operate, and why the rates and magnitudes of these changes related to human perturbation of Earth system processes today are cause for deep concern. Even though effective educational modules explaining components of the Earth and climate system exist, interdisciplinary learning tools are necessary to conceptually link the causes and consequences of global changes. To address this issue, the Understanding Global Change Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley developed an interdisciplinary framework that organizes global change topics into three categories: (1) causes of climate change, both human and non-human (e.g., burning of fossil fuels, deforestation, Earth's tilt and orbit), (2) Earth system processes that shape the way the Earth works (e.g., Earth's energy budget, water cycle), and (3) the measurable changes in the Earth system (e.g., temperature, precipitation, ocean acidification). To facilitate student learning about the Earth as a dynamic, interacting system, a website will provide visualizations of Earth system models and written descriptions of how each framework topic is conceptually linked to other components of the framework. These visualizations and textual summarizations of relationships and feedbacks in the Earth system are a unique and crucial contribution to science communication and education, informed by a team of interdisciplinary scientists and educators. The system models are also mechanisms by which scientists can communicate how their own work informs our understanding of the Earth system. Educators can provide context and relevancy for authentic datasets and concurrently can assess student understanding of the interconnectedness of global change phenomena. The UGC resources will be available through a web-based platform and

  9. Understanding how orthopaedic surgery practices generate value for healthcare systems.

    Science.gov (United States)

    Olson, Steven A; Mather, Richard C

    2013-06-01

    Orthopaedic surgery practices can provide substantial value to healthcare systems. Increasingly, healthcare administrators are speaking of the need for alignment between physicians and healthcare systems. However, physicians often do not understand what healthcare administrators value and therefore have difficulty articulating the value they create in discussions with their hospital or healthcare organization. Many health systems and hospitals use service lines as an organizational structure to track the relevant data and manage the resources associated with a particular type of care, such as musculoskeletal care. Understanding service lines and their management can be useful for orthopaedic surgeons interested in interacting with their hospital systems. We provide an overview of two basic types of value orthopaedic surgeons create for healthcare systems: financial or volume-driven benefits and nonfinancial quality or value-driven patient care benefits. We performed a search of PubMed from 1965 to 2012 using the term "service line." Of the 351 citations identified, 18 citations specifically involved the use of service lines to improve patient care in both nursing and medical journals. A service line is a structure used in healthcare organizations to enable management of a subset of activities or resources in a focused area of patient care delivery. There is not a consistent definition of what resources are managed within a service line from hospital to hospital. Physicians can positively impact patient care through engaging in service line management. There is increasing pressure for healthcare systems and hospitals to partner with orthopaedic surgeons. The peer-reviewed literature demonstrates there are limited resources for physicians to understand the value they create when attempting to negotiate with their hospital or healthcare organization. To effectively negotiate for resources to provide the best care for patients, orthopaedic surgeons need to claim and

  10. Understanding Science: Frameworks for using stories to facilitate systems thinking

    Science.gov (United States)

    ElShafie, S. J.; Bean, J. R.

    2017-12-01

    Studies indicate that using a narrative structure for teaching and learning helps audiences to process and recall new information. Stories also help audiences retain specific information, such as character names or plot points, in the context of a broader narrative. Stories can therefore facilitate high-context systems learning in addition to low-context declarative learning. Here we incorporate a framework for science storytelling, which we use in communication workshops, with the Understanding Science framework developed by the UC Museum of Paleontology (UCMP) to explore the application of storytelling to systems thinking. We translate portions of the Understanding Science flowchart into narrative terms. Placed side by side, the two charts illustrate the parallels between the scientific process and the story development process. They offer a roadmap for developing stories about scientific studies and concepts. We also created a series of worksheets for use with the flowcharts. These new tools can generate stories from any perspective, including a scientist conducting a study; a character that plays a role in a larger system (e.g., foraminifera or a carbon atom); an entire system that interacts with other systems (e.g., the carbon cycle). We will discuss exemplar stories about climate change from each of these perspectives, which we are developing for workshops using content and storyboard models from the new UCMP website Understanding Global Change. This conceptual framework and toolkit will help instructors to develop stories about scientific concepts for use in a classroom setting. It will also help students to analyze stories presented in class, and to create their own stories about new concepts. This approach facilitates student metacognition of the learning process, and can also be used as a form of evaluation. We are testing this flowchart and its use in systems teaching with focus groups, in preparation for use in teacher professional development workshops.

  11. Understanding of the management information system based on MVC pattern

    Science.gov (United States)

    Chen, Sida

    2018-04-01

    With the development of the society, people have come to realize the significance of information, not only linguistically but also in the written form. To build an effective and efficient working flow, a new subject called Management Information System (MIS) came up. MIS is an integrated discipline, which utilizes comprehensive and systematical methods to manage information, and it enhances the work efficiency through building structured information platform. This paper demonstrates the Management Information System from shallow too deep with the understanding of MVC pattern, including its basic structure and application with ASP.NET. Also some discussions about its features are made in the last section.

  12. Dynamic systems for everyone understanding how our world works

    CERN Document Server

    Ghosh, Asish

    2017-01-01

    Systems are everywhere and we are surrounded by them. We are a complex amalgam of systems that enable us to interact with an endless array of external systems in our daily lives. They are electrical, mechanical, social, biological, and many other types that control our environment and our well-being. By appreciating how these systems function, will broaden our understanding of how our world works. Readers from a variety of disciplines will benefit from the knowledge of system behavior they will gain from this book and will be able to apply those principles in various contexts. The treatment of the subject is non-mathematical, and the book considers some of the latest concepts in the systems discipline, such as agent based systems, optimization, and discrete events and procedures. The diverse range of examples provided in this book, will allow readers to: Apply system knowledge at work and in daily life without deep mathematical knowledge; Build models and simulate system behaviors on a personal computer; Opti...

  13. Integrated systems understanding using bayesian networks: measuring the effectiveness of a weapon system

    CSIR Research Space (South Africa)

    de Waal, A

    2006-02-27

    Full Text Available Complex systems can be described as systems-of-systems as they comprise a hierarchy of systems. The links between sub-systems are often obscure and non-linear and this results in a lack of a whole-systems view and appropriate understanding...

  14. Study on supporting system for operator's comprehensive understanding

    International Nuclear Information System (INIS)

    Yoshikawa, Shinji

    1996-01-01

    Power Reactor and Nuclear Fuel Development Corp. has participated in the development of a system to support the process of operator's plant understanding by the use of information processing techniques such as artificial intelligence since 1994. Analysis and model formation of the process leading to operator's comprehensive understanding of plant (mental model) are undertaken attempting to determine the basic structure of the mental model available for the description of knowledge using the precedent survey and to observe how to utilize operator's own knowledge. After consideration of the way by which plant operators utilize their physical knowledges and the knowledges of physical observation in practice, a basic structure composed of 3 components a qualitative causal network, a hierarchical function model and 3 links joining the two was proposed for the mental model. A questionnaire survey on operator's statements was made and the contents were assigned in several categories for objective analysis. An unified form usable to make a data base was established. Further, we have a plan to develop the first proto-type system to promote operator's understanding by 1998. (M.N.)

  15. Research Experience for Undergraduates: Understanding the Arctic as a System

    Science.gov (United States)

    Alexeev, V. A.; Walsh, J. E.; Arp, C. D.; Hock, R.; Euskirchen, E. S.; Kaden, U.; Polyakov, I.; Romanovsky, V. E.; Trainor, S.

    2017-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to understand and explain changes in the Arctic and the implications of those changes. Responding to needs in innovative research and education for understanding high-latitude rapid climate change, scientists at the International Arctic research Center of the University of Alaska Fairbanks (UAF) established a new REU (=Research Experience for Undergraduates) NSF-funded site, aiming to attract more undergraduates to arctic sciences. The science focus of this program, building upon the research strengths of UAF, is on understanding the Arctic as a system with emphasis on its physical component. The goals, which were to disseminate new knowledge at the frontiers of polar science and to ignite the enthusiasm of the undergraduates about the Arctic, are pursued by involving undergraduate students in research and educational projects with their mentors using the available diverse on-campus capabilities. IARC hosted the first group of eight students this past summer, focusing on a variety of different disciplines of the Arctic System Science. Students visited research sites around Fairbanks and in remote parts of Alaska (Toolik Lake Field Station, Gulkana glacier, Bonanza Creek, Poker Flats, the CRREL Permafrost Tunnel and others) to see and experience first-hand how the arctic science is done. Each student worked on a research project guided by an experienced instructor. The summer program culminated with a workshop that consisted of reports from the students about their experiences and the results of their projects.

  16. System Behaviour Charts Inform an Understanding of Biodiversity Recovery

    Directory of Open Access Journals (Sweden)

    Simon A. Black

    2015-01-01

    Full Text Available Practitioners working with species and ecosystem recovery typically deal with the complexity of, on one hand, lack of data or data uncertainties and, on the other hand, demand for critical decision-making and intervention. The control chart methods of commercial and industrial and environmental monitoring can complement an ecological understanding of wildlife systems including those situations which incorporate human activities and land use. Systems Behaviour Charts are based upon well-established control chart methods to provide conservation managers with an approach to using existing data and enable insight to aid timely planning of conservation interventions and also complement and stimulate research into wider scientific and ecological questions. When the approach is applied to existing data sets in well-known wildlife conservation cases, the subsequent Systems Behaviour Charts and associated analytical criteria demonstrate insights which would be helpful in averting problems associated with each case example.

  17. Current understanding of interactions between nanoparticles and the immune system.

    Science.gov (United States)

    Dobrovolskaia, Marina A; Shurin, Michael; Shvedova, Anna A

    2016-05-15

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure-activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle-immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15years of research on the immunotoxicity of engineered nanomaterials. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Systemic thinking fundamentals for understanding problems and messes

    CERN Document Server

    Hester, Patrick T

    2014-01-01

    Whether you’re an academic or a practitioner, a sociologist, a manager, or an engineer, one can benefit from learning to think systemically.  Problems (and messes) are everywhere and they’re getting more complicated every day.  How we think about these problems determines whether or not we’ll be successful in understanding and addressing them.  This book presents a novel way to think about problems (and messes) necessary to attack these always-present concerns.  The approach draws from disciplines as diverse as mathematics, biology, and psychology to provide a holistic method for dealing with problems that can be applied to any discipline. This book develops the systemic thinking paradigm, and introduces practical guidelines for the deployment of a systemic thinking approach.

  19. Understanding Organizational Memory from the Integrated Management Systems (ERP

    Directory of Open Access Journals (Sweden)

    Gilberto Perez

    2013-10-01

    Full Text Available With this research, in the form of a theoretical essay addressing the theme of Organizational Memory and Integrated Management Systems (ERP, we tried to present some evidence of how this type of system can contribute to the consolidation of certain features of Organizational Memory. From a theoretical review of the concepts of Human Memory, extending to the Organizational Memory and Information Systems, with emphasis on Integrated Management Systems (ERP we tried to draw a parallel between the functions and structures of Organizational Memory and features and characteristics of ERPs. The choice of the ERP system for this study was made due to the complexity and broad scope of this system. It was verified that the ERPs adequately support many functions of the Organizational Memory, highlighting the implementation of logical processes, practices and rules in business. It is hoped that the dialogue presented here can contribute to the advancement of the understanding of organizational memory, since the similarity of Human Memory is a fertile field and there is still much to be researched.

  20. Neurodynamic treatment did not improve pain and disability at two weeks in patients with chronic nerve-related leg pain: a randomised trial

    Directory of Open Access Journals (Sweden)

    Giovanni Ferreira

    2016-10-01

    Full Text Available Question: In people with nerve-related leg pain, does adding neurodynamic treatment to advice to remain active improve leg pain, disability, low back pain, function, global perceived effect and location of symptoms? Design: Randomised trial with concealed allocation and intention-to-treat analysis. Participants: Sixty participants with nerve-related leg pain recruited from the community. Interventions: The experimental group received four sessions of neurodynamic treatment. Both groups received advice to remain active. Outcome measures: Leg pain and low back pain (0, none, to 10, worst, Oswestry Disability Index (0, none, to 100, worst, Patient-Specific Functional Scale (0, unable to perform, to 30, able to perform, global perceived effect (–5 to 5 and location of symptoms were measured at 2 and 4 weeks after randomisation. Continuous outcomes were analysed by linear mixed models. Location of symptoms was assessed by relative risk (95% CI. Results: At 2 weeks, the experimental group did not have significantly greater improvement than the control group in leg pain (MD –1.1, 95% CI –2.3 to 0.1 or disability (MD –3.3, 95% CI –9.6 to 2.9. At 4 weeks, the experimental group experienced a significantly greater reduction in leg pain (MD –2.4, 95% CI –3.6 to –1.2 and low back pain (MD –1.5, 95% CI –2.8 to –0.2. The experimental group also improved significantly more in function at 2 weeks (MD 5.2, 95% CI 2.2 to 8.2 and 4 weeks (MD 4.7, 95% CI 1.7 to 7.8, as well as global perceived effect at 2 weeks (MD 2.5, 95% CI 1.6 to 3.5 and 4 weeks (MD 2.9, 95% CI 1.9 to 3.9. No significant between-group differences occurred in disability at 4 weeks and location of symptoms. Conclusion: Adding neurodynamic treatment to advice to remain active did not improve leg pain and disability at 2 weeks. Trial registration: NCT01954199. [Ferreira G, Stieven F, Araujo F, Wiebusch M, Rosa C, Plentz R, et al. (2016 Neurodynamic treatment did not improve

  1. Spoken Language Understanding Systems for Extracting Semantic Information from Speech

    CERN Document Server

    Tur, Gokhan

    2011-01-01

    Spoken language understanding (SLU) is an emerging field in between speech and language processing, investigating human/ machine and human/ human communication by leveraging technologies from signal processing, pattern recognition, machine learning and artificial intelligence. SLU systems are designed to extract the meaning from speech utterances and its applications are vast, from voice search in mobile devices to meeting summarization, attracting interest from both commercial and academic sectors. Both human/machine and human/human communications can benefit from the application of SLU, usin

  2. Synthesizing International Understanding of Changes in the Arctic Hydrological System

    Science.gov (United States)

    Pundsack, J. W.; Vorosmarty, C. J.; Hinzman, L. D.

    2009-12-01

    There are several notable gaps in our current level of understanding of Arctic hydrological systems. At the same time, rapidly emerging data sets, technologies, and modeling resources provide us with an unprecedented opportunity to move substantially forward. The Arctic Community-Wide Hydrological Analysis and Monitoring Program (Arctic-CHAMP), funded by NSF/ARCSS, was established to initiate a major effort to improve our current monitoring of water cycle variables, and to foster collaboration with the many relevant U.S. and international arctic research initiatives. These projects, funded under ARCSS through the ‘Freshwater Integration (FWI) study’, links CHAMP, the Arctic/Subarctic Ocean Fluxes (ASOF) Programme, and SEARCH. As part of the overall synthesis and integration efforts of the NSF-ARCSS Freshwater Integration (FWI) study, the program carried-out a major International Synthesis Capstone Workshop in Fall 2009 as an International Polar Year (IPY) affiliated meeting. The workshop, "Synthesizing International Understanding of Changes in the Arctic Hydrological System,” was held 30 September to 4 October 2009 in Stockholm at the Beijer Auditorium of the Royal Swedish Academy. The workshop was sponsored by the NSF-ARCSS Arctic-CHAMP Science Management Office (City College of New York / Univ. of New Hampshire), the International Study of Arctic Change (ISAC), and the International Arctic Research Center (IARC; Univ. of Alaska Fairbanks). The overarching goals of the meeting were to stage a post-IPY lessons-learned workshop with co-equal numbers of FWI, IPY, and ICARP-II researchers, using insights from recent scientific findings, data, and strategies to afford synthesis. The workshop aimed to: (1) take stock of recent advances in our understanding of changes in the Arctic hydrological system; (2) identify key remaining research gaps / unanswered questions; and (3) gather insight on where to focus future research efforts/initiatives (nationally and

  3. Implementing An Image Understanding System Architecture Using Pipe

    Science.gov (United States)

    Luck, Randall L.

    1988-03-01

    This paper will describe PIPE and how it can be used to implement an image understanding system. Image understanding is the process of developing a description of an image in order to make decisions about its contents. The tasks of image understanding are generally split into low level vision and high level vision. Low level vision is performed by PIPE -a high performance parallel processor with an architecture specifically designed for processing video images at up to 60 fields per second. High level vision is performed by one of several types of serial or parallel computers - depending on the application. An additional processor called ISMAP performs the conversion from iconic image space to symbolic feature space. ISMAP plugs into one of PIPE's slots and is memory mapped into the high level processor. Thus it forms the high speed link between the low and high level vision processors. The mechanisms for bottom-up, data driven processing and top-down, model driven processing are discussed.

  4. Will smart surveillance systems listen, understand and speak Slovene?

    Directory of Open Access Journals (Sweden)

    Simon Dobrišek

    2013-12-01

    Full Text Available The paper deals with the spoken language technologies that could enable the so-called smart (intelligent surveillance systems to listen, understand and speak Slovenian in the near future. Advanced computational methods of artificial perception and pattern recognition enable such systems to be at least to some extent aware of the environment, the presence of people and other phenomena that could be subject to surveillance. Speech is one such phenomenon that has the potential to be a key source of information in certain security situations. Technologies that enable automatic speech and speaker recognition as well as their psychophysical state by computer analysis of acoustic speech signals provide an entirely new dimension to the development of smart surveillance systems. Automatic recognition of spoken threats, screaming and crying for help, as well as a suspicious psycho-physical state of a speaker provide such systems to some extent with intelligent behaviour. The paper investigates the current state of development of these technologies and the requirements and possibilities of these systems to be used for the Slovenian spoken language, as well as different possible security application scenarios. It also addresses the broader legal and ethical issues raised by the development and use of such technologies, especially as audio surveillance is one of the most sensitive issues of privacy protection.

  5. A Framework for Understanding Post-Merger Information Systems Integration

    DEFF Research Database (Denmark)

    Alaranta, Maria; Kautz, Karlheinz

    2012-01-01

    This paper develops a theoretical framework for the integration of information systems (IS) after a merger or an acquisition. The framework integrates three perspectives: a structuralist, an individualist, and an interactive process perspective to analyze and understand such integrations....... The framework is applied to a longitudinal case study of a manufacturing company that grew through an acquisition. The management decided to integrate the production control IS via tailoring a new system that blends together features of existing IS. The application of the framework in the case study confirms...... several known impediments to IS integrations. It also identifies a number of new inhibitors, as well as known and new facilitators that can bring post-merger IS integration to a success. Our findings provide relevant insights to researching and managing post-merger IS integrations. They emphasize...

  6. Creativity Understandings, Evolution: from Genius to Creative Systems

    Directory of Open Access Journals (Sweden)

    Jūratė Černevičiūtė

    2014-10-01

    Full Text Available The understanding of creativity in the social sciencies became more complex with the course of time. The concepts of creative individual, creative process and environment are discussed. Looking at the environment, distinction was made on three levels: macro, meso and micro. The impact of environments on creativity is analyzed, focusing attention on the collective creativity as the positive micro-environmental factor for innovations. Insights are gained about the tendency to move from an exclusive, elite, narrow concept of creativity, measured by the creation of products and their abundance, towards a broader, democratic concept of everyday creativity of the most people. The conclusion is that the creative industries of the exceptional creativity of genius or talent and mysticism are gradually transformed to broader creativity as the governed system, emphasizing creativity links with internal elements of the system and with the social context.

  7. Understanding Resilient Urban Futures: A Systemic Modelling Approach

    Directory of Open Access Journals (Sweden)

    Ralph Chapman

    2013-07-01

    Full Text Available The resilience of cities in response to natural disasters and long-term climate change has emerged as a focus of academic and policy attention. In particular, how to understand the interconnectedness of urban and natural systems is a key issue. This paper introduces an urban model that can be used to evaluate city resilience outcomes under different policy scenarios. The model is the Wellington Integrated Land Use-Transport-Environment Model (WILUTE. It considers the city (i.e., Wellington as a complex system characterized by interactions between a variety of internal urban processes (social, economic and physical and the natural environment. It is focused on exploring the dynamic relations between human activities (the geographic distribution of housing and employment, infrastructure layout, traffic flows and energy consumption, environmental effects (carbon emissions, influences on local natural and ecological systems and potential natural disasters (e.g., inundation due to sea level rise and storm events faced under different policy scenarios. The model gives insights that are potentially useful for policy to enhance the city’s resilience, by modelling outcomes, such as the potential for reduction in transportation energy use, and changes in the vulnerability of the city’s housing stock and transport system to sea level rise.

  8. Current understanding of interactions between nanoparticles and the immune system

    International Nuclear Information System (INIS)

    Dobrovolskaia, Marina A.; Shurin, Michael; Shvedova, Anna A.

    2016-01-01

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure–activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle–immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15 years of research on the immunotoxicity of engineered nanomaterials. - Graphical abstract: API — active pharmaceutical ingredient; NP — nanoparticles; PCP — physicochemical properties, CARPA — complement activation-related pseudoallergy, ICH — International Conference on Harmonization. Display Omitted - Highlights: • Achievements, disappointments and lessons learned over past decade are reviewed. • Areas in focus include characterization, immunotoxicity and utility in drug delivery. • Future direction focusing on mechanistic immunotoxicity studies is proposed.

  9. Current understanding of interactions between nanoparticles and the immune system

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovolskaia, Marina A., E-mail: marina@mail.nih.gov [Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, MD 21702 (United States); Shurin, Michael [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Shvedova, Anna A., E-mail: ats1@cdc.gov [Health Effects Laboratory Division, National Institute of Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505 (United States); Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506 (United States)

    2016-05-15

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure–activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle–immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15 years of research on the immunotoxicity of engineered nanomaterials. - Graphical abstract: API — active pharmaceutical ingredient; NP — nanoparticles; PCP — physicochemical properties, CARPA — complement activation-related pseudoallergy, ICH — International Conference on Harmonization. Display Omitted - Highlights: • Achievements, disappointments and lessons learned over past decade are reviewed. • Areas in focus include characterization, immunotoxicity and utility in drug delivery. • Future direction focusing on mechanistic immunotoxicity studies is proposed.

  10. A stratified myeloid system, the challenge of understanding macrophage diversity.

    Science.gov (United States)

    Geissmann, F; Mass, E

    2015-12-01

    The present issue of 'Seminars in Immunology' addresses the topic of macrophage biology, 100 years after the death of Elie Metchnikoff (May 1845-July 1916). As foreseen by Metchnikoff, the roles of macrophages in the maintenance of homeostasis and immunity against pathogens have become a broad and active area of investigation. We now start to realize that the myeloid system includes a multiplicity of cell types with diverse developmental origins and functions. Therefore, the textbook picture of a plastic and multifunctional macrophage does not meet the requirements of our current knowledge anymore. Further development toward a quantitative and molecular understanding of myeloid cell biology in vivo and their roles in tissue homeostasis and remodeling will benefit from taking this complexity into account. A tentative model to help in this pursuit and account for myeloid cell and macrophage diversity is discussed below. Copyright © 2016. Published by Elsevier Ltd.

  11. Understanding healthcare innovation systems: the Stockholm region case.

    Science.gov (United States)

    Larisch, Lisa-Marie; Amer-Wåhlin, Isis; Hidefjäll, Patrik

    2016-11-21

    Purpose There is an increasing interest in understanding how innovation processes can address current challenges in healthcare. The purpose of this paper is to analyze the wider socio-economic context and conditions for such innovation processes in the Stockholm region, using the functional dynamics approach to innovation systems (ISs). Design/methodology/approach The analysis is based on triangulation using data from 16 in-depth interviews, two workshops, and additional documents. Using the functional dynamics approach, critical structural and functional components of the healthcare IS were analyzed. Findings The analysis revealed several mechanisms blocking innovation processes such as fragmentation, lack of clear leadership, as well as insufficient involvement of patients and healthcare professionals. Furthermore, innovation is expected to occur linearly as a result of research. Restrictive rules for collaboration with industry, reimbursement, and procurement mechanisms limit entrepreneurial experimentation, commercialization, and spread of innovations. Research limitations/implications In this study, the authors analyzed how certain functions of the functional dynamics approach to ISs related to each other. The authors grouped knowledge creation, resource mobilization, and legitimacy as they jointly constitute conditions for needs articulation and entrepreneurial experimentation. The economic effects of entrepreneurial experimentation and needs articulation are mainly determined by the stage of market formation and existence of positive externalities. Social implications Stronger user involvement; a joint innovation strategy for healthcare, academia, and industry; and institutional reform are necessary to remove blocking mechanisms that today prevent innovation from occurring. Originality/value This study is the first to provide an analysis of the system of innovation in healthcare using a functional dynamics approach, which has evolved as a tool for public

  12. From chemical neuroanatomy to an understanding of the olfactory system

    Directory of Open Access Journals (Sweden)

    L. Oboti

    2011-10-01

    Full Text Available The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB. Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents.

  13. From chemical neuroanatomy to an understanding of the olfactory system

    Science.gov (United States)

    Oboti, L.; Peretto, P.; De Marchis, S.; Fasolo, A.

    2011-01-01

    The olfactory system of mammals is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents. PMID:22297441

  14. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Array Information Technology, Greenbelt, MD (United States); Dreger, Douglas [Univ. of California, Berkeley, CA (United States); Heidbach, Oliver [Helmholtz Centre Potsdam (Germany, German Research Center for Geosciences; Hutchings, Lawrence [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-29

    This DOE funded project was a collaborative effort between Array Information Technology (AIT), the University of California at Berkeley (UCB), the Helmholtz Centre Potsdam - German Research Center for Geosciences (GFZ) and the Lawrence Berkeley National Laboratory (LBNL). It was also part of the European research project “GEISER”, an international collaboration with 11 European partners from six countries including universities, research centers and industry, with the goal to address and mitigate the problems associated with induced seismicity in Enhanced Geothermal Systems (EGS). The goal of the current project was to develop a combination of techniques, which evaluate the relationship between enhanced geothermal operations and the induced stress changes and associated earthquakes throughout the reservoir and the surrounding country rock. The project addressed the following questions: how enhanced geothermal activity changes the local and regional stress field; whether these activities can induce medium sized seismicity M > 3; (if so) how these events are correlated to geothermal activity in space and time; what is the largest possible event and strongest ground motion, and hence the potential hazard associated with these activities. The development of appropriate technology to thoroughly investigate and address these questions required a number of datasets to provide the different physical measurements distributed in space and time. Because such a dataset did not yet exist for an EGS system in the United State, we used current and past data from The Geysers geothermal field in northern California, which has been in operation since the 1960s. The research addressed the need to understand the causal mechanisms of induced seismicity, and demonstrated the advantage of imaging the physical properties and temporal changes of the reservoir. The work helped to model the relationship between injection and production and medium sized magnitude events that have

  15. Understanding bicycling in cities using system dynamics modelling.

    Science.gov (United States)

    Macmillan, Alexandra; Woodcock, James

    2017-12-01

    Increasing urban bicycling has established net benefits for human and environmental health. Questions remain about which policies are needed and in what order, to achieve an increase in cycling while avoiding negative consequences. Novel ways of considering cycling policy are needed, bringing together expertise across policy, community and research to develop a shared understanding of the dynamically complex cycling system. In this paper we use a collaborative learning process to develop a dynamic causal model of urban cycling to develop consensus about the nature and order of policies needed in different cycling contexts to optimise outcomes. We used participatory system dynamics modelling to develop causal loop diagrams (CLDs) of cycling in three contrasting contexts: Auckland, London and Nijmegen. We combined qualitative interviews and workshops to develop the CLDs. We used the three CLDs to compare and contrast influences on cycling at different points on a "cycling trajectory" and drew out policy insights. The three CLDs consisted of feedback loops dynamically influencing cycling, with significant overlap between the three diagrams. Common reinforcing patterns emerged: growing numbers of people cycling lifts political will to improve the environment; cycling safety in numbers drives further growth; and more cycling can lead to normalisation across the population. By contrast, limits to growth varied as cycling increases. In Auckland and London, real and perceived danger was considered the main limit, with added barriers to normalisation in London. Cycling congestion and "market saturation" were important in the Netherlands. A generalisable, dynamic causal theory for urban cycling enables a more ordered set of policy recommendations for different cities on a cycling trajectory. Participation meant the collective knowledge of cycling stakeholders was represented and triangulated with research evidence. Extending this research to further cities, especially in low

  16. Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology.

    Science.gov (United States)

    MacLeod, Miles; Nersessian, Nancy J

    2015-02-01

    In this paper we draw upon rich ethnographic data of two systems biology labs to explore the roles of explanation and understanding in large-scale systems modeling. We illustrate practices that depart from the goal of dynamic mechanistic explanation for the sake of more limited modeling goals. These processes use abstract mathematical formulations of bio-molecular interactions and data fitting techniques which we call top-down abstraction to trade away accurate mechanistic accounts of large-scale systems for specific information about aspects of those systems. We characterize these practices as pragmatic responses to the constraints many modelers of large-scale systems face, which in turn generate more limited pragmatic non-mechanistic forms of understanding of systems. These forms aim at knowledge of how to predict system responses in order to manipulate and control some aspects of them. We propose that this analysis of understanding provides a way to interpret what many systems biologists are aiming for in practice when they talk about the objective of a "systems-level understanding." Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Mechanosensitivity during lower extremity neurodynamic testing is diminished in individuals with Type 2 Diabetes Mellitus and peripheral neuropathy: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Boyd Benjamin S

    2010-08-01

    Full Text Available Abstract Background Type 2 Diabetes Mellitus (T2DM and diabetic symmetrical polyneuropathy (DSP impact multiple modalities of sensation including light touch, temperature, position sense and vibration perception. No study to date has examined the mechanosensitivity of peripheral nerves during limb movement in this population. The objective was to determine the unique effects T2DM and DSP have on nerve mechanosensitivity in the lower extremity. Methods This cross-sectional study included 43 people with T2DM. Straight leg raise neurodynamic tests were performed with ankle plantar flexion (PF/SLR and dorsiflexion (DF/SLR. Hip flexion range of motion (ROM, lower extremity muscle activity and symptom profile, intensity and location were measured at rest, first onset of symptoms (P1 and maximally tolerated symptoms (P2. Results The addition of ankle dorsiflexion during SLR testing reduced the hip flexion ROM by 4.3° ± 6.5° at P1 and by 5.4° ± 4.9° at P2. Individuals in the T2DM group with signs of severe DSP (n = 9 had no difference in hip flexion ROM between PF/SLR and DF/SLR at P1 (1.4° ± 4.2°; paired t-test p = 0.34 or P2 (0.9° ± 2.5°; paired t-test p = 0.31. Movement induced muscle activity was absent during SLR with the exception of the tibialis anterior during DF/SLR testing. Increases in symptom intensity during SLR testing were similar for both PF/SLR and DF/SLR. The addition of ankle dorsiflexion induced more frequent posterior leg symptoms when taken to P2. Conclusions Consistent with previous recommendations in the literature, P1 is an appropriate test end point for SLR neurodynamic testing in people with T2DM. However, our findings suggest that people with T2DM and severe DSP have limited responses to SLR neurodynamic testing, and thus may be at risk for harm from nerve overstretch and the information gathered will be of limited clinical value.

  18. Willed action, free will, and the stochastic neurodynamics of decision-making

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2012-09-01

    Full Text Available It is shown that the randomness of the firing times of neurons in decision-making attractor neuronal networks that is present before the decision cues are applied can cause statistical fluctuations that influence the decision that will be taken. In this rigorous sense, it is possible to partially predict decisions before they are made. This raises issues about free will and determinism. There are many decision-making networks in the brain. Some decision systems operate to choose between gene-specified rewards such as taste, touch, and beauty (in for example the peacock’s tail. Other processes capable of planning ahead with multiple steps held in working memory may require correction by higher order thoughts that may involve explicit, conscious, processing. The explicit system can allow the gene-specified rewards not to be selected or deferred. The decisions between the selfish gene-specified rewards, and the explicitly calculated rewards that are in the interests of the individual, the phenotype, may themselves be influenced by noise in the brain. When the explicit planning system does take the decision, it can report on its decision-making, and can provide a causal account rather than a confabulation about the decision process. We might use the terms ‘willed action’ and ‘free will’ to refer to the operation of the planning system that can think ahead over several steps held in working memory with which it can take explicit decisions. Reduced connectivity in some of the default mode cortical regions including the precuneus that are active during self-initiated action appears to be related to the reduction in the sense of self and agency, of causing willed actions, that can be present in schizophrenia.

  19. Developing a Frame of Reference for understanding configuration systems

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde; Edwards, Kasper

    2008-01-01

    This paper uses the theory of technical systems to develop a frame of reference of product configuration systems. Following a definition of the configuration task, product model and product configuration system the theory of technical systems are presented. Configuration systems are then related...

  20. Breeding novel solutions in the brain: a model of Darwinian neurodynamics.

    Science.gov (United States)

    Szilágyi, András; Zachar, István; Fedor, Anna; de Vladar, Harold P; Szathmáry, Eörs

    2016-01-01

    Background : The fact that surplus connections and neurons are pruned during development is well established. We complement this selectionist picture by a proof-of-principle model of evolutionary search in the brain, that accounts for new variations in theory space. We present a model for Darwinian evolutionary search for candidate solutions in the brain. Methods : We combine known components of the brain - recurrent neural networks (acting as attractors), the action selection loop and implicit working memory - to provide the appropriate Darwinian architecture. We employ a population of attractor networks with palimpsest memory. The action selection loop is employed with winners-share-all dynamics to select for candidate solutions that are transiently stored in implicit working memory. Results : We document two processes: selection of stored solutions and evolutionary search for novel solutions. During the replication of candidate solutions attractor networks occasionally produce recombinant patterns, increasing variation on which selection can act. Combinatorial search acts on multiplying units (activity patterns) with hereditary variation and novel variants appear due to (i) noisy recall of patterns from the attractor networks, (ii) noise during transmission of candidate solutions as messages between networks, and, (iii) spontaneously generated, untrained patterns in spurious attractors. Conclusions : Attractor dynamics of recurrent neural networks can be used to model Darwinian search. The proposed architecture can be used for fast search among stored solutions (by selection) and for evolutionary search when novel candidate solutions are generated in successive iterations. Since all the suggested components are present in advanced nervous systems, we hypothesize that the brain could implement a truly evolutionary combinatorial search system, capable of generating novel variants.

  1. Analysis and Behaviour Understanding of a Production System

    Directory of Open Access Journals (Sweden)

    Olga Ioana Amariei

    2009-10-01

    Full Text Available In production systems modelling usually acts to system simulation by discrete events. The present paper exemplifies this, using the Queuing System Simulation module of the WinQSB software

  2. Geochemistry and the understanding of ground-water systems

    Science.gov (United States)

    Glynn, Pierre D.; Plummer, L. Niel

    2005-03-01

    Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems. La géochimie a contribué de façon importante à la compréhension des systèmes d'eaux souterraines pendant les 50 dernières années. Les avancées ont portées sur le développement du concept des faciès hydrochimiques, sur l'application de la théorie des équilibres, l'étude des processus d'oxydoréduction, et sur la datation au radiocarbone. D'autres concepts, outils et

  3. Understanding the Dynamic System of Terrorist-Government Interaction

    Science.gov (United States)

    2003-03-01

    Figure 62. Model 5D Equation Level Screen Shot 3 167 Bibliography Bajaracharya, Arun, Stephen Olu Ogunlana, and Nguyen Luong Bach...Understanding the New Security Environment Readings and Interpretations. Guilford, Connecticut: Mc- Graw -Hill/Dushkin 2002 Laqueur, Walter. “Postmodern

  4. Understanding Organizational Memory from the Integrated Management Systems (ERP)

    OpenAIRE

    Gilberto Perez; Isabel Ramos

    2013-01-01

    With this research, in the form of a theoretical essay addressing the theme of Organizational Memory and Integrated Management Systems (ERP), we tried to present some evidence of how this type of system can contribute to the consolidation of certain features of Organizational Memory. From a theoretical review of the concepts of Human Memory, extending to the Organizational Memory and Information Systems, with emphasis on Integrated Management Systems (ERP) we tried to draw a parallel between ...

  5. Understanding ecohydrological connectivity in savannas: A system dynamics modeling approach

    Science.gov (United States)

    Ecohydrological connectivity is a system-level property that results from the linkages in the networks of water transport through ecosystems, by which feedback effects and other emergent system behaviors may be generated. We created a systems dynamic model that represents primary ecohydrological net...

  6. Understanding and Improving the Performance Consistency of Distributed Computing Systems

    NARCIS (Netherlands)

    Yigitbasi, M.N.

    2012-01-01

    With the increasing adoption of distributed systems in both academia and industry, and with the increasing computational and storage requirements of distributed applications, users inevitably demand more from these systems. Moreover, users also depend on these systems for latency and throughput

  7. Understanding sustainability from an exergetic frame in complex adaptive systems

    International Nuclear Information System (INIS)

    Aguilar Hernandez, Glem Alonso

    2017-01-01

    The concept of sustainability was developed from thermodynamic properties applied to complex adaptive systems. The origins of the perception about sustainable development and limitation in its application to analyze the interaction between a system and its surroundings were described. The properties of a complex adaptive system were taken as basis to determine how a system can to be affected by the resources restriction and irreversibility of the processes. The complex adaptive system was understood using the first and second law of thermodynamics, generating a conceptual framework to define the sustainability of a system. The contributions developed by exergy were shown to analyze the sustainability of systems in an economic, social and environmental context [es

  8. Emergent nested systems a theory of understanding and influencing complex systems as well as case studies in urban systems

    CERN Document Server

    Walloth, Christian

    2016-01-01

    This book presents a theory as well as methods to understand and to purposively influence complex systems. It suggests a theory of complex systems as nested systems, i. e. systems that enclose other systems and that are simultaneously enclosed by even other systems. According to the theory presented, each enclosing system emerges through time from the generative activities of the systems they enclose. Systems are nested and often emerge unplanned, and every system of high dynamics is enclosed by a system of slower dynamics. An understanding of systems with faster dynamics, which are always guided by systems of slower dynamics, opens up not only new ways to understanding systems, but also to effectively influence them. The aim and subject of this book is to lay out these thoughts and explain their relevance to the purposive development of complex systems, which are exemplified in case studies from an urban system. The interested reader, who is not required to be familiar with system-theoretical concepts or wit...

  9. Brief Communication: Understanding disasters and early-warning systems

    Science.gov (United States)

    Castaños, H.; Lomnitz, C.

    2014-12-01

    This paper discusses some methodological questions on understanding disasters. Destructive earthquakes continue to claim thousands of lives. Tsunamis may be caused by recoil of the upper plate. Darwin's twin-epicenter hypothesis is applied to a theory of tsunamis. The ergodicity hypothesis may help to estimate the return periods of extremely rare events. A social science outline on the causation of the Tôhoku nuclear disaster is provided.

  10. Understanding Enterprise Systems' Impact(s) on Business Relationships

    Science.gov (United States)

    Ekman, Peter; Thilenius, Peter

    Enterprise systems (ESs), i.e. standardized applications supplied from software vendors such as SAP or Oracle, have been extensively employed by companies during the last decade. Today all Fortune 500 companies have, or are in the process of installing, this kind of information system (Seddon et al. 2003). A wide-spread denotation for these applications is enterprise resource planning (ERP) systems. But the broad utilization use of these software packages in business is rendering this labelling too narrow (Davenport 2000).

  11. Understanding Cooperative Learning in Context-aware Recommender Systems

    DEFF Research Database (Denmark)

    Jiang, Na; Tan, Chee-Wee; Wang, Weiquan

    2017-01-01

    Context-Aware Recommender Systems (CARSs) are becoming commonplace. Yet, there is a paucity of studies that investigates how such systems could affect usage behavior from a user-system interaction perspective. Building on the Social Interdependence Theory (SIT), we construct a research model...... of users’ promotive interaction with CARSs, which in turn, dictates the performance of such recommender systems. Furthermore, we introduce scrutability features as design interventions that can be harnessed by developers to mitigate the impact of users’ promotive interaction on the performance of CARSs....

  12. Understanding ERP system implementation in a hospital by analysing stakeholders

    NARCIS (Netherlands)

    Boonstra, A.; Govers, M.

    Implementing enterprise resource planning (ERP) systems requires significant organisational, as well as technical, changes. These will affect stakeholders with varying perspectives and interests in the system. This is particularly the case in health care, as a feature of this sector is that

  13. Understanding IoT systems: a life cycle approach

    NARCIS (Netherlands)

    Rahman, Leila Fatmasari; Ozcelebi, Tanir; Lukkien, Johan

    2018-01-01

    Internet of Things (IoT) systems and the corresponding network architectures are complex due to distributed services on many IoT devices collaboratively fulfilling common goals of IoT applications. System requirements for different types of IoT application domains are still not well-established. The

  14. High School Students' Understanding of the Human Body System

    Science.gov (United States)

    Assaraf, Orit Ben-Zvi; Dodick, Jeff; Tripto, Jaklin

    2013-01-01

    In this study, 120 tenth-grade students from 8 schools were examined to determine the extent of their ability to perceive the human body as a system after completing the first stage in their biology curriculum--"The human body, emphasizing homeostasis". The students' systems thinking was analyzed according to the STH thinking model, which roughly…

  15. Understanding human factors in cyber security as a dynamic system

    NARCIS (Netherlands)

    Young, H.J.; Vliet, A.J. van; Ven, J.G.S. van de; Jol, S.C.; Broekman, C.C.M.T.

    2018-01-01

    The perspective of human factors is largely missing from the wider cyber security dialogue and its scope is often limited. We propose a framework in which we consider cyber security as a state of a system. System change is brought on by an entity’s behavior. Interventions are ways of changing

  16. Postoperative Surgical Site Infections: Understanding the Discordance Between Surveillance Systems.

    Science.gov (United States)

    Ali-Mucheru, Mariam N; Seville, Maria T; Miller, Vickie; Sampathkumar, Priya; Etzioni, David A

    2018-04-18

    To characterize agreement in the ascertainment of surgical site infections (SSIs) between the National Surgical Quality Improvement Program (NSQIP), National Healthcare Safety Network (NHSN), and administrative data. The NSQIP, NHSN, and administrative data are the primary systems used to monitor and report SSIs for the purpose of quality control and benchmarking of hospitals and surgeons. These systems have different methods for identifying SSIs. We queried the NHSN, NSQIP, and administrative data systems for patients who had an operation at 1 of 4 hospitals within a single health system between January 2013 and September 2015. The detection of an SSI during a postoperative hospitalization was the outcome of analysis. Any SSI detected by one (or more) of these systems was analyzed by 2 reviewers to determine the presence of discrete elements of documentation constituting evidence of SSI. Concordance between the 3 systems (NHSN, NSQIP, and administrative data) was analyzed using Cohen's kappa. After application of appropriate exclusion criteria, a cohort of 9447 inpatient operations was analyzed. In total, 130 SSIs were detected by 1 or more of the 3 systems, with reported SSI rates of 0.5% (NHSN), 0.7% (administrative data), and 1.0% (NSQIP). Of these 130 SSIs, only 17 SSIs were reported by all 3 systems. The concordance between these 3 systems was moderate (kappa values NSQIP-NHSN = 0.50 [0.40-0.60], administrative-NHSN = 0.36 [0.24-0.47], and administrative-NSQIP = 0.47 [0.38-0.57]). Chart review found that reasons for discordance were related to issues of different criteria as well as inaccuracies. There is significant discordance in the determination of SSIs reported by the NHSN, NSQIP, and administrative data. The differences and limitations of each of these systems have to be recognized, especially when using these data for quality reports and pay for performance.

  17. Towards an understanding of resilience: responding to health systems shocks.

    Science.gov (United States)

    Hanefeld, Johanna; Mayhew, Susannah; Legido-Quigley, Helena; Martineau, Frederick; Karanikolos, Marina; Blanchet, Karl; Liverani, Marco; Yei Mokuwa, Esther; McKay, Gillian; Balabanova, Dina

    2018-04-01

    The recent outbreak of Ebola Virus Disease (EVD) in West Africa has drawn attention to the role and responsiveness of health systems in the face of shock. It brought into sharp focus the idea that health systems need not only to be stronger but also more 'resilient'. In this article, we argue that responding to shocks is an important aspect of resilience, examining the health system behaviour in the face of four types of contemporary shocks: the financial crisis in Europe from 2008 onwards; climate change disasters; the EVD outbreak in West Africa 2013-16; and the recent refugee and migration crisis in Europe. Based on this analysis, we identify '3 plus 2' critical dimensions of particular relevance to health systems' ability to adapt and respond to shocks; actions in all of these will determine the extent to which a response is successful. These are three core dimensions corresponding to three health systems functions: 'health information systems' (having the information and the knowledge to make a decision on what needs to be done); 'funding/financing mechanisms' (investing or mobilising resources to fund a response); and 'health workforce' (who should plan and implement it and how). These intersect with two cross-cutting aspects: 'governance', as a fundamental function affecting all other system dimensions; and predominant 'values' shaping the response, and how it is experienced at individual and community levels. Moreover, across the crises examined here, integration within the health system contributed to resilience, as does connecting with local communities, evidenced by successful community responses to Ebola and social movements responding to the financial crisis. In all crises, inequalities grew, yet our evidence also highlights that the impact of shocks is amenable to government action. All these factors are shaped by context. We argue that the '3 plus 2' dimensions can inform pragmatic policies seeking to increase health systems resilience.

  18. Understanding similarity of groundwater systems with empirical copulas

    Science.gov (United States)

    Haaf, Ezra; Kumar, Rohini; Samaniego, Luis; Barthel, Roland

    2016-04-01

    Within the classification framework for groundwater systems that aims for identifying similarity of hydrogeological systems and transferring information from a well-observed to an ungauged system (Haaf and Barthel, 2015; Haaf and Barthel, 2016), we propose a copula-based method for describing groundwater-systems similarity. Copulas are an emerging method in hydrological sciences that make it possible to model the dependence structure of two groundwater level time series, independently of the effects of their marginal distributions. This study is based on Samaniego et al. (2010), which described an approach calculating dissimilarity measures from bivariate empirical copula densities of streamflow time series. Subsequently, streamflow is predicted in ungauged basins by transferring properties from similar catchments. The proposed approach is innovative because copula-based similarity has not yet been applied to groundwater systems. Here we estimate the pairwise dependence structure of 600 wells in Southern Germany using 10 years of weekly groundwater level observations. Based on these empirical copulas, dissimilarity measures are estimated, such as the copula's lower- and upper corner cumulated probability, copula-based Spearman's rank correlation - as proposed by Samaniego et al. (2010). For the characterization of groundwater systems, copula-based metrics are compared with dissimilarities obtained from precipitation signals corresponding to the presumed area of influence of each groundwater well. This promising approach provides a new tool for advancing similarity-based classification of groundwater system dynamics. Haaf, E., Barthel, R., 2015. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale, EGU General Assembly 2015, Vienna, Austria. Haaf, E., Barthel, R., 2016. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs EGU General Assembly

  19. Understanding genetic variation - the value of systems biology.

    Science.gov (United States)

    Hütt, Marc-Thorsten

    2014-04-01

    Pharmacology is currently transformed by the vast amounts of genome-associated information available for system-level interpretation. Here I review the potential of systems biology to facilitate this interpretation, thus paving the way for the emerging field of systems pharmacology. In particular, I will show how gene regulatory and metabolic networks can serve as a framework for interpreting high throughput data and as an interface to detailed dynamical models. In addition to the established connectivity analyses of effective networks, I suggest here to also analyze higher order architectural properties of effective networks. © 2013 The British Pharmacological Society.

  20. Understanding Information Systems Integration Deficiencies in Mergers and Acquisitions

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Kettinger, William J.

    2017-01-01

    Information systems (IS) integration is a critical challenge for value-creating mergers and acquisitions. Appropriate design and implementation of IS integration is typically a precondition for enabling a majority of the anticipated business benefits of a combined organization. Often...

  1. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  2. Understanding Absorptive Capacities is an "Innovation Systems" Context

    DEFF Research Database (Denmark)

    Narula, Rajneesh

    2004-01-01

    This paper seeks to broaden our understanding of the concept underlying absorptive capacity atthe macro -level, paying particular attention to the growth and development perspectives. Weprovide definitions of absorptive and technological capacity, external technology flows,productivity growth....... We also undertake to explain how the nature ofabsorptive capacity changes with stages of economic development, and the importance of thedifferent aspects of absorptive capability at different stages. The relationship is not a linear one:the benefits that accrue from marginal increases in absorptive...... capability change over time.Finally, we provide a tentative and preliminary conceptual argument of how the different stagesof absorptive capacity are related to productivity growth, economic growth and employmentcreation.Key words: New economy, absorptive capacity, knowledge...

  3. Understanding original antigenic sin in influenza with a dynamical system.

    Science.gov (United States)

    Pan, Keyao

    2011-01-01

    Original antigenic sin is the phenomenon in which prior exposure to an antigen leads to a subsequent suboptimal immune response to a related antigen. Immune memory normally allows for an improved and rapid response to antigens previously seen and is the mechanism by which vaccination works. I here develop a dynamical system model of the mechanism of original antigenic sin in influenza, clarifying and explaining the detailed spin-glass treatment of original antigenic sin. The dynamical system describes the viral load, the quantities of healthy and infected epithelial cells, the concentrations of naïve and memory antibodies, and the affinities of naïve and memory antibodies. I give explicit correspondences between the microscopic variables of the spin-glass model and those of the present dynamical system model. The dynamical system model reproduces the phenomenon of original antigenic sin and describes how a competition between different types of B cells compromises the overall effect of immune response. I illustrate the competition between the naïve and the memory antibodies as a function of the antigenic distance between the initial and subsequent antigens. The suboptimal immune response caused by original antigenic sin is observed when the host is exposed to an antigen which has intermediate antigenic distance to a second antigen previously recognized by the host's immune system.

  4. Understanding electrostatic charge behaviour in aircraft fuel systems

    Science.gov (United States)

    Ogilvy, Jill A.; Hooker, Phil; Bennett, Darrell

    2015-10-01

    This paper presents work on the simulation of electrostatic charge build-up and decay in aircraft fuel systems. A model (EC-Flow) has been developed by BAE Systems under contract to Airbus, to allow the user to assess the effects of changes in design or in refuel conditions. Some of the principles behind the model are outlined. The model allows for a range of system components, including metallic and non-metallic pipes, valves, filters, junctions, bends and orifices. A purpose-built experimental rig was built at the Health and Safety Laboratory in Buxton, UK, to provide comparison data. The rig comprises a fuel delivery system, a test section where different components may be introduced into the system, and a Faraday Pail for measuring generated charge. Diagnostics include wall currents, charge densities and pressure losses. This paper shows sample results from the fitting of model predictions to measurement data and shows how analysis may be used to explain some of the observed trends.

  5. A Framework for Identifying and Understanding Enterprise Systems Benefits

    DEFF Research Database (Denmark)

    Schubert, Petra; Williams, Susan P.

    2011-01-01

    Purpose – Identifying the benefits arising from implementations of enterprise systems and realizing business value remains a significant challenge for both research and industry. This paper aims to consolidate previous work. It presents a framework for investigating enterprise systems benefits...... into aspects and criteria plus an attributed appraisal value. The resulting scheme for the “three-level benefit codes” provides a greater level of detail about the nature of expected and realized benefits. Practical implications – The high level of detail and the code scheme comprising 60 different codes...... and the method for deriving the codes allows companies to identify and define benefits as well as to assess the outcome of enterprise systems implementation projects. Originality/value – The paper empirically develops an applicable benefits framework, which addresses the lack of detail of previous frameworks....

