WorldWideScience

Sample records for understanding iv students

  1. Developing process approach-based reading textbook for grade IV students

    Directory of Open Access Journals (Sweden)

    Dedy Irawan

    2017-07-01

    Full Text Available The objective of this research and development study is generating approach-based reading textbook which will be appropriate and feasible for implementation in order to improve the reading skills of Grade IV students. This research and development study referred to the steps of research and development proposed by Borg & Gall. The subjects in this study were the Grade IV students from the State Elementary Schools under the Regional Unit of Technical Implementation in Kutasari District, the Regency of Purbalingga which consist of SD Negeri 1 Cendana, of SD Negeri 1 Karangjengkol, SD Negeri 1 Sumingkir, and SD Negeri 2 Munjul. In gathering the data, the researcher made use of interview, document analysis, rating scale, test, and questionnaire. The results of this research and development study are a process approach-based reading textbook for Theme 9 “My Food is Healthy and Nutritious” which has been designed in five reading activities namely: (1 setting up; (2 reading; (3 responding; (4 understanding; and (5 expanding the understanding. This textbook has been considered feasible for implementation according to the material expert and the media expert with “Good” category and according to the book design expert with “Very Good” category. There are differences in the final results between the experimental group and the control group after the approach based-reading textbook has been applied with the significance < 0.05. These differences show the significant reading skills improvement with sig. value (2-tailed = 0.024.

  2. The Effect of Constructivist Learning Using Scientific Approach on Mathematical Power and Conceptual Understanding of Students Grade IV

    Science.gov (United States)

    Kusmaryono, Imam; Suyitno, Hardi

    2016-02-01

    This study used a model of Concurrent Embedded with the aim of: (1) determine the difference between the conceptual understanding and mathematical power of students grade fourth who take the constructivist learning using scientific approach and direct learning, (2) determine the interaction between learning approaches and initial competence on the mathematical power and conceptual of understanding, and (3) describe the mathematical power of students grade fourth. This research was conducted in the fourth grade elementary school early 2015. Data initial competence and mathematical power obtained through tests, and analyzed using statistical tests multivariate and univariate. Statistical analysis of the results showed that: (1) There are differences in the concept of understanding and mathematical power among the students who follow the scientifically-based constructivist learning than students who take the Direct Learning in terms of students initial competency (F = 5.550; p = 0.007 problem solving and contributes tremendous increase students' math skills. Researcher suggested that the learning of mathematics in schools using scientifically- based constructivist approach to improve the mathematical power of students and conceptual understanding.

  3. Medical students benefit from the use of ultrasound when learning peripheral IV techniques.

    Science.gov (United States)

    Osborn, Scott R; Borhart, Joelle; Antonis, Michael S

    2012-03-06

    Recent studies support high success rates after a short learning period of ultrasound IV technique, and increased patient and provider satisfaction when using ultrasound as an adjunct to peripheral IV placement. No study to date has addressed the efficacy for instructing ultrasound-naive providers. We studied the introduction of ultrasound to the teaching technique of peripheral IV insertion on first- and second-year medical students. This was a prospective, randomized, and controlled trial. A total of 69 medical students were randomly assigned to the control group with a classic, landmark-based approach (n = 36) or the real-time ultrasound-guided group (n = 33). Both groups observed a 20-min tutorial on IV placement using both techniques and then attempted vein cannulation. Students were given a survey to report their results and observations by a 10-cm visual analog scale. The survey response rate was 100%. In the two groups, 73.9% stated that they attempted an IV previously, and 63.7% of students had used an ultrasound machine prior to the study. None had used ultrasound for IV access prior to our session. The average number of attempts at cannulation was 1.42 in either group. There was no difference between the control and ultrasound groups in terms of number of attempts (p = 0.31). In both groups, 66.7% of learners were able to cannulate in one attempt, 21.7% in two attempts, and 11.6% in three attempts. The study group commented that they felt they gained more knowledge from the experience (p students feel they learn more when using ultrasound after a 20-min tutorial to place IVs and cannulation of the vein feels easier. Success rates are comparable between the traditional and ultrasound teaching approaches.

  4. PENGARUH PEMBELAJARAN STUDENT TEAM ACHIEVEMENT DIVISION DAN DISKUSI TERHADAP HASIL BELAJAR IPA KELAS IV SD

    Directory of Open Access Journals (Sweden)

    Lalu Warige Hadinata

    2017-07-01

    Full Text Available The research aims to determine the effect of STAD and discussion on learning outcomes of classroom learning for science at 4th grade. The design of this research used a quasi-experimental design with nonequivalent control group design. Research was conducted in the 4th grade students of SDN 2 Kekeri West Lombok It’s consist of 19 students in 4th grade/a as an STAD and 19 students at 4th grade/b as the discussion. Analysis of learning outcomes data using the Independent Sample T Test with IBM SPSS 24. The analysis showed: (1 there were no significant differences in learning outcomes among students that learned STAD and students that learned discussion. (2 STAD and discussion has an effect on student learning outcomes of 4th grade. Penelitian bertujuan untuk mengetahui perbedaan hasil belajar STAD dan diskusi pelajaran IPA kelas IV. Rancangan penelitian ini menggunakan eksperimen semu dengan bentuk nonequivalent control group design. Penelitian dilaksanakan pada siswa kelas IV SDN 2 Kekeri Lombok Barat terdiri dari 19 siswa kelas IV/a dengan STAD dan 19 siswa kelas IV/b dengan diskusi. Analisis data hasil belajar menggunakan Independent Sample T Test dengan IBM SPSS 24. Hasil analisis menunjukkan (1 tidak ada perbedaan hasil belajar yang signifikan antara siswa yang dibelajarkan STAD dan siswa yang dibelajarkan diskusi. (2 STAD dan diskusi mampu meningkatkan hasil belajar siswa pada kelas IV.

  5. Research in collegiate mathematics education IV

    CERN Document Server

    Dubinsky, Ed; Kaput, Jim

    2001-01-01

    This fourth volume of Research in Collegiate Mathematics Education (RCME IV) reflects the themes of student learning and calculus. Included are overviews of calculus reform in France and in the U.S. and large-scale and small-scale longitudinal comparisons of students enrolled in first-year reform courses and in traditional courses. The work continues with detailed studies relating students' understanding of calculus and associated topics. Direct focus is then placed on instruction and student comprehension of courses other than calculus, namely abstract algebra and number theory. The volume co

  6. 40 CFR Appendix IV to Part 264 - Cochran's Approximation to the Behrens-Fisher Students' t-test

    Science.gov (United States)

    2010-07-01

    ...-Fisher Students' t-test IV Appendix IV to Part 264 Protection of Environment ENVIRONMENTAL PROTECTION... to the Behrens-Fisher Students' t-test Using all the available background data (nb readings... Table III of “Statistical Tables for Biological, Agricultural, and Medical Research” (1947, R. A. Fisher...

  7. 34 CFR 668.22 - Treatment of title IV funds when a student withdraws.

    Science.gov (United States)

    2010-07-01

    ... student's behalf) to the institution of his or her intent to withdraw because of illness, accident... purposes of terminating the student's in-school status), an institution does not have to treat a leave of... there is a reasonable expectation that the student will return to the school; (iv) The institution...

  8. Assessing Student Understanding of Physical Hydrology

    Science.gov (United States)

    Castillo, A. J.; Marshall, J.; Cardenas, M. B.

    2012-12-01

    Our objective is to characterize and assess upper division and graduate student thinking by developing and testing an assessment tool for a physical hydrology class. The class' learning goals are: (1) Quantitative process-based understanding of hydrologic processes, (2) Experience with different methods in hydrology, (3) Learning, problem solving, communication skills. These goals were translated into two measurable tasks asked of students in a questionnaire: (1) Describe the significant processes in the hydrological cycle and (2) Describe laws governing these processes. A third question below assessed the students' ability to apply their knowledge: You have been hired as a consultant by __ to (1) assess how urbanization and the current drought have affected a local spring and (2) predict what the effects will be in the future if the drought continues. What information would you need to gather? What measurements would you make? What analyses would you perform? Student and expert responses to the questions were then used to develop a rubric to score responses. Using the rubric, 3 researchers independently blind-coded the full set of pre and post artifacts, resulting in 89% inter-rater agreement on the pre-tests and 83% agreement on the post-tests. We present student scores to illustrate the use of the rubric and to characterize student thinking prior to and following a traditional course. Most students interpreted Q1 in terms of physical processes affecting the water cycle, the primary organizing framework for hydrology, as intended. On the pre-test, one student scored 0, indicating no response, on this question. Twenty students scored 1, indicating rudimentary understanding, 2 students scored a 2, indicating a basic understanding, and no student scored a 3. Student scores on this question improved on the post-test. On the 22 post-tests that were blind scored, 11 students demonstrated some recognition of concepts, 9 students showed a basic understanding, and 2

  9. Structural Validity of the WISC-IV for Students With Learning Disabilities.

    Science.gov (United States)

    Styck, Kara M; Watkins, Marley W

    2016-01-01

    The structural validity of the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) was evaluated using confirmatory factor analysis for a clinical sample of 1,537 students diagnosed with specific learning disabilities (SLD) by school psychologists in two large southwestern school districts. Results indicated that a bifactor model consisting of four first-order domain specific factors and a general intelligence breadth factor fit the data best. Consequently, the structural validity of the WISC-IV for students with SLD was supported by the results of the present study. The general intelligence factor contributed the most information, accounting for 48% of the common variance. Given this structure, it was recommended that score interpretation should emphasize the Full-Scale IQ score because of the marginal contributions of the first-order domain-specific factors and their low precision of measurement independent of the general factor. © Hammill Institute on Disabilities 2014.

  10. Students' Understanding of Quadratic Equations

    Science.gov (United States)

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  11. Structural Validity of the WISC-IV for Students with Learning Disabilities

    Science.gov (United States)

    Styck, Kara M.; Watkins, Marley W.

    2016-01-01

    The structural validity of the "Wechsler Intelligence Scale for Children-Fourth Edition" (WISC-IV) was evaluated using confirmatory factor analysis for a clinical sample of 1,537 students diagnosed with specific learning disabilities (SLD) by school psychologists in two large southwestern school districts. Results indicated that a…

  12. Science Olympiad students' nature of science understandings

    Science.gov (United States)

    Philpot, Cindy J.

    2007-12-01

    Recent reform efforts in science education focus on scientific literacy for all citizens. In order to be scientifically literate, an individual must have informed understandings of nature of science (NOS), scientific inquiry, and science content matter. This study specifically focused on Science Olympiad students' understanding of NOS as one piece of scientific literacy. Research consistently shows that science students do not have informed understandings of NOS (Abd-El-Khalick, 2002; Bell, Blair, Crawford, and Lederman, 2002; Kilcrease and Lucy, 2002; Schwartz, Lederman, and Thompson, 2001). However, McGhee-Brown, Martin, Monsaas and Stombler (2003) found that Science Olympiad students had in-depth understandings of science concepts, principles, processes, and techniques. Science Olympiad teams compete nationally and are found in rural, urban, and suburban schools. In an effort to learn from students who are generally considered high achieving students and who enjoy science, as opposed to the typical science student, the purpose of this study was to investigate Science Olympiad students' understandings of NOS and the experiences that formed their understandings. An interpretive, qualitative, case study method was used to address the research questions. The participants were purposefully and conveniently selected from the Science Olympiad team at a suburban high school. Data collection consisted of the Views of Nature of Science -- High School Questionnaire (VNOS-HS) (Schwartz, Lederman, & Thompson, 2001), semi-structured individual interviews, and a focus group. The main findings of this study were similar to much of the previous research in that the participants had informed understandings of the tentative nature of science and the role of inferences in science, but they did not have informed understandings of the role of human imagination and creativity, the empirical nature of science, or theories and laws. High level science classes and participation in

  13. Students' understandings of electrochemistry

    Science.gov (United States)

    O'Grady-Morris, Kathryn

    Electrochemistry is considered by students to be a difficult topic in chemistry. This research was a mixed methods study guided by the research question: At the end of a unit of study, what are students' understandings of electrochemistry? The framework of analysis used for the qualitative and quantitative data collected in this study was comprised of three categories: types of knowledge used in problem solving, levels of representation of knowledge in chemistry (macroscopic, symbolic, and particulate), and alternative conceptions. Although individually each of the three categories has been reported in previous studies, the contribution of this study is the inter-relationships among them. Semi-structured, task-based interviews were conducted while students were setting up and operating electrochemical cells in the laboratory, and a two-tiered, multiple-choice diagnostic instrument was designed to identify alternative conceptions that students held at the end of the unit. For familiar problems, those involving routine voltaic cells, students used a working-forwards problem-solving strategy, two or three levels of representation of knowledge during explanations, scored higher on both procedural and conceptual knowledge questions in the diagnostic instrument, and held fewer alternative conceptions related to the operation of these cells. For less familiar problems, those involving non-routine voltaic cells and electrolytic cells, students approached problem-solving with procedural knowledge, used only one level of representation of knowledge when explaining the operation of these cells, scored higher on procedural knowledge than conceptual knowledge questions in the diagnostic instrument, and held a greater number of alternative conceptions. Decision routines that involved memorized formulas and procedures were used to solve both quantitative and qualitative problems and the main source of alternative conceptions in this study was the overgeneralization of theory

  14. A Self-Instructional Course in Student Financial Aid Administration. Module 5: Title IV Institutional and Program Eligibility. Second Edition.

    Science.gov (United States)

    Washington Consulting Group, Inc., Washington, DC.

    The fifth module in a 17-module self-instructional course on student financial aid administration teaches novice student financial aid administrators and other personnel about Title IV institutional and program eligibility. This introduction to management of federal financial aid programs authorized by the Higher Education Act Title IV, discusses…

  15. Enter the Madcap Prince of Wales: Students Directing "Henry IV, Part I."

    Science.gov (United States)

    Earthman, Elise Ann

    1993-01-01

    Argues that William Shakespeare's "Henry IV, Part I" is an appropriate and useful text for secondary English classrooms. Shows how the play lends itself to performance-based instruction. Outlines ways of accomplishing student engagement, using film versions, and assigning written work. (HB)

  16. Exploratory and Confirmatory Factor Analyses of the WISC-IV with Gifted Students

    Science.gov (United States)

    Rowe, Ellen W.; Dandridge, Jessica; Pawlush, Alexandra; Thompson, Dawna F.; Ferrier, David E.

    2014-01-01

    These 2 studies investigated the factor structure of the Wechsler Intelligence Scale for Children-4th edition (WISC-IV; Wechsler, 2003a) with exploratory factor analysis (EFA; Study 1) and confirmatory factor analysis (CFA; Study 2) among 2 independent samples of gifted students. The EFA sample consisted of 225 children who were referred for a…

  17. Enhancing Dental Students' Understanding of Poverty Through Simulation.

    Science.gov (United States)

    Lampiris, Lewis N; White, Alex; Sams, Lattice D; White, Tiffany; Weintraub, Jane A

    2017-09-01

    Dental students should develop an understanding of the barriers to and frustrations with accessing dental care and maintaining optimal oral health experienced by persons with limited resources rather than blaming the patient or caregiver. Developing this understanding may be aided by helping students learn about the lives of underserved and vulnerable patients they will encounter not only in extramural rotations, but throughout their careers. The aim of this study was to determine if dental students' understanding of daily challenges faced by families with low income changed as a result of a poverty simulation. In 2015 and 2016, an experiential poverty simulation was used to prepare third-year dental students at one U.S. dental school for their upcoming required community-based rotations. In 2015, United Way staff conducted the simulation using the Missouri Community Action Poverty Simulation (CAPS); in 2016, faculty members trained in CAPS conducted the simulation using a modified version of the tool. In the simulation, students were assigned to family units experiencing various types of hardship and were given specific identities for role-playing. A retrospective pretest and a posttest were used to assess change in levels of student understanding after the simulation. Students assessed their level of understanding in five domains: financial pressures, difficult choices, difficulties in improving one's situation, emotional stressors, and impact of community resources for those living in poverty. The survey response rates in 2015 and 2016 were 86% and 74%, respectively. For each of the five domains, students' understanding increased from 58% to 74% per domain. The majority reported that the exercise was very valuable or somewhat valuable (74% in 2015, 88% in 2016). This study found that a poverty simulation was effective in raising dental students' understanding of the challenges faced by low-income families. It also discovered that framing the issues in the

  18. The Language of Information Literacy: Do Students Understand?

    Science.gov (United States)

    Schaub, Gayle; Cadena, Cara; Bravender, Patricia; Kierkus, Christopher

    2017-01-01

    To effectively access and use the resources of the academic library and to become information-literate, students must understand the language of information literacy. This study analyzes undergraduate students' understanding of fourteen commonly used information-literacy terms. It was found that some of the terms least understood by students are…

  19. Understanding Mathematics Classroom Instruction Through Students and Teachers

    OpenAIRE

    Schenke, Katerina

    2015-01-01

    High quality instruction is necessary for students of all ages to develop a deep understanding of mathematics. Value-added models, a common approach used to describe teachers and classroom practices, are defined by the student standardized achievement gains teachers elicit. They may, however, fail to account for the complexity of mathematics instruction as it actually occurs in the classroom. To truly understand both a teacher’s impact on his/her students and how best to improve student learn...

  20. Industrial Student Apprenticeship: Understanding Health and Safety

    Science.gov (United States)

    Simanjuntak, M. V.; Abdullah, A. G.; Puspita, R. H.; Mahdan, D.; Kamaludin, M.

    2018-02-01

    The level of accident in industry is very high caused by lack of knowledge and awareness of workers toward the health and safety. Health and Safety are efforts to create a comfortable and productive atmosphere to accomplish a purpose or goal as maximum risk in the workplace. Vocational Education students must conduct training on business and industry, prior to that they should have a clear understanding on occupational health and safety. The purpose of this research is to analyze the understanding, preparation, and implementation of work health and safety of the students. Method used is descriptive method and data are collected using instrument, observation and interview. The result of study is conclusion of understanding occupational health and safety of vocational education students.

  1. Understanding Durban University of Technology Students ...

    African Journals Online (AJOL)

    African university students' perceptions and understandings of biodiversity. This paper seeks to describe the knowledge, attitudes and perceptions of students at Durban University of ..... Doctoral dissertation, New York State School of Industrial and Labor ... Journal of Counseling and Development, 85(2), 189–195.

  2. Administration and Scoring Errors of Graduate Students Learning the WISC-IV: Issues and Controversies

    Science.gov (United States)

    Mrazik, Martin; Janzen, Troy M.; Dombrowski, Stefan C.; Barford, Sean W.; Krawchuk, Lindsey L.

    2012-01-01

    A total of 19 graduate students enrolled in a graduate course conducted 6 consecutive administrations of the Wechsler Intelligence Scale for Children, 4th edition (WISC-IV, Canadian version). Test protocols were examined to obtain data describing the frequency of examiner errors, including administration and scoring errors. Results identified 511…

  3. Peningkatan Partisipasi Siswa Kelas IV dalam Pembelajaran IPS melalui Media Kartu Di SDN 22 IV Koto Aur Malintang Kabupaten Padang Pariaman

    Directory of Open Access Journals (Sweden)

    Daswinar Daswinar

    2016-04-01

    Full Text Available Factor that causes student participation under communication in social science study (IPS still internel study process in teacher, monotonous study,  and impress a little stiff, so that make student inclined feel tense and satisfied in learn. potencial student to think, critical,  and ask, take outside opinion doesn't bloom well, so to increase student participation in study, teacher be  demanded to use strategy that can involve student mobilety. Teacher success in teach doesn't quit of teacher know-how use and choose media and method in study. Watchfulness internal issue formulation how does class student participation enhanced IV in study IPS by using card media at country elementary school. Aim from this watchfulness describes student participation enhanced in study ips pass card media in class IV. country elementary school. Hypothesis that proposed in this watchfulness with card media can be increased class student participation IV in study IPS at country. Watchfulness method that applied class action watchfulness method. Subjek watchfulness class student IV SD. Watchfulness result data student participation data and teacher activity during study in class. In hypothesis testing is used student participation percentage enhanced in study execution in use card media. Data analysis result data is got average participation percentage in my cycle I is 42,56% and cycle II 74,47% happen student participation enhanced from my cycle to cycle ii as much as 25%. Inferential with card media can be increased class student participation IV country elementary school. Conection with watchfulness result that got above so as suggestion in increase student participation, teacher can use card media in study IPS

  4. Improving Students' Understanding of Electricity and Magnetism

    Science.gov (United States)

    Li, Jing

    2012-01-01

    Electricity and magnetism are important topics in physics. Research shows that students have many common difficulties in understanding concepts related to electricity and magnetism. However, research to improve students' understanding of electricity and magnetism is limited compared to introductory mechanics. This thesis explores issues…

  5. Diagnosing Students' Understanding of the Nature of Models

    Science.gov (United States)

    Gogolin, Sarah; Krüger, Dirk

    2017-10-01

    Students' understanding of models in science has been subject to a number of investigations. The instruments the researchers used are suitable for educational research but, due to their complexity, cannot be employed directly by teachers. This article presents forced choice (FC) tasks, which, assembled as a diagnostic instrument, are supposed to measure students' understanding of the nature of models efficiently, while being sensitive enough to detect differences between individuals. In order to evaluate if the diagnostic instrument is suitable for its intended use, we propose an approach that complies with the demand to integrate students' responses to the tasks into the validation process. Evidence for validity was gathered based on relations to other variables and on students' response processes. Students' understanding of the nature of models was assessed using three methods: FC tasks, open-ended tasks and interviews ( N = 448). Furthermore, concurrent think-aloud protocols ( N = 30) were performed. The results suggest that the method and the age of the students have an effect on their understanding of the nature of models. A good understanding of the FC tasks as well as a convergence in the findings across the three methods was documented for grades eleven and twelve. This indicates that teachers can use the diagnostic instrument for an efficient and, at the same time, valid diagnosis for this group. Finally, the findings of this article may provide a possible explanation for alternative findings from previous studies as a result of specific methods that were used.

  6. Assessing and Improving Student Understanding of Tree-Thinking

    Science.gov (United States)

    Kummer, Tyler A.

    Evolution is the unifying theory of biology. The importance of understanding evolution by those who study the origins, diversification and diversity life cannot be overstated. Because of its importance, in addition to a scientific study of evolution, many researchers have spent time studying the acceptance and the teaching of evolution. Phylogenetic Systematics is the field of study developed to understand the evolutionary history of organisms, traits, and genes. Tree-thinking is the term by which we identify concepts related to the evolutionary history of organisms. It is vital that those who undertake a study of biology be able to understand and interpret what information these phylogenies are meant to convey. In this project, we evaluated the current impact a traditional study of biology has on the misconceptions students hold by assessing tree-thinking in freshman biology students to those nearing the end of their studies. We found that the impact of studying biology was varied with some misconceptions changing significantly while others persisted. Despite the importance of tree-thinking no appropriately developed concept inventory exists to measure student understanding of these important concepts. We developed a concept inventory capable of filling this important need and provide evidence to support its use among undergraduate students. Finally, we developed and modified activities as well as courses based on best practices to improve teaching and learning of tree-thinking and organismal diversity. We accomplished this by focusing on two key questions. First, how do we best introduce students to tree-thinking and second does tree-thinking as a course theme enhance student understanding of not only tree-thinking but also organismal diversity. We found important evidence suggesting that introducing students to tree-thinking via building evolutionary trees was less successful than introducing the concept via tree interpretation and may have in fact introduced or

  7. Peeling the Onion: Student Teacher's Conceptions of Literary Understanding.

    Science.gov (United States)

    Carlsson, Maj Asplund; Fulop, Marta; Marton, Ference

    2001-01-01

    Studied the theories student teachers held about literary understanding through interviews with 25 Hungarian and 8 Swedish student teachers. Categories of theories captured a substantial portion of the variation in how literary understanding can be seen. Three central aspects of human understanding, variation, discernment, and simultaneity, could…

  8. Student Teachers' Levels of Understanding and Model of Understanding about Newton's Laws of Motion

    Science.gov (United States)

    Saglam-Arslan, Aysegul; Devecioglu, Yasemin

    2010-01-01

    This study was conducted to determine the level of student teachers' understandings of Newton's laws of motion and relating these levels to identify student teachers' models of understanding. An achievement test composed of two parts comprising 12 open ended questions was constructed and given to 45 pre-service classroom teachers. The first part…

  9. Investigating student understanding of simple harmonic motion

    Science.gov (United States)

    Somroob, S.; Wattanakasiwich, P.

    2017-09-01

    This study aimed to investigate students’ understanding and develop instructional material on a topic of simple harmonic motion. Participants were 60 students taking a course on vibrations and wave and 46 students taking a course on Physics 2 and 28 students taking a course on Fundamental Physics 2 on the 2nd semester of an academic year 2016. A 16-question conceptual test and tutorial activities had been developed from previous research findings and evaluated by three physics experts in teaching mechanics before using in a real classroom. Data collection included both qualitative and quantitative methods. Item analysis and whole-test analysis were determined from student responses in the conceptual test. As results, most students had misconceptions about restoring force and they had problems connecting mathematical solutions to real motions, especially phase angle. Moreover, they had problems with interpreting mechanical energy from graphs and diagrams of the motion. These results were used to develop effective instructional materials to enhance student abilities in understanding simple harmonic motion in term of multiple representations.

  10. Improving Students' Understanding of Quantum Measurement

    International Nuclear Information System (INIS)

    Zhu Guangtian; Singh, Chandralekha

    2010-01-01

    We describe the difficulties advanced undergraduate and graduate students have with quantum measurement. To reduce these difficulties, we have developed research-based learning tools such as the Quantum Interactive Learning Tutorial (QuILT) and peer instruction tools. A preliminary evaluation shows that these learning tools are effective in improving students' understanding of concepts related to quantum measurement.

  11. Students' Understanding of Stern Gerlach Experiment

    International Nuclear Information System (INIS)

    Zhu Guangtian; Singh, Chandralekha

    2009-01-01

    The Stern Gerlach experiment has played a central role in the discovery of spin angular momentum and it has also played a pivotal role in elucidating foundational issues in quantum mechanics. Here, we discuss investigation of students' difficulties related to the Stern Gerlach experiment by giving written tests and interviewing advanced undergraduate and graduate students in quantum mechanics. We also discuss preliminary data that suggest that the Quantum Interactive Learning Tutorial (QuILT) related to the Stern Gerlach experiment is helpful in improving students' understanding of these concepts.

  12. The GLOBE Program's Student Climate Research Campaign: Empowering Students to Measure, Investigate, and Understand Climate

    Science.gov (United States)

    Mackaro, J.; Andersen, T.; Malmberg, J.; Randolph, J. G.; Wegner, K.; Tessendorf, S. A.

    2012-12-01

    The GLOBE Program's Student Climate Research Campaign (SCRC) is a two-year campaign focused on empowering students to measure, investigate, and understand the climate system in their local community and around the world. Schools can participate in the campaign via three mechanisms: climate foundations, intensive observing periods (IOPs), and research investigations. Participation in the first year of the SCRC focused on increasing student understanding and awareness of climate. Students in 49 countries participated by joining a quarterly webinar, completing the online climate learning activity, collecting and entering data during IOPs, or completing an online join survey. The year also included a video competition with the theme of Earth Day 2012, as well as a virtual student conference in conjunction with The GLOBE Program's From Learning to Research Project. As the SCRC continues into its second year, the goal is for students to increase their understanding of and ability to conduct scientific research focused on climate. Furthermore, year two of the SCRC seeks to improve students' global awareness by encouraging collaborations among students, teachers and scientists focused on understanding the Earth as a system. In addition to the continuation of activities from year one, year two will have even more webinars offered, two competitions, the introduction of two new IOPs, and a culminating virtual student conference. It is anticipated that this virtual conference will showcase research by students who are enthusiastic and dedicated to understanding climate and mitigating impacts of climate change in their communities. This presentation will highlight examples of how the SCRC is engaging students all over the world in hands-on and locally relevant climate research.

  13. Students' Understanding of Theory in Undergraduate Education

    Science.gov (United States)

    Liff, Roy; Rovio-Johansson, Airi

    2014-01-01

    This paper investigates undergraduate students' application of theory in their analysis of problems presented in authentic leadership cases. Taking a phenomenographic research approach, the paper identifies two levels at which students understand "theory": Level 1-Theory as knowledge acquired from books; Level 2-Theory as support for…

  14. Undergraduate Mathematics Students' Understanding of the Concept of Function

    Science.gov (United States)

    Bardini, Caroline; Pierce, Robyn; Vincent, Jill; King, Deborah

    2014-01-01

    Concern has been expressed that many commencing undergraduate mathematics students have mastered skills without conceptual understanding. A pilot study carried out at a leading Australian university indicates that a significant number of students, with high tertiary entrance ranks, have very limited understanding of the concept of function,…

  15. Students' Understanding of Exponential and Logarithmic Functions.

    Science.gov (United States)

    Weber, Keith

    Exponential, and logarithmic functions are pivotal mathematical concepts that play central roles in advanced mathematics. Unfortunately, these are also concepts that give students serious difficulty. This report describe a theory of how students acquire an understanding of these functions by prescribing a set of mental constructions that a student…

  16. Veterinary students' understanding of a career in practice.

    Science.gov (United States)

    Tomlin, J L; Brodbelt, D C; May, S A

    2010-06-19

    Lack of a clear perception of the realities of a career in veterinary medicine could adversely affect young graduates' satisfaction with the profession and their long-term commitment to it. Veterinary students' understanding of a career in practice were explored. Traditional-entry first-year and final-year students, as well as entry-level 'Gateway' (widening participation) students, were invited to complete a questionnaire exploring their pre-university experiences and their understandings of a career in general practice. Broadly speaking, the undergraduate students taking part in the survey (the majority of whom were entry-level students) had a realistic view of average weekly working hours, out-of-hours duties and the development of their remuneration packages over the course of their careers. The main attractions of the profession were working with animals and the perception of a rewarding job. The main concerns were making mistakes and balancing work and home life. The vast majority of students wanted to pursue a career in general practice, and other career opportunities did not appear to be well understood, particularly by entry-level students.

  17. First-Year University Science and Engineering Students' Understanding of Plagiarism

    Science.gov (United States)

    Yeo, Shelley

    2007-01-01

    This paper is a case study of first-year science and engineering students' understandings of plagiarism. Students were surveyed for their views on scenarios illustrating instances of plagiarism in the context of the academic work and assessment of science and engineering students. The aim was to explore their understandings of plagiarism and their…

  18. Students' Energy Understanding Across Biology, Chemistry, and Physics Contexts

    Science.gov (United States)

    Opitz, S. T.; Neumann, K.; Bernholt, S.; Harms, U.

    2017-07-01

    Energy is considered both as a disciplinary core idea and as a concept cutting across science disciplines. Most previous approaches studied progressing energy understanding in specific disciplinary contexts, while disregarding the relation of understanding across them. Hence, this study provides a systematic analysis of cross-disciplinary energy learning. On the basis of a cross-sectional study with n = 742 students from grades 6, 8, and 10, we analyze students' progression in understanding energy across biology, chemistry, and physics contexts. The study is guided by three hypothetical scenarios that describe how the connection between energy understanding in the three disciplinary contexts changes across grade levels. These scenarios are compared using confirmatory factor analysis (CFA). The results suggest that, from grade 6 to grade 10, energy understanding in the three disciplinary contexts is highly interrelated, thus indicating a parallel progression of energy understanding in the three disciplinary contexts. In our study, students from grade 6 onwards appeared to have few problems to apply one energy understanding across the three disciplinary contexts. These findings were unexpected, as previous research concluded that students likely face difficulties in connecting energy learning across disciplinary boundaries. Potential reasons for these results and the characteristics of the observed cross-disciplinary energy understanding are discussed in the light of earlier findings and implications for future research, and the teaching of energy as a core idea and a crosscutting concept are addressed.

  19. Ninth Grade Students' Understanding of The Nature of Scientific Knowledge

    Science.gov (United States)

    Kilic, Kerem; Sungur, Semra; Cakiroglu, Jale; Tekkaya, Ceren

    2005-01-01

    The purpose of this study was to investigate the 9th-grade students' understandings of the nature of scientific knowledge. The study also aimed to investigate the differences in students' understanding of the nature of scientific knowledge by gender, and school types. A total of 575 ninth grade students from four different school types (General…

  20. Understanding the Atheist College Student: A Qualitative Examination

    Science.gov (United States)

    Mueller, John A.

    2012-01-01

    The purpose of this study was to examine and understand atheist college students' views on faith and how they experience the college campus as a result. I conducted interviews with 16 undergraduate and graduate self-identified atheist college students. Students discussed losing faith and transitioning to atheism; making meaning of life, death, and…

  1. Students' Understandings and Misconceptions of Algebraic Inequalities

    Science.gov (United States)

    Rowntree, Rebecca V.

    2009-01-01

    The National Council of Teachers of Mathematics [NCTM] requires students in grades nine through 12 to be able to explain inequalities using mathematical relational symbols and be able to understand the meaning of inequalities and their solutions (NCTM, 2000). Studies have shown that not only middle and high school students have difficulties with…

  2. Upper High School Students' Understanding of Electromagnetism

    Science.gov (United States)

    Saglam, Murat; Millar, Robin

    2006-01-01

    Although electromagnetism is an important component of upper secondary school physics syllabuses in many countries, there has been relatively little research on students' understanding of the topic. A written test consisting of 16 diagnostic questions was developed and used to survey the understanding of electromagnetism of upper secondary school…

  3. Evaluation of Students' Conceptual Understanding of Malaria

    Science.gov (United States)

    Cheong, Irene Poh-Ai; Treagust, David; Kyeleve, Iorhemen J.; Oh, Peck-Yoke

    2010-01-01

    In this study, a two-tier diagnostic test for understanding malaria was developed and administered to 314 Bruneian students in Year 12 and in a nursing diploma course. The validity, reliability, difficulty level, discriminant indices, and reading ability of the test were examined and found to be acceptable in terms of measuring students'…

  4. Determining Students' Conceptual Understanding Level of Thermodynamics

    Science.gov (United States)

    Saricayir, Hakan; Ay, Selahattin; Comek, Arif; Cansiz, Gokhan; Uce, Musa

    2016-01-01

    Science students find heat, temperature, enthalpy and energy in chemical reactions to be some of the most difficult subjects. It is crucial to define their conceptual understanding level in these subjects so that educators can build upon this knowledge and introduce new thermodynamics concepts. This paper reports conceptual understanding levels of…

  5. Mechanisms influencing student understanding on an outdoor guided field trip

    Science.gov (United States)

    Caskey, Nourah Al-Rashid

    Field trips are a basic and important, yet often overlooked part of the student experience. They provide the opportunity to integrate real world knowledge with classroom learning and student previous personal experiences. Outdoor guided field trips leave students with an increased understanding, awareness and interest and in science. However, the benefits of this experience are ambiguous at best (Falk and Balling, 1982; Falk and Dierking, 1992; Kisiel, 2006.) Students on an outdoor guided field trip to a local nature park experienced a significant increase in their understanding of the rock cycle. The changes in the pre-field trip test and the post-field trip test as well as their answers in interviews showed a profound change in the students' understanding and in their interest in the subject matter. The use of the "student's voice" (Bamberger and Tal, 2008) was the motivation for data analysis. By using the students' voice, I was able to determine the mechanisms that might influence their understanding of a subject. The central concepts emerging from the data were: the outdoor setting; the students' interest; the social interaction. From these central concepts, a conceptual model was developed. The outdoor setting allows for the freedom to explore, touch, smell and movement. This, in turn, leads to an increased interest in subject matter. As the students are exploring, they are enjoying themselves and become more open to learning. Interest leads to a desire to learn (Dewey, 1975). In addition to allowing the freedom to explore and move, the outdoor setting creates the condition for social interaction. The students talk to each other as they walk; they have in-depth discourse regarding the subject matter---with the teachers, each other and with the guides. The guides have an extremely important role in the students' learning. The more successful guides not only act as experts, but also adjust to the students' needs and act or speak accordingly. The

  6. Understanding the Impact of an Apprenticeship-Based Scientific Research Program on High School Students' Understanding of Scientific Inquiry

    Science.gov (United States)

    Aydeniz, Mehmet; Baksa, Kristen; Skinner, Jane

    2011-01-01

    The purpose of this study was to understand the impact of an apprenticeship program on high school students' understanding of the nature of scientific inquiry. Data related to seventeen students' understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic…

  7. Supporting students with disabilities--promoting understanding amongst mentors in practice.

    Science.gov (United States)

    Tee, Stephen; Cowen, Michelle

    2012-01-01

    Good practice demands a clinical practice culture positively disposed to students with disabilities. Equality legislation seeks to protect those with a disability from either direct or indirect discrimination. The balance between providing "reasonable adjustments" for the student, whilst ensuring "Fitness to Practice", and ultimate employability, requires a close partnership between higher education and practice mentors. This paper reports on the development and evaluation of a range of interactive resources, used in the preparation of mentors to help them address the specific learning needs of disabled students. The evaluation revealed the benefit of student 'stories' in helping mentors to understand the support needs of disabled students and ensure reasonable adjustments are implemented in compliance with disability legislation. The interactive resources have been helpful in promoting positive action towards disabled students' learning, empathic understanding of mental health issues and knowledge and skills acquisition in support of dyslexic students. Implementing reasonable adjustments in practice requires a close working partnership between HEI's and mentors who appreciate support in understanding the development and application of coping strategies to overcome disabilities. Effective preparation of mentors is essential to ensure that opportunities for disabled students to succeed are maximised. Copyright © 2011. Published by Elsevier Ltd.