  6. Understanding Hawking radiation in the framework of open quantum systems

    International Nuclear Information System (INIS)

    Yu Hongwei; Zhang Jialin

    2008-01-01

    We study the Hawking radiation in the framework of open quantum systems by examining the time evolution of a detector (modeled by a two-level atom) interacting with vacuum massless scalar fields. The dynamics of the detector is governed by a master equation obtained by tracing over the field degrees of freedom from the complete system. The nonunitary effects are studied by analyzing the time behavior of a particular observable of the detector, i.e., its admissible state, in the Unruh, Hartle-Hawking, as well as Boulware vacua outside a Schwarzschild black hole. We find that the detector in both the Unruh and Hartle-Hawking vacua would spontaneously excite with a nonvanishing probability the same as what one would obtain if there is thermal radiation at the Hawking temperature from the black hole, thus reproducing the basic results concerning the Hawking effect in the framework of open quantum systems

  7. Understanding large social-ecological systems: introducing the SESMAD project

    Directory of Open Access Journals (Sweden)

    Michael Cox

    2014-08-01

    Full Text Available This article introduces the Social-ecological systems meta-analysis database (SESMAD project, which is the project behind the case studies and synthetic articles contained in this special issue of the International Journal of the Commons. SESMAD is an internationally collaborative meta-analysis project that builds on previous seminally synthetic work on small-scale common-pool resource systems conducted at the Workshop in Political Theory and Policy Analysis at Indiana University. This project is guided by the following research question: can the variables found to be important in explaining outcomes on small-scale systems be scaled up to explain outcomes in large-scale environmental governance? In this special issue we report on our findings thus far through a set of case studies of large-scale environmental governance, a paper that describes our conceptual advances, and a paper that compares these five case studies to further examine our central research question.

  8. The Virtual Liver Network: systems understanding from bench to bedside.

    Science.gov (United States)

    Henney, Adriano; Coaker, Hannah

    2014-01-01

    Adriano Henney speaks to Hannah Coaker, Commissioning Editor. After achieving a PhD in medicine and spending many years in academic research in the field of cardiovascular disease, Adriano Henney was recruited by Zeneca Pharmaceuticals from a British Heart Foundation Senior Fellowship, where he led the exploration of new therapeutic approaches in atherosclerosis, specifically focusing on his research interests in vascular biology. Following the merger with Astra to form AstraZeneca, Henney became responsible for exploring strategic improvements to the company's approaches to pharmaceutical target identification and the reduction of attrition in early development, directing projects across research sites and across functional project teams in the USA, Sweden and the UK. This resulted in the creation of a new multidisciplinary department that focused on pathway mapping, modeling and simulation and supporting projects across research and development, which evolved into the establishment of the practice of systems biology within the company. Here, projects prototyped the application of mechanistic disease-modeling approaches in order to support the discovery of innovative new medicines, such as Iressa®. Since leaving AstraZeneca, Henney has continued his interest in systems biology, synthetic biology and systems medicine through his company, Obsidian Biomedical Consulting Ltd. He now directs a major €50 million German national flagship program – the Virtual Liver Network – which is currently the largest systems biology program in Europe.

  9. Model systems for understanding absorption tuning by opsin proteins

    DEFF Research Database (Denmark)

    Nielsen, Mogens Brøndsted

    2009-01-01

    This tutorial review reports on model systems that have been synthesised and investigated for elucidating how opsin proteins tune the absorption of the protonated retinal Schiff base chromophore. In particular, the importance of the counteranion is highlighted. In addition, the review advocates...... is avoided, and it becomes clear that opsin proteins induce blueshifts in the chromophore absorption rather than redshifts....

  10. Speech Understanding in Air Intercept Controller Training System Design.

    Science.gov (United States)

    1979-01-01

    Street MD 700 Utica, NY 13503chief MI Field Unit Mr. J. Michael Nyc, Pres identP.O. Box 476 Marketing Consultants Interna tional , Inc.Fort Rucker, AL... Researc h Lab Systems and Information Sciences Lab ~aman Engi neering Division Texas Instruments ~fright-Patterson AFB P. 0. Box 5936 Dayton, OH

  11. Understanding recurrent crime as system-immanent collective behavior.

    Science.gov (United States)

    Perc, Matjaž; Donnay, Karsten; Helbing, Dirk

    2013-01-01

    Containing the spreading of crime is a major challenge for society. Yet, since thousands of years, no effective strategy has been found to overcome crime. To the contrary, empirical evidence shows that crime is recurrent, a fact that is not captured well by rational choice theories of crime. According to these, strong enough punishment should prevent crime from happening. To gain a better understanding of the relationship between crime and punishment, we consider that the latter requires prior discovery of illicit behavior and study a spatial version of the inspection game. Simulations reveal the spontaneous emergence of cyclic dominance between "criminals", "inspectors", and "ordinary people" as a consequence of spatial interactions. Such cycles dominate the evolutionary process, in particular when the temptation to commit crime or the cost of inspection are low or moderate. Yet, there are also critical parameter values beyond which cycles cease to exist and the population is dominated either by a stable mixture of criminals and inspectors or one of these two strategies alone. Both continuous and discontinuous phase transitions to different final states are possible, indicating that successful strategies to contain crime can be very much counter-intuitive and complex. Our results demonstrate that spatial interactions are crucial for the evolutionary outcome of the inspection game, and they also reveal why criminal behavior is likely to be recurrent rather than evolving towards an equilibrium with monotonous parameter dependencies.

  12. Understanding recurrent crime as system-immanent collective behavior.

    Directory of Open Access Journals (Sweden)

    Matjaž Perc

    Full Text Available Containing the spreading of crime is a major challenge for society. Yet, since thousands of years, no effective strategy has been found to overcome crime. To the contrary, empirical evidence shows that crime is recurrent, a fact that is not captured well by rational choice theories of crime. According to these, strong enough punishment should prevent crime from happening. To gain a better understanding of the relationship between crime and punishment, we consider that the latter requires prior discovery of illicit behavior and study a spatial version of the inspection game. Simulations reveal the spontaneous emergence of cyclic dominance between "criminals", "inspectors", and "ordinary people" as a consequence of spatial interactions. Such cycles dominate the evolutionary process, in particular when the temptation to commit crime or the cost of inspection are low or moderate. Yet, there are also critical parameter values beyond which cycles cease to exist and the population is dominated either by a stable mixture of criminals and inspectors or one of these two strategies alone. Both continuous and discontinuous phase transitions to different final states are possible, indicating that successful strategies to contain crime can be very much counter-intuitive and complex. Our results demonstrate that spatial interactions are crucial for the evolutionary outcome of the inspection game, and they also reveal why criminal behavior is likely to be recurrent rather than evolving towards an equilibrium with monotonous parameter dependencies.

  13. UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O. G. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina); De Vito, M. A. [Instituto de Astrofísica de La Plata (IALP), CCT-CONICET-UNLP. Paseo del Bosque S/N (B1900FWA), La Plata (Argentina); Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo R. do Matão 1226 (05508-090), Cidade Universitária, São Paulo SP (Brazil)

    2014-05-01

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M {sub ☉}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.

  14. Silent Warning: Understanding the National Terrorism Advisory System

    Science.gov (United States)

    2014-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited SILENT WARNING...PERFORMING OR GANIZATION NA:i\\ti E (S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 9. SP ONSORING /MONIT ORING AGENCY NAME(S) AND...Homeland Sectu’ity Advisory System, Boston Marathon bombing, Christmas Day bomber, tmderwear bomber, hum cane , cotmteiteiTO!’ism, CT AB

  15. Understanding global health governance as a complex adaptive system.

    Science.gov (United States)

    Hill, Peter S

    2011-01-01

    The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.

  16. Understanding Ammonium Transport in Bioelectrochemical Systems towards its Recovery

    Science.gov (United States)

    Liu, Ying; Qin, Mohan; Luo, Shuai; He, Zhen; Qiao, Rui

    2016-03-01

    We report an integrated experimental and simulation study of ammonia recovery using microbial electrolysis cells (MECs). The transport of various species during the batch-mode operation of an MEC was examined experimentally and the results were used to validate the mathematical model for such an operation. It was found that, while the generated electrical current through the system tends to acidify (or basify) the anolyte (or catholyte), their effects are buffered by a cascade of chemical groups such as the NH3/NH4+ group, leading to relatively stable pH values in both anolyte and catholyte. The transport of NH4+ ions accounts for ~90% of the total current, thus quantitatively confirming that the NH4+ ions serve as effective proton shuttles during MEC operations. Analysis further indicated that, because of the Donnan equilibrium at cation exchange membrane-anolyte/catholyte interfaces, the Na+ ion in the anolyte actually facilitates the transport of NH4+ ions during the early stage of a batch cycle and they compete with the NH4+ ions weakly at later time. These insights, along with a new and simple method for predicting the strength of ammonia diffusion from the catholyte toward the anolyte, will help effective design and operation of bioeletrochemical system-based ammonia recovery systems.

  17. A modeling process to understand complex system architectures

    Science.gov (United States)

    Robinson, Santiago Balestrini

    2009-12-01

    In recent decades, several tools have been developed by the armed forces, and their contractors, to test the capability of a force. These campaign level analysis tools, often times characterized as constructive simulations are generally expensive to create and execute, and at best they are extremely difficult to verify and validate. This central observation, that the analysts are relying more and more on constructive simulations to predict the performance of future networks of systems, leads to the two central objectives of this thesis: (1) to enable the quantitative comparison of architectures in terms of their ability to satisfy a capability without resorting to constructive simulations, and (2) when constructive simulations must be created, to quantitatively determine how to spend the modeling effort amongst the different system classes. The first objective led to Hypothesis A, the first main hypotheses, which states that by studying the relationships between the entities that compose an architecture, one can infer how well it will perform a given capability. The method used to test the hypothesis is based on two assumptions: (1) the capability can be defined as a cycle of functions, and that it (2) must be possible to estimate the probability that a function-based relationship occurs between any two types of entities. If these two requirements are met, then by creating random functional networks, different architectures can be compared in terms of their ability to satisfy a capability. In order to test this hypothesis, a novel process for creating representative functional networks of large-scale system architectures was developed. The process, named the Digraph Modeling for Architectures (DiMA), was tested by comparing its results to those of complex constructive simulations. Results indicate that if the inputs assigned to DiMA are correct (in the tests they were based on time-averaged data obtained from the ABM), DiMA is able to identify which of any two

  18. Understanding the role of technology in health information systems.

    Science.gov (United States)

    Lewis, Don; Hodge, Nicola; Gamage, Duminda; Whittaker, Maxine

    2012-04-01

    Innovations in, and the use of emerging information and communications technology (ICT) has rapidly increased in all development contexts, including healthcare. It is believed that the use of appropriate technologies can increase the quality and reach of both information and communication. However, decisions on what ICT to adopt have often been made without evidence of their effectiveness; or information on implications; or extensive knowledge on how to maximise benefits from their use. While it has been stated that 'healthcare ICT innovation can only succeed if design is deeply informed by practice', the large number of 'failed' ICT projects within health indicates the limited application of such an approach. There is a large and growing body of work exploring health ICT issues in the developed world, and some specifically focusing on the developing country context emerging from Africa and India; but not for the Pacific Region. Health systems in the Pacific, while diverse in many ways, are also faced with many common problems including competing demands in the face of limited resources, staff numbers, staff capacity and infrastructure. Senior health managers in the region are commonly asked to commit money, effort and scarce manpower to supporting new technologies on proposals from donor agencies or commercial companies, as well as from senior staff within their system. The first decision they must make is if the investment is both plausible and reasonable; they must also secondly decide how the investment should be made. The objective of this article is three-fold: firstly, to provide a common 'language' for categorising and discussing health information systems, particularly those in developing countries; secondly, to summarise the potential benefits and opportunities offered by the use of ICT in health; and thirdly, to discuss the critical factors countries. Overall, this article aims to illuminate the potential role of information and communication

  19. Understanding Socio-Hydrology System in the Kissimmee River Basin

    Science.gov (United States)

    Chen, X.; Wang, D.; Tian, F.; Sivapalan, M.

    2014-12-01

    This study is to develop a conceptual socio-hydrology model for the Kissimmee River Basin. The Kissimmee River located in Florida was channelized in mid-20 century for flood protection. However, the environmental issues caused by channelization led Floridians to conduct a restoration project recently, focusing on wetland recovery. As a complex coupled human-water system, Kissimmee River Basin shows the typical socio-hydrology interactions. Hypothetically, the major reason to drive the system from channelization to restoration is that the community sensitivity towards the environment has changed from controlling to restoring. The model developed in this study includes 5 components: water balance, flood risk, wetland area, crop land area, and community sensitivity. Furthermore, urban population and rural population in the basin have different community sensitivities towards the hydrologic system. The urban population, who live further away from the river are more sensitive to wetland restoration; while the rural population, who live closer to the river are more sensitive to flood protection. The power dynamics between the two groups and its impact on management decision making is described in the model. The model is calibrated based on the observed watershed outflow, wetland area and crop land area. The results show that the overall focus of community sensitivity has changed from flood protection to wetland restoration in the past 60 years in Kissimmee River Basin, which confirms the study hypothesis. There are two main reasons for the community sensitivity change. Firstly, people's flood memory is fading because of the effective flood protection, while the continuously shrinking wetland and the decreasing bird and fish population draw more and more attention. Secondly, in the last 60 years, the urban population in Florida drastically increased compared with a much slower increase of rural population. As a result, the community sensitivity of urban population towards

  20. Mediterranean savanna system: understanding and modeling of olive orchard.

    Science.gov (United States)

    Brilli, Lorenzo; Moriondo, Marco; Bindi, Marco

    2013-04-01

    Nowadays most of the studies on C and N exchange were focused on forest ecosystems and crop systems, while only few studies have been focused on so called "savanna systems". They are long-term agro-ecosystems (fruit trees, grapevines and olive trees, etc.) usually characterized by two different layers (ground vegetation and trees). Generally, there is a lack of knowledge about these systems due to their intrinsic structural complexity (different eco-physiological characteristics so as agricultural practices). However, given their long-term carbon storage capacity, these systems can play a fundamental role in terms of global C cycle. Among all of them, the role that olive trees can play in C sequestration should not be neglected, especially in Mediterranean areas where they typify the rural landscape and are widely cultivated (Loumou and Giourga, 2003). It is therefore fundamental modelling the C-fluxes exchanges coming from these systems through a tool able to well reproduce these dynamics in one of the most exposed areas to the risk of climate change (IPCC, 2007). In this work, 2 years of Net CO2 Ecosystem Exchange (NEE) measures from eddy covariance were used to test the biogeochemistry model DayCent. The study was conducted in a rain-fed olive orchard situated in Follonica, South Tuscany, Italy (42 ° 55'N, 10 ° 45'E), in an agricultural area near the coast. The instrumentation for flux measurement was placed 1.9 m above the canopy top (6.5 m from the ground) so that the footprint area, expressed as the area containing 90% of the observed flux, was almost entirely contained within the olive orchard limits (Brilli et al., in press). Ancillary slow sensors have included soil temperature profiles, global radiation, air temperature and humidity, rain gauge. Fluxes of sensible heat, latent heat, momentum and CO2 as well as ancillary data were derived at half-hourly time resolution. Specific soil (texture, current and historical land use and vegetation cover) and

  1. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    Science.gov (United States)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  2. Quantifying ‘Causality’ in Complex Systems: Understanding Transfer Entropy

    Science.gov (United States)

    Abdul Razak, Fatimah; Jensen, Henrik Jeldtoft

    2014-01-01

    ‘Causal’ direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of ‘causal’ direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets. PMID:24955766

  3. Greenhouse gases and solid waste management systems: Understanding the relationships

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, K.; Smith, P.A.

    1999-07-01

    In one of the first applications of life cycle analysis at the state level, the Minnesota Office of Environmental Assistance has assessed the resource conservation benefits and greenhouse gas impacts of the state's municipal solid waste (MSW) system. Using a life cycle inventory, the Phase 1 work estimated the resource conservation benefits of Minnesota's 1996 MSW reduction and management strategies. It compared the production processes used to obtain useful products from MSW with alternative production processes using virgin materials. The Phase 2 work, conducted under a grant from the US Environmental Protection Agency (USEPA), focused specifically on measuring the greenhouse gas implications of reduction, recycling, and management from 1991--1996. This phase expanded the analysis to included life cycle assessment and improvement. The work will be used in Minnesota's MSW policy and program development efforts, as well as in climate change mitigation planning.

  4. Understanding workplace violence: the value of a systems perspective.

    Science.gov (United States)

    Bentley, Tim A; Catley, Bevan; Forsyth, Darryl; Tappin, David

    2014-07-01

    Workplace violence is a leading form of occupational injury and fatality, but has received little attention from the ergonomics research community. The paper reports findings from the 2012 New Zealand Workplace Violence Survey, and examines the workplace violence experience of 86 New Zealand organisations and the perceptions of occupational health and safety professionals from a systems perspective. Over 50% of respondents reported violence cases in their organisation, with perpetrators evenly split between co-workers and external sources such as patients. Highest reported levels of violence were observed for agriculture, forestry and construction sectors. Highest risk factor ratings were reported for interpersonal and organisational factors, notably interpersonal communication, time pressure and workloads, with lowest ratings for environmental factors. A range of violence prevention measures were reported, although most organisations relied on single control measures, suggesting unmanaged violence risks were common among the sample. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  5. Conceptual Challenges of the Systemic Approach in Understanding Cell Differentiation.

    Science.gov (United States)

    Paldi, Andras

    2018-01-01

    The cells of a multicellular organism are derived from a single zygote and genetically identical. Yet, they are phenotypically very different. This difference is the result of a process commonly called cell differentiation. How the phenotypic diversity emerges during ontogenesis or regeneration is a central and intensely studied but still unresolved issue in biology. Cell biology is facing conceptual challenges that are frequently confused with methodological difficulties. How to define a cell type? What stability or change means in the context of cell differentiation and how to deal with the ubiquitous molecular variations seen in the living cells? What are the driving forces of the change? We propose to reframe the problem of cell differentiation in a systemic way by incorporating different theoretical approaches. The new conceptual framework is able to capture the insights made at different levels of cellular organization and considered previously as contradictory. It also provides a formal strategy for further experimental studies.

  6. A dynamical system perspective to understanding badminton singles game play.

    Science.gov (United States)

    Chow, Jia Yi; Seifert, Ludovic; Hérault, Romain; Chia, Shannon Jing Yi; Lee, Miriam Chang Yi

    2014-02-01

    By altering the task constraints of cooperative and competitive game contexts in badminton, insights can be obtained from a dynamical systems perspective to investigate the underlying processes that results in either a gradual shift or transition of playing patterns. Positional data of three pairs of skilled female badminton players (average age 20.5±1.38years) were captured and analyzed. Local correlation coefficient, which provides information on the relationship of players' displacement data, between each pair of players was computed for angle and distance from base position. Speed scalar product was in turn established from speed vectors of the players. The results revealed two patterns of playing behaviors (i.e., in-phase and anti-phase patterns) for movement displacement. Anti-phase relation was the dominant coupling pattern for speed scalar relationships among the pairs of players. Speed scalar product, as a collective variable, was different between cooperative and competitive plays with a greater variability in amplitude seen in competitive plays leading to a winning point. The findings from this study provide evidence for increasing stroke variability to perturb existing stable patterns of play and highlights the potential for speed scalar product to be a collective variable to distinguish different patterns of play (e.g., cooperative and competitive). Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Understanding and quantifying foliar temperature acclimation for Earth System Models

    Science.gov (United States)

    Smith, N. G.; Dukes, J.

    2015-12-01

    Photosynthesis and respiration on land are the two largest carbon fluxes between the atmosphere and Earth's surface. The parameterization of these processes represent major uncertainties in the terrestrial component of the Earth System Models used to project future climate change. Research has shown that much of this uncertainty is due to the parameterization of the temperature responses of leaf photosynthesis and autotrophic respiration, which are typically based on short-term empirical responses. Here, we show that including longer-term responses to temperature, such as temperature acclimation, can help to reduce this uncertainty and improve model performance, leading to drastic changes in future land-atmosphere carbon feedbacks across multiple models. However, these acclimation formulations have many flaws, including an underrepresentation of many important global flora. In addition, these parameterizations were done using multiple studies that employed differing methodology. As such, we used a consistent methodology to quantify the short- and long-term temperature responses of maximum Rubisco carboxylation (Vcmax), maximum rate of Ribulos-1,5-bisphosphate regeneration (Jmax), and dark respiration (Rd) in multiple species representing each of the plant functional types used in global-scale land surface models. Short-term temperature responses of each process were measured in individuals acclimated for 7 days at one of 5 temperatures (15-35°C). The comparison of short-term curves in plants acclimated to different temperatures were used to evaluate long-term responses. Our analyses indicated that the instantaneous response of each parameter was highly sensitive to the temperature at which they were acclimated. However, we found that this sensitivity was larger in species whose leaves typically experience a greater range of temperatures over the course of their lifespan. These data indicate that models using previous acclimation formulations are likely incorrectly

  8. Phosphors for solid-state lighting: New systems, deeper understanding

    Science.gov (United States)

    Denault, Kristin Ashley

    We explore the structure-composition-property relationships in phosphor materials using a multitude of structural and optical characterization methods including high resolution synchrotron X-ray and neutron powder diffraction and total scattering, low-temperature heat capacity, temperature- and time-resolved photoluminescence, and density functional theory calculations. We describe the development of several new phosphor compositions and provide an in-depth description of the structural and optical properties. We show structural origins of improved thermal performance of photoluminescence and methods for determining structural rigidity in phosphor hosts that may lead to improved luminescent properties. New white light generation strategies are also explored. We begin by presenting the development of a green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1- x(SiO5)x:Ce3+. An examination of the host lattice, and the local structure around the Ce3+ activator ions points to how chemical substitutions play a crucial role in tuning the optical properties of the phosphor. The emission wavelength can be tuned from green to yellow by tuning the composition, x. Photoluminescent quantum yield is determined to be 70+/-5% for some of the examples in the series with excellent thermal properties. Phosphor-converted LED devices are fabricated using an InGaN LED and are shown to exhibit high color rendering white light. Next, we identify two new phosphor solid-solution systems, (Ba1- xSrx)9 Sc2Si6O24:Ce3+,Li+ and Ba9(Y1-ySc y)2Si6O24:Ce3+. The substitution of Sr for Ba in (Ba1-xSrx ) 9Sc2Si6O24:Ce 3+,Li + results in a decrease of the alkaline earth-oxygen bond distances at all three crystallographic sites, leading to changes in optical properties. The room temperature photoluminescent measurements show the structure has three excitation peaks corresponding to Ce3+ occupying the three independent alkaline earth sites. The emission of (Ba 1- xSrx) 9Sc2Si 6O24:Ce3

  9. Understanding the effect of adaptive preference elicitation methods on user satisfaction of a recommender system

    NARCIS (Netherlands)

    Knijnenburg, B.P.; Willemsen, M.C.

    2009-01-01

    In a recommender system that suggests options based on user attribute weights, the method of preference elicitation (PE) employed by a recommender system can influence users' satisfaction with the system, as well as the perceived usefulness and the understandability of the system. Specifically, we

  10. From Global Sustainability to Inclusive Education: Understanding urban children's ideas about the food system

    Science.gov (United States)

    Calabrese Barton, Angela; Koch, Pamela D.; Contento, Isobel R.; Hagiwara, Sumi

    2005-08-01

    The purpose of this paper is to report our findings from a qualitative study intended to develop our understandings of: what high-poverty urban children understand and believe about food and food systems; and how such children transform and use that knowledge in their everyday lives (i.e. how do they express their scientific literacies including content understandings, process understandings, habits of mind in these content areas). This qualitative study is part of a larger study focused on understanding and developing science and nutritional literacies among high-poverty urban fourth-grade through sixth-grade students and their teachers and caregivers.

  11. Thai student existing understanding about the solar system model and the motion of the stars

    Science.gov (United States)

    Anantasook, Sakanan; Yuenyong, Chokchai

    2018-01-01

    The paper examined Thai student existing understanding about the solar system model and the motion of the stars. The participants included 141 Grade 9 students in four different schools of the Surin province, Thailand. Methodology regarded interpretive paradigm. The tool of interpretation included the Student Celestial Motion Conception Questionnaire (SCMCQ) and informal interview. Given understandings in the SCMCQ were read through and categorized according to students' understandings. Then, students were further probed as informal interview. Students' understandings in each category were counted and percentages computed. Finally, students' understandings across four different schools were compared and contrasted using the percentage of student responses in each category. The findings revealed that most students understand about Sun-Moon-Earth (SME) system and solar system model as well, they can use scientific explanations to explain the celestial objects in solar system and how they orbiting. Unfortunately, most of students (more than 70%) never know about the Polaris, the North Star, and 90.1% of them never know about the ecliptic, and probably also the 12 zodiac constellations. These existing understanding suggested some ideas of teaching and learning about solar system model and the motion of the stars. The paper, then, discussed some learning activities to enhance students to further construct meaning about solar system model and the motion of the stars.

  12. Exploring Students' Understanding of Ordinary Differential Equations Using Computer Algebraic System (CAS)

    Science.gov (United States)

    Maat, Siti Mistima; Zakaria, Effandi

    2011-01-01

    Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…

  13. How Well Do Students in Secondary School Understand Temporal Development of Dynamical Systems?

    Science.gov (United States)

    Forjan, Matej; Grubelnik, Vladimir

    2015-01-01

    Despite difficulties understanding the dynamics of complex systems only simple dynamical systems without feedback connections have been taught in secondary school physics. Consequently, students do not have opportunities to develop intuition of temporal development of systems, whose dynamics are conditioned by the influence of feedback processes.…

  14. Improvement of mutual understanding in risk communication by application of a debate support system

    International Nuclear Information System (INIS)

    Shimoda, Hiroshi; Matsuda, Koji; Ishii, Hirotake; Yoshikawa, Hidekazu

    2010-01-01

    Given the recent problem of climate change, nuclear power has become perhaps the world's most important energy source. In Japan, however, it is difficult to build new nuclear facilities. One of the reasons for such difficulty lies in problems in risk communication. In this study, a support method has been proposed to improve mutual understanding in risk communication. The authors paid especial attention at the learning effect of debating and the benefits of employing a debate support system. A laboratory experiment including 30 university students was conducted in order to evaluate the proposed method. Results showed that the use of the system could improve mutual understanding especially with respect to the factors of risk 'reduction measures' and 'accident management'. In addition, it was found that using the system and debating from 'opposite positions' could improve subjective mutual understanding; however, this practice showed no effectiveness in terms of improving objective mutual understanding. (author)

  15. Neurodynamic mobilization and foam rolling improved delayed-onset muscle soreness in a healthy adult population: a randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Blanca Romero-Moraleda

    2017-10-01

    Full Text Available Objectives Compare the immediate effects of a Neurodynamic Mobilization (NM treatment or foam roller (FR treatment after DOMS. Design Double blind randomised clinical trial. Setting The participants performed 100 drop jumps (5 sets of 20 repetitions, separated by 2 min rests from a 0.5-m high box in a University biomechanics laboratory to induce muscle soreness. The participants were randomly assigned in a counter-balanced fashion to either a FR or NM treatment group. Participants Thirty-two healthy subjects (21 males and 11 females, mean age 22.6 ± 2.2 years were randomly assigned into the NM group (n = 16 or the FR group (n = 16. Main Outcome Measures The numeric pain rating scale (NPRS; 0–10, isometric leg strength with dynamometry, surface electromyography at maximum voluntary isometric contraction (MVIC and muscle peak activation (MPA upon landing after a test jump were measured at baseline, 48 h after baseline before treatment, and immediately after treatment. Results Both groups showed significant reduction in NPRS scores after treatment (NM: 59%, p  .05. The percentage change improvement in the MVIC for the rectus femoris was the only significant difference between the groups (p < 0.05 at post-treatment. After treatment, only the FR group had a statistically significant improvement (p < 0.01 in strength compared to pre-treatment. Conclusion Our results illustrate that both treatments are effective in reducing pain perception after DOMS whereas only FR application showed differences for the MVIC in the rectus femoris and strength.

  16. Children's and Adolescents' Thoughts on Pollution: Cognitive Abilities Required to Understand Environmental Systems

    Science.gov (United States)

    Rodríguez, Manuel; Kohen, Raquel; Delval, Juan

    2015-01-01

    Pollution phenomena are complex systems in which different parts are integrated by means of causal and temporal relationships. To understand pollution, children must develop some cognitive abilities related to system thinking and temporal and causal inferential reasoning. These cognitive abilities constrain and guide how children understand…

  17. Fundamental understanding of the Di-Air system (an alternative NO

    NARCIS (Netherlands)

    Wang, Y.; Makkee, M.

    2018-01-01

    Toyota's Di-Air DeNOx system is a promising DeNOx system to meet NOx emission requirement during the real driving, yet, a fundamental understanding largely lacks, e.g. the benefit of fast frequency fuel injection. Ceria is the main ingredient in Di-Air catalyst

  18. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics

    DEFF Research Database (Denmark)

    Louveau, Antoine; Plog, Benjamin A; Antila, Salli

    2017-01-01

    to the peripheral (CNS-draining) lymph nodes. We speculate on the relationship between the two systems and their malfunction that may underlie some neurological diseases. Although much remains to be investigated, these new discoveries have changed our understanding of mechanisms underlying CNS immune privilege...... and CNS drainage. Future studies should explore the communications between the glymphatic system and meningeal lymphatics in CNS disorders and develop new therapeutic modalities targeting these systems....

  19. The Foundation Role for Theories of Agency in Understanding Information Systems Design

    Directory of Open Access Journals (Sweden)

    Robert Johnston

    2002-11-01

    Full Text Available In this paper we argue that theories of agency form a foundation upon which we can build a deeper understanding of information systems design. We do so by firstly recognising that information systems are part of purposeful sociotechnical systems and that consequently theories of agency may help in understanding them. We then present two alternative theories of agency (deliberative and situational, mainly drawn from the robotics and artificial intelligence disciplines, and in doing so, we note that existing information system design methods and ontological studies of those methods implicitly adhere to the deliberative theory of agency. We also note that while there are advantages in specific circumstances from utilising the situated theory of agency in designing complex systems, because of their differing ontological commitments, such systems would be difficult to analyse and evaluate using ontologies currently used in information systems. We then provide evidence that such situational information systems can indeed exist, by giving a specific example (the Kanban system, which has emerged from manufacturing practice. We conclude that information systems are likely to benefit from creating design approaches supporting the production of situational systems.

  20. Applied information system-based in enhancing students' understanding towards higher order thinking (HOTS)

    Science.gov (United States)

    Hua, Ang Kean; Ping, Owi Wei

    2017-05-01

    The application of information and communications technology (ICT) had become more important in our daily life, especially in educational field. Teachers are encouraged to use information system-based in teaching Mathematical courses. Higher Order Thinking Skills (HOTS) approach is unable to explain using chalk and talk methods. It needs students to analyze, evaluate, and create by their own natural abilities. The aim of this research study was to evaluate the effectiveness of the application information system-based in enhance the students understanding about HOTS question. Mixed-methods or quantitative and qualitative approach was applied in collecting data, which involve only the standard five students and the teachers in Sabak Bernam, Selangor. Pra-postests was held before and after using information system-based in teaching to evaluate the students' understanding. The result from post-test indicates significant improvement which proves that the use of information system based able to enhance students' understanding about HOTS question and solve it. There were several factor influenced the students such as students' attitude, teachers attraction, school facilities, and computer approach. Teachers play an important role in attracting students to learn. Therefore, the school should provide a conducive learning environment and good facilities for students to learn so that they are able to access more information and always exposed to new knowledge. As conclusion, information system-based are able to enhance students understanding the need of HOTS questions and solve it.

  1. Understanding the acceptability of a computer decision support system in pediatric primary care.

    Science.gov (United States)

    Bauer, Nerissa S; Carroll, Aaron E; Downs, Stephen M

    2014-01-01

    Individual users' attitudes and opinions help predict successful adoption of health information technology (HIT) into practice; however, little is known about pediatric users' acceptance of HIT for medical decision-making at the point of care. We wished to examine the attitudes and opinions of pediatric users' toward the Child Health Improvement through Computer Automation (CHICA) system, a computer decision support system linked to an electronic health record in four community pediatric clinics. Surveys were administered in 2011 and 2012 to all users to measure CHICA's acceptability and users' satisfaction with it. Free text comments were analyzed for themes to understand areas of potential technical refinement. 70 participants completed the survey in 2011 (100% response rate) and 64 of 66 (97% response rate) in 2012. Initially, satisfaction with CHICA was mixed. In general, users felt the system held promise; however various critiques reflected difficulties understanding integrated technical aspects of how CHICA worked, as well as concern with the format and wording on generated forms for families and users. In the subsequent year, users' ratings reflected improved satisfaction and acceptance. Comments also reflected a deeper understanding of the system's logic, often accompanied by suggestions on potential refinements to make CHICA more useful at the point of care. Pediatric users appreciate the system's automation and enhancements that allow relevant and meaningful clinical data to be accessible at point of care. Understanding users' acceptability and satisfaction is critical for ongoing refinement of HIT to ensure successful adoption into practice.

  2. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    Science.gov (United States)

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  3. Meaningful Understanding and Systems Thinking in Organic Chemistry: Validating Measurement and Exploring Relationships

    Science.gov (United States)

    Vachliotis, Theodoros; Salta, Katerina; Tzougraki, Chryssa

    2014-01-01

    The purpose of this study was dual: First, to develop and validate assessment schemes for assessing 11th grade students' meaningful understanding of organic chemistry concepts, as well as their systems thinking skills in the domain. Second, to explore the relationship between the two constructs of interest based on students' performance…

  4. Consensus statement understanding health and malnutrition through a systems approach: the ENOUGH program for early life

    NARCIS (Netherlands)

    Kaput, J.; Ommen, B. van; Kremer, S.H.A.; Priami, C.; Pontes Monteiro, J.; Morine, M.; Pepping, F.; Diaz, Z.; Fenech, M.; He, Y.; Albers, R.; Drevon, C.A.; Evelo, C.T.; Hancock, R.E.W.; IJsselmuiden, C.; Lumey, L.H.; Minihane, A.M.; Muller, M.; Murgia, C.; Radonjic, M.; Sobral, B.; West, K.P. Jr.

    2014-01-01

    Nutrition research, like most biomedical disciplines, adopted and often uses experimental approaches based on Beadle and Tatum’s one gene—one polypeptide hypothesis, thereby reducing biological processes to single reactions or pathways. Systems thinking is needed to understand the complexity of

  5. Consensus statement understanding health and malnutrition through a systems approach: the ENOUGH program for early life.

    NARCIS (Netherlands)

    Kaput, J.; Ommen, van B.; Kremer, B.; Priami, C.; Pontes Monteiro, J.; Morine, M.; Pepping, F.; Diaz, Z.; Fenech, M.; He, Y.; Albers, R.; Drevon, C.A.; Evelo, C.T.; Hancock, R.E.W.; Ijsselmuiden, C.; Lumey, L.H.; Minihane, A.M.; Muller, M.R.; Murgia, C.; Radonjic, M.; Sobral, B.W.S.; West Jr., K.P.

    2014-01-01

    Nutrition research, like most biomedical disciplines, adopted and often uses experimental approaches based on Beadle and Tatum’s one gene—one polypeptide hypothesis, thereby reducing biological processes to single reactions or pathways. Systems thinking is needed to understand the complexity of

  6. Understanding the organization of sharing economy in agri-food systems

    NARCIS (Netherlands)

    Miralles, Isabel; Dentoni, Domenico; Pascucci, Stefano

    2017-01-01

    Despite the proliferation of sharing economy initiatives in agri-food systems, the recent literature has still not unravelled what sharing exactly entails from an organizational standpoint. In light of this knowledge gap, this study aims to understand which resources are shared, and how, in a

  7. Students' Understanding of Equilibrium and Stability: The Case of Dynamic Systems

    Science.gov (United States)

    Canu, Michaël; de Hosson, Cécile; Duque, Mauricio

    2016-01-01

    Engineering students in control courses have been observed to lack an understanding of equilibrium and stability, both of which are crucial concepts in this discipline. The introduction of these concepts is generally based on the study of classical examples from Newtonian mechanics supplemented with a control system. Equilibrium and stability are…

  8. Student Teachers' Ways of Thinking and Ways of Understanding Digestion and the Digestive System in Biology

    Science.gov (United States)

    Çimer, Sabiha Odabasi; Ursavas, Nazihan

    2012-01-01

    The purpose of this study was to identify the ways in which student teachers understand digestion and the digestive system and, subsequently, their ways of thinking, as reflected in their problem solving approaches and the justification schemes that they used to validate their claims. For this purpose, clinical interviews were conducted with 10…

  9. The Effects of Swedish Knife Model on Students' Understanding of the Digestive System

    Science.gov (United States)

    Cerrah Ozsevgec, Lale; Artun, Huseyin; Unal, Melike

    2012-01-01

    This study was designed to examine the effect of Swedish Knife Model on students' understanding of digestive system. A simple experimental design (pretest-treatment-posttest) was used in the study and internal comparison of the results of the one group was made. The sample consisted of 40 7th grade Turkish students whose ages range from 13 to 15.…

  10. Understanding IEC standard wind turbine models using SimPowerSystems

    DEFF Research Database (Denmark)

    Das, Kaushik; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2016-01-01

    This article describes and exemplifies the IEC 61400-27 generic wind turbine models through an interactive multimedia learning environment - Matlab SimPowerSystems. The article aims help engineers with different backgrounds to get a better understanding of wind turbine dynamics and control...

  11. Understanding Suicide among Sexual Minority Youth in America: An Ecological Systems Analysis

    Science.gov (United States)

    Hong, Jun Sung; Espelage, Dorothy L.; Kral, Michael J.

    2011-01-01

    This article examines major risk factors for suicide among sexual minority youth using Bronfenbrenner's ecological systems theory. Although suicidal behavior among sexual minority youth is a major public concern in the United States, understanding of this phenomenon has been limited since the majority of empirical research studies have addressed…

  12. Understanding multinational companies in public health systems, using a competitive advantage framework

    Directory of Open Access Journals (Sweden)

    Lethbridge Jane

    2011-07-01

    Full Text Available Abstract Background This paper discusses the findings of a study which developed five case studies of five multinational health care companies involved in public health care systems. Strategies were analysed in terms of attitude to marketing, pricing and regulation. The company strategies have been subjected to an analysis using Porter's Five Forces, a business strategy framework, which is unusual in health policy studies. Methods This paper shows how analysing company strategy using a business tool can contribute to understanding the strategies of global capital in national health systems. It shows how social science methodologies can draw from business methods to explain company strategies. Results The five companies considered in this paper demonstrate that their strategies have many dimensions, which fit into Porter's Five Forces of comparative advantage. More importantly the Five Forces can be used to identify factors that influence company entry into public health care systems. Conclusions The process of examining the strategic objectives of five health care companies shows that a business tool can help to explain the actions and motives of health care companies towards public health care systems, and so contribute to a better understanding of the strategies of global capital in national health systems. Health service commissioners need to understand this dynamic process, which will evolve as the nature of public health care systems change.

  13. Understanding multinational companies in public health systems, using a competitive advantage framework

    Science.gov (United States)

    2011-01-01

    Background This paper discusses the findings of a study which developed five case studies of five multinational health care companies involved in public health care systems. Strategies were analysed in terms of attitude to marketing, pricing and regulation. The company strategies have been subjected to an analysis using Porter's Five Forces, a business strategy framework, which is unusual in health policy studies. Methods This paper shows how analysing company strategy using a business tool can contribute to understanding the strategies of global capital in national health systems. It shows how social science methodologies can draw from business methods to explain company strategies. Results The five companies considered in this paper demonstrate that their strategies have many dimensions, which fit into Porter's Five Forces of comparative advantage. More importantly the Five Forces can be used to identify factors that influence company entry into public health care systems. Conclusions The process of examining the strategic objectives of five health care companies shows that a business tool can help to explain the actions and motives of health care companies towards public health care systems, and so contribute to a better understanding of the strategies of global capital in national health systems. Health service commissioners need to understand this dynamic process, which will evolve as the nature of public health care systems change. PMID:21722372

  14. Understanding multinational companies in public health systems, using a competitive advantage framework.

    Science.gov (United States)

    Lethbridge, Jane

    2011-07-01

    This paper discusses the findings of a study which developed five case studies of five multinational health care companies involved in public health care systems. Strategies were analysed in terms of attitude to marketing, pricing and regulation. The company strategies have been subjected to an analysis using Porter's Five Forces, a business strategy framework, which is unusual in health policy studies. This paper shows how analysing company strategy using a business tool can contribute to understanding the strategies of global capital in national health systems. It shows how social science methodologies can draw from business methods to explain company strategies. The five companies considered in this paper demonstrate that their strategies have many dimensions, which fit into Porter's Five Forces of comparative advantage. More importantly the Five Forces can be used to identify factors that influence company entry into public health care systems. The process of examining the strategic objectives of five health care companies shows that a business tool can help to explain the actions and motives of health care companies towards public health care systems, and so contribute to a better understanding of the strategies of global capital in national health systems. Health service commissioners need to understand this dynamic process, which will evolve as the nature of public health care systems change.

  15. Proceedings of the international workshop on mechanistic understanding of radionuclide migration in compacted/intact systems

    International Nuclear Information System (INIS)

    Tachi, Yukio; Yui, Mikazu

    2010-03-01

    The international workshop on mechanistic understanding of radionuclide migration in compacted / intact systems was held at ENTRY, JAEA, Tokai on 21st - 23rd January, 2009. This workshop was hosted by Japan Atomic Energy Agency (JAEA) as part of the project on the mechanistic model/database development for radionuclide sorption and diffusion behavior in compacted / intact systems. The overall goal of the project is to develop the mechanistic model / database for a consistent understanding and prediction of migration parameters and its uncertainties for performance assessment of geological disposal of radioactive waste. The objective of the workshop is to integrate the state-of-the-art of mechanistic sorption and diffusion model in compacted / intact systems, especially in bentonite / clay systems, and discuss the JAEA's mechanistic approaches and future challenges, especially the following discussions points; 1) What's the status and difficulties for mechanistic model/database development? 2) What's the status and difficulties for applicability of mechanistic model to the compacted/intact system? 3) What's the status and difficulties for obtaining evidences for mechanistic model? 4) What's the status and difficulties for standardization of experimental methodology for batch sorption and diffusion? 5) What's the uncertainties of transport parameters in radionuclides migration analysis due to a lack of understanding/experimental methodologies, and how do we derive them? This report includes workshop program, overview and materials of each presentation, summary of discussions. (author)

  16. Understanding a successful obesity prevention initiative in children under 5 from a systems perspective.

    Science.gov (United States)

    Owen, Brynle; Brown, Andrew D; Kuhlberg, Jill; Millar, Lynne; Nichols, Melanie; Economos, Christina; Allender, Steven

    2018-01-01

    Systems thinking represents an innovative and logical approach to understanding complexity in community-based obesity prevention interventions. We report on an approach to apply systems thinking to understand the complexity of a successful obesity prevention intervention in early childhood (children aged up to 5 years) conducted in a regional city in Victoria, Australia. A causal loop diagram (CLD) was developed to represent system elements related to a successful childhood obesity prevention intervention in early childhood. Key stakeholder interviews (n = 16) were examined retrospectively to generate purposive text data, create microstructures, and form a CLD. A CLD representing key stakeholder perceptions of a successful intervention comprised six key feedback loops explaining changes in project implementation over time. The loops described the dynamics of collaboration, network formation, community awareness, human resources, project clarity, and innovation. The CLD developed provides a replicable means to capture, evaluate and disseminate a description of the dynamic elements of a successful obesity prevention intervention in early childhood.

  17. How does undergraduate college biology students' level of understanding, in regard to the role of the seed plant root system, relate to their level of understanding of photosynthesis?

    Science.gov (United States)

    Njeng'ere, James Gicheha

    This research study investigated how undergraduate college biology students' level of understanding of the role of the seed plant root system relates to their level of understanding of photosynthesis. This research was conducted with 65 undergraduate non-majors biology who had completed 1 year of biology at Louisiana State University in Baton Rouge and Southeastern Louisiana University in Hammond. A root probe instrument was developed from some scientifically acceptable propositional statements about the root system, the process of photosynthesis, as well as the holistic nature of the tree. These were derived from research reviews of the science education and the arboriculture literature. This was administered to 65 students selected randomly from class lists of the two institutions. Most of the root probe's items were based on the Live Oak tree. An in-depth, clinical interview-based analysis was conducted with 12 of those tested students. A team of root experts participated by designing, validating and answering the same questions that the students were asked. A "systems" lens as defined by a team of college instructors, root experts (Shigo, 1991), and this researcher was used to interpret the results. A correlational coefficient determining students' level of understanding of the root system and their level of understanding of the process of photosynthesis was established by means of Pearson's r correlation (r = 0.328) using the SAS statistical analysis (SAS, 1987). From this a coefficient of determination (r2 = 0.104) was determined. Students' level of understanding of the Live Oak root system (mean score 5.94) was not statistically different from their level of understanding of the process of photosynthesis (mean score 5.54) as assessed by the root probe, t (129) = 0.137, p > 0.05 one tailed-test. This suggests that, to some degree, level of the root system limits level of understanding of photosynthesis and vice versa. Analysis of quantitative and qualitative

  18. Demystifying embedded systems middleware understanding file systems, databases, virtual machines, networking and more

    CERN Document Server

    Noergaard, Tammy

    2010-01-01

    This practical technical guide to embedded middleware implementation offers a coherent framework that guides readers through all the key concepts necessary to gain an understanding of this broad topic. Big picture theoretical discussion is integrated with down-to-earth advice on successful real-world use via step-by-step examples of each type of middleware implementation. Technically detailed case studies bring it all together, by providing insight into typical engineering situations readers are likely to encounter. Expert author Tammy Noergaard keeps explanations as simple and readable as

  19. A database prototype has been developed to help understand costs in photovoltaic systems

    International Nuclear Information System (INIS)

    Moorw, Larry M.

    2000-01-01

    High photovoltaic (PV) system costs hinder market growth. An approach to studying these costs has been developed using a database containing system, component and maintenance information. This data, which is both technical and non-technical in nature, is to be used to identify trends related to costs. A pilot database exists at this time and work is continuing. The results of this work may be used by the data owners to improve their operations with the goal of sharing non-attributable information with the public and industry at large. The published objectives of the DOE PV program are to accelerate the development of PV as a national and global energy option, as well as ensure US technology and global market leadership. The approach to supporting these objectives is to understand what drives costs in PV applications. This paper and poster session describe work-in-progress in the form of a database that will help identify costs in PV systems. In an effort to address DOE's Five-Year PV Milestones, a program was established in the summer of 1999 to study system costs in three PV applications--solar home lighting, water pumping, and grid-tied systems. This work began with a RFQ requesting data from these types of systems. Creating a partnership with industry and other system organizations such as Non-Government Organizations (NGOs) was the approach chosen to maintain a close time to the systems in the field. Nine participants were selected as partners, who provided data on their systems. Two activities are emphasized in this work. For the first, an iterative approach of developing baseline reliability and costs information with the participants was taken. This effort led to identifying typical components in these systems as well as the specific data (metrics) that would be needed in any analysis used to understand total systems costs

  20. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems

    Science.gov (United States)

    Pöppl, Ronald; Keesstra, Saskia; Maroulis, Jerry

    2017-04-01

    Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to emerging coupling relationships between them. To better understand system complexity and system response to change, connectivity has become an important research paradigm within various disciplines including geomorphology, hydrology and ecology. With the proposed conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Underpinned by case study examples, the presented conceptual framework is able to explain how geomorphic response of fluvial systems to human disturbance is determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.

  1. Development of the living thing transportation systems worksheet on learning cycle model to increase student understanding

    Science.gov (United States)

    Rachmawati, E.; Nurohman, S.; Widowati, A.

    2018-01-01

    This study aims to know: 1) the feasibility LKPD review of aspects of the didactic requirements, construction requirements, technical requirements and compliance with the Learning Cycle. 2) Increase understanding of learners with Learning Model Learning Cycle in SMP N 1 Wates in the form LKPD. 3) The response of learners and educators SMP N 1 Wates to quality LKPD Transportation Systems Beings. This study is an R & D with the 4D model (Define, Design, Develop and Disseminate). Data were analyzed using qualitative analysis and quantitative analysis. Qualitative analysis in the form of advice description and assessment scores from all validates that was converted to a scale of 4. While the analysis of quantitative data by calculating the percentage of materializing learning and achievement using the standard gain an increased understanding and calculation of the KKM completeness evaluation value as an indicator of the achievement of students understanding. the results of this study yield LKPD IPA model learning Cycle theme Transportation Systems Beings obtain 108.5 total scores of a maximum score of 128 including the excellent category (A). LKPD IPA developed able to demonstrate an improved understanding of learners and the response of learners was very good to this quality LKPD IPA.

  2. Teaching Climate Change Using System Models: An Understanding Global Change Project Pilot Study

    Science.gov (United States)

    Bean, J. R.; Stuhlsatz, M.; Bracey, Z. B.; Marshall, C. R.

    2017-12-01

    Teaching and learning about historical and anthropogenic climate change in the classroom requires integrating instructional resources that address physical, chemical, and biological processes. The Understanding Global Change (UGC) framework and system models developed at the University of California Museum of Paleontology (UCMP) provide visualizations of the relationships and feedbacks between Earth system processes, and the consequences of anthropogenic activities on global climate. This schema provides a mechanism for developing pedagogic narratives that are known to support comprehension and retention of information and relationships. We designed a nine-day instructional unit for middle and high school students that includes a sequence of hands-on, inquiry-based, data rich activities combined with conceptual modeling exercises intended to foster students' development of systems thinking and their understanding of human influences on Earth system processes. The pilot unit, Sea Level Rise in the San Francisco Bay Area, addresses the human causes and consequences of sea level rise and related Earth system processes (i.e., the water cycle and greenhouse effect). Most of the content is not Bay Area specific, and could be used to explore sea level rise in any coastal region. Students completed pre and post assessments, which included questions about the connectedness of components of the Earth system and probed their attitudes towards participating in environmental stewardship activities. Students sequentially drew models representing the content explored in the activities and wrote short descriptions of their system diagrams that were collected by teachers for analysis. We also randomly assigned classes to engage in a very short additional intervention that asked students to think about the role that humans play in the Earth system and to draw themselves into the models. The study will determine if these students have higher stewardship scores and more frequently

  3. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue.

  4. From product centered design to value centered design: understanding the value-system

    DEFF Research Database (Denmark)

    Randmaa, Merili; Howard, Thomas J.; Otto, T.

    Product design has focused on different parameters through history- design for usability, design for manufacturing, design for assembly etc. Today, as the products get bundled with service, it is important to interconnect product, service and business model design to create synergy effect and offer...... more value for the customer for less eford. Value and understanding the value-system needs to be in the focus of business strategy. Value can be created, exchanged and perceived. It can be tangible (physical products, money) or intangible (information, experience, relationships, service). Creating...... value is usually a co-creation process, where customers, suppliers and manufacturers all have their part. This paper describes a paradigm shift towards value-based thinking and proposes a new methodology for understanding and analysing the value system....

  5. Systematic synergy modeling: understanding drug synergy from a systems biology perspective.

    Science.gov (United States)

    Chen, Di; Liu, Xi; Yang, Yiping; Yang, Hongjun; Lu, Peng

    2015-09-16

    Owing to drug synergy effects, drug combinations have become a new trend in combating complex diseases like cancer, HIV and cardiovascular diseases. However, conventional synergy quantification methods often depend on experimental dose-response data which are quite resource-demanding. In addition, these methods are unable to interpret the explicit synergy mechanism. In this review, we give representative examples of how systems biology modeling offers strategies toward better understanding of drug synergy, including the protein-protein interaction (PPI) network-based methods, pathway dynamic simulations, synergy network motif recognitions, integrative drug feature calculations, and "omic"-supported analyses. Although partially successful in drug synergy exploration and interpretation, more efforts should be put on a holistic understanding of drug-disease interactions, considering integrative pharmacology and toxicology factors. With a comprehensive and deep insight into the mechanism of drug synergy, systems biology opens a novel avenue for rational design of effective drug combinations.

  6. Understanding the organization of public health delivery systems: an empirical typology.

    Science.gov (United States)

    Mays, Glen P; Scutchfield, F Douglas; Bhandari, Michelyn W; Smith, Sharla A

    2010-03-01

    Policy discussions about improving the U.S. health care system increasingly recognize the need to strengthen its capacities for delivering public health services. A better understanding of how public health delivery systems are organized across the United States is critical to improvement. To facilitate the development of such evidence, this article presents an empirical method of classifying and comparing public health delivery systems based on key elements of their organizational structure. This analysis uses data collected through a national longitudinal survey of local public health agencies serving communities with at least 100,000 residents. The survey measured the availability of twenty core public health activities in local communities and the types of organizations contributing to each activity. Cluster analysis differentiated local delivery systems based on the scope of activities delivered, the range of organizations contributing, and the distribution of effort within the system. Public health delivery systems varied widely in organizational structure, but the observed patterns of variation suggested that systems adhere to one of seven distinct configurations. Systems frequently migrated from one configuration to another over time, with an overall trend toward offering a broader scope of services and engaging a wider range of organizations. Public health delivery systems exhibit important structural differences that may influence their operations and outcomes. The typology developed through this analysis can facilitate comparative studies to identify which delivery system configurations perform best in which contexts.

  7. Understanding how replication processes can maintain systems away from equilibrium using Algorithmic Information Theory.

    Science.gov (United States)

    Devine, Sean D

    2016-02-01

    Replication can be envisaged as a computational process that is able to generate and maintain order far-from-equilibrium. Replication processes, can self-regulate, as the drive to replicate can counter degradation processes that impact on a system. The capability of replicated structures to access high quality energy and eject disorder allows Landauer's principle, in conjunction with Algorithmic Information Theory, to quantify the entropy requirements to maintain a system far-from-equilibrium. Using Landauer's principle, where destabilising processes, operating under the second law of thermodynamics, change the information content or the algorithmic entropy of a system by ΔH bits, replication processes can access order, eject disorder, and counter the change without outside interventions. Both diversity in replicated structures, and the coupling of different replicated systems, increase the ability of the system (or systems) to self-regulate in a changing environment as adaptation processes select those structures that use resources more efficiently. At the level of the structure, as selection processes minimise the information loss, the irreversibility is minimised. While each structure that emerges can be said to be more entropically efficient, as such replicating structures proliferate, the dissipation of the system as a whole is higher than would be the case for inert or simpler structures. While a detailed application to most real systems would be difficult, the approach may well be useful in understanding incremental changes to real systems and provide broad descriptions of system behaviour. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. Breeding novel solutions in the brain: a model of Darwinian neurodynamics [version 1; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    András Szilágyi

    2016-09-01

    Full Text Available Background: The fact that surplus connections and neurons are pruned during development is well established. We complement this selectionist picture by a proof-of-principle model of evolutionary search in the brain, that accounts for new variations in theory space. We present a model for Darwinian evolutionary search for candidate solutions in the brain. Methods: We combine known components of the brain – recurrent neural networks (acting as attractors, the action selection loop and implicit working memory – to provide the appropriate Darwinian architecture. We employ a population of attractor networks with palimpsest memory. The action selection loop is employed with winners-share-all dynamics to select for candidate solutions that are transiently stored in implicit working memory. Results: We document two processes: selection of stored solutions and evolutionary search for novel solutions. During the replication of candidate solutions attractor networks occasionally produce recombinant patterns, increasing variation on which selection can act. Combinatorial search acts on multiplying units (activity patterns with hereditary variation and novel variants appear due to (i noisy recall of patterns from the attractor networks, (ii noise during transmission of candidate solutions as messages between networks, and, (iii spontaneously generated, untrained patterns in spurious attractors. Conclusions: Attractor dynamics of recurrent neural networks can be used to model Darwinian search. The proposed architecture can be used for fast search among stored solutions (by selection and for evolutionary search when novel candidate solutions are generated in successive iterations. Since all the suggested components are present in advanced nervous systems, we hypothesize that the brain could implement a truly evolutionary combinatorial search system, capable of generating novel variants.

  9. Breeding novel solutions in the brain: a model of Darwinian neurodynamics [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    András Szilágyi

    2017-06-01

    Full Text Available Background: The fact that surplus connections and neurons are pruned during development is well established. We complement this selectionist picture by a proof-of-principle model of evolutionary search in the brain, that accounts for new variations in theory space. We present a model for Darwinian evolutionary search for candidate solutions in the brain. Methods: We combine known components of the brain – recurrent neural networks (acting as attractors, the action selection loop and implicit working memory – to provide the appropriate Darwinian architecture. We employ a population of attractor networks with palimpsest memory. The action selection loop is employed with winners-share-all dynamics to select for candidate solutions that are transiently stored in implicit working memory. Results: We document two processes: selection of stored solutions and evolutionary search for novel solutions. During the replication of candidate solutions attractor networks occasionally produce recombinant patterns, increasing variation on which selection can act. Combinatorial search acts on multiplying units (activity patterns with hereditary variation and novel variants appear due to (i noisy recall of patterns from the attractor networks, (ii noise during transmission of candidate solutions as messages between networks, and, (iii spontaneously generated, untrained patterns in spurious attractors. Conclusions: Attractor dynamics of recurrent neural networks can be used to model Darwinian search. The proposed architecture can be used for fast search among stored solutions (by selection and for evolutionary search when novel candidate solutions are generated in successive iterations. Since all the suggested components are present in advanced nervous systems, we hypothesize that the brain could implement a truly evolutionary combinatorial search system, capable of generating novel variants.

  10. Understanding innovation system build up. The rise and fall of the Dutch PV Innovation System

    International Nuclear Information System (INIS)

    Negro, S.O.; Vasseur, V.; Hekkert, M.P.; Van Sark, W.G.J.H.M.

    2009-01-01

    Renewable energy technologies have a hard time to break through in the existing energy regime. In this paper we focus on analysing the mechanisms behind this problematic technology diffusion. We take the theoretical perspective of innovation system dynamics and apply this to photovoltaic solar energy technology (PV) in the Netherlands. The reason for this is that there is a long history of policy efforts in The Netherlands to stimulate PV but results in terms of diffusion of PV panels is disappointingly low, which clearly constitutes a case of slow diffusion. The history of the development of the PV innovation system is analysed in terms of seven key processes that are essential for the build up of innovation systems. We show that the processes related to knowledge development are very stable but that large fluctuations are present in the processes related to 'guidance of the search' and 'market formation'. Surprisingly, entrepreneurial activities are not too much affected by fluctuating market formation activities. We relate this to market formation in neighbouring countries and discuss the theoretical implications for the technological innovation system framework.

  11. Understanding uncertainty propagation in life cycle assessments of waste management systems

    DEFF Research Database (Denmark)

    Bisinella, Valentina; Conradsen, Knut; Christensen, Thomas Højlund

    2015-01-01

    Uncertainty analysis in Life Cycle Assessments (LCAs) of waste management systems often results obscure and complex, with key parameters rarely determined on a case-by-case basis. The paper shows an application of a simplified approach to uncertainty coupled with a Global Sensitivity Analysis (GSA......) perspective on three alternative waste management systems for Danish single-family household waste. The approach provides a fast and systematic method to select the most important parameters in the LCAs, understand their propagation and contribution to uncertainty....

  12. New approaches to characterizing and understanding biofouling of spiral wound membrane systems

    KAUST Repository

    van Loosdrecht, Mark C.M.

    2012-06-01

    Historically, biofouling research on spiral wound membrane systems is typically problem solving oriented. Membrane modules are studied as black box systems, investigated by autopsies. Biofouling is not a simple process. Many factors influence each other in a non-linear fashion. These features make biofouling a subject which is not easy to study using a fundamental scientific approach. Nevertheless to solve or minimize the negative impacts of biofouling, a clear understanding of the interacting basic principles is needed. Recent research into microbiological characterizing of biofouling, small scale test units, application of in situ visualization methods, and model approaches allow such an integrated study of biofouling. © IWA Publishing 2012.

  13. New approaches to characterizing and understanding biofouling of spiral wound membrane systems

    KAUST Repository

    van Loosdrecht, Mark C.M.; Bereschenko, Ludmilla A.; Radu, Andrea I.; Kruithof, Joop C.; Picioreanu, Cristian; Johns, Michael L.; Vrouwenvelder, Johannes S.

    2012-01-01

    Historically, biofouling research on spiral wound membrane systems is typically problem solving oriented. Membrane modules are studied as black box systems, investigated by autopsies. Biofouling is not a simple process. Many factors influence each other in a non-linear fashion. These features make biofouling a subject which is not easy to study using a fundamental scientific approach. Nevertheless to solve or minimize the negative impacts of biofouling, a clear understanding of the interacting basic principles is needed. Recent research into microbiological characterizing of biofouling, small scale test units, application of in situ visualization methods, and model approaches allow such an integrated study of biofouling. © IWA Publishing 2012.

  14. Understanding the Franchised Strategic Praxis from the Practice Established by Franchise System

    Directory of Open Access Journals (Sweden)

    Josué Vitor Medeiros Júnior

    2012-09-01

    Full Text Available This article aims to analyze the perception of a franchise on building strategies located around practices experienced by referencing franchisor's standards and regional reality. There is a complexity in the relationship between franchisee and franchisor in a franchise system and its implications in the strategies developed by these actors. This qualitative research adopted the theoretical approach called Strategy as Practice, which seeks to understand the strategy considering its stakeholders (practitioners, practices established and incorporated in addition to the practice that represents the effective implementation of strategic actions, socially constructed and reconstructed. For data collection, in-depth open interviews were conducted with the owner of two franchise stores, located in a city in the Brazil´s Northeast. The data were analyzed and categorized according to feedback from the franchisee on how he responds to practices imposed by the franchise system. As a result, four categories were identified that represent relevant practices: workshops sponsored by the franchisor, the franchisee's annual planning, visiting consultants, and business strategies for sales. It was concluded that although there is considerable control of the franchisor on its franchisees, many of the practices of the franchise system are adapted and transformed in practice by the franchisee, often in a different way than was originally imposed. We emphasize the importance of strategy as practice approach in understanding the construction and interpretation of the strategy in a franchise system based on social relationships developed in this system.

  15. Understanding Student Cognition about Complex Earth System Processes Related to Climate Change

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.

    2011-12-01

    The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.

  16. UNDERSTANDING THAI CULTURE AND ITS IMPACT ON REQUIREMENTS ENGINEERING PROCESS MANAGEMENT DURING INFORMATION SYSTEMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Theerasak Thanasankit

    2002-01-01

    Full Text Available This paper explores the impact of Thai culture on managing the decision making process in requirements engineering and contribution a better understand of its influence on the management of requirements engineering process. The paper illustrates the interaction of technology and culture and shows that rather than technology changing culture, culture can change the way technology is used. Thai culture is naturally inherent in Thai daily life and Thais bring that into their work practices. The concepts of power and uncertainty in Thai culture contribute toward hierarchical forms of communication and decision making process in Thailand, especially during requirements engineering, where information systems requirements need to be established for further development. The research shows that the decision making process in Thailand tends to take a much longer time, as every stage during requirements engineering needs to be reported to management for final decisions. The tall structure of Thai organisations also contributes to a bureaucratic, elongated decision-making process during information systems development. Understanding the influence of Thai culture on requirements engineering and information systems development will assist multinational information systems consulting organisations to select, adapt, better manage, or change requirements engineering process and information systems developments methodologies to work best with Thai organisations.

  17. How synthetic membrane systems contribute to the understanding of lipid-driven endocytosis.

    Science.gov (United States)

    Schubert, Thomas; Römer, Winfried

    2015-11-01

    Synthetic membrane systems, such as giant unilamellar vesicles and solid supported lipid bilayers, have widened our understanding of biological processes occurring at or through membranes. Artificial systems are particularly suited to study the inherent properties of membranes with regard to their components and characteristics. This review critically reflects the emerging molecular mechanism of lipid-driven endocytosis and the impact of model membrane systems in elucidating the complex interplay of biomolecules within this process. Lipid receptor clustering induced by binding of several toxins, viruses and bacteria to the plasma membrane leads to local membrane bending and formation of tubular membrane invaginations. Here, lipid shape, and protein structure and valency are the essential parameters in membrane deformation. Combining observations of complex cellular processes and their reconstitution on minimal systems seems to be a promising future approach to resolve basic underlying mechanisms. This article is part of a Special Issue entitled: Mechanobiology. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Understanding requirements of novel healthcare information systems for management of advanced prostate cancer.

    Science.gov (United States)

    Wagholikar, Amol S; Fung, Maggie; Nelson, Colleen C

    2012-01-01

    Effective management of chronic diseases is a global health priority. A healthcare information system offers opportunities to address challenges of chronic disease management. However, the requirements of health information systems are often not well understood. The accuracy of requirements has a direct impact on the successful design and implementation of a health information system. Our research describes methods used to understand the requirements of health information systems for advanced prostate cancer management. The research conducted a survey to identify heterogeneous sources of clinical records. Our research showed that the General Practitioner was the common source of patient's clinical records (41%) followed by the Urologist (14%) and other clinicians (14%). Our research describes a method to identify diverse data sources and proposes a novel patient journey browser prototype that integrates disparate data sources.

  19. Characterising the Development of the Understanding of Human Body Systems in High-School Biology Students--A Longitudinal Study

    Science.gov (United States)

    Snapir, Zohar; Eberbach, Catherine; Ben-Zvi-Assaraf, Orit; Hmelo-Silver, Cindy; Tripto, Jaklin

    2017-01-01

    Science education today has become increasingly focused on research into complex natural, social and technological systems. In this study, we examined the development of high-school biology students' systems understanding of the human body, in a three-year longitudinal study. The development of the students' system understanding was evaluated…

  20. Biofunctional Understanding and Conceptual Control: Searching for Systematic Consensus in Systemic Cohesion

    Science.gov (United States)

    Iran-Nejad, Asghar; Bordbar, Fareed

    2017-01-01

    For first generation scientists after the cognitive revolution, knowers were in active control over all (stages of) information processing. Then, following a decade of transition shaped by intense controversy, embodied cognition emerged and suggested sources of control other than those implied by metaphysical information processing. With a thematic focus on embodiment science and an eye toward systematic consensus in systemic cohesion, the present study explores the roles of biofunctional and conceptual control processes in the wholetheme spiral of biofunctional understanding (see Iran-Nejad and Irannejad, 2017b, Figure 1). According to this spiral, each of the two kinds of understanding has its own unique set of knower control processes. For conceptual understanding (CU), knowers have deliberate attention-allocation control over their first-person “knowthat” and “knowhow” content combined as mutually coherent corequisites. For biofunctional understanding (BU), knowers have attention-allocation control only over their knowthat content but knowhow control content is ordinarily conspicuously absent. To test the hypothesis of differences in the manner of control between CU and BU, participants in two experiments read identical-format statements for internal consistency, as response time was recorded. The results of Experiment 1 supported the hypothesis of differences in the manner of control between the two types of control processes; and Experiment 2 confirmed the results of Experiment 1. These findings are discussed in terms of the predicted differences between BU and CU control processes, their roles in regulating the physically unobservable flow of systemic cohesion in the wholetheme spiral, and a proposal for systematic consensus in systemic cohesion to serve as the second guiding principle in biofunctional embodiment science next to physical science’s first guiding principle of systematic observation. PMID:29114235

  1. Biofunctional Understanding and Conceptual Control: Searching for Systematic Consensus in Systemic Cohesion

    Directory of Open Access Journals (Sweden)

    Asghar Iran-Nejad

    2017-10-01

    Full Text Available For first generation scientists after the cognitive revolution, knowers were in active control over all (stages of information processing. Then, following a decade of transition shaped by intense controversy, embodied cognition emerged and suggested sources of control other than those implied by metaphysical information processing. With a thematic focus on embodiment science and an eye toward systematic consensus in systemic cohesion, the present study explores the roles of biofunctional and conceptual control processes in the wholetheme spiral of biofunctional understanding (see Iran-Nejad and Irannejad, 2017b, Figure 1. According to this spiral, each of the two kinds of understanding has its own unique set of knower control processes. For conceptual understanding (CU, knowers have deliberate attention-allocation control over their first-person “knowthat” and “knowhow” content combined as mutually coherent corequisites. For biofunctional understanding (BU, knowers have attention-allocation control only over their knowthat content but knowhow control content is ordinarily conspicuously absent. To test the hypothesis of differences in the manner of control between CU and BU, participants in two experiments read identical-format statements for internal consistency, as response time was recorded. The results of Experiment 1 supported the hypothesis of differences in the manner of control between the two types of control processes; and Experiment 2 confirmed the results of Experiment 1. These findings are discussed in terms of the predicted differences between BU and CU control processes, their roles in regulating the physically unobservable flow of systemic cohesion in the wholetheme spiral, and a proposal for systematic consensus in systemic cohesion to serve as the second guiding principle in biofunctional embodiment science next to physical science’s first guiding principle of systematic observation.

  2. Computer-aided software understanding systems to enhance confidence of scientific codes

    International Nuclear Information System (INIS)

    Sheng, G.; Oeren, T.I.

    1991-01-01

    A unique characteristic of nuclear waste disposal is the very long time span over which the combined engineered and natural containment system must remain effective: hundreds of thousands of years. Since there is no precedent in human history for such an endeavour, simulation with the use of computers is the only means we have of forecasting possible future outcomes quantitatively. The need for reliable models and software to make such forecasts so far into the future is obvious. One of the critical elements necessary to ensure reliability is the degree of reviewability of the computer program. Among others, there are two very important reasons for this. Firstly, if there is to be any chance at all of validating the conceptual models as implemented by the computer code, peer reviewers must be able to see and understand what the program is doing. It is all but impossible to achieve this understanding by just looking at the code due to possible unfamiliarity with the language and often due as well to the length and complexity of the code. Secondly, a thorough understanding of the code is also necessary to carry out code maintenance activities which include among others, error detection, error correction and code modification for purposes of enhancing its performance, functionality or to adapt it to a changed environment. The emerging concepts of computer-aided software understanding and reverse engineering can answer precisely these needs. This paper will discuss the role they can play in enhancing the confidence one has on computer codes and several examples will be provided. Finally a brief discussion of combining state-of-art forward engineering systems with reverse engineering systems will show how powerfully they can contribute to the overall quality assurance of a computer program. (13 refs., 7 figs.)

  3. Biofunctional Understanding and Conceptual Control: Searching for Systematic Consensus in Systemic Cohesion.

    Science.gov (United States)

    Iran-Nejad, Asghar; Bordbar, Fareed

    2017-01-01

    For first generation scientists after the cognitive revolution, knowers were in active control over all (stages of) information processing. Then, following a decade of transition shaped by intense controversy, embodied cognition emerged and suggested sources of control other than those implied by metaphysical information processing. With a thematic focus on embodiment science and an eye toward systematic consensus in systemic cohesion, the present study explores the roles of biofunctional and conceptual control processes in the wholetheme spiral of biofunctional understanding (see Iran-Nejad and Irannejad, 2017b, Figure 1). According to this spiral, each of the two kinds of understanding has its own unique set of knower control processes. For conceptual understanding (CU), knowers have deliberate attention-allocation control over their first-person "knowthat" and "knowhow" content combined as mutually coherent corequisites. For biofunctional understanding (BU), knowers have attention-allocation control only over their knowthat content but knowhow control content is ordinarily conspicuously absent. To test the hypothesis of differences in the manner of control between CU and BU, participants in two experiments read identical-format statements for internal consistency, as response time was recorded. The results of Experiment 1 supported the hypothesis of differences in the manner of control between the two types of control processes; and Experiment 2 confirmed the results of Experiment 1. These findings are discussed in terms of the predicted differences between BU and CU control processes, their roles in regulating the physically unobservable flow of systemic cohesion in the wholetheme spiral, and a proposal for systematic consensus in systemic cohesion to serve as the second guiding principle in biofunctional embodiment science next to physical science's first guiding principle of systematic observation.

  4. Anatomical Mercury: Changing Understandings of Quicksilver, Blood, and the Lymphatic System, 1650-1800.

    Science.gov (United States)

    Hendriksen, Marieke M A

    2015-10-01

    The use of mercury as an injection mass in anatomical experiments and preparations was common throughout Europe in the long eighteenth century, and refined mercury-injected preparations as well as plates of anatomical mercury remain today. The use and meaning of mercury in related disciplines such as medicine and chemistry in the same period have been studied, but our knowledge of anatomical mercury is sparse and tends to focus on technicalities. This article argues that mercury had a distinct meaning in anatomy, which was initially influenced by alchemical and classical understandings of mercury. Moreover, it demonstrates that the choice of mercury as an anatomical injection mass was deliberate and informed by an intricate cultural understanding of its materiality, and that its use in anatomical preparations and its perception as an anatomical material evolved with the understanding of the circulatory and lymphatic systems. By using the material culture of anatomical mercury as a starting point, I seek to provide a new, object-driven interpretation of complex and strongly interrelated historiographical categories such as mechanism, vitalism, chemistry, anatomy, and physiology, which are difficult to understand through a historiography that focuses exclusively on ideas. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Mechanistic Systems Modeling to Improve Understanding and Prediction of Cardiotoxicity Caused by Targeted Cancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Jaehee V. Shim

    2017-09-01

    Full Text Available Tyrosine kinase inhibitors (TKIs are highly potent cancer therapeutics that have been linked with serious cardiotoxicity, including left ventricular dysfunction, heart failure, and QT prolongation. TKI-induced cardiotoxicity is thought to result from interference with tyrosine kinase activity in cardiomyocytes, where these signaling pathways help to control critical processes such as survival signaling, energy homeostasis, and excitation–contraction coupling. However, mechanistic understanding is limited at present due to the complexities of tyrosine kinase signaling, and the wide range of targets inhibited by TKIs. Here, we review the use of TKIs in cancer and the cardiotoxicities that have been reported, discuss potential mechanisms underlying cardiotoxicity, and describe recent progress in achieving a more systematic understanding of cardiotoxicity via the use of mechanistic models. In particular, we argue that future advances are likely to be enabled by studies that combine large-scale experimental measurements with Quantitative Systems Pharmacology (QSP models describing biological mechanisms and dynamics. As such approaches have proven extremely valuable for understanding and predicting other drug toxicities, it is likely that QSP modeling can be successfully applied to cardiotoxicity induced by TKIs. We conclude by discussing a potential strategy for integrating genome-wide expression measurements with models, illustrate initial advances in applying this approach to cardiotoxicity, and describe challenges that must be overcome to truly develop a mechanistic and systematic understanding of cardiotoxicity caused by TKIs.

  6. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    Eden, H.F.; Mooers, C.N.K.

    1990-06-01

    The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological, chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions

  7. Understanding the barriers to physician error reporting and disclosure: a systemic approach to a systemic problem.

    Science.gov (United States)

    Perez, Bianca; Knych, Stephen A; Weaver, Sallie J; Liberman, Aaron; Abel, Eileen M; Oetjen, Dawn; Wan, Thomas T H

    2014-03-01

    The issues of medical errors and medical malpractice have stimulated significant interest in establishing transparency in health care, in other words, ensuring that medical professionals formally report medical errors and disclose related outcomes to patients and families. However, research has amply shown that transparency is not a universal practice among physicians. A review of the literature was carried out using the search terms "transparency," "patient safety," "disclosure," "medical error," "error reporting," "medical malpractice," "doctor-patient relationship," and "physician" to find articles describing physician barriers to transparency. The current literature underscores that a complex Web of factors influence physician reluctance to engage in transparency. Specifically, 4 domains of barriers emerged from this analysis: intrapersonal, interpersonal, institutional, and societal. Transparency initiatives will require vigorous, interdisciplinary efforts to address the systemic and pervasive nature of the problem. Several ethical and social-psychological barriers suggest that medical schools and hospitals should collaborate to establish continuity in education and ensure that knowledge acquired in early education is transferred into long-term learning. At the institutional level, practical and cultural barriers suggest the creation of supportive learning environments and private discussion forums where physicians can seek moral support in the aftermath of an error. To overcome resistance to culture transformation, incremental change should be considered, for example, replacing arcane transparency policies and complex reporting mechanisms with clear, user-friendly guidelines.

  8. Understanding Interdependencies between Heterogeneous Earth Observation Systems When Applied to Federal Objectives

    Science.gov (United States)

    Gallo, J.; Sylak-Glassman, E.

    2017-12-01

    We will present a method for assessing interdependencies between heterogeneous Earth observation (EO) systems when applied to key Federal objectives. Using data from the National Earth Observation Assessment (EOA), we present a case study that examines the frequency that measurements from each of the Landsat 8 sensors are used in conjunction with heterogeneous measurements from other Earth observation sensors to develop data and information products. This EOA data allows us to map the most frequent interactions between Landsat measurements and measurements from other sensors, identify high-impact data and information products where these interdependencies occur, and identify where these combined measurements contribute most to meeting a key Federal objective within one of the 13 Societal Benefit Areas used in the EOA study. Using a value-tree framework to trace the application of data from EO systems to weighted key Federal objectives within the EOA study, we are able to estimate relative contribution of individual EO systems to meeting those objectives, as well as the interdependencies between measurements from all EO systems within the EOA study. The analysis relies on a modified Delphi method to elicit relative levels of reliance on individual measurements from EO systems, including combinations of measurements, from subject matter experts. This results in the identification of a representative portfolio of all EO systems used to meet key Federal objectives. Understanding the interdependencies among a heterogeneous set of measurements that modify the impact of any one individual measurement on meeting a key Federal objective, especially if the measurements originate from multiple agencies or state/local/tribal, international, academic, and commercial sources, can impact agency decision-making regarding mission requirements and inform understanding of user needs.

  9. Trust, temporality and systems: how do patients understand patient safety in primary care? A qualitative study.

    Science.gov (United States)

    Rhodes, Penny; Campbell, Stephen; Sanders, Caroline

    2016-04-01

    Patient safety research has tended to focus on hospital settings, although most clinical encounters occur in primary care, and to emphasize practitioner errors, rather than patients' own understandings of safety. To explore patients' understandings of safety in primary care. Qualitative interviews were conducted with patients recruited from general practices in northwest England. Participants were asked basic socio-demographic information; thereafter, topics were largely introduced by interviewees themselves. Transcripts were coded and analysed using NVivo10 (qualitative data software), following a process of constant comparison. Thirty-eight people (14 men, 24 women) from 19 general practices in rural, small town and city locations were interviewed. Many of their concerns (about access, length of consultation, relationship continuity) have been discussed in terms of quality, but, in the interviews, were raised as matters of safety. Three broad themes were identified: (i) trust and psycho-social aspects of professional-patient relationships; (ii) choice, continuity, access, and the temporal underpinnings of safety; and (iii) organizational and systems-level tensions constraining safety. Conceptualizations of safety included common reliance on a bureaucratic framework of accreditation, accountability, procedural rules and regulation, but were also individual and context-dependent. For patients, safety is not just a property of systems, but personal and contingent and is realized in the interaction between doctor and patient. However, it is the systems approach that has dominated safety thinking, and patients' individualistic and relational conceptualizations are poorly accommodated within current service organization. © 2015 The Authors Health Expectations Published by John Wiley & Sons Ltd.

  10. The Neurodynamics of Social Status

    Science.gov (United States)

    2017-07-31

    much" by enlisted soldiers, which can call leadership into question. Conditions 2 and 3 are normative situations and thus should create the least...consent process, administering experiments , managing data, and analyzing data. One of the graduate students, Siqi Han, authored a paper with us

  11. Using a social-ecological systems perspective to understand tourism and landscape interactions in coastal areas

    Directory of Open Access Journals (Sweden)

    Jasper Hessel Heslinga

    2017-04-01

    Full Text Available Purpose – The purpose of this paper is to look at the potential synergies between tourism and landscapes and examine the potential contribution of tourism to build social-ecological resilience in the Dutch Wadden. Design/methodology/approach – The authors reveal how a social-ecological systems perspective can be used to conceptualize the Wadden as a coupled and dynamic system. This paper is a conceptual analysis that applies this approach to the Dutch Wadden. The data used for the inquiry primarily comes from a literature review. Findings – The authors argue that the social-ecological systems perspective is a useful approach and could be used to improve the governance of multi-functional socio-ecological systems in coastal areas. Opportunities for synergies between tourism and landscapes have been overlooked. The authors consider that tourism and nature protection are potentially compatible and that the synergies should be identified. Research limitations/implications – This paper is only a conceptual application rather than an empirical case study. Further research to actually apply the methodology is needed. Practical implications – Managers of protected areas should consider applying a social-ecological systems approach. Social implications – The views of a wide variety of stakeholders should be considered in landscape planning. Originality/value – The value of this paper lies in the articulation of the social-ecological systems perspective as a way to identify and understand the complex interactions between tourism and landscape, and the potential synergies between them.

  12. Understanding product cost vs. performance through an in-depth system Monte Carlo analysis

    Science.gov (United States)

    Sanson, Mark C.

    2017-08-01

    The manner in which an optical system is toleranced and compensated greatly affects the cost to build it. By having a detailed understanding of different tolerance and compensation methods, the end user can decide on the balance of cost and performance. A detailed phased approach Monte Carlo analysis can be used to demonstrate the tradeoffs between cost and performance. In complex high performance optical systems, performance is fine-tuned by making adjustments to the optical systems after they are initially built. This process enables the overall best system performance, without the need for fabricating components to stringent tolerance levels that often can be outside of a fabricator's manufacturing capabilities. A good performance simulation of as built performance can interrogate different steps of the fabrication and build process. Such a simulation may aid the evaluation of whether the measured parameters are within the acceptable range of system performance at that stage of the build process. Finding errors before an optical system progresses further into the build process saves both time and money. Having the appropriate tolerances and compensation strategy tied to a specific performance level will optimize the overall product cost.

  13. Toward an understanding of the building blocks: constructing programs for high processor count systems

    International Nuclear Information System (INIS)

    Reilly, M H

    2008-01-01

    Technology and industry trends have clearly shown that the future of technical computing lies in exploitation of more processors in larger multiprocessor systems. Exploitation of high processor count architectures demands a more thorough understanding of the underlying system dynamics and an accounting for them in the design of high-performance applications. Currently these dynamics are incompletely described by the widely adopted benchmarks and kernel metrics. Systems are most often characterized to allow comparisons and ranking. Often the characterizations are in the form of a scalar measure of some aspect of system performance that is a 'not to exceed' number: the maximum possible level of performance that could be attained. While such comparisons typically drive both system design and procurement, more useful characterizations can be used to drive application development and design. This paper explores a few of these measures and presents a few simple examples of their application. The first set of metrics addresses individual processor performance, specifically performance related to memory references. The second set of metrics attempts to describe the behavior of the message-passing system under load and across a range of conditions

  14. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics.

    Science.gov (United States)

    Louveau, Antoine; Plog, Benjamin A; Antila, Salli; Alitalo, Kari; Nedergaard, Maiken; Kipnis, Jonathan

    2017-09-01

    Recent discoveries of the glymphatic system and of meningeal lymphatic vessels have generated a lot of excitement, along with some degree of skepticism. Here, we summarize the state of the field and point out the gaps of knowledge that should be filled through further research. We discuss the glymphatic system as a system that allows CNS perfusion by the cerebrospinal fluid (CSF) and interstitial fluid (ISF). We also describe the recently characterized meningeal lymphatic vessels and their role in drainage of the brain ISF, CSF, CNS-derived molecules, and immune cells from the CNS and meninges to the peripheral (CNS-draining) lymph nodes. We speculate on the relationship between the two systems and their malfunction that may underlie some neurological diseases. Although much remains to be investigated, these new discoveries have changed our understanding of mechanisms underlying CNS immune privilege and CNS drainage. Future studies should explore the communications between the glymphatic system and meningeal lymphatics in CNS disorders and develop new therapeutic modalities targeting these systems.

  15. Understanding the Yellowstone magmatic system using 3D geodynamic inverse models

    Science.gov (United States)

    Kaus, B. J. P.; Reuber, G. S.; Popov, A.; Baumann, T.

    2017-12-01

    The Yellowstone magmatic system is one of the largest magmatic systems on Earth. Recent seismic tomography suggest that two distinct magma chambers exist: a shallow, presumably felsic chamber and a deeper much larger, partially molten, chamber above the Moho. Why melt stalls at different depth levels above the Yellowstone plume, whereas dikes cross-cut the whole lithosphere in the nearby Snake River Plane is unclear. Partly this is caused by our incomplete understanding of lithospheric scale melt ascent processes from the upper mantle to the shallow crust, which requires better constraints on the mechanics and material properties of the lithosphere.Here, we employ lithospheric-scale 2D and 3D geodynamic models adapted to Yellowstone to better understand magmatic processes in active arcs. The models have a number of (uncertain) input parameters such as the temperature and viscosity structure of the lithosphere, geometry and melt fraction of the magmatic system, while the melt content and rock densities are obtained by consistent thermodynamic modelling of whole rock data of the Yellowstone stratigraphy. As all of these parameters affect the dynamics of the lithosphere, we use the simulations to derive testable model predictions such as gravity anomalies, surface deformation rates and lithospheric stresses and compare them with observations. We incorporated it within an inversion method and perform 3D geodynamic inverse models of the Yellowstone magmatic system. An adjoint based method is used to derive the key model parameters and the factors that affect the stress field around the Yellowstone plume, locations of enhanced diking and melt accumulations. Results suggest that the plume and the magma chambers are connected with each other and that magma chamber overpressure is required to explain the surface displacement in phases of high activity above the Yellowstone magmatic system.

  16. Effects of Structural Transparency in System Dynamics Simulators on Performance and Understanding

    Directory of Open Access Journals (Sweden)

    Birgit Kopainsky

    2015-10-01

    Full Text Available Prior exploration is an instructional strategy that has improved performance and understanding in system-dynamics-based simulators, but only to a limited degree. This study investigates whether model transparency, that is, showing users the internal structure of models, can extend the prior exploration strategy and improve learning even more. In an experimental study, participants in a web-based simulation learned about and managed a small developing nation. All participants were provided the prior exploration strategy but only half received prior exploration embedded in a structure-behavior diagram intended to make the underlying model’s structure more transparent. Participants provided with the more transparent strategy demonstrated better understanding of the underlying model. Their performance, however, was the equivalent to those in the less transparent condition. Combined with previous studies, our results suggest that while prior exploration is a beneficial strategy for both performance and understanding, making the model structure transparent with structure-behavior diagrams is more limited in its effect.

  17. Understanding the decline and resilience loss of a long-lived social-ecological system: insights from system dynamics

    Directory of Open Access Journals (Sweden)

    Alicia Tenza

    2017-06-01

    Full Text Available Collapse of social-ecological systems (SESs is a common process in human history. Depletion of natural resources, scarcity of human capital, or both, is/are common pathways toward collapse. We use the system dynamics approach to better understand specific problems of small-scale, long-lived SESs. We present a qualitative (or conceptual model using the conceptualization process of the system dynamics approach to study the dynamics of an oasis in Mexico that has witnessed a dramatic transition to decline in recent decades. We used indepth interviews, participant observation, expert opinions, and official statistical data sets to define the boundaries, and structure in a causal loop diagram of our studied system. We described historical trends and showed the reference mode for the main system variables (observed data, and analyzed the expected system behavior according to the system structure. We identified the main drivers that changed the system structure, as well as structural changes, and the effects of these changes on the dynamics, resilience, and vulnerability of this SES. We found that the tendency of this SES toward collapse was triggered by exogenous factors (growth of modern agriculture in nearby valleys, and socio-political relocation, and was maintained by an endogenous structure. These structural changes weakened the resilience of this SES. One of these changes resulted in a long-term maladaptation of the SES, which increased its vulnerability to frequent system disturbances (hurricanes and droughts. The conceptual model developed provides an in-depth qualitative description of the system, with an important amount of qualitative and quantitative information, to establish the structural hypothesis of the observed behavior. Using this qualitative model, the next research steps are to develop a quantitative model to test the qualitative theories, and to explore future scenarios of system resilience for decision-making processes to

  18. Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems.

    Science.gov (United States)

    Ye, Christine J; Regan, Sarah; Liu, Guo; Alemara, Sarah; Heng, Henry H

    2018-01-01

    In the past 15 years, impressive progress has been made to understand the molecular mechanism behind aneuploidy, largely due to the effort of using various -omics approaches to study model systems (e.g. yeast and mouse models) and patient samples, as well as the new realization that chromosome alteration-mediated genome instability plays the key role in cancer. As the molecular characterization of the causes and effects of aneuploidy progresses, the search for the general mechanism of how aneuploidy contributes to cancer becomes increasingly challenging: since aneuploidy can be linked to diverse molecular pathways (in regards to both cause and effect), the chances of it being cancerous is highly context-dependent, making it more difficult to study than individual molecular mechanisms. When so many genomic and environmental factors can be linked to aneuploidy, and most of them not commonly shared among patients, the practical value of characterizing additional genetic/epigenetic factors contributing to aneuploidy decreases. Based on the fact that cancer typically represents a complex adaptive system, where there is no linear relationship between lower-level agents (such as each individual gene mutation) and emergent properties (such as cancer phenotypes), we call for a new strategy based on the evolutionary mechanism of aneuploidy in cancer, rather than continuous analysis of various individual molecular mechanisms. To illustrate our viewpoint, we have briefly reviewed both the progress and challenges in this field, suggesting the incorporation of an evolutionary-based mechanism to unify diverse molecular mechanisms. To further clarify this rationale, we will discuss some key concepts of the genome theory of cancer evolution, including system inheritance, fuzzy inheritance, and cancer as a newly emergent cellular system. Illustrating how aneuploidy impacts system inheritance, fuzzy inheritance and the emergence of new systems is of great importance. Such synthesis

  19. Drug release control and system understanding of sucrose esters matrix tablets by artificial neural networks.

    Science.gov (United States)

    Chansanroj, Krisanin; Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele

    2011-10-09

    Artificial neural networks (ANNs) were applied for system understanding and prediction of drug release properties from direct compacted matrix tablets using sucrose esters (SEs) as matrix-forming agents for controlled release of a highly water soluble drug, metoprolol tartrate. Complexity of the system was presented through the effects of SE concentration and tablet porosity at various hydrophilic-lipophilic balance (HLB) values of SEs ranging from 0 to 16. Both effects contributed to release behaviors especially in the system containing hydrophilic SEs where swelling phenomena occurred. A self-organizing map neural network (SOM) was applied for visualizing interrelation among the variables and multilayer perceptron neural networks (MLPs) were employed to generalize the system and predict the drug release properties based on HLB value and concentration of SEs and tablet properties, i.e., tablet porosity, volume and tensile strength. Accurate prediction was obtained after systematically optimizing network performance based on learning algorithm of MLP. Drug release was mainly attributed to the effects of SEs, tablet volume and tensile strength in multi-dimensional interrelation whereas tablet porosity gave a small impact. Ability of system generalization and accurate prediction of the drug release properties proves the validity of SOM and MLPs for the formulation modeling of direct compacted matrix tablets containing controlled release agents of different material properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Understanding I/O workload characteristics of a Peta-scale storage system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngjae [ORNL; Gunasekaran, Raghul [ORNL

    2015-01-01

    Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world s fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization, and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system.

  1. The everyday lives of video game developers: Experimentally understanding underlying systems/structures

    Directory of Open Access Journals (Sweden)

    Casey O'Donnell

    2009-03-01

    Full Text Available This essay examines how tensions between work and play for video game developers shape the worlds they create. The worlds of game developers, whose daily activity is linked to larger systems of experimentation and technoscientific practice, provide insights that transcend video game development work. The essay draws on ethnographic material from over 3 years of fieldwork with video game developers in the United States and India. It develops the notion of creative collaborative practice based on work in the fields of science and technology studies, game studies, and media studies. The importance of, the desire for, or the drive to understand underlying systems and structures has become fundamental to creative collaborative practice. I argue that the daily activity of game development embodies skills fundamental to creative collaborative practice and that these capabilities represent fundamental aspects of critical thought. Simultaneously, numerous interests have begun to intervene in ways that endanger these foundations of creative collaborative practice.

  2. SoundView: an auditory guidance system based on environment understanding for the visually impaired people.

    Science.gov (United States)

    Nie, Min; Ren, Jie; Li, Zhengjun; Niu, Jinhai; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2009-01-01

    Without visual information, the blind people live in various hardships with shopping, reading, finding objects and etc. Therefore, we developed a portable auditory guide system, called SoundView, for visually impaired people. This prototype system consists of a mini-CCD camera, a digital signal processing unit and an earphone, working with built-in customizable auditory coding algorithms. Employing environment understanding techniques, SoundView processes the images from a camera and detects objects tagged with barcodes. The recognized objects in the environment are then encoded into stereo speech signals for the blind though an earphone. The user would be able to recognize the type, motion state and location of the interested objects with the help of SoundView. Compared with other visual assistant techniques, SoundView is object-oriented and has the advantages of cheap cost, smaller size, light weight, low power consumption and easy customization.

  3. Improving Understanding of Spatial Heterogeneity in Mountain Ecohydrology with Multispectral Unmanned Aerial Systems (UAS).

    Science.gov (United States)

    Wigmore, O.; Molotch, N. P.

    2017-12-01

    Mountain regions are a critical component of the hydrologic system. These regions are extremely heterogeneous, with dramatic topographic, climatic, ecologic and hydrologic variations occurring over very short distances. This heterogeneity makes understanding changes in these environments difficult. Commonly used satellite data are often too coarse to resolve processes at appropriate scales and point measurements are typically unrepresentative of the wider region. The rapid rise of Unmanned Aerial Systems (UAS) offers a potential solution to the scale-related inadequacies of satellite and ground-based observing systems. Using UAS, spatially distributed datasets can be collected at high resolution (i.e. cm), on demand, and can therefore facilitate improved understanding of mountain ecohydrology. We deployed a custom built multispectral - visible (RGB), near infrared (NIR) and thermal infrared (TIR) - UAS at a weekly interval over the Niwot Ridge Long Term Ecological Research (NWT LTER) saddle catchment at 3500masl in the Colorado Rockies. This system was used to map surface water pathways, land cover and topography, and quantify ecohydrologic variables including, snow depth, vegetation productivity and surface soil moisture at 5-50cm resolution across an 80ha study area. This presentation will discuss the techniques, methods and merits of using UAS derived multispectral data for ecohydrologic research in mountain regions. We will also present preliminary findings from our survey time series at NWT LTER and a discussion of the potential insights that these datasets can provide. Key questions to be addressed are: 1) how does spatial variability in snow depth impact soil moisture and vegetation productivity, 2) how can UAS help us to identify ecohydrologic `hotspots' and `hot moments' across heterogeneous landscapes.

  4. Prostate Cancer Patients' Understanding of the Gleason Scoring System: Implications for Shared Decision-Making.

    Science.gov (United States)

    Tagai, Erin K; Miller, Suzanne M; Kutikov, Alexander; Diefenbach, Michael A; Gor, Ronak A; Al-Saleem, Tahseen; Chen, David Y T; Fleszar, Sara; Roy, Gem

    2018-01-15

    The Gleason scoring system is a key component of a prostate cancer diagnosis, since it indicates disease aggressiveness. It also serves as a risk communication tool that facilitates shared treatment decision-making. However, the system is highly complex and therefore difficult to communicate: factors which have been shown to undermine well-informed and high-quality shared treatment decision-making. To systematically explore prostate cancer patients' understanding of the Gleason scoring system (GSS), we assessed knowledge and perceived importance among men who had completed treatment (N = 50). Patients were administered a survey that assessed patient knowledge and patients' perceived importance of the GSS, as well as demographics, medical factors (e.g., Gleason score at diagnosis), and health literacy. Bivariate analyses were conducted to identify associations with patient knowledge and perceived importance of the GSS. The sample was generally well-educated (48% with a bachelor's degree or higher) and health literate (M = 12.9, SD = 2.2, range = 3-15). Despite this, patient knowledge of the GSS was low (M = 1.8, SD = 1.4, range = 1-4). Patients' understanding of the importance of the GSS was moderate (M = 2.8, SD = 1.0, range = 0-4) and was positively associated with GSS knowledge (p decision-making. Future studies are needed to explore the potential utility of a simplified Gleason grading system and improved patient-provider communication.

  5. Understanding the earth systems of Malawi: Ecological sustainability, culture, and place-based education

    Science.gov (United States)

    Glasson, George E.; Frykholm, Jeffrey A.; Mhango, Ndalapa A.; Phiri, Absalom D.

    2006-07-01

    The purpose of this 2-year study was to investigate Malawian teacher educators' perspectives and dispositions toward teaching about ecological sustainability issues in Malawi, a developing country in sub-Sahara Africa. This study was embedded in a larger theoretical framework of investigating earth systems science through the understanding of nature-knowledge-culture systems from local, place-based perspectives. Specifically, we were interested in learning more about eco-justice issues that are related to environmental degradation in Malawi and the potential role of inquiry-oriented pedagogies in addressing these issues. In a science methods course, the African educators' views on deforestation and teaching about ecological sustainability were explored within the context of the local environment and culture. Teachers participated in inquiry pedagogies designed to promote the sharing of perspectives related to the connections between culture and ecological degradation. Strategies encouraging dialogue and reflection included role-playing, class discussions, curriculum development activities, teaching experiences with children, and field trips to a nature preserve. Data were analyzed from postcolonial and critical pedagogy of place theoretical perspectives to better understand the hybridization of viewpoints influenced by both Western and indigenous science and the political hegemonies that impact sustainable living in Malawi. Findings suggested that the colonial legacy of Malawi continues to impact the ecological sustainability issue of deforestation. Inquiry-oriented pedagogies and connections to indigenous science were embraced by the Malawian educators as a means to involve children in investigation, decision making, and ownership of critical environmental issues.

  6. Using Neuroscience to Help Understand Fear and Anxiety: A Two-System Framework.

    Science.gov (United States)

    LeDoux, Joseph E; Pine, Daniel S

    2016-11-01

    Tremendous progress has been made in basic neuroscience in recent decades. One area that has been especially successful is research on how the brain detects and responds to threats. Such studies have demonstrated comparable patterns of brain-behavior relationships underlying threat processing across a range of mammalian species, including humans. This would seem to be an ideal body of information for advancing our understanding of disorders in which altered threat processing is a key factor, namely, fear and anxiety disorders. But research on threat processing has not led to significant improvements in clinical practice. The authors propose that in order to take advantage of this progress for clinical gain, a conceptual reframing is needed. Key to this conceptual change is recognition of a distinction between circuits underlying two classes of responses elicited by threats: 1) behavioral responses and accompanying physiological changes in the brain and body and 2) conscious feeling states reflected in self-reports of fear and anxiety. This distinction leads to a "two systems" view of fear and anxiety. The authors argue that failure to recognize and consistently emphasize this distinction has impeded progress in understanding fear and anxiety disorders and hindered attempts to develop more effective pharmaceutical and psychological treatments. The two-system view suggests a new way forward.

  7. The GLOBE Carbon Cycle Project: Using a systems approach to understand carbon and the Earth's climate system

    Science.gov (United States)

    Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.

    2009-12-01

    National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.

  8. Understanding the use of geographical information systems (GIS) in health informatics research: A review.

    Science.gov (United States)

    Shaw, Nicola; McGuire, Suzanne

    2017-06-23

    The purpose of this literature review is to understand geographical information systems (GIS) and how they can be applied to public health informatics, medical informatics, and epidemiology. Relevant papers that reflected the use of geographical information systems (GIS) in health research were identified from four academic databases: Academic Search Complete, BioMed Central, PubMed Central, and Scholars Portal, as well as Google Scholar. The search strategy used was to identify articles with "geographic information systems", "GIS", "public health", "medical informatics", "epidemiology", and "health geography" as main subject headings or text words in titles and abstracts. Papers published between 1997 and 2014 were considered and a total of 39 articles were included to inform the authors on the use of GIS technologies in health informatics research. The main applications of GIS in health informatics and epidemiology include disease surveillance, health risk analysis, health access and planning, and community health profiling. GIS technologies can significantly improve quality and efficiency in health research as substantial connections can be made between a population's health and their geographical location. Gains in health informatics can be made when GIS are applied through research, however, improvements need to occur in the quantity and quality of data input for these systems to ensure better geographical health maps are used so that proper conclusions between public health and environmental factors may be made.

  9. Atomism and holism in the understanding of society and social systems

    Directory of Open Access Journals (Sweden)

    D.F.M. Strauss

    2008-07-01

    Full Text Available Throughout its history, reflection on human society has been torn apart by the opposing views of atomism and holism. Traditional societies, the city state of ancient Greece as well as the medieval perfect society apparently resemble a whole with its parts. Early modernity continued this holistic inclination for a while, but soon reverted to atomistic theories of the (hypothetical social contract. Modern humanism dominated the subsequent views articulated in terms of the dialectical tension between nature and freedom (science ideal and personality ideal – including mechanistic and vitalistic approaches as well as the more recent acknowledgment of irreducibly complex systems (Behe, 2003. In Wiener’s (1954; 1956 “technologicism” human responsibility and freedom are sacrificed. An alternative view is advanced in terms of the normativity of societal life as well as its many-sidedness. It is shown that theories of social systems increasingly tend to explore avenues transcending the limitations of the atomistic additive approach and the boundary-leveling whole-parts scheme entailed in social systems theory. This development is used as a starting point for the classification of social interaction and for underscoring the scope of the principle of sphere-sovereignty for a multidisciplinary understanding of social systems.

  10. How does money memorize social interactions? Understanding time-homogeneity in monetary systems

    Science.gov (United States)

    Braun, Dieter; Schmitt, Matthias; Schacker, Andreas

    2013-03-01

    Understanding how money shapes and memorizes our social interactions is central to modern life. There are many schools of thought on as to how monetary systems contribute to crises or boom/bust cycles and how monetary policy can try to avert them. We find that statistical physics gives a refreshing perspective. We analyze how credit mechanisms introduce non-locality and time-heterogeneity to the monetary memory. Motivated by an analogy to particle physics, locality and time-homogeneity can be imposed to monetary systems. As a result, a full reserve banking system is complemented with a bi-currency system of non-bank assets (``money'') and bank assets (``antimoney''). Payment can either be made by passing on money or by receiving antimoney. As a result, a free floating exchange rate between non-bank assets and bank assets is established. Interestingly, this monetary memory allows for credit creation by the simultaneous transfer of money and antimoney at a negotiated exchange rate. We analyze this novel mechanism of liquidity transfer in a model of random social interactions, yielding analytical results for all relevant distributions and the price of liquidity under the conditions of a fully transparent credit market.

  11. Gestures and metaphors as indicators of conceptual understanding of sedimentary systems

    Science.gov (United States)

    Riggs, E. M.; Herrera, J. S.

    2012-12-01

    Understanding the geometry and evolution of sedimentary systems and sequence stratigraphy is crucial to the development of geoscientists and engineers working in the petroleum industry. There is a wide variety of audiences within industry who require relatively advanced instruction in this area of geoscience, and there is an equally wide array of approaches to teaching this material in the classroom and field. This research was undertaken to develop a clearer picture of how conceptual understanding in this area of sedimentary geology grows as a result of instruction and how instructors can monitor the completeness and accuracy of student thinking and mental models. We sought ways to assess understanding that did not rely on model-specific jargon but rather was based in physical expression of basic processes and attributes of sedimentary systems. Advances in cognitive science and educational research indicate that a significant part of spatial cognition is facilitated by gesture, (e.g. giving directions, describing objects or landscape features). We aligned the analysis of gestures with conceptual metaphor theory to probe the use of mental image-schemas as a source of concept representation for students' learning of sedimentary processes. In order to explore image schemas that lie in student explanations, we focused our analysis on four core ideas about sedimentary systems that involve sea level change and sediment deposition, namely relative sea level, base level, and sea-level fluctuations and resulting basin geometry and sediment deposition changes. The study included 25 students from three U.S. Midwestern universities. Undergraduate and graduate-level participants were enrolled in senior-level undergraduate courses in sedimentology and stratigraphy. We used semi-structured interviews and videotaping for data collection. We coded the data to focus on deictic, iconic, and metaphoric gestures, and coded interview transcripts for linguistic metaphors using the

  12. From Process Understanding Via Soil Functions to Sustainable Soil Management - A Systemic Approach

    Science.gov (United States)

    Wollschlaeger, U.; Bartke, S.; Bartkowski, B.; Daedlow, K.; Helming, K.; Kogel-Knabner, I.; Lang, B.; Rabot, E.; Russell, D.; Stößel, B.; Weller, U.; Wiesmeier, M.; Rabot, E.; Vogel, H. J.