  8. Probing Student Understanding of Scientific Thinking in the Context of Introductory Astrophysics

    Science.gov (United States)

    Steinberg, Richard N.; Cormier, Sebastien; Fernandez, Adiel

    2009-01-01

    Common forms of testing of student understanding of science content can be misleading about their understanding of the nature of scientific thinking. Observational astronomy integrated with related ideas of force and motion is a rich context to explore the correlation between student content knowledge and student understanding of the scientific…

  9. Development of Object-understanding Among Students in the Humanities

    DEFF Research Database (Denmark)

    Lindholm, Morten

    This paper describes a on-going empirical study, inspired by phenomenography, aiming at understanding how students from the humanities learn the concepts of objects and object-orientation during a programming course.  ......This paper describes a on-going empirical study, inspired by phenomenography, aiming at understanding how students from the humanities learn the concepts of objects and object-orientation during a programming course.  ...

  10. Understanding Learning Style Variations among Undergraduate Students

    Directory of Open Access Journals (Sweden)

    N. Jayakumar

    2017-09-01

    Full Text Available A study was conducted in Vellore district of Tamil Nadu state to understand the learning styles of students. The term learning style refers to the way or method or approach by which a student learns. The study explored the possible learning style variations among agricultural, horticultural, engineering and arts & science students and their association with academic achievement. One hundred and twelve students were randomly selected from the four streams and their learning styles were analyzed. In the agricultural and horticultural streams, a majority of the students were auditory learners. They were also found to be predominantly unimodal learners. Overall, it was found that majority of the students were visual learners followed by auditory and kinesthetic style. The highest percentage of kinesthetic learners was found among engineering students. Trimodal learners scored the highest mean percentage of marks. The influence of learning styles on the academic achievements of the students did not show a significant relationship.

  11. A Framework for Understanding Physics Students' Computational Modeling Practices

    Science.gov (United States)

    Lunk, Brandon Robert

    With the growing push to include computational modeling in the physics classroom, we are faced with the need to better understand students' computational modeling practices. While existing research on programming comprehension explores how novices and experts generate programming algorithms, little of this discusses how domain content knowledge, and physics knowledge in particular, can influence students' programming practices. In an effort to better understand this issue, I have developed a framework for modeling these practices based on a resource stance towards student knowledge. A resource framework models knowledge as the activation of vast networks of elements called "resources." Much like neurons in the brain, resources that become active can trigger cascading events of activation throughout the broader network. This model emphasizes the connectivity between knowledge elements and provides a description of students' knowledge base. Together with resources resources, the concepts of "epistemic games" and "frames" provide a means for addressing the interaction between content knowledge and practices. Although this framework has generally been limited to describing conceptual and mathematical understanding, it also provides a means for addressing students' programming practices. In this dissertation, I will demonstrate this facet of a resource framework as well as fill in an important missing piece: a set of epistemic games that can describe students' computational modeling strategies. The development of this theoretical framework emerged from the analysis of video data of students generating computational models during the laboratory component of a Matter & Interactions: Modern Mechanics course. Student participants across two semesters were recorded as they worked in groups to fix pre-written computational models that were initially missing key lines of code. Analysis of this video data showed that the students' programming practices were highly influenced by

  12. Does Conceptual Understanding of Limit Partially Lead Students to Misconceptions?

    Science.gov (United States)

    Mulyono, B.; Hapizah

    2017-09-01

    This article talks about the result of preliminary research of my dissertation, which will investigate student’s retention of conceptual understanding. In my preliminary research, I surveyed 73 students of mathematics education program by giving some questions to test their retention of conceptual understanding of limits. Based on the results of analyzing of students’ answers I conclude that most of the students have problems with their retention of conceptual understanding and they also have misconception of limits. The first misconception I identified is that students always used the substitution method to determine a limit of a function at a point, but they did not check whether the function is continue or not at the point. It means that they only use the substitution theorem partially, because they do not consider that the substitution theorem \\mathop{{lim}}\\limits\\text{x\\to \\text{c}}f(x)=f(c) works only if f(x) is defined at χ = c. The other misconception identified is that some students always think there must be available of variables χ in a function to determine the limit of the function. I conjecture that conceptual understanding of limit partially leads students to misconceptions.

  13. High School Students' Representations and Understandings of Electric Fields

    Science.gov (United States)

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  14. Chemical Reactions: What Understanding Do Students with Blindness Develop?

    Science.gov (United States)

    Lewis, Amy L. Micklos; Bodner, George M.

    2013-01-01

    This study examined the understanding of chemical equations developed by three students with blindness who were enrolled in the same secondary-school chemistry class. The students were interviewed while interpreting and balancing chemical equations. During the course of these interviews, the students produced diagrams using Braille symbols that…

  15. Effect of a Diagram on Primary Students' Understanding About Electric Circuits

    Science.gov (United States)

    Preston, Christine Margaret

    2017-09-01

    This article reports on the effect of using a diagram to develop primary students' conceptual understanding about electric circuits. Diagrammatic representations of electric circuits are used for teaching and assessment despite the absence of research on their pedagogical effectiveness with young learners. Individual interviews were used to closely analyse Years 3 and 5 (8-11-year-old) students' explanations about electric circuits. Data was collected from 20 students in the same school providing pre-, post- and delayed post-test dialogue. Students' thinking about electric circuits and changes in their explanations provide insights into the role of diagrams in understanding science concepts. Findings indicate that diagram interaction positively enhanced understanding, challenged non-scientific views and promoted scientific models of electric circuits. Differences in students' understanding about electric circuits were influenced by prior knowledge, meta-conceptual awareness and diagram conventions including a stylistic feature of the diagram used. A significant finding that students' conceptual models of electric circuits were energy rather than current based has implications for electricity instruction at the primary level.

  16. Understanding Sleep Disorders in a College Student Population.

    Science.gov (United States)

    Jensen, Dallas R.

    2003-01-01

    College students' sleep habits are changing dramatically, and related sleep problems are increasing. Reviews the current literature on sleep problems, focusing on the college student population. The unique challenges of college settings are discussed as they apply to understanding sleep problems, and suggestions are made for professionals who work…

  17. Grade six students' understanding of the nature of science

    Science.gov (United States)

    Cochrane, Donald Brian

    The goal of scientific literacy requires that students develop an understanding of the nature of science to assist them in the reasoned acquisition of science concepts and in their future role as citizens in a participatory democracy. The purpose of this study was to investigate and describe the range of positions that grade six students hold with respect to the nature of science and to investigate whether gender or prior science education was related to students' views of the nature of science. Two grade six classes participated in this study. One class was from a school involved in a long-term elementary science curriculum project. The science curriculum at this school involved constructivist epistemology and pedagogy and a realist ontology. The curriculum stressed hands-on, open-ended activities and the development of science process skills. Students were frequently involved in creating and testing explanations for physical phenomena. The second class was from a matched school that had a traditional science program. Results of the study indicated that students hold a wider range of views of the nature of science than previously documented. Student positions ranged from having almost no understanding of the nature of science to those expressing positions regarding the nature of science that were more developed than previous studies had documented. Despite the range of views documented, all subjects held realist views of scientific knowledge. Contrary to the literature, some students were able to evaluate a scientific theory in light of empirical evidence that they had generated. Results also indicated that students from the project school displayed more advanced views of the nature of science than their matched peers. However, not all students benefited equally from their experiences. No gender differences were found with respect to students' understanding of the nature of science.

  18. Standing in the Hallway Improves Students' Understanding of Conformity

    Science.gov (United States)

    Lawson, Timothy J.; Haubner, Richard R.; Bodle, James H.

    2013-01-01

    To help beginning psychology students understand how they are influenced by social pressures to conform, we developed a demonstration designed to elicit their conformity to a small group of students standing in the hallway before class. Results showed the demonstration increased students' recognition of their own tendency to conform, knowledge of…

  19. Student teachers' understanding and acceptance of evolution and ...

    African Journals Online (AJOL)

    The focus of this study was student teachers at a South African university enrolled in a Bachelor of Education (B.Ed.) programme and a Postgraduate Certificate in Education (PGCE), respectively. The purpose of this study was to explore students' understanding and acceptance of evolution and beliefs about the nature of ...

  20. Investigation of the relationship between students' problem solving and conceptual understanding of electricity

    Science.gov (United States)

    Cobanoglu Aktan, Derya

    The purpose of this study was to investigate the relationship between students' qualitative problem solving and conceptual understanding of electricity. For the analysis data were collected from observations of group problem solving, from their homework artifacts, and from semi-structured interviews. The data for six undergraduate students were analyzed by qualitative research methods. The students in the study were found to use tools (such as computer simulations and formulas) differently from one another, and they made different levels of interpretations for the electricity representations. Consequently each student had different problem solving strategies. The students exhibited a wide range of levels of understanding of the electricity concepts. It was found that students' conceptual understandings and their problem solving strategies were closely linked with one another. The students who tended to use multiple tools to make high level interpretations for representations to arrive at a single solution exhibited a higher level of understanding than the students who tended to use tools to make low level interpretations to reach a solution. This study demonstrates a relationship between conceptual understanding and problem solving strategies. Similar to the results of the existing research on students' quantitative problem solving, it was found that students were able to give correct answers to some problems without fully understanding the concepts behind the problem. However, some problems required a conceptual understanding in order for a student to arrive at a correct answer. An implication of this study is that careful selection of qualitative questions is necessary for capturing high levels of conceptual understanding. Additionally, conceptual understanding among some types of problem solvers can be improved by activities or tasks that can help them reflect on their problem solving strategies and the tools they use.

  1. Pedagogy as influencing nursing students' essentialized understanding of culture.

    Science.gov (United States)

    Gregory, David; Harrowing, Jean; Lee, Bonnie; Doolittle, Lisa; O'Sullivan, Patrick S

    2010-01-01

    In this qualitative study, we explored how students understood "culture." Participants defined culture and wrote narratives regarding specific cultural encounters. The sample comprised both nursing (n=14) and non-nursing (n=8) students to allow for comparison groups. Content analysis of the narratives revealed two broad paradigms of cultural understanding: essentialist and constructivist. Essentialist narratives comprised four themes: determinism (culture defied individual resistance); relativism (the possibility of making value judgments disappeared); Othering (culture was equated to exotica, and emphasized difference); and, reductionism (personhood was eclipsed by culture). In contrast, the constructivist narratives were characterized by influence (non-determinism), dynamism (culture was dynamic and evolutionary); and, relationship-building. The unintended negative consequences of essentialist notions of culture were revealed in the nursing students' narratives. Pedagogy is implicated in nursing students' essentialized understanding of culture.

  2. Native American Students' Understanding of Geologic Time Scale: 4th-8th Grade Ojibwe Students' Understanding of Earth's Geologic History

    Science.gov (United States)

    Nam, Younkyeong; Karahan, Engin; Roehrig, Gillian

    2016-01-01

    Geologic time scale is a very important concept for understanding long-term earth system events such as climate change. This study examines forty-three 4th-8th grade Native American--particularly Ojibwe tribe--students' understanding of relative ordering and absolute time of Earth's significant geological and biological events. This study also…

  3. The Co-Creation of Caring Student-Teacher Relationships: Does Teacher Understanding Matter?

    Science.gov (United States)

    Cooper, Kristy S.; Miness, Andrew

    2014-01-01

    This study explores the role of high school students' perceptions of teacher understanding in the development of caring student-teacher relationships. Whereas past research has embedded understanding as a facet of care, this research distinguishes between care and understanding to examine whether and how understanding is necessary for care.…

  4. Student Understanding of Time Dependence in Quantum Mechanics

    Science.gov (United States)

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-01-01

    The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…

  5. The understanding of the students about the nature of light in recursive curriculum

    Directory of Open Access Journals (Sweden)

    Geide Rosa Coelho

    2010-01-01

    Full Text Available We report an inquiry on the development of students' understanding about the nature of light. The study happened in a learning environment with a recursive and spiral Physics syllabus. We investigated the change in students' understanding about the nature of light during their 3rd year in High School, and the level of understanding about this subject achieved by students at the end of this year. To assess the students' understanding, we developed an open questionnaire form and a set of hierarchical categories, consisting of five different models about the nature of light. The questionnaire was used to access the students´ understanding at the beginning and at the end of the third level of the recursive curriculum. The results showed that students have a high level of prior knowledge, and also that the Physics learning they experienced had enhanced their understanding, despite the effects are not verified in all the Physics classes. By the end of the third year, most of the students explain the nature of light using or a corpuscular electromagnetic model or a dual electromagnetic model, but some students use these models with inconsistencies in their explanations.

  6. Students' Understanding of Conditional Probability on Entering University

    Science.gov (United States)

    Reaburn, Robyn

    2013-01-01

    An understanding of conditional probability is essential for students of inferential statistics as it is used in Null Hypothesis Tests. Conditional probability is also used in Bayes' theorem, in the interpretation of medical screening tests and in quality control procedures. This study examines the understanding of conditional probability of…

  7. Creating meaningful learning experiences: Understanding students' perspectives of engineering design

    Science.gov (United States)

    Aleong, Richard James Chung Mun

    There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness

  8. Introductory Psychology: How Student Experiences Relate to Their Understanding of Psychological Science

    Science.gov (United States)

    Toomey, Thomas; Richardson, Deborah; Hammock, Georgina

    2017-01-01

    Many students who declare a psychology major are unaware that they are studying a scientific discipline, precipitating a need for exercises and experiences that help students understand the scientific nature of the discipline. The present study explores aspects of an introductory psychology class that may contribute to students' understanding of…

  9. Analysis of senior high school student understanding on gas kinetic theory material

    Science.gov (United States)

    Anri, Y.; Maknun, J.; Chandra, D. T.

    2018-05-01

    The purpose of this research conducted to find out student understanding profile about gas kinetic theory. Particularly, on ideal gas law material, ideal gas equations and kinetic energy of ideal gas. This research was conducted on student of class XII in one of the schools in Bandung. This research is a descriptive research. The data of this research collected by using test instrument which was the essay that has been developed by the researcher based on Bloom’s Taxonomy revised. Based on the analysis result to student answer, this research discovered that whole student has low understanding in the material of gas kinetic theory. This low understanding caused of the misconception of the student, student attitude on physic subjects, and teacher teaching method who are less helpful in obtaining clear pictures in material being taught.

  10. University Students' Understanding of Chemical Thermodynamics

    Science.gov (United States)

    Sreenivasulu, Bellam; Subramaniam, R.

    2013-01-01

    This study explored undergraduate students' understanding of the chemistry topic of thermodynamics using a 4-tier diagnostic instrument, comprising 30 questions, and follow-up interviews. An additional objective of the study was to assess the utility of the 4-tier instrument for use in studies on alternative conceptions (ACs) as there has been no…

  11. An Investigation into Post-Secondary Students' Understanding of Combinatorial Questions

    Science.gov (United States)

    Bulone, Vincent William

    2017-01-01

    The purpose of this dissertation was to study aspects of how post-secondary students understand combinatorial problems. Within this dissertation, I considered understanding through two different lenses: i) student connections to previous problems; and ii) common combinatorial distinctions such as ordered versus unordered and repetitive versus…

  12. The Interplay between Students' Understandings of Proportional and Functional Relationships

    Science.gov (United States)

    Stephens, Ana; Strachota, Susanne; Knuth, Eric; Blanton, Maria; Isler, Isil; Gardiner, Angela

    2017-01-01

    This research explores the interplay between students' understandings of proportional and functional relationships. Approximately 90 students participated in an early algebra intervention in Grades 3- 5. Before the intervention and after each year of the intervention, we evaluated their understandings of proportional and functional relationships.…

  13. A Study of General Education Astronomy Students' Understandings of Cosmology. Part IV. Common Difficulties Students Experience with Cosmology

    Science.gov (United States)

    Wallace, Colin S.; Prather, Edward E.; Duncan, Douglas K.

    2012-01-01

    This is our fourth paper in our five paper series describing our national study of general education astronomy students' conceptual and reasoning difficulties with cosmology. While previous papers in this series focused on the processes by which we collected and quantitatively analyzed our data, this paper presents the most common pre-instruction…

  14. Playing "Sherlock Holmes": Enhancing Students' Understanding of Prejudice and Stereotyping.

    Science.gov (United States)

    Junn, Ellen N.; Grier, Leslie K.; Behrens, Debra P.

    2001-01-01

    Describes an experiential classroom exercise that was designed to help students understand stereotyping and prejudice. The instructor read behavioral and psychological descriptions, asked students to imagine they were Sherlock Holmes, and identify classmates to whom the descriptions might apply. States that students of color reported more benefits…

  15. Intercultural Understanding through Intergroup Dialogue between Japanese and Chinese University Students.

    Science.gov (United States)

    Sakakibara, Tomomi

    2017-09-01

    This study had two purposes: (1) to develop university classes in which students can participate in intercultural dialogue by exchanging letters focusing on a topic about everyday norms implicit in each culture, and (2) to examine how students develop their intercultural understanding through participating in these classes. Twenty-two Japanese and six Chinese university students (each group in their own country) participated in three class sessions. At the beginning of the first class, students were given a dialogue theme that focused on cultural differences. The selected theme was mobile phone use while riding on public transportation, as this practice is prohibited in Tokyo but not in Beijing. Students discussed their opinions in small groups, wrote questions to their counterparts in the other country, and then reflected on and discussed the answers received. Analysis of the Japanese students' written reflections showed that their understanding of different cultural values and beliefs changed from one based only on a Japanese cultural perspective to one that respected the relativity of cultural norms. The results suggested that the arousal of negative emotions when students are exposed to the perspectives of other cultures is closely related to their understanding of cultural relativity.

  16. The Impact of Science Fiction Film on Student Understanding of Science

    Science.gov (United States)

    Barnett, Michael; Wagner, Heather; Gatling, Anne; Anderson, Janice; Houle, Meredith; Kafka, Alan

    2006-04-01

    Researchers who have investigated the public understanding of science have argued that fictional cinema and television has proven to be particularly effective at blurring the distinction between fact and fiction. The rationale for this study lies in the notion that to teach science effectively, educators need to understand how popular culture influences their students' perception and understanding of science. Using naturalistic research methods in a diverse middle school we found that students who watched a popular science fiction film, The Core, had a number of misunderstandings of earth science concepts when compared to students who did not watch the movie. We found that a single viewing of a science fiction film can negatively impact student ideas regarding scientific phenomena. Specifically, we found that the film leveraged the scientific authority of the main character, coupled with scientifically correct explanations of some basic earth science, to create a series of plausible, albeit unscientific, ideas that made sense to students.

  17. Understanding Neurophobia: Reasons behind Impaired Understanding and Learning of Neuroanatomy in Cross-Disciplinary Healthcare Students

    Science.gov (United States)

    Javaid, Muhammad Asim; Chakraborty, Shelly; Cryan, John F.; Schellekens, Harriët; Toulouse, André

    2018-01-01

    Recent studies have highlighted a fear or difficulty with the study and understanding of neuroanatomy among medical and healthcare students. This has been linked with a diminished confidence of clinical practitioners and students to manage patients with neurological conditions. The underlying reasons for this difficulty have been queried among a…

  18. Invisible Misconceptions: Student Understanding of Ultraviolet and Infrared Radiation

    Science.gov (United States)

    Libarkin, Julie C.; Asghar, Anila; Crockett, C.; Sadler, Philip

    2011-01-01

    The importance of nonvisible wavelengths for the study of astronomy suggests that student understanding of nonvisible light is an important consideration in astronomy classrooms. Questionnaires, interviews, and panel discussions were used to investigate 6-12 student and teacher conceptions of ultraviolet (UV) and infrared (IR). Alternative…

  19. Chinese Grade Eight Students' Understanding about the Concept of Global Warming

    Science.gov (United States)

    Lin, Jing

    2017-01-01

    China is one of the world's biggest greenhouse gas emitters. Chinese students' awareness and understanding about global warming have a significant impact on the future of mankind. This study, as an initial research of this kind in Mainland China, uses clinical interviews to survey 37 grade eight students on their understanding about global…

  20. Students' Understanding and Perceptions of Assigned Team Roles in a Classroom Laboratory Environment

    Science.gov (United States)

    Ott, Laura E.; Kephart, Kerrie; Stolle-McAllister, Kathleen; LaCourse, William R.

    2018-01-01

    Using a cooperative learning framework in a quantitative reasoning laboratory course, students were assigned to static teams of four in which they adopted roles that rotated regularly. The roles included: team leader, protocol manager, data recorder, and researcher. Using a mixed-methods approach, we investigated students' perceptions of the team roles and specifically addressed students' understanding of the roles, students' beliefs in their ability to enact the roles, and whether working with assigned team roles supported the teams to work effectively and cohesively. Although students expressed confidence in their understanding of the team roles, their understanding differed from the initial descriptions. This suggests that students' understanding of team roles may be influenced by a variety of factors, including their experiences within their teams. Students also reported that some roles appeared to lack a purpose, implying that for roles to be successful, they must have a clear purpose. Finally, the fact that many students reported ignoring the team roles suggests that students do not perceive roles as a requirement for team productivity and cohesion. On the basis of these findings, we provide recommendations for instructors wishing to establish a classroom group laboratory environment. PMID:29681667

  1. Thai Undergraduate Chemistry Practical Learning Experiences Using the Jigsaw IV Method

    Science.gov (United States)

    Jansoon, Ninna; Somsook, Ekasith; Coll, Richard K.

    2008-01-01

    The research reported in this study consisted of an investigation of student learning experiences in Thai chemistry laboratories using the Jigsaw IV method. A hands-on experiment based on the Jigsaw IV method using a real life example based on green tea beverage was designed to improve student affective variables for studying topics related to…

  2. Visualizing Volume to Help Students Understand the Disk Method on Calculus Integral Course

    Science.gov (United States)

    Tasman, F.; Ahmad, D.

    2018-04-01

    Many research shown that students have difficulty in understanding the concepts of integral calculus. Therefore this research is interested in designing a classroom activity integrated with design research method to assist students in understanding the integrals concept especially in calculating the volume of rotary objects using disc method. In order to support student development in understanding integral concepts, this research tries to use realistic mathematical approach by integrating geogebra software. First year university student who takes a calculus course (approximately 30 people) was chosen to implement the classroom activity that has been designed. The results of retrospective analysis show that visualizing volume of rotary objects using geogebra software can assist the student in understanding the disc method as one way of calculating the volume of a rotary object.

  3. Do medical students really understand plagiarism? - Case study.

    Science.gov (United States)

    Badea, Oana

    2017-01-01

    In the last decade, more and more medicine students are involved in research, either in the form of a research project within specialized courses or as a scientific article to be presented at student international conferences or published in prestigious medical journals. The present study included 250 2nd year medical students, currently studying within the University of Medicine and Pharmacy of Craiova, Romania. There were collected 239 responses, with a response rate of 95.6%. In our study, the results showed that foreign students within the University of Medicine and Pharmacy of Craiova did have some issues understanding plagiarism with fewer foreign students (34%) than Romanian students (66%) recognizing that simply changing words does not avoid plagiarism. In our opinion, there should be put more emphasis upon plagiarism implications and its aspects, as well, with a permanent order to try to prevent future attempts of plagiarizing among medical students as future researchers within the medical science field.

  4. Probing student understanding of scientific thinking in the context of introductory astrophysics

    Directory of Open Access Journals (Sweden)

    Richard N. Steinberg

    2009-09-01

    Full Text Available Common forms of testing of student understanding of science content can be misleading about their understanding of the nature of scientific thinking. Observational astronomy integrated with related ideas of force and motion is a rich context to explore the correlation between student content knowledge and student understanding of the scientific thinking about that content. In this paper, we describe this correlation in detail with a focus on a question about the relative motion of the Sun and the Earth. We find that high achieving high school students throughout New York City struggle with what constitutes scientific justification and thought processes, but can improve these skills tremendously in an inquiry-oriented summer astronomy-physics program.

  5. How Students with Autism Spectrum Conditions Understand Traditional Bullying and Cyberbullying

    Science.gov (United States)

    Hwang, Yoon-Suk; Dillon-Wallace, Julie; Campbell, Marilyn; Ashburner, Jill; Saggers, Beth; Carrington, Suzanne; Hand, Kirstine

    2018-01-01

    Students with ASC are at heightened risk for bullying and their understanding of bullying is known to protect them from involvement in it (Humphrey and Hebron 2015). However, only a handful of studies have examined how students with ASC understand traditional bullying and none of them focused on cyberbullying. To fill this gap, we investigated how…

  6. Student learning and understanding of sequence stratigraphic principles

    Science.gov (United States)

    Herrera, Juan Sebastian

    Research in geoscience education addressing students' conceptions of geological subjects has concentrated in topics such as geological time, plate tectonics, and problem solving in the field, mostly in K-12 and entry level college scenarios. Science education research addressing learning of sedimentary systems in advance undergraduates is rather limited. Therefore, this dissertation contributed to filling that research gap and explored students' narratives when explaining geological processes associated with the interaction between sediment deposition and sea level fluctuations. The purpose of the present study was to identify the common conceptions and alternative conceptions held by students when learning the basics of the sub discipline known as sequence stratigraphy - which concepts students were familiar and easily identified, and which ones they had more difficulty with. In addition, we mapped the cognitive models that underlie those conceptions by analyzing students' gestures and conceptual metaphors used in their explanations. This research also investigated the interaction between geoscientific visual displays and student gesturing in a specific learning context. In this research, an in-depth assessment of 27 students' ideas of the basic principles of sequence stratigraphy was completed. Participants were enrolled in advanced undergraduate stratigraphy courses at three research-intensive universities in Midwest U.S. Data collection methods included semi-structured interviews, spatial visualization tests, and lab assignments. Results indicated that students poorly integrated temporal and spatial scales in their sequence stratigraphic models, and that many alternative conceptions were more deeply rooted than others, especially those related to eustasy and base level. In order to better understand the depth of these conceptions, we aligned the analysis of gesture with the theory of conceptual metaphor to recognize the use of mental models known as image

  7. Student Understanding of Liquid-Vapor Phase Equilibrium

    Science.gov (United States)

    Boudreaux, Andrew; Campbell, Craig

    2012-01-01

    Student understanding of the equilibrium coexistence of a liquid and its vapor was the subject of an extended investigation. Written assessment questions were administered to undergraduates enrolled in introductory physics and chemistry courses. Responses have been analyzed to document conceptual and reasoning difficulties in sufficient detail to…

  8. Thai student existing understanding about the solar system model and the motion of the stars

    Science.gov (United States)

    Anantasook, Sakanan; Yuenyong, Chokchai

    2018-01-01

    The paper examined Thai student existing understanding about the solar system model and the motion of the stars. The participants included 141 Grade 9 students in four different schools of the Surin province, Thailand. Methodology regarded interpretive paradigm. The tool of interpretation included the Student Celestial Motion Conception Questionnaire (SCMCQ) and informal interview. Given understandings in the SCMCQ were read through and categorized according to students' understandings. Then, students were further probed as informal interview. Students' understandings in each category were counted and percentages computed. Finally, students' understandings across four different schools were compared and contrasted using the percentage of student responses in each category. The findings revealed that most students understand about Sun-Moon-Earth (SME) system and solar system model as well, they can use scientific explanations to explain the celestial objects in solar system and how they orbiting. Unfortunately, most of students (more than 70%) never know about the Polaris, the North Star, and 90.1% of them never know about the ecliptic, and probably also the 12 zodiac constellations. These existing understanding suggested some ideas of teaching and learning about solar system model and the motion of the stars. The paper, then, discussed some learning activities to enhance students to further construct meaning about solar system model and the motion of the stars.

  9. University students' understanding level about words related to nuclear power

    International Nuclear Information System (INIS)

    Oiso, Shinichi; Watabe, Motoki

    2012-01-01

    The authors conducted a survey of university students' understanding level about words related to nuclear power before and after Fukushima Daiichi Power Plant accident, and analyzed the difference between before and after the accident. The results show that university students' understanding level improved after the accident, especially in the case of reported words by mass media. Understanding level of some nuclear power security words which were not reported so much by mass media also improved. That may be caused by rising of people's concern about nuclear power generation after the accident, and there is a possibility that the accident motivated people to access such words via internet, journals, etc. (author)

  10. Assessing Students' Understanding of Macroevolution: Concerns regarding the validity of the MUM

    Science.gov (United States)

    Novick, Laura R.; Catley, Kefyn M.

    2012-11-01

    In a recent article, Nadelson and Southerland (2010. Development and preliminary evaluation of the Measure of Understanding of Macroevolution: Introducing the MUM. The Journal of Experimental Education, 78, 151-190) reported on their development of a multiple-choice concept inventory intended to assess college students' understanding of macroevolutionary concepts, the Measure of Understanding Macroevolution (MUM). Given that the only existing evolution inventories assess understanding of natural selection, a microevolutionary concept, a valid assessment of students' understanding of macroevolution would be a welcome and necessary addition to the field of science education. Although the conceptual framework underlying Nadelson and Southerland's test is promising, we believe the test has serious shortcomings with respect to validity evidence for the construct being tested. We argue and provide evidence that these problems are serious enough that the MUM should not be used in its current form to measure students' understanding of macroevolution.

  11. Scaffolding software: How does it influence student conceptual understanding and motivation?

    Science.gov (United States)

    Butler, Kyle A.

    The purpose of this study was to determine the influence of scaffolding software on student conceptual understanding and motivation. This study also provides insight on how students use the scaffolding features found in Artemis and the extent to which features show a relationship to student conceptual understanding and motivation. A Randomized Solomon Four Group Design was used in this study. As students worked through a project based unit over photosynthesis, the students performed information seeking activities that were based on their own inquiry. For this purpose, the students in the experimental group used an example of scaffolding software called Artemis, while the students in the control group used a search engine of their choice. To measure conceptual understanding, the researcher analyzed student generated concept maps on photosynthesis using three different methods (quantitative, qualitative, hierarchical). To measure motivation, the researcher used a survey that measured motivation on five different indicators: intrinsic goal orientation, extrinsic goal orientation, task value, control of learning beliefs, self-efficacy for learning and performance. Finally, the researcher looked at the relationship and influence of the scaffolding features on two student performance scores at the end of the unit. This created a total of ten dependent variables in relationship to the treatment. Overall, the students used the collaborative features 25% of the time, the maintenance features 0.84% of the time, the organizational features 16% of the time, the saving/viewing features 7% of the time and the searching features 51% of the time. There were significant correlations between the saving/viewing features hits and the students' task value (r = .499, p motivation.

  12. The First Year of College: Understanding Student Persistence in Engineering

    OpenAIRE

    Hayden, Marina Calvet

    2017-01-01

    This research study aimed to expand our understanding of the factors that influence student persistence in engineering. The unique experiences of engineering students were examined as they transitioned into and navigated their first year of college at a public research university in California. Most students provided similar responses with respect to the way they experienced the transition to college and social life. There was, however, wide student response variation regarding their experien...

  13. How student teachers’ understanding of the greenhouse effect develops during a teacher education programme

    Directory of Open Access Journals (Sweden)

    Margareta Ekborg

    2012-10-01

    Full Text Available This paper reports on a longitudinal study on how student teachers’ understanding of the greenhouse effect developed through a teacher education programme in mathematics and science for pupils aged 7-13. All student teachers, who were accepted to the programme one year, were followed trough 2.5 years of the programme. The student teachers took science courses in which they were taught about the greenhouse effect.Data was collected by questionnaires three times. The results show that a majority of the student teachers developed an adequate understanding of the greenhouse effect during the teaching programme. Several of the students developed further in the second science course. However a rather big group of students with poor understanding did not develop any further in the second science course and no one demonstrated full understanding. Different ways of collecting data and categorising responses affected how the students’ understanding was interpreted.

  14. Understanding Students' Use and Value of Technology for Learning

    Science.gov (United States)

    Beckman, Karley; Bennett, Sue; Lockyer, Lori

    2014-01-01

    Despite significant research in the field of educational technology, there is still much we do not fully understand about students' experiences with technology. This article proposes that research in the field of educational technology would benefit from a sociological framing that pays attention to the understandings and lives of learners. Within…

  15. Student Use of Scaffolding Software: Relationships with Motivation and Conceptual Understanding

    Science.gov (United States)

    Butler, Kyle A.; Lumpe, Andrew

    2008-10-01

    This study was designed to theoretically articulate and empirically assess the role of computer scaffolds. In this project, several examples of educational software were developed to scaffold the learning of students performing high level cognitive activities. The software used in this study, Artemis, focused on scaffolding the learning of students as they performed information seeking activities. As 5th grade students traveled through a project-based science unit on photosynthesis, researchers used a pre-post design to test for both student motivation and student conceptual understanding of photosynthesis. To measure both variables, a motivation survey and three methods of concept map analysis were used. The student use of the scaffolding features was determined using a database that tracked students' movement between scaffolding tools. The gain scores of each dependent variable was then correlated to the students' feature use (time and hits) embedded in the Artemis Interface. This provided the researchers with significant relationships between the scaffolding features represented in the software and student motivation and conceptual understanding of photosynthesis. There were a total of three significant correlations in comparing the scaffolding use by hits (clicked on) with the dependent variables and only one significant correlation when comparing the scaffold use in time. The first significant correlation ( r = .499, p students' task value. This correlation supports the assumption that there is a positive relationship between the student use of the saving/viewing features and the students' perception of how interesting, how important, and how useful the task is. The second significant correlation ( r = 0.553, p students' self-efficacy for learning and performance. This correlation supports the assumption that there is a positive relationship between the student use of the searching features and the students' perception of their ability to accomplish a task as

  16. Understanding the Greenhouse Effect by Embodiment - Analysing and Using Students' and Scientists' Conceptual Resources

    Science.gov (United States)

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the-mostly unconscious-deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.

  17. Students' Meaningful Learning Orientation and Their Meaningful Understandings of Meiosis and Genetics.

    Science.gov (United States)

    Cavallo, Ann Liberatore

    This 1-week study explored the extent to which high school students (n=140) acquired meaningful understanding of selected biological topics (meiosis and the Punnett square method) and the relationship between these topics. This study: (1) examined "mental modeling" as a technique for measuring students' meaningful understanding of the…

  18. Western Australian High School Students' Understandings about the Socioscientific Issue of Climate Change

    Science.gov (United States)

    Dawson, Vaille

    2015-05-01

    Climate change is one of the most significant science issues facing humanity; yet, teaching students about climate change is challenging: not only is it multidisciplinary, but also it is contentious and debated in political, social and media forums. Students need to be equipped with an understanding of climate change science to be able to participate in this discourse. The purpose of this study was to examine Western Australian high school students' understanding of climate change and the greenhouse effect, in order to identify their alternative conceptions about climate change science and provide a baseline for more effective teaching. A questionnaire designed to elicit students' understanding and alternative conceptions was completed by 438 Year 10 students (14-15 years old). A further 20 students were interviewed. Results showed that students know different features of both climate change and the greenhouse effect, however not necessarily all of them and the relationships between. Five categories of alternative conceptions were identified. The categories were (1) the greenhouse effect and the ozone layer; (2) types of greenhouse gases; (3) types of radiation; (4) weather and climate and (5) air pollution. These findings provide science educators a basis upon which to develop strategies and curriculum resources to improve their students' understanding and decision-making skills about the socioscientific issue, climate change.

  19. How Do Students Acquire an Understanding of Logarithmic Concepts?

    Science.gov (United States)

    Mulqueeny, Ellen

    2012-01-01

    The use of logarithms, an important tool for calculus and beyond, has been reduced to symbol manipulation without understanding in most entry-level college algebra courses. The primary aim of this research, therefore, was to investigate college students' understanding of logarithmic concepts through the use of a series of instructional tasks…

  20. Learning difficulties of senior high school students based on probability understanding levels

    Science.gov (United States)

    Anggara, B.; Priatna, N.; Juandi, D.

    2018-05-01

    Identifying students' difficulties in learning concept of probability is important for teachers to prepare the appropriate learning processes and can overcome obstacles that may arise in the next learning processes. This study revealed the level of students' understanding of the concept of probability and identified their difficulties as a part of the epistemological obstacles identification of the concept of probability. This study employed a qualitative approach that tends to be the character of descriptive research involving 55 students of class XII. In this case, the writer used the diagnostic test of probability concept learning difficulty, observation, and interview as the techniques to collect the data needed. The data was used to determine levels of understanding and the learning difficulties experienced by the students. From the result of students' test result and learning observation, it was found that the mean cognitive level was at level 2. The findings indicated that students had appropriate quantitative information of probability concept but it might be incomplete or incorrectly used. The difficulties found are the ones in arranging sample space, events, and mathematical models related to probability problems. Besides, students had difficulties in understanding the principles of events and prerequisite concept.

  1. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study

    Science.gov (United States)

    Ratinen, Ilkka Johannes

    2013-04-01

    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  2. Developing Deaf Students Fraction Skills Requires Understanding Magnitude and Whole Number Division

    Science.gov (United States)

    Mousley, Keith; Kelly, Ronald R.

    2018-01-01

    Research has shown that fraction magnitude and whole number division are important precursors to learning and understanding fractions. Deaf and hard-of-hearing (DHH) students are consistently challenged with learning fractions from K-12 through college. Sixty DHH college students were tested for both their understanding of magnitude between two…

  3. Exploring Students' Understanding of Ordinary Differential Equations Using Computer Algebraic System (CAS)

    Science.gov (United States)

    Maat, Siti Mistima; Zakaria, Effandi

    2011-01-01

    Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…

  4. Markov Processes: Exploring the Use of Dynamic Visualizations to Enhance Student Understanding

    Science.gov (United States)

    Pfannkuch, Maxine; Budgett, Stephanie

    2016-01-01

    Finding ways to enhance introductory students' understanding of probability ideas and theory is a goal of many first-year probability courses. In this article, we explore the potential of a prototype tool for Markov processes using dynamic visualizations to develop in students a deeper understanding of the equilibrium and hitting times…

  5. Students' understanding of teamwork and professional roles after interprofessional simulation-a qualitative analysis.

    Science.gov (United States)

    Oxelmark, Lena; Nordahl Amorøe, Torben; Carlzon, Liisa; Rystedt, Hans

    2017-01-01

    This study explores how interprofessional simulation-based education (IPSE) can contribute to a change in students' understanding of teamwork and professional roles. A series of 1-day training sessions was arranged involving undergraduate nursing and medical students. Scenarios were designed for practicing teamwork principles and interprofessional communication skills by endorsing active participation by all team members. Four focus groups occurred 2-4 weeks after the training. Thematic analysis of the transcribed focus groups was applied, guided by questions on what changes in students' understanding of teamwork and professional roles were identified and how such changes had been achieved. The first question, aiming to identify changes in students' understanding of teamwork, resulted in three categories: realizing and embracing teamwork fundamentals, reconsidering professional roles, and achieving increased confidence. The second question, regarding how participation in IPSE could support the transformation of students' understanding of teamwork and of professional roles, embraced another three categories: feeling confident in the learning environment, embodying experiences, and obtaining an outside perspective. This study showed the potential of IPSE to transform students' understanding of others' professional roles and responsibilities. Students displayed extensive knowledge on fundamental teamwork principles and what these meant in the midst of participating in the scenarios. A critical prerequisite for the development of these new insights was to feel confident in the learning environment. The significance of how the environment was set up calls for further research on the design of IPSE in influencing role understanding and communicative skills in significant ways.