    2017-12-01

    Fertile soils are central resources for the production of biomass and the provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for both, food and bio-energy, which requires preserving and improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes that are not yet sufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing. Hence, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management to finally be able to develop site-specific options for sustainable soil management. We present an integrated modeling approach that investigates the influence of soil management on the ensemble of soil functions. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. As the evidence base required for feeding the model is for the most part stored in the existing scientific literature, another central component of our work is to set up a public "knowledge-portal" providing the infrastructure for a community effort towards a comprehensive knowledge base on soil processes as a basis for model developments. The connection to the socio-economic system is established using the Drivers-Pressures-Impacts-States-Responses (DPSIR) framework where our improved understanding about soil ecosystem processes is linked to ecosystem services and resource efficiency via the soil functions.

  13. Image/video understanding systems based on network-symbolic models

    Science.gov (United States)

    Kuvich, Gary

    2004-03-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.

  14. On the need for system alignment in large water infrastructure. Understanding infrastructure dynamics in Nairobi, Kenya

    Directory of Open Access Journals (Sweden)

    Pär Blomkvist

    2017-06-01

    Full Text Available In this article we contribute to the discussion of infrastructural change in Africa, and explore how a new theoretical perspective may offer a different, more comprehensive and historically informed understanding of the trend towards large water infrastructure in Africa. We examine the socio-technical dynamics of large water infrastructures in Nairobi, Kenya, in a longer historical perspective using two concepts that we call intra-systemic alignment and inter-level alignment. Our theoretical perspective is inspired by Large Technical Systems (LTS and Multi-Level Perspective (MLP. While inter-level alignment focuses on the process of aligning the technological system at the three levels of niche, regime and landscape, intra-systemic alignment deals with how components within the regime are harmonised and standardised to fit with each other. We pay special attention to intrasystemic alignment between the supply side and the demand side, or as we put it, upstream and downstream components of a system. In narrating the history of water supply in Nairobi, we look at both the upstream (largescale supply and downstream activities (distribution and payment, and compare the Nairobi case with European history of large infrastructures. We emphasise that regime actors in Nairobi have dealt with the issues of alignment mainly to facilitate and expand upstream activities, while concerning downstream activities they have remained incapable of expanding service and thus integrating the large segment of low-income consumers. We conclude that the present surge of large-scale water investment in Nairobi is the result of sector reforms that enabled the return to a long tradition – a 'Nairobi style' – of upstream investment mainly benefitting the highincome earners. Our proposition is that much more attention needs to be directed at inter-level alignment at the downstream end of the system, to allow the creation of niches aligned to the regime.

  15. Climate change and livestock system in mountain: Understanding from Gandaki River basin of Nepal Himalaya.

    Science.gov (United States)

    Dahal, P.; Shrestha, N. S.; Krakauer, N.; Lakhankar, T.; Panthi, J., Sr.; Pradhanang, S.; Jha, A. K.; Shrestha, M.; Sharma, M.

    2015-12-01

    In recent years climate change has emerged as a source of vulnerability for agro-livestock smallholders in Nepal where people are mostly dependent on rain-fed agriculture and livestock farming for their livelihoods. There is a need to understand and predict the potential impacts of climate change on agro-livestock farmer to develop effective mitigation and adaptation strategies. To understand dynamics of this vulnerability, we assess the farmers' perceptions of climate change, analysis of historical and future projections of climatic parameters and try to understand impact of climate change on livestock system in Gandaki River Basin of Central Nepal. During the period of 1981-2012, as reported by the mountain communities, the most serious hazards for livestock system and agriculture are the increasing trend of temperature, erratic rainfall patterns and increase in drought. Poor households without irrigated land are facing greater risks and stresses than well-off people. Analysis of historical climate data also supports the farmer perception. Result shows that there is increasing trend of temperature but no consistent trend in precipitation but a notable finding is that wet areas are getting wetter and dry areas getting drier. Besides that, there is increase in percentage of warm days and nights with decrease in the cool nights and days. The magnitude of the trend is found to be higher in high altitude. Trend of wet days has found to be increasing with decreasing in rainy days. Most areas are characterized by increases in both severity and frequency of drought and are more evident in recent years. The summers of 2004/05/06/09 and winters of 2006/08/09 were the worst widespread droughts and have a serious impact on livestock since 1981. Future projected change in temperature and precipitation obtained from downscaling the data global model by regional climate model shows that precipitation in central Nepal will change by -8% to 12% and temperature will change by 1

  16. Toward Understanding the Dynamics of Microbial Communities in an Estuarine System

    KAUST Repository

    Zhang, Weipeng; Bougouffa, Salim; Wang, Yong; Lee, On On; Yang, Jiangke; Chan, Colin; Song, Xingyu; Qian, Pei-Yuan

    2014-01-01

    Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  17. Toward understanding the dynamics of microbial communities in an estuarine system.

    Directory of Open Access Journals (Sweden)

    Weipeng Zhang

    Full Text Available Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE. The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  18. Toward Understanding the Dynamics of Microbial Communities in an Estuarine System

    KAUST Repository

    Zhang, Weipeng

    2014-04-14

    Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  19. Consensus statement understanding health and malnutrition through a systems approach: the ENOUGH program for early life.

    Science.gov (United States)

    Kaput, Jim; van Ommen, Ben; Kremer, Bas; Priami, Corrado; Monteiro, Jacqueline Pontes; Morine, Melissa; Pepping, Fre; Diaz, Zoey; Fenech, Michael; He, Yiwu; Albers, Ruud; Drevon, Christian A; Evelo, Chris T; Hancock, Robert E W; Ijsselmuiden, Carel; Lumey, L H; Minihane, Anne-Marie; Muller, Michael; Murgia, Chiara; Radonjic, Marijana; Sobral, Bruno; West, Keith P

    2014-01-01

    Nutrition research, like most biomedical disciplines, adopted and often uses experimental approaches based on Beadle and Tatum's one gene-one polypeptide hypothesis, thereby reducing biological processes to single reactions or pathways. Systems thinking is needed to understand the complexity of health and disease processes requiring measurements of physiological processes, as well as environmental and social factors, which may alter the expression of genetic information. Analysis of physiological processes with omics technologies to assess systems' responses has only become available over the past decade and remains costly. Studies of environmental and social conditions known to alter health are often not connected to biomedical research. While these facts are widely accepted, developing and conducting comprehensive research programs for health are often beyond financial and human resources of single research groups. We propose a new research program on essential nutrients for optimal underpinning of growth and health (ENOUGH) that will use systems approaches with more comprehensive measurements and biostatistical analysis of the many biological and environmental factors that influence undernutrition. Creating a knowledge base for nutrition and health is a necessary first step toward developing solutions targeted to different populations in diverse social and physical environments for the two billion undernourished people in developed and developing economies.

  20. A Transforming Electricity System: Understanding the Interactions Between Clean Energy Technologies, Markets, and Policies

    Science.gov (United States)

    Mooney, David

    The U.S. electricity system is currently undergoing a dramatic transformation. State-level renewable portfolio standards, abundant natural gas at low prices, and rapidly falling prices for wind and solar technologies are among the factors that have ushered in this transformation. With objective, rigorous, technology-neutral analysis, NREL aims to increase the understanding of energy policies, markets, resources, technologies, and infrastructure and their connections with economic, environmental, and security priorities. The results of these analyses are meant to inform R&D, policy, and investment decisions as energy-efficient and renewable energy technologies advance from concept to commercial application to market penetration. This talk will provide an overview of how NREL uses high-fidelity data, deep knowledge of energy technology cost and performance, and advanced models and tools to provide the information needed to ensure this transformation occurs economically, while maintaining system reliability. Examples will be explored and will include analysis of tax credit impacts on wind and solar deployment and power sector emissions, as well as analysis of power systems operations in the Eastern Interconnection under 30% wind and solar penetration scenarios. Invited speaker number 47185.

  1. Understanding Carbon Sequestration Options in the United States: Capabilities of a Carbon Management Geographic Information System

    Energy Technology Data Exchange (ETDEWEB)

    Dahowski, Robert T.; Dooley, James J.; Brown, Daryl R.; Mizoguchi, Akiyoshi; Shiozaki, Mai

    2001-04-03

    While one can discuss various sequestration options at a national or global level, the actual carbon management approach is highly site specific. In response to the need for a better understanding of carbon management options, Battelle in collaboration with Mitsubishi Corporation, has developed a state-of-the-art Geographic Information System (GIS) focused on carbon capture and sequestration opportunities in the United States. The GIS system contains information (e.g., fuel type, location, vintage, ownership, rated capacity) on all fossil-fired generation capacity in the Untied States with a rated capacity of at least 100 MW. There are also data on other CO2 sources (i.e., natural domes, gas processing plants, etc.) and associated pipelines currently serving enhanced oil recovery (EOR) projects. Data on current and prospective CO2 EOR projects include location, operator, reservoir and oil characteristics, production, and CO2 source. The system also contains information on priority deep saline aquifers and coal bed methane basins with potential for sequestering CO2. The GIS application not only enables data storage, flexible map making, and visualization capabilities, but also facilitates the spatial analyses required to solve complex linking of CO2 sources with appropriate and cost-effective sinks. A variety of screening criteria (spatial, geophysical, and economic) can be employed to identify sources and sinks most likely amenable to deployment of carbon capture and sequestration systems. The system is easily updateable, allowing it to stay on the leading edge of capture and sequestration technology as well as the ever-changing business landscape. Our paper and presentation will describe the development of this GIS and demonstrate its uses for carbon management analysis.

  2. Understanding Genetic Breast Cancer Risk: Processing Loci of the BRCA Gist Intelligent Tutoring System.

    Science.gov (United States)

    Wolfe, Christopher R; Reyna, Valerie F; Widmer, Colin L; Cedillos-Whynott, Elizabeth M; Brust-Renck, Priscila G; Weil, Audrey M; Hu, Xiangen

    2016-07-01

    The BRCA Gist Intelligent Tutoring System helps women understand and make decisions about genetic testing for breast cancer risk. BRCA Gist is guided by Fuzzy-Trace Theory, (FTT) and built using AutoTutor Lite. It responds differently to participants depending on what they say. Seven tutorial dialogues requiring explanation and argumentation are guided by three FTT concepts: forming gist explanations in one's own words, emphasizing decision-relevant information, and deliberating the consequences of decision alternatives. Participants were randomly assigned to BRCA Gist , a control, or impoverished BRCA Gist conditions removing gist explanation dialogues, argumentation dialogues, or FTT images. All BRCA Gist conditions performed significantly better than controls on knowledge, comprehension, and risk assessment. Significant differences in knowledge, comprehension, and fine-grained dialogue analyses demonstrate the efficacy of gist explanation dialogues. FTT images significantly increased knowledge. Providing more elements in arguments against testing correlated with increased knowledge and comprehension.

  3. New standard on safety for hydrogen systems in spanish. Keys for understanding and use

    Energy Technology Data Exchange (ETDEWEB)

    Luis Aprea, Jose [CNEA, Argentine Atomic Energy Commission - AAH - IRAM - Comahue University, CC 805 - Neuquen (Argentina)

    2008-07-15

    The present paper approaches all the preliminary, normative and additional elements observed during the work carried out by the Argentine standardization board to count in the country with a normative document that covers the expectations of the local community of users and other Spanish-speaking user, about the integral safety for the hydrogen systems. The antecedents and the process of adoption of an international standard and its adaptation to the local media are analyzed. The result has been the Standard IRAM/ISO 15916 that intends to offer, to all the users and especially to those who are not familiar with the technology, a base to understand the subject of safety, thus enhancing the education of the general public in hydrogen safety matters. (author)

  4. Understanding mammalian genetic systems: the challenge of phenotyping in the mouse.

    Directory of Open Access Journals (Sweden)

    Steve D M Brown

    2006-08-01

    Full Text Available Understanding mammalian genetic systems is predicated on the determination of the relationship between genetic variation and phenotype. Several international programmes are under way to deliver mutations in every gene in the mouse genome. The challenge for mouse geneticists is to develop approaches that will provide comprehensive phenotype datasets for these mouse mutant libraries. Several factors are critical to success in this endeavour. It will be important to catalogue assay and environment and where possible to adopt standardised procedures for phenotyping tests along with common environmental conditions to ensure comparable datasets of phenotypes. Moreover, the scale of the task underlines the need to invest in technological development improving both the speed and cost of phenotyping platforms. In addition, it will be necessary to develop new informatics standards that capture the phenotype assay as well as other factors, genetic and environmental, that impinge upon phenotype outcome.

  5. Patients' and physicians' understanding of health and biomedical concepts: relationship to the design of EMR systems.

    Science.gov (United States)

    Patel, Vimla L; Arocha, José F; Kushniruk, André W

    2002-02-01

    The aim of this paper is to examine knowledge organization and reasoning strategies involved in physician-patient communication and to consider how these are affected by the use of computer tools, in particular, electronic medical record (EMR) systems. In the first part of the paper, we summarize results from a study in which patients were interviewed before their interactions with physicians and where physician-patient interactions were recorded and analyzed to evaluate patients' and physicians' understanding of the patient problem. We give a detailed presentation of one of such interaction, with characterizations of physician and patient models. In a second set of studies, the contents of both paper and EMRs were compared and in addition, physician-patient interactions (involving the use of EMR technology) were video recorded and analyzed to assess physicians' information gathering and knowledge organization for medical decision-making. Physicians explained the patient problems in terms of causal pathophysiological knowledge underlying the disease (disease model), whereas patients explained them in terms of narrative structures of illness (illness model). The data-driven nature of the traditional physician-patient interaction allows physicians to capture the temporal flow of events and to document key aspects of the patients' narratives. Use of electronic medical records was found to influence the way patient data were gathered, resulting in information loss and disruption of temporal sequence of events in assessing patient problem. The physician-patient interview allows physicians to capture crucial aspects of the patient's illness model, which are necessary for understanding the problem from the patients' perspective. Use of computer-based patient record technology may lead to a loss of this relevant information. As a consequence, designers of such systems should take into account information relevant to the patient comprehension of medical problems, which will

  6. Western Sicily (Italy), a key area for understanding geothermal system within carbonate reservoirs

    Science.gov (United States)

    Montanari, D.; Bertini, G.; Botteghi, S.; Catalano, R.; Contino, A.; Doveri, M.; Gennaro, C.; Gianelli, G.; Gola, G.; Manzella, A.; Minissale, A.; Montegrossi, G.; Monteleone, S.; Trumpy, E.

    2012-12-01

    Oil exploration in western Sicily started in the late 1950s when several exploration wells were drilled, and continued with the acquisition of many seismic reflection profiles and the drilling of new wells in the1980s. The geological interpretation of these data mainly provided new insights for the definition of geometric relationships between tectonic units and structural reconstruction at depth. Although it has not produced completely satisfactory results for oil industry, this hydrocarbon exploration provided a great amount of data, resulting very suitable for geothermal resource assessment. From a geothermal point of view western Sicily is, indeed, a very promising area, with the manifestation at surface of several thermal springs, localized areas of high heat flux and thick carbonates units uninterruptedly developing from surface up top great depths. These available data were often collected with the modalities and purposes typical of oil exploration, not always the finest for geothermal exploration as in the case of temperature measurements. The multidisciplinary and integrated review of these data, specifically corrected for geothermal purposes, and the integration with new data acquired in particular key areas such as the Mazara Del Vallo site in the southern part of western Sicily, allowed us to better understand this medium-enthalpy geothermal system, to reconstruct the modalities and peculiarities of fluids circulation, and to evaluate the geothermal potentialities of western Sicily. We suggest that western Sicily can be taken as a reference for the understanding of geothermal systems developed at a regional scale within carbonate rocks. This study was performed within the framework of the VIGOR project (http://www.vigor-geotermia.it).

  7. Forests and Phenology: Designing the Early Warning System to Understand Forest Change

    Science.gov (United States)

    Pierce, T.; Phillips, M. B.; Hargrove, W. W.; Dobson, G.; Hicks, J.; Hutchins, M.; Lichtenstein, K.

    2010-12-01

    Vegetative phenology is the study of plant development and changes with the seasons, such as the greening-up and browning-down of forests, and how these events are influenced by variations in climate. A National Phenology Data Set, based on Moderate Resolution Imaging Spectroradiometer satellite images covering 2002 through 2009, is now available from work by NASA, the US Forest Service, and Oak Ridge National Laboratory. This new data set provides an easily interpretable product useful for detecting changes to the landscape due to long-term factors such as climate change, as well as finding areas affected by short-term forest threats such as insects or disease. The Early Warning System (EWS) is a toolset being developed by the US Forest Service and the University of North Carolina-Asheville to support distribution and use of the National Phenology Data Set. The Early Warning System will help research scientists, US Forest Service personnel, forest and natural resources managers, decision makers, and the public in the use of phenology data to better understand unexpected change within our nation’s forests. These changes could have multiple natural sources such as insects, disease, or storm damage, or may be due to human-induced events, like thinning, harvest, forest conversion to agriculture, or residential and commercial use. The primary goal of the Early Warning System is to provide a seamless integration between monitoring, detection, early warning and prediction of these forest disturbances as observed through phenological data. The system consists of PC and web-based components that are structured to support four user stages of increasing knowledge and data sophistication. Building Literacy: This stage of the Early Warning System educates potential users about the system, why the system should be used, and the fundamentals about the data the system uses. The channels for this education include a website, interactive tutorials, pamphlets, and other technology

  8. Understanding security failures of two authentication and key agreement schemes for telecare medicine information systems.

    Science.gov (United States)

    Mishra, Dheerendra

    2015-03-01

    Smart card based authentication and key agreement schemes for telecare medicine information systems (TMIS) enable doctors, nurses, patients and health visitors to use smart cards for secure login to medical information systems. In recent years, several authentication and key agreement schemes have been proposed to present secure and efficient solution for TMIS. Most of the existing authentication schemes for TMIS have either higher computation overhead or are vulnerable to attacks. To reduce the computational overhead and enhance the security, Lee recently proposed an authentication and key agreement scheme using chaotic maps for TMIS. Xu et al. also proposed a password based authentication and key agreement scheme for TMIS using elliptic curve cryptography. Both the schemes provide better efficiency from the conventional public key cryptography based schemes. These schemes are important as they present an efficient solution for TMIS. We analyze the security of both Lee's scheme and Xu et al.'s schemes. Unfortunately, we identify that both the schemes are vulnerable to denial of service attack. To understand the security failures of these cryptographic schemes which are the key of patching existing schemes and designing future schemes, we demonstrate the security loopholes of Lee's scheme and Xu et al.'s scheme in this paper.

  9. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher; Tummala, Naga Rajesh; Kemper, Travis; Aziz, Saadullah G.; Sears, John; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2017-01-01

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  10. Oxidative Stress in Oral Diseases: Understanding Its Relation with Other Systemic Diseases

    Directory of Open Access Journals (Sweden)

    Jaya Kumar

    2017-09-01

    Full Text Available Oxidative stress occurs in diabetes, various cancers, liver diseases, stroke, rheumatoid arthritis, chronic inflammation, and other degenerative diseases related to the nervous system. The free radicals have deleterious effect on various organs of the body. This is due to lipid peroxidation and irreversible protein modification that leads to cellular apoptosis or programmed cell death. During recent years, there is a rise in the oral diseases related to oxidative stress. Oxidative stress in oral disease is related to other systemic diseases in the body such as periodontitis, cardiovascular, pancreatic, gastric, and liver diseases. In the present review, we discuss the various pathways that mediate oxidative cellular damage. Numerous pathways mediate oxidative cellular damage and these include caspase pathway, PERK/NRF2 pathway, NADPH oxidase 4 pathways and JNK/mitogen-activated protein (MAP kinase pathway. We also discuss the role of inflammatory markers, lipid peroxidation, and role of oxygen species linked to oxidative stress. Knowledge of different pathways, role of inflammatory markers, and importance of low-density lipoprotein, fibrinogen, creatinine, nitric oxide, nitrates, and highly sensitive C-reactive proteins may be helpful in understanding the pathogenesis and plan better treatment for oral diseases which involve oxidative stress.

  11. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher

    2017-06-13

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  12. Characterising the development of the understanding of human body systems in high-school biology students - a longitudinal study

    Science.gov (United States)

    Snapir, Zohar; Eberbach, Catherine; Ben-Zvi-Assaraf, Orit; Hmelo-Silver, Cindy; Tripto, Jaklin

    2017-10-01

    Science education today has become increasingly focused on research into complex natural, social and technological systems. In this study, we examined the development of high-school biology students' systems understanding of the human body, in a three-year longitudinal study. The development of the students' system understanding was evaluated using the Components Mechanisms Phenomena (CMP) framework for conceptual representation. We coded and analysed the repertory grid personal constructs of 67 high-school biology students at 4 points throughout the study. Our data analysis builds on the assumption that systems understanding entails a perception of all the system categories, including structures within the system (its Components), specific processes and interactions at the macro and micro levels (Mechanisms), and the Phenomena that present the macro scale of processes and patterns within a system. Our findings suggest that as the learning process progressed, the systems understanding of our students became more advanced, moving forward within each of the major CMP categories. Moreover, there was an increase in the mechanism complexity presented by the students, manifested by more students describing mechanisms at the molecular level. Thus, the 'mechanism' category and the micro level are critical components that enable students to understand system-level phenomena such as homeostasis.

  13. Codevelopment of conceptual understanding and critical attitude: toward a systemic analysis of the survival blanket

    Science.gov (United States)

    Viennot, Laurence; Décamp, Nicolas

    2016-01-01

    One key objective of physics teaching is the promotion of conceptual understanding. Additionally, the critical faculty is universally seen as a central quality to be developed in students. In recent years, however, teaching objectives have placed stronger emphasis on skills than on concepts, and there is a risk that conceptual structuring may be disregarded. The question therefore arises as to whether it is possible for students to develop a critical stance without a conceptual basis, leading in turn to the issue of possible links between the development of conceptual understanding and critical attitude. In an in-depth study to address these questions, the participants were seven prospective physics and chemistry teachers. The methodology included a ‘teaching interview’, designed to observe participants’ responses to limited explanations of a given phenomenon and their ensuing intellectual satisfaction or frustration. The explanatory task related to the physics of how a survival blanket works, requiring a full and appropriate system analysis of the blanket. The analysis identified five recurrent lines of reasoning and linked these to judgments of adequacy of explanation, based on metacognitive/affective (MCA) factors, intellectual (dis)satisfaction and critical stance. Recurrent themes and MCA factors were used to map the intellectual dynamics that emerged during the interview process. Participants’ critical attitude was observed to develop in strong interaction with their comprehension of the topic. The results suggest that most students need to reach a certain level of conceptual mastery before they can begin to question an oversimplified explanation, although one student’s replies show that a different intellectual dynamics is also possible. The paper ends with a discussion of the implications of these findings for future research and for decisions concerning teaching objectives and the design of learning environments.

  14. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    Science.gov (United States)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  15. The woodrat gut microbiota as an experimental system for understanding microbial metabolism of dietary toxins

    Directory of Open Access Journals (Sweden)

    Kevin D. Kohl

    2016-07-01

    Full Text Available The microbial communities inhabiting the alimentary tracts of mammals, particularly those of herbivores, are estimated to be one of the densest microbial reservoirs on Earth. The significance of these gut microbes in influencing the physiology, ecology and evolution of their hosts is only beginning to be realized. To understand the microbiome of herbivores with a focus on nutritional ecology, while evaluating the roles of host evolution and environment in sculpting microbial diversity, we have developed an experimental system consisting of the microbial communities of several species of herbivorous woodrats (genus Neotoma that naturally feed on a variety of dietary toxins. We designed this system to investigate the long-standing, but experimentally neglected hypothesis that ingestion of toxic diets by herbivores is facilitated by the gut microbiota. Like several other rodent species, the woodrat stomach has a sacculated, nongastric foregut portion. We have documented a dense and diverse community of microbes in the woodrat foregut, with several genera potentially capable of degrading dietary toxins and/or playing a role in stimulating hepatic detoxification enzymes of the host. The biodiversity of these gut microbes appears to be a function of host evolution, ecological experience and diet, such that dietary toxins increase microbial diversity in hosts with experience with these toxins while novel toxins depress microbial diversity. These microbial communities are critical to the ingestion of a toxic diet as reducing the microbial community with antibiotics impairs the host’s ability to feed on dietary toxins. Furthermore, the detoxification capacity of gut microbes can be transferred from Neotoma both intra and interspecifically to naïve animals that lack ecological and evolutionary history with these toxins. In addition to advancing our knowledge of complex host-microbes interactions, this system holds promise for identifying microbes that

  16. Speech Understanding with a New Implant Technology: A Comparative Study with a New Nonskin Penetrating Baha System

    OpenAIRE

    Kurz, Anja; Flynn, Mark; Caversaccio, Marco; Kompis, Martin

    2014-01-01

    Objective. To compare hearing and speech understanding between a new, nonskin penetrating Baha system (Baha Attract) to the current Baha system using a skin-penetrating abutment. Methods. Hearing and speech understanding were measured in 16 experienced Baha users. The transmission path via the abutment was compared to a simulated Baha Attract transmission path by attaching the implantable magnet to the abutment and then by adding a sample of artificial skin and the external parts of the Baha...

  17. Microencapsulated Phase Change Materials in Solar-Thermal Conversion Systems: Understanding Geometry-Dependent Heating Efficiency and System Reliability.

    Science.gov (United States)

    Zheng, Zhaoliang; Chang, Zhuo; Xu, Guang-Kui; McBride, Fiona; Ho, Alexandra; Zhuola, Zhuola; Michailidis, Marios; Li, Wei; Raval, Rasmita; Akhtar, Riaz; Shchukin, Dmitry

    2017-01-24

    The performance of solar-thermal conversion systems can be improved by incorporation of nanocarbon-stabilized microencapsulated phase change materials (MPCMs). The geometry of MPCMs in the microcapsules plays an important role for improving their heating efficiency and reliability. Yet few efforts have been made to critically examine the formation mechanism of different geometries and their effect on MPCMs-shell interaction. Herein, through changing the cooling rate of original emulsions, we acquire MPCMs within the nanocarbon microcapsules with a hollow structure of MPCMs (h-MPCMs) or solid PCM core particles (s-MPCMs). X-ray photoelectron spectroscopy and atomic force microscopy reveals that the capsule shell of the h-MPCMs is enriched with nanocarbons and has a greater MPCMs-shell interaction compared to s-MPCMs. This results in the h-MPCMs being more stable and having greater heat diffusivity within and above the phase transition range than the s-MPCMs do. The geometry-dependent heating efficiency and system stability may have important and general implications for the fundamental understanding of microencapsulation and wider breadth of heating generating systems.

  18. What We Know Now: Synthesis for Understanding the Origin of the Pluto System

    Science.gov (United States)

    McKinnon, William B.; Stern, S. A.; Weaver, H. A.; Spencer, J. R.; Nimmo, F.; Lisse, C. M.; Umurhan, O. M.; Moore, J. M.; Buie, M. W.; Porter, S. B.; Olkin, C. B.; Young, L. A.; Ennico, K.

    2015-11-01

    The July 2015 New Horizons flyby has removed a long-standing obstacle to understanding the cosmogony of the Pluto-Charon system: the uncertain radius of Pluto. Combined with precise astrometric fits to the barycenter of the Pluto-Charon binary from HST observations of the more distant, small satellites (Brozovic et al., Icarus 246, 317-329, 2015), the densities of both Pluto and Charon are now known. At the 10% level, these densities are rather similar, as opposed to the more divergent density estimates of years past in which Charon was thought to be substantially icier. In the context of a “giant impact” origin, a rock-rich Charon implies that the precursor impacting bodies were at most only partially differentiated — possessing relatively thin ice shells (Canup, Astron. J. 141, 35, 2011). This suggests some combination of relatively slow and/or late accretion in the ancestral Kuiper belt. New Horizons has also shown that Nix and Hydra possess high albedos, consistent with ice-dominated compositions. Such compositions are consistent with a giant impact origin in which one or both precursor impacting bodies were partially differentiated, so that the small satellites ultimately formed from material ejected from ice-dominated surface layers (Peale and Canup, Treatise on Geophysics, 2nd Ed., chapter 10.17, 2015). We examine whether Pluto and Charon could actually possess the same bulk rock/ice ratio and whether this would allow for an alternate, non-giant-impact origin for the Pluto system.This work was supported by NASA's New Horizons project.

  19. Understanding India, globalisation and health care systems: a mapping of research in the social sciences

    Science.gov (United States)

    2012-01-01

    National and transnational health care systems are rapidly evolving with current processes of globalisation. What is the contribution of the social sciences to an understanding of this field? A structured scoping exercise was conducted to identify relevant literature using the lens of India – a ‘rising power’ with a rapidly expanding healthcare economy. A five step search and analysis method was employed in order to capture as wide a range of material as possible. Documents published in English that met criteria for a social science contribution were included for review. Via electronic bibliographic databases, websites and hand searches conducted in India, 113 relevant articles, books and reports were identified. These were classified according to topic area, publication date, disciplinary perspective, genre, and theoretical and methodological approaches. Topic areas were identified initially through an inductive approach, then rationalised into seven broad themes. Transnational consumption of health services; the transnational healthcare workforce; the production, consumption and trade in specific health-related commodities, and transnational diffusion of ideas and knowledge have all received attention from social scientists in work related to India. Other themes with smaller volumes of work include new global health governance issues and structures; transnational delivery of health services and the transnational movement of capital. Thirteen disciplines were found represented in our review, with social policy being a clear leader, followed by economics and management studies. Overall this survey of India-related work suggests a young and expanding literature, although hampered by inadequacies in global comparative data, and by difficulties in accessing commercially sensitive information. The field would benefit from further cross-fertilisation between disciplines and greater application of explanatory theory. Literatures around stem cell research and health

  20. Understanding India, globalisation and health care systems: a mapping of research in the social sciences.

    Science.gov (United States)

    Bisht, Ramila; Pitchforth, Emma; Murray, Susan F

    2012-09-10

    National and transnational health care systems are rapidly evolving with current processes of globalisation. What is the contribution of the social sciences to an understanding of this field? A structured scoping exercise was conducted to identify relevant literature using the lens of India - a 'rising power' with a rapidly expanding healthcare economy. A five step search and analysis method was employed in order to capture as wide a range of material as possible. Documents published in English that met criteria for a social science contribution were included for review. Via electronic bibliographic databases, websites and hand searches conducted in India, 113 relevant articles, books and reports were identified. These were classified according to topic area, publication date, disciplinary perspective, genre, and theoretical and methodological approaches. Topic areas were identified initially through an inductive approach, then rationalised into seven broad themes. Transnational consumption of health services; the transnational healthcare workforce; the production, consumption and trade in specific health-related commodities, and transnational diffusion of ideas and knowledge have all received attention from social scientists in work related to India. Other themes with smaller volumes of work include new global health governance issues and structures; transnational delivery of health services and the transnational movement of capital. Thirteen disciplines were found represented in our review, with social policy being a clear leader, followed by economics and management studies. Overall this survey of India-related work suggests a young and expanding literature, although hampered by inadequacies in global comparative data, and by difficulties in accessing commercially sensitive information. The field would benefit from further cross-fertilisation between disciplines and greater application of explanatory theory. Literatures around stem cell research and health

  1. Understanding system disturbance and ecosystem services in restored saltmarshes: Integrating physical and biogeochemical processes

    Science.gov (United States)

    Spencer, K. L.; Harvey, G. L.

    2012-06-01

    Coastal saltmarsh ecosystems occupy only a small percentage of Earth's land surface, yet contribute a wide range of ecosystem services that have significant global economic and societal value. These environments currently face significant challenges associated with climate change, sea level rise, development and water quality deterioration and are consequently the focus of a range of management schemes. Increasingly, soft engineering techniques such as managed realignment (MR) are being employed to restore and recreate these environments, driven primarily by the need for habitat (re)creation and sustainable coastal flood defence. Such restoration schemes also have the potential to provide additional ecosystem services including climate regulation and waste processing. However, these sites have frequently been physically impacted by their previous land use and there is a lack of understanding of how this 'disturbance' impacts the delivery of ecosystem services or of the complex linkages between ecological, physical and biogeochemical processes in restored systems. Through the exploration of current data this paper determines that hydrological, geomorphological and hydrodynamic functioning of restored sites may be significantly impaired with respects to natural 'undisturbed' systems and that links between morphology, sediment structure, hydrology and solute transfer are poorly understood. This has consequences for the delivery of seeds, the provision of abiotic conditions suitable for plant growth, the development of microhabitats and the cycling of nutrients/contaminants and may impact the delivery of ecosystem services including biodiversity, climate regulation and waste processing. This calls for a change in our approach to research in these environments with a need for integrated, interdisciplinary studies over a range of spatial and temporal scales incorporating both intensive and extensive research design.

  2. Networked Community Change: Understanding Community Systems Change through the Lens of Social Network Analysis.

    Science.gov (United States)

    Lawlor, Jennifer A; Neal, Zachary P

    2016-06-01

    Addressing complex problems in communities has become a key area of focus in recent years (Kania & Kramer, 2013, Stanford Social Innovation Review). Building on existing approaches to understanding and addressing problems, such as action research, several new approaches have emerged that shift the way communities solve problems (e.g., Burns, 2007, Systemic Action Research; Foth, 2006, Action Research, 4, 205; Kania & Kramer, 2011, Stanford Social Innovation Review, 1, 36). Seeking to bring clarity to the emerging literature on community change strategies, this article identifies the common features of the most widespread community change strategies and explores the conditions under which such strategies have the potential to be effective. We identify and describe five common features among the approaches to change. Then, using an agent-based model, we simulate network-building behavior among stakeholders participating in community change efforts using these approaches. We find that the emergent stakeholder networks are efficient when the processes are implemented under ideal conditions. © Society for Community Research and Action 2016.

  3. Understanding uncoupling in the multiredox centre P450 3A4-BMR model system.

    Science.gov (United States)

    Degregorio, Danilo; Sadeghi, Sheila J; Di Nardo, Giovanna; Gilardi, Gianfranco; Solinas, Sandro P

    2011-01-01

    Understanding the uncoupling at the haem active site and/or at the level of multidomain electron transfer is an important element in cytochrome P450 chemistry. Here a chimeric model system consisting of human cytochrome P450 3A4 and the soluble reductase domain of CYP102A1 from Bacillus megaterium (BMR) is used to study the relationship between electron transfer and the coupling efficiency in substrate monoxygenation. Several regulatory features were considered. FAD and FMN added to apoenzyme in oversaturating concentrations influence neither formaldehyde production nor coupling efficiency. The optimal conditions of coupling efficiency depended only on the NADPH concentration. The pH (8.0) and ionic strength (50 mM potassium phosphate) were found to modulate the level of coupling, indicating an influence over the formation of a productive interaction between the BMR and the haem domain. Overall, uncoupling is found to be an intrinsic property of the haem domain, and the covalent linkage of the reductase in a single polypeptide chain has little influence over the activity coupled to product formation.

  4. Understanding coral reefs as complex systems: degradation and prospects for recovery

    Directory of Open Access Journals (Sweden)

    Raymond T. Dizon

    2006-06-01

    Full Text Available The present century is witness to unprecedented levels of coral reef degradation worldwide. Current understanding based on traditional ideas is unlikely to capture adequately the dynamics of phenomena accompanying this trend. In this regard, the ideas of complexity are reviewed. Some applications to coral reefs as complex systems have already been discussed in the literature although further progress is warranted as the search for new and more effective management tools continues, and the direction towards more holistic, integrative and large scale approaches gains wider acceptance. We distinguish between the concepts of robustness and resilience in the face of disturbance, highlight the various mechanisms that foster these stability properties and provide some coral reef examples. We identify some of the driving forces behind succession that are critical for community assembly and possible reef recovery. Finally, we consider how self-organization arises out of apparently random and chaotic processes and interactions to exhibit certain regularities and patterns especially when moving up on the scale of space and/or time.

  5. Applying a complex adaptive system's understanding of health to primary care [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Johannes Bircher

    2016-09-01

    Full Text Available This paper explores the diagnostic and therapeutic potential of a new concept of health. Investigations into the nature of health have led to a new definition that explains health as a complex adaptive system (CAS and is based on five components (a-e. Humans like all biological creatures must satisfactorily respond to (a the demands of life. For this purpose they need (b a biologically given potential (BGP and (c a personally acquired potential (PAP. These properties of individuals are embedded within (d social and (e environmental determinants of health. Between these five components of health there are 10 complex interactions that justify viewing health as a CAS. In each patient, the current state of health as a CAS evolved from the past, will move forward to a new future, and has to be analyzed and treated as an autonomous whole. A diagnostic procedure is suggested as follows: together with the patient, the five components and 10 complex interactions are assessed. This may help patients to better understand their situations and to recognize possible next steps that may be useful in order to evolve toward better health by themselves. In this process mutual trust in the patient-physician interaction is critical. The described approach offers new possibilities for helping patients improve their health prospects.

  6. Korean Survivors of the Japanese "Comfort Women" System: Understanding the Lifelong Consequences of Early Life Trauma.

    Science.gov (United States)

    Park, Jee Hoon; Lee, KyongWeon; Hand, Michelle D; Anderson, Keith A; Schleitwiler, Tess E

    2016-01-01

    Prior to and during World War II, thousands of girls and young women were abducted from Korea and forced into sexual slavery by the Japanese government. Termed comfort women, these girls and young women suffered extreme sexual, physical, and emotional abuse and trauma. Research on this group is not well-developed and people know little of the impact of this early life trauma on the lives of these women who are now in later life. Using snowball sampling, 16 older adult survivors of the comfort women system participated in semistructured qualitative interviews. Thematic analysis was conducted to gain an understanding of the trauma that these women suffered and how it impacted their lives. Results revealed the depths of the abuse these women suffered, including repeated rapes, physical beatings, humiliation, forced surgery and sterilization, and social exclusion. These early traumatic experiences appeared to reverberate throughout their lives in their family relations, their inability to marry and to conceive children, and their emotional and physical well-being throughout the life course and into later life. The experiences of these survivors illustrate the lasting impact of early-life trauma and can guide interventions with current survivors of sexual abuse or trafficking.

  7. Understanding the System You Are in Is Key to Improving It.

    Science.gov (United States)

    Plsek, Paul

    2017-01-01

    Front-line ownership (FLO) is an approach to change that is consistent with what we know about complex adaptive systems (CAS), such as a healthcare organization. Traditional change approaches can fail because they are based in the "organization as a machine" metaphor of traditional, scientific management. Both metaphors have their application. It depends on how closely the work naturally resembles a predictable machine. Often, the drive for detailed standardization is a misguided effort to make a human CAS behave more like a machine, so that our traditional approaches to change will work. FLO is a more appropriate tool in a CAS, where shared agreement at the level of a few simple rules (minimum specifications) and allowing flexibility for adaptation within local context is more appropriate than detailed standardization. Because humans in a CAS maintain some control over their discretionary effort, change advocates desiring sustainable change must work with stakeholders to co-create cases for change that resonate with the values of those being asked to change. FLO facilitates the emergence of this level of understanding of shared values.

  8. Force-induced bone growth and adaptation: A system theoretical approach to understanding bone mechanotransduction

    International Nuclear Information System (INIS)

    Maldonado, Solvey; Findeisen, Rolf

    2010-01-01

    The modeling, analysis, and design of treatment therapies for bone disorders based on the paradigm of force-induced bone growth and adaptation is a challenging task. Mathematical models provide, in comparison to clinical, medical and biological approaches an structured alternative framework to understand the concurrent effects of the multiple factors involved in bone remodeling. By now, there are few mathematical models describing the appearing complex interactions. However, the resulting models are complex and difficult to analyze, due to the strong nonlinearities appearing in the equations, the wide range of variability of the states, and the uncertainties in parameters. In this work, we focus on analyzing the effects of changes in model structure and parameters/inputs variations on the overall steady state behavior using systems theoretical methods. Based on an briefly reviewed existing model that describes force-induced bone adaptation, the main objective of this work is to analyze the stationary behavior and to identify plausible treatment targets for remodeling related bone disorders. Identifying plausible targets can help in the development of optimal treatments combining both physical activity and drug-medication. Such treatments help to improve/maintain/restore bone strength, which deteriorates under bone disorder conditions, such as estrogen deficiency.

  9. Towards a better understanding of recommender system in the labor market.:Towards a better understanding of recommender system in the labor market.

    OpenAIRE

    Reusens, Michael

    2018-01-01

    The rise of information systems, and especially the internet, has given service providers the opportunity to increase the number of services they can offer their customers. E-commerce platforms, such as Amazon and AliExpress, can offer their customers millions of products because they do not need shelf space to present all their products. Entertainment providers, such as Youtube, Spotify and Netflix, have millions of songs and movies from which the user can choose. Also in the labor market, e...

  10. Teaching Teaching & Understanding Understanding

    DEFF Research Database (Denmark)

    2006-01-01

    "Teaching Teaching & Understanding Understanding" is a 19-minute award-winning short-film about teaching at university and higher-level educational institutions. It is based on the "Constructive Alignment" theory developed by Prof. John Biggs. The film delivers a foundation for understanding what...

  11. Challenges in using geographic information systems (GIS to understand and control malaria in Indonesia

    Directory of Open Access Journals (Sweden)

    Dale Pat

    2003-11-01

    Full Text Available Abstract Malaria is a mosquito-borne disease of global concern with 1.5 to 2.7 million people dying each year and many more suffering from it. In Indonesia, malaria is a major public health issue with around six million clinical cases and 700 deaths each year. Malaria is most prevalent in the developing countries of the world. Aid agencies have provided financial and technical assistance to malaria-prone countries in an effort to battle the disease. Over the past decade, the focus of some of this assistance has been in the provision of geographic information systems (GIS hardware, software and training. In theory, GIS can be a very effective tool in combating malaria, however, in practice there have been a host of challenges to its successful use. This review is based, in part, on the literature but also on our experience working with the Indonesian Ministry of Health. The review identifies three broad problem areas. The first of these relates to data concerns. Without adequate data, GIS is not very useful. Specific problem areas include: accurate data on the disease and how it is reported; basic environmental data on vegetation, land uses, topography, rainfall, etc.; and demographic data on the movement of people. The second problem area involves technology – specifically computer hardware, GIS software and training. The third problem area concerns methods – assuming the previous data and technological problems have been resolved – how can GIS be used to improve our understanding of malaria? One of the main methodological tools is spatial statistical analysis, however, this is a newly developing field, is not easy to understand and suffers from the fact that there is no agreement on standard methods of analysis. The paper concludes with a discussion of strategies that can be used to overcome some of these problems. One of these strategies involves using ArcView GIS software in combination with ArcExplorer (a public domain program that can

  12. A review of human factors challenges of complex adaptive systems: discovering and understanding chaos in human performance.

    Science.gov (United States)

    Karwowski, Waldemar

    2012-12-01

    In this paper, the author explores a need for a greater understanding of the true nature of human-system interactions from the perspective of the theory of complex adaptive systems, including the essence of complexity, emergent properties of system behavior, nonlinear systems dynamics, and deterministic chaos. Human performance, more often than not, constitutes complex adaptive phenomena with emergent properties that exhibit nonlinear dynamical (chaotic) behaviors. The complexity challenges in the design and management of contemporary work systems, including service systems, are explored. Examples of selected applications of the concepts of nonlinear dynamics to the study of human physical performance are provided. Understanding and applications of the concepts of theory of complex adaptive and dynamical systems should significantly improve the effectiveness of human-centered design efforts of a large system of systems. Performance of many contemporary work systems and environments may be sensitive to the initial conditions and may exhibit dynamic nonlinear properties and chaotic system behaviors. Human-centered design of emergent human-system interactions requires application of the theories of nonlinear dynamics and complex adaptive system. The success of future human-systems integration efforts requires the fusion of paradigms, knowledge, design principles, and methodologies of human factors and ergonomics with those of the science of complex adaptive systems as well as modern systems engineering.

  13. Examing nursing students' understanding of the cardiovascular system in a BSN program

    Science.gov (United States)

    Stuart, Parker Emerson

    This study investigated the alignment of important cardiovascular system (CVS) concepts identified by expert nurses with nursing student's knowledge. Specifically, it focused on the prevalence of nursing students' alternative conceptions for these important concepts as a potential reason for a theory-practice gap in nursing (Corlett, 2000; Jordan, 1994). This is the first study to target nursing student alternative conceptions exclusively whereas other studies focused on diverse groups of undergraduates' CVS knowledge (Michael et al., 2002). The study was divided into two phases and used a case study approach with each phase of the study representing a single case. The first phase of the study sought to understand what CVS concepts expert nurses deemed relevant to their daily practice and how these experts used these concepts. The second phase identified nursing student alternative conceptions through the use of open-ended scenarios based on the results of phase I. For the first phase of the study involved four CVS expert nurses practicing in emergency rooms and cardiac intensive care units at two local hospitals. Interviews were used to elicit important CVS concepts. The expert nurses identified five broad concepts as important to their practice. These concepts were a) cardiovascular anatomical concepts; b) cardiovascular physiological concepts; c) homeostasis and diseases of the CVS; d) the interdependence and interaction of the CVS with other organ systems and e) the intersection of the CVS and technology in patient diagnosis and treatment. These finding reinforce concepts already being taught to nursing students but also suggest that instruction should focus more on how the CVS interacts with other organ systems and how technology and the CVS interact. The presence of alternative conceptions in the nursing students was examined through the use of open-ended questions. A total of 17 students fully completed the scenario questions. Results indicate that this

  14. Soft systems methodology as a potential approach to understanding non-motorised transport users in South Africa

    CSIR Research Space (South Africa)

    Van Rooyen, CE

    2016-07-01

    Full Text Available of this paper is to show the potential of using systems thinking and more particularly Soft Systems Methodology (SSM) as a practical and beneficial instrument that will guide BEPDPs with the ongoing learning process of understanding NMT users and their specific...

  15. A Qualitative Study of Agricultural Literacy in Urban Youth: What Do Elementary Students Understand about the Agri-Food System?

    Science.gov (United States)

    Hess, Alexander J.; Trexler, Cary J.

    2011-01-01

    Agricultural literacy of K-12 students is a national priority for both scientific and agricultural education professional organizations. Development of curricula to address this priority has not been informed by research on what K-12 students understand about the agri-food system. While students' knowledge of food and fiber system facts have been…

  16. Speech Understanding with a New Implant Technology: A Comparative Study with a New Nonskin Penetrating Baha System

    Directory of Open Access Journals (Sweden)

    Anja Kurz

    2014-01-01

    Full Text Available Objective. To compare hearing and speech understanding between a new, nonskin penetrating Baha system (Baha Attract to the current Baha system using a skin-penetrating abutment. Methods. Hearing and speech understanding were measured in 16 experienced Baha users. The transmission path via the abutment was compared to a simulated Baha Attract transmission path by attaching the implantable magnet to the abutment and then by adding a sample of artificial skin and the external parts of the Baha Attract system. Four different measurements were performed: bone conduction thresholds directly through the sound processor (BC Direct, aided sound field thresholds, aided speech understanding in quiet, and aided speech understanding in noise. Results. The simulated Baha Attract transmission path introduced an attenuation starting from approximately 5 dB at 1000 Hz, increasing to 20–25 dB above 6000 Hz. However, aided sound field threshold shows smaller differences and aided speech understanding in quiet and in noise does not differ significantly between the two transmission paths. Conclusion. The Baha Attract system transmission path introduces predominately high frequency attenuation. This attenuation can be partially compensated by adequate fitting of the speech processor. No significant decrease in speech understanding in either quiet or in noise was found.

  17. Advancements toward a Systems Level Understanding of the Human Oral Microbiome

    Directory of Open Access Journals (Sweden)

    Jeffrey Scott Mclean

    2014-07-01

    Full Text Available Oral microbes represent one of the most well studied microbial communities owing to the fact that they are a fundamental part of human development influencing health and disease, an easily accessible human microbiome, a highly structured and remarkably resilient biofilm as well as a model of bacteria-bacteria and bacteria-host interactions. In the last eighty years since oral plaque was first characterized for its functionally stable physiological properties such as the highly repeatable rapid pH decrease upon carbohydrate addition and subsequent recovery phase, the fundamental approaches to study the oral microbiome have cycled back and forth between community level investigations and characterizing individual model isolates. Since that time, many individual species have been well characterized and the development of the early plaque community, which involves many cell–cell binding interactions, has been carefully described. With high throughput sequencing enabling the enormous diversity of the oral cavity to be realized, a number of new challenges to progress were revealed. The large number of uncultivated oral species, the high interpersonal variability of taxonomic carriage and the possibility of multiple pathways to dysbiosis pose as major hurdles to obtain a systems level understanding from the community to the gene level. It is now possible however to start connecting the insights gained from single species with community wide approaches. This review will discuss some of the recent insights into the oral microbiome at a fundamental level, existing knowledge gaps, as well as challenges that have surfaced and the approaches to address them.