  6. Understanding Student Travel Behaviour in Semarang City

    Science.gov (United States)

    Manullang, O. R.; Tyas, W. P.; Anas, N.; Aji, F. N.

    2018-02-01

    The highest movement in Semarang City is dominated by motorcycles, which reached 79% of the number of vehicles. Highest percentage movement use motorcycle caused the highest percentage accident by motorcycle users, which reached 66% and 9% involving high school students. This happens because of the dependence of motorcycles usage in fulfilling the needs of movement in the city of Semarang. Understanding student travel behavior based on their activities is used to know travel needs and the cause of dependence on motorcycle usage. Analysis method in this study use network analysis to compare the potential accessibility and actual accessibility to known why motorcycle chosen by students as the main mode. In addition, phenomenology analysis is used to explain the intent and reasons the data produced by network analysis. The analysis result indicates that the high use of motorcycles by high school students in the Semarang city due to the absence of other effective and efficient modes in fulfilling the movement needs. Even, the student which can potentially use public transport preferred to use a motorcycle. This mode is more effective and efficient because of its flexibility and lower costs.

  7. Applied information system-based in enhancing students' understanding towards higher order thinking (HOTS)

    Science.gov (United States)

    Hua, Ang Kean; Ping, Owi Wei

    2017-05-01

    The application of information and communications technology (ICT) had become more important in our daily life, especially in educational field. Teachers are encouraged to use information system-based in teaching Mathematical courses. Higher Order Thinking Skills (HOTS) approach is unable to explain using chalk and talk methods. It needs students to analyze, evaluate, and create by their own natural abilities. The aim of this research study was to evaluate the effectiveness of the application information system-based in enhance the students understanding about HOTS question. Mixed-methods or quantitative and qualitative approach was applied in collecting data, which involve only the standard five students and the teachers in Sabak Bernam, Selangor. Pra-postests was held before and after using information system-based in teaching to evaluate the students' understanding. The result from post-test indicates significant improvement which proves that the use of information system based able to enhance students' understanding about HOTS question and solve it. There were several factor influenced the students such as students' attitude, teachers attraction, school facilities, and computer approach. Teachers play an important role in attracting students to learn. Therefore, the school should provide a conducive learning environment and good facilities for students to learn so that they are able to access more information and always exposed to new knowledge. As conclusion, information system-based are able to enhance students understanding the need of HOTS questions and solve it.

  8. Understanding students' concepts through guided inquiry learning and free modified inquiry on static fluid material

    OpenAIRE

    Sularso Sularso; Widha Sunarno; Sarwanto Sarwanto

    2017-01-01

    This study provides information on understanding students' concepts in guided inquiry learning groups and in free modified inquiry learning groups. Understanding of student concept is reviewed on the concept of static fluid case. The number of samples tested were 67 students. The sample is divided into 2 groups of students: the group is given guided inquiry learning and the group given the modified free inquiry learning. Understanding the concept of students is measured through 23 tests of it...

  9. Secondary Students' Understanding of Basic Ideas of Special Relativity

    Science.gov (United States)

    Dimitriadi, Kyriaki; Halkia, Krystallia

    2012-01-01

    A major topic that has marked "modern physics" is the theory of special relativity (TSR). The present work focuses on the possibility of teaching the basic ideas of the TSR to students at the upper secondary level in such a way that they are able to understand and learn the ideas. Its aim is to investigate students' learning processes towards the…

  10. Using Pre-Assessment and In-Class Questions to Change Student Understanding of Molecular Movements

    Directory of Open Access Journals (Sweden)

    Jia Shi

    2017-05-01

    Full Text Available Understanding how different types of molecules move through cell membranes is a fundamental part of cell biology. To identify and address student misconceptions surrounding molecular movement through cell membranes, we surveyed student understanding on this topic using pre-class questions, in-class clicker questions, and subsequent exam questions in a large introductory biology course. Common misconceptions identified in student responses to the pre-class assessment questions were used to generate distractors for clicker questions. Two-tier diagnostic clicker questions were used to probe incoming common student misconceptions (first tier and their reasoning (second tier. Two subsequent lectures with assessment clicker questions were used to help students construct a new framework to understand molecular movement through cell membranes. Comparison of pre-assessment and post-assessment (exam performance showed dramatic improvement in students’ understanding of molecular movement: student answers to exam questions were 74.6% correct with correct reasoning while only 1.3% of the student answers were correct with correct reasoning on the pre-class assessment. Our results show that students’ conceptual understanding of molecular movement through cell membranes progressively increases through discussions of a series of clicker questions and suggest that this clicker-based teaching strategy was highly effective in correcting common student misconceptions on this topic.

  11. Understanding Female Students' Physics Identity Development

    Science.gov (United States)

    Hazari, Zahra

    2017-01-01

    While the gender gap in physics participation is a known problem, practical strategies that may improve the situation are not well understood. As physics education researchers, we draw on evidence to help inform us of what may or may not be working. To this end, physics identity has proven to be a useful framework for understanding and predicting participation in physics. Drawing on data from national surveys of college students, case studies in physics classes, and surveys of undergraduate women in physics, we identify strategies that are predictive of female students' physics identity development from their high school and undergraduate physics experiences. These findings will be discussed as well as future directions for using this research to increase the recruitment of women to physics-related careers. NSF Grant # 1431846.

  12. How student teachers understand African philosophy

    Directory of Open Access Journals (Sweden)

    Matsephe M. Letseka

    2012-10-01

    Full Text Available The question ‘What constitutes African philosophy?’ was first raised with the publication of Placide Tempels’s seminal work Bantu philosophy in 1959. Tempels’s book inevitably elicited considerable critical response from African philosophers, which culminated in a wide range of publications such as Wiredu’s (1980 Philosophy and an African culture, Hountondji’s (1983 African philosophy: Myth and reality, Oruka’s (1990 Sage philosophy: Indigenous thinkers and modern debate on African philosophy, Shutte’s (1993 Philosophy for Africa, Masolo’s (1994 African philosophy in search of identity and Gyekye’s (1995 An essay of African philosophical thought: The Akan conceptual scheme. It has been over 60 years since the publication of Temples’s book and there continues to be serious debate about African philosophy. This article sought to contribute to the debate on the various conceptions of African philosophy, but with a focus on the challenges of teaching African philosophy to Philosophy of Education students at an open distance learning institution in South Africa. This article discussed the tendency amongst undergraduate Philosophy of Education students to conflate and reduce African philosophy to African cultures and traditions, and to the notion of ubuntu, and sought to understand the reasons for students’ inclination to treat African philosophy in this way. It examined students’ background knowledge of African philosophy, their critical thinking skills and whether their official study materials are selected and packaged in a manner that, in fact, adds to the challenges they face. Finally, the article explored the ways in which Philosophy of Education lecturers can adapt their pedagogy to provide students with a better understanding of African philosophy.

  13. Middle school students' understanding of time: Implications for the National Science Education Standards

    Science.gov (United States)

    Reinemann, Deborah Jean

    2000-10-01

    Measures of time are essential to human life, especially in the Western world. Human understanding of time develops from the preschool stages of using "before" and "after" to an adult understanding and appreciation of time. Previous researchers (for example, Piaget, Friedman) have investigated and described stages of time development. Time, as it was investigated here, can be classified as conventional, logical or experiential. Conventional time is the ordered representation of time; the days of the week, the months of the year, or clock time: seconds and hours. Logical time is the deduction of duration based on regular events; for example, calculating the passage of time based on two separate events. Experiential time involves the duration of events and estimating intervals. With the recent production of the National Science Education Standards (NSES), many schools are aligning their science curriculum with the NSES. Time appears both implicitly and explicitly in the NSES. Do Middle School students possess the understanding of time necessary to meet the recommendations of the NSES? An interview protocol of four sessions was developed to investigate middle school students understanding of time. The four sessions included: building and testing water clocks; an interview about water clocks and time intervals; a laserdisc presentation about relative time spans; and a mind mapping session. Students were also given the GALT test of Logical Thinking. The subjects of the study were interviewed; eleven eighth grade students and thirteen sixth grade students. The data was transcribed and coded, and a rubric was developed to evaluate students based on their responses to the four sessions. The Time Analysis Rubric is a grid of the types of time: conventional, logical and experiential time versus the degree of understanding of time. Student results were assigned to levels of understanding based on the Time Analysis Rubric. There was a relationship (although not significant

  14. Student Understanding of Time in Special Relativity: Simultaneity and Reference Frames.

    Science.gov (United States)

    Scherr, Rachel E.; Shaffer, Peter S.; Vokos, Stamatis

    2001-01-01

    Reports on an investigation of students' understanding of the concept of time in special relativity. Discusses a series of research tasks to illustrate how student reasoning of fundamental concepts of relativity was probed. Indicates that after standard instruction, students have serious difficulties with the relativity of simultaneity and the…

  15. High School Students' Understanding of Chromosome/Gene Behavior during Meiosis.

    Science.gov (United States)

    Stewart, Jim; Dale, Michael

    1989-01-01

    Investigates high school students' understanding of the physical relationship of chromosomes and genes as expressed in their conceptual models and in their ability to manipulate the models to explain solutions to dihybrid cross problems. Describes three typical models and three students' reasoning processes. Discusses four implications. (YP)

  16. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    Science.gov (United States)

    Visintainer, Tammie; Linn, Marcia

    2015-04-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.

  17. Understanding of Words and Symbols by Chemistry University Students in Croatia

    Science.gov (United States)

    Vladušic, Roko; Bucat, Robert; Ožic, Mia

    2016-01-01

    This article reports on a study conducted in Croatia on students' understanding of scientific words and representations, as well as everyday words used in chemistry teaching. A total of 82 undergraduate chemistry students and 36 pre-service chemistry teachers from the Faculty of Science, University of Split, were involved. Students' understanding…

  18. A mixed-methods study exploring student nurses’ understanding of futile CPR

    OpenAIRE

    Batty, Emma

    2014-01-01

    Abstract Background: Futile CPR has the potential to inflict significant, avoidable harms on dying patients. Futile CPR is widely debated in the literature, but there is little research into futile CPR in the context of nursing. There are no published studies exploring student nurses’ understanding of futile CPR. Aim: To explore student nurses’ understanding of futile CPR Methods: A mixed methods study, using questionnaires to establish background data and identify prominent issues. ...

  19. Promoting Conceptual Change in First Year Students' Understanding of Evaporation

    Science.gov (United States)

    Costu, Bayram; Ayas, Alipasa; Niaz, Mansoor

    2010-01-01

    We constructed the PDEODE (Predict-Discuss-Explain-Observe-Discuss-Explain) teaching strategy, a variant of the classical POE (Predict-Observe-Explain) activity, to promote conceptual change, and investigated its effectiveness on student understanding of the evaporation concept. The sample consisted of 52 first year students in a primary science…

  20. The Role of Computer Modeling in Enhancing Students' Conceptual Understanding of Physics

    Directory of Open Access Journals (Sweden)

    F. Ornek

    2012-04-01

    Full Text Available The purpose of this study was to investigate how the use of the computer simulations program VPython facilitated students’ conceptual understanding of fundamental physical principles and in constructing new knowledge of physics. We focused on students in a calculus-based introductory physics course, based on the Matter and Interactions curriculum of Chabay & Sherwood (2002 at a large state engineering and science university in the USA. A major emphasis of this course was on computer modeling by using VPython to write pro¬grams simulating physical systems. We conducted multiple student interviews, as well as an open-ended exit survey, to find out student views on how creating their own simulations to enhanced-conceptual understanding of physics and in constructing new knowledge of phys¬ics. The results varied in relation to the phases when the interviews were conducted. At the beginning of the course, students viewed the simulation program as a burden. However, dur¬ing the course, students stated that it promoted their knowledge and better conceptual understanding of physical phenomena. We deduce that VPython computer simulations can improve students’ conceptual understanding of fundamental physical concepts and promote construction of new knowledge in physics, once they overcome the initial learning curve associated with the VPython software package.

  1. Students concept understanding of fluid static based on the types of teaching

    Science.gov (United States)

    Rahmawati, I. D.; Suparmi; Sunarno, W.

    2018-03-01

    This research aims to know the concept understanding of student are taught by guided inquiry based learning and conventional based learning. Subjects in this study are high school students as much as 2 classes and each class consists of 32 students, both classes are homogen. The data was collected by conceptual test in the multiple choice form with the students argumentation of the answer. The data analysis used is qualitative descriptive method. The results of the study showed that the average of class that was using guided inquiry based learning is 78.44 while the class with use conventional based learning is 65.16. Based on these data, the guided inquiry model is an effective learning model used to improve students concept understanding.

  2. Using Patient Case Video Vignettes to Improve Students' Understanding of Cross-cultural Communication.

    Science.gov (United States)

    Arif, Sally; Cryder, Brian; Mazan, Jennifer; Quiñones-Boex, Ana; Cyganska, Angelika

    2017-04-01

    Objective. To develop, implement, and assess whether simulated patient case videos improve students' understanding of and attitudes toward cross-cultural communication in health care. Design. Third-year pharmacy students (N=159) in a health care communications course participated in a one-hour lecture and two-hour workshop on the topic of cross-cultural communication. Three simulated pharmacist-patient case vignettes highlighting cross-cultural communication barriers, the role of active listening, appropriate use of medical interpreters, and useful models to overcome communication barriers were viewed and discussed in groups of 20 students during the workshop. Assessment. A pre-lecture and post-workshop assessed the effect on students' understanding of and attitudes toward cross-cultural communication. Understanding of cross-cultural communication concepts increased significantly, as did comfort level with providing cross-cultural care. Conclusion. Use of simulated patient case videos in conjunction with an interactive workshop improved pharmacy students' understanding of and comfort level with cross-cultural communication skills and can be useful tools for cultural competency training in the curriculum.

  3. Medical Students' Understanding of Directed Questioning by Their Clinical Preceptors.

    Science.gov (United States)

    Lo, Lawrence; Regehr, Glenn

    2017-01-01

    Phenomenon: Throughout clerkship, preceptors ask medical students questions for both assessment and teaching purposes. However, the cognitive and strategic aspects of students' approaches to managing this situation have not been explored. Without an understanding of how students approach the question and answer activity, medical educators are unable to appreciate how effectively this activity fulfills their purposes of assessment or determine the activity's associated educational effects. A convenience sample of nine 4th-year medical students participated in semistructured one-on-one interviews exploring their approaches to managing situations in which they have been challenged with questions from preceptors to which they do not know the answer. Through an iterative and recursive analytic reading of the interview transcripts, data were coded and organized to identify themes relevant to the students' considerations in answering such questions. Students articulated deliberate strategies for managing the directed questioning activity, which at times focused on the optimization of their learning but always included considerations of image management. Managing image involved projecting not only being knowledgeable but also being teachable. The students indicated that their considerations in selecting an appropriate strategy in a given situation involved their perceptions of their preceptors' intentions and preferences as well as several contextual factors. Insights: The medical students we interviewed were quite sophisticated in their understanding of the social nuances of the directed questioning process and described a variety of contextually invoked strategies to manage the situation and maintain a positive image.

  4. Development of a Student-Centered Instrument to Assess Middle School Students' Conceptual Understanding of Sound

    Science.gov (United States)

    Eshach, Haim

    2014-01-01

    This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of sound: sound…

  5. Students' Performance in Investigative Activity and Their Understanding of Activity Aims

    Science.gov (United States)

    Gomes, Alessandro Damasio Trani; Borges, A. Tarciso; Justi, Rosaria

    2008-01-01

    This study investigates the relationship between the students' understanding of the aims of an investigative activity and their performance when conducting it. One hundred and eighty-one year nine students from a public middle school in Brazil took part in the study. Students working in pairs were asked to investigate two problems using a…

  6. Understanding Student Learning in Context: Relationships between University Students' Social Identity, Approaches to Learning, and Academic Performance

    Science.gov (United States)

    Bliuc, Ana-Maria; Ellis, Robert A.; Goodyear, Peter; Hendres, Daniela Muntele

    2011-01-01

    This research focuses on understanding how socio-psychological dimensions such as student social identity and student perceptions of their learning community affect learning at university. To do this, it integrates ideas from phenomenographic research into student learning with ideas from research on social identity. In two studies (N = 110, and N…

  7. Middle School Students' Understandings About Anthropogenic Climate Change

    Science.gov (United States)

    Golden, B. W.

    2013-12-01

    they discussed the validation of their beliefs. That is, we argue that the unit, and the emphases contained within the unit, resulted in the "epistemic scaffolding" of their ideas, to the extent that they shifted from arguing from anecdotes to arguing based on other types of data, especially from line graphs. Additionally, we found that students' understandings of climate change were tied to their ontological constructions of the subject matter, i.e., many perceived climate change as just another environmentally sensitive issue such as littering and pollution, and were therefore limited in their ability to understand anthropogenic climate change in the vast and robust sense meant by current scientific consensus. Given these known difficulties, it is critical to explore further research of this sort in order to better understand what students are actually thinking, and how that thinking is prone to change, modification, or not. Subsequently, K-12 strategies might be better designed, if that is indeed a priority of US/Western society.

  8. Investigating and Improving Student Understanding of Key Ideas in Quantum Mechanics throughout Instruction

    Science.gov (United States)

    Emigh, Paul Jeffrey

    This dissertation describes research on student understanding of quantum mechanics across multiple levels of instruction. The primary focus has been to identify patterns in student reasoning related to key concepts in quantum mechanics. The specific topics include quantum measurements, time dependence, vector spaces, and angular momentum. The research has spanned a variety of different quantum courses intended for introductory physics students, upper-division physics majors, and graduate students in physics. The results of this research have been used to develop a set of curriculum, Tutorials in Physics: Quantum Mechanics, for addressing the most persistent student difficulties. We document both the development of this curriculum and how it has impacted and improved student understanding of quantum mechanics.

  9. A conceptual framework to understand academic student volunteerism

    NARCIS (Netherlands)

    Cunha, Jorge; Mensing, Rainer; Benneworth, Paul Stephen

    2018-01-01

    This paper develops a conceptual framework to understand the value of an increasing number of university study programmes that send students to the global south by learning through volunteering. We ask the research question what determines the benefit that these activities bring to the host

  10. Can an egg-dropping race enhance students' conceptual understanding of air resistance?

    Science.gov (United States)

    Lee, Yeung Chung; Kwok, Ping Wai

    2009-03-01

    Children are familiar with situations in which air resistance plays an important role, such as parachuting. However, it is not known whether they have any understanding about the concept of air resistance, how air resistance affects falling objects, and the differential effect it has on different objects. The literature reveals that there are misconceptions even among undergraduate physics students about how air resistance is affected by the mass and size of falling objects. A study was carried out in Hong Kong to explore Grade 6 students' (aged 11-12) conceptions of air resistance with respect to falling objects of different size and mass, and whether the subjects showed any change in their conceptual understanding after participating in an egg-dropping race. The findings show that students had a wide range of conceptions, which could be characterized into different levels. Their conceptions seem rather robust, and more structured interventions are required to bring about changes in students' conceptual understanding of air resistance.

  11. Assessing student understanding of measurement and uncertainty

    Science.gov (United States)

    Jirungnimitsakul, S.; Wattanakasiwich, P.

    2017-09-01

    The objectives of this study were to develop and assess student understanding of measurement and uncertainty. A test has been adapted and translated from the Laboratory Data Analysis Instrument (LDAI) test, consists of 25 questions focused on three topics including measures of central tendency, experimental errors and uncertainties, and fitting regression lines. The test was evaluated its content validity by three physics experts in teaching physics laboratory. In the pilot study, Thai LDAI was administered to 93 freshmen enrolled in a fundamental physics laboratory course. The final draft of the test was administered to three groups—45 freshmen taking fundamental physics laboratory, 16 sophomores taking intermediated physics laboratory and 21 juniors taking advanced physics laboratory at Chiang Mai University. As results, we found that the freshmen had difficulties in experimental errors and uncertainties. Most students had problems with fitting regression lines. These results will be used to improve teaching and learning physics laboratory for physics students in the department.

  12. Understanding How Domestic Violence Affects Behavior in High School Students

    Science.gov (United States)

    Frank, Malika

    2011-01-01

    This paper will provide the reader with an understanding of how domestic violence affects the behavior of high school students. The presentation is designed to provide the reader with a working definition of domestic violence, the rate of occurrence and its effects on high school students. Additionally the paper will summarize the negative effects…

  13. Title IV Indian Education Program Evaluation, 1985-86.

    Science.gov (United States)

    Albuquerque Public Schools, NM. Planning, Research and Accountability.

    Public schools in Albuquerque, New Mexico, used a Title IV Part A grant to assist American Indian elementary and secondary school students in receiving passing grades and improving school-related behaviors. Canoncito Navajo Reservation, the Isleta Pueblo, and urban Indian students in Albuquerque participated in the program. Personnel consisted of…

  14. Secondary School Students' Understanding of Science and Their Socioscientific Reasoning

    Science.gov (United States)

    Karahan, Engin; Roehrig, Gillian

    2017-08-01

    Research in socioscientific issue (SSI)-based interventions is relatively new (Sadler in Journal of Research in Science Teaching 41:513-536, 2004; Zeidler et al. in Journal of Research in Science Teaching 46:74-101, 2009), and there is a need for understanding more about the effects of SSI-based learning environments (Sadler in Journal of Research in Science Teaching 41:513-536, 2004). Lee and Witz (International Journal of Science Education 31:931-960, 2009) highlighted the need for detailed case studies that would focus on how students respond to teachers' practices of teaching SSI. This study presents case studies that investigated the development of secondary school students' science understanding and their socioscientific reasoning within SSI-based learning environments. A multiple case study with embedded units of analysis was implemented for this research because of the contextual differences for each case. The findings of the study revealed that students' understanding of science, including scientific method, social and cultural influences on science, and scientific bias, was strongly influenced by their experiences in SSI-based learning environments. Furthermore, multidimensional SSI-based science classes resulted in students having multiple reasoning modes, such as ethical and economic reasoning, compared to data-driven SSI-based science classes. In addition to portraying how participants presented complexity, perspectives, inquiry, and skepticism as aspects of socioscientific reasoning (Sadler et al. in Research in Science Education 37:371-391, 2007), this study proposes the inclusion of three additional aspects for the socioscientific reasoning theoretical construct: (1) identification of social domains affecting the SSI, (2) using cost and benefit analysis for evaluation of claims, and (3) understanding that SSIs and scientific studies around them are context-bound.

  15. Understanding the information and resource needs of UK health and social care placement students.

    Science.gov (United States)

    Callaghan, Lynne; Doherty, Alan; Lea, Susan J; Webster, Daniel

    2008-12-01

    Students on health and social care degree programmes spend 50% of their time on practice placements. Because of the diversity of settings and the need to evidence their work, it is vital to understand the information and resource needs of placement students. The aim of this investigation was to understand the needs of placement students in terms of accessing resources whilst they are in the field in order to inform a guide to meet these needs. Focus groups were conducted with students on midwifery, social work and post-registration health professions degree programmes on three different sites across the region. Data were analysed using Thematic Content Analysis. Three themes emerged from the data: inequality, user education needs and students' solutions and strategies. It is essential to speak to placement students in order to understand their needs in terms of accessing and using library resources. The timing and content of information skills training is key to meeting student needs while on placement.

  16. Manipulating 3D-Printed and Paper Models Enhances Student Understanding of Viral Replication

    Science.gov (United States)

    Couper, Lisa; Johannes, Kristen; Powers, Jackie; Silberglitt, Matt; Davenport, Jodi

    2016-01-01

    Understanding key concepts in molecular biology requires reasoning about molecular processes that are not directly observable and, as such, presents a challenge to students and teachers. We ask whether novel interactive physical models and activities can help students understand key processes in viral replication. Our 3D tangible models are…

  17. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-10-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.

  18. Student Understanding of Gravity in Introductory College Astronomy

    Science.gov (United States)

    Williamson, Kathryn E.; Willoughby, Shannon

    2012-01-01

    Twenty-four free-response questions were developed to explore introductory college astronomy students' understanding of gravity in a variety of contexts, including in and around Earth, throughout the solar system, and in hypothetical situations. Questions were separated into three questionnaires, each of which was given to a section of…

  19. Student understanding of time dependence in quantum mechanics

    Directory of Open Access Journals (Sweden)

    Paul J. Emigh

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.

  20. Improving Students' Understanding of Waves by Plotting a Displacement-Time Graph in Class

    Science.gov (United States)

    Wei, Yajun

    2012-04-01

    The topic of waves is one that many high school physics students find difficult to understand. This is especially true when using some A-level textbooks1,2used in the U.K., where the concept of waves is introduced prior to the concept of simple harmonic oscillations. One of the challenges my students encounter is understanding the difference between displacement-time graphs and displacement-position graphs. Many students wonder why these two graphs have the same sinusoidal shape. Having the students use multimedia simulations allows them to see, in a hands-on fashion, the relationship between the two graphs.

  1. Do They "Really" Get It? Evaluating Evidence of Student Understanding of Power Series

    Science.gov (United States)

    Kung, David; Speer, Natasha

    2013-01-01

    Most teachers agree that if a student understands a particular mathematical topic well, he/she will probably be able to do problems correctly. The converse, however, frequently fails: students who do problems correctly sometimes do not actually have robust understandings of the topic in question. In this paper we explore this phenomenon in the…

  2. The understanding of art students toward characteristic of Negeri Sembilan Minangkabau Traditional House

    Directory of Open Access Journals (Sweden)

    Taharuddin Nurul Shima

    2016-01-01

    Full Text Available In Negeri Sembilan, they are still practicing Minangkabau culture and custom. Element of uniqueness in Negeri. Sembilan has been shown on its architectural where the houses have dramatic curved roof structures with multitier. The art and architecture features a unique regional style. This house fills with cultural values, customs and reflects the people’s understanding about designing art and architecture that is in harmony with nature. The house serves as a residence, a hall for family meetings, and for ceremonial activities. This research, studies the understanding of art students towards the characteristic that are found in the Negeri Sembilan Minangkabau Traditional House (NSMTH in Negeri Sembilan, Malaysia. The objectives are to identify the element of characteristic that shows the identity of Negeri Sembilan Minangkabau Traditional House and to determine the level of understanding on characteristic of a Minangkabau house by art students. Scope of this research is on understanding of Faculty Art & Design student that has syllabus on Malay art. The research methodology that been use in this research is quantitative where surveys are made among the art students

  3. Developing Intercultural Understanding for Study Abroad: Students' and Teachers' Perspectives on Pre-Departure Intercultural Learning

    Science.gov (United States)

    Holmes, P.; Bavieri, L.; Ganassin, S.

    2015-01-01

    This study reports on students' and teachers' perspectives on a programme designed to develop Erasmus students' intercultural understanding prior to going abroad. We aimed to understand how students and their teachers perceived pre-departure materials in promoting their awareness of key concepts related to interculturality (e.g., essentialism,…

  4. How Earth Educators Can Help Students Develop a Holistic Understanding of Sustainability

    Science.gov (United States)

    Curren, R. R.; Metzger, E. P.

    2017-12-01

    With their expert understanding of planetary systems, Earth educators play a pivotal role in helping students understand the scientific dimensions of solution-resistant ("wicked") challenges to sustainability that arise from complex interactions between intertwined and co-evolving natural and human systems. However, teaching the science of sustainability in isolation from consideration of human values and social dynamics leaves students with a fragmented understanding and obscures the underlying drivers of unsustainability. Geoscience instructors who wish to address sustainability in their courses may feel ill-equipped to engage students in investigation of the fundamental nature of sustainability and its social and ethical facets. This presentation will blend disciplinary perspectives from Earth system science, philosophy, psychology, and anthropology to: 1) outline a way to conceptualize sustainability that synthesizes scientific, social, and ethical perspectives and 2) provide an overview of resources and teaching strategies designed to help students connect science content to the socio-political dimensions of sustainability through activities and assignments that promote active learning, systems thinking, reflection, and collaborative problem-solving.

  5. Understanding Difference through Dialogue: A First-Year Experience for College Students

    Science.gov (United States)

    Thakral, Charu; Vasquez, Philip L.; Bottoms, Bette L.; Matthews, Alicia K.; Hudson, Kimberly M.; Whitley, Steven K.

    2016-01-01

    Research (Gurin, Nagda, & Zúñiga, 2009) on intergroup dialogue (IGD) has primarily focused on student outcomes in traditional semester-long, 3-credit courses, documenting the positive impact IGD has on college students' (a) intergroup understanding, (b) intergroup relationships, (c) intergroup collaboration and action, and (d) perceived…

  6. Evolution in students' understanding of thermal physics with increasing complexity

    Science.gov (United States)

    Langbeheim, Elon; Safran, Samuel A.; Livne, Shelly; Yerushalmi, Edit

    2013-12-01

    We analyze the development in students’ understanding of fundamental principles in the context of learning a current interdisciplinary research topic—soft matter—that was adapted to the level of high school students. The topic was introduced in a program for interested 11th grade high school students majoring in chemistry and/or physics, in an off-school setting. Soft matter was presented in a gradual increase in the degree of complexity of the phenomena as well as in the level of the quantitative analysis. We describe the evolution in students’ use of fundamental thermodynamics principles to reason about phase separation—a phenomenon that is ubiquitous in soft matter. In particular, we examine the impact of the use of free energy analysis, a common approach in soft matter, on the understanding of the fundamental principles of thermodynamics. The study used diagnostic questions and classroom observations to gauge the student’s learning. In order to gain insight on the aspects that shape the understanding of the basic principles, we focus on the responses and explanations of two case-study students who represent two trends of evolution in conceptual understanding in the group. We analyze changes in the two case studies’ management of conceptual resources used in their analysis of phase separation, and suggest how their prior knowledge and epistemological framing (a combination of their personal tendencies and their prior exposure to different learning styles) affect their conceptual evolution. Finally, we propose strategies to improve the instruction of these concepts.

  7. Representational Classroom Practices that Contribute to Students' Conceptual and Representational Understanding of Chemical Bonding

    Science.gov (United States)

    Hilton, Annette; Nichols, Kim

    2011-11-01

    Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their content-specific forms and functions, this might be avoided. The development of an understanding of and ability to use multiple representations is crucial to students' understanding of chemical bonding. This paper draws on data from a larger study involving two Year 11 chemistry classes (n = 27, n = 22). It explores the contribution of explicit instruction about multiple representations to students' understanding and representation of chemical bonding. The instructional strategies were documented using audio-recordings and the teacher-researcher's reflection journal. Pre-test-post-test comparisons showed an improvement in conceptual understanding and representational competence. Analysis of the students' texts provided further evidence of the students' ability to use multiple representations to explain macroscopic phenomena on the molecular level. The findings suggest that explicit instruction about representational form and function contributes to the enhancement of representational competence and conceptual understanding of bonding in chemistry. However, the scaffolding strategies employed by the teacher play an important role in the learning process. This research has implications for professional development enhancing teachers' approaches to these aspects of instruction around chemical bonding.

  8. Examining the Conceptual Understandings of Geoscience Concepts of Students with Visual Impairments: Implications of 3-D Printing

    Science.gov (United States)

    Koehler, Karen E.

    The purpose of this qualitative study was to explore the use of 3-D printed models as an instructional tool in a middle school science classroom for students with visual impairments and compare their use to traditional tactile graphics for aiding conceptual understanding of geoscience concepts. Specifically, this study examined if the students' conceptual understanding of plate tectonics was different when 3-D printed objects were used versus traditional tactile graphics and explored the misconceptions held by students with visual impairments related to plate tectonics and associated geoscience concepts. Interview data was collected one week prior to instruction and one week after instruction and throughout the 3-week instructional period and additional ata sources included student journals, other student documents and audio taped instructional sessions. All students in the middle school classroom received instruction on plate tectonics using the same inquiry-based curriculum but during different time periods of the day. One group of students, the 3D group, had access to 3-D printed models illustrating specific geoscience concepts and the group of students, the TG group, had access to tactile graphics illustrating the same geoscience concepts. The videotaped pre and post interviews were transcribed, analyzed and coded for conceptual understanding using constant comparative analysis and to uncover student misconceptions. All student responses to the interview questions were categorized in terms of conceptual understanding. Analysis of student journals and classroom talk served to uncover student mental models and misconceptions about plate tectonics and associated geoscience concepts to measure conceptual understanding. A slight majority of the conceptual understanding before instruction was categorized as no understanding or alternative understanding and after instruction the larger majority of conceptual understanding was categorized as scientific or scientific

  9. Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2015-01-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that…

  10. Students' Understanding of Boiling Points and Intermolecular Forces

    Science.gov (United States)

    Schmidt, Hans-Jurgen; Kaufmann, Birgit; Treagust, David F.

    2009-01-01

    In introductory chemistry courses students are presented with the model that matter is composed of particles, and that weak forces of attraction exist between them. This model is used to interpret phenomena such as solubility and melting points, and aids in understanding the changes in states of matter as opposed to chemical reactions. We…

  11. Understanding Patterns of Library Use Among Undergraduate Students from Different Disciplines

    Directory of Open Access Journals (Sweden)

    Ellen Collins

    2014-09-01

    Full Text Available Objective – To test whether routinely-generated library usage data could be linked with information about students to understand patterns of library use among students from different disciplines at the University of Huddersfield. This information is important for librarians seeking to demonstrate the value of the library, and to ensure that they are providing services which meet user needs. The study seeks to join two strands of library user research which until now have been kept rather separate – an interest in disciplinary differences in usage, and a methodology which involves large-scale routinely-generated data. Methods – The study uses anonymized data about individual students derived from two sources: routinely-generated data on various dimensions of physical and electronic library resource usage, and information from the student registry on the course studied by each student. Courses were aggregated at a subject and then disciplinary level. Kruskal-Wallis and Mann Whitney tests were used to identify statistically significant differences between the high-level disciplinary groups, and within each disciplinary group at the subject level. Results – The study identifies a number of statistically significant differences on various dimensions of usage between both high-level disciplinary groupings and lower subject-level groupings. In some cases, differences are not the same as those observed in earlier studies, reflecting distinctive usage patterns and differences in the way that disciplines or subjects are defined and organised. While music students at Huddersfield are heavy library users within the arts subject-level grouping arts students use library resources less than those in social science disciplines, contradicting findings from studies at other institutions, Computing and engineering students were relatively similar, although computing students were more likely to download PDFs, and engineering students were more likely to

  12. Relation of Student Social Position to Consumer Attitudes and Understanding

    Science.gov (United States)

    Litro, Robert Frank

    1970-01-01

    A study of Connecticut high school students from different social positions found differences in consumer attitudes and understandings of money management, credit, insurance, and savings and investments. (CH)

  13. Effect of Conceptual Change Approach on Students' Understanding of Reaction Rate Concepts

    Science.gov (United States)

    Kingir, Sevgi; Geban, Omer

    2012-01-01

    The purpose of the present study was to investigate the effect of conceptual change text oriented instruction compared to traditional instruction on 10th grade students' understanding of reaction rate concepts. 45 students from two classes of the same teacher in a public high school participated in this study. Students in the experimental group…

  14. Profile of Metacognition of Mathematics and Mathematics Education Students in Understanding the Concept of Integral Calculus

    Science.gov (United States)

    Misu, La; Ketut Budayasa, I.; Lukito, Agung

    2018-03-01

    This study describes the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. The metacognition profile is a natural and intact description of a person’s cognition that involves his own thinking in terms of using his knowledge, planning and monitoring his thinking process, and evaluating his thinking results when understanding a concept. The purpose of this study was to produce the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. This research method is explorative method with the qualitative approach. The subjects of this study are mathematics and mathematics education students who have studied integral calculus. The results of this study are as follows: (1) the summarizing category, the mathematics and mathematics education students can use metacognition knowledge and metacognition skills in understanding the concept of indefinite integrals. While the definite integrals, only mathematics education students use metacognition skills; and (2) the explaining category, mathematics students can use knowledge and metacognition skills in understanding the concept of indefinite integrals, while the definite integrals only use metacognition skills. In addition, mathematics education students can use knowledge and metacognition skills in understanding the concept of both indefinite and definite integrals.