  18. Outflow tract septation and the aortic arch system in reptiles: lessons for understanding the mammalian heart

    Directory of Open Access Journals (Sweden)

    Robert E. Poelmann

    2017-05-01

    Full Text Available Abstract Background Cardiac outflow tract patterning and cell contribution are studied using an evo-devo approach to reveal insight into the development of aorto-pulmonary septation. Results We studied embryonic stages of reptile hearts (lizard, turtle and crocodile and compared these to avian and mammalian development. Immunohistochemistry allowed us to indicate where the essential cell components in the outflow tract and aortic sac were deployed, more specifically endocardial, neural crest and second heart field cells. The neural crest-derived aorto-pulmonary septum separates the pulmonary trunk from both aortae in reptiles, presenting with a left visceral and a right systemic aorta arising from the unseptated ventricle. Second heart field-derived cells function as flow dividers between both aortae and between the two pulmonary arteries. In birds, the left visceral aorta disappears early in development, while the right systemic aorta persists. This leads to a fusion of the aorto-pulmonary septum and the aortic flow divider (second heart field population forming an avian aorto-pulmonary septal complex. In mammals, there is also a second heart field-derived aortic flow divider, albeit at a more distal site, while the aorto-pulmonary septum separates the aortic trunk from the pulmonary trunk. As in birds there is fusion with second heart field-derived cells albeit from the pulmonary flow divider as the right 6th pharyngeal arch artery disappears, resulting in a mammalian aorto-pulmonary septal complex. In crocodiles, birds and mammals, the main septal and parietal endocardial cushions receive neural crest cells that are functional in fusion and myocardialization of the outflow tract septum. Longer-lasting septation in crocodiles demonstrates a heterochrony in development. In other reptiles with no indication of incursion of neural crest cells, there is either no myocardialized outflow tract septum (lizard or it is vestigial (turtle. Crocodiles

  19. Outflow tract septation and the aortic arch system in reptiles: lessons for understanding the mammalian heart.

    Science.gov (United States)

    Poelmann, Robert E; Gittenberger-de Groot, Adriana C; Biermans, Marcel W M; Dolfing, Anne I; Jagessar, Armand; van Hattum, Sam; Hoogenboom, Amanda; Wisse, Lambertus J; Vicente-Steijn, Rebecca; de Bakker, Merijn A G; Vonk, Freek J; Hirasawa, Tatsuya; Kuratani, Shigeru; Richardson, Michael K

    2017-01-01

    Cardiac outflow tract patterning and cell contribution are studied using an evo-devo approach to reveal insight into the development of aorto-pulmonary septation. We studied embryonic stages of reptile hearts (lizard, turtle and crocodile) and compared these to avian and mammalian development. Immunohistochemistry allowed us to indicate where the essential cell components in the outflow tract and aortic sac were deployed, more specifically endocardial, neural crest and second heart field cells. The neural crest-derived aorto-pulmonary septum separates the pulmonary trunk from both aortae in reptiles, presenting with a left visceral and a right systemic aorta arising from the unseptated ventricle. Second heart field-derived cells function as flow dividers between both aortae and between the two pulmonary arteries. In birds, the left visceral aorta disappears early in development, while the right systemic aorta persists. This leads to a fusion of the aorto-pulmonary septum and the aortic flow divider (second heart field population) forming an avian aorto-pulmonary septal complex. In mammals, there is also a second heart field-derived aortic flow divider, albeit at a more distal site, while the aorto-pulmonary septum separates the aortic trunk from the pulmonary trunk. As in birds there is fusion with second heart field-derived cells albeit from the pulmonary flow divider as the right 6th pharyngeal arch artery disappears, resulting in a mammalian aorto-pulmonary septal complex. In crocodiles, birds and mammals, the main septal and parietal endocardial cushions receive neural crest cells that are functional in fusion and myocardialization of the outflow tract septum. Longer-lasting septation in crocodiles demonstrates a heterochrony in development. In other reptiles with no indication of incursion of neural crest cells, there is either no myocardialized outflow tract septum (lizard) or it is vestigial (turtle). Crocodiles are unique in bearing a central shunt, the

  20. Life and understanding:the origins of ‘understanding’ in self-organizing nervous systems.

    Directory of Open Access Journals (Sweden)

    Yan Mark Yufik

    2016-12-01

    Full Text Available This article is motivated by the formulation of biotic self-organisation in (Friston, 2013, where the emergence of ‘life’ in coupled material entities (e.g., macromolecules was predicated on bounded subsets that maintain a degree of statistical independence from the rest of the network. Boundary elements in such systems or units constitute a Markov blanket; separating the internal states of the unit from its surrounding states. In this paper, we ask whether Markov blankets operate in the nervous system and underlie the development of intelligence, enabling a progression from the ability to sense the environment to the ability to understand it. Markov blankets have been previously hypothesized to form in neuronal networks as a result of phase transitions that cause network subsets to fold into bounded assemblies, or packets (Yufik, 1998a. The ensuing neuronal packets hypothesis builds on the notion of neuronal assemblies (Hebb, 1949, 1980, treating such assemblies as flexible but stable biophysical structures capable of withstanding entropic erosion. In other words, structures that maintain their integrity under changing conditions. In this treatment, neuronal packets give rise to perception of ’objects’; i.e., quasi-stable (stimulus bound groupings that are conserved over multiple presentations (e.g., the experience of perceiving ‘apple’ can be interrupted and resumed many times. Monitoring the variations in such groups enables the apprehension of behaviour; i.e., attributing to objects the ability to undergo changes without loss of self-identity. Ultimately, ‘understanding’ involves self-directed composition and manipulation of the ensuing ‘mental models’ that are constituted by neuronal packets, whose dynamics capture relationships among objects: that is, dependencies in the behaviour of objects under varying conditions. For example, movement is known to involve rotation of population vectors in the motor cortex

  1. Understanding Kendal aquifer system: a baseline analysis for sustainable water management proposal

    Science.gov (United States)

    Lukman, A.; Aryanto, M. D.; Pramudito, A.; Andhika, A.; Irawan, D. E.

    2017-07-01

    North coast of Java has been grown as the center of economic activities and major connectivity hub for Sumatra and Bali. Sustainable water management must support such role. One of the basis is to understand the baseline of groundwater occurrences and potential. However the complex alluvium aquiver system has not been well-understood. A geoelectric measurements were performed to determine which rock layer has a good potential as groundwater aquifers in the northern coast of Kaliwungu Regency, Kendal District, Central Java province. Total of 10 vertical electrical sounding (VES) points has been performed, using a Schlumberger configuration with the current electrode spacing (AB/2) varies between 200 - 300 m and the potential difference electrode spacing (MN/2) varies between 0.5 to 20 m with depths target ranging between 150 - 200 m. Geoelectrical data processing is done using Ip2win software which generates resistivity value, thickness and depth of subsurface rock layers. Based on the correlation between resistivity value with regional geology, hydrogeology and local well data, we identify three aquifer layers. The first layer is silty clay with resistivity values vary between 0 - 10 ohm.m, then the second layer is tuffaceous claystone with resistivity value between 10 - 60 ohm.m. Both layers serve as impermeable layer. The third layer is sandy tuff with resistivity value between 60 - 100 ohm.m which serves as a confined aquifer layer located at 70 - 100 m below surface. Its thickness is vary between 70 to 110 m. The aquifer layer is a mixing of volcanic and alluvium sediment, which is a member of Damar Formation. The stratification of the aquifer system may change in short distance and depth. This natural setting prevent us to make a long continuous correlation between layers. Aquifer discharge is estimated between 5 - 71 L/s with the potential deep well locations lies in the west and southeast part of the study area. These hydrogeological settings should be used

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIII, I--MAINTAINING THE FUEL SYSTEM, PART II--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING STEERING SYSTEMS.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL INJECTION SYSTEM AND THE STEERING SYSTEM OF DIESEL POWERED VEHICLES. TOPICS ARE FUEL INJECTION SECTION, AND DESCRIPTION OF THE STEERING SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  3. Supporting second grade lower secondary school students’ understanding of linear equation system in two variables using ethnomathematics

    Science.gov (United States)

    Nursyahidah, F.; Saputro, B. A.; Rubowo, M. R.

    2018-03-01

    The aim of this research is to know the students’ understanding of linear equation system in two variables using Ethnomathematics and to acquire learning trajectory of linear equation system in two variables for the second grade of lower secondary school students. This research used methodology of design research that consists of three phases, there are preliminary design, teaching experiment, and retrospective analysis. Subject of this study is 28 second grade students of Sekolah Menengah Pertama (SMP) 37 Semarang. The result of this research shows that the students’ understanding in linear equation system in two variables can be stimulated by using Ethnomathematics in selling buying tradition in Peterongan traditional market in Central Java as a context. All of strategies and model that was applied by students and also their result discussion shows how construction and contribution of students can help them to understand concept of linear equation system in two variables. All the activities that were done by students produce learning trajectory to gain the goal of learning. Each steps of learning trajectory of students have an important role in understanding the concept from informal to the formal level. Learning trajectory using Ethnomathematics that is produced consist of watching video of selling buying activity in Peterongan traditional market to construct linear equation in two variables, determine the solution of linear equation in two variables, construct model of linear equation system in two variables from contextual problem, and solving a contextual problem related to linear equation system in two variables.

  4. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    Science.gov (United States)

    Taber, Keith S.

    2013-01-01

    Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…

  5. Modules, networks and systems medicine for understanding disease and aiding diagnosis

    DEFF Research Database (Denmark)

    Gustafsson, Mika; Nestor, Colm E.; Zhang, Huan

    2014-01-01

    Many common diseases, such as asthma, diabetes or obesity, involve altered interactions between thousands of genes. High-throughput techniques (omics) allow identification of such genes and their products, but functional understanding is a formidable challenge. Network-based analyses of omics dat...

  6. Modules, networks and systems medicine for understanding disease and aiding diagnosis

    NARCIS (Netherlands)

    Gustafsson, Mika; Nestor, Colm E.; Zhang, Huan; Barabási, Albert-László; Baranzini, Sergio; Brunak, Sören; Chung, Kian Fan; Federoff, Howard J.; Gavin, Anne-Claude; Meehan, Richard R.; Picotti, Paola; Pujana, Miguel Àngel; Rajewsky, Nikolaus; Smith, Kenneth Gc; Sterk, Peter J.; Villoslada, Pablo; Benson, Mikael

    2014-01-01

    Many common diseases, such as asthma, diabetes or obesity, involve altered interactions between thousands of genes. High-throughput techniques (omics) allow identification of such genes and their products, but functional understanding is a formidable challenge. Network-based analyses of omics data

  7. Analysis of drought characteristics for improved understanding of a water resource system

    Directory of Open Access Journals (Sweden)

    A. T. Lennard

    2014-09-01

    Full Text Available Droughts are a reoccurring feature of the UK climate; recent drought events (2004–2006 and 2010–2012 have highlighted the UK’s continued vulnerability to this hazard. There is a need for further understanding of extreme events, particularly from a water resource perspective. A number of drought indices are available, which can help to improve our understanding of drought characteristics such as frequency, severity and duration. However, at present little of this is applied to water resource management in the water supply sector. Improved understanding of drought characteristics using indices can inform water resource management plans and enhance future drought resilience. This study applies the standardised precipitation index (SPI to a series of rainfall records (1962–2012 across the water supply region of a single utility provider. Key droughts within this period are analysed to develop an understanding of the meteorological characteristics that lead to, exist during and terminate drought events. The results of this analysis highlight how drought severity and duration can vary across a small-scale water supply region, indicating that the spatial coherence of drought events cannot be assumed.

  8. An Understanding Information Management System for a Real-Time Interactive Distance Education Environment

    Science.gov (United States)

    He, Aiguo

    2009-01-01

    A real-time interactive distance lecture is a joint work that should be accomplished by the effort of the lecturer and his students in remote sites. It is important for the lecturer to get understanding information from the students which cannot be efficiently collected by only using video/audio channels between the lecturer and the students. This…

  9. White Fatigue: Naming the Challenge in Moving from an Individual to a Systemic Understanding of Racism

    Science.gov (United States)

    Flynn, Joseph E.

    2015-01-01

    This article introduces the notion White fatigue. White fatigue occurs for White students who have grown tired of learning and discussing race and racism, despite an understanding of the moral imperative of anti-racist and anti-oppressive practices. The article differentiates White fatigue from ideas like White resistance, White guilt, or White…

  10. Structuring properties of irrigation systems : Understanding relations between humans and hydraulics through modeling

    NARCIS (Netherlands)

    Ertsen, M.W.

    2010-01-01

    Irrigation systems were clearly important in ancient times in supplying crops with water. This requires physical distribution facilities and socio-political arrangements to coordinate between actors. Resulting systems are highly diverse, and are being studied extensively within archeology and

  11. Development of a Systems Science Curriculum to Engage Rural African American Teens in Understanding and Addressing Childhood Obesity Prevention

    Science.gov (United States)

    Frerichs, Leah; Lich, Kristen Hassmiller; Young, Tiffany L.; Dave, Gaurav; Stith, Doris; Corbie-Smith, Giselle

    2018-01-01

    Engaging youth from racial and ethnic minority communities as leaders for change is a potential strategy to mobilize support for addressing childhood obesity, but there are limited curricula designed to help youth understand the complex influences on obesity. Our aim was to develop and pilot test a systems science curriculum to elicit rural…

  12. "Toward High School Biology": Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better…

  13. Understanding fisheries credit systems: potentials and pitfalls of managing catch efficiency

    NARCIS (Netherlands)

    Riel, van M.C.; Bush, S.R.; Zwieten, van P.A.M.; Mol, A.P.J.

    2015-01-01

    Following implementation in a range of other resource sectors, a number of credit-like systems have been proposed for fisheries. But confusion exists over what constitutes these nascent ‘fisheries credit’ systems and how they operate. Based on a review of credit systems in other sectors, this study

  14. Challenges to Cognitive Systems Engineering:Understanding Qualitative Aspects of Control Actions

    DEFF Research Database (Denmark)

    Lind, Morten

    2009-01-01

    The paper discusses the future role of Cognitive Systems Engineering (CSE) in contributing to integrated design of process, automation and human machine systems. Existing concepts and methods of Cognitive Systems Engineering do not integrate well with control theory and industrial automation tools...

  15. A Novel Approach to Teaching and Understanding Transformations of Matter in Dynamic Earth Systems

    Science.gov (United States)

    Clark, Scott K.; Sibley, Duncan F.; Libarkin, Julie C.; Heidemann, Merle

    2009-01-01

    The need to engage K-12 and post-secondary students in considering the Earth as a dynamic system requires explicit discussion of system characteristics. Fundamentally, dynamic systems involve the movement and change of matter, often through processes that are difficult to see and comprehend. We introduce a novel instructional method, termed…

  16. Understanding Maple

    CERN Document Server

    Thompson, Ian

    2016-01-01

    Maple is a powerful symbolic computation system that is widely used in universities around the world. This short introduction gives readers an insight into the rules that control how the system works, and how to understand, fix, and avoid common problems. Topics covered include algebra, calculus, linear algebra, graphics, programming, and procedures. Each chapter contains numerous illustrative examples, using mathematics that does not extend beyond first-year undergraduate material. Maple worksheets containing these examples are available for download from the author's personal website. The book is suitable for new users, but where advanced topics are central to understanding Maple they are tackled head-on. Many concepts which are absent from introductory books and manuals are described in detail. With this book, students, teachers and researchers will gain a solid understanding of Maple and how to use it to solve complex mathematical problems in a simple and efficient way.

  17. Temporal Immediacy: A Two-System Theory of Mind for Understanding and Changing Health Behaviors.

    Science.gov (United States)

    Cook, Paul F; Schmiege, Sarah J; Reeder, Blaine; Horton-Deutsch, Sara; Lowe, Nancy K; Meek, Paula

    Health promotion and chronic disease management both require behavior change, but people find it hard to change behavior despite having good intentions. The problem arises because patients' narratives about experiences and intentions are filtered through memory and language. These narratives inaccurately reflect intuitive decision-making or actual behaviors. We propose a principle-temporal immediacy-as a moderator variable that explains which of two mental systems (narrative or intuitive) will be activated in any given situation. We reviewed multiple scientific areas to test temporal immediacy as an explanation for findings. In an iterative process, we used evidence from philosophy, cognitive neuroscience, behavioral economics, symptom science, and ecological momentary assessment to develop our theoretical perspective. These perspectives each suggest two cognitive systems that differ in their level of temporal immediacy: an intuitive system that produces behavior in response to everyday states and a narrative system that interprets and explains these experiences after the fact. Writers from Plato onward describe two competing influences on behavior-often with moral overtones. People tend to identify with the language-based narrative system and blame unhelpful results on the less accessible intuitive system, but neither is completely rational, and the intuitive system has strengths based on speed and serial processing. The systems differ based on temporal immediacy-the description of an experience as either "now" or "usually"-with the intuitive system generating behaviors automatically in real time and the narrative system producing beliefs about the past or future. The principle of temporal immediacy is a tool to integrate nursing science with other disciplinary traditions and to improve research and practice. Interventions should build on each system's strengths, rather than treating the intuitive system as a barrier for the narrative system to overcome. Nursing

  18. System for inspection and quality assurance of software - A knowledge-based experiment with code understanding

    International Nuclear Information System (INIS)

    Das, B.K.

    1989-01-01

    This paper describes a knowledge-based prototype that inspects and quality-assures software components. The prototype model, which offers a singular representation of these components, is used to automate both the mechanical and nonmechanical activities in the quality assurance (QA) process. It is shown that the prototype, in addition to automating the QA process, provides a novel approach to understanding code. These approaches are compared with recent approaches to code understanding. The paper also presents the results of an experiment with several classes of nonsyntactic bugs. It is argued that a structured environment, as facilitated by this unique architecture, along with software development standards used in the QA process, is essential for meaningful analysis of code. 8 refs

  19. Perspectives of a systems biology of the brain: the big data conundrum understanding psychiatric diseases.

    Science.gov (United States)

    Mewes, H W

    2013-05-01

    Psychiatric diseases provoke human tragedies. Asocial behaviour, mood imbalance, uncontrolled affect, and cognitive malfunction are the price for the biological and social complexity of neurobiology. To understand the etiology and to influence the onset and progress of mental diseases remains of upmost importance, but despite the much improved care for the patients, more then 100 years of research have not succeeded to understand the basic disease mechanisms and enabling rationale treatment. With the advent of the genome based technologies, much hope has been created to join the various dimension of -omics data to uncover the secrets of mental illness. Big Data as generated by -omics do not come with explanations. In this essay, I will discuss the inherent, not well understood methodological foundations and problems that seriously obstacle in striving for a quick success and may render lucky strikes impossible. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Network approaches for understanding rainwater management from a social-ecological systems perspective

    Directory of Open Access Journals (Sweden)

    Steven D. Prager

    2015-12-01

    Full Text Available The premise of this research is to better understand how approaches to implementing rainwater management practices can be informed by understanding how the people living and working in agroecosystems are connected to one another. Because these connections are via both social interactions and functional characteristics of the landscape, a social-ecological network emerges. Using social-ecological network theory, we ask how understanding the structure of interactions can lead to improved rainwater management interventions. Using a case study situated within a small sub-basin in the Fogera area of the Blue Nile Basin of Ethiopia, we build networks of smallholders based both on the biophysical and social-institutional landscapes present in the study site, with the smallholders themselves as the common element between the networks. In turn we explore how structures present in the networks may serve to guide decision making regarding both where and with whom rainwater management interventions could be developed. This research thus illustrates an approach for constructing a social-ecological network and demonstrates how the structures of the network yield insights for tailoring the implementation of rainwater management practices to the social and ecological setting.

  1. Understanding system dynamics of an adaptive enzyme network from globally profiled kinetic parameters.

    Science.gov (United States)

    Chiang, Austin W T; Liu, Wei-Chung; Charusanti, Pep; Hwang, Ming-Jing

    2014-01-15

    A major challenge in mathematical modeling of biological systems is to determine how model parameters contribute to systems dynamics. As biological processes are often complex in nature, it is desirable to address this issue using a systematic approach. Here, we propose a simple methodology that first performs an enrichment test to find patterns in the values of globally profiled kinetic parameters with which a model can produce the required system dynamics; this is then followed by a statistical test to elucidate the association between individual parameters and different parts of the system's dynamics. We demonstrate our methodology on a prototype biological system of perfect adaptation dynamics, namely the chemotaxis model for Escherichia coli. Our results agreed well with those derived from experimental data and theoretical studies in the literature. Using this model system, we showed that there are motifs in kinetic parameters and that these motifs are governed by constraints of the specified system dynamics. A systematic approach based on enrichment statistical tests has been developed to elucidate the relationships between model parameters and the roles they play in affecting system dynamics of a prototype biological network. The proposed approach is generally applicable and therefore can find wide use in systems biology modeling research.

  2. RESLanjut: The learning media for improve students understanding in embedded systems

    Science.gov (United States)

    Indrianto, Susanti, Meilia Nur Indah; Karina, Djunaidi

    2017-08-01

    The use of network in embedded system can be done with many kinds of network, with the use of mobile phones, bluetooths, modems, ethernet cards, wireless technology and so on. Using network in embedded system could help people to do remote controlling. On previous research, researchers found that many students have the ability to comprehend the basic concept of embedded system. They could also make embedded system tools but without network integration. And for that, a development is needed for the embedded system module. The embedded system practicum module design needs a prototype method in order to achieve the desired goal. The prototype method is often used in the real world. Or even, a prototype method is a part of products that consist of logic expression or external physical interface. The embedded system practicum module is meant to increase student comprehension of embedded system course, and also to encourage students to innovate on technology based tools. It is also meant to help teachers to teach the embedded system concept on the course. The student comprehension is hoped to increase with the use of practicum course.

  3. Understanding the function and dysfunction of the immune system in lung cancer: the role of immune checkpoints.

    Science.gov (United States)

    Karachaliou, Niki; Cao, Maria Gonzalez; Teixidó, Cristina; Viteri, Santiago; Morales-Espinosa, Daniela; Santarpia, Mariacarmela; Rosell, Rafael

    2015-06-01

    Survival rates for metastatic lung cancer, including non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), are poor with 5-year survivals of less than 5%. The immune system has an intricate and complex relationship with tumorigenesis; a groundswell of research on the immune system is leading to greater understanding of how cancer progresses and presenting new ways to halt disease progress. Due to the extraordinary power of the immune system-with its capacity for memory, exquisite specificity and central and universal role in human biology-immunotherapy has the potential to achieve complete, long-lasting remissions and cures, with few side effects for any cancer patient, regardless of cancer type. As a result, a range of cancer therapies are under development that work by turning our own immune cells against tumors. However deeper understanding of the complexity of immunomodulation by tumors is key to the development of effective immunotherapies, especially in lung cancer.

  4. The Impact of CRM System Use on Companies’ Customer Understanding: The Case of the Russian Ophthalmology Market

    Directory of Open Access Journals (Sweden)

    Denis Klimanov

    2015-06-01

    Full Text Available As the customer relationship management process comes to play an increasingly important role in business success, a number of authors are attempting to evaluate the impact of various CRM process components on the quality of company interaction with customers and, ultimately, on company performance. This paper explores the impact of CRM systems on the quality of companies’ customer understanding. This understanding is measured in the context of an international pharmaceutical company in the Russian market. The field research is based on quantitative data from online questionnaires and telephone interviews. The sample consists of 64 company representatives and 217 ophthalmologists. The authors developed and tested a model of physician loyalty drivers and studied employees’ perceptions of the CRM system. The findings of this paper demonstrate that, despite the fact that a CRM system is actively used and perceived as a crucial part of the customer relationship management process within the company, understanding of key customer loyalty drivers needs to be significantly improved. The paper contributes to existing theory by evaluating the link between the use of CRM applications and customer relationship performance as well as by developing a physician prescription loyalty influencers framework in the context of the Russian pharmaceutical market. This research could be used by other pharmaceutical companies as well in order to understand the influence of their CRM applications on customer loyalty and also to identify the drivers of physicians’ prescriptions.

  5. Impact of Three-Dimensional Printed Pelvicaliceal System Models on Residents' Understanding of Pelvicaliceal System Anatomy Before Percutaneous Nephrolithotripsy Surgery: A Pilot Study.

    Science.gov (United States)

    Atalay, Hasan Anıl; Ülker, Volkan; Alkan, İlter; Canat, Halil Lütfi; Özkuvancı, Ünsal; Altunrende, Fatih

    2016-10-01

    To investigate the impact of three-dimensional (3D) printed pelvicaliceal system models on residents' understanding of pelvicaliceal system anatomy before percutaneous nephrolithotripsy (PCNL). Patients with unilateral complex renal stones indicating PCNL were selected. Usable data of patients were obtained from CT-scans in Digital Imaging and Communications in Medicine (DICOM) format. Mimics software version 16.0 (Materialise, Belgium) was used for segmentation and extraction of pelvicaliceal systems (PCSs). All DICOM-formatted files were converted to the stereolithography file format. Finally, fused deposition modeling was used to create plasticine 3D models of PCSs. A questionnaire was designed so that residents could assess the 3D models' effects on their understanding of the anatomy of the pelvicaliceal system before PCNL (Fig. 3). Five patients' anatomically accurate models of the human renal collecting system were effectively generated (Figs. 1 and 2). After presentation of the 3D models, residents were 86% and 88% better at determining the number of anterior and posterior calices, respectively, 60% better at understanding stone location, and 64% better at determining optimal entry calix into the collecting system (Fig. 5). Generating kidney models of PCSs using 3D printing technology is feasible, and the models were accepted by residents as aids in surgical planning and understanding of pelvicaliceal system anatomy before PCNL.

  6. Understanding the Need for Business Intelligence Systems: Technological Acceptance, Use, and Convergence

    Science.gov (United States)

    Pierre, Ashley R.

    2012-01-01

    DeLone and McLean first introduced a review of information systems success (ISS) literature and proposed the information success model in 1992. The contribution of technology use and acceptance and its influence toward ISS is an area of information systems research that has received significant attention from both researchers and practitioners.…

  7. Understanding Rape Survivors' Decisions Not to Seek Help from Formal Social Systems

    Science.gov (United States)

    Patterson, Debra; Greeson, Megan; Campbell, Rebecca

    2009-01-01

    Few rape survivors seek help from formal social systems after their assault. The purpose of this study was to examine factors that prevent survivors from seeking help from the legal, medical, and mental health systems and rape crisis centers. In this study, 29 female rape survivors who did not seek any postassault formal help were interviewed…

  8. Towards an Understanding of the Role of Business Intelligence Systems in Organisational Knowing

    DEFF Research Database (Denmark)

    Shollo, Arisa; Galliers, Robert D.

    2016-01-01

    Recent advances in information technology (IT), such as the advent of business intelligence (BI) systems, have increased the ability of organisations to collect and analyse data to support decisions. There is little focus to date, however, on how BI systems might play a role in organisational...

  9. Understanding the Earth Systems: Expressions of Dynamic and Cyclic Thinking among University Students

    Science.gov (United States)

    Batzri, Or; Ben Zvi Assaraf, Orit; Cohen, Carmit; Orion, Nir

    2015-01-01

    In this two-part study, we examine undergraduate university students' expression of two important system thinking characteristics--dynamic thinking and cyclic thinking--focusing particularly on students of geology. The study was conducted using an Earth systems questionnaire designed to elicit and reflect either dynamic or cyclic thinking. The…

  10. An Assessment of Students' Understanding of Ecosystem Concepts: Conflating Ecological Systems and Cycles

    Science.gov (United States)

    Jordan, Rebecca; Gray, Steven; Demeter, Marylee; Lui, Lei; Hmelo-Silver, Cindy E.

    2009-01-01

    Teaching ecological concepts in schools is important in promoting natural science and environmental education for young learners. Developing educational programs is difficult, however, because of complicated ecological processes operating on multiple levels, the unlimited nature of potential system interactions (given the openness of systems), and…

  11. Understanding the links between ecosystem health and social system well-being: an annotated bibliography.

    Science.gov (United States)

    Dawn M. Elmer; Harriet H. Christensen; Ellen M. Donoghue; [Compilers].

    2002-01-01

    This bibliography focuses on the links between social system well-being and ecosystem health. It is intended for public land managers and scientists and students of social and natural sciences. Multidisciplinary science that addresses the interconnections between the social system and the ecosystem is presented. Some of the themes and strategies presented are policy...

  12. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics

    DEFF Research Database (Denmark)

    Louveau, Antoine; Plog, Benjamin A.; Antila, Salli

    2017-01-01

    Recent discoveries of the glymphatic system and of meningeal lymphatic vessels have generated a lot of excitement, along with some degree of skepticism. Here, we summarize the state of the field and point out the gaps of knowledge that should be filled through further research. We discuss...... the glymphatic system as a system that allows CNS perfusion by the cerebrospinal fluid (CSF) and interstitial fluid (ISF). We also describe the recently characterized meningeal lymphatic vessels and their role in drainage of the brain ISF, CSF, CNS-derived molecules, and immune cells from the CNS and meninges...... and CNS drainage. Future studies should explore the communications between the glymphatic system and meningeal lymphatics in CNS disorders and develop new therapeutic modalities targeting these systems....

  13. Towards a better understanding of the Oulmes hydrogeological system (Mid-Atlas, Morocco)

    OpenAIRE

    Wildemeersch, Samuel; Orban, Philippe; Ruthy, Ingrid; Grière, Olivier; Olive, Philippe; El Youbi, Abdelkhalek; Dassargues, Alain

    2010-01-01

    Located in the Mid-Atlas (Morocco), the Oulmes plateau is famous for its mineral water springs “Sidi Ali” and “Lalla Haya” commercialised by the company “Les Eaux minérales d’Oulmès S.A”. Additionally, groundwater of the Oulmes plateau is intensively exploited for irrigation. The objective of this study, essentially performed from data collected during isotopic (summer 2004) and piezometric and hydrogeochemical field campaigns (spring 2007), is to improve the understanding of the Oulmes hydro...

  14. Understanding Potential Changes to the Veterans Equitable Resource Allocation (VERA) System

    National Research Council Canada - National Science Library

    Wasserman, Jeffrey

    2004-01-01

    ... disabilities, low incomes, and special health care needs. In contrast to earlier VHA allocation systems, which were based largely on historical costs, VERA bases its allocation of finds primarily on the number of veterans served (work- load...

  15. Understanding the implication of investing in biodiesel production in South Africa: a system dynamics approach

    CSIR Research Space (South Africa)

    Musango, JK

    2010-07-01

    Full Text Available This paper presents a Bioenergy Systems Sustainability Assessment and Management (BIOSSAM) model. The BIOSSAM model was developed as a means to provide insights into the implications of expanding bioenergy programmes in South Africa, which is deemed...

  16. Using geometric algebra to understand pattern rotations in multiple mirror optical systems

    International Nuclear Information System (INIS)

    Hanlon, J.; Ziock, H.

    1997-01-01

    Geometric Algebra (GA) is a new formulation of Clifford Algebra that includes vector analysis without notation changes. Most applications of Ga have been in theoretical physics, but GA is also a very good analysis tool for engineering. As an example, the authors use GA to study pattern rotation in optical systems with multiple mirror reflections. The common ways to analyze pattern rotations are to use rotation matrices or optical ray trace codes, but these are often inconvenient. The authors use GA to develop a simple expression for pattern rotation that is useful for designing or tolerancing pattern rotations in a multiple mirror optical system by inspection. Pattern rotation is used in many optical engineering systems, but it is not normally covered in optical system engineering texts. Pattern rotation is important in optical systems such as: (1) the 192 beam National ignition Facility (NIF), which uses square laser beams in close packed arrays to cut costs; (2) visual optical systems, which use pattern rotation to present the image to the observer in the appropriate orientation, and (3) the UR90 unstable ring resonator, which uses pattern rotation to fill a rectangular laser gain region and provide a filled-in laser output beam

  17. Making Sense of Dynamic Systems: How Our Understanding of Stocks and Flows Depends on a Global Perspective.

    Science.gov (United States)

    Fischer, Helen; Gonzalez, Cleotilde

    2016-03-01

    Stocks and flows (SF) are building blocks of dynamic systems: Stocks change through inflows and outflows, such as our bank balance changing with withdrawals and deposits, or atmospheric CO2 with absorptions and emissions. However, people make systematic errors when trying to infer the behavior of dynamic systems, termed SF failure, whose cognitive explanations are yet unknown. We argue that SF failure appears when people focus on specific system elements (local processing), rather than on the system structure and gestalt (global processing). Using a standard SF task (n = 148), SF failure decreased by (a) a global as opposed to local task format; (b) individual global as opposed to local processing styles; and (c) global as opposed to local perceptual priming. These results converge toward local processing as an explanation for SF failure. We discuss theoretical and practical implications on the connections between the scope of attention and understanding of dynamic systems. Copyright © 2015 Cognitive Science Society, Inc.

  18. Understanding, representing and communicating earth system processes in weather and climate within CNRCWP

    Science.gov (United States)

    Sushama, Laxmi; Arora, Vivek; de Elia, Ramon; Déry, Stephen; Duguay, Claude; Gachon, Philippe; Gyakum, John; Laprise, René; Marshall, Shawn; Monahan, Adam; Scinocca, John; Thériault, Julie; Verseghy, Diana; Zwiers, Francis

    2017-04-01

    The Canadian Network for Regional Climate and Weather Processes (CNRCWP) provides significant advances and innovative research towards the ultimate goal of reducing uncertainty in numerical weather prediction and climate projections for Canada's Northern and Arctic regions. This talk will provide an overview of the Network and selected results related to the assessment of the added value of high-resolution modelling that has helped fill critical knowledge gaps in understanding the dynamics of extreme temperature and precipitation events and the complex land-atmosphere interactions and feedbacks in Canada's northern and Arctic regions. In addition, targeted developments in the Canadian regional climate model, that facilitate direct application of model outputs in impact and adaptation studies, particularly those related to the water, energy and infrastructure sectors will also be discussed. The close collaboration between the Network and its partners and end users contributed significantly to this effort.

  19. Metabolic Profiling Provides a System Understanding of Hypothyroidism in Rats and Its Application

    Science.gov (United States)

    Dong, Xin; Zhu, Zhenyu; Li, Wuhong; Lou, Ziyang; Chai, Yifeng

    2013-01-01

    Background Hypothyroidism is a chronic condition of endocrine disorder and its precise molecular mechanism remains obscure. In spite of certain efficacy of thyroid hormone replacement therapy in treating hypothyroidism, it often results in other side effects because of its over-replacement, so it is still urgent to discover new modes of treatment for hypothyroidism. Sini decoction (SND) is a well-known formula of Traditional Chinese Medicine (TCM) and is considered as efficient agents against hypothyroidism. However, its holistic effect assessment and mechanistic understanding are still lacking due to its complex components. Methodology/Principal Findings A urinary metabonomic method based on ultra performance liquid chromatography coupled to mass spectrometry was employed to explore global metabolic characters of hypothyroidism. Three typical hypothyroidism models (methimazole-, propylthiouracil- and thyroidectomy-induced hypothyroidism) were applied to elucidate the molecular mechanism of hypothyroidism. 17, 21, 19 potential biomarkers were identified with these three hypothyroidism models respectively, primarily involved in energy metabolism, amino acid metabolism, sphingolipid metabolism and purine metabolism. In order to avert the interference of drug interaction between the antithyroid drugs and SND, the thyroidectomy-induced hypothyroidism model was further used to systematically assess the therapeutic efficacy of SND on hypothyroidism. A time-dependent recovery tendency was observed in SND-treated group from the beginning of model to the end of treatment, suggesting that SND exerted a recovery effect on hypothyroidism in a time-dependent manner through partially regulating the perturbed metabolic pathways. Conclusions/Significance Our results showed that the metabonomic approach is instrumental to understand the pathophysiology of hypothyroidism and offers a valuable tool for systematically studying the therapeutic effects of SND on hypothyroidism. PMID

  20. Understanding the function and dysfunction of the immune system in lung cancer: the role of immune checkpoints

    International Nuclear Information System (INIS)

    Karachaliou, Niki; Cao, Maria Gonzalez; Teixidó, Cristina; Viteri, Santiago; Morales-Espinosa, Daniela; Santarpia, Mariacarmela; Rosell, Rafael

    2015-01-01

    Survival rates for metastatic lung cancer, including non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), are poor with 5-year survivals of less than 5%. The immune system has an intricate and complex relationship with tumorigenesis; a groundswell of research on the immune system is leading to greater understanding of how cancer progresses and presenting new ways to halt disease progress. Due to the extraordinary power of the immune system—with its capacity for memory, exquisite specificity and central and universal role in human biology—immunotherapy has the potential to achieve complete, long-lasting remissions and cures, with few side effects for any cancer patient, regardless of cancer type. As a result, a range of cancer therapies are under development that work by turning our own immune cells against tumors. However deeper understanding of the complexity of immunomodulation by tumors is key to the development of effective immunotherapies, especially in lung cancer

  1. Why Social Relationships Are Important for Physical Health: A Systems Approach to Understanding and Modifying Risk and Protection.

    Science.gov (United States)

    Holt-Lunstad, Julianne

    2018-01-04

    Social relationships are adaptive and crucial for survival. This review presents existing evidence indicating that our social connections to others have powerful influences on health and longevity and that lacking social connection qualifies as a risk factor for premature mortality. A systems perspective is presented as a framework by which to move social connection into the realm of public health. Individuals, and health-relevant biological processes, exist within larger social contexts including the family, neighborhood and community, and society and culture. Applying the social ecological model, this review highlights the interrelationships of individuals within groups in terms of understanding both the causal mechanisms by which social connection influences physical health and the ways in which this influence can inform potential intervention strategies. A systems approach also helps identify gaps in our current understanding that may guide future research.

  2. Understanding Water-Stress Responses in Soybean Using Hydroponics System—A Systems Biology Perspective

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C.; Shulaev, Vladimir; Shen, Qingxi J.; Rushton, Paul J.

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue. PMID:26734044

  3. Developing Vocabularies to Improve Understanding and Use of NOAA Observing Systems

    Science.gov (United States)

    Austin, M.

    2014-12-01

    The NOAA Observing System Integrated Analysis project (NOSIA II), is an attempt to capture and tell the story of how valuable observing systems are in producing products and services that are required to fulfill the NOAA's diverse mission. NOAA's goals and mission areas cover a broad range of environmental data; a complexity exists in terms and vocabulary as applied to the creation of observing system derived products. The NOSIA data collection focused first on decomposing NOAA's goals in the creation and acceptance of Mission Service Areas (MSAs) by NOAA senior leadership. Products and services that supported the MSAs were then identified through the process of interviewing product producers across NOAA organization. Product Data inputs including models, databases and observing system were also identified. The NOSIA model contains over 20,000 nodes each representing levels in a network connecting products, datasources, users and desired outcomes. An immediate need became apparent that the complexity and variety of the data collected required data management to mature the quality and the content of the NOSIA model. The NOSIA Analysis Database (ADB) was developed initially to improve consistency of terms and data types to allow for the linkage of observing systems, products and NOAA's Goals and mission. The ADB also allowed for the prototyping of reports and product generation in an easily accessible and comprehensive format for the first time. Web based visualization of relationships between products, datasources, users, producers were generated to make the information easily understood This includes developing ontologies/vocabularies that are used for the development of users type specific products for NOAA leadership, Observing System Portfolio mangers and the users of NOAA data.

  4. Using Group Drawings Activities to Facilitate the Understanding of Systemic Aspects of Projects

    DEFF Research Database (Denmark)

    Arantes do Amaral, João Alberto; Hess, Aurélio; Gonçalves, Paulo

    2017-01-01

    In this article, we present our findings regarding promoting group drawing activities in order to facilitate the learning of systemic aspects of projects. We discuss the approach we used to engage the students and foster learning in our classes. We used group drawing activities in two project...... technique, we followed the five-phased qualitative analysis method, combined with a systems analysis of the data obtained from observation. Five recurrent themes emerged: 1) Making drawings in groups helps content retention and facilitates connections between the concepts explained by the professor; 2...

  5. Understanding Big Data for Industrial Innovation and Design: The Missing Information Systems Perspective

    Directory of Open Access Journals (Sweden)

    Miguel Baptista Nunes

    2017-12-01

    Full Text Available This paper identifies a need to complement the current rich technical and mathematical research agenda on big data with a more information systems and information science strand, which focuses on the business value of big data. An agenda of research for information systems would explore motives for using big data in real organizational contexts, and consider proposed benefits, such as increased effectiveness and efficiency, production of high-quality products/services, creation of added business value, and stimulation of innovation and design. Impacts of such research on the academic community, the industrial and business world, and policy-makers are discussed.

  6. Understanding Information Technology Investment Decision-Making in the Context of Hotel Global Distribution Systems: a Multiple-Case Study

    OpenAIRE

    Connolly, Daniel J.

    1999-01-01

    UNDERSTANDING INFORMATION TECHNOLOGY INVESTMENT DECISION-MAKING IN THE CONTEXT OF HOTEL GLOBAL DISTRIBUTION SYSTEMS: A MULTIPLE-CASE STUDY by Daniel J. Connolly Dr. Michael D. Olsen, Chair Department of Hospitality and Tourism Management ABSTRACT This study investigates what three large, multinational hospitality companies do in practice when evaluating and making IT investment decisions. This study was launched in an attempt to 1) learn more about ...

  7. Understanding water delivery performance in a large-scale irrigation system in Peru

    NARCIS (Netherlands)

    Vos, J.M.C.

    2005-01-01

    During a two-year field study the performance of the water delivery was evaluated in a large-scale irrigation system on the north coast of Peru. Flow measurements were carried out along the main canals, along two secondary canals, and in two tertiary blocks in the Chancay-Lambayeque irrigation

  8. Using multi-criteria analysis of simulation models to understand complex biological systems

    Science.gov (United States)

    Maureen C. Kennedy; E. David. Ford

    2011-01-01

    Scientists frequently use computer-simulation models to help solve complex biological problems. Typically, such models are highly integrated, they produce multiple outputs, and standard methods of model analysis are ill suited for evaluating them. We show how multi-criteria optimization with Pareto optimality allows for model outputs to be compared to multiple system...

  9. A Systems Approach to Understanding Occupational Therapy Service Negotiations in a Preschool Setting

    Science.gov (United States)

    Silverman, Fern; Kramer, Paula; Ravitch, Sharon

    2011-01-01

    The purpose of this study was to use a systems approach to examine informal communications, meaning those occurring outside of scheduled meetings, among stakeholders in a preschool early intervention program. This investigation expands the discussion of how occupational therapy treatment decisions are made in educational settings by using a…

  10. A systems medicine clinical platform for understanding and managing non- communicable diseases

    NARCIS (Netherlands)

    Cesario, Alfredo; Auffray, Charles; Agusti, Alvar; Apolone, Giovanni; Balling, Rudi; Barbanti, Piero; Bellia, Alfonso; Boccia, Stefania; Bousquet, Jean; Cardaci, Vittorio; Cazzola, Mario; Dall'Armi, Valentina; Daraselia, Nikolai; Ros, Lucio Da; Bufalo, Alessandra Del; Ducci, Giuseppe; Ferri, Luigi; Fini, Massimo; Fossati, Chiara; Gensini, Gianfranco; Granone, Pierluigi Maria; Kinross, James; Lauro, Davide; Cascio, Gerland Lo; Lococo, Filippo; Lococo, Achille; Maier, Dieter; Marcus, Frederick; Margaritora, Stefano; Marra, Camillo; Minati, Gianfranco; Neri, Monica; Pasqua, Franco; Pison, Christophe; Pristipino, Christian; Roca, Joseph; Rosano, Giuseppe; Rossini, Paolo Maria; Russo, Patrizia; Salinaro, Gianluca; Shenhar, Shani; Soreq, Hermona; Sterk, Peter J.; Stocchi, Fabrizio; Torti, Margherita; Volterrani, Maurizio; Wouters, Emiel F. M.; Frustaci, Alessandra; Bonassi, Stefano

    2014-01-01

    Non-Communicable Diseases (NCDs) are among the most pressing global health problems of the twenty-first century. Their rising incidence and prevalence is linked to severe morbidity and mortality, and they are putting economic and managerial pressure on healthcare systems around the world. Moreover,

  11. Advances in our understanding of immunization and vaccines for patients with systemic lupus erythematosus.

    Science.gov (United States)

    Bragazzi, Nicola Luigi; Watad, Abdulla; Sharif, Kassem; Adawi, Mohammad; Aljadeff, Gali; Amital, Howard; Shoenfeld, Yehuda

    2017-10-01

    Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease. In SLE, immune system dysfunction is postulated to result by virtue of the disease itself as well as by the impact of treatment modalities employed. A myriad of immune dysregulations occur including complement system dysfunction among others. Infectious agents are known to complicate the disease course in close to 25-45% of SLE patients. Areas covered: In this review a discussion of the immunogenicity and safety of viral and bacterial vaccinations in SLE was performed. The search included ISI Web of Science (WoS), Scopus, MEDLINE/PubMed, Google-Scholar, DOAJ, EbscoHOST, Scirus, Science Direct, Cochrane Library and ProQuest. Proper string made up of a key-words including 'SLE', 'vaccination', 'safety' and 'efficacy' was used. Expert commentary: Vaccination of SLE patients is proven to be immunogenic. Concerns regarding vaccine safety are postulated, yet no direct relationship between vaccination and disease exacerbation were established. While live virus vaccines are generally contraindicated in immunosuppressive states, generally live attenuated vaccinations are recommended in SLE patients on a case-to-case basis. In SLE patients, clinical parameters such as vaccination during disease exacerbations have not been intensively studied and therefore while apparently safe, vaccination is generally recommended while disease is quiescent.

  12. Understanding the Online Informal Learning of English as a Complex Dynamic System: An Emic Approach

    Science.gov (United States)

    Sockett, Geoffrey

    2013-01-01

    Research into the online informal learning of English has already shown it to be a widespread phenomenon involving a range of comprehension and production activities such as viewing original version television series, listening to music on demand and social networking with other English users. Dynamic systems theory provides a suitable framework…

  13. Understanding Arsenic Dynamics in Agronomic Systems to Predict and Prevent Uptake by Crop Plants

    Science.gov (United States)

    This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciatio...

  14. Systems Modelling and the Development of Coherent Understanding of Cell Biology

    Science.gov (United States)

    Verhoeff, Roald P.; Waarlo, Arend Jan; Boersma, Kerst Th.

    2008-01-01

    This article reports on educational design research concerning a learning and teaching strategy for cell biology in upper-secondary education introducing "systems modelling" as a key competence. The strategy consists of four modelling phases in which students subsequently develop models of free-living cells, a general two-dimensional model of…

  15. Understanding cropping systems in the semi-arid environments of Zimbabwe: options for soil fertility management

    NARCIS (Netherlands)

    Ncube, B.

    2007-01-01

    African smallholder farmers face perennial food shortages due to low crop yields. The major cause of poor crop yields is soil fertility decline. The diversity of sites and soils between African farming systems isgreat,therefore strategies to solve soil fertility problems

  16. Understanding and Managing Staff Development in an Urban School System. Final Report.

    Science.gov (United States)

    Schlechty, Phillip; And Others

    A study is reported that examined the way staff development functions in schools, the effects of staff development, and the interaction between staff development and other activities and conditions in school systems. The study took place in a large urban school district (in the Southeast) that is heavily committed to and involved in staff…

  17. The Integration of a Family Systems Approach for Understanding Youth Obesity, Physical Activity, and Dietary Programs

    Science.gov (United States)

    Kitzman-Ulrich, Heather; Wilson, Dawn K.; St. George, Sara M.; Lawman, Hannah; Segal, Michelle; Fairchild, Amanda

    2010-01-01

    Rates of overweight in youth have reached epidemic proportions and are associated with adverse health outcomes. Family-based programs have been widely used to treat overweight in youth. However, few programs incorporate a theoretical framework for studying a family systems approach in relation to youth health behavior change. Therefore, this…

  18. Understanding Power Electronics and Electrical Machines in Multidisciplinary Wind Energy Conversion System Courses

    Science.gov (United States)

    Duran, M. J.; Barrero, F.; Pozo-Ruz, A.; Guzman, F.; Fernandez, J.; Guzman, H.

    2013-01-01

    Wind energy conversion systems (WECS) nowadays offer an extremely wide range of topologies, including various different types of electrical generators and power converters. Wind energy is also an application of great interest to students and with a huge potential for engineering employment. Making WECS the main center of interest when teaching…

  19. Understanding the build-up of a technological innovation system around hydrogen and fuel cell technologies

    NARCIS (Netherlands)

    Suurs, R.A.A.; Hekkert, M.P.; Smits, R.E.H.M.

    2009-01-01

    This study provides insight into the development of hydrogen and fuel cell technologies in the Netherlands (1980-2007). This is done by applying a Technological Innovation System (TIS) approach. This approach takes the perspective that a technology is shaped by a surrounding network of actors,

  20. Using a social-ecological systems perspective to understand tourism and landscape interactions in coastal areas

    NARCIS (Netherlands)

    Heslinga, Jasper; Groote, Peter D.; Vanclay, Francis

    2017-01-01

    Purpose The purpose of this paper is to look at the potential synergies between tourism and landscapes and examine the potential contribution of tourism to build social-ecological resilience in the Dutch Wadden. Design/methodology/approach The authors reveal how a social-ecological systems

  1. Swedish Technology Teachers' Views on Assessing Student Understandings of Technological Systems

    Science.gov (United States)

    Schooner, Patrick; Klasander, Claes; Hallström, Jonas

    2018-01-01

    Technology education is a new school subject in comparison with other subjects within the Swedish compulsory school system. Research in technology education shows that technology teachers lack experience of and support for assessment in comparison with the long-term experiences that other teachers use in their subjects. This becomes especially…

  2. Parent Perspectives: Understanding Support Systems for Kindergarteners with Special Needs and Their Family Members

    Science.gov (United States)

    Okraski, Ronni

    2017-01-01

    Having a child with special needs can be overwhelming, emotionally draining and extremely stressful for parents and their family members. Research identifies the support systems families need in order to have quality-of-life. The current study uses mixed methods to evaluate the degree to which parents and other primary caregivers in Arizona view…

  3. Understanding the impact of global trade liberalization on health systems pursuing universal health coverage.

    Science.gov (United States)

    Missoni, Eduardo

    2013-01-01

    In the context of reemerging universalistic approaches to health care, the objective of this article was to contribute to the discussion by highlighting the potential influence of global trade liberalization on the balance between health demand and the capacity of health systems pursuing universal health coverage (UHC) to supply adequate health care. Being identified as a defining feature of globalization affecting health, trade liberalization is analyzed as a complex and multidimensional influence on the implementation of UHC. The analysis adopts a systems-thinking approach and refers to the six building blocks of World Health Organization's current "framework for action," emphasizing their interconnectedness. While offering new opportunities to increase access to health information and care, in the absence of global governance mechanisms ensuring adequate health protection and promotion, global trade tends to have negative effects on health systems' capacity to ensure UHC, both by causing higher demand and by interfering with the interconnected functioning of health systems' building blocks. The prevention of such an impact and the effective implementation of UHC would highly benefit from a more consistent commitment and stronger leadership by the World Health Organization in protecting health in global policymaking fora in all sectors. Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  4. Understanding alfalfa root systems and their rold in abiotic stress tolerance

    Science.gov (United States)

    The root system architecture (RSA) impacts the capacity of the plant for efficient water and nutrient uptake. Root phenes have been associated with productivity under stress conditions and persistence of perennial species. The objectives of this study were to identify root traits that increase produ...

  5. Understanding the Picture Exchange Communication System and Its Application in Physical Education

    Science.gov (United States)

    Green, Amanda; Sandt, Dawn

    2013-01-01

    This article presents the Picture Exchange Communication System (PECS) and its applications in physical education. The PECS is an appropriate communication intervention for students with autism who lack functional communication skills. It is often confused with other visual support strategies, so the authors delineate the six phases of PECS and…

  6. Understanding the Roles of Forests and Tree-based Systems in Food Provision

    NARCIS (Netherlands)

    Jamnadass, R.; McMullin, S.; Dawson, M.I.I.K.; Powell, B.; Termote, C.; Lckowitz, A.; Kehlenbeck, K.; Vinceti, B.; Vliet, van N.; Keding, G.; Stadlmayr, B.; Damme, van P.; Carsan, S.; Sunderland, T.; Njenga, M.; Gyau, A.; Cerutti, P.; Schure, J.M.; Kouame, C.; Obiri, B.D.; Ofori, D.; Agarwal, B.; Neufeldt, H.; Degrande, A.; Serban, A.

    2015-01-01

    Forests and other tree-based systems such as agroforestry contribute to food and nutritional security in myriad ways. Directly, trees provide a variety of healthy foods including fruits, leafy vegetables, nuts, seeds and edible oils that can diversify diets and address seasonal food and nutritional

  7. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    1990-01-01

    This document is a compilation of summaries of papers presented at the Coastal Ocean Prediction Systems workshop. Topics include; marine forecasting, regulatory agencies and regulations, research and application models, research and operational observing, oceanic and atmospheric data assimilation, and coastal physical processes

  8. Fearing Fat: A Literature Review of Family Systems Understandings and Treatments of Anorexia and Bulimia.

    Science.gov (United States)

    Killian, Kyle D.

    1994-01-01

    Reviews literature examining family variables associated with anorexia nervosa and bulimia nervosa and family systems treatments for these eating disorders. Presents definitions of and diagnostic criteria for anorexia and bulimia, and discusses prevalence of these disorders. Reviews role played by psychopathological, sociological, and…

  9. Complexity in practice: understanding primary care as a complex adaptive system

    Directory of Open Access Journals (Sweden)

    Beverley Ellis

    2010-06-01

    Conclusions The results are real-world exemplars of the emergent properties of complex adaptive systems. Improving clinical governance in primary care requires both complex social interactions and underpinning informatics. The socio-technical lessons learned from this research should inform future management approaches.

  10. Using the Lens of Social Capital to Understand Diversity in the Earth System Sciences Workforce

    Science.gov (United States)

    Callahan, Caitlin N.; Libarkin, Julie C.; McCallum, Carmen M.; Atchison, Christopher L.

    2015-01-01

    In this commentary, we argue that social capital theory, the idea that membership in a group creates opportunities to acquire valuable information and resources from other group members, is a useful framework in which to consider ways to increase diversity in the Earth System Sciences (ESS) and in the science, technology, engineering, and…

  11. Target recognition and scene interpretation in image/video understanding systems based on network-symbolic models

    Science.gov (United States)

    Kuvich, Gary

    2004-08-01

    Vision is only a part of a system that converts visual information into knowledge structures. These structures drive the vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, which is an interpretation of visual information in terms of these knowledge models. These mechanisms provide a reliable recognition if the object is occluded or cannot be recognized as a whole. It is hard to split the entire system apart, and reliable solutions to the target recognition problems are possible only within the solution of a more generic Image Understanding Problem. Brain reduces informational and computational complexities, using implicit symbolic coding of features, hierarchical compression, and selective processing of visual information. Biologically inspired Network-Symbolic representation, where both systematic structural/logical methods and neural/statistical methods are parts of a single mechanism, is the most feasible for such models. It converts visual information into relational Network-Symbolic structures, avoiding artificial precise computations of 3-dimensional models. Network-Symbolic Transformations derive abstract structures, which allows for invariant recognition of an object as exemplar of a class. Active vision helps creating consistent models. Attention, separation of figure from ground and perceptual grouping are special kinds of network-symbolic transformations. Such Image/Video Understanding Systems will be reliably recognizing targets.

  12. Seeing the light: Applications of in situ optical measurements for understanding DOM dynamics in river systems (Invited)

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Fleck, J.; Shanley, J. B.; Aiken, G.; Boss, E.; Fujii, R.

    2009-12-01

    A critical challenge for understanding the sources, character and cycling of dissolved organic matter (DOM) is making measurements at the time scales in which changes occur in aquatic systems. Traditional approaches for data collection (daily to monthly discrete sampling) are often limited by analytical and field costs, site access and logistical challenges, particularly for long-term sampling at a large number of sites. The ability to make optical measurements of DOM in situ has been known for more than 50 years, but much of the work on in situ DOM absorbance and fluorescence using commercially-available instruments has taken place in the last few years. Here we present several recent examples that highlight the application of in situ measurements for understanding DOM dynamics in riverine systems at intervals of minutes to hours. Examples illustrate the utility of in situ optical sensors for studies of DOM over short-duration events of days to weeks (diurnal cycles, tidal cycles, storm events and snowmelt periods) as well as longer-term continuous monitoring for months to years. We also highlight the application of in situ optical DOM measurements as proxies for constituents that are significantly more difficult and expensive to measure at high frequencies (e.g. methylmercury, trihalomethanes). Relatively simple DOM absorbance and fluorescence measurements made in situ could be incorporated into short and long-term ecological research and monitoring programs, resulting in advanced understanding of organic matter sources, character and cycling in riverine systems.

  13. N-body simulations of planet formation: understanding exoplanet system architectures

    Science.gov (United States)

    Coleman, Gavin; Nelson, Richard

    2015-12-01

    Observations have demonstrated the existence of a significant population of compact systems comprised of super-Earths and Neptune-mass planets, and a population of gas giants that appear to occur primarily in either short-period (100 days) orbits. The broad diversity of system architectures raises the question of whether or not the same formation processes operating in standard disc models can explain these planets, or if different scenarios are required instead to explain the widely differing architectures. To explore this issue, we present the results from a comprehensive suite of N-body simulations of planetary system formation that include the following physical processes: gravitational interactions and collisions between planetary embryos and planetesimals; type I and II migration; gas accretion onto planetary cores; self-consistent viscous disc evolution and disc removal through photo-evaporation. Our results indicate that the formation and survival of compact systems of super-Earths and Neptune-mass planets occur commonly in disc models where a simple prescription for the disc viscosity is assumed, but such models never lead to the formation and survival of gas giant planets due to migration into the star. Inspired in part by the ALMA observations of HL Tau, and by MHD simulations that display the formation of long-lived zonal flows, we have explored the consequences of assuming that the disc viscosity varies in both time and space. We find that the radial structuring of the disc leads to conditions in which systems of giant planets are able to form and survive. Furthermore, these giants generally occupy those regions of the mass-period diagram that are densely populated by the observed gas giants, suggesting that the planet traps generated by radial structuring of protoplanetary discs may be a necessary ingredient for forming giant planets.

  14. Challenges of Interdisciplinary Research: Reconciling Qualitative and Quantitative Methods for Understanding Human-Landscape Systems

    Science.gov (United States)

    Lach, Denise

    2014-01-01

    While interdisciplinary research is increasingly practiced as a way to transcend the limitations of individual disciplines, our concepts, and methods are primarily rooted in the disciplines that shape the way we think about the world and how we conduct research. While natural and social scientists may share a general understanding of how science is conducted, disciplinary differences in methodologies quickly emerge during interdisciplinary research efforts. This paper briefly introduces and reviews different philosophical underpinnings of quantitative and qualitative methodological approaches and introduces the idea that a pragmatic, realistic approach may allow natural and social scientists to work together productively. While realism assumes that there is a reality that exists independently of our perceptions, the work of scientists is to explore the mechanisms by which actions cause meaningful outcomes and the conditions under which the mechanisms can act. Our task as interdisciplinary researchers is to use the insights of our disciplines in the context of the problem to co-produce an explanation for the variables of interest. Research on qualities necessary for successful interdisciplinary researchers is also discussed along with recent efforts by funding agencies and academia to increase capacities for interdisciplinary research.

  15. Dynamical instabilities in hot expanding nuclear systems: a microscopic approach to the understanding of multifragmentation

    International Nuclear Information System (INIS)

    Suraud, E.

    1989-01-01

    We present a microscopic study of the quasi-fusion/explosion transition in the framework of Landau-Vlasov simulations and for intermediate energy heavy-ion collisions (beam energy from 10 to 100 MeV/A). After a short presentation of the results of schematic calculations, which furnish a guideline for microscopic investigations, we discuss the relevance of our approach for studying multifragmentation. Once the limitations of this kind of dynamical simulations exhibited, we perform a detailed analysis in terms of the equation of state of the system. In agreement with schematic models we find that the composite nuclear system formed in the collision actually explodes when it stays long enough in the mechanically unstable region (spinodal region). Quantitative estimates of the explosion threshold are given for central symmetric reactions (Ca + Ca and Ar + Ti). The link of the results with transport properties and the equation of state of nuclear matter are briefly discussed

  16. A constricted quantum Hall system as a beam-splitter: understanding ballistic transport on the edge

    International Nuclear Information System (INIS)

    Lal, Siddhartha

    2007-09-01

    We study transport in a model of a quantum Hall edge system with a gate-voltage controlled constriction. A finite backscattered current at finite edge-bias is explained from a Landauer- Buttiker analysis as arising from the splitting of edge current caused by the difference in the filling fractions of the bulk (ν 1 ) and constriction(ν 2 ) quantum Hall fluid regions. We develop a hydrodynamic theory for bosonic edge modes inspired by this model. The constriction region splits the incident long-wavelength chiral edge density-wave excitations among the transmitting and reflecting edge states encircling it. These findings provide satisfactory explanations for several puzzling recent experimental results. These results are confirmed by computing various correlators and chiral linear conductances of the system. In this way, our results find excellent agreement with some of the recent puzzling experimental results for the cases of ν 1 = 1/3, 1. (author)

  17. Microphthalmia, anophthalmia, and coloboma and associated ocular and systemic features: understanding the spectrum.

    Science.gov (United States)

    Skalicky, Simon E; White, Andrew J R; Grigg, John R; Martin, Frank; Smith, Jeremy; Jones, Michael; Donaldson, Craig; Smith, James E H; Flaherty, Maree; Jamieson, Robyn V

    2013-12-01

    Microphthalmia, anophthalmia, and coloboma form an interrelated spectrum of congenital eye abnormalities. To document the ocular and systemic findings and inheritance patterns in patients with microphthalmia, anophthalmia, and coloboma disease to gain insight into the underlying developmental etiologies. This retrospective consecutive case series was conducted at a tertiary referral center. Included in the study were 141 patients with microphthalmia, anophthalmia, and coloboma disease without a recognized syndromic etiology who attended the Westmead Children's Hospital, Sydney, from 1981-2012. Cases were grouped on the basis of the presence or absence of an optic fissure closure defect (OFCD); those with OFCD were further subdivided into microphthalmic and nonmicrophthalmic cases. Anophthalmic cases were considered as a separate group. Associated ocular and systemic abnormalities and inheritance patterns were assessed. Of 141 cases, 61 (43%) were microphthalmic non-OFCD (NOFCD), 34 (24%) microphthalmic OFCD, 32 (23%) nonmicrophthalmic coloboma (OFCD), 9 (6%) anophthalmic, and 5 (4%) were unclassified. Sixty-three (45%) had bilateral disease. Eighty-four patients (60%) had an associated ocular abnormality; of these, cataract (P < .001) and posterior segment anomalies (P < .001) were most common in the NOFCD group. Forty-eight (34%) had an associated systemic abnormality, most commonly neurological, musculoskeletal and facial, urological and genital, or cardiac. Neurological abnormalities were most common in the anophthalmic group (P = .003), while urological abnormalities were particularly seen in the OFCD groups (P = .009). Familial cases were identified in both the OFCD and NOFCD groups, with a likely autosomal dominant inheritance pattern in 9 of 10 families. This series indicated that the OFCD/NOFCD distinction may be useful in guiding evaluation for ocular and systemic associations, as well as the direction and analysis of genetic investigation.

  18. Understanding interparticle interactions in dry powder inhalation : glass beads as an innovative model carrier system

    OpenAIRE

    Renner, Niklas Ludwig

    2017-01-01

    Delivery of drugs via the pulmonary route is the most common approach to treat diseases of the respiratory system, e.g. asthma bronchiale. Here, the active pharmaceutical ingredient is generally formulated in a so-called interactive mixture with a coarse and inert carrier. This enhances flowability and therefore dose metering and dispersibility. Interparticle interactions between carrier and drug govern aerosolisation behaviour of the blend and consequently the efficacy of the drug deposition...

  19. Infrastructure and the Operational Art: A Handbook for Understanding, Visualizing, and Describing Infrastructure Systems

    Science.gov (United States)

    2014-09-01

    transportation network of Mexico City. The CLOIS process has three phases: representation, design and evalua- tion, and implementation which are detailed...Sussman, and Joshua B McConnell. 2004. “The Concept of the ‘CLIOS Process’: Integrating the Study of Physical and Policy Systems Using Mexico City as an...downstream. The effect was epidemic levels of cholera and typhoid. The team of Harvard medical providers estimated that “at least 170,000 children under

  20. Understanding of phase modulation in two-level systems through inverse scattering

    International Nuclear Information System (INIS)

    Hasenfeld, A.; Hammes, S.L.; Warren, W.S.

    1988-01-01

    Analytical and numerical calculations describe the effects of shaped radiation pulses on two-level systems in terms of quantum-mechanical scattering. Previous results obtained in the reduced case of amplitude modulation are extended to the general case of simultaneous amplitude and phase modulation. We show that an infinite family of phase- and amplitude-modulated pulses all generate rectangular inversion profiles. Experimental measurements also verify the theoretical analysis

  1. Understanding and Prevention of Transient Voltages and Dielectric Breakdown in High Voltage Battery Systems

    Science.gov (United States)

    2017-07-31

    integrated into unique power system architectures that employ energy generation and storage capable of working together to supply the intermittent ...unidirectional and bidirectional TVS diodes is seen in Figure 3. TVS diodes are known for having fast switch on times but their switch off times are...switch in the circuit, simulating the fast changes in current in the profile of interest. The simulation is run for 50 ms and the initial condition of

  2. Commentary on two classroom observation systems: moving toward a shared understanding of effective teaching.

    Science.gov (United States)

    Connor, Carol McDonald

    2013-12-01

    In this commentary, I make five points: that designing observation systems that actually predict students' outcomes is challenging; second that systems that capture the complex and dynamic nature of the classroom learning environment are more likely to be able to meet this challenge; three, that observation tools are most useful when developed to serve a particular purpose and are put to that purpose; four that technology can help; and five, there are policy implications for valid and reliable classroom observation tools. The two observation systems presented in this special issue represent an important step forward and a move toward policy that promises to make a true difference in what is defined as high quality and effective teaching, what it looks like in the classroom, and how these practices can be more widely disseminated so that all children, including those attending under-resourced schools, can experience effective instruction, academic success and the lifelong accomplishment that follows. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  3. Using Group Drawings Activities to Facilitate the Understanding of the Systemic Aspects of Projects

    Directory of Open Access Journals (Sweden)

    João Alberto Arantes do Amaral

    2017-04-01

    Full Text Available In this article, we present our findings regarding promoting group drawing activities in order to facilitate the learning of systemic aspects of projects. We discuss the approach we used to engage the students and foster learning in our classes. We used group drawing activities in two project management undergraduate courses. The courses, which involved 41 students, took place during the second semester of 2016 in a public university in Brazil. We conducted qualitative research, using qualitative observation and focus group interviews. In order to gauge the effects of the use of this educational technique, we followed the five-phased qualitative analysis method, combined with a systems analysis of the data obtained from observation. Five recurrent themes emerged: 1 Making drawings in groups helps content retention and facilitates connections between the concepts explained by the professor; 2 Making drawings in groups promotes knowledge sharing among team members; 3 Making drawings in group fosters creativity and communication between students; 4 Drawing in groups reduces the students’ boredom, makes the lecture more dynamic and interesting; 5 Drawing in groups reinforces bonds between students. Our systems analysis suggests that group drawing improves student participation in classroom activities, strengthens bonds between students, and enhances learning.

  4. Understanding managerial behaviour during initial steps of a clinical information system adoption.

    Science.gov (United States)

    Rodríguez, Charo; Pozzebon, Marlei

    2011-06-17

    While the study of the information technology (IT) implementation process and its outcomes has received considerable attention, the examination of pre-adoption and pre-implementation stages of configurable IT uptake appear largely under-investigated. This paper explores managerial behaviour during the periods prior the effective implementation of a clinical information system (CIS) by two Canadian university multi-hospital centers. Adopting a structurationist theoretical stance and a case study research design, the processes by which CIS managers' patterns of discourse contribute to the configuration of the new technology in their respective organizational contexts were longitudinally examined over 33 months. Although managers seemed to be aware of the risks and organizational impact of the adoption of a new clinical information system, their decisions and actions over the periods examined appeared rather to be driven by financial constraints and power struggles between different groups involved in the process. Furthermore, they largely emphasized technological aspects of the implementation, with organizational dimensions being put aside. In view of these results, the notion of 'rhetorical ambivalence' is proposed. Results are further discussed in relation to the significance of initial decisions and actions for the subsequent implementation phases of the technology being configured. Theoretical and empirically grounded, the paper contributes to the underdeveloped body of literature on information system pre-implementation processes by revealing the crucial role played by managers during the initial phases of a CIS adoption.

  5. Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models.

    Science.gov (United States)

    Becher, Matthias A; Osborne, Juliet L; Thorbek, Pernille; Kennedy, Peter J; Grimm, Volker

    2013-08-01

    The health of managed and wild honeybee colonies appears to have declined substantially in Europe and the United States over the last decade. Sustainability of honeybee colonies is important not only for honey production, but also for pollination of crops and wild plants alongside other insect pollinators. A combination of causal factors, including parasites, pathogens, land use changes and pesticide usage, are cited as responsible for the increased colony mortality.However, despite detailed knowledge of the behaviour of honeybees and their colonies, there are no suitable tools to explore the resilience mechanisms of this complex system under stress. Empirically testing all combinations of stressors in a systematic fashion is not feasible. We therefore suggest a cross-level systems approach, based on mechanistic modelling, to investigate the impacts of (and interactions between) colony and land management.We review existing honeybee models that are relevant to examining the effects of different stressors on colony growth and survival. Most of these models describe honeybee colony dynamics, foraging behaviour or honeybee - varroa mite - virus interactions.We found that many, but not all, processes within honeybee colonies, epidemiology and foraging are well understood and described in the models, but there is no model that couples in-hive dynamics and pathology with foraging dynamics in realistic landscapes. Synthesis and applications . We describe how a new integrated model could be built to simulate multifactorial impacts on the honeybee colony system, using building blocks from the reviewed models. The development of such a tool would not only highlight empirical research priorities but also provide an important forecasting tool for policy makers and beekeepers, and we list examples of relevant applications to bee disease and landscape management decisions.

  6. Understanding the geomorphology of macrochannel systems for flood risk management in Queensland, Australia

    Science.gov (United States)

    Thompson, Chris; Croke, Jacky

    2016-04-01

    The year 2010-2011 was the wettest on record for the state of Queensland, Australia producing catastrophic floods. A tropical low pressure system in 2013 delivered further extreme flood events across South East Queensland (SEQ) which prompted state and local governments to conduct studies into flood magnitude and frequency in the region and catchment factors contributing to flood hazards. The floods in the region are strongly influenced by El Nino-Southern Oscillation (ENSO) phenomenon, but also modulated by the Interdecadal Pacific Oscillation (IPO) which leads to flood and drought dominated regimes and high hydrological variability. One geomorphic feature in particular exerted a significant control on the transmission speed, the magnitude of flood inundation and resultant landscape resilience. This feature was referred to as a 'macrochannel', a term used to describe a 'large-channel' which has bankfull recurrence intervals generally greater than 10 years. The macrochannels display non-linear downstream hydraulic geometry which leads to zones of flood expansion (when hydraulic geometry decreases) and zones of flood contraction (when hydraulic geometry increases). The pattern of contraction and expansion zones determines flood hazard zones. The floods caused significant wet flow bank mass failures that mobilised over 1,000,000 m3 of sediment in one subcatchment. Results suggest that the wetflow bank mass failures are a stage in a cyclical evolution process which maintains the macrochannel morphology, hence channel resilience to floods. Chronological investigations further show the macrochannels are laterally stable and identify periods of heightened flood activity over the past millennium and upper limits on flood magnitude. This paper elaborates on the results of the geomorphic investigations on Lockyer Creek in SEQ and how the results have alerted managers and policy makers to the different flood responses of these systems and how flood risk management plans can

  7. Understanding the many-body expansion for large systems. I. Precision considerations

    International Nuclear Information System (INIS)

    Richard, Ryan M.; Lao, Ka Un; Herbert, John M.

    2014-01-01

    Electronic structure methods based on low-order “n-body” expansions are an increasingly popular means to defeat the highly nonlinear scaling of ab initio quantum chemistry calculations, taking advantage of the inherently distributable nature of the numerous subsystem calculations. Here, we examine how the finite precision of these subsystem calculations manifests in applications to large systems, in this case, a sequence of water clusters ranging in size up to (H 2 O) 47 . Using two different computer implementations of the n-body expansion, one fully integrated into a quantum chemistry program and the other written as a separate driver routine for the same program, we examine the reproducibility of total binding energies as a function of cluster size. The combinatorial nature of the n-body expansion amplifies subtle differences between the two implementations, especially for n ⩾ 4, leading to total energies that differ by as much as several kcal/mol between two implementations of what is ostensibly the same method. This behavior can be understood based on a propagation-of-errors analysis applied to a closed-form expression for the n-body expansion, which is derived here for the first time. Discrepancies between the two implementations arise primarily from the Coulomb self-energy correction that is required when electrostatic embedding charges are implemented by means of an external driver program. For reliable results in large systems, our analysis suggests that script- or driver-based implementations should read binary output files from an electronic structure program, in full double precision, or better yet be fully integrated in a way that avoids the need to compute the aforementioned self-energy. Moreover, four-body and higher-order expansions may be too sensitive to numerical thresholds to be of practical use in large systems

  8. Raman lidars for a better understanding of pollution in the Arctic System (PARCS)

    Science.gov (United States)

    Patrick, Chazette; Jean-Christophe, Raut; Julien, Totems; Xiaoxia, Shang; Christophe, Caudoux; Julien, Delanoë; Kathy, Law

    2018-04-01

    The development of oil and gas drilling and the opening of new shipping routes, in the Barents and Norway seas, poses new challenges for the Arctic environment due to the impact of air pollution emissions on climate and air quality. To improve our knowledge of the interactions between aerosols, water vapor and cloud cover, within the French PARCS (Pollution in the ARCtic System) project, Raman lidar observations were performed from the ground and from an ultra-light aircraft near the North Cape in northern Norway, and coupled with measurements from a 95 GHz ground-based Doppler radar.

  9. Understanding Contrasting Approaches to Nationwide Implementations of Electronic Health Record Systems: England, the USA and Australia

    Directory of Open Access Journals (Sweden)

    Zoe Morrison

    2011-01-01

    Full Text Available As governments commit to national electronic health record (EHR systems, there is increasing international interest in identifying effective implementation strategies. We draw on Coiera's typology of national programmes - ‘top-down’, ‘bottom-up’ and ‘middle-out’ - to review EHR implementation strategies in three exemplar countries: England, the USA and Australia. In comparing and contrasting three approaches, we show how different healthcare systems, national policy contexts and anticipated benefits have shaped initial strategies. We reflect on progress and likely developments in the face of continually changing circumstances. Our review shows that irrespective of the initial strategy, over time there is likely to be convergence on the negotiated, devolved middle-out approach, which aims to balance the interests and responsibilities of local healthcare constituencies and national government to achieve national connectivity. We conclude that, accepting the current lack of empirical evidence, the flexibility offered by the middle-out approach may make this the best initial national strategy.

  10. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean. Volume 1: Strategic summary

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-15

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ``technology transfer`` from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean`s response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation.

  11. Speech understanding in noise with integrated in-ear and muff-style hearing protection systems

    Directory of Open Access Journals (Sweden)

    Sharon M Abel

    2011-01-01

    Full Text Available Integrated hearing protection systems are designed to enhance free field and radio communications during military operations while protecting against the damaging effects of high-level noise exposure. A study was conducted to compare the effect of increasing the radio volume on the intelligibility of speech over the radios of two candidate systems, in-ear and muff-style, in 85-dBA speech babble noise presented free field. Twenty normal-hearing, English-fluent subjects, half male and half female, were tested in same gender pairs. Alternating as talker and listener, their task was to discriminate consonant-vowel-consonant syllables that contrasted either the initial or final consonant. Percent correct consonant discrimination increased with increases in the radio volume. At the highest volume, subjects achieved 79% with the in-ear device but only 69% with the muff-style device, averaged across the gender of listener/talker pairs and consonant position. Although there was no main effect of gender, female listener/talkers showed a 10% advantage for the final consonant and male listener/talkers showed a 1% advantage for the initial consonant. These results indicate that normal hearing users can achieve reasonably high radio communication scores with integrated in-ear hearing protection in moderately high-level noise that provides both energetic and informational masking. The adequacy of the range of available radio volumes for users with hearing loss has yet to be determined.

  12. SCOSTEP: Understanding the Climate and Weather of the Sun-Earth System

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2011-01-01

    The international solar-terrestrial physics community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by the Scientific Committee on Solar Terrestrial Physics (SCOSTEP). The CAWSES program is the current major scientific program of SCOSTEP that will continue until the end of the year 2013. The CAWSES program has brought scientists from all over the world together to tackle the scientific issues behind the Sun-Earth connected system and explore ways of helping the human society. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and other SCOSTEP activities that promote space weather science via complementary approaches in international scientific collaborations, capacity building, and public outreach.

  13. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    1990-01-01

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ''technology transfer'' from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean's response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation

  14. Understanding the Effects of Lower Boundary Conditions and Eddy Diffusion on the Ionosphere-Thermosphere System

    Science.gov (United States)

    Malhotra, G.; Ridley, A. J.; Marsh, D. R.; Wu, C.; Paxton, L. J.

    2017-12-01

    The exchange of energy between lower atmospheric regions with the ionosphere-thermosphere (IT) system is not well understood. A number of studies have observed day-to-day and seasonal variabilities in the difference between data and model output of various IT parameters. It is widely speculated that the forcing from the lower atmosphere, variability in weather systems and gravity waves that propagate upward from troposphere into the upper mesosphere and lower thermosphere (MLT) may be responsible for these spatial and temporal variations in the IT region, but their exact nature is unknown. These variabilities can be interpreted in two ways: variations in state (density, temperature, wind) of the upper mesosphere or spatial and temporal changes in the small-scale mixing, or Eddy diffusion that is parameterized within the model.In this study, firstly, we analyze the sensitivity of the thermospheric and ionospheric states - neutral densities, O/N2, total electron content (TEC), peak electron density, and peak electron height - to various lower boundary conditions in the Global Ionosphere Thermosphere Model (GITM). We use WACCM-X and GSWM to drive the lower atmospheric boundary in GITM at 100 km, and compare the results with the current MSIS-driven version of GITM, analyzing which of these simulations match the measurements from GOCE, GUVI, CHAMP, and GPS-derived TEC best. Secondly, we analyze the effect of eddy diffusion in the IT system. The turbulence due to eddy mixing cannot be directly measured and it is a challenge to completely characterize its linear and non-linear effects from other influences, since the eddy diffusion both influences the composition through direct mixing and the temperature structure due to turbulent conduction changes. In this study we input latitudinal and seasonal profiles of eddy diffusion into GITM and then analyze the changes in the thermospheric and ionospheric parameters. These profiles will be derived from both WACC-X simulations

  15. The Motus Wildlife Tracking System: a collaborative research network to enhance the understanding of wildlife movement

    Directory of Open Access Journals (Sweden)

    Philip D. Taylor

    2017-06-01

    Full Text Available We describe a new collaborative network, the Motus Wildlife Tracking System (Motus; https://motus.org, which is an international network of researchers using coordinated automated radio-telemetry arrays to study movements of small flying organisms including birds, bats, and insects, at local, regional, and hemispheric scales. Radio-telemetry has been a cornerstone of tracking studies for over 50 years, and because of current limitations of geographic positioning systems (GPS and satellite transmitters, has remained the primary means to track movements of small animals with high temporal and spatial precision. Automated receivers, along with recent miniaturization and digital coding of tags, have further improved the utility of radio-telemetry by allowing many individuals to be tracked continuously and simultaneously across broad landscapes. Motus is novel among automated arrays in that collaborators employ a single radio frequency across receiving stations over a broad geographic scale, allowing individuals to be detected at sites maintained by others. Motus also coordinates, disseminates, and archives detections and associated metadata in a central repository. Combined with the ability to track many individuals simultaneously, Motus has expanded the scope and spatial scale of research questions that can be addressed using radio-telemetry from local to regional and even hemispheric scales. Since its inception in 2012, more than 9000 individuals of over 87 species of birds, bats, and insects have been tracked, resulting in more than 250 million detections. This rich and comprehensive dataset includes detections of individuals during all phases of the annual cycle (breeding, migration, and nonbreeding, and at a variety of spatial scales, resulting in novel insights into the movement behavior of small flying animals. The value of the Motus network will grow as spatial coverage of stations and number of partners and collaborators increases. With

  16. Development and validation of a system of assimilation indices: A mixed method approach to understand change in psychotherapy.

    Science.gov (United States)

    Neto, David D; Baptista, Telmo M; Dent-Brown, Kim

    2015-06-01

    Assimilation is an important process in understanding change in psychotherapy. Similar to other psychological processes, assimilation may be traceable in the speech of clients by attending to its signs or indices. In the present research, we aimed to build a system of indices of assimilation. This research follows a mixed method design. The indices were derived through qualitative analysis, using grounded theory. Subsequently, the indices were adjusted quantitatively and applied to 30 single psychotherapy sessions of adult clients with depression and 11 therapists. Forty-two indices were found and grouped into the following five process categories of assimilation: external distress, pain, noticing, decentring and action. The indices showed good inter-rater reliability and internal consistency. Except for noticing, all process categories correlated significantly with each other according to conceptual proximity. The system of indices also showed convergent validity with an existing coding system of assimilation for two process categories. The results suggest that the system of indices is a useful approach for understanding assimilation. The consideration of assimilation in a continuous fashion through sub-processes may help to extend our knowledge of this process and provide a tool for clinical practice. Assimilation is an important process in understanding change in psychotherapy in the sense that it takes into account insight and action-related processes. Clients convey in their speech signs or indices of the assimilation process which can be observed both in the style and content of their utterances. Using these indices, therapists can continuously assess assimilation and use this information in choosing interventions. Limitations: This study follows a cross-sectional design and does not allow consideration of the predictive value of the indices. The outcome of the therapy was not taken into account, which restricts validity considerations to the comparison with

  17. Understanding and valuing the broader health system benefits of Uganda's national Human Resources for Health Information System investment.

    Science.gov (United States)

    Driessen, Julia; Settle, Dykki; Potenziani, David; Tulenko, Kate; Kabocho, Twaha; Wadembere, Ismail

    2015-08-31

    To address the need for timely and comprehensive human resources for health (HRH) information, governments and organizations have been actively investing in electronic health information interventions, including in low-resource settings. The economics of human resources information systems (HRISs) in low-resource settings are not well understood, however, and warrant investigation and validation. This case study describes Uganda's Human Resources for Health Information System (HRHIS), implemented with support from the US Agency for International Development, and documents perceptions of its impact on the health labour market against the backdrop of the costs of implementation. Through interviews with end users and implementers in six different settings, we document pre-implementation data challenges and consider how the HRHIS has been perceived to affect human resources decision-making and the healthcare employment environment. This multisite case study documented a range of perceived benefits of Uganda's HRHIS through interviews with end users that sought to capture the baseline (or pre-implementation) state of affairs, the perceived impact of the HRHIS and the monetary value associated with each benefit. In general, the system appears to be strengthening both demand for health workers (through improved awareness of staffing patterns) and supply (by improving licensing, recruitment and competency of the health workforce). This heightened ability to identify high-value employees makes the health sector more competitive for high-quality workers, and this elevation of the health workforce also has broader implications for health system performance and population health. Overall, it is clear that HRHIS end users in Uganda perceived the system to have significantly improved day-to-day operations as well as longer term institutional mandates. A more efficient and responsive approach to HRH allows the health sector to recruit the best candidates, train employees in

  18. Theoretical study of chromophores for biological sensing: Understanding the mechanism of rhodol based multi-chromophoric systems

    Science.gov (United States)

    Rivera-Jacquez, Hector J.; Masunov, Artëm E.

    2018-06-01

    Development of two-photon fluorescent probes can aid in visualizing the cellular environment. Multi-chromophore systems display complex manifolds of electronic transitions, enabling their use for optical sensing applications. Time-Dependent Density Functional Theory (TDDFT) methods allow for accurate predictions of the optical properties. These properties are related to the electronic transitions in the molecules, which include two-photon absorption cross-sections. Here we use TDDFT to understand the mechanism of aza-crown based fluorescent probes for metals sensing applications. Our findings suggest changes in local excitation in the rhodol chromophore between unbound form and when bound to the metal analyte. These changes are caused by a charge transfer from the aza-crown group and pyrazol units toward the rhodol unit. Understanding this mechanism leads to an optimized design with higher two-photon excited fluorescence to be used in medical applications.

  19. The value of mechanistic biophysical information for systems-level understanding of complex biological processes such as cytokinesis.

    Science.gov (United States)

    Pollard, Thomas D

    2014-12-02

    This review illustrates the value of quantitative information including concentrations, kinetic constants and equilibrium constants in modeling and simulating complex biological processes. Although much has been learned about some biological systems without these parameter values, they greatly strengthen mechanistic accounts of dynamical systems. The analysis of muscle contraction is a classic example of the value of combining an inventory of the molecules, atomic structures of the molecules, kinetic constants for the reactions, reconstitutions with purified proteins and theoretical modeling to account for the contraction of whole muscles. A similar strategy is now being used to understand the mechanism of cytokinesis using fission yeast as a favorable model system. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Research on operation and maintenance support system adaptive to human recognition and understanding in human-centered plant

    International Nuclear Information System (INIS)

    Numano, Masayoshi; Matsuoka, Takeshi; Mitomo, N.

    2004-01-01

    As a human-centered plant, advanced nuclear power plant needs appropriate role sharing between human and mobile intelligent agents. Human-machine cooperation for plant operation and maintenance activities is also required with an advanced interface. Plant's maintenance is programmed using mobile robots working under the radiation environments instead of human beings. Operation and maintenance support system adaptive to human recognition and understanding should be developed to establish adequate human and machine interface so as to induce human capabilities to the full and enable human to take responsibility for plan's operation. Plant's operation and maintenance can be cooperative activities between human and intelligent automonous agents having surveillance and control functions. Infrastructure of multi-agent simulation system for the support system has been investigated and developed based on work plans derived from the scheduler. (T. Tanaka)

  1. Understanding Motivational System in Open Learning: Learners' Engagement with a Traditional Chinese-Based Open Educational Resource System

    Science.gov (United States)

    Huang, Wenhao David; Wu, Chorng-Guang

    2017-01-01

    Learning has embraced the "open" process in recent years, as many educational resources are made available for free online. Existing research, however, has not provided sufficient evidence to systematically improve open learning interactions and engagement in open educational resource (OER) systems. This deficiency presents two…

  2. Understanding the modifiable health systems barriers to hypertension management in Malaysia: a multi-method health systems appraisal approach.

    Science.gov (United States)

    Risso-Gill, Isabelle; Balabanova, Dina; Majid, Fadhlina; Ng, Kien Keat; Yusoff, Khalid; Mustapha, Feisul; Kuhlbrandt, Charlotte; Nieuwlaat, Robby; Schwalm, J-D; McCready, Tara; Teo, Koon K; Yusuf, Salim; McKee, Martin

    2015-07-03

    The growing burden of non-communicable diseases in middle-income countries demands models of care that are appropriate to local contexts and acceptable to patients in order to be effective. We describe a multi-method health system appraisal to inform the design of an intervention that will be used in a cluster randomized controlled trial to improve hypertension control in Malaysia. A health systems appraisal was undertaken in the capital, Kuala Lumpur, and poorer-resourced rural sites in Peninsular Malaysia and Sabah. Building on two systematic reviews of barriers to hypertension control, a conceptual framework was developed that guided analysis of survey data, documentary review and semi-structured interviews with key informants, health professionals and patients. The analysis followed the patients as they move through the health system, exploring the main modifiable system-level barriers to effective hypertension management, and seeking to explain obstacles to improved access and health outcomes. The study highlighted the need for the proposed intervention to take account of how Malaysian patients seek treatment in both the public and private sectors, and from western and various traditional practitioners, with many patients choosing to seek care across different services. Patients typically choose private care if they can afford to, while others attend heavily subsidised public clinics. Public hypertension clinics are often overwhelmed by numbers of patients attending, so health workers have little time to engage effectively with patients. Treatment adherence is poor, with a widespread belief, stemming from concepts of traditional medicine, that hypertension is a transient disturbance rather than a permanent asymptomatic condition. Drug supplies can be erratic in rural areas. Hypertension awareness and education material are limited, and what exist are poorly developed and ineffective. Despite having a relatively well funded health system offering good access to

  3. Understanding Interactions between Hydrogeologic Factors, Design Variables, and System Operations for Multi-Well Aquifer Storage and Recovery Systems

    Science.gov (United States)

    Majumdar, S.; Miller, G. R.; Smith, B.; Sheng, Z.

    2017-12-01

    Aquifer Storage and Recovery (ASR) system is a powerful tool for managing our present and future freshwater supplies. It involves injection of excess water into an aquifer, storing and later recovering it when needed, such as in a drought or during peak demand periods. Multi-well ASR systems, such as the Twin Oaks Facility in San Antonio, consist of a group of wells that are used for simultaneous injection and extraction of stored water. While significant research has gone into examining the effects of hydraulic and operational factors on recovery efficiency for single ASR well, little is known about how multi-well systems respond to these factors and how energy uses may vary. In this study, we created a synthetic ASR model in MODFLOW to test a range of multi-well scenarios. We altered design parameters (well spacing, pumping capacity, well configuration), hydrogeologic factors (regional hydraulic gradient, hydraulic conductivity, dispersivity), and operational variables (injection and withdrawal durations; pumping rates) to determine the response of the system across a realistic range of interrelated parameters. We then computed energy use for each simulation, based on the hydraulic head in each well and standard pump factors, as well as recovery efficiency, based on tracer concentration in recovered water from the wells. The tracer concentration in the groundwater was determined using MT3DMS. We observed that the recovery and energy efficiencies for the Multi-well ASR system decrease with the increase in well spacing and hydraulic gradient. When longitudinal dispersivity was doubled, the recovery and energy efficiencies were nearly halved. Another finding from our study suggests that we can recover nearly 90% of the water after two successive cycles of operation. The results will be used to develop generalized operational guidelines for meeting freshwater demands and also optimise the energy consumed during pumping.

  4. Understanding and revisiting the most complex perovskite system via atomistic simulations

    Science.gov (United States)

    Yang, Yali; Xu, Bin; Xu, Changsong; Ren, Wei; Bellaiche, Laurent

    2018-05-01

    A first-principles-based effective Hamiltonian is developed and used, along with direct ab initio techniques, to investigate finite-temperature properties of the system commonly coined the most complex perovskite, that is NaNbO3. Such simulations successfully reproduce the existence of seven different phases in its phase diagram. The decomposition of the total energy of this effective Hamiltonian into different terms, altogether with the values of the parameters associated with these terms, also allow us to shed some light into puzzling features of such a compound. Examples include revealing the microscopic reasons of why R 3 c is its ground state and why it solely adopts in-phase tiltings at high temperatures versus complex nanotwins for intermediate temperatures. The results of the computations also call for a revisiting of the so-called P ,R , and S states, in the sense that an unexpected and previously overlooked inhomogeneous electrical polarization is numerically found in the P state while complex tiltings associated with the simultaneous condensation of several k points are predicted for the controversial R and S phases.

  5. Hydrogeochemistry and statistical analysis applied to understand fluoride provenance in the Guarani Aquifer System, Southern Brazil.

    Science.gov (United States)

    Marimon, Maria Paula C; Roisenberg, Ari; Suhogusoff, Alexandra V; Viero, Antonio Pedro

    2013-06-01

    High fluoride concentrations (up to 11 mg/L) have been reported in the groundwater of the Guarani Aquifer System (Santa Maria Formation) in the central region of the state of Rio Grande do Sul, Southern Brazil. In this area, dental fluorosis is an endemic disease. This paper presents the geochemical data and the combination of statistical analysis (Principal components and cluster analyses) and geochemical modeling to achieve the hydrogeochemistry of the groundwater and discusses the possible fluoride origin. The groundwater from the Santa Maria Formation is comprised of four different geochemical groups. The first group corresponds to a sodium chloride groundwater which evolves to sodium bicarbonate, the second one, both containing fluoride anomalies. The third group is represented by calcium bicarbonate groundwater, and in the fourth, magnesium is the distinctive parameter. The statistical and geochemical analyses supported by isotopic measurements indicated that groundwater may have originated from mixtures of deeper aquifers and the fluoride concentrations could be derived from rock/water interactions (e.g., desorption from clay minerals).

  6. Understanding the benefits of product-service system for involved parties in remanufacturing

    International Nuclear Information System (INIS)

    Priyono, A.

    2017-01-01

    This study aims to analyse the benefit provided by interested parties in remanufacturing including manufacturing companies, original equipment manufacturers and customers. Existing studies examining Produc-Service System (PSS) focus on relationship between two parties, either between OEMs and customers or between remanufacturers with customers. This study attempts to fill the gap by investigating how the PSS offers benefit to OEMs, remanufacturers and customers. Methodology: This research used case study method to examine the practice of PSS in remanufacturing companies. Qualitative approach was employed to analyse emerging problems in the case companies and the researcher collaborate with the involved parties to create new knowledge. Thus, this process can offer theoretical insights as well as practical insights. Findings: All parties involved in PSS consistently gain benefit from adopting the practice. From the perspective of remanufacturers, the major benefit of remanufacturers adopting PSS is that it can help reduce the uncertainties regarding time, quantity and quality of returned cores. Due to reduced uncertainties, remanufacturers gain benefit from higher profitability and more environmental friendly products. These benefits provide multiplier effects to both customers and OEMs. Practical implications: This study offers benefits to managers in the sense that it provides guidance for managers of remanufacturers to better manage remanufacturing operation so that it becomes more environmentally friendly and economically profitable. Originality/value: It is the first time that the benefits of PSS to support remanufacturing are viewed from integrative perspective – i.e. manufacturers, remanufacturers, and customers.

  7. Understanding of radiation protection in medicine. Pt. 2. Occupational exposure and system of radiation protection

    International Nuclear Information System (INIS)

    Iida, Hiroji; Yamamoto, Tomoyuki; Shimada, Yasuhiro

    1997-01-01

    Using a questionnaire we investigated whether radiation protection is correctly understood by medical doctors (n=140) and nurses (n=496). Although medical exposure is usually understood by medical doctors and dentists, their knowledge was found to be insufficient. Sixty-eight percent of medical doctors and 50% of dentists did not know about the system of radiation protection. Dose monitoring was not correctly carried out by approximately 20% of medical staff members, and medical personnel generally complained of anxiety about occupational exposure rather than medical exposure. They did not receive sufficient education on radiation exposure and protection in school. In conclusion, the results of this questionnaire suggested that they do not have adequate knowledge about radiation exposure and protection. The lack of knowledge about protection results in anxiety about exposure. To protect oneself from occupational exposure, individual radiation doses must be monitored, and medical practice should be reconsidered based on the results of monitoring. To eliminate unnecessary medical and occupational exposure and to justify practices such as radiological examinations, radiation protection should be well understood and appropriately carried out by medical doctors and dentists. Therefore, the education of medical students on the subject of radiation protection is required as is postgraduate education for medical doctors, dentists and nurses. (author)

  8. Using Geographic Information Systems (GIS) to understand a community's primary care needs.

    Science.gov (United States)

    Dulin, Michael F; Ludden, Thomas M; Tapp, Hazel; Blackwell, Joshua; de Hernandez, Brisa Urquieta; Smith, Heather A; Furuseth, Owen J

    2010-01-01

    A key element for reducing health care costs and improving community health is increased access to primary care and preventative health services. Geographic information systems (GIS) have the potential to assess patterns of health care utilization and community-level attributes to identify geographic regions most in need of primary care access. GIS, analytical hierarchy process, and multiattribute assessment and evaluation techniques were used to examine attributes describing primary care need and identify areas that would benefit from increased access to primary care services. Attributes were identified by a collaborative partnership working within a practice-based research network using tenets of community-based participatory research. Maps were created based on socioeconomic status, population density, insurance status, and emergency department and primary care safety-net utilization. Individual and composite maps identified areas in our community with the greatest need for increased access to primary care services. Applying GIS to commonly available community- and patient-level data can rapidly identify areas most in need of increased access to primary care services. We have termed this a Multiple Attribute Primary Care Targeting Strategy. This model can be used to plan health services delivery as well as to target and evaluate interventions designed to improve health care access.

  9. Understanding health systems, health economies and globalization: the need for social science perspectives.

    Science.gov (United States)

    Murray, Susan F; Bisht, Ramila; Baru, Rama; Pitchforth, Emma

    2012-08-31

    The complex relationship between globalization and health calls for research from many disciplinary and methodological perspectives. This editorial gives an overview of the content trajectory of the interdisciplinary journal 'Globalization and Health' over the first six years of production, 2005 to 2010. The findings show that bio-medical and population health perspectives have been dominant but that social science perspectives have become more evident in recent years. The types of paper published have also changed, with a growing proportion of empirical studies. A special issue on 'Health systems, health economies and globalization: social science perspectives' is introduced, a collection of contributions written from the vantage points of economics, political science, psychology, sociology, business studies, social policy and research policy. The papers concern a range of issues pertaining to the globalization of healthcare markets and governance and regulation issues. They highlight the important contribution that can be made by the social sciences to this field, and also the practical and methodological challenges implicit in the study of globalization and health.

  10. Understanding health systems, health economies and globalization: the need for social science perspectives

    Directory of Open Access Journals (Sweden)

    Murray Susan F

    2012-08-01

    Full Text Available Abstract The complex relationship between globalization and health calls for research from many disciplinary and methodological perspectives. This editorial gives an overview of the content trajectory of the interdisciplinary journal ‘Globalization and Health’ over the first six years of production, 2005 to 2010. The findings show that bio-medical and population health perspectives have been dominant but that social science perspectives have become more evident in recent years. The types of paper published have also changed, with a growing proportion of empirical studies. A special issue on ‘Health systems, health economies and globalization: social science perspectives’ is introduced, a collection of contributions written from the vantage points of economics, political science, psychology, sociology, business studies, social policy and research policy. The papers concern a range of issues pertaining to the globalization of healthcare markets and governance and regulation issues. They highlight the important contribution that can be made by the social sciences to this field, and also the practical and methodological challenges implicit in the study of globalization and health.

  11. An approach towards understanding the structure of complex molecular systems: the case of lower aliphatic alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Vrhovsek, Aleksander; Gereben, Orsolya; Pothoczki, Szilvia; Pusztai, Laszlo [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, H-1525 Budapest, PO Box 49 (Hungary); Tomsic, Matija; Jamnik, Andrej [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, SI-1001 Ljubljana (Slovenia); Kohara, Shinji, E-mail: aleksander.vrhovsek@gmail.co [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2010-10-13

    An extensive study of liquid aliphatic alcohols methanol, ethanol, and propanol, applying reverse Monte Carlo modelling as a method of interpretation of diffraction data, is presented. The emphasis is on the evaluation of several computational strategies in view of their suitability to obtain high quality molecular models via the reverse Monte Carlo procedure. A consistent set of distances of closest approach and fixed neighbour constraints applicable to all three investigated systems was developed. An all-atom description is compared with a united-atom approach. The potentialities of employment of neutron diffraction data of completely deuterated and isotopically substituted samples, x-ray diffraction data, and results of either molecular dynamics or Monte Carlo calculations were investigated. Results show that parallel application of x-ray and neutron diffraction data, the latter being from completely deuterated samples, within an all-atom reverse Monte Carlo procedure is the most successful strategy towards attaining reliable, detailed, and well-structured molecular models, especially if the models are subsequently refined with the results of molecular dynamics simulations.

  12. Understanding the benefits of product-service system for involved parties in remanufacturing

    Directory of Open Access Journals (Sweden)

    Anjar Priyono

    2017-05-01

    Full Text Available Purpose: This study aims to analyse the benefit provided by interested parties in remanufacturing including manufacturing companies, original equipment manufacturers and customers. Existing studies examining Produc-Service System (PSS focus on relationship between two parties, either between OEMs and customers or between remanufacturers with customers. This study attempts to fill the gap by investigating how the PSS offers benefit to OEMs, remanufacturers and customers. Methodology: This research used case study method to examine the practice of PSS in remanufacturing companies. Qualitative approach was employed to analyse emerging problems in the case companies and the researcher collaborate with the involved parties to create new knowledge. Thus, this process can offer theoretical insights as well as practical insights. Findings: All parties involved in PSS consistently gain benefit from adopting the practice. From the perspective of remanufacturers, the major benefit of remanufacturers adopting PSS is that it can help reduce the uncertainties regarding time, quantity and quality of returned cores. Due to reduced uncertainties, remanufacturers gain benefit from higher profitability and more environmental friendly products. These benefits provide multiplier effects to both customers and OEMs. Practical implications: This study offers benefits to managers in the sense that it provides guidance for managers of remanufacturers to better manage remanufacturing operation so that it becomes more environmentally friendly and economically profitable. Originality/value: It is the first time that the benefits of PSS to support remanufacturing are viewed from integrative perspective – i.e. manufacturers, remanufacturers, and customers.

  13. Understanding socio-economic impacts of geohazards aided by cyber-enabled systems

    Science.gov (United States)

    Klose, C. D.; Webersik, C.

    2008-12-01

    Due to an increase in the volume of geohazards worldwide, not only are impoverished regions in less developed countries such as Haiti, vulnerable to risk but also low income regions in industrialized countries, e.g. USA, as well. This has been exemplified once again by Hurricanes Gustav, Hanna and Ike and the impact on the Caribbean countries during the summer of 2008. To date, extensive research has been conducted to improve the monitoring of human-nature coupled systems. However, there is little emphasis on improving and developing methodologies to a) interpret multi-dimensional and complex data and b) validate prediction and modeling results. This presentation tries to motivate more research initiatives to address the aforementioned issues, bringing together two academic disciplines, earth and social sciences, to research the relationship between natural and socio-economic processes. Results are presented where cyber-enabled methods based on artificial intelligence are applied to different geohazards and regions in the world. They include 1) modeling of public health risks associated with volcanic gas hazards, 2) prediction and validation of potential areas of mining-triggered earthquakes, and 3) modeling of socio-economic risks associated with tropical storms in Haiti and the Dominican Republic.

  14. One Health: Understanding and Improving Human, Animal, and Environmental Health as a Connected System Across NOAA

    Science.gov (United States)

    Giltz, S.; Trtanj, J.; Jones, H.

    2017-12-01

    The One Health concept recognizes that the health of humans is inextricably linked with the health of animals and the environment. With a growing world population, changing climate, and increased global travel One Health approaches are increasingly useful. The National Oceanic and Atmospheric Administration (NOAA) provides key stakeholders in the public health sector with the environmental intelligence they need to mitigate emerging health threats. The NOAA One Health Working Group's mission is to integrate and coordinate the network of observing systems and in situ sensors, detection and diagnostic capacity, research and modeling efforts, and sustained engagement with health partners to deliver useful information to public health and resource management communities. The NOAA One Health group divides its broad focus into themes: thermal extremes, water-borne disease, seafood security, Arctic, wildlife and zoonotic disease, vector-borne disease, and air quality (including wildfire). The group connects the work being done throughout NOAA to coordinate One Health related efforts, increase information sharing, promote interdisciplinary approaches, and work towards better disease prevention. We are working to enhance NOAA Science and services to deliver useful information on current and emerging health risks and benefits to health decision makers.

  15. A new analytical approach to understanding nanoscale lead-iron interactions in drinking water distribution systems.

    Science.gov (United States)

    Trueman, Benjamin F; Gagnon, Graham A

    2016-07-05

    High levels of iron in distributed drinking water often accompany elevated lead release from lead service lines and other plumbing. Lead-iron interactions in drinking water distribution systems are hypothesized to be the result of adsorption and transport of lead by iron oxide particles. This mechanism was explored using point-of-use drinking water samples characterized by size exclusion chromatography with UV and multi-element (ICP-MS) detection. In separations on two different stationary phases, high apparent molecular weight (>669 kDa) elution profiles for (56)Fe and (208)Pb were strongly correlated (average R(2)=0.96, N=73 samples representing 23 single-unit residences). Moreover, (56)Fe and (208)Pb peak areas exhibited an apparent linear dependence (R(2)=0.82), consistent with mobilization of lead via adsorption to colloidal particles rich in iron. A UV254 absorbance peak, coincident with high molecular weight (56)Fe and (208)Pb, implied that natural organic matter was interacting with the hypothesized colloidal species. High molecular weight UV254 peak areas were correlated with both (56)Fe and (208)Pb peak areas (R(2)=0.87 and 0.58, respectively). On average, 45% (std. dev. 10%) of total lead occurred in the size range 0.05-0.45 μm. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Endogenous retroviruses of sheep: a model system for understanding physiological adaptation to an evolving ruminant genome.

    Science.gov (United States)

    Spencer, Thomas E; Palmarini, Massimo

    2012-01-01

    Endogenous retroviruses (ERVs) are present in the genome of all vertebrates and are remnants of ancient exogenous retroviral infections of the host germline transmitted vertically from generation to generation. Sheep betaretroviruses offer a unique model system to study the complex interaction between retroviruses and their host. The sheep genome contains 27 endogenous betaretroviruses (enJSRVs) related to the exogenous and pathogenic Jaagsiekte sheep retrovirus (JSRV), the causative agent of a transmissible lung cancer in sheep. The enJSRVs can protect their host against JSRV infection by blocking early and late steps of the JSRV replication cycle. In the female reproductive tract, enJSRVs are specifically expressed in the uterine luminal and glandular epithelia as well as in the conceptus (embryo and associated extraembryonic membranes) trophectoderm and in utero loss-of-function experiments found the enJSRVs envelope (env) to be essential for conceptus elongation and trophectoderm growth and development. Collectively, available evidence in sheep and other mammals indicate that ERVs coevolved with their hosts for millions of years and were positively selected for biological roles in genome plasticity and evolution, protection of the host against infection of related pathogenic and exogenous retroviruses, and placental development.