  15. Nursing students' understanding and enactment of resilience: a grounded theory study.

    Science.gov (United States)

    Reyes, Andrew Thomas; Andrusyszyn, Mary-Anne; Iwasiw, Carroll; Forchuk, Cheryl; Babenko-Mould, Yolanda

    2015-11-01

    The aim of this study was to explore nursing students' understanding and enactment of resilience. Stress is considered to be a major factor affecting the health, well-being and academic performance of nursing students. Resilience has been extensively researched as a process that allows individuals to successfully adapt to adversity and develop positive outcomes as a result. However, relatively little is known about the resilience of nursing students. A constructivist, grounded theory qualitative design was used for this study. In-depth individual interviews were conducted with 38 nursing students enrolled in a four-year, integrated baccalaureate nursing degree programme at a university in Ontario, Canada. Face-to-face interviews were conducted from January to April 2012 using a semi-structured interview guide. The basic social process of 'pushing through' emerged as nursing students' understanding and enactment of resilience. Participants employed this process to withstand challenges in their academic lives. This process was comprised of three main phases: 'stepping into', 'staying the course' and 'acknowledging'. 'Pushing through' also included a transient 'disengaging' process where students were temporarily unable to push through their adversities. The process of 'pushing through' was based on a progressive trajectory, which implied that nursing students enacted the process to make progress in their academic lives and to attain goals. Study findings provide important evidence for understanding the phenomenon of resilience as a dynamic, contextual process that can be learnt and developed, rather than a static trait or personality characteristic. © 2015 John Wiley & Sons Ltd.

  16. Effectiveness of Using GeoGebra on Students' Understanding in Learning Circles

    Science.gov (United States)

    Shadaan, Praveen; Leong, Kwan Eu

    2013-01-01

    The use of technology in the pedagogical process is growing at a phenomenal rate due to the vast availability of gadgets. As a result, educationists see the urgent need for integrating technology in students' mathematical activities. Therefore, the purpose of this quasi experimental study was to investigate students' understanding in learning…

  17. Common molecular determinants of tarantula huwentoxin-IV inhibition of Na+ channel voltage sensors in domains II and IV.

    Science.gov (United States)

    Xiao, Yucheng; Jackson, James O; Liang, Songping; Cummins, Theodore R

    2011-08-05

    The voltage sensors of domains II and IV of sodium channels are important determinants of activation and inactivation, respectively. Animal toxins that alter electrophysiological excitability of muscles and neurons often modify sodium channel activation by selectively interacting with domain II and inactivation by selectively interacting with domain IV. This suggests that there may be substantial differences between the toxin-binding sites in these two important domains. Here we explore the ability of the tarantula huwentoxin-IV (HWTX-IV) to inhibit the activity of the domain II and IV voltage sensors. HWTX-IV is specific for domain II, and we identify five residues in the S1-S2 (Glu-753) and S3-S4 (Glu-811, Leu-814, Asp-816, and Glu-818) regions of domain II that are crucial for inhibition of activation by HWTX-IV. These data indicate that a single residue in the S3-S4 linker (Glu-818 in hNav1.7) is crucial for allowing HWTX-IV to interact with the other key residues and trap the voltage sensor in the closed configuration. Mutagenesis analysis indicates that the five corresponding residues in domain IV are all critical for endowing HWTX-IV with the ability to inhibit fast inactivation. Our data suggest that the toxin-binding motif in domain II is conserved in domain IV. Increasing our understanding of the molecular determinants of toxin interactions with voltage-gated sodium channels may permit development of enhanced isoform-specific voltage-gating modifiers.

  18. Scientific Models Help Students Understand the Water Cycle

    Science.gov (United States)

    Forbes, Cory; Vo, Tina; Zangori, Laura; Schwarz, Christina

    2015-01-01

    The water cycle is a large, complex system that encompasses ideas across the K-12 science curriculum. By the time students leave fifth grade, they should understand "that a system is a group of related parts that make up a whole and can carry out functions its individual parts cannot" and be able to describe both components and processes…

  19. Improving Elementary School Students' Understanding of Historical Time: Effects of Teaching with "Timewise"

    Science.gov (United States)

    de Groot-Reuvekamp, Marjan; Ros, Anje; van Boxtel, Carla

    2018-01-01

    The teaching of historical time is an important aspect in elementary school curricula. This study focuses on the effects of a curriculum intervention with "Timewise," a teaching approach developed to improve students' understanding of historical time using timelines as a basis with which students can develop their understanding of…

  20. Concept Mapping as a Tool to Develop and Measure Students' Understanding in Science

    Science.gov (United States)

    Tan, Sema; Erdimez, Omer; Zimmerman, Robert

    2017-01-01

    Concept maps measured a student's understanding of the complexity of concepts, and interrelationships. Novak and Gowin (1984) claimed that the continuous use of concept maps increased the complexity and interconnectedness of students' understanding of relationships between concepts in a particular science domain. This study has two purposes; the…

  1. Nursing students' understanding of factors influencing ethical sensitivity: A qualitative study.

    Science.gov (United States)

    Borhani, Fariba; Abbaszadeh, Abbas; Mohsenpour, Mohaddeseh

    2013-07-01

    Ethical sensitivity is considered as a component of professional competency of nurses. Its effects on improvement of nurses' ethical performance and the therapeutic relationship between nurses and patients have been reported. However, very limited studies have evaluated ethical sensitivity. Since no previous Iranian research has been conducted in this regard, the present study aimed to review nursing students' understanding of effective factors on ethical sensitivity. This qualitative study was performed in Kerman, Iran, during 2009. It used semi-structured individual interviews with eight MSc nursing students to assess their viewpoints. It also included two focus groups. Purposive sampling was continued until data saturation. Data were analyzed using manifest content analysis. The students' understanding of factors influencing ethical sensitivity were summarized in five main themes including individual and spiritual characteristics, education, mutual understanding, internal and external controls, and experience of an immoral act. The findings of this study create a unique framework for sensitization of nurses in professional performance. The application of these factors in human resource management is reinforcement of positive aspects and decrease in negative aspects, in education can use for educational objectives setting, and in research can designing studies based on this framework and making related tools. It is noteworthy that presented classification was influenced by students themselves and mentioned to a kind of learning activity by them.

  2. Independent learning modules enhance student performance and understanding of anatomy.

    Science.gov (United States)

    Serrat, Maria A; Dom, Aaron M; Buchanan, James T; Williams, Alison R; Efaw, Morgan L; Richardson, Laura L

    2014-01-01

    Didactic lessons are only one part of the multimodal teaching strategies used in gross anatomy courses today. Increased emphasis is placed on providing more opportunities for students to develop lifelong learning and critical thinking skills during medical training. In a pilot program designed to promote more engaged and independent learning in anatomy, self-study modules were introduced to supplement human gross anatomy instruction at Joan C. Edwards School of Medicine at Marshall University. Modules use three-dimensional constructs to help students understand complex anatomical regions. Resources are self-contained in portable bins and are accessible at any time. Students use modules individually or in groups in a structured self-study format that augments material presented in lecture and laboratory. Pilot outcome data, measured by feedback surveys and examination performance statistics, suggest that the activity may be improving learning in gross anatomy. Positive feedback on both pre- and post-examination surveys showed that students felt the activity helped to increase their understanding of the topic. In concordance with student perception, average examination scores on module-related laboratory and lecture questions were higher in the two years of the pilot program compared with the year before its initiation. Modules can be fabricated on a modest budget using minimal resources, making implementation practical for smaller institutions. Upper level medical students assist in module design and upkeep, enabling continuous opportunities for vertical integration across the curriculum. This resource offers a feasible mechanism for enhancing independent and lifelong learning competencies, which could be a valuable complement to any gross anatomy curriculum. © 2014 American Association of Anatomists.

  3. Investigating High School Students' Understanding of Chemical Equilibrium Concepts

    Science.gov (United States)

    Karpudewan, Mageswary; Treagust, David F.; Mocerino, Mauro; Won, Mihye; Chandrasegaran, A. L.

    2015-01-01

    This study investigated the year 12 students' (N = 56) understanding of chemical equilibrium concepts after instruction using two conceptual tests, the "Chemical Equilibrium Conceptual Test 1" ("CECT-1") consisting of nine two-tier multiple-choice items and the "Chemical Equilibrium Conceptual Test 2"…

  4. Impact of Math Snacks Games on Students' Conceptual Understanding

    Science.gov (United States)

    Winburg, Karin; Chamberlain, Barbara; Valdez, Alfred; Trujillo, Karen; Stanford, Theodore B.

    2016-01-01

    This "Math Snacks" intervention measured 741 fifth grade students' gains in conceptual understanding of core math concepts after game-based learning activities. Teachers integrated four "Math Snacks" games and related activities into instruction on ratios, coordinate plane, number systems, fractions and decimals. Using a…

  5. Promoting Pre-Service Elementary Students' Understanding of Chemical Equilibrium through Discussions in Small Groups

    Science.gov (United States)

    Bilgin, Ibrahim

    2006-01-01

    The purpose of this study was to investigate the effectiveness of small group discussion on students' conceptual understanding of chemical equilibrium. Students' understanding of chemical equilibrium concepts was measured using the Misconception Identification Test. The test consisted of 30 items and administered as pre-posttests to a total of 81…

  6. How College Students Understand Their Self-Control Development: A Qualitative Analysis

    Science.gov (United States)

    Cliburn Allen, Cara; Glanzer, Perry

    2017-01-01

    Recent research has shown the importance of the positive benefits of high-levels of self-control for both individuals and society. Yet, we know only a limited amount about how college students understand and apply self-control. This qualitative study examined how a national sample of 75 students defined self-control, whether or not they believed…

  7. Analogy-Integrated e-Learning Module: Facilitating Students' Conceptual Understanding

    Science.gov (United States)

    Florida, Jennifer

    2012-01-01

    The study deals with the development of an analogy-integrated e-learning module on Cellular Respiration, which is intended to facilitate conceptual understanding of students with different brain hemisphere dominance and learning styles. The module includes eight analogies originally conceptualized following the specific steps used to prepare…

  8. Developing Critical Understanding in HRM Students: Using Innovative Teaching Methods to Encourage Deep Approaches to Study

    Science.gov (United States)

    Butler, Michael J. R.; Reddy, Peter

    2010-01-01

    Purpose: This paper aims to focus on developing critical understanding in human resource management (HRM) students in Aston Business School, UK. The paper reveals that innovative teaching methods encourage deep approaches to study, an indicator of students reaching their own understanding of material and ideas. This improves student employability…

  9. Undergraduate Nursing Students' Understandings of Mental Health: A Review of the Literature.

    Science.gov (United States)

    Barry, Sinead; Ward, Louise

    2017-02-01

    The purpose of this literature review was to identify research and current literature surrounding nursing students' understandings of mental health. The aim is to share findings from an extensive international and national literature review exploring undergraduate nurse education specific to mental health content. Data were collected utilising a comprehensive search of electronic databases including CINAHL (EBSCO), MEDLINE, and PsycINFO 1987-(Ovid) from 2008 to 2016. The initial search terms were altered to include undergraduate, mental health, nursing, education, experience, and knowledge. Three content themes emerged which included: 1. Undergraduate nursing students' knowledge has been considered compromised due to concerns relating to the variation and inconsistencies within the comprehensive nursing curriculums representation of mental health, 2. Undergraduate nursing students knowledge of mental health is thought to be compromised due to the quality of mental health theoretical and experiential learning opportunities, and 3. Research indicates that nursing students' knowledge of mental health was influenced by their experience of undertaking mental health content. Based on these findings greater consideration of students' understandings of mental health is required.

  10. Assessing Students' Understandings of Biological Models and Their Use in Science to Evaluate a Theoretical Framework

    Science.gov (United States)

    Grünkorn, Juliane; Upmeier zu Belzen, Annette; Krüger, Dirk

    2014-01-01

    Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical evaluation).…

  11. Good Morning from Barrow, Alaska! Helping K-12 students understand the importance of research

    Science.gov (United States)

    Shelton, M.

    2010-12-01

    This presentation focuses on how an educator experiences scientific research and how those experiences can help foster K-12 students’ understanding of research being conducted in Barrow, Alaska. According to Zhang and Fulford (1994), real-time electronic field trips help to provide a sense of closeness and relevance. In combination with experts in the field, the electronic experience can help students to better understand the phenomenon being studied, thus strengthening the student’s conceptual knowledge (Zhang & Fulford, 1994). During a seven day research trip to study the arctic sea ice, five rural Virginia teachers and their students participated in Skype sessions with the participating educator and other members of the Radford University research team. The students were able to view the current conditions in Barrow, listen to members of the research team describe what their contributions were to the research, and ask questions about the research and Alaska in general. Collaborations between students and scientist can have long lasting benefits for both educators and students in promoting an understanding of the research process and understanding why our world is changing. By using multimedia venues such as Skype students are able to interact with researchers both visually and verbally, forming the basis for students’ interest in science. A learner’s level of engagement is affected by the use of multimedia, especially the level of cognitive processing. Visual images alone do no promote the development of good problem solving skills. However, the students are able to develop better problem solving skills when both visual images and verbal interactions are used together. As students form higher confidence levels by improving their ability to problem solve, their interest in science also increases. It is possible that this interest could turn into a passion for science, which could result in more students wanting to become scientists or science teachers.

  12. Using Oral Examination as a Technique to Assess Student Understanding and Teaching Effectiveness

    Science.gov (United States)

    Roecker, Lee

    2007-01-01

    This paper discusses the use of oral examinations to assess student understanding in a general chemistry course and in an advanced inorganic chemistry course. Examination design, administration, and grading are explored, as well as the benefits to both instructors and students. Students react positively to the oral examination format and generally…

  13. The Effect of Modeling and Visualization Resources on Student Understanding of Physical Hydrology

    Science.gov (United States)

    Marshall, Jilll A.; Castillo, Adam J.; Cardenas, M. Bayani

    2015-01-01

    We investigated the effect of modeling and visualization resources on upper-division, undergraduate and graduate students' performance on an open-ended assessment of their understanding of physical hydrology. The students were enrolled in one of five sections of a physical hydrology course. In two of the sections, students completed homework…

  14. Student understanding development in chemistry concepts through constructivist-informed laboratory and science camp process in secondary school

    Science.gov (United States)

    Pathommapas, Nookorn

    2018-01-01

    Science Camp for Chemistry Concepts was the project which designed to provide local students with opportunities to apply chemistry concepts and thereby developing their 21st century skills. The three study purposes were 1) to construct and develop chemistry stations for encouraging students' understandings in chemistry concepts based on constructivist-informed laboratory, 2) to compare students' understandings in chemistry concepts before and after using chemistry learning stations, and 3) to study students' satisfactions of using their 21st century skills in science camp activities. The research samples were 67 students who attended the 1-day science camp. They were levels 10 to 11 students in SumsaoPittayakarn School, UdonThani Province, Thailand. Four constructivist-informed laboratory stations of chemistry concepts were designed for each group. Each station consisted of a chemistry scenario, a question, answers in tier 1 and supporting reasons in tier 2, and 4 sets of experimental instruments. Four to five-member subgroups of four student groups parallel participated in laboratory station for an hour in each station. Student activities in each station concluded of individual pretest, group prediction, experimental design, testing out and collection data, interpreting the results, group conclusion, and individual post-test. Data collection was done by station mentors using two-tier multiple choice questions, students' written work and interviews. Data triangulation was used for interpreting and confirming students' understandings of chemistry concepts which divided into five levels, Sound Understanding (SU), Partial Understanding (PU), Specific Misconception (SM), No Understanding (NU) and No Response (NR), before and after collaborating at each station. The study results found the following: 1) four constructivist-laboratory stations were successfully designed and used to investigate student' understandings in chemistry concepts via collaborative workshop of

  15. Can Dynamic Visualizations Improve Middle School Students' Understanding of Energy in Photosynthesis?

    Science.gov (United States)

    Ryoo, Kihyun; Linn, Marcia C.

    2012-01-01

    Dynamic visualizations have the potential to make abstract scientific phenomena more accessible and visible to students, but they can also be confusing and difficult to comprehend. This research investigates how dynamic visualizations, compared to static illustrations, can support middle school students in developing an integrated understanding of…

  16. STUDENT-CENTERED LEARNING AND CROSS CULTURAL UNDERSTANDING IN LEARNING INTODUCTION TO LITERATURE TO IMPROVE THE STUDENTS MORALITY AND MULTICULTURAL VALUES

    Directory of Open Access Journals (Sweden)

    Siminto Siminto

    2017-04-01

    Full Text Available Previously the paradigm change was done from the teacher centered to the student centered in teaching learning process. It was expected to be able to encourage the students to be involved in building their knowledge, attitude, and character. Besides that, English learners did not understand about the native culture and morality values to the language that they are learning. Cross cultural understanding knowledge is very useful to improve the students‘ ability in recognizing the dissimilarity culture and live together in the middle of the dissimilarity culture. This research was based on the qualitative research principle. The research type used was qualitative study by using action research design. Subject of this research was the fourth semester students who have programmed Introduction to Literature in English Study Program at Palangkaraya State Islamic Institute in academic year 2014/2015, consisted of two learning group. Based on the research findings, by implementing of student-centered learning and cross cultural understanding, it showed that they can increase: (1 the students‘ readiness, being active, seriousness in analyzing English literature text; (2 the students‘ performance in doing of tasks given to each students to be able to share their understanding about English literature text to the other students; (3 the students‘ learning quality, academic achievement, interest, response in learning of Introduction to Literature related to literature text analysis concept mastering; (4 the students‘ morality and multicultural values. It could be seen from the students‘ study result, literature text analysis result, and the students‘ character.

  17. Understanding, perceptions and self-use of complementary and alternative medicine (CAM) among Malaysian pharmacy students

    OpenAIRE

    Baig Mirza R; Hameed Abdul; Naing Cho M; Babar Muneer G; Yong Chew S; Hasan Syed S; Iqbal Shahid M; Kairuz Therese

    2011-01-01

    Abstract Background In recent times the basic understanding, perceptions and CAM use among undergraduate health sciences students have become a topic of interest. This study was aimed to investigate the understanding, perceptions and self-use of CAM among pharmacy students in Malaysia. Methods This cross-sectional study was conducted on 500 systematically sampled pharmacy students from two private and one public university. A validated, self-administered questionnaire comprised of seven secti...

  18. Cross-Grade Comparison of Students' Conceptual Understanding with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, G.

    2015-01-01

    Students commonly find the field of physics difficult. Therefore, they generally have learning problems. One of the subjects with which they have difficulties is optics within a physics discipline. This study aims to determine students' conceptual understanding levels at different education levels relating to lenses in geometric optics. A…

  19. Students' Understanding of Conservation of Matter, Stoichiometry and Balancing Equations in Indonesia

    Science.gov (United States)

    Agung, Salamah; Schwartz, Marc S.

    2007-01-01

    This study examines Indonesian students' understanding of conservation of matter, balancing of equations and stoichiometry. Eight hundred and sixty-seven Grade 12 students from 22 schools across four different cities in two developed provinces in Indonesia participated in the study. Nineteen teachers also participated in order to validate the…

  20. Understanding Medical Students' Experience with Stress and Its Related Constructs: A Focus Group Study from Singapore.

    Science.gov (United States)

    Farquhar, Julia; Lie, Desiree; Chan, Angelique; Ow, Mandy; Vidyarthi, Arpana

    2018-02-01

    In order to protect medical students from burnout and its untoward psychiatric effects, it is imperative to understand their stress, burnout, coping, and resilience experiences. This study aimed to derive collective definitions from the medical student perspective, to identify common themes of students' experiences, and to distinguish pre-clinical and clinical year students' experiences relating to these four constructs. The authors conducted focus groups of medical students in Singapore across 4 years using a semi-structured question guide. Participants shared their understanding, experiences, and the relationships between stress, burnout, coping, and resilience. Coders independently evaluated construct definitions and derived common themes through an iterative process, and compared transcripts of pre-clinical and clinical year students to determine differences in experience over time. Nine focus groups (54 students, 28 females, mean age 24.3) were conducted. Students identified common definitions for each construct. Nine themes emerged within three domains: (1) relating constructs to personal experience, (2) interrelating stress, burnout, coping, and resilience, and (3) understanding the necessity of stress. Compared to clinical students, pre-clinical students reported theory-based rather than reality-based experiences and exam-induced stress, defined constructs using present rather than future situations, and described constructs as independent rather than interrelated. This sample of medical students in Singapore shares a common understanding of stress, burnout, coping, and resilience, but experiences these uniquely. They perceive a positive role for stress. These findings build upon prior literature, suggesting an interrelationship between stress and its related constructs and adding the novel perspective of students from an Asian country.

  1. What's in a Domain: Understanding How Students Approach Questioning in History and Science

    Science.gov (United States)

    Portnoy, Lindsay Blau; Rabinowitz, Mitchell

    2014-01-01

    How students ask questions as they learn has implications for understanding, retention, and problem solving. The current research investigates the influence of domain, age, and previous experience with content on the ways students approach questioning across history and science texts. In 3 experiments, 3rd-, 8th-, and 10th-grade students in large…

  2. The First Year of College: Understanding Student Persistence in Engineering

    Science.gov (United States)

    Hayden, Marina Calvet

    This research study aimed to expand our understanding of the factors that influence student persistence in engineering. The unique experiences of engineering students were examined as they transitioned into and navigated their first year of college at a public research university in California. Most students provided similar responses with respect to the way they experienced the transition to college and social life. There was, however, wide student response variation regarding their experience of academic life and academic policies, as well as in their level of pre-college academic preparation and financial circumstances. One key finding was that students' experiences during the first year of college varied widely based on the extent to which they had acquired organizational and learning skills prior to college. The study used a mixed methods approach. Quantitative and qualitative data were collected through an online survey and one-on-one interviews conducted with freshman students near the end of their first year of college. The theoretical foundations of this study included Astin's Theory of Student Involvement and Tinto's Theory of Student Departure. The design of the study was guided by these theories which emphasize the critical importance of student involvement with the academic and social aspects of college during the first year of college.

  3. Understanding the Graphical Challenges Faced by Vision-Impaired Students in Australian Universities

    Science.gov (United States)

    Butler, Matthew; Holloway, Leona; Marriott, Kim; Goncu, Cagatay

    2017-01-01

    Information graphics such as plots, maps, plans, charts, tables and diagrams form an integral part of the student learning experience in many disciplines. However, for a vision impaired student accessing such graphical materials can be problematic. This research seeks to understand the current state of accessible graphics provision in Australian…

  4. A Cross-Age Study of Student Understanding of the Concept of Homeostasis.

    Science.gov (United States)

    Westbrook, Susan L.; Marek, Edmund A.

    1992-01-01

    The conceptual views of homeostasis held by students (n=300) in seventh grade life science, tenth grade biology, and college zoology were examined. A biographical questionnaire, the results from two Piagetian-like developmental tasks, and a concept evaluation statement of homeostasis were collected from each student. Understanding of the concept…

  5. Digital Journeys: A Perspective on Understanding the Digital Experiences of International Students

    Science.gov (United States)

    Chang, Shanton; Gomes, Catherine

    2017-01-01

    The authors in this conceptual paper draw on the literature on information seeking behavior, social media use, and international student experiences to propose Digital Journeys as a framework which helps us understand the online behavior of international students. Here we theorize that the Digital Journey is the transition that individuals make…

  6. Developing Worksheet (LKS) Base on Process Skills in Curriculum 2013 at Elementary School Grade IV,V,VI

    Science.gov (United States)

    Subhan, M.; Oktolita, N.; Kn, M.

    2018-04-01

    The Lacks of students' skills in the learning process is due to lacks of exercises in the form of LKS. In the curriculum of 2013, there is no LKS as a companion to improve the students' skills. In order to solve those problem, it is necessary to develop LKS based on process skills as a teaching material to improve students' process skills. The purpose of this study is to develop LKS Process Skills based elementary school grade IV, V, VI which is integrated by process skill. The development of LKS can be used to develop the thematic process skills of elementary school students grade IV, V, VI based on curriculum 2013. The expected long-term goal is to produce teaching materials LKS Process Skill based of Thematic learning that is able to develop the process skill of elementary school students grade IV, V, VI. This development research refers to the steps developed by Borg & Gall (1983). The development process is carried out through 10 stages: preliminary research and gathering information, planning, draft development, initial test (limited trial), first product revision, final trial (field trial), product operational revision, Desemination and implementation. The limited subject of the this research is the students of SDN in Dharmasraya grade IV, V, VI. The field trial subjects in the experimental class are the students of SDN Dharmasraya grade IV, V, VI who have implemented the curriculum 2013. The data are collected by using LKS validation sheets, process skill observation sheets, and Thematic learning test (pre-test And post-test). The result of LKS development on the validity score is 81.70 (very valid), on practical score is 83.94 (very practical), and on effectiveness score is 86.67 (very effective). In the trial step the use of LKS using One Group Pretest-Posttest Design research design. The purpose of this trial is to know the effectiveness level of LKS result of development for improving the process skill of students in grade IV, V, and VI of elementary

  7. Improving Students' Conceptual Understanding of the Greenhouse Effect Using Theory-Based Learning Materials that Promote Deep Learning

    Science.gov (United States)

    Reinfried, Sibylle; Aeschbacher, Urs; Rottermann, Benno

    2012-01-01

    Students' everyday ideas of the greenhouse effect are difficult to change. Environmental education faces the challenge of developing instructional settings that foster students' conceptual understanding concept of the greenhouse effect in order to understand global warming. To facilitate students' conceptual development with regard to the…

  8. Hepatic imaging in stage IV-S neuroblastoma

    International Nuclear Information System (INIS)

    Franken, E.A. Jr.; Smith, W.L.; Iowa Univ., Iowa City; Cohen, M.D.; Kisker, C.T.; Platz, C.E.

    1986-01-01

    Stage IV-S neuroblastoma describes a group of infants with tumor spread limited to liver, skin, or bone marrow. Such patients, who constitute about 25% of affected infants with neuroblastoma, may expect spontaneous tumor remission. We report 18 infants with Stage IV-S neuroblastoma, 83% of whom had liver involvement. Imaging investigations included Technetium 99m sulfur colloid scan, ultrasound, and CT. Two patterns of liver metastasis were noted: ill-defined nodules or diffuse tumor throughout the liver. Distinction of normal and abnormal liver with diffuse type metastasis could be quite difficult, particularly with liver scans. We conclude that patients with Stage IV-S neuroblastoma have ultrasound or CT examination as an initial workup, with nuclear medicine scans reserved for followup studies. (orig.)

  9. Mathematical Understanding and Proving Abilities: Experiment With Undergraduate Student By Using Modified Moore Learning Approach

    Directory of Open Access Journals (Sweden)

    Rippi Maya

    2011-07-01

    Full Text Available This paper reports findings of  a  post test experimental control group design conducted to investigate the role of modified Moore learning approach  on improving students’ mathematical understanding and proving abilities. Subject of study were 56 undergradute students of one state university in Bandung, who took advanced abstract algebra course. Instrument of study were a set test of mathematical understanding ability, a set test of mathematical proving ability, and a set of students’ opinion scale on modified Moore learning approach. Data were analyzed by using two path ANOVA. The study found that proof construction process was more difficult than mathematical understanding  task  for all students, and students still posed some difficulties on constructing mathematical proof task.  The study also found there were not differences  between students’  abilities on mathematical understanding and on proving abilities of  the both classes, and both abilities were classified as mediocre. However, in modified Moore learning approach class there were more students who got above average grades on mathematical understanding than those of conventional class. Moreover, students performed positive  opinion toward  modified Moore learning approach. They  were  active in questioning and solving problems, and in explaining their works in front of class as well, while students of conventional teaching prefered to listen to lecturer’s explanation. The study also found that there was no interaction between learning approach and students’ prior mathematics ability on mathematical understanding and proving abilities,  but  there were  quite strong  association between students’ mathematical understanding and proving abilities.Keywords:  modified Moore learning approach, mathematical understanding ability, mathematical proving ability. DOI: http://dx.doi.org/10.22342/jme.2.2.751.231-250

  10. The Effects of Case-Based Instruction on Undergraduate Biology Students' Understanding of the Nature of Science

    Science.gov (United States)

    Burniston, Amy Lucinda

    Undergraduate science education is currently seeing a dramatic pedagogical push towards teaching the philosophies underpinning science as well as an increase in strategies that employ active learning. Many active learning strategies stem from constructivist ideals and have been shown to affect a student's understanding of how science operates and its impact on society- commonly referred to as the nature of science (NOS). One particular constructivist teaching strategy, case-based instruction (CBI), has been recommended by researchers and science education reformists as an effective instructional strategy for teaching NOS. Furthermore, when coupled with explicit-reflective instruction, CBI has been found to significantly increasing understanding of NOS in elementary and secondary students. However, few studies aimed their research on CBI and NOS towards higher education. Thus, this study uses a quasi-experimental, nonequivalent group design to study the effects of CBI on undergraduate science students understandings of NOS. Undergraduate biology student's understanding of NOS were assessed using the Views of Science Education (VOSE) instrument pre and post CBI intervention in Cellular and Molecular Biology and Human Anatomy and Physiology II. Data analysis indicated statistically significant differences between students NOS scores in experimental versus control sections for both courses, with experimental groups obtaining higher posttest scores. The results of this study indicate that undergraduate male and female students have similarly poor understandings of NOS and the use of historical case based instruction can be used as a means to increase undergraduate understanding of NOS.

  11. Promoting students' conceptual understanding using STEM-based e-book

    Science.gov (United States)

    Komarudin, U.; Rustaman, N. Y.; Hasanah, L.

    2017-05-01

    This study aims to examine the effect of Science, Technology, Engineering, and Mathematics (STEM) based e-book in promoting students'conceptual understanding on lever system in human body. The E-book used was the e-book published by National Ministry of Science Education. The research was conducted by a quasi experimental with pretest and posttest design. The subjects consist of two classes of 8th grade junior high school in Pangkalpinang, Indonesia, which were devided into experimental group (n=34) and control group (n=32). The students in experimental group was taught by STEM-based e-book, while the control group learned by non STEM-based e-book. The data was collected by an instrument pretest and postest. Pretest and posttest scored, thenanalyzed using descriptive statistics and independent t-test. The result of independent sample t-test shows that no significant differenceson students' pretest score between control and experimental group. However, there were significant differences on students posttest score and N-gain score between control and experimental group with sig = 0.000(pscience.

  12. "Everything Is in Parables": An Exploration of Students' Difficulties in Understanding Christian Beliefs Concerning Jesus

    Science.gov (United States)

    Freathy, Rob; Aylward, Karen

    2010-01-01

    This article reports the findings of interviews conducted with students (aged 11-13) in four English secondary schools, examining reasons why young people find it difficult to understand Christian beliefs regarding Jesus' miracles, resurrection, and status as the Son of God. For the students in this sample, understanding and belief are closely…

  13. The effect of directive tutor guidance on students' conceptual understanding of statistics in problem-based learning.

    Science.gov (United States)

    Budé, Luc; van de Wiel, Margaretha W J; Imbos, Tjaart; Berger, Martijn P F

    2011-06-01

    Education is aimed at students reaching conceptual understanding of the subject matter, because this leads to better performance and application of knowledge. Conceptual understanding depends on coherent and error-free knowledge structures. The construction of such knowledge structures can only be accomplished through active learning and when new knowledge can be integrated into prior knowledge. The intervention in this study was directed at both the activation of students as well as the integration of knowledge. Undergraduate university students from an introductory statistics course, in an authentic problem-based learning (PBL) environment, were randomly assigned to conditions and measurement time points. In the PBL tutorial meetings, half of the tutors guided the discussions of the students in a traditional way. The other half guided the discussions more actively by asking directive and activating questions. To gauge conceptual understanding, the students answered open-ended questions asking them to explain and relate important statistical concepts. Results of the quantitative analysis show that providing directive tutor guidance improved understanding. Qualitative data of students' misconceptions seem to support this finding. Long-term retention of the subject matter seemed to be inadequate. ©2010 The British Psychological Society.

  14. Improving Student Understanding of Magmatic Differentiation Using an M&M Magma Chamber

    Science.gov (United States)

    Wirth, K. R.

    2003-12-01

    Many students, especially those in introductory geology courses, have difficulty developing a deep understanding of the processes of magmatic differentiation. In particular, students often struggle to understand Bowen's reaction series and fractional crystallization. The process of fractional crystallization by gravity settling can be illustrated using a model magma chamber consisting of M&M's. In this model, each major cation (e.g., Si, Ti, Al, Fe, Mg, Ca, Na, K) is represented by a different color M&M; other kinds of differently colored or shaped pieces could also be used. Appropriate numbers of each color M&M are combined to approximate the cation proportions of a basaltic magma. Students then fractionate the magma by moving M&M's to the bottom of the magma chamber forming a series of cumulus layers; the M&M's are removed in the stoichiometric proportions of cations in the crystallizing minerals (e.g., olivine, pyroxene, feldspars, quartz, magnetite, ilmenite). Students observe the changing cation composition (proportions of colors of M&M's) in the cumulus layers and in the magma chamber and graph the results using spreadsheet software. More advanced students (e.g., petrology course) can classify the cumulates and resulting liquid after each crystallization step, and they can compare the model system with natural magmatic systems (e.g., absence of important fractionating phases, volatiles). Students who have completed this exercise generally indicate a positive experience and demonstrate increased understanding of Bowen's reaction series and fractionation processes. They also exhibit greater familiarity with mineral stoichiometry, classification, solid-solution in minerals, element behavior (e.g., incompatibility), and chemical variation diagrams. Other models (e.g., paths of equilibrium and fractional crystallization on phase diagrams) can also be used to illustrate differentiation processes in upper level courses (e.g., mineralogy and petrology).

  15. "I Got Your Back": Friends' Understandings regarding College Student Spring Break Behavior

    Science.gov (United States)

    Patrick, Megan E.; Morgan, Nicole; Maggs, Jennifer L.; Lefkowitz, Eva S.

    2011-01-01

    Behaviors that pose threats to safety and health, including binge drinking and unprotected sex, increase during a week-long break from university. Understandings with peers regarding these behaviors may be important for predicting behavior and related harms. College students (N = 651; 48% men) reported having understandings with their friends…

  16. Effects of student choice on engagement and understanding in a junior high science class

    Science.gov (United States)

    Foreback, Laura Elizabeth

    The purpose of this study was to determine the effects of increasing individual student choice in assignments on student engagement and understanding of content. It was predicted that if students are empowered to choose learning activities based on individual readiness, learning style, and interests, they would be more engaged in the curriculum and consequently would develop deeper understanding of the material. During the 2009--2010 school year, I implemented differentiated instructional strategies that allowed for an increased degree of student choice in five sections of eighth grade science at DeWitt Junior High School. These strategies, including tiered lessons and student-led, project-based learning, were incorporated into the "Earth History and Geologic Time Scale" unit of instruction. The results of this study show that while offering students choices can be used as an effective motivational strategy, their academic performance was not increased compared to their performance during an instructional unit that did not offer choice.

  17. Thermodynamic data for predicting concentrations of Th(IV), U(IV), Np(IV), and Pu(IV) in geologic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat; Roa, Linfeng; Weger, H.T.; Felmy, A.R. [Battelle, Pacific Northwest National Laboratory (PNNL) (United States); Choppin, G.R. [Florida State University (United States); Yui, Mikazu [Waste Isolation Research Division, Tokai Works, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    1999-01-01

    This report provides thermodynamic data for predicting concentrations of Th(IV), U(IV), Np(IV), and Pu(IV) in geologic environments, and contributes to an integration of the JNC chemical thermodynamic database, JNC-TDB (previously PNC-TDB), for the performance analysis of geological isolation system for high-level radioactive wastes. Thermodynamic data for the formation of complexes or compounds with hydroxide, chloride, fluoride, carbonate, nitrate, sulfate and phosphate are discussed in this report. Where data for specific actinide(IV) species was lacking, the data were selected based on chemical analogy to other tetravalent actinides. In this study, the Pitzer ion-interaction model is used to extrapolate thermodynamic constants to zero ionic strength at 25degC. (author)

  18. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    Science.gov (United States)

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  19. Understanding Undergraduate Student Perceptions of Mental Health, Mental Well-Being and Help-Seeking Behaviour

    Science.gov (United States)

    Laidlaw, Anita; McLellan, Julie; Ozakinci, Gozde

    2016-01-01

    Despite relatively high levels of psychological distress, many students in higher education do not seek help for difficulties. This study explored undergraduate student understanding of the concepts of mental health and mental well-being and where undergraduate students would seek help for mental well-being difficulties. Semi-structured interviews…

  20. Effect of 5E Teaching Model on Student Teachers' Understanding of Weightlessness

    Science.gov (United States)

    Tural, Guner; Akdeniz, Ali Riza; Alev, Nedim

    2010-01-01

    Weight is one of the basic concepts of physics. Its gravitational definition accommodates difficulties for students to understand the state of weightlessness. The aim of this study is to investigate the effect of materials based on 5E teaching model and related to weightlessness on science student teachers' learning. The sample of the study was 9…

  1. Conceptualising Plagiarism: Using Lego to Construct Students' Understanding of Authorship and Citation

    Science.gov (United States)

    Buckley, Carina

    2015-01-01

    The transition from further to higher education is marked by a series of challenges for the new student, not least the requirement to learn the discourse of academic practice, and referencing as a part of that. By perceiving what it means to reference, students should also come to understand what it means to write, including the problematic areas…

  2. Building Students' Understanding of Quadratic Equation Concept Using Naïve Geometry

    Science.gov (United States)

    Fachrudin, Achmad Dhany; Putri, Ratu Ilma Indra; Darmawijoyo

    2014-01-01

    The purpose of this research is to know how Naïve Geometry method can support students' understanding about the concept of solving quadratic equations. In this article we will discuss one activities of the four activities we developed. This activity focused on how students linking the Naïve Geometry method with the solving of the quadratic…

  3. About the structure and stability of complex carbonates of thorium (IV), cerium (IV), zirconium (IV), hafnium (IV)

    International Nuclear Information System (INIS)

    Dervin, Jacqueline

    1972-01-01

    This research thesis addressed the study of complex carbonates of cations of metals belonging to the IV A column, i.e. thorium (IV), zirconium (IV), hafnium (IV), and also cerium (IV) and uranium (VI), and more particularly focused on ionic compounds formed in solution, and also on the influence of concentration and nature of cations on stability and nature of the formed solid. The author first presents methods used in this study, discusses their precision and scope of validity. She reports the study of the formation of different complex ions which have been highlighted in solution, and the determination of their formation constants. She reports the preparation and study of the stability domain of solid complexes. The next part reports the use of thermogravimetric analysis, IR spectrometry, and crystallography for the structural study of these compounds

  4. Helping medical students to acquire a deeper understanding of truth-telling.

    Science.gov (United States)

    Hurst, Samia A; Baroffio, Anne; Ummel, Marinette; Burn, Carine Layat

    2015-01-01

    Truth-telling is an important component of respect for patients' self-determination, but in the context of breaking bad news, it is also a distressing and difficult task. We investigated the long-term influence of a simulated patient-based teaching intervention, integrating learning objectives in communication skills and ethics into students' attitudes and concerns regarding truth-telling. We followed two cohorts of medical students from the preclinical third year to their clinical rotations (fifth year). Open-ended responses were analysed to explore medical students' reported difficulties in breaking bad news. This intervention was implemented during the last preclinical year of a problem-based medical curriculum, in collaboration between the doctor-patient communication and ethics programs. Over time, concerns such as empathy and truthfulness shifted from a personal to a relational focus. Whereas 'truthfulness' was a concern for the content of the message, 'truth-telling' included concerns on how information was communicated and how realistically it was received. Truth-telling required empathy, adaptation to the patient, and appropriate management of emotions, both for the patient's welfare and for a realistic understanding of the situation. Our study confirms that an intervention confronting students with a realistic situation succeeds in making them more aware of the real issues of truth-telling. Medical students deepened their reflection over time, acquiring a deeper understanding of the relational dimension of values such as truth-telling, and honing their view of empathy.