  17. Understanding the benefits of product-service system for involved parties in remanufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Priyono, A.

    2017-07-01

    This study aims to analyse the benefit provided by interested parties in remanufacturing including manufacturing companies, original equipment manufacturers and customers. Existing studies examining Produc-Service System (PSS) focus on relationship between two parties, either between OEMs and customers or between remanufacturers with customers. This study attempts to fill the gap by investigating how the PSS offers benefit to OEMs, remanufacturers and customers. Methodology: This research used case study method to examine the practice of PSS in remanufacturing companies. Qualitative approach was employed to analyse emerging problems in the case companies and the researcher collaborate with the involved parties to create new knowledge. Thus, this process can offer theoretical insights as well as practical insights. Findings: All parties involved in PSS consistently gain benefit from adopting the practice. From the perspective of remanufacturers, the major benefit of remanufacturers adopting PSS is that it can help reduce the uncertainties regarding time, quantity and quality of returned cores. Due to reduced uncertainties, remanufacturers gain benefit from higher profitability and more environmental friendly products. These benefits provide multiplier effects to both customers and OEMs. Practical implications: This study offers benefits to managers in the sense that it provides guidance for managers of remanufacturers to better manage remanufacturing operation so that it becomes more environmentally friendly and economically profitable. Originality/value: It is the first time that the benefits of PSS to support remanufacturing are viewed from integrative perspective – i.e. manufacturers, remanufacturers, and customers.

  18. Risks, resources and reason: understanding smallholder decisions around farming system interventions in Eastern Indonesia

    Directory of Open Access Journals (Sweden)

    Clemens M. Grünbühel

    2016-11-01

    Full Text Available Adoption of new cattle management practices by Indonesian smallholders occurs less as a ‘technology transfer’ in the classical sense but rather as a series of conscious decisions by farming households weighing risks and resources as well as matching innovations to livelihood strategies. This paper uncovers the context of decisions and communication of innovations by way of social networks. The research looks at two geographically distinct cases where new cattle management practices have been introduced. We apply the lens of a common sense framework initially introduced by Clifford Geertz. Smallholder decisions are analysed within a socio-cultural context and a particular set of resources, risks and livelihood objectives. We show that the respective value placed on land, cattle and food security is central to adoption of new cattle management techniques. Far from accepting everything novel, smallholders are selective and willing to make changes to their farming system if they do not conflict with livelihood strategies. Innovations are communicated through a range of existing social networks and are either matched to existing livelihood strategies or perceived as stepping-stones out of agriculture.

  19. Understanding the Role of Accredited Drug Dispensing Outlets in Tanzania's Health System.

    Directory of Open Access Journals (Sweden)

    Martha Embrey

    Full Text Available People in many low-income countries access medicines from retail drug shops. In Tanzania, a public-private partnership launched in 2003 used an accreditation approach to improve access to quality medicines and pharmaceutical services in underserved areas. The government scaled up the accredited drug dispensing outlet (ADDO program nationally, with over 9,000 shops now accredited. This study assessed the relationships between community members and their sources of health care and medicines, particularly antimicrobials, with a specific focus on the role ADDOs play in the health care system.Using mixed methods, we collected data in four regions. We surveyed 1,185 households and audited 96 ADDOs and 84 public/nongovernmental health facilities using a list of 17 tracer drugs. To determine practices in health facilities, we interviewed 1,365 exiting patients. To assess dispensing practices, mystery shoppers visited 306 ADDOs presenting one of three scenarios (102 each about a child's respiratory symptoms.Of 614 household members with a recent acute illness, 73% sought outside care-30% at a public facility and 31% at an ADDO. However, people bought medicines more often at ADDOs no matter who recommended the treatment; of the 581 medicines that people had received, 49% came from an ADDO. Although health facilities and ADDOs had similar availability of antimicrobials, ADDOs had more pediatric formulations available (p<0.001. The common perception was that drugs from ADDOs are more expensive, but the difference in the median cost to treat pneumonia was relatively minimal (US$0.26 in a public facility and US$0.30 in an ADDO. Over 20% of households said they had someone with a chronic condition, with 93% taking medication, but ADDOs are allowed to sell very few chronic care-related medicines. ADDO dispensers are trained to refer complicated cases to a health facility, and notably, 99% of mystery shoppers presenting a pneumonia scenario received an

  20. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems.

    Science.gov (United States)

    Liu, Sanly; Gunawan, Cindy; Barraud, Nicolas; Rice, Scott A; Harry, Elizabeth J; Amal, Rose

    2016-09-06

    In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for example, grow more-developed biofilms at a typical summer temperature of 22 °C compared to 12 °C in fall, and the opposite occurs for the pathogenic Vibrio cholerae. Recent investigations have found the formation of thinner yet denser biofilms under high and turbulent flow regimes of drinking water, in comparison to the more porous and loosely attached biofilms at low flow rates. Furthermore, in addition to the rather well-known tendency of significant biofilm growth on corrosion-prone metal pipes, research efforts also found leaching of growth-promoting organic compounds from the increasingly popular use of polymer-based pipes. Knowledge of the unique microbial members of drinking water biofilms and, importantly, the influence of water characteristics and operational conditions on their growth can be applied to optimize various operational parameters to minimize biofilm accumulation. More-detailed characterizations of the biofilm population size and structure are now

  1. Towards a Fundamental Understanding of Short Period Eclipsing Binary Systems Using Kepler Data

    Science.gov (United States)

    Prsa, Andrej

    Kepler's ultra-high precision photometry is revolutionizing stellar astrophysics. We are seeing intrinsic phenomena on an unprecedented scale, and interpreting them is both a challenge and an exciting privilege. Eclipsing binary stars are of particular significance for stellar astrophysics because precise modeling leads to fundamental parameters of the orbiting components: masses, radii, temperatures and luminosities to better than 1-2%. On top of that, eclipsing binaries are ideal physical laboratories for studying other physical phenomena, such as asteroseismic properties, chromospheric activity, proximity effects, mass transfer in close binaries, etc. Because of the eclipses, the basic geometry is well constrained, but a follow-up spectroscopy is required to get the dynamical masses and the absolute scale of the system. A conjunction of Kepler photometry and ground- based spectroscopy is a treasure trove for eclipsing binary star astrophysics. This proposal focuses on a carefully selected set of 100 short period eclipsing binary stars. The fundamental goal of the project is to study the intrinsic astrophysical effects typical of short period binaries in great detail, utilizing Kepler photometry and follow-up spectroscopy to devise a robust and consistent set of modeling results. The complementing spectroscopy is being secured from 3 approved and fully funded programs: the NOAO 4-m echelle spectroscopy at Kitt Peak (30 nights; PI Prsa), the 10- m Hobby-Eberly Telescope high-resolution spectroscopy (PI Mahadevan), and the 2.5-m Sloan Digital Sky Survey III spectroscopy (PI Mahadevan). The targets are prioritized by the projected scientific yield. Short period detached binaries host low-mass (K- and M- type) components for which the mass-radius relationship is sparsely populated and still poorly understood, as the radii appear up to 20% larger than predicted by the population models. We demonstrate the spectroscopic detection viability in the secondary

  2. Toward a better understanding of nearshore meteotsunami evolution, and effective meteotsunami early-warning systems

    Science.gov (United States)

    Sheremet, A.; Li, C.; Shrira, V. I.

    2017-12-01

    We present high-resolution observations collected in 2008 on the Atcahfalaya shelf that capture the shoaling evolution of a meteotsunami (MT), including the disintegration into the train of solitons (solibore). One of the intriguing elements of this process is a spectacular 1.5-m solitary-wave (soliton), that precedes the arrival of the MT solibore by approximately 5 min, reaching the observation site propagating through a background of nearly-calm waters (20-cm height wind waves). Solitons, products of the MT disintegration process, are observed at all experiment sites, covering approx. 200 km shoreline. We interpret observations employing numerical simulations of a simplified hydrodynamic model based on the variable coefficient KdV equation. The analysis shows that observed wide-spread soliton presence and the soliton/solibore formation are the result of a complicated evolution process involving refraction, collision, and nonlinear interaction of multiple meteotsunami waves.Our results highlight the substantial lack of detail of the current picture of the nonlinear transformation of a MT from generation to its shoreline manifestation. A realistic reconstruction of MT evolution is at present almost impossible based on the current poor spatial and temporal resolution MT observations, overwhelmingly confined to the shoreline. Since the MTs tend to disintegrate into very short (down to 10s) pulses, even modern tidal gauges (1 min resolution) fail to capture essential features of its evolution. We also briefly discuss an ongoing field experiment that carries further the effort to collect high-resolution MT measurements, and that will investigate and test methodologies for early warning systems.

  3. Health and demographic surveillance systems: contributing to an understanding of the dynamics in migration and health

    Science.gov (United States)

    Gerritsen, Annette; Bocquier, Philippe; White, Michael; Mbacké, Cheikh; Alam, Nurul; Beguy, Donatien; Odhiambo, Frank; Sacoor, Charfudin; Phuc, Ho Dang; Punpuing, Sureeporn; Collinson, Mark A.

    2013-01-01

    Background Migration is difficult to measure because it is highly repeatable. Health and Demographic Surveillance Systems (HDSSs) provide a unique opportunity to study migration as multiple episodes of migration are captured over time. A conceptual framework is needed to show the public health implications of migration. Objective/design Research conducted in seven HDSS centres [International Network for the Demographic Evaluation of Populations and Their Health (INDEPTH) Network], published in a peer-reviewed volume in 2009, is summarised focussing on the age–sex profile of migrants, the relation between migration and livelihoods, and the impact of migration on health. This illustrates the conceptual structure of the implications of migration. The next phase is described, the Multi-centre Analysis of the Dynamics In Migration And Health (MADIMAH) project, consisting of workshops focussed on preparing data and conducting the analyses for comparative studies amongst HDSS centres in Africa and Asia. The focus here is on the (standardisation of) determinants of migration and the impact of migration on adult mortality. Results The findings in the volume showed a relatively regular age structure for migration among all HDSS centres. Furthermore, migration generally contributes to improved living conditions at the place of origin. However, there are potential negative consequences of migration on health. It was concluded that there is a need to compare results from multiple centres using uniform covariate definitions as well as longitudinal analysis techniques. This was the starting point for the on-going MADIMAH initiative, which has increased capacity at the participating HDSS centres to produce the required datasets and conduct the analyses. Conclusions HDSS centres brought together within INDEPTH Network have already provided strong evidence of the potential negative consequences of migration on health, which contrast with the beneficial impacts of migration on

  4. Understanding Fluid and Contaminant Movement in the Unsaturated Zone Using the INEEL Vadose Zone Monitoring System

    International Nuclear Information System (INIS)

    Hubbell, J. M.; Mattson, E. D.; Sisson, J. B.; Magnuson, S. O.

    2002-01-01

    DOE has hundreds of contaminated facilities and waste sites requiring cleanup and/or long-term monitoring. These contaminated sites reside in unsaturated soils (i.e. the vadose zone) above the water table. Some of these sites will require active remediation activities or removal while other sites will be placed under institutional controls. In either case, evaluating the effectiveness of the remediation strategy or institutional controls will require monitoring. Classical monitoring strategies implemented at RCRA/CERCLA sites require ground water sampling for 30 years following closure. The overall effectiveness of ground water sampling is diminished due to the fact that by the time you detect chemical transport from a waste site, a major contamination plume likely exists in the vadose zone and the aquifer. This paper suggests a more effective monitoring strategy through monitoring near the contaminant sites within the vadose zone. Vadose zone monitoring allows for quicker detection of potential contaminant transport. The INEEL Vadose Zone Monitoring System (VZMS) is becoming an accepted, cost effective monitoring technology for assessing contaminant transport at DOE facilities. This paper describes the technologies employed in the VZMS and describes how it was used at several DOE facilities. The INEEL VZMS has provided the information in developing and validating both conceptual and risk assessment models of contaminant transport at the Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge National Laboratory (ORNL), Savannah River Site (SRS) and the Hanford site. These DOE sites exhibit a broad range of meteorologic, hydrologic and geologic conditions representative of various common geologic environments. The VZMS is comprised of advanced tensiometers, water content sensors, temperature sensors and soil and gas samplers. These instruments are placed at multiple depths in boreholes and allows for the detection of water movement in the

  5. Understanding Global Systems Today—A Calibration of the World3-03 Model between 1995 and 2012

    Directory of Open Access Journals (Sweden)

    Roberto Pasqualino

    2015-07-01

    Full Text Available In 1972 the Limits to Growth report was published. It used the World3 model to better understand the dynamics of global systems and their relationship to finite resource availability, land use, and persistent pollution accumulation. The trends of resource depletion and degradation of physical systems which were identified by Limits to Growth have continued. Although World3 forecast scenarios are based on key measures and assumptions that cannot be easily assessed using available data (i.e., non-renewable resources, persistent pollution, the dynamics of growth components of the model can be compared with publicly available global data trends. Based on Scenario 2 of the Limits to Growth study, we present a calibration of the updated World3-03 model using historical data from 1995 to 2012 to better understand the dynamics of today’s economic and resource system. Given that accurate data on physical limits does not currently exist, the dynamics of overshoot to global limits are not assessed. In this paper we offer a new interpretation of the parametrisation of World3-03 using these data to explore how its assumptions on global dynamics, environmental footprints and responses have changed over the past 40 years. The results show that human society has invested more to abate persistent pollution, to increase food productivity and have a more productive service sector.

  6. Understanding the Role of the Immune System in the Development of Cancer: New Opportunities for Population-Based Research.

    Science.gov (United States)

    Michaud, Dominique S; Houseman, E Andres; Marsit, Carmen J; Nelson, Heather H; Wiencke, John K; Kelsey, Karl T

    2015-12-01

    Understanding the precise role of the immune system in cancer has been hindered by the complexity of the immune response and challenges in measuring immune cell types in health and disease in the context of large epidemiologic studies. In this review, we present the rationale to study immunity in cancer and highlight newly available tools to further elucidate the epidemiologic factors driving individual variation in the immune response in cancer. Here, we summarize key studies that have evaluated the role of immunologic status on risk of cancer, discuss tools that have been used in epidemiologic studies to measure immune status, as well as new evolving methodologies where application to epidemiology is becoming more feasible. We also encourage further development of novel emerging technologies that will continue to enable prospective assessment of the dynamic and complex role played by the immune system in cancer susceptibility. Finally, we summarize characteristics and environmental factors that affect the immune response, as these will need to be considered in epidemiologic settings. Overall, we consider the application of a systems biologic approach and highlight new opportunities to understand the immune response in cancer risk. ©2015 American Association for Cancer Research.

  7. Understanding patient requirements for technology systems that support pain management in palliative care services: A qualitative study.

    Science.gov (United States)

    Allsop, Matthew J; Taylor, Sally; Bennett, Michael I; Bewick, Bridgette M

    2017-11-01

    Approaches to pain management using electronic systems are being developed for use in palliative care. This article explores palliative care patients' perspectives on managing and talking about pain, the role of technology in their lives and how technology could support pain management. Face-to-face interviews were used to understand patient needs and concerns to inform how electronic systems are developed. A total of 13 interviews took place with a convenience sample of community-based patients with advanced cancer receiving palliative care through a hospice. Data were analysed using framework analysis. Four meta-themes emerged: Technology could be part of my care; I'm trying to understand what is going on; My pain is ever-changing and difficult to control; and I'm selective about who to tell about pain. Patients described technology as peripheral to existing processes of care. To be relevant, systems may need to take account of the complexity of a patient's pain experience alongside existing relationships with health professionals.

  8. Understanding persuasion contexts in health gamification: A systematic analysis of gamified health behavior change support systems literature.

    Science.gov (United States)

    Alahäivälä, Tuomas; Oinas-Kukkonen, Harri

    2016-12-01

    Gamification is increasingly used as a design strategy when developing behavior change support systems in the healthcare domain. It is commonly agreed that understanding the contextual factors is critical for successful gamification, but systematic analyses of the persuasive contexts have been lacking so far within gamified health intervention studies. Through a persuasion context analysis of the gamified health behavior change support systems (hBCSSs) literature, we inspect how the contextual factors have been addressed in the prior gamified health BCSS studies. The implications of this study are to provide the practitioners and researchers examples of how to conduct a systematic analysis to help guide the design and research on gamified health BCSSs. The ideas derived from the analysis of the included studies will help identify potential pitfalls and shortcomings in both the research and implementations of gamified health behavior change support systems. We systematically analyzed the persuasion contexts of 15 gamified health intervention studies. According to our results, gamified hBCSSs are implemented under different facets of lifestyle change and treatments compliance, and use a multitude of technologies and methods. We present a set of ideas and concepts to help improve endeavors in studying gamified health intervention through comprehensive understanding of the persuasive contextual factors. Future research on gamified hBCSSs should systematically compare the different combinations of contextual factors, related theories, chosen gamification strategies, and the study of outcomes to help understand how to achieve the most efficient use of gamification on the different aspects of healthcare. Analyzing the persuasion context is essential to achieve this. With the attained knowledge, those planning health interventions can choose the 'tried-and-tested' approaches for each particular situation, rather than develop solutions in an ad-hoc manner. Copyright © 2016

  9. Understanding Technology and People Issues in Hospital Information System (HIS Adoption: Case study of a tertiary hospital in Malaysia

    Directory of Open Access Journals (Sweden)

    Nasriah Zakaria

    2016-11-01

    Full Text Available Summary: Background: Hospital Information Systems (HIS can improve healthcare outcome quality, increase efficiency, and reduce errors. The government of Malaysia implemented HIS across the country to maximize the use of technology to improve healthcare delivery, however, little is known about the benefits and challenges of HIS adoption in each institution. This paper looks at the technology and people issues in adopting such systems. Methods: The study used a case study approach, using an in-depth interview with multidisciplinary medical team members who were using the system on a daily basis. A thematic analysis using Atlas.ti was employed to understand the complex relations among themes and sub-themes to discover the patterns in the data. . Results: Users found the new system increased the efficiency of workflows and saved time. They reported less redundancy of work and improved communication among medical team members. Data retrieval and storage were also mentioned as positive results of the new HIS system. Healthcare workers showed positive attitudes during training and throughout the learning process. Conclusions: From a technological perspective, it was found that medical workers using HIS has better access and data management compared to the previously used manual system. The human issues analysis reveals positive attitudes toward using HIS among the users especially from the physicians’ side. Keywords: HIS adoption, Technology and people issues, Case study

  10. Understanding Technology and People Issues in Hospital Information System (HIS) Adoption: Case study of a tertiary hospital in Malaysia.

    Science.gov (United States)

    Zakaria, Nasriah; Mohd Yusof, Shafiz Affendi

    Hospital Information Systems (HIS) can improve healthcare outcome quality, increase efficiency, and reduce errors. The government of Malaysia implemented HIS across the country to maximize the use of technology to improve healthcare delivery, however, little is known about the benefits and challenges of HIS adoption in each institution. This paper looks at the technology and people issues in adopting such systems. The study used a case study approach, using an in-depth interview with multidisciplinary medical team members who were using the system on a daily basis. A thematic analysis using Atlas.ti was employed to understand the complex relations among themes and sub-themes to discover the patterns in the data. . Users found the new system increased the efficiency of workflows and saved time. They reported less redundancy of work and improved communication among medical team members. Data retrieval and storage were also mentioned as positive results of the new HIS system. Healthcare workers showed positive attitudes during training and throughout the learning process. From a technological perspective, it was found that medical workers using HIS has better access and data management compared to the previously used manual system. The human issues analysis reveals positive attitudes toward using HIS among the users especially from the physicians' side. Copyright © 2016. Published by Elsevier Ltd.

  11. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Pedro M.; Fadeel, Bengt, E-mail: Bengt.Fadeel@ki.se

    2016-05-15

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.

  12. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk

    International Nuclear Information System (INIS)

    Costa, Pedro M.; Fadeel, Bengt

    2016-01-01

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.

  13. Understanding coupled natural and human systems on fire prone landscapes: integrating wildfire simulation into an agent based planning system.

    Science.gov (United States)

    Barros, Ana; Ager, Alan; Preisler, Haiganoush; Day, Michelle; Spies, Tom; Bolte, John

    2015-04-01

    Agent-based models (ABM) allow users to examine the long-term effects of agent decisions in complex systems where multiple agents and processes interact. This framework has potential application to study the dynamics of coupled natural and human systems where multiple stimuli determine trajectories over both space and time. We used Envision, a landscape based ABM, to analyze long-term wildfire dynamics in a heterogeneous, multi-owner landscape in Oregon, USA. Landscape dynamics are affected by land management policies, actors decisions, and autonomous processes such as vegetation succession, wildfire, or at a broader scale, climate change. Key questions include: 1) How are landscape dynamics influenced by policies and institutions, and 2) How do land management policies and actor decisions interact to produce intended and unintended consequences with respect to wildfire on fire-prone landscapes. Applying Envision to address these questions required the development of a wildfire module that could accurately simulate wildfires on the heterogeneous landscapes within the study area in terms of replicating historical fire size distribution, spatial distribution and fire intensity. In this paper we describe the development and testing of a mechanistic fire simulation system within Envision and application of the model on a 3.2 million fire prone landscape in central Oregon USA. The core fire spread equations use the Minimum Travel Time algorithm developed by M Finney. The model operates on a daily time step and uses a fire prediction system based on the relationship between energy release component and historical fires. Specifically, daily wildfire probabilities and sizes are generated from statistical analyses of historical fires in relation to daily ERC values. The MTT was coupled with the vegetation dynamics module in Envision to allow communication between the respective subsystem and effectively model fire effects and vegetation dynamics after a wildfire. Canopy and

  14. Towards understanding the impact of assimilating along-track SLA data on simulated eddy characteristics in the Agulhas System

    CSIR Research Space (South Africa)

    De Vos, M

    2016-10-01

    Full Text Available understanding the impact of assimilating along-track SLA data on simulated eddy characteristics in the Agulhas System Marc de Vos1, 3, Björn Backeberg2, 3, 4 and François Counillon4 Marine Research Unit, South African Weather Service, South Africa1 Coastal... and 1 Tel: +27 21 935 5764; Email: marc.devos@weathersa.co.za dipoles reach the Agulhas Current frequently and on occasion propagate all the way to the retroflection, influencing its position and modulating ring shedding events there (Schouten et al...

  15. Discovery of endogenous opioid systems: what it has meant for the clinician's understanding of pain and its treatment.

    Science.gov (United States)

    Ballantyne, Jane C; Sullivan, Mark D

    2017-12-01

    Before the discovery of the endogenous opioid system in the 1970s, opioids were understood only through the lens of opioid drug effects. Opium produced sleep, pain relief, and addiction. Once a variety of opioids had been extracted from opium, and still others synthesized chemically, it became clear that there must be endogenous receptors to explain differential drug effects. So, the search was on to identify the receptors, and subsequently their endogenous ligands. Even then, the consequential ways in which the endogenous opioid system influences the way we respond to the environment and survive took time to unravel. Today's understanding extends far beyond simply accepting pain relief and addiction as separate processes, to the realization that the endogenous opioid system achieves constant adjustments between punishment (pain) and reward in communicating areas of the brain previously thought to subserve separate functions. The system also plays a crucial role in socialization. Taken together, these 2 lines of research have led to new insights into why the endogenous opioid system is so important in terms of evolution, individual survival and day-to-day function, and how important it is to consider opioid medications within the context of these critical natural functions.

  16. The renewable energy industry in Massachussetts as a complex system: Developing a shared understanding for policy making

    Science.gov (United States)

    Jones, Charles A.

    A model-based field study was conducted to understand the mental models of participants in the photovoltaic industry in Massachusetts, with the purpose of understanding of how that industry works as a complex system. Mental models of industry participants are important, both as the holders of the best system information and as the critical actors in any policy solution. Experts from manufacturing, installation, development, policy, and advocacy sectors were interviewed. The knowledge they conveyed was expressed as a set system dynamics models; these models were characterized, compared, and combined in order to answer the following research questions: What are the mental models of participants? How widely are mental models shared among participants? What is the combined model of the system? How accurate are these models? Given these models, what policies would lead to success? The system described by informants is revealed as one of distributed and embedded agency---actors have the ability to take meaningful action, but that action and its effects are limited by the complexity of the system and by the actions of other actors. Both the growth of the industry and constraints on the growth occur through dynamic processes, many however outside local control. Mental models are shared in clusters of informants, with some differences between these groupings. Informants vary on the level of aggregation needed to express their descriptions and on the most important dynamic force. However, many processes are commonly perceived across informants, they perceive the same system trajectories, and the behavior of the simulation models constructed from their mental models was similar. A combined model was constructed which included a full range of potential feedback loops within an abstracted version of the described system. Testing for policy using the combined model reveals that the structures necessary for growth are present, as expected. Under several reasonable conditions

  17. Pursuing the quest for better understanding the taxonomic distribution of the system of doubly uniparental inheritance of mtDNA

    Directory of Open Access Journals (Sweden)

    Arthur Gusman

    2016-12-01

    Full Text Available There is only one exception to strict maternal inheritance of mitochondrial DNA (mtDNA in the animal kingdom: a system named doubly uniparental inheritance (DUI, which is found in several bivalve species. Why and how such a radically different system of mitochondrial transmission evolved in bivalve remains obscure. Obtaining a more complete taxonomic distribution of DUI in the Bivalvia may help to better understand its origin and function. In this study we provide evidence for the presence of sex-linked heteroplasmy (thus the possible presence of DUI in two bivalve species, i.e., the nuculanoid Yoldia hyperborea(Gould, 1841and the veneroid Scrobicularia plana(Da Costa,1778, increasing the number of families in which DUI has been found by two. An update on the taxonomic distribution of DUI in the Bivalvia is also presented.

  18. Soft System Methodology as a Tool to Understand Issues of Governmental Affordable Housing Programme of India: A Case Study Approach

    Science.gov (United States)

    Ghosh, Sukanya; Roy, Souvanic; Sanyal, Manas Kumar

    2016-09-01

    With the help of a case study, the article has explored current practices of implementation of governmental affordable housing programme for urban poor in a slum of India. This work shows that the issues associated with the problems of governmental affordable housing programme has to be addressed to with a suitable methodology as complexities are not only dealing with quantitative data but qualitative data also. The Hard System Methodologies (HSM), which is conventionally applied to address the issues, deals with real and known problems which can be directly solved. Since most of the issues of affordable housing programme as found in the case study are subjective and complex in nature, Soft System Methodology (SSM) has been tried for better representation from subjective points of views. The article explored drawing of Rich Picture as an SSM approach for better understanding and analysing complex issues and constraints of affordable housing programme so that further exploration of the issues is possible.

  19. Scenarios of Earth system change in western Canada: Conceptual understanding and process insights from the Changing Cold Regions Network

    Science.gov (United States)

    DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Turetsky, M. R.; Baltzer, J. L.; Pietroniro, A.; Marsh, P.; Carey, S.; Howard, A.; Barr, A.; Elshamy, M.

    2017-12-01

    The interior of western Canada has been experiencing rapid, widespread, and severe hydroclimatic change in recent decades, and this is projected to continue in the future. To better assess future hydrological, cryospheric and ecological states and fluxes under future climates, a regional hydroclimate project was formed under the auspices of the Global Energy and Water Exchanges (GEWEX) project of the World Climate Research Programme; the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) aims to understand, diagnose, and predict interactions among the changing Earth system components at multiple spatial scales over the Mackenzie and Saskatchewan River basins of western Canada. A particular challenge is in applying land surface and hydrological models under future climates, as system changes and cold regions process interactions are not often straightforward, and model structures and parameterizations based on historical observations and understanding of contemporary system functioning may not adequately capture these complexities. To address this and provide guidance and direction to the modelling community, CCRN has drawn insights from a multi-disciplinary perspective on the process controls and system trajectories to develop a set of feasible scenarios of change for the 21st century across the region. This presentation will describe CCRN's efforts towards formalizing these insights and applying them in a large-scale modelling context. This will address what are seen as the most critical processes and key drivers affecting hydrological, cryospheric and ecological change, how these will most likely evolve in the coming decades, and how these are parameterized and incorporated as future scenarios for terrestrial ecology, hydrological functioning, permafrost state, glaciers, agriculture, and water management.

  20. Understanding karst environments by thermo-hygrometric monitoring: preliminary results from the Cesi Mountain karst system (Central Italy

    Directory of Open Access Journals (Sweden)

    Lucio Di Matteo

    2016-06-01

    Full Text Available The understanding of karst systems is of paramount importance for the protection and valorisation of these environments. A multidisciplinary study is presented to investigate the possible interconnection between karst features of a karst area located in the south-western part of the Martani chain (Cesi Mountain, Central Italy. This hydrogeological structure contributes to recharge a deep regional aquifer. The latter feeds the high discharge and salinity Stifone springs. In the southwestern part of Martani chain, seven caves have been mapped, five of which are hosted in the Calcare Massiccio Formation. The analysis of thermo-hygrometric data collected since Autumn 2014 into the caves and those from external meteorological stations, showed the timing of the airflow inversion occurring on late winter/early spring and summer/ early autumn. Despite the complexity of the morphology of caves and of conceptual models of airflow pattern, these data seem to indicate that the monitored small caves could be interconnected to a considerably wider cave system. Data here presented coupled with the knowledge on hydrogeological and geological-structural setting of the limestone massif are useful to drive future speleological explorations, aiming to discover new large cavities and to better understand the water recharge process.

  1. UNDERSTANDING RESIDENT’ ACTIVITY SYSTEM-IMPROVING QUALITY LIFE: A CASE STUDY OF DOME POST DISASTER SETTLEMENT IN NGELEPEN SLEMAN, YOGYAKARTA

    Directory of Open Access Journals (Sweden)

    SYAM Rachma Marcillia

    2016-12-01

    Full Text Available House is not only functioning as a place for shelter, but also for accommodating personal and social activities of its inhabitants. Unfortunately in post quake disaster dome houses Ngelepen, Yogyakarta, the majority of the early settlers must change their behavior and habits that they used to do in their previous environment to adjust the new settlement. These happened because dome housing did not facilitate some activities whether personal or social activities within the house, therefore the activities extended to the outside of the house or even the surrounding environment. This study aims to understand the system activities on the dome house settlement Yogyakarta. In order to get detailed description, quantitative as well as qualitative approach was done through observation of the activities type, when and where the activities conducted. Data collection was done by continuous place centered behavior mapping to know how the occupants use and accommodate their behavior in certain time and specific place. The results of this study showed that daily activities on weekdays and holidays conducted by different group; children, adult and elderly, at different areas and for different type of activities in certain times. The pathways and courtyard of the house mostly used for domestic household activities and leisure as an extension of the social interaction space. In understanding the system activities that occurred, it is expected that this study can contribute to improve the quality of life of people live in a relocation settlement.

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIV, I--MAINTAINING THE FUEL SYSTEM PART III--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING THE VOLTAGE REGULATOR/ALTERNATOR.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL AND BATTERY CHARGING SYSTEM. TOPICS ARE (1) INJECTION TIMING CONTROLS, (2) GOVERNOR, (3) FUEL SYSTEM MAINTENANCE TIPS, (4) THE CHARGING SYSTEM, (5) REGULATING THE GENERATOR/ALTERNATOR, AND (6) CHARGING SYSTEM SERVICE…

  3. From genomes to metabolomes: Understanding mechanisms of symbiosis and cell-cell signaling using the archaeal system Ignicoccus-Nanoarchaeum

    Energy Technology Data Exchange (ETDEWEB)

    Podar, Mircea [Univ. of Tennessee, Knoxville, TN (United States). Biosciences Division; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hettich, Robert [Univ. of Tennessee, Knoxville, TN (United States). Biosciences Division; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Copie, Valerie [Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry; Bothner, Brian [Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry

    2016-12-16

    (manuscript in preparation) and by characterizing other similar Nanoarchaeota systems. Using a single cell genomics approach we characterized the first terrestrial geothermal Nanoarchaeota system, from Yellowstone National Park. That nanoarchaeon uses a different host, a species of Sulfolobales, and comparative genomics with N. equitans-Ignicoccus allowed us to come up with an evolutionary model for the evolution of this group of organisms across marine and terrestrial ecosystems. Based on metabolic inferences we were also able to isolate in culture the first such terrestrial nanoarchaeal system, also from Yellowstone, which involves a species of Acidilobus. The novel nanoarchaeal system was characterized using proteomics and it helped us better understand the metabolic capabilities of these organisms as well as how co-evolution shapes the genomes of interacting species. It was also one of the very few cases in which prior genomic data was used to successfully design an approach to culture an organism, which remains the gold standard in microbiology research. As a better understanding of interspecies interaction requires multiple model systems, we have pursued identification and genomic characterization or isolation of additional nanoarchaeal systems from geographically and geochemically distinct environments. Two additional nanoarchaeal systems are presently being characterized from hot springs in Yellowstone and Iceland and will be the subject to future publications.

  4. Toward High School Biology: Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better foundation, we used research-based design principles and collaborated in the development of a curricular intervention that applies chemistry ideas to living and nonliving contexts. Six eighth grade teachers and their students participated in a test of the unit during the Spring of 2013. Two of the teachers had used an earlier version of the unit the previous spring. The other four teachers were randomly assigned either to implement the unit or to continue teaching the same content using existing materials. Pre- and posttests were administered, and the data were analyzed using Rasch modeling and hierarchical linear modeling. The results showed that, when controlling for pretest score, gender, language, and ethnicity, students who used the curricular intervention performed better on the posttest than the students using existing materials. Additionally, students who participated in the intervention held fewer misconceptions. These results demonstrate the unit’s promise in improving students’ understanding of the targeted ideas. PMID:27909024

  5. Photochemically Powered AgCl Janus Micromotors as a Model System to Understand Ionic Self-Diffusiophoresis.

    Science.gov (United States)

    Zhou, Chao; Zhang, H P; Tang, Jinyao; Wang, Wei

    2018-03-13

    Micromotors are an emerging class of micromachines that could find potential applications in biomedicine, environmental remediation, and microscale self-assembly. Understanding their propulsion mechanisms holds the key to their future development. This is especially true for a popular category of micromotors that are driven by asymmetric surface photochemical reactions. Many of these micromotors release ionic species and are propelled via a mechanism termed "ionic self-diffusiophoresis". However, exactly how it operates remains vague. To address this fundamental yet important issue, we have developed a dielectric-AgCl Janus micromotor that clearly moves away from the AgCl side when exposed to UV or strong visible light. Taking advantage of numerical simulations and acoustic levitation techniques, we have provided tentative explanations for its speed decay over time as well as its directionality. In addition, photoactive AgCl micromotors demonstrate interesting gravitactic behaviors that hint at three-dimensional transport or sensing applications. The current work presents a well-controlled and easily fabricated model system to understand chemically powered micromotors, highlighting the usefulness of acoustic levitation for studying active matter free from the effect of boundaries.

  6. Bone histological correlates for air sacs and their implications for understanding the origin of the dinosaurian respiratory system.

    Science.gov (United States)

    Lambertz, Markus; Bertozzo, Filippo; Sander, P Martin

    2018-01-01

    Air sacs are an important component of the avian respiratory system, and corresponding structures also were crucial for the evolution of sauropod dinosaur gigantism. Inferring the presence of air sacs in fossils so far is restricted to bones preserving internal pneumatic cavities and foramina as osteological correlates. We here present bone histological correlates for air sacs as a new potential identification tool for these elements of the respiratory system. The analysis of several avian and non-avian dinosaur samples revealed delicate fibres in secondary trabecular and secondary endosteal bone that in the former case (birds) is known or in the latter (non-avian dinosaurs) assumed to have been in contact with air sacs, respectively. The bone histology of this 'pneumosteal tissue' is markedly different from those regions where muscles attached presenting classical Sharpey's fibres. The pneumatized bones of several non-dinosaurian taxa do not exhibit the characteristics of this 'pneumosteum'. Our new histology-based approach thus can be instrumental in reconstructing the origin of air sacs among dinosaurs and hence for our understanding of this remarkable evolutionary novelty of the respiratory system. © 2018 The Author(s).

  7. Understanding the Composition Dependence of the Fragility of AgI-Ag2O-MxOy Glassy Systems

    International Nuclear Information System (INIS)

    Aniya, M

    2011-01-01

    It has been reported that the fragility in the AgI-Ag 2 O-M x O y (M = B, Ge, P, Mo) system is determined by Ag 2 O-M x O y and does not depend on the amount of AgI. This is an interesting result and provides a hint to understand the nature of the glassy state of these materials. However, the origin of such behavior has not been sufficiently discussed. In the present report a model for the above behavior is presented. According to the model, the behavior arises from the solid like nature of the network formed by Ag 2 O-M x O y and the liquid like AgI which flow between the networks. The model is consistent with the structural model of superionic glasses proposed previously.

  8. What the Dynamic Systems Approach Can Offer for Understanding Development: An Example of Mid-childhood Reaching.

    Science.gov (United States)

    Golenia, Laura; Schoemaker, Marina M; Otten, Egbert; Mouton, Leonora J; Bongers, Raoul M

    2017-01-01

    The Dynamic Systems Approach (DSA) to development has been shown to be a promising theory to understand developmental changes. In this perspective, we use the example of mid-childhood (6- to 10-years of age) reaching to show how using the DSA can advance the understanding of development. Mid-childhood is an important developmental period that has often been overshadowed by the focus on the acquisition of reaching during infancy. This underrepresentation of mid-childhood studies is unjustified, as earlier studies showed that important developmental changes in mid-childhood reaching occur that refine the skill of reaching. We review these studies here for the first time and show that different studies revealed different developmental trends, such as non-monotonic and linear trends, for variables such as movement time and accuracy at target. Unfortunately, proposed explanations for these developmental changes have been tailored to individual studies, limiting their scope. Also, explanations were focused on a single component or process in the system that supposedly causes developmental changes. Here, we propose that the DSA can offer an overarching explanation for developmental changes in this research field. According to the DSA, motor behavior emerges from interactions of multiple components entailed by the person, environment, and task. Changes in all these components can potentially contribute to the emerging behavior. We show how the principles of change of the DSA can be used as an overarching framework by applying these principles not only to development, but also the behavior itself. This underlines its applicability to other fields of development.

  9. THE SYSTEMIC CRISIS OF THE CIVILIZATION OF THE WEST IN UNDERSTANDING OF MODERN RUSSIAN AND FOREIGN SCIENTISTS – COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Ilya Leonidovich Morozov

    2017-03-01

    Full Text Available This article discusses the most characteristic of the concept of foreign (by J. Jacobs, C. Huntington, P. Buchanan, T. Sarrazin and Russian (by A.I. Utkin, A.S. Panarin, I.N. Panarin of political scientists, devoted to the identification and analysis of systemic problems of the West, leading its further development in the civilizational impasse and find ways of gathering the negative trend of further developments. Purpose: to reveal General and specific features in Russian and foreign political and futurological concepts, dedicated to understanding the crisis of modern Western civilization. Research methodology: when working with the texts analyzed was used the comparative method, system method. The results of the study: the similarity of understanding of both foreign and Russian scientists causality of the observed crisis of modern Western civilization, identified the key factors of the crisis: the rejection of the strategy of industrial production on its own territory, the loss of “national will” and the transition to a mass political psychological model of tolerance, understood as tolerance and compliance requirements by migrating to the West of the peoples, the mass psychology of consumerism, constant military operations in the Western countries in different regions of the world, the erroneous policy of confrontation with Russia. The negative trend of politicization and simplification in the study of the topic by Russian analysts, caused by market conditions of the moment. The scope of the results: the activity of institutions of the Russian state authorities responsible for the adoption and implementation of foreign policy decisions; the academic development of new concepts in the theory of politics and international relations.

  10. Understanding ayurveda.

    Science.gov (United States)

    Gadgil, Vaidya Dilip

    2010-01-01

    Ayurveda needs to achieve its full potential both in India and globally. This requires imparting to its students full appreciation of Ayurveda's power and strength, particularly proper understanding of the advantages of applying it to treat chronic and acute diseases. To this end, we explain the necessity of learning Sanskrit as a medium of study, and the advantages of learning the Texts in the traditional way, rather than relying on translations with all the loss of meaning and precision, which that entails. We emphasize the use of Triskandhakosha as a means to fully understand Ayurveda fundamental concepts and technical terms, so that all their shades of meaning are fully understood, and all their usages given in different places in the texts. Only by such methods can full appreciation of Ayurvedic wisdom be achieved, and the full depth and power of its knowledge be applied. Only then will its true status among systems of medicine come to be appreciated, either in India or more widely in the world as a whole.

  11. Understanding Ayurveda

    Directory of Open Access Journals (Sweden)

    Vaidya Dilip Gadgil

    2010-01-01

    Full Text Available Ayurveda needs to achieve its full potential both in India and globally. This requires imparting to its students full appreciation of Ayurveda′s power and strength, particularly proper understanding of the advantages of applying it to treat chronic and acute diseases. To this end, we explain the necessity of learning Sanskrit as a medium of study, and the advantages of learning the Texts in the traditional way, rather than relying on translations with all the loss of meaning and precision, which that entails. We emphasize the use of Triskandhakosha as a means to fully understand Ayurveda fundamental concepts and technical terms, so that all their shades of meaning are fully understood, and all their usages given in different places in the texts. Only by such methods can full appreciation of Ayurvedic wisdom be achieved, and the full depth and power of its knowledge be applied. Only then will its true status among systems of medicine come to be appreciated, either in India or more widely in the world as a whole.

  12. Regional Arctic System Model (RASM): A Tool to Advance Understanding and Prediction of Arctic Climate Change at Process Scales

    Science.gov (United States)

    Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.

    2014-12-01

    The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.

  13. Understanding Is Key: An Analysis of Factors Pertaining to Trust in a Real-World Automation System

    Science.gov (United States)

    Balfe, Nora; Sharples, Sarah; Wilson, John R.

    2018-01-01

    Objective: This paper aims to explore the role of factors pertaining to trust in real-world automation systems through the application of observational methods in a case study from the railway sector. Background: Trust in automation is widely acknowledged as an important mediator of automation use, but the majority of the research on automation trust is based on laboratory work. In contrast, this work explored trust in a real-world setting. Method: Experienced rail operators in four signaling centers were observed for 90 min, and their activities were coded into five mutually exclusive categories. Their observed activities were analyzed in relation to their reported trust levels, collected via a questionnaire. Results: The results showed clear differences in activity, even when circumstances on the workstations were very similar, and significant differences in some trust dimensions were found between groups exhibiting different levels of intervention and time not involved with signaling. Conclusion: Although the empirical, lab-based studies in the literature have consistently found that reliability and competence of the automation are the most important aspects of trust development, understanding of the automation emerged as the strongest dimension in this study. The implications are that development and maintenance of trust in real-world, safety-critical automation systems may be distinct from artificial laboratory automation. Application: The findings have important implications for emerging automation concepts in diverse industries including highly automated vehicles and Internet of things. PMID:29613815

  14. Understanding Is Key: An Analysis of Factors Pertaining to Trust in a Real-World Automation System.

    Science.gov (United States)

    Balfe, Nora; Sharples, Sarah; Wilson, John R

    2018-06-01

    This paper aims to explore the role of factors pertaining to trust in real-world automation systems through the application of observational methods in a case study from the railway sector. Trust in automation is widely acknowledged as an important mediator of automation use, but the majority of the research on automation trust is based on laboratory work. In contrast, this work explored trust in a real-world setting. Experienced rail operators in four signaling centers were observed for 90 min, and their activities were coded into five mutually exclusive categories. Their observed activities were analyzed in relation to their reported trust levels, collected via a questionnaire. The results showed clear differences in activity, even when circumstances on the workstations were very similar, and significant differences in some trust dimensions were found between groups exhibiting different levels of intervention and time not involved with signaling. Although the empirical, lab-based studies in the literature have consistently found that reliability and competence of the automation are the most important aspects of trust development, understanding of the automation emerged as the strongest dimension in this study. The implications are that development and maintenance of trust in real-world, safety-critical automation systems may be distinct from artificial laboratory automation. The findings have important implications for emerging automation concepts in diverse industries including highly automated vehicles and Internet of things.

  15. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments.

    Science.gov (United States)

    Kudoh, Hiroshi

    2016-04-01

    Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  16. Understanding the contribution of biofilm in an integrated fixed-film-activated sludge system (IFAS) designed for nitrogen removal.

    Science.gov (United States)

    Moretti, P; Choubert, J M; Canler, J P; Petrimaux, O; Buffiere, P; Lessard, P

    2015-01-01

    The objective of this study is to improve knowledge on the integrated fixed-film-activated sludge (IFAS) system designed for nitrogen removal. Biofilm growth and its contribution to nitrification were monitored under various operating conditions in a semi-industrial pilot-scale plant. Nitrification rates were observed in biofilms developed on free-floating media and in activated sludge operated under a low sludge retention time (4 days) and at an ammonia loading rate of 45-70 gNH4-N/kgMLVSS/d. Operational conditions, i.e. oxygen concentration, redox potential, suspended solids concentration, ammonium and nitrates, were monitored continuously in the reactors. High removal efficiencies were observed for carbon and ammonium at high-loading rate. The contribution of biofilm to nitrification was determined as 40-70% of total NOx-N production under the operating conditions tested. Optimal conditions to optimize process compacity were determined. The tested configuration responds especially well to winter and summer nitrification conditions. These results help provide a deeper understanding of how autotrophic biomass evolves through environmental and operational conditions in IFAS systems.

  17. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXII, I--MAINTAINING THE FUEL SYSTEM (PART I)--CUMMINS DIESEL ENGINE, II--UNDERSTANDING THE DIFFERENTIAL.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND DIFFERENTIAL DRIVE UNITS USED IN DIESEL POWERED VEHICLES. TOPICS ARE (1) FUEL SYSTEM COMPARISONS, (2) FUEL SYSTEM SUPPLY COMPONENTS, (3) FUEL SUPPLY SECTION MAINTENANCE, (4) FUNCTION OF THE DIFFERENTIAL,…

  18. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXI, I--MAINTAINING THE AIR SYSTEM--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING REAR END SUSPENSION.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND REAR AXLE SUSPENSION USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) AIR INDUCTION AND EXHAUST SYSTEM, (2) VALVE MECHANISM, (3) TROUBLESHOOTING THE AIR SYSTEM, (4) PURPOSE OF VEHICLE SUSPENSION, (5) TANDEM…

  19. Understanding Knowledge Management System antecedents of performance impact: Extending the Task-technology Fit Model with intention to share knowledge construct

    Directory of Open Access Journals (Sweden)

    Ghada R. El Said

    2015-12-01

    The suggested integrated model helps for better understanding of KMS from the perspective of users’ motivation, system design, and tasks. This paper contributes-with academic and practical implications for KMS researchers, developers, and managers.

  20. Toward High School Biology: Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems.

    Science.gov (United States)

    Herrmann-Abell, Cari F; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better foundation, we used research-based design principles and collaborated in the development of a curricular intervention that applies chemistry ideas to living and nonliving contexts. Six eighth grade teachers and their students participated in a test of the unit during the Spring of 2013. Two of the teachers had used an earlier version of the unit the previous spring. The other four teachers were randomly assigned either to implement the unit or to continue teaching the same content using existing materials. Pre- and posttests were administered, and the data were analyzed using Rasch modeling and hierarchical linear modeling. The results showed that, when controlling for pretest score, gender, language, and ethnicity, students who used the curricular intervention performed better on the posttest than the students using existing materials. Additionally, students who participated in the intervention held fewer misconceptions. These results demonstrate the unit's promise in improving students' understanding of the targeted ideas. © 2016 C. F. Herrmann-Abell et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Challenges and Solutions for the Integration of Structural and Hydrogeological Understanding of Fracture Systems - Insights from the Olkiluoto Site, Finland

    Science.gov (United States)

    Hartley, L. J.; Aaltonen, I.; Baxter, S. J.; Cottrell, M.; Fox, A. L.; Hoek, J.; Koskinen, L.; Mattila, J.; Mosley, K.; Selroos, J. O.; Suikkanen, J.; Vanhanarkaus, O.; Williams, T. R. N.

    2017-12-01

    A field site at Olkiluoto in SW Finland has undergone extensive investigations as a location for a deep geological repository for spent nuclear fuel, which is expected to become operational in the early 2020s. Characterisation data comes from 58 deep cored drillholes, a wide variety of geophysical investigations, many outcrops, kilometres of underground mapping and testing in the ONKALO research facility, and groundwater pressure monitoring and sampling in both deep and shallow holes. A primary focus is on the properties of natural fractures and brittle fault zones in the low permeability crystalline rocks at Olkiluoto; an understanding of the flow and transport processes in these features are an essential part of assessing long-term safety of the repository. This presentation will illustrate how different types of source data and cross-disciplinary interpretations are integrated to develop conceptual and numerical models of the fracture system. A model of the brittle fault zones developed from geological and geophysical data provides the hydrostructural backbone controlling the most intense fracturing and dynamic conduits for fluids. Models of ductile deformation and lithology form a tectonic framework for the description of fracture heterogeneity in the background rock, revealing correlations between the intensity and orientation of fractures with geological and spatial properties. The sizes of brittle features are found to be best defined on two scales relating to individual fractures and zones. Inferred fracture-specific from flow logging are correlated with fracture geometric and mechanical properties along with in situ stress measurements to create a hydromechanical description of fracture hydraulic properties. The insights and understandings gained from these efforts help define a discrete fracture network (DFN) model for the Olkiluoto site, with hydrogeological characteristics consistent with monitoring data of hydraulic heads and their disturbances to

  2. Understanding the dynamics of the Seguro Popular de Salud policy implementation in Mexico from a complex adaptive systems perspective.

    Science.gov (United States)

    Nigenda, Gustavo; González-Robledo, Luz María; Juárez-Ramírez, Clara; Adam, Taghreed

    2016-05-13

    In 2003, Mexico's Seguro Popular de Salud (SPS), was launched as an innovative financial mechanism implemented to channel new funds to provide health insurance to 50 million Mexicans and to reduce systemic financial inequities. The objective of this article is to understand the complexity and dynamics that contributed to the adaptation of the policy in the implementation stage, how these changes occurred, and why, from a complex and adaptive systems perspective. A complex adaptive systems (CAS) framework was used to carry out a secondary analysis of data obtained from four SPS's implementation evaluations. We first identified key actors, their roles, incentives and power, and their responses to the policy and guidelines. We then developed a causal loop diagram to disentangle the feedback dynamics associated with the modifications of the policy implementation which we then analyzed using a CAS perspective. Implementation variations were identified in seven core design features during the first 10 years of implementation period, and in each case, the SPS's central coordination introduced modifications in response to the reactions of the different actors. We identified several CAS phenomena associated with these changes including phase transitions, network emergence, resistance to change, history dependence, and feedback loops. Our findings generate valuable lessons to policy implementation processes, especially those involving a monetary component, where the emergence of coping mechanisms and other CAS phenomena inevitably lead to modifications of policies and their interpretation by those who implement them. These include the difficulty of implementing strategies that aim to pool funds through solidarity among beneficiaries where the rich support the poor when there are no incentives for the rich to do so. Also, how resistance to change and history dependence can pose significant challenges to implementing changes, where the local actors use their significant power

  3. Understanding Global Change: A New Conceptual Framework To Guide Teaching About Planetary Systems And Both The Causes And Effects Of Changes In Those Systems

    Science.gov (United States)

    Levine, J.; Bean, J. R.

    2016-12-01

    Goals of the Next Generation Science Standards include understanding climate change and learning about ways to moderate the causes and mitigate the consequences of planetary-scale anthropogenic activities that interact synergistically to affect ecosystems and societies. The sheer number and scale of both causes and effects of global change can be daunting for teachers, and the lack of a clear conceptual framework for presenting this material usually leads educators (and textbooks) to present these phenomenon as a disjointed "laundry list." But an alternative approach is in the works. The Understanding Global Change web resource, currently under development at the UC Berkeley Museum of Paleontology, will provide educators with a conceptual framework, graphic models, lessons, and assessment templates for teaching NGSS-aligned, interdisciplinary, global change curricula. The core of this resource is an original informational graphic that presents and relates Earth's global systems, human and non-human factors that produce changes in those systems, and the effects of those changes that scientists can measure.