  5. Understanding Problem-Solving Errors by Students with Learning Disabilities in Standards-Based and Traditional Curricula

    Science.gov (United States)

    Bouck, Emily C.; Bouck, Mary K.; Joshi, Gauri S.; Johnson, Linley

    2016-01-01

    Students with learning disabilities struggle with word problems in mathematics classes. Understanding the type of errors students make when working through such mathematical problems can further describe student performance and highlight student difficulties. Through the use of error codes, researchers analyzed the type of errors made by 14 sixth…

  6. Enhancing Preservice Teachers' Understanding of Students' Misconceptions in Learning Chemistry

    Science.gov (United States)

    Naah, Basil Mugaga

    2015-01-01

    Preservice teachers enrolled in a modified introductory chemistry course used an instructional rubric to improve and evaluate their understanding of students' misconceptions in learning various chemistry concepts. A sample of 79 preservice teachers first explored the state science standards to identify chemistry misconceptions associated with the…

  7. Radiography – How do students understand the concept of radiography?

    International Nuclear Information System (INIS)

    Lundgren, S.M.; Lundén, M.; Andersson, B.T.

    2015-01-01

    Background: Radiography as a concept has mainly been associated with the functional role of the radiographer. The concept has been studied from a theoretical point of view. However, there is a lack of a theoretical foundation and research on the actual substance of the term radiography used in education. It is therefore important to undertake an investigation in order to determine how students after three years education understand the subject of radiography. Aim: The aim of this study was to analyse how students in the Swedish radiographers' degree program understand the concept of radiography. Method: A concept analysis was made according to the hybrid model, which combines theoretical, fieldwork and analytical phases. A summative content analysis was used to identify the number and content of statements. The empirical data were collected from questionnaires answered by radiography students at four universities in Sweden. Findings: All radiography students' exemplified radiography with statements related to the practical level although some of them also identified radiography at an abstract level, as a subject within a discipline. The attribute ‘An interdisciplinary area of knowledge’ emerged, which is an attribute on the abstract level. The practical level was described by four attributes: Mastering Medical Imaging’, ‘To accomplish images for diagnosis and interventions’, ‘Creating a caring environment’ and ‘Enabling fruitful encounters’. Conclusion: The hybrid model used was a versatile model of concept development. The results of this study have increased the understanding of what characterizes the concept of radiography in a Swedish context. - Highlights: • This concept analysis of radiography was undertaken according to a hybrid model. • In radiography humanistic aspects are emphasized, a shift from the technological perspective. • The attributes demonstrate the essence and interdisciplinary nature of radiography. • This

  8. Assessing student understanding of sound waves and trigonometric reasoning in a technology-rich, project-enhanced environment

    Science.gov (United States)

    Wilhelm, Jennifer Anne

    This case study examined what student content understanding could occur in an inner city Industrial Electronics classroom located at Tree High School where project-based instruction, enhanced with technology, was implemented for the first time. Students participated in a project implementation unit involving sound waves and trigonometric reasoning. The unit was designed to foster common content learning (via benchmark lessons) by all students in the class, and to help students gain a deeper conceptual understanding of a sub-set of the larger content unit (via group project research). The objective goal of the implementation design unit was to have students gain conceptual understanding of sound waves, such as what actually waves in a wave, how waves interfere with one another, and what affects the speed of a wave. This design unit also intended for students to develop trigonometric reasoning associated with sinusoidal curves and superposition of sinusoidal waves. Project criteria within this design included implementation features, such as the need for the student to have a driving research question and focus, the need for benchmark lessons to help foster and scaffold content knowledge and understanding, and the need for project milestones to complete throughout the implementation unit to allow students the time for feedback and revision. The Industrial Electronics class at Tree High School consisted of nine students who met daily during double class periods giving 100 minutes of class time per day. The class teacher had been teaching for 18 years (mathematics, physics, and computer science). He had a background in engineering and experience teaching at the college level. Benchmark activities during implementation were used to scaffold fundamental ideas and terminology needed to investigate characteristics of sound and waves. Students participating in benchmark activities analyzed motion and musical waveforms using probeware, and explored wave phenomena using waves

  9. UNDERSTANDING UNDERGRADUATE STUDENTS PRACTICUM ...

    African Journals Online (AJOL)

    User

    student misbehavior as the most stressful experience of student teacher practicum experience. ... adequate support, rethinking assessment mechanism, provision of adequate fund, strengthening ..... provide regular formative feedback, have.

  10. Electrochemistry and Spectroelectrochemistry of the Pu (III/IV) and (IV/VI) Couples in Nitric Acid Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lines, Amanda M. [Nuclear Chemistry and Engineering, Pacific Northwest National Laboratory, Richland WA 99352; Adami, Susan R. [Nuclear Chemistry and Engineering, Pacific Northwest National Laboratory, Richland WA 99352; Casella, Amanda J. [Nuclear Chemistry and Engineering, Pacific Northwest National Laboratory, Richland WA 99352; Sinkov, Sergey I. [Nuclear Chemistry and Engineering, Pacific Northwest National Laboratory, Richland WA 99352; Lumetta, Gregg J. [Nuclear Chemistry and Engineering, Pacific Northwest National Laboratory, Richland WA 99352; Bryan, Samuel A. [Nuclear Chemistry and Engineering, Pacific Northwest National Laboratory, Richland WA 99352

    2017-09-20

    The solution chemistry of Pu in nitric acid is explored via electrochemistry and spectroelectrochemistry. By utilizing and comparing these techniques, an improved understanding of Pu behavior and its dependence on nitric acid concentration can be achieved. Here the Pu (III/IV) couple is characterized using cyclic voltammetry, square wave voltammetry, and a spectroelectrochemical Nernst step. Results indicate the formal reduction potential of the couple shifts negative with increasing acid concentration and reversible electrochemistry is no longer attainable above 6 M HNO3. Spectroelectrochemistry is also used to explore the irreversible oxidation of Pu(IV) to Pu(VI) and shine light on the mechanism and acid dependence of the redox reaction.

  11. BAHAN AJAR BERBASIS PENDIDIKAN KARAKTER UNTUK SISWA KELAS IV SEKOLAH DASAR

    Directory of Open Access Journals (Sweden)

    Pity Asriani

    2017-11-01

    Full Text Available This study aims to produce character education based teaching materials for grade IV elementary school. The writer used the 4D model (Thiagarajan, et al., 1974 for his research and development. The 4D model consists of four stages. They are defining, designing, developing, and disseminating. Types of data used are qualitative. Data were collected by validity testing, questionnaire, observation, and character assessment. This study produced a character education based teaching materials for grade IV elementary school. That is the student book and the teacher book. The results showed that character education based teaching materials for grade IV elementary school is compliant to use in learning since it has met the expected criteria according to the assessment of the material experts, linguists, media experts, teachers, and students. Penelitian ini bertujuan menghasilkan bahan ajar berbasis pendidikan karakter untuk kelas IV Sekolah Dasar. Model penelitian dan pengembangan yang digunakan adalah model pengembangan 4D (Thiagarajan, dkk., 1974. Model 4-D ini terdiri atas tahap pendefinisian (define, perancangan (design, pengembangan (develop, dan penyebaran (disseminate. Jenis data yang digunakan yaitu data kualitatif. Data dikumpulkan melalui uji validasi, angket, observasi, dan penilaian karakter. Penelitian ini menghasilkan bahan ajar berbasis pendidikan karakter untuk kelas IV Sekolah Dasar yang terdiri atas Buku Siswa dan Buku Guru. Hasil penelitian menunjukkan bahwa bahan ajar berbasis pendidikan karakter untuk kelas IV Sekolah Dasar ini telah memenuhi persyaratan untuk digunakan dalam pembelajaran karena telah memenuhi kriteria menurut penilaian ahli materi, ahli bahasa, ahli desain, guru, dan siswa.

  12. A Novel Technology to Investigate Students' Understandings of Enzyme Representations

    Science.gov (United States)

    Linenberger, Kimberly J.; Bretz, Stacey Lowery

    2012-01-01

    Digital pen-and-paper technology, although marketed commercially as a bridge between old and new note-taking capabilities, synchronizes the collection of both written and audio data. This manuscript describes how this technology was used to improve data collection in research regarding students' learning, specifically their understanding of…

  13. Evaluation of Students' Understanding of Thermal Concepts in Everyday Contexts

    Science.gov (United States)

    Chu, Hye-Eun; Treagust, David F.; Yeo, Shelley; Zadnik, Marjan

    2012-01-01

    The aims of this study were to determine the underlying conceptual structure of the thermal concept evaluation (TCE) questionnaire, a pencil-and-paper instrument about everyday contexts of heat, temperature, and heat transfer, to investigate students' conceptual understanding of thermal concepts in everyday contexts across several school years and…

  14. Learning about a Level Physics Students' Understandings of Particle Physics Using Concept Mapping

    Science.gov (United States)

    Gourlay, H.

    2017-01-01

    This paper describes a small-scale piece of research using concept mapping to elicit A level students' understandings of particle physics. Fifty-nine year 12 (16- and 17 year-old) students from two London schools participated. The exercise took place during school physics lessons. Students were instructed how to make a concept map and were…

  15. Students' Understanding of Genetics Concepts: The Effect of Reasoning Ability and Learning Approaches

    Science.gov (United States)

    Kiliç, Didem; Saglam, Necdet

    2014-01-01

    Students tend to learn genetics by rote and may not realise the interrelationships in daily life. Because reasoning abilities are necessary to construct relationships between concepts and rote learning impedes the students' sound understanding, it was predicted that having high level of formal reasoning and adopting meaningful learning orientation…

  16. Using Open Educational Resources to Help Students Understand the Sub-Prime Lending Crisis

    Science.gov (United States)

    McDowell, Evelyn A.

    2010-01-01

    In this paper, I describe an assignment designed to give students an intermediate level of understanding of the causes of the crisis using online educational resources widely available on the internet. I implemented the assignment in an undergraduate intermediate accounting course. Feedback from students indicate the assignment enhanced their…

  17. An Exponential Growth Learning Trajectory: Students' Emerging Understanding of Exponential Growth through Covariation

    Science.gov (United States)

    Ellis, Amy B.; Ozgur, Zekiye; Kulow, Torrey; Dogan, Muhammed F.; Amidon, Joel

    2016-01-01

    This article presents an Exponential Growth Learning Trajectory (EGLT), a trajectory identifying and characterizing middle grade students' initial and developing understanding of exponential growth as a result of an instructional emphasis on covariation. The EGLT explicates students' thinking and learning over time in relation to a set of tasks…

  18. Understanding and Predicting Student Self-Regulated Learning Strategies in Game-Based Learning Environments

    Science.gov (United States)

    Sabourin, Jennifer L.; Shores, Lucy R.; Mott, Bradford W.; Lester, James C.

    2013-01-01

    Self-regulated learning behaviors such as goal setting and monitoring have been found to be crucial to students' success in computer-based learning environments. Consequently, understanding students' self-regulated learning behavior has been the subject of increasing attention. Unfortunately, monitoring these behaviors in real-time has…

  19. Understanding undergraduate student perceptions of mental health, mental well-being and help-seeking behaviour

    OpenAIRE

    Laidlaw, Anita Helen; McLellan, Julie; Ozakinci, Gozde

    2016-01-01

    Funding: Medical School, University of St Andrews Despite relatively high levels of psychological distress, many students in higher education do not seek help for difficulties. This study explored undergraduate student understanding of the concepts of mental health and mental well-being and where undergraduate students would seek help for mental well-being difficulties. Semi-structured interviews were carried out with 20 undergraduate students from 5 different subject areas. Interviews wer...

  20. Students' Perceived Understanding Mediates the Effects of Teacher Clarity and Nonverbal Immediacy on Learner Empowerment

    Science.gov (United States)

    Finn, Amber N.; Schrodt, Paul

    2012-01-01

    This study examined students' perceived understanding as a mediator of the relationship between student perceptions of teacher clarity, nonverbal immediacy cues, and learner empowerment (i.e., meaningfulness, competence, and impact). Participants included 261 undergraduate students who completed survey instruments. Results of structural equation…

  1. I-V Curves from Photovoltaic Modules Deployed in Tucson

    Science.gov (United States)

    Kopp, Emily; Brooks, Adria; Lonij, Vincent; Cronin, Alex

    2011-10-01

    More than 30 Mega Watts of photo-voltaic (PV) modules are connected to the electric power grid in Tucson, AZ. However, predictions of PV system electrical yields are uncertain, in part because PV modules degrade at various rates (observed typically in the range 0% to 3 %/yr). We present I-V curves (PV output current as a function of PV output voltage) as a means to study PV module efficiency, de-ratings, and degradation. A student-made I-V curve tracer for 100-Watt modules will be described. We present I-V curves for several different PV technologies operated at an outdoor test yard, and we compare new modules to modules that have been operated in the field for 10 years.

  2. Method matters: Understanding diagnostic reliability in DSM-IV and DSM-5.

    Science.gov (United States)

    Chmielewski, Michael; Clark, Lee Anna; Bagby, R Michael; Watson, David

    2015-08-01

    Diagnostic reliability is essential for the science and practice of psychology, in part because reliability is necessary for validity. Recently, the DSM-5 field trials documented lower diagnostic reliability than past field trials and the general research literature, resulting in substantial criticism of the DSM-5 diagnostic criteria. Rather than indicating specific problems with DSM-5, however, the field trials may have revealed long-standing diagnostic issues that have been hidden due to a reliance on audio/video recordings for estimating reliability. We estimated the reliability of DSM-IV diagnoses using both the standard audio-recording method and the test-retest method used in the DSM-5 field trials, in which different clinicians conduct separate interviews. Psychiatric patients (N = 339) were diagnosed using the SCID-I/P; 218 were diagnosed a second time by an independent interviewer. Diagnostic reliability using the audio-recording method (N = 49) was "good" to "excellent" (M κ = .80) and comparable to the DSM-IV field trials estimates. Reliability using the test-retest method (N = 218) was "poor" to "fair" (M κ = .47) and similar to DSM-5 field-trials' estimates. Despite low test-retest diagnostic reliability, self-reported symptoms were highly stable. Moreover, there was no association between change in self-report and change in diagnostic status. These results demonstrate the influence of method on estimates of diagnostic reliability. (c) 2015 APA, all rights reserved).

  3. Understanding Student Cognition about Complex Earth System Processes Related to Climate Change

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.

    2011-12-01

    The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.

  4. E-learning support for student's understanding of electronics

    DEFF Research Database (Denmark)

    May, Michael; Sendrup, Linda; Sparsø, Jens

    2008-01-01

    To enhance active learning and understanding of analogue and digital electronics the use of e-learning techniques will be investigated. In a redesigned course combining introductory analogue and digital electronics, students will be motivated to prepare for lectures and exercises by providing...... access to interactive simulations. Some exercises will furthermore be carried out first as simulations of electrical circuits and then with physical components, i.e. as design-build exercises. A number of didactic problems in learning electricity and electronics are discussed....

  5. Using digital technologies to enhance chemistry students' understanding and representational skills

    DEFF Research Database (Denmark)

    Hilton, Annette

    Abstract Chemistry students need to understand chemistry on molecular, symbolic and macroscopic levels. Students find it difficult to use representations on these three levels to interpret and explain data. One approach is to encourage students to use writing-to-learn strategies in inquiry settings...... to present and interpret their laboratory results. This paper describes findings from a study on the effects on students’ learning outcomes of creating multimodal texts to report on laboratory inquiries. The study involved two senior secondary school chemistry classes (n = 22, n = 27). Both classes completed...... representations to make explanations on the molecular level. Student interviews and classroom video-recordings suggested that using digital resources to create multimodal texts promoted knowledge transformation and hence deeper reflection on the meaning of data and representations. The study has implications...

  6. ACTIVE LEARNING STRATEGIES IN TEACHING CROSS CULTURAL UNDERSTANDING FOR ENGLISH EDUCATION STUDENTS

    Directory of Open Access Journals (Sweden)

    Ikke Dewi Pratama

    2017-02-01

    Full Text Available Cross Cultural Understanding (CCU is one of required courses in English Language Teaching which aims at connecting language and culture so that language learners can use foreign language appropriately, i.e. appropriate forms of language for appropriate context of situation. However, some obstacles usually occur during the course, for examples: students’ lack of understanding that lead to opinions stating that this is a boring and useless course, and large number of students within a class where lecturer must teach more than 40 students in one class. Considering the importance of CCU course as well as the needs to overcome the problems during this course, this paper proposes some particular teaching strategies to help students in apprehending CCU materials through students’ active participations. Active learning strategies are preferred by means of raising students’ participation and critical thinking so that the class would run more effectively. Other consideration in composing the strategies is to prepare English Education students to be future English language teachers by training their ability in teaching performance as well as connecting language and culture in English Language Teaching (ELT.   Keywords: language, culture, strategies, media, ELT

  7. Context dependence of students' views about the role of equations in understanding biology.

    Science.gov (United States)

    Watkins, Jessica; Elby, Andrew

    2013-06-01

    Students' epistemological views about biology--their ideas about what "counts" as learning and understanding biology--play a role in how they approach their courses and respond to reforms. As introductory biology courses incorporate more physics and quantitative reasoning, student attitudes about the role of equations in biology become especially relevant. However, as documented in research in physics education, students' epistemologies are not always stable and fixed entities; they can be dynamic and context-dependent. In this paper, we examine an interview with an introductory student in which she discusses the use of equations in her reformed biology course. In one part of the interview, she expresses what sounds like an entrenched negative stance toward the role equations can play in understanding biology. However, later in the interview, when discussing a different biology topic, she takes a more positive stance toward the value of equations. These results highlight how a given student can have diverse ways of thinking about the value of bringing physics and math into biology. By highlighting how attitudes can shift in response to different tasks, instructional environments, and contextual cues, we emphasize the need to attend to these factors, rather than treating students' beliefs as fixed and stable.

  8. Rowing Sport in Learning Fractions of the Fourth Grade Students

    Directory of Open Access Journals (Sweden)

    Marhamah Fajriyah Nasution

    2017-06-01

    Full Text Available This study aimed to produce learning trajectory with rowing context that can help students understand addition and subtraction of fractions. Subject of the research were students IV MIN 2 Palembang. The method used was research design with three stages, those are preparing for the experiment, the design experiments, and the retrospective analysis. Learning trajectory was designed from in-formal stage to the formal stage. At the informal stage, Rowing was used as a starting point to explore the students’ knowledge of fractions. Data collection conducted through video recordings and photos to see the learning process in the classroom, written tests, observation and interviews during the learning process with the students which is the subject of research. Research produced learning trajectory consisting of a series of learning addition and subtraction of fractions dealing with the rowing. The results showed that the use of the rowing can be a bridge of students' thinking and help students in understanding the operation of addition and subtraction of fractions.

  9. A New Conceptual Model for Understanding International Students' College Needs

    Science.gov (United States)

    Alfattal, Eyad

    2016-01-01

    This study concerns the theory and practice of international marketing in higher education with the purpose of exploring a conceptual model for understanding international students' needs in the context of a four-year college in the United States. A transcendental phenomenological design was employed to investigate the essence of international…

  10. Understanding College Students' Civic Identity Development: A Grounded Theory

    Science.gov (United States)

    Johnson, Matthew R.

    2017-01-01

    This article presents the results of a study designed to understand the development of college students' civic identity--that is, an identity encompassing their knowledge, attitudes, values, and actions regarding civic engagement. Grounded theory was used to examine the experiences and attitudes of 19 college seniors who manifested strong civic…

  11. Characterising the development of the understanding of human body systems in high-school biology students - a longitudinal study

    Science.gov (United States)

    Snapir, Zohar; Eberbach, Catherine; Ben-Zvi-Assaraf, Orit; Hmelo-Silver, Cindy; Tripto, Jaklin

    2017-10-01

    Science education today has become increasingly focused on research into complex natural, social and technological systems. In this study, we examined the development of high-school biology students' systems understanding of the human body, in a three-year longitudinal study. The development of the students' system understanding was evaluated using the Components Mechanisms Phenomena (CMP) framework for conceptual representation. We coded and analysed the repertory grid personal constructs of 67 high-school biology students at 4 points throughout the study. Our data analysis builds on the assumption that systems understanding entails a perception of all the system categories, including structures within the system (its Components), specific processes and interactions at the macro and micro levels (Mechanisms), and the Phenomena that present the macro scale of processes and patterns within a system. Our findings suggest that as the learning process progressed, the systems understanding of our students became more advanced, moving forward within each of the major CMP categories. Moreover, there was an increase in the mechanism complexity presented by the students, manifested by more students describing mechanisms at the molecular level. Thus, the 'mechanism' category and the micro level are critical components that enable students to understand system-level phenomena such as homeostasis.

  12. How does undergraduate college biology students' level of understanding, in regard to the role of the seed plant root system, relate to their level of understanding of photosynthesis?

    Science.gov (United States)

    Njeng'ere, James Gicheha

    This research study investigated how undergraduate college biology students' level of understanding of the role of the seed plant root system relates to their level of understanding of photosynthesis. This research was conducted with 65 undergraduate non-majors biology who had completed 1 year of biology at Louisiana State University in Baton Rouge and Southeastern Louisiana University in Hammond. A root probe instrument was developed from some scientifically acceptable propositional statements about the root system, the process of photosynthesis, as well as the holistic nature of the tree. These were derived from research reviews of the science education and the arboriculture literature. This was administered to 65 students selected randomly from class lists of the two institutions. Most of the root probe's items were based on the Live Oak tree. An in-depth, clinical interview-based analysis was conducted with 12 of those tested students. A team of root experts participated by designing, validating and answering the same questions that the students were asked. A "systems" lens as defined by a team of college instructors, root experts (Shigo, 1991), and this researcher was used to interpret the results. A correlational coefficient determining students' level of understanding of the root system and their level of understanding of the process of photosynthesis was established by means of Pearson's r correlation (r = 0.328) using the SAS statistical analysis (SAS, 1987). From this a coefficient of determination (r2 = 0.104) was determined. Students' level of understanding of the Live Oak root system (mean score 5.94) was not statistically different from their level of understanding of the process of photosynthesis (mean score 5.54) as assessed by the root probe, t (129) = 0.137, p > 0.05 one tailed-test. This suggests that, to some degree, level of the root system limits level of understanding of photosynthesis and vice versa. Analysis of quantitative and qualitative

  13. The effect of technology-enabled active learning on undergraduate students understanding of electromagnetism

    International Nuclear Information System (INIS)

    Dori, Y.J.

    2005-01-01

    Full Text:The Technology-Enabled Active Learning Project at the Massachusetts Institute of Technology (MIT) involves media-rich software for simulation and visualization in freshman physics carried out in a specially redesigned classroom to facilitate group interaction. These technology-based learning materials are especially useful in electromagnetism to help students conceptualize phenomena and processes. This study analyzes the effects of the unique learning environment of the Technology-Enabled Active Learning Project project on students cognitive and affective outcomes. The assessment of the project included examining students conceptual understanding before and after studying electromagnetism in a media-rich environment. We also investigated the effect of this environment on students preferences regarding the various teaching methods. As part of the project, we developed pre- and post-tests consisting of conceptual questions from standardized tests, as well as questions designed to assess the effect of visualizations and experiments. The research population consisted of 811 undergraduate students. It consisted of a small- and a large-scale experimental groups and a control group. Technology-Enabled Active Learning Project students improved their conceptual understanding concepts of the subject matter to a significantly higher extent than their control group peers. A majority of the students in the small-scale experiment noted that they would recommend the Technology-Enabled Active Learning Project course to fellow students, indicating the benefits of inter activity, visualization, and hands-on experiments, which the technology helped enable. In the large-scale implementation students expressed both positive and negative attitudes in the course survey

  14. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    Science.gov (United States)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  15. Evaluation of the understanding of antibiotic resistance among Malaysian pharmacy students at public universities: An exploratory study

    Directory of Open Access Journals (Sweden)

    Kingston Rajiah

    2015-05-01

    Full Text Available Summary: Background: Infectious diseases are a great threat to humankind, and antibiotics are a viable proposition to numerous pathologies. However, antibiotic resistance is a global concern. Therefore, the aims of this survey were to explore the understanding and attitudes of pharmacy students regarding antibiotic use and resistance. Methods: This is a cross-sectional study conducted on final-year undergraduate pharmacy students from 5 public universities. A validated, self-administered questionnaire written in English was used to collect data. It was made up of six domains and forty-five questions. Raosoft software was used to determine the minimum required sample size. Descriptive and inferential data analyses were carried out using SPSS version 20 software. Results: Out of 346 students, only 59.5% showed a strong understanding of antibiotic usage, while 84.4% of students demonstrated a good level of understanding regarding the issue of antibiotic resistance. However, only 34.1% of students demonstrated a positive attitude toward this issue. Conclusion: This survey reveals that final-year pharmacy students at Malaysian public universities have a relatively good understanding of antibiotic resistance. However, their attitudes did not strongly correlate to their knowledge. Keywords: Antibiotic resistance, Pharmacy students, Malaysian public universities

  16. Learning algebra on screen and on paper: The effect of using a digital tool on students' understanding

    Science.gov (United States)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2016-02-01

    The use of digital tools in algebra education is expected to not only contribute to master skill, but also to acquire conceptual understanding. The question is how digital tools affect students" thinking and understanding. This paper presents an analysis of data of one group of three grade seventh students (12-13 year-old) on the use of a digital tool for algebra, the Cover-up applet for solving equations in particular. This case study was part of a larger teaching experiment on initial algebra enriched with digital technology which aimed to improve students" conceptual understanding and skills in solving equations in one variable. The qualitative analysis of a video observation, digital and written work showed that the use of the applet affects student thinking in terms of strategies used by students while dealing with the equations. We conclude that the effects of the use of the digital tool can be traced from student problem solving strategies on paper-and-pencil environment which are similar to strategies while working with the digital tool. In future research, we recommend to use specific theoretical lenses, such as the theory of instrumental genesis and the onto-semiotic approach, to reveal more explicit relationships between students" conceptual understanding and the use of a digital tool.

  17. Improving students' understanding by using on-going education research to refine active learning activities in a first-year electronics course

    Science.gov (United States)

    Peter Mazzolini, Alexander; Arthur Daniel, Scott

    2016-05-01

    Interactive Lecture Demonstrations (ILDs) have been used across introductory university physics as a successful active learning (AL) strategy to improve students' conceptual understanding. We have developed ILDs for more complex topics in our first-year electronics course. In 2006 we began developing ILDs to improve students' conceptual understanding of Operational Amplifiers (OAs) and negative feedback in amplification circuits. The ILDs were used after traditional lecture instruction to help students consolidate their understanding. We developed a diagnostic test, to be administered to students both before and after the ILDs, as a measure of how effective the ILDs were in improving students' understanding.

  18. A "Hybrid" Bacteriology Course: The Professor's Design and Expectations; The Students' Performance and Assessment

    Directory of Open Access Journals (Sweden)

    Steven Krawiec

    2009-12-01

    Full Text Available A basic bacteriology course was offered in two successive academic years, first in a conventional format and subsequently as a "hybrid" course. The latter combined (i online presentation of content, (ii an emphasis on online resources, (iii thrice-weekly, face-to-face conversations to advance understanding, and (iv frequent student postings on an electronic discussion board. We compared the two courses through statistical analysis of student performances on the final examinations and the course overall and student assessment of teaching. The data indicated that there was no statistical difference in performance on the final examinations or the course overall. Responses on an instrument of evaluation revealed that students less strongly affirmed the following measures in the hybrid course: (i The amount of work was appropriate for the credit received, (ii Interactions between students and instructor were positive, (iii I learned a great deal in this course, and (iv I would recommend this course to other students. We recommend clear direction about active learning tasks and relevant feedback to enhance learning in a hybrid course.

  19. Helping Students Understand Intersectionality: Reflections from a Dialogue Project in Residential Life

    Science.gov (United States)

    Claros, Sharon Chia; Garcia, Gina A.; Johnston-Guerrero, Marc P.; Mata, Christine

    2017-01-01

    In this chapter, the authors share insights from a dialogue project focused on intersectionality within a residential life setting and discuss additional strategies for helping students understand intersectionality.

  20. High School 9th Grade Students' Understanding Level and Misconceptions about Temperature and Factors Affecting It

    Science.gov (United States)

    Akbas, Yavuz

    2012-01-01

    The purpose of this study is to explore students' understanding levels and misconceptions about temperature and factors affecting it. The concept of the study was chosen from Geography National Curriculum. In this study, a questionnaire was developed after a pilot study with an aim to ascertain the students' understanding levels of temperature and…

  1. The Effect of Computer Models as Formative Assessment on Student Understanding of the Nature of Models

    Science.gov (United States)

    Park, Mihwa; Liu, Xiufeng; Smith, Erica; Waight, Noemi

    2017-01-01

    This study reports the effect of computer models as formative assessment on high school students' understanding of the nature of models. Nine high school teachers integrated computer models and associated formative assessments into their yearlong high school chemistry course. A pre-test and post-test of students' understanding of the nature of…

  2. Using Two-Tier Test to Identify Primary Students' Conceptual Understanding and Alternative Conceptions in Acid Base

    Science.gov (United States)

    Bayrak, Beyza Karadeniz

    2013-01-01

    The purpose of this study was to identify primary students' conceptual understanding and alternative conceptions in acid-base. For this reason, a 15 items two-tier multiple choice test administered 56 eighth grade students in spring semester 2009-2010. Data for this study were collected using a conceptual understanding scale prepared to include…

  3. A Mixed Methods Analysis of Students' Understanding of Slope and Derivative Concepts and Students' Mathematical Dispositions

    Science.gov (United States)

    Patel, Rita Manubhai

    2013-01-01

    This dissertation examined understanding of slope and derivative concepts and mathematical dispositions of first-semester college calculus students, who are recent high school graduates, transitioning to university mathematics. The present investigation extends existing research in the following ways. First, based on this investigation, the…

  4. Multiple intelligences and alternative teaching strategies: The effects on student academic achievement, conceptual understanding, and attitude

    Science.gov (United States)

    Baragona, Michelle

    The purpose of this study was to investigate the interactions between multiple intelligence strengths and alternative teaching methods on student academic achievement, conceptual understanding and attitudes. The design was a quasi-experimental study, in which students enrolled in Principles of Anatomy and Physiology, a developmental biology course, received lecture only, problem-based learning with lecture, or peer teaching with lecture. These students completed the Multiple Intelligence Inventory to determine their intelligence strengths, the Students' Motivation Toward Science Learning questionnaire to determine student attitudes towards learning in science, multiple choice tests to determine academic achievement, and open-ended questions to determine conceptual understanding. Effects of intelligence types and teaching methods on academic achievement and conceptual understanding were determined statistically by repeated measures ANOVAs. No significance occurred in academic achievement scores due to lab group or due to teaching method used; however, significant interactions between group and teaching method did occur in students with strengths in logical-mathematical, interpersonal, kinesthetic, and intrapersonal intelligences. Post-hoc analysis using Tukey HSD tests revealed students with strengths in logical-mathematical intelligence and enrolled in Group Three scored significantly higher when taught by problem-based learning (PBL) as compared to peer teaching (PT). No significance occurred in conceptual understanding scores due to lab group or due to teaching method used; however, significant interactions between group and teaching method did occur in students with strengths in musical, kinesthetic, intrapersonal, and spatial intelligences. Post-hoc analysis using Tukey HSD tests revealed students with strengths in logical-mathematical intelligence and enrolled in Group Three scored significantly higher when taught by lecture as compared to PBL. Students with

  5. Modification of a School Programme in the Deutsches Museum to Enhance Students' Attitudes and Understanding

    Science.gov (United States)

    Stavrova, Olga; Urhahne, Detlef

    2010-11-01

    The study examines the nature, conditions, and outcomes of student learning from an organised guided tour in the Deutsches Museum in Munich. The instructional methods that best support students' cognitive and affective learning as well as how students' motivational and emotional states influence their achievement were investigated. A sample of 96 secondary school students took part in two different versions of a guided tour on an energy topic. The tours varied in the degree of support of students' active involvement, group work, and the variety of general activities offered during the tour. The data collected indicate that both tour versions led to an increase in student understanding of the visit topic to nearly the same extent. However, the version stimulating students' active participation, group work, and including a larger variety of activities aroused more positive attitudes. Students of the modified school programme showed higher interest and intrinsic motivation, felt more competent, and were less bored after the guided tour. In addition, the results suggest that students' visit-related emotional states predict the degree of their post-visit topic understanding, even when demographics and prior knowledge are taken into consideration.

  6. An Exploration of High School (12 17 Year Old) Students' Understandings of, and Attitudes Towards Biotechnology Processes

    Science.gov (United States)

    Dawson, Vaille

    2007-03-01

    The products of modern biotechnology processes such as genetic engineering, DNA testing and cloning will increasingly impact on society. It is essential that young people have a well-developed scientific understanding of biotechnology and associated processes so that they are able to contribute to public debate and make informed personal decisions. The aim of this study was to examine the development of understandings and attitudes about biotechnology processes as students progress through high school. In a cross-sectional case study, data was obtained from student interviews and written surveys of students aged 12 to 17 years. The results indicate that students' ability to provide a generally accepted definition and examples of biotechnology, cloning and genetically modified foods was relatively poor amongst 12 13 year old students but improved in older students. Most students approved of the use of biotechnology processes involving micro-organisms, plants and humans and disapproved of the use of animals. Overall, 12 13 year old students' attitudes were less favourable than older students regardless of the context. An awareness of the development and range of students' understandings and attitudes may lead to a more appropriate use of biotechnology curriculum materials and thus improved biotechnology education in schools.

  7. Characteristics of reading and understanding of hearing impaired students in classes VI-VIII

    Directory of Open Access Journals (Sweden)

    Mustaf Morina

    2015-03-01

    Full Text Available Good reading has a very important role in the development of children with hearing impaired; also reading in explicit way is one of the crucial factors which affect the oral language development of children with hearing impaired. The best form and possibility of improvement, development of oral language, development of communicating, receipt of information, knowledge, and ideas over the world, is reading. When the auditory perception is damaged reading is poor. Hearing impairment causes a lot of problems in the development of personality of children with hearing impairment in these fields: poor development of vocabulary, poor quality of lexica, poor quality of sentences, and disorder in articulation. The purpose of this research is to verify the following: 1-Speed of reading of hearing impaired children, 2-The number of errors, 3-The kind of errors, 4-To understand the text in the context of the degree of hearing impairment, age (class, success in school and gender. This theoretical-experimental study was made with students from two schools; special school “Mother Teresa” in Prizren and Primary School “Elena Gjika” in Prishtina (class attached. The research included a total of 32 students (respondent 27 students (respondent from special schools “Mother Teresa” in Prizren and 5 elementary school students “Elena Gjika” Prishtina, all these students are with hearing impairment. From 32 students involved in the research, 23 were male and 9 female. The research was done by applying a text fables “The fox and the raven” watched and analyzed in terms of three dimensions. The research results have shown that students with hearing impairments have considerable problems in many aspects; in terms of speed of reading, students with hearing impairment have stagnated compared with their peers in the ratio 8/1. In terms of reading errors have stagnated considered being incomparable. In terms of understanding the text students with hearing

  8. Understanding Why Students Participate in Multiple Surveys: Who are the Hard-Core Responders?

    Science.gov (United States)

    Porter, Stephen R.; Whitcomb, Michael E.

    2004-01-01

    What causes a student to participate in a survey? This paper looks at survey response across multiple surveys to understand who the hard-core survey responders and non-responders are. Students at a selective liberal arts college were administered four different surveys throughout the 2002-2003 academic year, and we use the number of surveys…

  9. Western Australian High School Students' Understandings about the Socioscientific Issue of Climate Change

    Science.gov (United States)

    Dawson, Vaille

    2015-01-01

    Climate change is one of the most significant science issues facing humanity; yet, teaching students about climate change is challenging: not only is it multidisciplinary, but also it is contentious and debated in political, social and media forums. Students need to be equipped with an understanding of climate change science to be able to…

  10. What's in a Domain: Understanding How Students Approach Questioning in History and Science

    Science.gov (United States)

    Portnoy, Lindsay Blau

    2013-01-01

    During their education, students are presented with information across a variety of academic domains. How students ask questions as they learn has implications for understanding, retention, and problem solving. The current research investigates the influence of age and prior knowledge on the ways students approach questioning across history and…

  11. The relationship between nature of science understandings and science self-efficacy beliefs of sixth grade students

    Science.gov (United States)

    Parker, Elisabeth Allyn

    Bandura (1986) posited that self-efficacy beliefs help determine what individuals do with the knowledge and skills they have and are critical determinants of how well skill and knowledge are acquired. Research has correlated self-efficacy beliefs with academic success and subject interest (Pajares, Britner, & Valiante, 2000). Similar studies report a decreasing interest by students in school science beginning in middle school claiming that they don't enjoy science because the classes are boring and irrelevant to their lives (Basu & Barton, 2007). The hypothesis put forth by researchers is that students need to observe models of how science is done, the nature of science (NOS), so that they connect with the human enterprise of science and thereby raise their self-efficacy (Britner, 2008). This study examined NOS understandings and science self-efficacy of students enrolled in a sixth grade earth science class taught with explicit NOS instruction. The research questions that guided this study were (a) how do students' self-efficacy beliefs change as compared with changes in their nature of science understandings?; and (b) how do changes in students' science self-efficacy beliefs vary with gender and ethnicity segregation? A mixed method design was employed following an embedded experimental model (Creswell & Plano Clark, 2007). As the treatment, five NOS aspects were first taught by the teachers using nonintegrated activities followed by integrated instructional approach (Khishfe, 2008). Students' views of NOS using the Views on Nature of Science (VNOS) (Lederman, Abd-El-Khalick, & Schwartz, 2002) along with their self-efficacy beliefs using three Likert-type science self-efficacy scales (Britner, 2002) were gathered. Changes in NOS understandings were determined by categorizing student responses and then comparing pre- and post-instructional understandings. To determine changes in participants' self-efficacy beliefs as measured by the three subscales, a multivariate

  12. An Experiment of Student Understanding of Accruals versus Cash Flows

    Science.gov (United States)

    Miranda-Lopez, Jose Eduardo; Nichols, Linda M.

    2007-01-01

    The concepts of both accrual accounting and cash basis accounting need to be thoroughly understood by accounting graduates as they enter the workplace. In making decisions, both managers and investors often may need to make adjustments from one basis to the other. But do students really understand these concepts? This study uses an experimental…

  13. Mapping What Young Students Understand and Value Regarding Sustainable Development

    Science.gov (United States)

    Manni, Annika; Sporre, Karin; Ottander, Christina

    2013-01-01

    This paper presents the results of a study carried out to investigate how 10-12 year old Swedish students understand and value the issue of sustainable development. The responses from open-ended questions in a questionnaire have been analyzed through a content analysis based on a phenomenographic approach. The results show that there are…

  14. Investigating and improving student understanding of the expectation values of observables in quantum mechanics

    International Nuclear Information System (INIS)

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    The expectation value of an observable is an important concept in quantum mechanics since measurement outcomes are, in general, probabilistic and we only have information about the probability distribution of measurement outcomes in a given quantum state of a system. However, we find that upper-level undergraduate and PhD students in physics have both conceptual and procedural difficulties when determining the expectation value of a physical observable in a given quantum state in terms of the eigenstates and eigenvalues of the corresponding operator, especially when using Dirac notation. Here we first describe the difficulties that these students have with determining the expectation value of an observable in Dirac notation. We then discuss how the difficulties found via student responses to written surveys and individual interviews were used as a guide in the development of a quantum interactive learning tutorial (QuILT) to help students develop a good grasp of the expectation value. The QuILT strives to help students integrate conceptual understanding and procedural skills to develop a coherent understanding of the expectation value. We discuss the effectiveness of the QuILT in helping students learn this concept from in-class evaluations. (paper)

  15. The influence of teachers' conceptions on their students' learning: children's understanding of sheet music.

    Science.gov (United States)

    López-Íñiguez, Guadalupe; Pozo, Juan Ignacio

    2014-06-01

    Despite increasing interest in teachers' and students' conceptions of learning and teaching, and how they influence their practice, there are few studies testing the influence of teachers' conceptions on their students' learning. This study tests how teaching conception (TC; with a distinction between direct and constructive) influences students' representations regarding sheet music. Sixty students (8-12 years old) from music conservatories: 30 of them took lessons with teachers with a constructive TC and another 30 with teachers shown to have a direct TC. Children were given a musical comprehension task in which they were asked to select and rank the contents they needed to learn. These contents had different levels of processing and complexity: symbolic, analytical, and referential. Three factorial ANOVAs, two-one-way ANOVAs, and four 2 × 3 repeated-measures ANOVAs were used to analyse the effects of and the interaction between the independent variables TC and class, both for/on total cards selected, their ranking, and each sub-category (the three processing levels). ANOVAs on the selection and ranking of these contents showed that teachers' conceptions seem to mediate significantly in the way the students understand the music. Students from constructive teachers have more complex and deep understanding of music. They select more elements for learning scores than those from traditional teachers. Teaching conception also influences the way in which children rank those elements. No difference exists between the way 8- and 12-year-olds learn scores. Children's understanding of the scores is more complex than assumed in other studies. © 2013 The British Psychological Society.

  16. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  17. Multiple Problem-Solving Strategies Provide Insight into Students' Understanding of Open-Ended Linear Programming Problems

    Science.gov (United States)

    Sole, Marla A.

    2016-01-01

    Open-ended questions that can be solved using different strategies help students learn and integrate content, and provide teachers with greater insights into students' unique capabilities and levels of understanding. This article provides a problem that was modified to allow for multiple approaches. Students tended to employ high-powered, complex,…

  18. General Chemistry Students' Conceptual Understanding and Language Fluency: Acid-Base Neutralization and Conductometry

    Science.gov (United States)

    Nyachwaya, James M.

    2016-01-01

    The objective of this study was to examine college general chemistry students' conceptual understanding and language fluency in the context of the topic of acids and bases. 115 students worked in groups of 2-4 to complete an activity on conductometry, where they were given a scenario in which a titration of sodium hydroxide solution and dilute…

  19. The implementation of case study with module-assisted to improve students' understanding on phytochemistry course

    Science.gov (United States)

    Julianto, Tatang Shabur; Fitriastuti, Dhina; Diniaty, Artina; Fauzi'ah, Lina; Arlianty, Widinda Normalia; Febriana, Beta Wulan; Muhaimin

    2017-12-01

    Phytochemistry is one of the course in Chemistry Department's curriculum which discusses about biosynthetic path of secondary metabolite compound in a plant, classification of secondary metabolite compound, isolation technique, and identification analysis. This course is expected to be able to bridge the generations of a nation that has expertise in managing the natural resources of Indonesian plants. In this research, it was evaluated the implementation of case study learning method towards students' understanding on phytochemistry course. The learning processes were conducted in 2 cycles i.e. before and after midterm. The first seven themes of materials before midterm were learned with case study method and the next seven themes of materials were studied with the same method with the module-assisted. The results showed that there was enhancement of students' understanding in class D that were obtained from comparison of midterm and final test. Contrarily, the students of class C have no significant enhancement. In addition, it was predicted that understanding enhancement was strongly influenced by the life skills and the motivation of students especially the academic skills aspect.

  20. Understanding student use of differentials in physics integration problems

    Directory of Open Access Journals (Sweden)

    Dehui Hu

    2013-07-01

    Full Text Available This study focuses on students’ use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., dr, dq. In this paper we aim to explore students’ reasoning about the differential concept in physics problems. We conducted group teaching or learning interviews with 13 engineering students enrolled in a second-semester calculus-based physics course. We amalgamated two frameworks—the resources framework and the conceptual metaphor framework—to analyze students’ reasoning about differential concept. Categorizing the mathematical resources involved in students’ mathematical thinking in physics provides us deeper insights into how students use mathematics in physics. Identifying the conceptual metaphors in students’ discourse illustrates the role of concrete experiential notions in students’ construction of mathematical reasoning. These two frameworks serve different purposes, and we illustrate how they can be pieced together to provide a better understanding of students’ mathematical thinking in physics.

  1. Effect of Collaborative Learning in Interactive Lecture Demonstrations (ILD on Student Conceptual Understanding of Motion Graphs

    Directory of Open Access Journals (Sweden)

    Erees Queen B. Macabebe

    2017-04-01

    Full Text Available To assess effectively the influence of peer discussion in understandingconcepts, and to evaluate if the conceptual understanding through Interactive Lecture Demonstrations (ILD and collaborative learning can be translated to actual situations, ten (10 questions on human and carts in motion were presented to 151 university students comprising mostly of science majors but of different year levels. Individual and group predictions were conducted to assess the students’ pre-conceptual understanding of motion graphs. During the ILD, real-time motion graphs were obtained and analysed after each demonstration and an assessment that integrates the ten situations into two scenarios was given to evaluate the conceptual understanding of the students. Collaborative learning produced a positive effect on the prediction scores of the students and the ILD with real-time measurement allowed the students to validate their prediction. However, when the given situations were incorporated to create a scenario, it posted a challenge to the students. The results of this activity identified the area where additional instruction and emphasis is necessary.

  2. Diagnostic Appraisal of Grade 12 Students' Understanding of Reaction Kinetics

    Science.gov (United States)

    Yan, Yaw Kai; Subramaniam, R.

    2016-01-01

    The study explored grade 12 students' understanding of reaction kinetics, a topic which has not been extensively explored in the chemistry education literature at this level. A 3-tier diagnostic instrument with 11 questions was developed--this format is of very recent origin and has been the subject of only a handful of studies. The findings…

  3. Information-seeking strategies and science content understandings of sixth-grade students using on-line learning environments

    Science.gov (United States)

    Hoffman, Joseph Loris

    1999-11-01

    This study examined the information-seeking strategies and science content understandings learners developed as a result of using on-line resources in the University of Michigan Digital Library and on the World Wide Web. Eight pairs of sixth grade students from two teachers' classrooms were observed during inquiries for astronomy, ecology, geology, and weather, and a final transfer task assessed learners' capabilities at the end of the school year. Data included video recordings of students' screen activity and conversations, journals and completed activity sheets, final artifacts, and semi-structured interviews. Learners' information-seeking strategies included activities related to asking, planning, tool usage, searching, assessing, synthesizing, writing, and creating. Analysis of data found a majority of learners posed meaningful, openended questions, used technological tools appropriately, developed pertinent search topics, were thoughtful in queries to the digital library, browsed sites purposefully to locate information, and constructed artifacts with novel formats. Students faced challenges when planning activities, assessing resources, and synthesizing information. Possible explanations were posed linking pedagogical practices with learners' growth and use of inquiry strategies. Data from classroom-lab video and teacher interviews showed varying degrees of student scaffolding: development and critique of initial questions, utilization of search tools, use of journals for reflection on activities, and requirements for final artifacts. Science content understandings included recalling information, offering explanations, articulating relationships, and extending explanations. A majority of learners constructed partial understandings limited to information recall and simple explanations, and these occasionally contained inaccurate conceptualizations. Web site design features had some influence on the construction of learners' content understandings. Analysis of

  4. Scaffolded Instruction Improves Student Understanding of the Scientific Method & Experimental Design

    Science.gov (United States)

    D'Costa, Allison R.; Schlueter, Mark A.

    2013-01-01

    Implementation of a guided-inquiry lab in introductory biology classes, along with scaffolded instruction, improved students' understanding of the scientific method, their ability to design an experiment, and their identification of experimental variables. Pre- and postassessments from experimental versus control sections over three semesters…

  5. Assessing Students' Disciplinary and Interdisciplinary Understanding of Global Carbon Cycling

    Science.gov (United States)

    You, Hye Sun; Marshall, Jill A.; Delgado, Cesar

    2018-01-01

    Global carbon cycling describes the movement of carbon through atmosphere, biosphere, geosphere, and hydrosphere; it lies at the heart of climate change and sustainability. To understand the global carbon cycle, students will require "interdisciplinary knowledge." While standards documents in science education have long promoted…

  6. Students' Perceived Understanding: An Alternative Measure and Its Associations with Perceived Teacher Confirmation, Verbal Aggressiveness, and Credibility

    Science.gov (United States)

    Schrodt, Paul; Finn, Amber N.

    2011-01-01

    Given recent questions regarding the construct validity of Cahn and Shulman's Feelings of Understanding/Misunderstanding scale, two studies were conducted to develop a low-inference, behavioral measure of students' perceived understanding in the college classroom. In Study One (N = 265), a pilot inventory was developed to measure students'…

  7. Using a Virtual Tablet Machine to Improve Student Understanding of the Complex Processes Involved in Tablet Manufacturing.

    Science.gov (United States)

    Mattsson, Sofia; Sjöström, Hans-Erik; Englund, Claire

    2016-06-25

    Objective. To develop and implement a virtual tablet machine simulation to aid distance students' understanding of the processes involved in tablet production. Design. A tablet simulation was created enabling students to study the effects different parameters have on the properties of the tablet. Once results were generated, students interpreted and explained them on the basis of current theory. Assessment. The simulation was evaluated using written questionnaires and focus group interviews. Students appreciated the exercise and considered it to be motivational. Students commented that they found the simulation, together with the online seminar and the writing of the report, was beneficial for their learning process. Conclusion. According to students' perceptions, the use of the tablet simulation contributed to their understanding of the compaction process.

  8. The Effects of Swedish Knife Model on Students' Understanding of the Digestive System

    Science.gov (United States)

    Cerrah Ozsevgec, Lale; Artun, Huseyin; Unal, Melike

    2012-01-01

    This study was designed to examine the effect of Swedish Knife Model on students' understanding of digestive system. A simple experimental design (pretest-treatment-posttest) was used in the study and internal comparison of the results of the one group was made. The sample consisted of 40 7th grade Turkish students whose ages range from 13 to 15.…

  9. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification

    Science.gov (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to surpass these challenges after the teaching intervention. This study shows that POGIL is an effective technique at eliciting students' misconceptions, and addressing these misconceptions, leading to an increase in student understanding of biological classification.

  10. The effect of restructuring student writing in the general chemistry laboratory on student understanding of chemistry and on students' approach to the laboratory course

    Science.gov (United States)

    Rudd, James Andrew, II

    Many students encounter difficulties engaging with laboratory-based instruction, and reviews of research have indicated that the value of such instruction is not clearly evident. Traditional forms of writing associated with laboratory activities are commonly in a style used by professional scientists to communicate developed explanations. Students probably lack the interpretative skills of a professional, and writing in this style may not support students in learning how to develop scientific explanations. The Science Writing Heuristic (SWH) is an inquiry-based approach to laboratory instruction designed in part to promote student ability in developing such explanations. However, there is not a convincing body of evidence for the superiority of inquiry-based laboratory instruction in chemistry. In a series of studies, the performance of students using the SWH student template in place of the standard laboratory report format was compared to the performance of students using the standard format. The standard reports had Title, Purpose, Procedure, Data & Observations, Calculations & Graphs, and Discussion sections. The SWH reports had Beginning Questions & Ideas, Tests & Procedures, Observations, Claims, Evidence, and Reflection sections. The pilot study produced evidence that using the SWH improved the quality of laboratory reports, improved student performance on a laboratory exam, and improved student approach to laboratory work. A main study found that SWH students statistically exhibited a better understanding of physical equilibrium when written explanations and equations were analyzed on a lecture exam and performed descriptively better on a physical equilibrium practical exam task. In another main study, the activities covering the general equilibrium concept were restructured as an additional change, and it was found that SWH students exhibited a better understanding of chemical equilibrium as shown by statistically greater success in overcoming the common

  11. The Flipped Classroom and College Physics Students' Motivation and Understanding of Kinematics Graphs

    Science.gov (United States)

    Cagande, Jeffrey Lloyd L.; Jugar, Richard R.

    2018-01-01

    Reversing the traditional classroom activities, in the flipped classroom model students view lectures at home and perform activities during class period inside the classroom. This study investigated the effect of a flipped classroom implementation on college physics students' motivation and understanding of kinematics graphs. A Solomon four-group…

  12. Analysis of the effect of specific vocabulary instruction on high school chemistry students' knowledge and understanding

    Science.gov (United States)

    Labrosse, Peggy

    The purpose of this study was to analyze the effects of specific vocabulary instruction on high school chemistry students' knowledge and understanding. Students might be able to formally recite a definition for a term without actually having understood the meaning of the term and its connection to other terms or to related concepts. Researchers (Cassels & Johnstone, 1983; Gabel, 1999; Johnstone, 1991) have been studying the difficulty students have in learning science, particularly chemistry. Gabel (1999) suggests that, "while research into misconceptions (also known as alternative conceptions) and problem-solving has dominated the field for the past 25 years, we are no closer to a solution that would improve the teaching and learning of chemistry" (P. 549). Gabel (1999) relates the difficulty in learning chemistry to use of language. She refers to student difficulty both with words that have more than one meaning in English and with words that are used to mean one idea in chemistry and another idea in every day language. The Frayer Model, a research-based teaching strategy, is a graphic organizer which students use to create meaningful definitions for terms in context (Frayer, Frederick, & Klausmeier, 1969). It was used as the treatment---the specific vocabulary instruction---in this research study. The researcher collected and analyzed data to answer three research questions that focused on the effect of using the Frayer model (a graphic organizer) on high school students' knowledge and understanding of academic language used in chemistry. The research took place in a New England high school. Four intact chemistry classes provided the student participants; two classes were assigned to the treatment group (TG) and two classes were assigned to the control group (CG). The TG received vocabulary instruction on 14 chosen terms using the Frayer Model. The CG received traditional vocabulary instruction with no special attention to the 14 terms selected for this study

  13. [Understanding the meaning of leadership to the undergraduate nursing student: a phenomenological approach].

    Science.gov (United States)

    Guerra, Karina Juliana; Spiri, Wilza Carla

    2013-01-01

    This study aimed at understanding the meaning of leadership to undergraduate nursing students and the expectation related to their professional practice. Phenomenology was used as theoretical framework. Fifteen undergraduate nursing students were recruited as subjects and answered the following question: "What do you understand by leadership, and how can it be applied in your professional practice?" The topics which were revealed and analyzed, Leadership Styles and Leadership Exercise, enabled us to understand that the meaning attributed to leadership is unveiled as a dynamic process, and the style adopted is the form to lead a team; therefore, an ideal leadership style does not exist. In teaching, the leadership style began to be discussed when the participant forms of personnel management were approached. In leadership practice, the dissociation between leadership theory and practice is emphasized, pointing out that integration with practice is relevant for leadership learning.

  14. Principles of economics crucial to pharmacy students' understanding of the prescription drug market.

    Science.gov (United States)

    Rattinger, Gail B; Jain, Rahul; Ju, Jing; Mullins, C Daniel

    2008-06-15

    Many pharmacy schools have increased the amount of economics coursework to which pharmacy students are exposed in their prepharmacy and pharmacy curriculums. Students obtain competencies aimed at understanding the basic concepts of microeconomic theory, such as supply and demand. However, pharmacy students often have trouble applying these principles to real world pharmaceuticals or healthcare markets. Our objective is to make economics more relevant for pharmacy students. Specifically, we detail and provide pharmacy-relevant examples of the effects of monopoly power, barriers to marketplace entry, regulatory environment, third party insurance, information asymmetry and unanticipated changes in the marketplace on the supply and demand for pharmaceuticals and healthcare services.

  15. Principles of Economics Crucial to Pharmacy Students' Understanding of the Prescription Drug Market

    Science.gov (United States)

    Jain, Rahul; Ju, Jing; Mullins, C. Daniel

    2008-01-01

    Many pharmacy schools have increased the amount of economics coursework to which pharmacy students are exposed in their prepharmacy and pharmacy curriculums. Students obtain competencies aimed at understanding the basic concepts of microeconomic theory, such as supply and demand. However, pharmacy students often have trouble applying these principles to real world pharmaceuticals or healthcare markets. Our objective is to make economics more relevant for pharmacy students. Specifically, we detail and provide pharmacy-relevant examples of the effects of monopoly power, barriers to marketplace entry, regulatory environment, third party insurance, information asymmetry and unanticipated changes in the marketplace on the supply and demand for pharmaceuticals and healthcare services. PMID:18698403

  16. Measuring University students' understanding of the greenhouse effect - a comparison of multiple-choice, short answer and concept sketch assessment tools with respect to students' mental models

    Science.gov (United States)

    Gold, A. U.; Harris, S. E.

    2013-12-01

    The greenhouse effect comes up in most discussions about climate and is a key concept related to climate change. Existing studies have shown that students and adults alike lack a detailed understanding of this important concept or might hold misconceptions. We studied the effectiveness of different interventions on University-level students' understanding of the greenhouse effect. Introductory level science students were tested for their pre-knowledge of the greenhouse effect using validated multiple-choice questions, short answers and concept sketches. All students participated in a common lesson about the greenhouse effect and were then randomly assigned to one of two lab groups. One group explored an existing simulation about the greenhouse effect (PhET-lesson) and the other group worked with absorption spectra of different greenhouse gases (Data-lesson) to deepen the understanding of the greenhouse effect. All students completed the same assessment including multiple choice, short answers and concept sketches after participation in their lab lesson. 164 students completed all the assessments, 76 completed the PhET lesson and 77 completed the data lesson. 11 students missed the contrasting lesson. In this presentation we show the comparison between the multiple-choice questions, short answer questions and the concept sketches of students. We explore how well each of these assessment types represents student's knowledge. We also identify items that are indicators of the level of understanding of the greenhouse effect as measured in correspondence of student answers to an expert mental model and expert responses. Preliminary data analysis shows that student who produce concept sketch drawings that come close to expert drawings also choose correct multiple-choice answers. However, correct multiple-choice answers are not necessarily an indicator that a student produces an expert-like correlating concept sketch items. Multiple-choice questions that require detailed

  17. Life on the Number Line: Routes to Understanding Fraction Magnitude for Students With Difficulties Learning Mathematics.

    Science.gov (United States)

    Gersten, Russell; Schumacher, Robin F; Jordan, Nancy C

    Magnitude understanding is critical for students to develop a deep understanding of fractions and more advanced mathematics curriculum. The research reports in this special issue underscore magnitude understanding for fractions and emphasize number lines as both an assessment and an instructional tool. In this commentary, we discuss how number lines broaden the concept of fractions for students who are tied to the more general part-whole representations of area models. We also discuss how number lines, compared to other representations, are a superior and more mathematically correct way to explain fraction concepts.

  18. Active Learning Session Based on Didactical Engineering Framework for Conceptual Change in Students' Equilibrium and Stability Understanding

    Science.gov (United States)

    Canu, Michael; Duque, Mauricio; de Hosson, Cécile

    2017-01-01

    Engineering students on control courses lack a deep understanding of equilibrium and stability that are crucial concepts in this discipline. Several studies have shown that students find it difficult to understand simple familiar or academic static equilibrium cases as well as dynamic ones from mechanics even if they know the discipline's criteria…

  19. An international comparison of grade 6 students' understanding of the equal sign.

    Science.gov (United States)

    Capraro, Robert M; Capraro, Mary Margaret; Yetkiner, Z Ebrar; Ozel, Serkan; Kim, Hae Gyu; Küçük, Ali Riza

    2010-02-01

    This study extends the scope of international comparisons examining students' conceptions of the equal sign. Specifically, Korean (n = 193) and Turkish (n = 334) Grade 6 students were examined to assess whether their conceptions and responses were similar to prior findings published for Chinese and U.S. students and to hypothesize relationships about problem types and conceptual understanding of the equal sign. About 59.6% of the Korean participants correctly answered all items providing conceptually accurate solutions, as compared to 28.4% of the Turkish sample. Comparison with previous studies in China and the USA indicated that the Chinese sample outperformed those from other nations, followed by Korea, Turkey, and the USA. In large-scale international studies such as Trends in International Mathematics and Science (TIMSS) and the Programme for International Student Assessment (PISA), students from China and Korea have been among the high achievers.

  20. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    Science.gov (United States)

    Varma, Keisha; Linn, Marcia C.

    2012-01-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  1. Speech-language pathology students' self-reports on voice training: easier to understand or to do?

    Science.gov (United States)

    Lindhe, Christina; Hartelius, Lena

    2009-01-01

    The aim of the study was to describe the subjective ratings of the course 'Training of the student's own voice and speech', from a student-centred perspective. A questionnaire was completed after each of the six individual sessions. Six speech and language pathology (SLP) students rated how they perceived the practical exercises in terms of doing and understanding. The results showed that five of the six participants rated the exercises as significantly easier to understand than to do. The exercises were also rated as easier to do over time. Results are interpreted within in a theoretical framework of approaches to learning. The findings support the importance of both the physical and reflective aspects of the voice training process.

  2. Math anxiety differentially affects WAIS-IV arithmetic performance in undergraduates.

    Science.gov (United States)

    Buelow, Melissa T; Frakey, Laura L

    2013-06-01

    Previous research has shown that math anxiety can influence the math performance level; however, to date, it is unknown whether math anxiety influences performance on working memory tasks during neuropsychological evaluation. In the present study, 172 undergraduate students completed measures of math achievement (the Math Computation subtest from the Wide Range Achievement Test-IV), math anxiety (the Math Anxiety Rating Scale-Revised), general test anxiety (from the Adult Manifest Anxiety Scale-College version), and the three Working Memory Index tasks from the Wechsler Adult Intelligence Scale-IV Edition (WAIS-IV; Digit Span [DS], Arithmetic, Letter-Number Sequencing [LNS]). Results indicated that math anxiety predicted performance on Arithmetic, but not DS or LNS, above and beyond the effects of gender, general test anxiety, and math performance level. Our findings suggest that math anxiety can negatively influence WAIS-IV working memory subtest scores. Implications for clinical practice include the utilization of LNS in individuals expressing high math anxiety.

  3. Attempts for a Better Understanding of Entropy by the Students in CMU

    Directory of Open Access Journals (Sweden)

    Feiza Memet

    2015-07-01

    Full Text Available Regarding thermodynamics, the perception of students is that unlike the first law, the second law has not simple statements. Despite of this, the first two laws are related to each other and their combination shows the influence of entropy on energy. The understanding of the second law is the path to student knowledge related to the increase in entropy and the decrease of the capacity of energy to do useful work or energy. This paper describes an experiment carried out in Constanta Maritime University (CMU, with students enrolled in Electromechanics Faculty, in the second year of study, which reveals the need to enrich the traditional course of Thermodynamics, in order to increase the ability of students to deal with the second law and the concept of entropy.

  4. Race cars and the hellbox:Understanding the development of proficiency among digital art students

    OpenAIRE

    Paquette, Andrew; Reedy, Gabriel; Hatzipanagos, Stylianos

    2016-01-01

    Educating students in the discipline of digital art to a professional standard has generally proven difficult. In an effort to understand the problem, a first-year undergraduate modelling course cohort was observed. Some students in this course progressed from being novices to acquiring proficiency during the nine-week term of the course. Computer Graphics (CG) modelling professionals evaluated student work to confirm their progress. Traditional models of proficiency development expect that p...

  5. The Effect of a Conceptual Change Approach on Understanding of Students' Chemical Equilibrium Concepts

    Science.gov (United States)

    Atasoy, Basri; Akkus, Huseyin; Kadayifci, Hakki

    2009-01-01

    The purpose of this study was to compare the effects of a conceptual change approach over traditional instruction on tenth-grade students' conceptual achievement in understanding chemical equilibrium. The study was conducted in two classes of the same teacher with participation of a total of 44 tenth-grade students. In this study, a…

  6. The Effect of Various Media Scaffolding on Increasing Understanding of Students' Geometry Concepts

    Science.gov (United States)

    Sutiarso, Sugeng; Coesamin, M.; Nurhanurawati

    2018-01-01

    This study is a quasi-experimental research with pretest-posttest control group design, which aims to determine (1) the tendency of students in using various media scaffolding based on gender, and (2) effect of media scaffolding on increasing understanding of students' geometry concepts. Media scaffolding used this study is chart, props, and…

  7. Developing Conceptual Understanding of Fractions with Year Five and Six Students

    Science.gov (United States)

    Mills, Judith

    2016-01-01

    This paper presents findings from classroom observations of one teacher (Beth). It focusses on the development of conceptual understanding of fractions with her students, articulated in Kieren's sub-constructs (Kieren, 1980,1988), and Hansen's progressions (Hansen, 2005). The study covers three lessons within a six week unit. Findings from this…

  8. An Interactive Modeling Lesson Increases Students' Understanding of Ploidy during Meiosis

    Science.gov (United States)

    Wright, L. Kate; Newman, Dina L.

    2011-01-01

    Chromosome structure is confusing to students at all levels, and chromosome behavior during meiosis is a notoriously difficult topic. Undergraduate biology majors are exposed to the process of meiosis numerous times during their presecondary and postsecondary education, yet understanding of key concepts, such as the point at which haploidy is…

  9. Do Students Really Understand Topology in the Lesson? A Case Study

    Science.gov (United States)

    Narli, Serkan

    2010-01-01

    This study aims to specify to what extent students understand topology during the lesson and to determine possible misconceptions. 14 teacher trainees registered at Secondary School Mathematics education department were observed in the topology lessons throughout a semester and data collected at the first topology lesson is presented here.…

  10. Students' Understanding of Equilibrium and Stability: The Case of Dynamic Systems

    Science.gov (United States)

    Canu, Michaël; de Hosson, Cécile; Duque, Mauricio

    2016-01-01

    Engineering students in control courses have been observed to lack an understanding of equilibrium and stability, both of which are crucial concepts in this discipline. The introduction of these concepts is generally based on the study of classical examples from Newtonian mechanics supplemented with a control system. Equilibrium and stability are…

  11. Assessing Freshman Engineering Students' Understanding of Ethical Behavior.

    Science.gov (United States)

    Henslee, Amber M; Murray, Susan L; Olbricht, Gayla R; Ludlow, Douglas K; Hays, Malcolm E; Nelson, Hannah M

    2017-02-01

    Academic dishonesty, including cheating and plagiarism, is on the rise in colleges, particularly among engineering students. While students decide to engage in these behaviors for many different reasons, academic integrity training can help improve their understanding of ethical decision making. The two studies outlined in this paper assess the effectiveness of an online module in increasing academic integrity among first semester engineering students. Study 1 tested the effectiveness of an academic honesty tutorial by using a between groups design with a Time 1- and Time 2-test. An academic honesty quiz assessed participants' knowledge at both time points. Study 2, which incorporated an improved version of the module and quiz, utilized a between groups design with three assessment time points. The additional Time 3-test allowed researchers to test for retention of information. Results were analyzed using ANCOVA and t tests. In Study 1, the experimental group exhibited significant improvement on the plagiarism items, but not the total score. However, at Time 2 there was no significant difference between groups after controlling for Time 1 scores. In Study 2, between- and within-group analyses suggest there was a significant improvement in total scores, but not plagiarism scores, after exposure to the tutorial. Overall, the academic integrity module impacted participants as evidenced by changes in total score and on specific plagiarism items. Although future implementation of the tutorial and quiz would benefit from modifications to reduce ceiling effects and improve assessment of knowledge, the results suggest such tutorial may be one valuable element in a systems approach to improving the academic integrity of engineering students.

  12. The understanding of core pharmacological concepts among health care students in their final semester.

    Science.gov (United States)

    Aronsson, Patrik; Booth, Shirley; Hägg, Staffan; Kjellgren, Karin; Zetterqvist, Ann; Tobin, Gunnar; Reis, Margareta

    2015-12-29

    The overall aim of the study was to explore health care students´ understanding of core concepts in pharmacology. An interview study was conducted among twelve students in their final semester of the medical program (n = 4), the nursing program (n = 4), and the specialist nursing program in primary health care (n = 4) from two Swedish universities. The participants were individually presented with two pharmacological clinically relevant written patient cases, which they were to analyze and propose a solution to. Participants were allowed to use the Swedish national drug formulary. Immediately thereafter the students were interviewed about their assessments. The interviews were audio-recorded and transcribed verbatim. A thematic analysis was used to identify units of meaning in each interview. The units were organized into three clusters: pharmacodynamics, pharmacokinetics, and drug interactions. Subsequent procedure consisted of scoring the quality of students´ understanding of core concepts. Non-parametric statistics were employed. The study participants were in general able to define pharmacological concepts, but showed less ability to discuss the meaning of the concepts in depth and to implement these in a clinical context. The participants found it easier to grasp concepts related to pharmacodynamics than pharmacokinetics and drug interactions. These results indicate that education aiming to prepare future health care professionals for understanding of more complex pharmacological reasoning and decision-making needs to be more focused and effective.

  13. Programs and Practices: Students' Historical Understandings in International Baccalaureate, Advanced Placement and Regular World History Courses

    Science.gov (United States)

    Ryter, Di

    2015-01-01

    World history has become increasingly important and has often been a required course for high school students in the United States. This multi-case study provides examples and descriptions of students' demonstration of historical understandings. It also includes multiple perspectives and experiences of world history students and teachers, and…

  14. Plutonium(IV) hydrous polymer chemistry

    International Nuclear Information System (INIS)

    Toth, L.M.; Dodson, K.E.

    1985-01-01

    The hydrous polymer chemistry of Pu(IV) in aqueous nitric acid solutions has been a subject of considerable interest for several years. This interest stems mainly from the fact that most nuclear fuel reprocessing schemes based on the Purex process can be hampered by the occurrence of polymer. As a result, an understanding and control of the parameters that affect polymer formation during reprocessing are studied. 2 refs

  15. History as narrative: the nature and quality of historical understanding for students with LD.

    Science.gov (United States)

    Espin, Christine A; Cevasco, Jazmin; van den Broek, Paul; Baker, Scott; Gersten, Russell

    2007-01-01

    In this study, we examine the nature and quality of students' comprehension of history. Specifically, we explore whether cognitive-psychological theories developed to capture the comprehension of narrative text can be used to capture the comprehension of history. Participants were 36 students with learning disabilities who had taken part in an earlier study designed to investigate the effects of an interactive instructional intervention in history. The results of the original study supported the effectiveness of the intervention in terms of amount recalled. The results of the present study reveal that historical understanding can be characterized as the construction of meaning through the creation of a causal network of events. The study of history within a causal network framework has implications for understanding the nature and quality of students' learning of history, and for potentially identifying sources of failure in learning.

  16. Plutonium(IV) precipitates formed in alkaline media in the presence of various anions

    Energy Technology Data Exchange (ETDEWEB)

    Krot, N.N.; Shilov, V.P.; Yusov, A.B.; Tananaev, I.G.; Grigoriev, M.S.; Garnov, A.Yu.; Perminov, V.P.; Astafurova, L.N.

    1998-09-01

    The tendency of Pu(IV) to hydrolyze and form true solutions, colloid solutions, or insoluble precipitates has been known since the Manhattan Project. Since then, specific studies have been performed to examine in detail the equilibria of Pu(IV) hydrolytic reactions in various media. Great attention also has been paid to the preparation, structure, and properties of Pu(IV) polymers or colloids. These compounds found an important application in sol-gel technology for the preparation of nuclear fuel materials. A most important result of these works was the conclusion that Pu(IV) hydroxide, after some aging, consists of very small PuO{sub 2} crystallites and should therefore be considered to be Pu(IV) hydrous oxide. However, studies of the properties and behavior of solid Pu(IV) hydroxide in complex heterogeneous systems are rare. The primary goal of this investigation was to obtain data on the composition and properties of Pu(IV) hydrous oxide or other compounds formed in alkaline media under different conditions. Such information is important to understand Pu(IV) behavior and the forms of its existence in the Hanford Site alkaline tank waste sludge. This knowledge then may be applied in assessing plutonium criticality hazards in the storage, retrieval, and treatment of Hanford Site tank wastes as well as in understanding its contribution to the transuranic waste inventory (threshold at 100 nCi/g or about 5 {times} 10{sup {minus}6} M) of the separate solution and solid phases.

  17. Plutonium(IV) precipitates formed in alkaline media in the presence of various anions

    International Nuclear Information System (INIS)

    Krot, N.N.; Shilov, V.P.; Yusov, A.B.; Tananaev, I.G.; Grigoriev, M.S.; Garnov, A.Yu.; Perminov, V.P.; Astafurova, L.N.

    1998-09-01

    The tendency of Pu(IV) to hydrolyze and form true solutions, colloid solutions, or insoluble precipitates has been known since the Manhattan Project. Since then, specific studies have been performed to examine in detail the equilibria of Pu(IV) hydrolytic reactions in various media. Great attention also has been paid to the preparation, structure, and properties of Pu(IV) polymers or colloids. These compounds found an important application in sol-gel technology for the preparation of nuclear fuel materials. A most important result of these works was the conclusion that Pu(IV) hydroxide, after some aging, consists of very small PuO 2 crystallites and should therefore be considered to be Pu(IV) hydrous oxide. However, studies of the properties and behavior of solid Pu(IV) hydroxide in complex heterogeneous systems are rare. The primary goal of this investigation was to obtain data on the composition and properties of Pu(IV) hydrous oxide or other compounds formed in alkaline media under different conditions. Such information is important to understand Pu(IV) behavior and the forms of its existence in the Hanford Site alkaline tank waste sludge. This knowledge then may be applied in assessing plutonium criticality hazards in the storage, retrieval, and treatment of Hanford Site tank wastes as well as in understanding its contribution to the transuranic waste inventory (threshold at 100 nCi/g or about 5 x 10 -6 M) of the separate solution and solid phases

  18. Artificial Intelligence-Based Student Learning Evaluation: A Concept Map-Based Approach for Analyzing a Student's Understanding of a Topic

    Science.gov (United States)

    Jain, G. Panka; Gurupur, Varadraj P.; Schroeder, Jennifer L.; Faulkenberry, Eileen D.

    2014-01-01

    In this paper, we describe a tool coined as artificial intelligence-based student learning evaluation tool (AISLE). The main purpose of this tool is to improve the use of artificial intelligence techniques in evaluating a student's understanding of a particular topic of study using concept maps. Here, we calculate the probability distribution of…

  19. Why should I care? Engaging students in conceptual understanding using global context to develop social attitudes.

    Science.gov (United States)

    Forder, S. E.; Welstead, C.; Pritchard, M.