  4. Speech understanding in background noise with the two-microphone adaptive beamformer BEAM in the Nucleus Freedom Cochlear Implant System.

    Science.gov (United States)

    Spriet, Ann; Van Deun, Lieselot; Eftaxiadis, Kyriaky; Laneau, Johan; Moonen, Marc; van Dijk, Bas; van Wieringen, Astrid; Wouters, Jan

    2007-02-01

    This paper evaluates the benefit of the two-microphone adaptive beamformer BEAM in the Nucleus Freedom cochlear implant (CI) system for speech understanding in background noise by CI users. A double-blind evaluation of the two-microphone adaptive beamformer BEAM and a hardware directional microphone was carried out with five adult Nucleus CI users. The test procedure consisted of a pre- and post-test in the lab and a 2-wk trial period at home. In the pre- and post-test, the speech reception threshold (SRT) with sentences and the percentage correct phoneme scores for CVC words were measured in quiet and background noise at different signal-to-noise ratios. Performance was assessed for two different noise configurations (with a single noise source and with three noise sources) and two different noise materials (stationary speech-weighted noise and multitalker babble). During the 2-wk trial period at home, the CI users evaluated the noise reduction performance in different listening conditions by means of the SSQ questionnaire. In addition to the perceptual evaluation, the noise reduction performance of the beamformer was measured physically as a function of the direction of the noise source. Significant improvements of both the SRT in noise (average improvement of 5-16 dB) and the percentage correct phoneme scores (average improvement of 10-41%) were observed with BEAM compared to the standard hardware directional microphone. In addition, the SSQ questionnaire and subjective evaluation in controlled and real-life scenarios suggested a possible preference for the beamformer in noisy environments. The evaluation demonstrates that the adaptive noise reduction algorithm BEAM in the Nucleus Freedom CI-system may significantly increase the speech perception by cochlear implantees in noisy listening conditions. This is the first monolateral (adaptive) noise reduction strategy actually implemented in a mainstream commercial CI.

  5. Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach.

    Directory of Open Access Journals (Sweden)

    Tim D Williams

    2011-08-01

    Full Text Available The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations.

  6. Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach.

    Science.gov (United States)

    Williams, Tim D; Turan, Nil; Diab, Amer M; Wu, Huifeng; Mackenzie, Carolynn; Bartie, Katie L; Hrydziuszko, Olga; Lyons, Brett P; Stentiford, Grant D; Herbert, John M; Abraham, Joseph K; Katsiadaki, Ioanna; Leaver, Michael J; Taggart, John B; George, Stephen G; Viant, Mark R; Chipman, Kevin J; Falciani, Francesco

    2011-08-01

    The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations.

  7. A Meta-Analysis of Factors Influencing the Development of Trust in Automation: Implications for Understanding Autonomy in Future Systems.

    Science.gov (United States)

    Schaefer, Kristin E; Chen, Jessie Y C; Szalma, James L; Hancock, P A

    2016-05-01

    We used meta-analysis to assess research concerning human trust in automation to understand the foundation upon which future autonomous systems can be built. Trust is increasingly important in the growing need for synergistic human-machine teaming. Thus, we expand on our previous meta-analytic foundation in the field of human-robot interaction to include all of automation interaction. We used meta-analysis to assess trust in automation. Thirty studies provided 164 pairwise effect sizes, and 16 studies provided 63 correlational effect sizes. The overall effect size of all factors on trust development was ḡ = +0.48, and the correlational effect was [Formula: see text]  = +0.34, each of which represented medium effects. Moderator effects were observed for the human-related (ḡ  = +0.49; [Formula: see text] = +0.16) and automation-related (ḡ = +0.53; [Formula: see text] = +0.41) factors. Moderator effects specific to environmental factors proved insufficient in number to calculate at this time. Findings provide a quantitative representation of factors influencing the development of trust in automation as well as identify additional areas of needed empirical research. This work has important implications to the enhancement of current and future human-automation interaction, especially in high-risk or extreme performance environments. © 2016, Human Factors and Ergonomics Society.

  8. New tendencies in wildland fire simulation for understanding fire phenomena: An overview of the WFDS system capabilities in Mediterranean ecosystems

    Science.gov (United States)

    Pastor, E.; Tarragó, D.; Planas, E.

    2012-04-01

    Wildfire theoretical modeling endeavors predicting fire behavior characteristics, such as the rate of spread, the flames geometry and the energy released by the fire front by applying the physics and the chemistry laws that govern fire phenomena. Its ultimate aim is to help fire managers to improve fire prevention and suppression and hence reducing damage to population and protecting ecosystems. WFDS is a 3D computational fluid dynamics (CFD) model of a fire-driven flow. It is particularly appropriate for predicting the fire behaviour burning through the wildland-urban interface, since it is able to predict the fire behaviour in the intermix of vegetative and structural fuels that comprise the wildland urban interface. This model is not suitable for operational fire management yet due to computational costs constrains, but given the fact that it is open-source and that it has a detailed description of the fuels and of the combustion and heat transfer mechanisms it is currently a suitable system for research purposes. In this paper we present the most important characteristics of the WFDS simulation tool in terms of the models implemented, the input information required and the outputs that the simulator gives useful for understanding fire phenomena. We briefly discuss its advantages and opportunities through some simulation exercises of Mediterranean ecosystems.

  9. R7T7 glass alteration mechanism in an aqueous closed system: understanding and modelling the long term alteration kinetic

    International Nuclear Information System (INIS)

    Chave, T.

    2007-10-01

    The long term alteration rate of the French R7T7 nuclear glass has been investigated since many years because it will define the overall resistance of the radionuclide containment matrix. Recent studies have shown that the final rate remains constant or is slightly decreasing with time. It never reaches zero. Though this residual rate is very low, only 5 nm per year at 50 C, it would be the dominant alteration phenomenon in a geological repository. Two mechanisms are suggested for explaining such behaviour: diffusion in solution of elements from glass through an amorphous altered layer and precipitation of neo-formed phases. The diffusion processes are in agreement with a solid state diffusion mechanism and can lead to secondary phase precipitation due to solution concentration increases. Observed phases are mainly phyllosilicates and zeolites, in specific conditions. Phyllosilicates are expected to maintain the residual kinetic rate whereas alteration resumption could be observed in presence of zeolites at very high pH or temperature (10.5 at 90 C or temperature above 150 C). Both diffusion and neo-formed phase precipitation have been investigated in order to better understand their impact on the residual alteration rate and have then been modelled by a calculation code, coupling chemistry and transport, in order to be able to better anticipate the long term behaviour of the glass R7T7 in an aqueous closed system. (author)

  10. Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable-based systems.

    Science.gov (United States)

    Palmero, Paola; Lemmens, Lien; Ribas-Agustí, Albert; Sosa, Carola; Met, Kristof; de Dieu Umutoni, Jean; Hendrickx, Marc; Van Loey, Ann

    2013-12-01

    An experimental approach, allowing us to understand the effect of natural structural barriers (cell walls, chromoplast substructures) on carotenoid bioaccessibility, was developed. Different fractions with different levels of carotenoid bio-encapsulation (carotenoid-enriched oil, chromoplasts, small cell clusters, and large cell clusters) were isolated from different types of carrots and tomatoes. An in vitro method was used to determine carotenoid bioaccessibility. In the present work, a significant decrease in carotenoid in vitro bioaccessibility could be observed with an increasing level of bio-encapsulation. Differences in cell wall material and chromoplast substructure between matrices influenced carotenoid release and inclusion in micelles. For carrots, cell walls and chromoplast substructure were important barriers for carotenoid bioaccessibility while, in tomatoes, the chromoplast substructure represented the most important barrier governing bioaccessibility. The highest increase in carotenoid bioaccessibility, for all matrices, was obtained after transferring carotenoids into the oil phase, a system lacking cell walls and chromoplast substructures that could hamper carotenoid release. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Understanding a Deep Learning Technique through a Neuromorphic System a Case Study with SpiNNaker Neuromorphic Platform

    Directory of Open Access Journals (Sweden)

    Sugiarto Indar

    2018-01-01

    Full Text Available Deep learning (DL has been considered as a breakthrough technique in the field of artificial intelligence and machine learning. Conceptually, it relies on a many-layer network that exhibits a hierarchically non-linear processing capability. Some DL architectures such as deep neural networks, deep belief networks and recurrent neural networks have been developed and applied to many fields with incredible results, even comparable to human intelligence. However, many researchers are still sceptical about its true capability: can the intelligence demonstrated by deep learning technique be applied for general tasks? This question motivates the emergence of another research discipline: neuromorphic computing (NC. In NC, researchers try to identify the most fundamental ingredients that construct intelligence behaviour produced by the brain itself. To achieve this, neuromorphic systems are developed to mimic the brain functionality down to cellular level. In this paper, a neuromorphic platform called SpiNNaker is described and evaluated in order to understand its potential use as a platform for a deep learning approach. This paper is a literature review that contains comparative study on algorithms that have been implemented in SpiNNaker.

  12. Understanding B-cell activation and autoantibody repertoire selection in systemic lupus erythematosus: A B-cell immunomics approach.

    Science.gov (United States)

    Tipton, Christopher M; Hom, Jennifer R; Fucile, Christopher F; Rosenberg, Alexander F; Sanz, Inaki

    2018-07-01

    Understanding antibody repertoires and in particular, the properties and fates of B cells expressing potentially pathogenic antibodies is critical to define the mechanisms underlying multiple immunological diseases including autoimmune and allergic conditions as well as transplant rejection. Moreover, an integrated knowledge of the antibody repertoires expressed by B cells and plasma cells (PC) of different functional properties and longevity is essential to develop new therapeutic strategies, better biomarkers for disease segmentation, and new assays to measure restoration of B-cell tolerance or, at least, of normal B-cell homeostasis. Reaching these goals, however, will require a more precise phenotypic, functional and molecular definition of B-cell and PC populations, and a comprehensive analysis of the antigenic reactivity of the antibodies they express. While traditionally hampered by technical and ethical limitations in human experimentation, new technological advances currently enable investigators to address these questions in a comprehensive fashion. In this review, we shall discuss these concepts as they apply to the study of Systemic Lupus Erythematosus. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Combined use of stable isotopes and hydrologic modeling to better understand nutrient sources and cycling in highly altered systems (Invited)

    Science.gov (United States)

    Young, M. B.; Kendall, C.; Guerin, M.; Stringfellow, W. T.; Silva, S. R.; Harter, T.; Parker, A.

    2013-12-01

    The Sacramento and San Joaquin Rivers provide the majority of freshwater for the San Francisco Bay Delta. Both rivers are important sources of drinking and irrigation water for California, and play critical roles in the health of California fisheries. Understanding the factors controlling water quality and primary productivity in these rivers and the Delta is essential for making sound economic and environmental water management decisions. However, these highly altered surface water systems present many challenges for water quality monitoring studies due to factors such as multiple potential nutrient and contaminant inputs, dynamic source water inputs, and changing flow regimes controlled by both natural and engineered conditions. The watersheds for both rivers contain areas of intensive agriculture along with many other land uses, and the Sacramento River receives significant amounts of treated wastewater from the large population around the City of Sacramento. We have used a multi-isotope approach combined with mass balance and hydrodynamic modeling in order to better understand the dominant nutrient sources for each of these rivers, and to track nutrient sources and cycling within the complex Delta region around the confluence of the rivers. High nitrate concentrations within the San Joaquin River fuel summer algal blooms, contributing to low dissolved oxygen conditions. High δ15N-NO3 values combined with the high nitrate concentrations suggest that animal manure is a significant source of nitrate to the San Joaquin River. In contrast, the Sacramento River has lower nitrate concentrations but elevated ammonium concentrations from wastewater discharge. Downstream nitrification of the ammonium can be clearly traced using δ15N-NH4. Flow conditions for these rivers and the Delta have strong seasonal and inter-annual variations, resulting in significant changes in nutrient delivery and cycling. Isotopic measurements and estimates of source water contributions

  14. Advances in Telescope and Detector Technologies - Impacts on the Study and Understanding of Binary Star and Exoplanet Systems

    Science.gov (United States)

    Guinan, Edward F.; Engle, Scott; Devinney, Edward J.

    2012-04-01

    Current and planned telescope systems (both on the ground and in space) as well as new technologies will be discussed with emphasis on their impact on the studies of binary star and exoplanet systems. Although no telescopes or space missions are primarily designed to study binary stars (what a pity!), several are available (or will be shortly) to study exoplanet systems. Nonetheless those telescopes and instruments can also be powerful tools for studying binary and variable stars. For example, early microlensing missions (mid-1990s) such as EROS, MACHO and OGLE were initially designed for probing dark matter in the halos of galaxies but, serendipitously, these programs turned out to be a bonanza for the studies of eclipsing binaries and variable stars in the Magellanic Clouds and in the Galactic Bulge. A more recent example of this kind of serendipity is the Kepler Mission. Although Kepler was designed to discover exoplanet transits (and so far has been very successful, returning many planetary candidates), Kepler is turning out to be a ``stealth'' stellar astrophysics mission returning fundamentally important and new information on eclipsing binaries, variable stars and, in particular, providing a treasure trove of data of all types of pulsating stars suitable for detailed Asteroseismology studies. With this in mind, current and planned telescopes and networks, new instruments and techniques (including interferometers) are discussed that can play important roles in our understanding of both binary star and exoplanet systems. Recent advances in detectors (e.g. laser frequency comb spectrographs), telescope networks (both small and large - e.g. Super-WASP, HAT-net, RoboNet, Las Combres Observatory Global Telescope (LCOGT) Network), wide field (panoramic) telescope systems (e.g. Large Synoptic Survey Telescope (LSST) and Pan-Starrs), huge telescopes (e.g. the Thirty Meter Telescope (TMT), the Overwhelming Large Telescope (OWL) and the Extremely Large Telescope (ELT

  15. Trace Element Geochemistry of Silica Phases: Understanding the Evolution of the Cerro Pabellón Geothermal System

    Science.gov (United States)

    Alvear, B.; Morata, D.; Leisen, M.; Reich, M.; Barra, F.

    2017-12-01

    The study of mineral textures coupled with trace element geochemistry has proven to be a useful tool to understand the evolution of geological environments. The purpose of this study is to provide new constrains on the formation of an active geothermal system, specifically the Cerro Pabellón field. The Cerro Pabellón system is located at 4500 m above sea level and is the first geothermal power plant in operation in Chile and South America. Thirteen samples were collected from a 550 m long drill core. Samples were first studied under petrographic microscopy followed by scanning electron microscopy coupled with a cathodoluminescence detector (CL-SEM). The different textures recognized using petrography and the CL-SEM technique were later analyzed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in order to determine variations in the trace element concentrations as a function of silica textures. Two vein types (A and B) with different silica polymorphs were identified by CL-SEM. Vein type A has only a colloform texture, whereas vein type B, younger and crosscutting the type A, shows zonation, colloform, and jigsaw textures. LA-ICPMS results show high concentrations of Li, Al, Na, K, As, and Sb for all types of silica. A comparison between vein type A and B, show that vein type A is Al-Na-K-Li poor (2088, 36, 309, and 122 ppm average, respectively) and As-Sb rich (43 and 249 ppm average, respectively). On the other hand, vein type B has variable concentrations of Al-Na-K-Li-Sb, but usually higher than in vein type A. Overall, the Cerro Pabellón geothermal system shows high concentrations of Li and Sb, reaching up to 360 and 703 ppm, respectively. Our preliminary results show that the trace element geochemistry is strongly related to the different silica textures, which formed as a response to different thermodynamic conditions and fluid-rock ratios. This work is a contribution to the FONDAP-CONICYT 15090013 Project.

  16. Imitation and Action Understanding in Autistic Spectrum Disorders: How Valid Is the Hypothesis of a Deficit in the Mirror Neuron System?

    Science.gov (United States)

    Hamilton, Antonia F. de C.; Brindley, Rachel M.; Frith, Uta

    2007-01-01

    The motor mirror neuron system supports imitation and goal understanding in typical adults. Recently, it has been proposed that a deficit in this mirror neuron system might contribute to poor imitation performance in children with autistic spectrum disorders (ASD) and might be a cause of poor social abilities in these children. We aimed to test…

  17. How Pre-Service Teachers Navigate Trade-Offs of Food Systems across Time Scales: A Lens for Exploring Understandings of Sustainability

    Science.gov (United States)

    Yamashita, Lina; Hayes, Kathryn; Trexler, Cary J.

    2017-01-01

    In response to the increasing recognition of the need for sustainable food systems, research on students' and educators' knowledge of food systems and sustainability more broadly has grown but has generally focused on what people "fail" to understand. Moving away from this deficit approach, the present study used semi-structured…

  18. Evaluating a Bilingual Text-Mining System with a Taxonomy of Key Words and Hierarchical Visualization for Understanding Learner-Generated Text

    Science.gov (United States)

    Kong, Siu Cheung; Li, Ping; Song, Yanjie

    2018-01-01

    This study evaluated a bilingual text-mining system, which incorporated a bilingual taxonomy of key words and provided hierarchical visualization, for understanding learner-generated text in the learning management systems through automatic identification and counting of matching key words. A class of 27 in-service teachers studied a course…

  19. "I feel like I am surviving the health care system": understanding LGBTQ health in Nova Scotia, Canada.

    Science.gov (United States)

    Colpitts, Emily; Gahagan, Jacqueline

    2016-09-22

    Currently, there is a dearth of baseline data on the health of lesbian, gay, bisexual, transgender, and queer (LGBTQ) populations in the province of Nova Scotia, Canada. Historically, LGBTQ health research has tended to focus on individual-level health risks associated with poor health outcomes among these populations, which has served to obscure the ways in which they maintain their own health and wellness across the life course. As such, there is an urgent need to shift the focus of LGBTQ health research towards strengths-based perspectives that explore the complex and resilient ways in which LGBTQ populations promote their health. This paper discusses the findings of our recent scoping review as well as the qualitative data to emerge from community consultations aimed at developing strengths-based approaches to understanding and advancing LGBTQ pathways to health across Nova Scotia. Our scoping review findings demonstrated the lack of strengths-based research on LGBTQ health in Nova Scotia. Specifically, the studies examined in our scoping review identified a number of health-promoting factors and a wide variety of measurement tools, some of which may prove useful for future strengths-based health research with LGBTQ populations. In addition, our community consultations revealed that many participants had negative experiences with health care systems and services in Nova Scotia. However, participants also shared a number of factors that contribute to LGBTQ health and suggestions for how LGBTQ pathways to health in Nova Scotia can be improved. There is an urgent need to conduct research on the health needs, lived experiences, and outcomes of LGBTQ populations in Nova Scotia to address gaps in our knowledge of their unique health needs. In moving forward, it is important that future health research take an intersectional, strengths-based perspective in an effort to highlight the factors that promote LGBTQ health and wellness across the life course, while taking

  20. Understanding Regolith Physical Properties of Atmosphereless Solar System Bodies Based on Remote Sensing Photopolarimetric Observations: Evidence for Europa's Porous Surface

    Science.gov (United States)

    Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K. S.; Shkuratov, Y.; Psarev, V.; Vandervoort, K.; Kroner, D. O.; Nebedum, A.; Vides, C.; Quinones, J.

    2017-12-01

    We studied the polarization and reflective properties of a suite of planetary regolith analogues with physical characteristics that might be expected to be found on a high albedo atmosphereless solar system body (ASSB). The angular scattering properties of thirteen well-sorted particle size fractions of aluminum oxide (Al2O3) were measured in the laboratory with a goniometric photopolarimeter (GPP) of unique design. Our results provide insight in support of efforts to understand the unusual reflectance and negative polarization behavior observed near small phase angles that has been reported over several decades on highly reflective ASSBs such as the asteroids 44 Nysa, 64 Angelina (Harris et al., 1989) and the Galilean satellites Io, Europa and Ganymede (Rosenbush et al., 1997; Mishchenko et al., 2006). Our measurements are consistent with the hypothesis that the surfaces of these ASSBs effectively scatter electromagnetic radiation as if they were extremely fine grained with void space > 95%, and grain sizes of the order landing on Europa's surface would require wheel or footpads that would protect it from settling deeply into the surface. These results also have relevance to the field of terrestrial geo-engineering particularly to proposals for modifying Earth's radiation balance by injecting high albedo Al2O3 particulates into Earth's atmosphere for the purpose of Solar Radiation Management by reflecting sunlight back into space hence, offsetting the global warming effects of anthropogenic greenhouse gas emissions such as carbon dioxide(Teller et al., 1997). This work partially supported by the Cassini Saturn Orbiter Progrem Harris et al., 1989 . Icarus 81, 365-374. Mishchenko et al., 2006 Applied Optics, 45, 4459-4463. Rosenbush et al, 1997, Astrophys. J. 487, 402-414. Teller et al., 1997. UCRL-JC-128715.

  1. Modeling the effects of multicontextual physics instruction on learner expectations and understanding of force and motion systems

    Science.gov (United States)

    Deese Becht, Sara-Maria Francis

    1999-11-01

    The purpose of this study is two-fold involving both practical and theoretical modeling components. The practical component, an experiential-learning phase, investigated a study population for effects that increasing levels of multicontextual physics activities have on student understanding of Newtonian systems of motion. This contextual-learning model measured learner convictions and non-response gaps and analyzed learner response trends on context, technology, challenge, growth, and success. The theoretical component, a model-building phase, designed a dynamic-knowing model for learning along a range of experiential tasks, from low to high context, monitored for indicators of learning in science and mathematics: learner academic performance and ability, learner control and academic attitude, and a learner non- response gap. This knowing model characterized a learner's process-of-knowing on a less to more expert- like learner-response continuum using performance and perspective indices associated with level of contextual- imagery referent system. Data for the contextual-learning model were collected on 180 secondary subjects: 72 middle and 108 high, with 36 physics subjects as local experts. Subjects were randomly assigned to one of three experimental groups differing only on context level of force and motion activities. Three levels of information were presented through context-based tasks: momentum constancy as inertia, momentum change as impulse, and momentum rate of change as force. The statistical analysis used a multi-level factorial design with repeated measures and discriminate analysis of response-conviction items. Subject grouping criteria included school level, ability level in science and mathematics, gender and race. Assessment criteria used pre/post performance scores, confidence level in physics concepts held, and attitude towards science, mathematics, and technology. Learner indices were computed from logit- transforms applied to learner outcomes

  2. What it takes to understand and cure a living system: computational systems biology and a systems biology-driven pharmacokinetics-pharmacodynamics platform

    NARCIS (Netherlands)

    Swat, Maciej; Kiełbasa, Szymon M.; Polak, Sebastian; Olivier, Brett; Bruggeman, Frank J.; Tulloch, Mark Quinton; Snoep, Jacky L.; Verhoeven, Arthur J.; Westerhoff, Hans V.

    2011-01-01

    The utility of model repositories is discussed in the context of systems biology (SB). It is shown how such repositories, and in particular their live versions, can be used for computational SB: we calculate the robustness of the yeast glycolytic network with respect to perturbations of one of its

  3. The Orbitrap mass analyzer as a space instrument for the understanding of prebiotic chemistry in the Solar System

    Science.gov (United States)

    Vuitton, Véronique; Briois, Christelle; Makarov, Alexander

    Over the past decade, it has become apparent that organic molecules are widespread in our Solar System and beyond. The better understand of the prebiotic chemistry leading to their formation is a primary objective of many ongoing space missions. Cassini-Huygens revealed the existence of very large molecular structures in Titan's atmosphere as well as on its surface, in the form of dune deposits, but their exact nature remains elusive. One key science goal of the Mars Science Laboratory Curiosity rover is to assess the presence of organics on the red planet. Rosetta will characterize the elemental and isotopic composition of the gas and dust ejected from comet Churyumov-Gerasimenko, while amino acids have been detected in meteorites. This search for complex organics relies heavily on mass spectrometry, which has the remarkable ability to analyze and quantify species from almost any type of sample (provided that the appropriate sampling and ionizing method is used). Because of the harsh constraints of the spatial environment, the mass resolution of the spectrometers onboard current space probes is quite limited compared to laboratory instruments, leading to significant limitations in the scientific return of the data collected. Therefore, future in situ solar system exploration missions would significantly benefit from instruments relying on High Resolution Mass Spectrometry (HRMS). Since 2009, 5 French laboratories (LPC2E, IPAG, LATMOS, LISA, CSNSM) involved in the chemical investigation of solar system bodies form a Consortium to develop HRMS for future space exploration, based on the use of the Orbitrap technology (C. Briois et al., 2014, to be submitted). The work is undertaken in close collaboration with the Thermo Fisher Scientific Company, which commercializes Orbitrap based laboratory instruments. The Orbitrap is an electrostatic mass analyzer, it is compact, lightweight, and can reach a good sensitivity and dynamic range. A prototype is under development at

  4. Understanding Alzheimer's

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Understanding Alzheimer's Past Issues / Fall 2007 Table of Contents For ... and brain scans. No treatment so far stops Alzheimer's. However, for some in the disease's early and ...

  5. Embodied Understanding

    Directory of Open Access Journals (Sweden)

    Mark Leonard Johnson

    2015-06-01

    Full Text Available Western culture has inherited a view of understanding as an intellectual cognitive operation of grasping of concepts and their relations. However, cognitive science research has shown that this received intellectualist conception is substantially out of touch with how humans actually make and experience meaning. The view emerging from the mind sciences recognizes that understanding is profoundly embodied, insofar as our conceptualization and reasoning recruit sensory, motor, and affective patterns and processes to structure our understanding of, and engagement with, our world. A psychologically realistic account of understanding must begin with the patterns of ongoing interaction between an organism and its physical and cultural environments and must include both our emotional responses to changes in our body and environment, and also the actions by which we continuously transform our experience. Consequently, embodied understanding is not merely a conceptual/propositional activity of thought, but rather constitutes our most basic way of being in, and engaging with, our surroundings in a deep visceral manner.

  6. Capturing the dynamics of systemic Renin-Angiotensin-Aldosterone System (RAAS) peptides heightens the understanding of the effect of benazepril in dogs.

    Science.gov (United States)

    Mochel, J P; Peyrou, M; Fink, M; Strehlau, G; Mohamed, R; Giraudel, J M; Ploeger, B; Danhof, M

    2013-04-01

    In dogs, activation of the Renin-Angiotensin-Aldosterone System (RAAS) is an important feature of congestive heart failure (CHF). Long-term increases in angiotensin II (AII) and aldosterone (ALD) lead to the progression of heart failure to its end stage. Angiotensin-converting enzyme inhibitors (ACEIs) are the foremost therapeutic option in the management of CHF. Recent literature has challenged the efficacy of ACEIs, based on modest reduction in urinary aldosterone (UALD) excretion despite marked inhibition of ACE activity. This study was designed to heighten the understanding of the effect of benazepril, a potent ACEI, on the RAAS, using a low-sodium diet as an experimental model of RAAS activation. Time course profiles of RAAS peptides and related areas under the curve (AUC) were used for comparison between benazepril and placebo groups. Results indicated substantial changes in the dynamics of these biomarkers. At presumed benazeprilat steady state, significant differences in AUC of plasma renin activity (+90%), angiotensin I (+43%), and AII (-53%) were found between benazepril and placebo-treated dogs. ALD decreased by 73% in plasma but only by 5% in urine. In conclusion, despite modest reduction in UALD excretion, benazepril markedly influences RAAS dynamics in dogs. © 2012 Blackwell Publishing Ltd.

  7. Understanding physics

    CERN Document Server

    Mansfield, Michael

    2011-01-01

    Understanding Physics - Second edition is a comprehensive, yet compact, introductory physics textbook aimed at physics undergraduates and also at engineers and other scientists taking a general physics course. Written with today's students in mind, this text covers the core material required by an introductory course in a clear and refreshing way. A second colour is used throughout to enhance learning and understanding. Each topic is introduced from first principles so that the text is suitable for students without a prior background in physics. At the same time the book is designed to enable

  8. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    Science.gov (United States)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  9. Understanding Different Levels of Group Functionality: Activity Systems Analysis of an Intercultural Telecollaborative Multilingual Digital Storytelling Project

    Science.gov (United States)

    Priego, Sabrina; Liaw, Meei-Ling

    2017-01-01

    An Activity Theory framework has been increasingly applied for understanding the tension or contradictions in telecollaboration. However, to date, few researchers have applied it to the analysis of digital stories, and none of them, to our knowledge, have used it to analyze the co-creation of multilingual digital stories. In this study, we explore…

  10. Information-Theoretic Approach May Shed a Light to a Better Understanding and Sustaining the Integrity of Ecological-Societal Systems under Changing Climate

    Science.gov (United States)

    Kim, J.

    2016-12-01

    Considering high levels of uncertainty, epistemological conflicts over facts and values, and a sense of urgency, normal paradigm-driven science will be insufficient to mobilize people and nation toward sustainability. The conceptual framework to bridge the societal system dynamics with that of natural ecosystems in which humanity operates remains deficient. The key to understanding their coevolution is to understand `self-organization.' Information-theoretic approach may shed a light to provide a potential framework which enables not only to bridge human and nature but also to generate useful knowledge for understanding and sustaining the integrity of ecological-societal systems. How can information theory help understand the interface between ecological systems and social systems? How to delineate self-organizing processes and ensure them to fulfil sustainability? How to evaluate the flow of information from data through models to decision-makers? These are the core questions posed by sustainability science in which visioneering (i.e., the engineering of vision) is an essential framework. Yet, visioneering has neither quantitative measure nor information theoretic framework to work with and teach. This presentation is an attempt to accommodate the framework of self-organizing hierarchical open systems with visioneering into a common information-theoretic framework. A case study is presented with the UN/FAO's communal vision of climate-smart agriculture (CSA) which pursues a trilemma of efficiency, mitigation, and resilience. Challenges of delineating and facilitating self-organizing systems are discussed using transdisciplinary toold such as complex systems thinking, dynamic process network analysis and multi-agent systems modeling. Acknowledgments: This study was supported by the Korea Meteorological Administration Research and Development Program under Grant KMA-2012-0001-A (WISE project).

  11. Sounding the warning bells: the need for a systems approach to understanding behaviour at rail level crossings.

    Science.gov (United States)

    Read, Gemma J M; Salmon, Paul M; Lenné, Michael G

    2013-09-01

    Collisions at rail level crossings are an international safety concern and have been the subject of considerable research effort. Modern human factors practice advocates a systems approach to investigating safety issues in complex systems. This paper describes the results of a structured review of the level crossing literature to determine the extent to which a systems approach has been applied. The measures used to determine if previous research was underpinned by a systems approach were: the type of analysis method utilised, the number of component relationships considered, the number of user groups considered, the number of system levels considered and the type of model described in the research. None of research reviewed was found to be consistent with a systems approach. It is recommended that further research utilise a systems approach to the study of the level crossing system to enable the identification of effective design improvements. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Evaluating the Gifted Students' Understanding Related to Plasma State Using Plasma Experimental System and Two-Tier Diagnostic Test

    Science.gov (United States)

    Korkmaz, Saadet Deniz; Ayas, Bahadir; Aybek, Eren Can; Pat, Suat

    2018-01-01

    The purpose of this study was to investigate the effectiveness of the experimental system design related to plasma state on the gifted students' understanding on the subject of the plasma state. To test the research hypothesis, one group pretest-posttest research model was carried out with 18 eighth-grade (4 girls and 14 boys) gifted students in…

  13. Developing a Deeper Understanding of "Mathematics Teaching Expertise": An Examination of Three Chinese Mathematics Teachers' Resource Systems as Windows into Their Work and Expertise

    Science.gov (United States)

    Pepin, Birgit; Xu, Binyan; Trouche, Luc; Wang, Chongyang

    2017-01-01

    In order to develop a deeper understanding of mathematics teaching expertise, in this study we use the Documentational Approach to Didactics to explore the resource systems of three Chinese mathematics "expert" teachers. Exploiting the Western and Eastern literature we examine the notion of "mathematics teaching expertise", as…

  14. Developing a deeper understanding of mathematics teaching expertise : an examination of three Chinese mathematics teachers’ resource systems as windows into their work and expertise

    NARCIS (Netherlands)

    Pepin, B.E.U.; Xu, B.; Trouche, L.; Wang, C.

    2017-01-01

    In order to develop a deeper understanding of mathematics teaching expertise, in this study we use the Documentational Approach to Didactics to explore the resource systems of three Chinese mathematics “expert” teachers. Exploiting the Western and Eastern literature we examine the notion of

  15. Progress report on understanding AFIS seed coat nep levels in pre-opened slivers on the Advanced Fiber Information System (AFIS)

    Science.gov (United States)

    The Advanced Fiber Information System (AFIS) is utilized in this segment of the research project to study how seed coat neps are measured. A patent search was conducted, and studied to assist with the understanding of the AFIS measurement of this impurity in raw cotton. The older AFIS 2 is primari...

  16. The Significance of the Understanding of Balance and Coordination in Self-Cognitive "Bio-Electro-Biblio/Info" Systems.

    Science.gov (United States)

    Tsai, Bor-sheng

    1991-01-01

    Examines the information communication process and proposes a fuzzy commonality model for improving communication systems. Topics discussed include components of an electronic information programing and processing system and the flow of the formation and transfer of information, including DOS (disk operating system) commands, computer programing…

  17. Understanding Federalism.

    Science.gov (United States)

    Hickok, Eugene W., Jr.

    1990-01-01

    Urges returning to the original federalist debates to understand contemporary federalism. Reviews "The Federalist Papers," how federalism has evolved, and the centralization of the national government through acts of Congress and Supreme Court decisions. Recommends teaching about federalism as part of teaching about U.S. government…

  18. Understanding Energy

    Science.gov (United States)

    Menon, Deepika; Shelby, Blake; Mattingly, Christine

    2016-01-01

    "Energy" is a term often used in everyday language. Even young children associate energy with the food they eat, feeling tired after playing soccer, or when asked to turn the lights off to save light energy. However, they may not have the scientific conceptual understanding of energy at this age. Teaching energy and matter could be…

  19. Natural language understanding

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S

    1982-04-01

    Language understanding is essential for intelligent information processing. Processing of language itself involves configuration element analysis, syntactic analysis (parsing), and semantic analysis. They are not carried out in isolation. These are described for the Japanese language and their usage in understanding-systems is examined. 30 references.

  20. Understanding Translation

    DEFF Research Database (Denmark)

    Schjoldager, Anne Gram; Gottlieb, Henrik; Klitgård, Ida

    Understanding Translation is designed as a textbook for courses on the theory and practice of translation in general and of particular types of translation - such as interpreting, screen translation and literary translation. The aim of the book is to help you gain an in-depth understanding...... of the phenomenon of translation and to provide you with a conceptual framework for the analysis of various aspects of professional translation. Intended readers are students of translation and languages, but the book will also be relevant for others who are interested in the theory and practice of translation...... - translators, language teachers, translation users and literary, TV and film critics, for instance. Discussions focus on translation between Danish and English....

  1. Understanding Resilience

    Directory of Open Access Journals (Sweden)

    Gang eWu

    2013-02-01

    Full Text Available Resilience is the ability to adapt successfully in the face of stress and adversity. Stressful life events, trauma and chronic adversity can have a substantial impact on brain function and structure, and can result in the development of PTSD, depression and other psychiatric disorders. However, most individuals do not develop such illnesses after experiencing stressful life events, and are thus thought to be resilient. Resilience as successful adaptation relies on effective responses to environmental challenges and ultimate resistance to the deleterious effects of stress, therefore a greater understanding of the factors that promote such effects is of great relevance. This review focuses on recent findings regarding genetic, epigenetic, developmental, psychosocial and neurochemical factors that are considered essential contributors to the development of resilience. Neural circuits and pathways involved in mediating resilience are also discussed. The growing understanding of resilience factors will hopefully lead to the development of new pharmacological and psychological interventions for enhancing resilience and mitigating the untoward consequences.

  2. Understand electronics

    CERN Document Server

    Bishop, Owen

    2013-01-01

    Understand Electronics provides a readable introduction to the exciting world of electronics for the student or enthusiast with little previous knowledge. The subject is treated with the minimum of mathematics and the book is extensively illustrated.This is an essential guide for the newcomer to electronics, and replaces the author's best-selling Beginner's Guide to Electronics.The step-by-step approach makes this book ideal for introductory courses such as the Intermediate GNVQ.

  3. Understanding unemployment

    OpenAIRE

    Guillaume Rocheteau

    2006-01-01

    Modern economists have built models of the labor market, which isolate the market’s key drivers and describe the way these interact to produce particular levels of unemployment. One of the most popular models used by macroeconomists today is the search-matching model of equilibrium unemployment. We explain this model, and show how it can be applied to understand the way various policies, such as unemployment benefits, taxes, or technological changes, can affect the unemployment rate.

  4. Understanding Technology?

    Directory of Open Access Journals (Sweden)

    Erik Bendtsen

    2016-11-01

    Full Text Available We are facing radical changes in our ways of living in the nearest future. Not necessarily of our own choice, but because tchnological development is moving so fast, that it will have still greater impact on many aspects of our lives. We have seen the beginnings of that change within the latest 35 years or so, but according to newest research that change will speed up immensely in the nearest years to come. The impact of that change or these changes will affect our working life immensely as a consequence of automation. How these changes are brought about and which are their consequences in a broad sense is being attempted to be understood and guessed by researchers. No one knows for sure, but specific patterns are visible. This paper will not try to guess, what will come, but will rather try to understand the deepest ”nature” of technology in order to understand the driving factors in this development: the genesis of technology in a broad sense in order to contibute to the understanding of the basis for the expected development.

  5. Understanding Magnitudes to Understand Fractions

    Science.gov (United States)

    Gabriel, Florence

    2016-01-01

    Fractions are known to be difficult to learn and difficult to teach, yet they are vital for students to have access to further mathematical concepts. This article uses evidence to support teachers employing teaching methods that focus on the conceptual understanding of the magnitude of fractions.

  6. Testing Understanding and Understanding Testing.

    Science.gov (United States)

    Pedersen, Jean; Ross, Peter

    1985-01-01

    Provides examples in which graphs are used in the statements of problems or in their solutions as a means of testing understanding of mathematical concepts. Examples (appropriate for a beginning course in calculus and analytic geometry) include slopes of lines and curves, quadratic formula, properties of the definite integral, and others. (JN)

  7. Making Sense of Dynamic Systems: How Our Understanding of Stocks and Flows Depends on a Global Perspective

    Science.gov (United States)

    Fischer, Helen; Gonzalez, Cleotilde

    2016-01-01

    Stocks and flows (SF) are building blocks of dynamic systems: Stocks change through inflows and outflows, such as our bank balance changing with withdrawals and deposits, or atmospheric CO[subscript 2] with absorptions and emissions. However, people make systematic errors when trying to infer the behavior of dynamic systems, termed SF failure,…

  8. Systems thinking for understanding and predicting regional and local climate change effects on human health & well being: workshop process

    Science.gov (United States)

    EPA’s Systems Thinking Advisory Team (STAT) was engaged to guide a multi-disciplinary (health officials, modelers, climate change scientists, city planners, ecologists, and architects), multi-agency (EPA, CDC, State and Country officials) team in the use systems thinking, diagram...

  9. Understanding Providers' Interaction with Graphical User Interface Pertaining to Clinical Document Usage in an Electronic Health Record System

    Science.gov (United States)

    Rizvi, Rubina Fatima

    2017-01-01

    Despite high Electronic Health Record (EHR) system adoption rates by hospital and office-based practices, many users remain highly dissatisfied with the current state of EHRs. Sub-optimal EHR usability as a result of insufficient incorporation of User-Centered Design (UCD) approach during System Development Life Cycle process (SDLC) is considered…

  10. The use of Functional Resonance Analysis Method (FRAM) in a mid-air collision to understand some characteristics of the air traffic management system resilience

    International Nuclear Information System (INIS)

    Rodrigues de Carvalho, Paulo Victor

    2011-01-01

    The Functional Resonance Analysis Model (FRAM) defines a systemic framework to model complex systems for accident analysis purposes. We use FRAM in the mid-air collision between flight GLO1907, a commercial aircraft Boeing 737-800, and flight N600XL, an executive jet EMBRAER E-145, to investigate key resilience characteristics of the Air Traffic Management System (ATM). This ATM system related accident occurred at 16:56 Brazilian time on September 29, 2006 in the Amazonian sky. FRAM analysis of flight monitoring functions showed system constraints (equipment, training, time, and supervision) that produce variability in system behavior, creating demand resources mismatches in an attempt to perceive and control the developing situation. This variability also included control and coordination breakdowns and automation surprises (TCAS functioning). The analysis showed that under normal variability conditions (without catastrophic failures) the ATM system (pilots, controllers, supervisors, and equipment) was not able to close the control loops of the flight monitoring functions using feedback or feedforward strategies to achieve an adequate control of an aircraft flying in the controlled air space. Our findings shed some light on the resilience of Brazilian ATM system operation and indicated that there is a need of a deeper understanding on how the system is actually functioning. - Highlights: → The Functional Resonance Analysis Model (FRAM) was used in a mid-air collision over Amazon. → The aim was to understand key resilience characteristics of the Air Traffic Management System (ATM). → The analysis showed how, under normal conditions, the system was not able to control flight functions. → The findings shed some light about the resilience of Brazilian ATM system operation.

  11. The use of Functional Resonance Analysis Method (FRAM) in a mid-air collision to understand some characteristics of the air traffic management system resilience

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues de Carvalho, Paulo Victor, E-mail: paulov@ien.gov.br [National Nuclear Energy Commission/Nuclear Engineering Institute, Cidade Universitaria-Ilha do Fundao, Rio de Janeiro, RJ 21945-970 (Brazil)

    2011-11-15

    The Functional Resonance Analysis Model (FRAM) defines a systemic framework to model complex systems for accident analysis purposes. We use FRAM in the mid-air collision between flight GLO1907, a commercial aircraft Boeing 737-800, and flight N600XL, an executive jet EMBRAER E-145, to investigate key resilience characteristics of the Air Traffic Management System (ATM). This ATM system related accident occurred at 16:56 Brazilian time on September 29, 2006 in the Amazonian sky. FRAM analysis of flight monitoring functions showed system constraints (equipment, training, time, and supervision) that produce variability in system behavior, creating demand resources mismatches in an attempt to perceive and control the developing situation. This variability also included control and coordination breakdowns and automation surprises (TCAS functioning). The analysis showed that under normal variability conditions (without catastrophic failures) the ATM system (pilots, controllers, supervisors, and equipment) was not able to close the control loops of the flight monitoring functions using feedback or feedforward strategies to achieve an adequate control of an aircraft flying in the controlled air space. Our findings shed some light on the resilience of Brazilian ATM system operation and indicated that there is a need of a deeper understanding on how the system is actually functioning. - Highlights: > The Functional Resonance Analysis Model (FRAM) was used in a mid-air collision over Amazon. > The aim was to understand key resilience characteristics of the Air Traffic Management System (ATM). > The analysis showed how, under normal conditions, the system was not able to control flight functions. > The findings shed some light about the resilience of Brazilian ATM system operation.

  12. The motor way: Clinical implications of understanding and shaping actions with the motor system in autism and drug addiction.

    Science.gov (United States)

    Casartelli, Luca; Chiamulera, Cristiano

    2016-04-01

    To understand others' minds is crucial for survival; however, it is quite puzzling how access to others' minds can be--to some extent--direct and not necessarily mediated by conceptual reasoning. Recent advances in neuroscience have led to hypothesize a role for motor circuits not only in controlling the elementary physical features of movement (e.g., force, direction, and amplitude), but also in understanding and shaping human behavior. The concept of "motor cognition" refers to these aspects, and neurophysiological, neuroimaging, and behavioral studies in human and nonhuman primates support this view. From a clinical perspective, motor cognition represents a challenge in several domains. A thorough investigation of the neural mechanisms mediating motor action/intention understanding and automatized/compulsive behaviors seems to be a promising way to tackle a range of neurodevelopmental and drug-related disorders. On the one hand, anomalies in motor cognition may have cascade effects on social functioning in individuals with autism spectrum disorder (ASD); on the other, motor cognition may help explain the pathophysiology of drug-seeking and drug-taking behaviors in the most severe phase of drug addiction (i.e., see drug dependence, motor low-order cue reactivity). This may represent a promising approach that could improve the efficacy of rehabilitative interventions. The only way to shed light on multifactorial disorders such as ASD and drug addiction is through the investigation of their multiple factors. This motor way can promote new theoretical and experimental perspectives that would help bridge the gap between the basic neuroscience approach and clinical practice.

  13. Understanding the discrete element method simulation of non-spherical particles for granular and multi-body systems

    CERN Document Server

    Matuttis, Hans-Georg

    2014-01-01

    Gives readers a more thorough understanding of DEM and equips researchers for independent work and an ability to judge methods related to simulation of polygonal particles Introduces DEM from the fundamental concepts (theoretical mechanics and solidstate physics), with 2D and 3D simulation methods for polygonal particlesProvides the fundamentals of coding discrete element method (DEM) requiring little advance knowledge of granular matter or numerical simulationHighlights the numerical tricks and pitfalls that are usually only realized after years of experience, with relevant simple experiment

  14. Developing Seventh Grade Students' Understanding of Complex Environmental Problems with Systems Tools and Representations: a Quasi-experimental Study

    Science.gov (United States)

    Doganca Kucuk, Zerrin; Saysel, Ali Kerem

    2017-03-01

    A systems-based classroom intervention on environmental education was designed for seventh grade students; the results were evaluated to see its impact on the development of systems thinking skills and standard science achievement and whether the systems approach is a more effective way to teach environmental issues that are dynamic and complex. A quasi-experimental methodology was used to compare performances of the participants in various dimensions, including systems thinking skills, competence in dynamic environmental problem solving and success in science achievement tests. The same pre-, post- and delayed tests were used with both the comparison and experimental groups in the same public middle school in Istanbul. Classroom activities designed for the comparison group (N = 20) followed the directives of the Science and Technology Curriculum, while the experimental group (N = 22) covered the same subject matter through activities benefiting from systems tools and representations such as behaviour over time graphs, causal loop diagrams, stock-flow structures and hands-on dynamic modelling. After a one-month systems-based instruction, the experimental group demonstrated significantly better systems thinking and dynamic environmental problem solving skills. Achievement in dynamic problem solving was found to be relatively stable over time. However, standard science achievement did not improve at all. This paper focuses on the quantitative analysis of the results, the weaknesses of the curriculum and educational implications.

  15. A methodology for scenario development based on understanding of long-term evolution of geological disposal systems

    International Nuclear Information System (INIS)

    Wakasugi, Keiichiro; Ishiguro, Katsuhiko; Ebashi, Takeshi; Ueda, Hiroyoshi; Koyama, Toshihiro; Shiratsuchi, Hiroshi; Yashio, Shoko; Kawamura, Hideki

    2012-01-01

    We have developed a 'hybrid' scenario development method by combining bottom-up and top-down approaches and applied for the case of geological disposal of high-level waste. This approach provides a top-down perspective, by introducing a concept of safety functions for different periods and 'storyboards', which depict repository evolution with time on a range of spatial scales, and a bottom-up perspective, by identifying relationship between processes related to radionuclide migration and safety functions based on feature, event and process (FEP) management. Based on a trial study, we have specified work descriptions for each step of the hybrid scenario development methodology and confirmed that the storyboard provides a baseline and holistic overview for the FEP management and a common platform to involve close interaction with experts in various disciplines to understand the crossover phenomenological processes. We also confirmed that there is no conflict between the top-down approach and the bottom-up approach and the hybrid scenario development work frame fulfils the specified requirements for traceability, comprehensiveness, ease of understanding, integration of multidisciplinary knowledge and applicability to a staged approach to siting. (author)

  16. Understanding uncertainty

    CERN Document Server

    Lindley, Dennis V

    2013-01-01

    Praise for the First Edition ""...a reference for everyone who is interested in knowing and handling uncertainty.""-Journal of Applied Statistics The critically acclaimed First Edition of Understanding Uncertainty provided a study of uncertainty addressed to scholars in all fields, showing that uncertainty could be measured by probability, and that probability obeyed three basic rules that enabled uncertainty to be handled sensibly in everyday life. These ideas were extended to embrace the scientific method and to show how decisions, containing an uncertain element, could be rationally made.

  17. A model for understanding diagnostic imaging referrals and complex interaction processes within the bigger picture of a healthcare system

    International Nuclear Information System (INIS)

    Makanjee, Chandra R.; Bergh, Anne-Marie; Hoffmann, Willem A.

    2014-01-01

    Using experiences from the South African public healthcare system with limited resources, this review proposes a model that captures a holistic perspective of diagnostic imaging services embedded in a network of negotiated decision-making processes. Professional interdependency and interprofessional collaboration, cooperation and coordination are built around the central notion of integration in order to achieve a seamless transition through the continuum of various types of services needed to come to a diagnosis. Health-system role players interact with patients who enter the system from the perspective of their life-world. The distribution of diagnostic imaging services – within one setting or at multiple levels of care – demonstrates how fragments of information are filtered, interpreted and transformed at each point of care. The proposed model could contribute to alignment towards a common goal: services providing holistic quality of care within and beyond a complex healthcare system

  18. Understanding analysis

    CERN Document Server

    Abbott, Stephen

    2015-01-01

    This lively introductory text exposes the student to the rewards of a rigorous study of functions of a real variable. In each chapter, informal discussions of questions that give analysis its inherent fascination are followed by precise, but not overly formal, developments of the techniques needed to make sense of them. By focusing on the unifying themes of approximation and the resolution of paradoxes that arise in the transition from the finite to the infinite, the text turns what could be a daunting cascade of definitions and theorems into a coherent and engaging progression of ideas. Acutely aware of the need for rigor, the student is much better prepared to understand what constitutes a proper mathematical proof and how to write one. Fifteen years of classroom experience with the first edition of Understanding Analysis have solidified and refined the central narrative of the second edition. Roughly 150 new exercises join a selection of the best exercises from the first edition, and three more project-sty...

  19. Understanding Infusion Pumps.

    Science.gov (United States)

    Mandel, Jeff E

    2018-04-01

    Infusion systems are complicated electromechanical systems that are used to deliver anesthetic drugs with moderate precision. Four types of systems are described-gravity feed, in-line piston, peristaltic, and syringe. These systems are subject to a number of failure modes-occlusion, disconnection, siphoning, infiltration, and air bubbles. The relative advantages of the various systems and some of the monitoring capabilities are discussed. A brief example of the use of an infusion system during anesthetic induction is presented. With understanding of the functioning of these systems, users may develop greater comfort.

  20. A closed-loop forward osmosis-nanofiltration hybrid system: Understanding process implications through full-scale simulation

    KAUST Repository

    Phuntsho, Sherub

    2016-12-30

    This study presents simulation of a closed-loop forward osmosis (FO)-nanofiltration (NF) hybrid system using fertiliser draw solution (DS) based on thermodynamic mass balance in a full-scale system neglecting the non-idealities such as finite membrane area that may exist in a real process. The simulation shows that the DS input parameters such as initial concentrations and its flow rates cannot be arbitrarily selected for a plant with defined volume output. For a fixed FO-NF plant capacity and feed concentration, the required initial DS flow rate varies inversely with the initial DS concentration or vice-versa. The net DS mass flow rate, a parameter constant for a fixed plant capacity but that increases linearly with the plant capacity and feed concentration, is the most important operational parameter of a closed-loop system. Increasing either of them or both increases the mass flow rate to the system directly affecting the final concentration of the diluted DS with direct energy implications to the NF process. Besides, the initial DS concentration and flow rates are also limited by the optimum recovery rates at which NF process can be operated which otherwise also have direct implications to the NF energy. This simulation also presents quantitative analysis of the reverse diffusion of fertiliser nutrients towards feed brine and the gradual accumulation of feed solutes within the closed system.