    2014-12-01

    A glance through the Harvard Business Review reveals many suggestions and research pieces reviewing sales and marketing techniques. Most educators will be familiar with the notion that making accurate first impressions and being responsive, whilst maintaining pace is critical to engaging an audience. There are lessons to be learnt from industry that can significantly impact upon our teaching. Eisenkraft, in his address to the NSTA, proposed four essential questions. This presentation explores one of those questions: 'Why should I care?', and discusses why this question is crucial for engaging students by giving a clear purpose for developing their scientific understanding. Additionally, this presentation explores how The ISF Academy has adapted the NGSS, using the 14 Grand Engineering Challenges and the IB MYP, to provide current, authentic global contexts, in order to give credibility to the concepts, understandings and skills being learnt. The provision of global contexts across units and within lessons supports a platform for students to have the freedom to explore their own sense of social responsibility. The Science Department believes that planning lessons with tasks that elaborate on the student's new conceptualisations, has helped to transfer the student's new understanding into social behavior beyond the classroom. Furthermore, extension tasks have been used to transfer conceptual understanding between different global contexts.

  20. Understanding by Design (UbD) in EFL Teaching: Teachers' Professional Development and Students' Achievement

    Science.gov (United States)

    Yurtseven, Nihal; Altun, Sertel

    2017-01-01

    Concepts such as teachers' professional development and students' achievement act as the driving force for the development of each in a causal relationship in EFL teaching, as in many other disciplines. The purpose of this study is to investigate the change Understanding by Design (UbD) made on teachers' professional development and students'…

  1. Problematizing a general physics class: Understanding student engagement

    Science.gov (United States)

    Spaid, Mark Randall

    This research paper describes the problems in democratizing a high school physics course and the disparate engagement students during class activities that promote scientific inquiry. Results from the Learning Orientation Questionnaire (Martinez, 2000) guide the participant observations and semi-formal interviews. Approximately 60% of the participants self-report a "resistant" or "conforming" approach to learning science; they expect to receive science knowledge from the teacher, and their engagement is influenced by affective and conative factors. These surface learners exhibit second order thinking (Kegan, 1994), do not understand abstract science concepts, and learn best from structured inquiry. To sustain engagement, conforming learners require motivational and instructional discourse from their teacher and peers. Resisting learners do not value learning and do not engage in most science class activities. The "performing" learners are able to deal with abstractions and can see relationships between lessons and activities, but they do not usually self-reflect or think critically (they are between Kegan's second order and third order thinking). They may select a deeper learning strategy if they value the knowledge for a future goal; however, they are oriented toward assessment and rely on the science teacher as an authority. They are influenced by affective and conative factors during structured and guided inquiry-based teaching, and benefit from motivational discourse and sustain engagement if they are interested in the topic. The transforming learners are more independent, self-assessing and self-directed. These students are third order thinkers (Kegan, 1994) who hold a sophisticated epistemology that includes critical thinking and reflection. These students select deep learning strategies without regard to affective and conative factors. They value instructional discourse from the teacher, but prefer less structured inquiry activities. Although specific

  2. The InVEST Volcanic Concept Survey: Exploring Student Understanding about Volcanoes

    Science.gov (United States)

    Parham, Thomas L., Jr.; Cervato, Cinzia; Gallus, William A., Jr.; Larsen, Michael; Hobbs, Jon; Stelling, Pete; Greenbowe, Thomas; Gupta, Tanya; Knox, John A.; Gill, Thomas E.

    2010-01-01

    Results from the Volcanic Concept Survey (VCS) indicated that many undergraduates do not fully understand volcanic systems and plate tectonics. During the 2006 academic year, a ten-item conceptual survey was distributed to undergraduate students enrolled in Earth science courses at five U.S. colleges and universities. A trained team of graders…

  3. Using Content-Aligned Assessments to Identify Weaknesses in Students' Understanding of Fundamental Weather and Climate Ideas

    Science.gov (United States)

    Wertheim, J.; Willard, S.

    2011-12-01

    There is growing interest in ensuring that citizens understand weather and climate sufficiently to make informed decisions, and these topics are gaining increased attention in K-12 education. The National Research Council recently released A Framework for K-12 Science Education with the expectation that U.S. 12th graders must have a sophisticated knowledge of climate change, including the role of deep time, variability, and computer modeling in the prediction of climate impacts on the planet and human activity. This requirement demands that students extend their understanding of climate change to the past and future, but it is important to recognize that many students know little about prerequisite ideas, such as daily and annual weather and climate processes, and this problem must be addressed prior to introducing the complexities of the climate system. In order to diagnose weaknesses in students' foundational understanding of the complex climate system, we primarily assessed a middle school (MS)-level understanding of the core elements of the system, in addition to a high school (HS)-level understanding of seasons. We described grade appropriate, coherent, functioning conceptual models for each targeted idea, and decomposed them into explicit learning goals. We then applied Project 2061's rigorous item development procedure to produce 235 high-quality, misconception-based multiple choice test items. These items were tested with a national sample of approximately 20,000 students, grades 6-12, in two phases (Spring 2010 & 2011). Here we report results from the second phase, including items targeting knowledge about convection, daily and annual air temperature patterns, factors that influence air temperature, and seasons. Overall, HS students outperformed MS students on these items by an average of only 3% (MS:31% correct; HS:34% correct). These data show a few strong misconceptions (e.g., 47% of students think that the North Pole is always angled toward the Sun

  4. Geoscience Academic Provenance: A Theoretical Framework for Understanding Geoscience Students' Pathways

    Science.gov (United States)

    Houlton, H.; Keane, C.

    2012-04-01

    The demand and employment opportunities for geoscientists in the United States are projected to increase 23% from 2008 to 2018 (Gonzales, 2011). Despite this trend, there is a disconnect between undergraduate geoscience students and their desire to pursue geoscience careers. A theoretical framework was developed to understand the reasons why students decide to major in the geosciences and map those decisions to their career aspirations (Houlton, 2010). A modified critical incident study was conducted to develop the pathway model from 17, one-hour long semi-structured interviews of undergraduate geoscience majors from two Midwest Research Institutions (Houlton, 2010). Geoscience Academic Provenance maps geoscience students' initial interests, entry points into the major, critical incidents and future career goals as a pathway, which elucidates the relationships between each of these components. Analyses identified three geoscience student population groups that followed distinct pathways: Natives, Immigrants and Refugees. A follow up study was conducted in 2011 to ascertain whether these students continued on their predicted pathways, and if not, reasons for attrition. Geoscientists can use this framework as a guide to inform future recruitment and retention initiatives and target these geoscience population groups for specific employment sectors.

  5. Characterising the Development of the Understanding of Human Body Systems in High-School Biology Students--A Longitudinal Study

    Science.gov (United States)

    Snapir, Zohar; Eberbach, Catherine; Ben-Zvi-Assaraf, Orit; Hmelo-Silver, Cindy; Tripto, Jaklin

    2017-01-01

    Science education today has become increasingly focused on research into complex natural, social and technological systems. In this study, we examined the development of high-school biology students' systems understanding of the human body, in a three-year longitudinal study. The development of the students' system understanding was evaluated…

  6. Improving student understanding in web programming material through multimedia adventure games

    Science.gov (United States)

    Fitriasari, N. S.; Ashiddiqi, M. F.; Nurdin, E. A.

    2018-05-01

    This study aims to make multimedia adventure games and find out the improvement of learners’ understanding after being given treatment of using multimedia adventure game in learning Web Programming. Participants of this study are students of class X (ten) in one of the Vocational Schools (SMK) in Indonesia. The material of web programming is a material that difficult enough to be understood by the participant therefore needed tools to facilitate the participants to understand the material. Solutions offered in this study is by using multimedia adventures game. Multimedia has been created using Construct2 and measured understood with method Non-equivalent Control Group Design. Pre-test and post-test has given to learners who received treatment using the multimedia adventure showed increase in understanding web programming material.

  7. Seafloor Eruptions Offer a Teachable Moment to Help SEAS Students Understand Important Geological and Ecological Processes

    Science.gov (United States)

    Goehring, L.; Williams, C. S.

    2006-12-01

    In education parlance, a teachable moment is an opportunity that arises when students are engaged and primed to learn, typically in response to some memorable event. Earthquakes, volcanic eruptions, even natural disasters, if meaningful to the student, often serve to catalyze intense learning. Recent eruptions at the East Pacific Rise offer a potential teachable moment for students and teachers involved with SEAS, a Ridge 2000 education outreach program. SEAS uses a combination of web-facilitated and teacher-directed activities to make the remote deep-sea environment and the process of science relevant and meaningful. SEAS is a web-based, inquiry-oriented education program for middle and high school students. It features the science associated with Ridge 2000 research. Since 2003, SEAS has focused on the integrated study site at the East Pacific Rise (EPR) to help students understand geological and ecological processes at mid-ocean ridges and hydrothermal vents. SEAS students study EPR bathymetry maps, images of lava formations, photomosaics of diffuse flow communities, succession in the Bio-Geo Transect, as well as current research conducted during spring cruises. In the Classroom to Sea Lab, students make direct comparisons between shallow-water mussels and vent mussels (from the EPR) to understand differences in feeding strategies. The recent eruptions and loss of seafloor fauna at this site offer the Ridge 2000 program the opportunity to help students better understand the ephemeral and episodic nature of ridge environments, as well as the realities and processes of science (particularly field science). In January 2007, the SEAS program will again sail with a Ridge 2000 research team, and will work with scientists to report findings through the SEAS website. The eruptions at the EPR covered much of the study site, and scientists' instruments and experiments, in fresh lava. We intend to highlight the recency and effect of the eruptions, using the students

  8. Using Self-Efficacy Beliefs to Understand How Students in a General Chemistry Course Approach the Exam Process

    Science.gov (United States)

    Willson-Conrad, Angela; Kowalske, Megan Grunert

    2018-01-01

    Retention of students who major in STEM continues to be a major concern for universities. Many students cite poor teaching and disappointing grades as reasons for dropping out of STEM courses. Current college chemistry courses often assess what a student has learned through summative exams. To understand students' experiences of the exam process,…

  9. Proportional Reasoning and Related Concepts: Analysis of Gaps and Understandings of Middle Grade Students

    Science.gov (United States)

    Ojose, Bobby

    2015-01-01

    This study investigated proportional reasoning and the related concepts of decimal, percent, and ratio. In particular, the research focused on analyzing the gaps and understandings that grades 6, 7, and 8 students have and advanced factors for such gaps and understandings. The study employed a mixed method approach in which quantitative data was…

  10. Implementation of Scientific Community Laboratories and Their Effect on Student Conceptual Learning, Attitudes, and Understanding of Uncertainty

    Science.gov (United States)

    Lark, Adam

    Scientific Community Laboratories, developed by The University of Maryland, have shown initial promise as laboratories meant to emulate the practice of doing physics. These laboratories have been re-created by incorporating their design elements with the University of Toledo course structure and resources. The laboratories have been titled the Scientific Learning Community (SLC) Laboratories. A comparative study between these SLC laboratories and the University of Toledo physics department's traditional laboratories was executed during the fall 2012 semester on first semester calculus-based physics students. Three tests were executed as pre-test and post-tests to capture the change in students' concept knowledge, attitudes, and understanding of uncertainty. The Force Concept Inventory (FCI) was used to evaluate students' conceptual changes through the semester and average normalized gains were compared between both traditional and SLC laboratories. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) was conducted to elucidate students' change in attitudes through the course of each laboratory. Finally, interviews regarding data analysis and uncertainty were transcribed and coded to track changes in the way students understand uncertainty and data analysis in experimental physics after their participation in both laboratory type. Students in the SLC laboratories showed a notable an increase conceptual knowledge and attitudes when compared to traditional laboratories. SLC students' understanding of uncertainty showed most improvement, diverging completely from students in the traditional laboratories, who declined throughout the semester.

  11. PISA 2015 Results: Students' Financial Literacy. Volume IV

    Science.gov (United States)

    OECD Publishing, 2017

    2017-01-01

    The OECD Programme for International Student Assessment (PISA) examines not just what students know in science, reading and mathematics, but what they can do with what they know. Results from PISA show educators and policy makers the quality and equity of learning outcomes achieved elsewhere, and allow them to learn from the policies and practices…

  12. The Meta Language of Accounting: What's the Level of Students' Understanding?

    Science.gov (United States)

    Elson, Raymond J.; O'Callaghan, Susanne; Walker, John P.; Williams, Robert

    2013-01-01

    Students rely on rote knowledge to learn accounting concepts. However, this approach does not allow them to understanding the meta language of accounting. Meta language is simply the concepts and terms that are used in a profession and are easily understood by its users. Terms such as equity, assets, and balance sheet are part of the accounting…

  13. Deepening Understanding of Prior Knowledge: What Diverse First-Generation College Students in the U.S. Can Teach Us

    Science.gov (United States)

    Castillo-Montoya, Milagros

    2017-01-01

    Educational research indicates that teachers revealing and utilizing students' prior knowledge supports students' academic learning. Yet, the variation in students' prior knowledge is not fully known. To better understand students' prior knowledge, I drew on sociocultural learning theories to examine racially and ethnically diverse college…

  14. Evaluating role of interactive visualization tool in improving students' conceptual understanding of chemical equilibrium

    Science.gov (United States)

    Sampath Kumar, Bharath

    The purpose of this study is to examine the role of partnering visualization tool such as simulation towards development of student's concrete conceptual understanding of chemical equilibrium. Students find chemistry concepts abstract, especially at the microscopic level. Chemical equilibrium is one such topic. While research studies have explored effectiveness of low tech instructional strategies such as analogies, jigsaw, cooperative learning, and using modeling blocks, fewer studies have explored the use of visualization tool such as simulations in the context of dynamic chemical equilibrium. Research studies have identified key reasons behind misconceptions such as lack of systematic understanding of foundational chemistry concepts, failure to recognize the system is dynamic, solving numerical problems on chemical equilibrium in an algorithmic fashion, erroneous application Le Chatelier's principle (LCP) etc. Kress et al. (2001) suggested that external representation in the form of visualization is more than a tool for learning, because it enables learners to make meanings or express their ideas which cannot be readily done so through a verbal representation alone. Mixed method study design was used towards data collection. The qualitative portion of the study is aimed towards understanding the change in student's mental model before and after the intervention. A quantitative instrument was developed based on common areas of misconceptions identified by research studies. A pilot study was conducted prior to the actual study to obtain feedback from students on the quantitative instrument and the simulation. Participants for the pilot study were sampled from a single general chemistry class. Following the pilot study, the research study was conducted with a total of 27 students (N=15 in experimental group and N=12 in control group). Prior to participating in the study, students have completed their midterm test on the topic of chemical equilibrium. Qualitative

  15. Understanding Immigrant College Students: Applying a Developmental Ecology Framework to the Practice of Academic Advising

    Science.gov (United States)

    Stebleton, Michael J.

    2011-01-01

    Immigrant college student populations continue to grow, but the complexity of their unique needs and issues remain relatively unknown. To gain a better understanding of the multiple contextual factors impacting immigrant students from a systems-based approach, I applied Bronfenbrenner's (1977) human ecology framework to the study. Students…

  16. Understanding the relationship between student attitudes and student learning

    Science.gov (United States)

    Cahill, Michael J.; McDaniel, Mark A.; Frey, Regina F.; Hynes, K. Mairin; Repice, Michelle; Zhao, Jiuqing; Trousil, Rebecca

    2018-02-01

    Student attitudes, defined as the extent to which one holds expertlike beliefs about and approaches to physics, are a major research topic in physics education research. An implicit but rarely tested assumption underlying much of this research is that student attitudes play a significant part in student learning and performance. The current study directly tested this attitude-learning link by measuring the association between incoming attitudes (Colorado Learning Attitudes about Science Survey) and student learning during the semester after statistically controlling for the effects of prior knowledge [early-semester Force Concept Inventory (FCI) or Brief Electricity and Magnetism Assessment (BEMA)]. This study spanned four different courses and included two complementary measures of student knowledge: late-semester concept inventory scores (FCI or BEMA) and exam averages. In three of the four courses, after controlling for prior knowledge, attitudes significantly predicted both late-semester concept inventory scores and exam averages, but in all cases these attitudes explained only a small amount of variance in concept-inventory and exam scores. Results indicate that after accounting for students' incoming knowledge, attitudes may uniquely but modestly relate to how much students learn and how well they perform in the course.

  17. The Effect of Cooperative Learning with DSLM on Conceptual Understanding and Scientific Reasoning among Form Four Physics Students with Different Motivation Levels

    Directory of Open Access Journals (Sweden)

    M.S. Hamzah

    2010-11-01

    Full Text Available The purpose of this study was to investigate the effect of Cooperative Learning with a Dual Situated Learning Model (CLDSLM and a Dual Situated Learning Model (DSLM on (a conceptual understanding (CU and (b scientific reasoning (SR among Form Four students. The study further investigated the effect of the CLDSLM and DSLM methods on performance in conceptual understanding and scientific reasoning among students with different motivation levels. A quasi-experimental method with the 3 x 2 Factorial Design was applied in the study. The sample consisted of 240 stu¬dents in six (form four classes selected from three different schools, i.e. two classes from each school, with students randomly selected and assigned to the treatment groups. The results showed that students in the CLDSLM group outperformed their counterparts in the DSLM group—who, in turn, significantly outperformed other students in the traditional instructional method (T group in scientific reasoning and conceptual understanding. Also, high-motivation (HM students in the CLDSLM group significantly outperformed their counterparts in the T groups in conceptual understanding and scientific reasoning. Furthermore, HM students in the CLDSLM group significantly outperformed their counterparts in the DSLM group in scientific reasoning but did not significantly outperform their counterparts on conceptual understanding. Also, the DSLM instructional method has significant positive effects on highly motivated students’ (a conceptual understanding and (b scientific reason¬ing. The results also showed that LM students in the CLDSLM group significantly outperformed their counterparts in the DSLM group and (T method group in scientific reasoning and conceptual understanding. However, the low-motivation students taught via the DSLM instructional method significantly performed higher than the low-motivation students taught via the T method in scientific reasoning. Nevertheless, they did not

  18. Educational value of pocket-sized ultrasound devices to improve understanding of ultrasound examination principles and sonographic anatomy for medical student.

    Directory of Open Access Journals (Sweden)

    Eun Young Kim

    Full Text Available Medical students must understand the principles of ultrasonography (US, because US examinations are an important component of patient care in clinical practice. Pocket-sized ultrasound devices have the benefits of accessibility and ease of use. The primary objective of the present study was to evaluate the educational value of these devices in terms of improving medical student interest and understanding of US and sonographic anatomy.We added a US training program comprised of a self-study learning module and a hands-on training session to a two-week block curriculum of medical imaging for first year medical students (n = 40. Multiple pocket-sized US devices were used on a small-group basis during a single afternoon. Students were asked to complete a questionnaire before and after the US training session; these two questionnaires contained 6 and 10 questions, respectively, which were rated by students using a five-point Likert scale. In addition, understanding of sonographic anatomy was tested before and after the training program.Forty students completed the two questionnaires and the anatomy-related tests. Students found the program educationally valuable (4.37 ± 0.54 of 5 and reported that US practice was useful for improving their understanding of the principles of US examinations (4.23 ± 0.66 of 5 and sonographic anatomy (4.40 ± 0.55 of 5. Overall confidence at performing US examinations and understanding of sonographic anatomy were significantly increased after US training (increased overall confidence score, 1.87 ± 0.91 and improvement in sonographic anatomy score, 6.55 ± 1.55, p values < 0.001.US training using pocket-sized ultrasound devices was found to be educationally valuable for medical students in terms of improving understanding of US principles and familiarizing students with sonographic anatomy.

  19. Test Review: Advanced Clinical Solutions for WAIS-IV and WMS-IV

    Science.gov (United States)

    Chu, Yiting; Lai, Mark H. C.; Xu, Yining; Zhou, Yuanyuan

    2012-01-01

    The authors review the "Advanced Clinical Solutions for WAIS-IV and WMS-IV". The "Advanced Clinical Solutions (ACS) for the Wechsler Adult Intelligence Scale-Fourth Edition" (WAIS-IV; Wechsler, 2008) and the "Wechsler Memory Scale-Fourth Edition" (WMS-IV; Wechsler, 2009) was published by Pearson in 2009. It is a…

  20. Understanding Student Motivation

    Science.gov (United States)

    Seifert, Timothy

    2004-01-01

    Contemporary theories of academic motivation seek to explain students' behaviours in academic settings. While each theory seems to possess its own constructs and unique explanations, these theories are actually closely tied together. In this theoretical study of motivation, several theories of motivation were described and an underlying theme of…

  1. Self-determination theory and understanding of student motivation in physical education instruction

    Directory of Open Access Journals (Sweden)

    Đorđić Višnja

    2010-01-01

    Full Text Available Physical education is considered to be a favorable context for accomplishment of important educational outcomes and promotion of physical activity in children and youth. The real scope of physical education instruction largely depends on student motivation. Self-determination theory, as a specific macrotheory of motivation, offers a rewarding framework for understanding student motivation in physical education instruction. The paper presents the basic tenets of self-determination theory, the most important studies in the domain of physical education and didactic and methodical implications. Two mini-theories within the self-determination theory are analyzed in more detail, the cognitive evaluation theory and the organismic integration theory. Empirical verification of the theoretical tenets indicates the existence of typical motivational profiles of students in physical education instruction, the basic psychological needs as mediators of influence of social and interpersonal factors on student motivation, followed by the importance of motivational climate, students' goal orientations and teaching style for self-determination of students' behavior in physical education instruction. Didactic and methodical implications refer to the need for developing a more flexible curriculum of physical education, encouraging a motivational climate, task-focused goal orientations, and, especially, encouraging the perceived moving competence of the student.

  2. Implementing Mathematics Teaching That Promotes Students' Understanding through Theory-Driven Lesson Study

    Science.gov (United States)

    Huang, Rongjin; Gong, Zikun; Han, Xue

    2016-01-01

    Lesson study (LS) has been practiced in China as an effective way to advance teachers' professional development for decades. This study explores how LS improves teaching that promotes students' understanding. A LS group including didacticians (practice-based teaching research specialist and University-based mathematics educators) and mathematics…

  3. From Knowing to Understanding Student Empowerment: A Narrative Approach to Research in a Middle School

    Science.gov (United States)

    Horn, Brian R.

    2015-01-01

    This paper examines how, as a teacher researcher, I employed a narrative approach to research to better understand my 8th grade Language Arts students' empowerment in school. Drawing on sociocultural theory, critical pedagogy and a narrative approach to teacher research, students' voices were privileged and compared to the systemic assumptions…

  4. The Effect of Guided Note Taking during Lectures on Thai University Students' Understanding of Electromagnetism

    Science.gov (United States)

    Narjaikaew, Pattawan; Emarat, Narumon; Cowie, Bronwen

    2009-01-01

    This paper reports on the implementation of a guided note taking strategy to promote Thai students' understanding of electromagnetism during a lecture course. The aim of the study was to enhance student learning of electromagnetism concepts. The developed guided notes contain quotations, diagrams, pictures, problems, and blank spaces to encourage…

  5. University Students' Understanding of Chemistry Processes and the Quality of Evidence in Their Written Arguments

    Science.gov (United States)

    Seung, Eulsun; Choi, Aeran; Pestel, Beverly

    2016-01-01

    We have developed a process-oriented chemistry laboratory curriculum for non-science majors. The purpose of this study is both to explore university students' understanding of chemistry processes and to evaluate the quality of evidence students use to support their claims regarding chemistry processes in a process-oriented chemistry laboratory…

  6. Helping medical students to acquire a deeper understanding of truth-telling

    Directory of Open Access Journals (Sweden)

    Samia A. Hurst

    2015-11-01

    Full Text Available Problem: Truth-telling is an important component of respect for patients’ self-determination, but in the context of breaking bad news, it is also a distressing and difficult task. Intervention: We investigated the long-term influence of a simulated patient-based teaching intervention, integrating learning objectives in communication skills and ethics into students’ attitudes and concerns regarding truth-telling. We followed two cohorts of medical students from the preclinical third year to their clinical rotations (fifth year. Open-ended responses were analysed to explore medical students’ reported difficulties in breaking bad news. Context: This intervention was implemented during the last preclinical year of a problem-based medical curriculum, in collaboration between the doctor–patient communication and ethics programs. Outcome: Over time, concerns such as empathy and truthfulness shifted from a personal to a relational focus. Whereas ‘truthfulness’ was a concern for the content of the message, ‘truth-telling’ included concerns on how information was communicated and how realistically it was received. Truth-telling required empathy, adaptation to the patient, and appropriate management of emotions, both for the patient's welfare and for a realistic understanding of the situation. Lessons learned: Our study confirms that an intervention confronting students with a realistic situation succeeds in making them more aware of the real issues of truth-telling. Medical students deepened their reflection over time, acquiring a deeper understanding of the relational dimension of values such as truth-telling, and honing their view of empathy.

  7. Direct complexonometric determination of thorium (IV), uranium (IV), neptunium (IV), plutonium (IV) by titration of diethylenetriaminepentaacetic acid with xylenol orange as indicator

    International Nuclear Information System (INIS)

    Rykov, A.G.; Piskunov, E.M.; Timofeev, G.A.

    1975-01-01

    The purpose of the present work was to develop a method of determining Th(IV), U(IV), Np(N) and Pu(IV) in acid solutions by titration with diethylenetriamine pentacetic acid, the indicator being xylenol orange. It has been established that Th, U, Np and Pu can be determined to within 0.5-1.5%. Th and U in quantities of tens of milligrams can be determined with greater accuracy, attaining hundredths of one per cent. During titration the determination is not hindered by singly- and doubly-charged metal ions, trivalent lanthanides and actinides, except plutonium. The proposed method can be used to determine U(IV) in the presence of considerable quantities of U(VI) and Np(IV) in the presence of Np(V). Total concentrations of uranium or neptunium are determined by reducing uranium (VI) or neptunium (V) by a standard method (for example, using metallic lead, cadmium or zinc amalgam) to the tetravalent state and applying the method described in the paper. (E.P.)

  8. Understanding the Relationship between Student Attitudes and Student Learning

    Science.gov (United States)

    Cahill, Michael J.; McDaniel, Mark A.; Frey, Regina F.; Hynes, K. Mairin; Repice, Michelle; Zhao, Jiuqing; Trousil, Rebecca

    2018-01-01

    Student attitudes, defined as the extent to which one holds expertlike beliefs about and approaches to physics, are a major research topic in physics education research. An implicit but rarely tested assumption underlying much of this research is that student attitudes play a significant part in student learning and performance. The current study…

  9. Understanding decisions Latino students make regarding persistence in the science and math pipeline

    Science.gov (United States)

    Munro, Janet Lynn

    This qualitative study focused on the knowledge and perceptions of Latino high school students, as well those of their parents and school personnel, at a southwestern, suburban high school regarding persistence in the math/science pipeline. In the context of the unique school and community setting these students experience, the decision-making process was examined with particular focus on characterizing the relationships that influence the process. While the theoretical framework that informs this study was that of social capital, its primary purpose was to inform the school's processes and policy in support of increased Latino participation in the math and science pipeline. Since course selection may be the most powerful factor affecting school achievement and college-preparedness, and since course selection is influenced by school policy, school personnel, students, parents, and teachers alike, it is important to understand the beliefs and perceptions that characterize the relationships among them. The qualitative research design involved a phenomenological study of nine Latino students, their parents, their teachers and counselors, and certain support personnel from the high school. The school's and community's environment in support of academic intensity served as context for the portrait that developed. Given rapidly changing demographics that bring more and more Latino students to suburban high schools, the persistent achievement gap experienced by Latino students, and the growing dependence of the world economy on a citizenry versed in the math- and science-related fields, a deeper understanding of the decision-making processes Latino 12 students experience can inform school policy as educators struggle to influence those decisions. This study revealed a striking lack of knowledge concerning the college-entrance ramifications of continued course work in math and science beyond that required for graduation, relationships among peers, parents, and school

  10. AN APPRAISAL OF INSTRUCTIONAL UNITS TO ENHANCE STUDENT UNDERSTANDING OF PROFIT-MAXIMIZING PRINCIPLES. APPENDIX TO FINAL REPORT.

    Science.gov (United States)

    BARKER, RICHARD L.

    TWENTY-TWO OHIO HIGH SCHOOLS OFFERING VOCATIONAL AGRICULTURE TO 262 JUNIOR AND SENIOR STUDENTS PARTICIPATED IN A STUDY TO MEASURE THE RELATIVE EFFECTIVENESS OF FARM MANAGEMENT INSTRUCTIONAL UNITS DESIGNED TO ENHANCE STUDENT UNDERSTANDING OF BASIC PROFIT-MAXIMIZING PRINCIPLES WHEN USED IN TEACHING VOCATIONAL AGRICULTURE STUDENTS IN THE SCHOOL…

  11. Context and clinical reasoning : Understanding the medical student perspective.

    Science.gov (United States)

    McBee, Elexis; Ratcliffe, Temple; Schuwirth, Lambert; O'Neill, Daniel; Meyer, Holly; Madden, Shelby J; Durning, Steven J

    2018-04-27

    Studies have shown that a physician's clinical reasoning performance can be influenced by contextual factors. We explored how the clinical reasoning performance of medical students was impacted by contextual factors in order to expand upon previous findings in resident and board certified physicians. Using situated cognition as the theoretical framework, our aim was to evaluate the verbalized clinical reasoning processes of medical students in order to describe what impact the presence of contextual factors has on their reasoning performance. Seventeen medical student participants viewed three video recordings of clinical encounters portraying straightforward diagnostic cases in internal medicine with explicit contextual factors inserted. Participants completed a computerized post-encounter form as well as a think-aloud protocol. Three authors analyzed verbatim transcripts from the think-aloud protocols using a constant comparative approach. After iterative coding, utterances were analyzed and grouped into categories and themes. Six categories and ten associated themes emerged, which demonstrated overlap with findings from previous studies in resident and attending physicians. Four overlapping categories included emotional disturbances, behavioural inferences about the patient, doctor-patient relationship, and difficulty with closure. Two new categories emerged to include anchoring and misinterpretation of data. The presence of contextual factors appeared to impact clinical reasoning performance in medical students. The data suggest that a contextual factor can be innate to the clinical scenario, consistent with situated cognition theory. These findings build upon our understanding of clinical reasoning performance from both a theoretical and practical perspective.

  12. Student understanding of the application of Newton's second law to rotating rigid bodies

    Science.gov (United States)

    Close, Hunter G.; Gomez, Luanna S.; Heron, Paula R. L.

    2013-06-01

    We report on an investigation of student understanding of rigid body dynamics in which we asked students in introductory calculus-based physics to compare the translational motions of identical rigid bodies subject to forces that differed only in the point of contact at which they were applied. There was a widespread tendency to claim that forces that cause rotational motion have a diminished effect on translational motion. A series of related problems was developed to examine whether similar errors would be made in other contexts, and interviews were conducted to probe student thinking in greater depth. In this paper, we describe the results of our investigation and also describe a series of different interventions that culminated in the development of a tutorial that improves student ability to apply Newton's second law to rotating rigid bodies.

  13. Developing Students' Understanding of Industrially Relevant Economic and Life Cycle Assessments

    Science.gov (United States)

    Bode, Claudia J.; Chapman, Clint; Pennybaker, Atherly; Subramaniam, Bala

    2017-01-01

    Training future leaders to understand life cycle assessment data is critical for effective research, business, and sociopolitical decision-making. However, the technical nature of these life cycle reports often makes them challenging for students and other nonexperts to comprehend. Therefore, we outline here the key takeaways from recent economic…

  14. Framework for understanding the patterns of student difficulties in quantum mechanics

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the effects of diversity in upper-level students' prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel) as well as the "paradigm shift" from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics.

  15. Barriers and attitudes towards hIV Voluntary counselling and Testing ...

    African Journals Online (AJOL)

    Official Publication of the Tanzania Medical Students' Association. 20. Barriers and attitudes towards hIV ... risk reduction in certain groups, behaviour change and reduced transmission2. Young people are the ... Of those who ever used VCT services 32.7% were just interested in knowing their HIV status and to get HIV ...

  16. Comparing Students' and Experts' Understanding of the Content of a Lecture

    Science.gov (United States)

    Hrepic, Zdeslav; Zollman, Dean A.; Sanjay Rebello, N.

    2007-06-01

    In spite of advances in physics pedagogy, the lecture is by far the most widely used format of instruction. We investigated students' understanding and perceptions of the content delivered during a physics lecture. A group of experts (physics instructors) also participated in the study as a reference for the comparison. During the study, all participants responded to a written conceptual survey on sound propagation. Next, they looked for answers to the survey questions in a videotaped lecture by a nationally known teacher. As they viewed the lecture, they indicated instances, if any, in which the survey questions were answered during the lecture. They also wrote down (and if needed, later explained) the answer, which they perceived was given by the instructor in the video lecture. Students who participated in the study were enrolled in a conceptual physics course and had already covered the topic in class before the study. We discuss and compare students' and experts' responses to the survey questions before and after the lecture.

  17. Selections from 2017: Mapping the Universe with SDSS-IV

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant UniversePublished June2017Main takeaway:The incredibly prolific Sloan Digital Sky Survey has provided photometric observations of around 500 million objects and spectra for more than 3 million objects. The survey has now entered its fourth iteration, SDSS-IV, with the first public data release made in June 2016. A publication led by Michael Blanton (New York University) describes the facilities used for SDSS-IV, its science goals, and itsthree coreprograms.Why its interesting:Since data collection began in 2000, SDSS has been one of the premier surveysproviding imaging and spectroscopy for objects in both the near and distant universe.SDSS has measured spectra not only for the stars in our own Milky Way, but also for galaxies that lie more than 7 billion light-years distant making itan extremelyuseful and powerful tool for mapping our universe.What SDSS-IV is looking for:SDSS image of an example MaNGA target galaxy (left), with some of the many things we can learn about it shown in the right and bottom panels: stellar velocity dispersion, stellar mean velocity, stellar population age, metallicity, etc. [Blanton et al. 2017]SDSS-IV containsthree core programs:Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2)provides high-resolution near-infrared spectra of hundreds of thousands of Milky-Way stars with the goal ofimproving our understanding of the history of the Milky Way and of stellar astrophysics.Mapping Nearby Galaxies at Apache Point Observatory (MaNGA)obtains spatially resolved spectra for thousands of nearby galaxiesto better understand the evolutionary histories of galaxies and what regulates their star formation

  18. Promoting Intercultural Understanding among School Students through an English Language Based Reading Programme

    Directory of Open Access Journals (Sweden)

    Manjet Kaur Mehar Singh

    2016-10-01

    Full Text Available Malaysian intercultural society is typified by three major ethnic groups mainly Malays, Chinese and Indians.  Although education system is the best tool for these three major ethnic groups to work together, contemporary research reveals that there is still lack of intercultural embedding education context and national schools are seen as breeding grounds of racial polarisation.  In Malaysian context, there is a gap in research that focuses on the design of a proper intercultural reading framework for national integration and such initiatives are viable through schools.  The main objective of this conceptual paper is to introduce the English Language Intercultural Reading Programme (ELIRP in secondary schools to promote intercultural understanding among secondary school students.  The proposed framework will facilitate the acquisition of intercultural inputs without being constrained by ideological, political, or psychological demands.  This article will focus on elucidating how ELIRP could affect cognitive (knowledge and behavioural transformations to intercultural perceptions harboured by selected Form 4 students of 20 national schools in Malaysia. Keywords: behavior, knowledge, intercultural reading framework, intercultural understanding, English Language Intercultural Reading Programme, secondary school students

  19. Adaptation of the Wechsler Intelligence Scale for Children-IV (WISC-IV) for Vietnam.

    Science.gov (United States)

    Dang, Hoang-Minh; Weiss, Bahr; Pollack, Amie; Nguyen, Minh Cao

    2012-12-01

    Intelligence testing is used for many purposes including identification of children for proper educational placement (e.g., children with learning disabilities, or intellectually gifted students), and to guide education by identifying cognitive strengths and weaknesses so that teachers can adapt their instructional style to students' specific learning styles. Most of the research involving intelligence tests has been conducted in highly developed Western countries, yet the need for intelligence testing is as or even more important in developing countries. The present study, conducted through the Vietnam National University Clinical Psychology CRISP Center , focused on the cultural adaptation of the WISC-IV intelligence test for Vietnam. We report on (a) the adaptation process including the translation, cultural analysis and modifications involved in adaptation, (b) present results of two pilot studies, and (c) describe collection of the standardization sample and results of analyses with the standardization sample, with the goal of sharing our experience with other researchers who may be involved in or interested in adapting or developing IQ tests for non-Western, non-English speaking cultures.

  20. Middle school students' understanding of the natural history of the Earth and life on Earth as a function of deep time

    Science.gov (United States)

    Pulling, Azalie Cecile

    The purpose of this study was to use deep time, that is geologic time as a mechanism to explore middle school students' understanding of the natural history of the earth and the evolution of life on earth. Geologic time is a logical precursor to middle school students' understanding of biological evolution. This exploratory, mixed model study used qualitative and quantitative methods in each stage of the research to explore sixth grade students, understanding of geologic time, their worldviews (e.g., conceptual ecology), and conceptual change. The study included fifty-nine students in the large group study and four case studies. The primary data collection instrument was the Geologic Timeline Survey. Additional data collection instruments and methods (e.g., concept evaluation statement, journal entries, word associations, interviews, and formal tests) were used to triangulate the study findings. These data were used to create narrative modal profiles of the categories of student thinking that emerged from the large group analysis: Middle School (MS) Scientists (correct science), MS Protoscientists (approaching correct science), MS Prescientists (dinosaur understanding), and MS Pseudoscientists (fundamental religious understanding). Case studies were used to provide a thick description of each category. This study discovered a pattern of student thinking about geologic time that moved along a knowledge continuum from pseudoscience (fundamental creationist understanding) to prescience (everyday-science understanding) to science (correct or approaching correct science). The researcher described the deep-seated misconceptions produced by the prescience thinking level, e.g., dinosaur misconceptions, and cautioned the science education community about using dinosaurs as a glamour-science topic. The most limiting conceptual frameworks found in this study were prescience (a dinosaur focus) and pseudoscience (a fundamental religious focus). An understanding of geologic time

  1. Towards a probabilistic definition of entropy: An investigation of the effects of a new curriculum on students' understanding of thermodynamics

    Science.gov (United States)

    Colon-Garcia, Evy B.

    Thermodynamics is a vital tool in understanding why reactions happen; nevertheless, it is often considered a difficult topic. Prior studies have shown that students struggle with fundamental thermodynamic concepts such as entropy, enthalpy and Gibbs energy even in upper level physical chemistry courses. Thermodynamics, as a general chemistry topic, can be more math-intensive than other topics such as bonding or intermolecular forces. As a result, it is possible for students to get lost in the algorithms and overlook the important underlying theoretical concepts. Students' difficulties in understanding thermodynamics may be contributing to their inability to explain phenomena such as phase changes and manipulations of equilibrium systems. Current chemistry curricula split the thermodynamic chapters over a span of two semesters as well as splitting it over different units. This division fails to make explicit the connection between Enthalpy, Entropy and Gibbs Energy and how they affect how and why every reaction or process happens. The reason for this division of topics is not based on any educational research rather than opinions as to what will not overwhelm the students. Additionally, students who take only one semester of General Chemistry will leave without being instructed in what is considered to be one of the most fundamental concepts in Chemistry, Thermodynamics. Chemistry, Life, the Universe and Everything (CLUE) is a general chemistry course developed with the explicit goal of addressing the major obstacles that inhibit students from acquiring an appreciation and mastery of the chemical principles upon which other sciences depend. Using a control and treatment group, the effectiveness of this new curriculum was evaluated for two main aspects: 1. What is students' understanding of entropy?, 2. Can an alternative instructional approach to teaching Thermodynamics (Chemistry, Life, the Universe and Everything - CLUE) improve students' understanding of Entropy

  2. The Identification of Variation in Students' Understandings of Disciplinary Concepts: The Application of the SOLO Taxonomy within Introductory Accounting

    Science.gov (United States)

    Lucas, Ursula; Mladenovic, Rosina

    2009-01-01

    Insights into students' understandings of disciplinary concepts are fundamental to effective curriculum development. This paper argues that a rounded picture of students' understandings is required to support such development. It is argued that one element of this picture may be provided through the use of the Structure of Observed Learning…

  3. Understanding Disabilities & Online Student Success

    Science.gov (United States)

    Betts, Kristen; Welsh, Bill; Pruitt, Cheryl; Hermann, Kelly; Dietrich, Gaeir; Trevino, Jorge G.; Watson, Terry L.; Brooks, Michael L.; Cohen, Alex H.; Coombs, Norman

    2013-01-01

    Online learning has been growing at an exponential rate over the past decade, providing new opportunities for students seeking quality courses and programs offered through flexible formats. However, as higher education continues to expand online offerings, services must be expanded simultaneously to support all students. This article focuses on…

  4. Congenital bilateral neuroblastoma (stage IV-S): case report

    International Nuclear Information System (INIS)

    Lee, Jeong Hee; Lee, Hee Jung; Woo, Seong Ku; Lee, Sang Rak; Kim, Heung Sik

    2002-01-01

    Congenital neonatal neuroblastoma is not uncommon but bilateral adrenal neuroblastoma is rare, accounting for about ten percent of neuroblastomas in children. We report the US the MR findings of a stage IV-S congenital bilateral neuroblastoma occurring in a one-day-old neonate

  5. Understanding, perceptions and self-use of complementary and alternative medicine (CAM) among Malaysian pharmacy students.

    Science.gov (United States)

    Hasan, Syed S; Yong, Chew S; Babar, Muneer G; Naing, Cho M; Hameed, Abdul; Baig, Mirza R; Iqbal, Shahid M; Kairuz, Therese

    2011-10-13

    In recent times the basic understanding, perceptions and CAM use among undergraduate health sciences students have become a topic of interest. This study was aimed to investigate the understanding, perceptions and self-use of CAM among pharmacy students in Malaysia. This cross-sectional study was conducted on 500 systematically sampled pharmacy students from two private and one public university. A validated, self-administered questionnaire comprised of seven sections was used to gather the data. A systematic sampling was applied to recruit the students. Both descriptive and inferential statistics were applied using SPSS® version 18. Overall, the students tend to disagree that complementary therapies (CM) are a threat to public health (mean score = 3.6) and agreed that CMs include ideas and methods from which conventional medicine could benefit (mean score = 4.7). More than half (57.8%) of the participants were currently using CAM while 77.6% had used it previously. Among the current CAM modalities used by the students, CM (21.9%) was found to be the most frequently used CAM followed by Traditional Chinese Medicine (TCM) (21%). Most of the students (74.8%) believed that lack of scientific evidence is one of the most important barriers obstructing them to use CAM. More than half of the students perceived TCM (62.8%) and music therapy (53.8%) to be effective. Majority of them (69.3%) asserted that CAM knowledge is necessary to be a well-rounded professional. This study reveals a high-percentage of pharmacy students who were using or had previously used at least one type of CAM. Students of higher professional years tend to agree that CMs include ideas and methods from which conventional medicine could benefit.

  6. Understanding, perceptions and self-use of complementary and alternative medicine (CAM among Malaysian pharmacy students

    Directory of Open Access Journals (Sweden)

    Baig Mirza R

    2011-10-01

    Full Text Available Abstract Background In recent times the basic understanding, perceptions and CAM use among undergraduate health sciences students have become a topic of interest. This study was aimed to investigate the understanding, perceptions and self-use of CAM among pharmacy students in Malaysia. Methods This cross-sectional study was conducted on 500 systematically sampled pharmacy students from two private and one public university. A validated, self-administered questionnaire comprised of seven sections was used to gather the data. A systematic sampling was applied to recruit the students. Both descriptive and inferential statistics were applied using SPSS® version 18. Results Overall, the students tend to disagree that complementary therapies (CM are a threat to public health (mean score = 3.6 and agreed that CMs include ideas and methods from which conventional medicine could benefit (mean score = 4.7. More than half (57.8% of the participants were currently using CAM while 77.6% had used it previously. Among the current CAM modalities used by the students, CM (21.9% was found to be the most frequently used CAM followed by Traditional Chinese Medicine (TCM (21%. Most of the students (74.8% believed that lack of scientific evidence is one of the most important barriers obstructing them to use CAM. More than half of the students perceived TCM (62.8% and music therapy (53.8% to be effective. Majority of them (69.3% asserted that CAM knowledge is necessary to be a well-rounded professional. Conclusions This study reveals a high-percentage of pharmacy students who were using or had previously used at least one type of CAM. Students of higher professional years tend to agree that CMs include ideas and methods from which conventional medicine could benefit.

  7. Correlation of understanding of physics and psychological symptoms among high-school students in Greece

    Science.gov (United States)

    Aggeliki, Anagnostopoulou; Miltiades, Kyprianou; Antigoni-Elisavet, Rota; Evangelia, Pavlatou; Loizos, Zaphiris

    2017-09-01

    Depression may essentially influence cognitive function contributing to poor school performance. The present study undertakes to determine the existence and strength of correlation between depressive symptomatology and other mental conditions with the acquired level of understanding of Newtonian physics taught in schools. The current study recruited 490 students (262 girls, 228 boys) attending the first semester of the Greek Second Grade of General Lyceum School. Force Concept Inventory (FCI) tested the depth of the students’ understanding of Newtonian Physics. Symptom Checklist-90-R assessed general mental status. The tests took place in the classroom during a 1 h session. Low FCI scores significantly correlated with mental conditions, with depression ranking first. Girls had higher scores in all nine symptoms scales of SCL-90 and lower FCI scores. Stepwise regression models proved that the gender effect on FCI could be effectively explained through the significant effect of depression. An understanding of Newtonian physics among high school students may be restricted by common problematic mental conditions, with depression being the greatest among all. Further research, using a more systematic approach to measure depression among adolescents with poor understanding of physics, would help to elucidate the nature of the effect.

  8. Influence of student-designed experiments with fast plants on their understanding of plants and of scientific inquiry

    Science.gov (United States)

    Akey, Ann Kosek

    2000-10-01

    This dissertation investigates the influence of student designed experiments with Fast Plants in an undergraduate agroecology course on the students' conceptual understanding of plant life cycles and on their procedural understanding of scientific experimentation. It also considers students' perspectives on the value of these experiences. Data sources included semi-structured interviews with students and the instructor, a written task, course evaluations, and observations of class meetings. Students came into the course having strong practical experience with plants from their agricultural backgrounds. Students did not always connect aspects of plant biology that they studied in class, particularly respiration and photosynthesis, to plant growth requirements. The instructor was able to bridge the gap between some practical knowledge and textbook knowledge with experiences other than the Fast Plant project. Most students held an incomplete picture of plant reproduction that was complicated by differences between agricultural and scientific vocabulary. There is need for teaching approaches that help students tie together their knowledge of plants into a cohesive framework. Experiences that help students draw on their background knowledge related to plants, and which give students the opportunity to examine and discuss their ideas, may help students make more meaningful connections. The Fast Plant project, a positive experience for most students, was seen by these undergraduate students as being more helpful in learning about scientific experimentation than about plants. The process of designing and carrying out their own experiments gave students insight into experimentation, provoked their curiosity, and resulted in a sense of ownership and accomplishment.

  9. Framework for understanding the patterns of student difficulties in quantum mechanics

    Directory of Open Access Journals (Sweden)

    Emily Marshman

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the effects of diversity in upper-level students’ prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel as well as the “paradigm shift” from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics.

  10. Research and Teaching: An Investigation of the Evolution of High School and Undergraduate Student Researchers' Understanding of Key Science Ethics Concepts

    Science.gov (United States)

    Mabrouk, Patricia Ann

    2013-01-01

    High school and undergraduate research students were surveyed over the 10-week period of their summer research programs to investigate their understanding of key concepts in science ethics and whether their understanding changed over the course of their summer research experiences. Most of the students appeared to understand the issues relevant to…

  11. Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles

    Science.gov (United States)

    Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim

    2016-01-01

    This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…

  12. Comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element

    International Nuclear Information System (INIS)

    Wernsman, Bernard

    1997-01-01

    A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40 kW e space nuclear power system that is similar to the 6 kW e TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V's do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution

  13. The Translation of Teachers' Understanding of Gifted Students Into Instructional Strategies for Teaching Science

    Science.gov (United States)

    Park, Soonhye; Steve Oliver, J.

    2009-08-01

    This study examined how instructional challenges presented by gifted students shaped teachers’ instructional strategies. This study is a qualitative research grounded in a social constructivist framework. The participants were three high school science teachers who were teaching identified gifted students in both heterogeneously- and homogeneously-grouped classrooms. Major data sources are classroom observations and interviews. Data analysis indicated that these science teachers developed content-specific teaching strategies based on their understanding of gifted students, including: (a) instructional differentiation, e.g., thematic units, (b) variety in instructional mode and/or students’ products, (c) student grouping strategies and peer tutoring, (d) individualized support, (e) strategies to manage challenging questions, (f) strategies to deal with the perfectionism, and (g) psychologically safe classroom environments.

  14. PENERAPAN TEAMS GAMES TOURNAMENT UNTUK MENINGKATKAN HASIL BELAJAR IPS KELAS IV SDN BLABAK 1 KANDAT KEDIRI

    Directory of Open Access Journals (Sweden)

    Moh. Adnan Khohar

    2016-09-01

    Full Text Available The purpose of this research is to improve the social studies grade IV SDN Blabak 1 Kandat Kediri through the implementation Teams Games Tournament (TGT. This type of research is the Classroom Action Research (PTK. This research is located at Jalan Kediri, Blitar, Kediri Kandat. The subjects in this study were students of class IV SDN Blabak 1 Kandat Kediri totaling 29 children, with the number of students 12 and older schoolgirls 17 children. This study was conducted in 2 cycles and each cycle consisting of 3 meetings. The instrument used was observation completely learning activities by students and teachers. Observation assessment of affective and psychomotor, and cognitive abilities test. Assessment of cognitive cycle students achieve mastery gained 72.23% and cycle II reached 82.75% in psychomotor in the first cycle and reach 69.4% in the second cycle reaches 87.92% for affective students in the first cycle and the second to reach complete 67.23% and 74.13%. The conclusion of this study reveal that through the implementation of TGT in the learning process at school are able to improve learning outcomes IPS fourth grade students at SDN 1 Blabak Kandat Kediri year 2015/2016 on the development of material production technology, communications, and transportation. Tujuan penelitian ini adalah untuk meningkatkan hasil belajar IPS siswa kelas IV SDN Blabak 1 Kandat Kediri melalui penerapan Teams Games Tournament (TGT. Jenis penelitian yang digunakan adalah Penelitian Tindakan Kelas (PTK. Lokasi penelitian adalah di Jalan Kediri-Blitar Kandat Kediri. Kemudian subjek dalam penelitian ini adalah siswa-siswa kelas IV SDN Blabak 1 Kandat Kediri yang berjumlah 29 anak, dengan jumlah siswa 12 anak dan siswi 17 anak. Penelitian ini dilaksanakan dalam 2 siklus dan setiap siklus terdiri atas 3 pertemuan. Instrumen yang digunakan adalah lembar observasi keterlaksanaan aktivitas pembelajaran oleh siswa dan guru. Lembar observasi penilaian afektif dan

  15. Student Teacher Understanding of the Greenhouse Effect, Ozone Layer Depletion, and Acid Rain.

    Science.gov (United States)

    Dove, Jane

    1996-01-01

    Describes the results of a survey designed to ascertain details of student teachers' knowledge and misconceptions about the greenhouse effect, acid rain, and ozone layer depletion. Results indicate familiarity with the issues but little understanding of the concepts involved and many commonly held misconceptions. (JRH)

  16. Ethics or Morals: Understanding Students' Values Related to Genetic Tests on Humans

    Science.gov (United States)

    Lindahl, Mats Gunnar

    2009-10-01

    To make meaning of scientific knowledge in such a way that concepts and values of the life-world are not threatened is difficult for students and laymen. Ethics and morals pertaining to the use of genetic tests for hereditary diseases have been investigated and discussed by educators, anthropologists, medical doctors and philosophers giving, at least in part, diverging results. This study investigates how students explain and understand their argumentation about dilemmas concerning gene testing for the purpose to reduce hereditary diseases. Thirteen students were interviewed about their views on this issue. Qualitative analysis was done primarily by relating students’ argumentation to their movements between ethics and morals as opposing poles. Students used either objective or subjective knowledge but had difficulties to integrate them. They tried to negotiate ethic arguments using utilitarian motives and medical knowledge with sympathy or irrational and personal arguments. They discussed the embryo’s moral status to decide if it was replaceable in a social group or not. The educational implications of the students’ use of knowledge in personal arguments are discussed.

  17. Understanding Analysis Macroscopic, microscopic, and Acid-Base Titration Symbolic Student Class XI Science High School and Improvement Efforts Microscopy Approach

    Directory of Open Access Journals (Sweden)

    Putu Indrayani

    2014-06-01

    Full Text Available Analisis Pemahaman Makroskopik, Mikroskopik, dan Simbolik Titrasi Asam-Basa Siswa Kelas XI IPA SMA serta Upaya Perbaikannya dengan Pendekatan Mikroskopik Abstract: This study aims to determine: (1 the level of understanding of the macroscopic, microscopic and symbolic students; (2 the error understanding of macroscopic, microscopic and symbolic students; (3 the effectiveness of the microscopic approach in an effort to improve students' ability to solve the problems macroscopic, symbolic and microscopic material acid-base titration. This research uses descriptive research design and quasi-experimental research design. Data research is the understanding of macroscopic, symbolic and microscopic students on the material acid-base titration. Student comprehension test measured with instruments that include: (1 macroscopic comprehension tests, (2 test the understanding of symbolic, and (3 understanding of the microscopic tests. Content validity was tested by a team of experts and the reliability of test questions macroscopic and microscopic calculated using the Spearman-Brown while reliability symbolic test item was calculated using Cronbach's Alpha. Data were analyzed using descriptive analysis and statistical tests using Anacova. Results of the study are as follows. (1 The level of understanding of the macroscopic students is high, while the symbolic and microscopic levels of understanding of students is very low. (2 Errors identified macroscopic understanding is that students do not understand that the color shown by indicators related to the nature of the solution. Symbolic understanding of the identified errors are: (i the student can not write ionization reaction; and (ii students can not choose the formula used to calculate the pH of the solution. Errors identified microscopic understanding is that students can not provide a microscopic picture of a solution of a strong acid, strong base, weak acid, weak base, and salt solutions because they do

  18. Student peer reviewers' views on teaching innovations and imaginative learning.

    Science.gov (United States)

    Chan, Zenobia C Y

    2016-04-01

    Various teaching innovations have been proven effective in promoting students' critical thinking, creativity, problem solving and active learning. However, little attention has been paid to the possibility of including students as peer reviewers to evaluate these innovations in light of imaginative learning. This study explored the perspective of senior students who played the role of the student peer reviewer on three teaching innovations, namely writing poetry, composing songs and creating role-plays in problem-based learning (PBL), specifically in relation to imaginative learning. A focus group interview. Ten senior nursing students who had experienced the conventional PBL approach but not the mentioned teaching innovations were invited to participate in reviewing a video recording of a PBL class using the above teaching innovations with a total of 18 junior year students. Five themes were identified using content analysis: (i) motivation to learn, (ii) increased empathy, (iii) information retention, (iv) development of critical thinking and creativity, and (v) drawbacks of teaching innovations. It is suggested that student peer reviewers should be considered, as they can bring an outsider-learner's views on understanding the impacts of teaching innovations on imaginative learning. A call should be made to invite student peer reviewers on teaching and learning approaches, and more effort should be devoted to promoting an understanding of how imaginative learning can be achieved via teaching innovations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Understanding Australian Aboriginal Tertiary Student Needs

    Science.gov (United States)

    Oliver, Rhonda; Rochecouste, Judith; Bennell, Debra; Anderson, Roz; Cooper, Inala; Forrest, Simon; Exell, Mike

    2013-01-01

    Drawing from a study of the experiences of Australian Aboriginal and Torres Strait Islander university students, this paper presents an overview of the specific needs of these students as they enter and progress through their tertiary education. Extracts from a set of case studies developed from both staff and student interviews and an online…

  20. A Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    Science.gov (United States)

    Singh, Chandralekha

    2015-04-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. We describe a theoretical framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates the effects of diversity in students' prior preparation, goals and motivation for taking upper-level physics courses in general as well as the ``paradigm shift'' from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics will be discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a theoretical framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics. Support from the National Science Foundation is gratefully acknowledged.

  1. Reflective writing as a tool for assessing teamwork in bioscience: insights into student performance and understanding of teamwork.

    Science.gov (United States)

    Mayne, Lynne

    2012-07-01

    To ensure a modern bioscience curriculum that responds to the current needs of stakeholders, there is a need to embed a range of generic capabilities that enables graduates to succeed in and contribute to a rapidly changing world, as well as building strong bioscience skills and knowledge. The curriculum must also prepare students for a rapidly evolving competitive work place and align with the needs of industry. This creates a challenge, how do we develop generic capabilities without losing discipline content. This report analyses teamwork projects embedded in an undergraduate Biotechnology degree designed to promote teamwork skills along with a deeper understanding of the underpinning biochemistry. Student reflective writing was used to capture students' understanding and experience of teamwork as well as provide insight into their metacognition. The analysis demonstrates that 73% of Year 3 and 93% of Year 4 students were capable of learning about teamwork through reflective writing. While the importance of frequent high quality communication was a common theme, evidence suggests that many students were unsophisticated in their use of communication software. The analysis also highlighted the depth of metacognition that underpins successful team function and the significant weaknesses in self-insight some students possess. These findings challenge assumptions regarding student capacity for leadership and the ability of some students to contribute to successful team outcomes. It is essential for the design of teamwork experiences to fully understand the competencies that underlie teamwork, the metacognitive processes required, and ensure that assessments are fair and measure individual academic performance. Copyright © 2012 Wiley Periodicals, Inc.

  2. Understanding How College Students Describe Art: An Analysis on Art Education in China

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2015-05-01

    Full Text Available This study aims to explore how Chinese college students appreciate art as reflected in their descriptions of an artwork. Students’ descriptions were defined by a content analysis with respect to opinions and facts, art elements and principles. A questionnaire was also used to investigate students’ attitudes toward art education. 85 students who were divided into four groups participated in the study. The results showed: (1 participants were more familiar with art appreciation than art elements and principles; (2 there was a slight but no significant difference between students’ describing facts and opinions; (3 participants had significantly higher scores on describing art elements than describing art principles; (4 among all participants with regard to all elements and principles, there was a significant difference of describing space between students of art education and students of music education, and also, there was a significant difference of describing value between Chinese language students and other students. The results suggested that participants, including those of art education, had poor knowledge and strategies of understanding art, implying art education in China may have ended up with failure.

  3. Case based learning: a method for better understanding of biochemistry in medical students.

    Science.gov (United States)

    Nair, Sandhya Pillai; Shah, Trushna; Seth, Shruti; Pandit, Niraj; Shah, G V

    2013-08-01

    Health professionals need to develop analytic and diagnostic thinking skills and not just a mere accumulation of large amount of facts. Hence, Case Based Learning (CBL) has been used in the medical curriculum for this reason, so that the students are exposed to the real medical problems, which helps them in develop analysing abilities. This also helps them in interpreting and solving the problems and in the course of doing this, they develop interest. In addition to didactic lectures, CBL was used as a learning method. This study was conducted in the Department of Biochemistry, S.B.K.S.M.I and R.C, Sumandeep Vidyapeeth ,Piparia, Gujarat, India. A group of 100 students were selected and they were divided into two groups as the control group and the study group. A total of 50 students were introduced to case based learning, which formed the study group and 50 students who attended didactic lectures formed the control group. A very significant improvement (pmedical curriculum for a better understanding of Biochemistry among the medical students.

  4. How Well Do Students in Secondary School Understand Temporal Development of Dynamical Systems?

    Science.gov (United States)

    Forjan, Matej; Grubelnik, Vladimir

    2015-01-01

    Despite difficulties understanding the dynamics of complex systems only simple dynamical systems without feedback connections have been taught in secondary school physics. Consequently, students do not have opportunities to develop intuition of temporal development of systems, whose dynamics are conditioned by the influence of feedback processes.…

  5. Understanding Dishonest Academic Behaviour Amongst Business Students--The Business Leaders of the Future

    Science.gov (United States)

    Bagraim, Jeffrey; Goodman, Suki; Pulker, Stephanie

    2014-01-01

    This study applies the Theory of Planned Behaviour (TPB) to increase understanding about dishonest academic behaviour amongst undergraduate business students. A total of 579 respondents from three universities in South Africa completed an online survey about their beliefs regarding academic dishonesty, their intentions to engage in dishonest…

  6. Understanding Public Policy Making through the Work of Committees: Utilizing a Student-Led Congressional Hearing Simulation

    Science.gov (United States)

    Rinfret, Sara R.; Pautz, Michelle C.

    2015-01-01

    In an effort to help students better understand the complexity of making environmental policy and the role of policy actors in this process, we developed a mock congressional hearing simulation. In this congressional hearing, students in two environmental policy courses take on the roles of members of Congress and various interest groups to…

  7. The Collaboration of Cooperative Learning and Conceptual Change: Enhancing the Students' Understanding of Chemical Bonding Concepts

    Science.gov (United States)

    Eymur, Gülüzar; Geban, Ömer

    2017-01-01

    The main purpose of this study was to investigate the effects of cooperative learning based on conceptual change approach instruction on ninth-grade students' understanding in chemical bonding concepts compared to traditional instruction. Seventy-two ninth-grade students from two intact chemistry classes taught by the same teacher in a public high…

  8. An Epistemological Inquiry into Organic Chemistry Education: Exploration of Undergraduate Students' Conceptual Understanding of Functional Groups

    Science.gov (United States)

    Akkuzu, Nalan; Uyulgan, Melis Arzu

    2016-01-01

    This study sought to determine the levels of conceptual understanding of undergraduate students regarding organic compounds within different functional groups. A total of 60 students who were enrolled in the Department of Secondary Science and Mathematics Education of a Faculty of Education at a state university in Turkey and who had followed an…

  9. Exploring students' understanding of reference frames and time in Galilean and special relativity

    International Nuclear Information System (INIS)

    De Hosson, C; Kermen, I; Parizot, E

    2010-01-01

    This paper aims at exploring prospective physics teachers' reasoning associated with the concepts of reference frame, time and event which form the framework of the classical kinematics and that of the relativistic kinematics. About 100 prospective physics teachers were surveyed by means of a questionnaire involving classical kinematics situations and relativistic ones. The analysis of the answers shows a deep lack of understanding of both concepts of reference frame and event. Some students think that events may be simultaneous for an observer and not simultaneous for another one, even when both observers are located in the same reference frame. Most of the students surveyed cannot give an answer only depending on the location of the observer when his/her velocity is mentioned as if the movement contaminated the event. This lack of understanding is embodied in reasoning implemented by the population surveyed to address classical kinematics questions and seems to form a major obstacle to grasping relativistic kinematics.

  10. Understanding Why Students Drop Out of High School, According to Their Own Reports

    Directory of Open Access Journals (Sweden)

    Jonathan Jacob Doll

    2013-10-01

    Full Text Available Research on school dropout extends from early 20th-century pioneers until now, marking trends of causes and prevention. However, specific dropout causes reported by students from several nationally representative studies have never been examined together, which, if done, could lead to a better understanding of the dropout problem. Push, pull, and falling out factors provide a framework for understanding dropouts. Push factors include school-consequence on attendance or discipline. Pull factors include out-of-school enticements like jobs and family. Finally, falling out factors refer to disengagement in students not caused by school or outside pulling factors. Since 1966, most nationally representative studies depicted pull factors as ranking the highest. Also, administrators in one study corroborated pull out factors for younger dropouts, not older ones, while most recent research cites push factors as highest overall. One rationale for this change is a response to rising standards from No Child Left Behind (NCLB, which can be ultimately tested only by future dropout research.

  11. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Science.gov (United States)

    Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha

    2017-06-01

    Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a "wave" in part of the experiment and as a "particle" in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT) which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  12. Female high school biology students' biofilm-focused learning: The contributions of three instructional strategies to patterns in understanding and motivation

    Science.gov (United States)

    Ales, Jo Dale Hill

    2000-12-01

    This exploratory study examined three instructional strategies used with female high school biology students. The relative contributions of the strategies to student understanding of microbiology and motivation in science were analyzed. The science education community targeted underachievement in science by implementing changes in content and practices (NRC, 1996). Research suggested that teachers facilitate learnirig environments based on human constructivism (Mintzes, Wandersee, & Novak, 1997) that is rooted in meaningful learning theory (Ausubel, Novak & Hanesian, 1978). Teachers were advised to use both visual and verbal instructional strategies (Paivio, 1983) and encourage students to construct understandings by connecting new experiences to prior knowledge. The American Society for Microbiology supports the study of microorganisms because of their prominence in the biosphere (ASK 1997). In this study, two participating teachers taught selected microbiology concepts while focused on the cutting edge science of biofilms. Biology students accessed digitized biofilm images on an ASM web page and adapted them into products, communicated with biofilm researchers, and adapted a professional-quality instructional video for cross-age teaching. The study revealed improvements in understanding as evidenced on a written test; however, differences in learnirig outcomes were not significant. Other data, including student journal reflections, observations of student interactions, and student clinical interviews indicate that students were engaged in cutting edge science and adapted biofilm images in ways that increased understanding of microbiology (with respect to both science content and as a way of knowing) and motivation. An ASM CD-ROM of the images did not effectively enhance learning and this study provides insights into what could make it more successful. It also identifies why, in most cases, students' E-mail communication with biofilm researchers was unsuccessful

  13. Student Understanding of the First Law of Thermodynamics: Relating Work to the Adiabatic Compression of an Ideal Gas.

    Science.gov (United States)

    Loverude, Michael E.; Kautz, Christian H.; Heron, Paula R. L.

    2002-01-01

    Reports on an investigation of student understanding of the first law of thermodynamics. Involves students from a first-year university physics course and a second-year thermal physics course. Focuses on the ability of students to relate the first law to the adiabatic physics course. Discusses implications for thermal physics and mechanics…

  14. Science as Interests but Not for Career: Understanding High School Students' Engagement in Science in Abu Dhabi

    Science.gov (United States)

    Yang, Guang; Badri, Masood; Al-Mazroui, Karima; Al-Rashedi, Asma; Nai, Peng

    2017-01-01

    Understanding high school students' engagement in science is important for the Emirate of Abu Dhabi. Drawing on data from the ROSE Survey conducted in Abu Dhabi schools in 2013, this paper used a multi-dimensional framework to explore associations between high school students' engagement in science and a range of student psychosocial and…

  15. "Bigger Number Means You Plus!"--Teachers Learning to Use Clinical Interviews to Understand Students' Mathematical Thinking

    Science.gov (United States)

    Heng, Mary Anne; Sudarshan, Akhila

    2013-01-01

    This paper examines the perceptions and understandings of ten grades 1 and 2 Singapore mathematics teachers as they learned to use clinical interviews (Ginsburg, "Human Development" 52:109-128, 2009) to understand students' mathematical thinking. This study challenged teachers' pedagogical assumptions about what it means to teach for…

  16. Understanding Obsessive-Compulsive Personality Disorder

    Directory of Open Access Journals (Sweden)

    Steven C. Hertler

    2013-08-01

    Full Text Available With the ultimate goal of better understanding Obsessive-Compulsive Personality Disorder (OCPD, the present work is a review and critique of Diagnostic and Statistical Manual of Mental Disorders (4th ed., DSM-IV diagnostic criteria at the end of their 18 years of use. Problems of specificity (polythetic criteria and failure to employ a hallmark feature make OCPD an indistinct diagnostic category that consequently contains a plurality of types. Problems of sensitivity (missing elements and concrete expression of signs make it more difficult to cull OCPD persons from the population at large. Collectively, these problems of specificity and sensitivity have undermined the efficiency of the DSM-IV criteria set; but more importantly, these problems continue to distort the clinical understanding of OCPD generally.

  17. Oxochloroalkoxide of the Cerium (IV and Titanium (IV as oxides precursor

    Directory of Open Access Journals (Sweden)

    Machado Luiz Carlos

    2002-01-01

    Full Text Available The Cerium (IV and Titanium (IV oxides mixture (CeO2-3TiO2 was prepared by thermal treatment of the oxochloroisopropoxide of Cerium (IV and Titanium (IV. The chemical route utilizing the Cerium (III chloride alcoholic complex and Titanium (IV isopropoxide is presented. The compound Ce5Ti15Cl16O30 (iOPr4(OH-Et15 was characterized by elemental analysis, FTIR and TG/DTG. The X-ray diffraction patterns of the oxides resulting from the thermal decomposition of the precursor at 1000 degreesC for 36 h indicated the formation of cubic cerianite (a = 5.417Å and tetragonal rutile (a = 4.592Å and (c = 2.962 Å, with apparent crystallite sizes around 38 and 55nm, respectively.

  18. Do Students Understand Our Course Structure? Implications for Important Classroom Attitudes and Behavior

    Science.gov (United States)

    Elicker, Joelle D.; Foust, Michelle Singer; Perry, Jennifer L.

    2015-01-01

    The complexity of a course's structure may influence how well students understand what is expected of them. Using the foundation of the industrial/organizational (I/O) psychology literature, the authors modified a measure of "Perceived System Knowledge" (Williams & Levy, 1992) for employee performance appraisal to be appropriate for…

  19. What Science Is about--Development of the Scientific Understanding of Secondary School Students

    Science.gov (United States)

    Cincera, Jan; Medek, Michal; Cincera, Pavel; Lupac, Miroslav; Tichá, Irena

    2017-01-01

    Background: Development of scientific understanding of secondary school students is considered to be one of the goals of environmental education. However, it is not quite clear what instructional strategies and what other factors contribute to the effectiveness of environmental education programs promoting this goal. Purpose: The aim was to…

  20. Social Studies Student Teachers' Levels of Understanding Sociology Concepts within Social Studies Curriculum

    Science.gov (United States)

    Karatekin, Kadir

    2013-01-01

    This study aims at investigating social studies student teachers' levels of understanding sociology concepts within social studies curriculum. Study group of the research consists of 266 teacher candidates attending the Department of Social Studies, Faculty of Education, Kastamonu University during 2012 to 2013 education year. A semi-structured…

  1. Assessing middle school students` understanding of science relationships and processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schau, C.; Mattern, N.; Weber, R. [Univ. of New Nexico, Albuquerque, NM (United States); Minnick, K. [Minnick & Associates, Inc., Albuquerque, NM (United States)

    1994-09-01

    Our overall goal for this multi-year project is to develop and validate an alternative assessment format that effectively measures middle school students understanding of the relationships among selected science concepts and processes. In this project, we collaborate with the staff of the Los Alamos National Laboratory`s TOPS Program and the Programs participating teachers and their students. We also work with selected middle school science teachers from the TOPS program at Sandia National Laboratories. Our goal for this past year was to develop and field test informally a variety of potential measurement formats. This work has allowed us to identify formats to test during the validation phase of the project which will occur during the second year.

  2. The Iranian Puzzle Piece: Understanding Iran in the Global Context

    Science.gov (United States)

    2009-01-01

    15. Barbara opall -rome, “Israeli Defenses to Use artificial Intelligence,” Defense News, 21 January 2008 (http://www.defensenews.com/story.php?i...iv Iranian Power Structure ................................................................10 iv v iv v...former requires a deep understanding of Iran’s power structures and the grievances that thwart rapprochement to determine with whom and about what

  3. Using a Two-Tier Test to Assess Students' Understanding and Alternative Conceptions of Cyber Copyright Laws

    Science.gov (United States)

    Chou, Chien; Chan, Pei-Shan; Wu, Huan-Chueh

    2007-01-01

    The purpose of this study is to explore students' understanding of cyber copyright laws. This study developed a two-tier test with 10 two-level multiple-choice questions. The first tier presented a real-case scenario and asked whether the conduct was acceptable whereas the second-tier provided reasons to justify the conduct. Students in Taiwan…

  4. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Directory of Open Access Journals (Sweden)

    Ryan Sayer

    2017-05-01

    Full Text Available Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students’ prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a “wave” in part of the experiment and as a “particle” in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  5. Availability of Japanese Government's supplemental texts on radiation reflecting the Fukushima Daiichi Nuclear Power Plant accident for elementary and secondary education from dental students' understanding

    International Nuclear Information System (INIS)

    Yoshida, Midori; Honda, Eiichi; Dashpuntsag, Oyunbat; Maeda, Naoki; Hosoki, Hidehiko; Sakama, Minoru; Tada, Toshiko

    2016-01-01

    Following the Fukushima Nuclear Power Plant accident, the Japanese government created two supplemental texts about radiation reflecting the accident for elementary, middle school, and high school students. These texts were made to explain radiation and consequently to obtain public consent for the continuation of the nuclear program. The present study aimed to evaluate the appropriateness of the content of the texts and to collect the basic data on the level of understanding necessary to improve radiation education. Lectures on radiology including nuclear energy and the Fukushima accident were given to 44 fourth-year dental students in 2013. The questionnaire was administered in 2014 when these students were in their sixth-year. The survey was also administered to 40 first-year students and 41 fourth-year students who hadn't any radiology lectures. Students rated their level of understanding of 50 phrases used in the texts on a four-point scale (understanding = 3, a little knowledge = 2, having heard = 1, no knowledge = 0). Questions on taking an advanced physics course in high school and means of learning about radiation in daily life were also asked. The level of understanding of phrases in the supplemental text for middle and high school students was significantly higher among sixth-year students (mean = 1.43) than among first-year (mean = 1.12) or fourth-year (mean = 0.93) students (p < 0.05). Overall, the level of understanding was low, with scores indicating that most students knew only a little. First-year students learning about radiation from television but four-year and six-year students learning about radiation from newspaper scored significantly higher (p < 0.05). It was concluded that radiation education should be improved by using visual material and preparing educators to teach the material for improving the public's understanding of radiation use—especially nuclear power generation because the phrases used in the supplementary

  6. The Influence of Toy Design Activities on Middle School Students' Understanding of the Engineering Design Processes

    Science.gov (United States)

    Zhou, Ninger; Pereira, Nielsen L.; Tarun, Thomas George; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik

    2017-01-01

    The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design…

  7. Implications of the Integration of Computing Methodologies into Conventional Marketing Research upon the Quality of Students' Understanding of the Concept

    Science.gov (United States)

    Ayman, Umut; Serim, Mehmet Cenk

    2004-01-01

    It has been an ongoing concern among academicians teaching social sciences to develop a better methodology to ease understanding of students. Since verbal emphasis is at the core of the concepts within such disciplines it has been observed that the adequate or desired level of conceptual understanding of the students to transforms the theories…

  8. Implementation of cooperative learning model type STAD with RME approach to understanding of mathematical concept student state junior high school in Pekanbaru

    Science.gov (United States)

    Nurhayati, Dian Mita; Hartono

    2017-05-01

    This study aims to determine whether there is a difference in the ability of understanding the concept of mathematics between students who use cooperative learning model Student Teams Achievement Division type with Realistic Mathematic Education approach and students who use regular learning in seventh grade SMPN 35 Pekanbaru. This study was quasi experiments with Posttest-only Control Design. The populations in this research were all the seventh grade students in one of state junior high school in Pekanbaru. The samples were a class that is used as the experimental class and one other as the control class. The process of sampling is using purposive sampling technique. Retrieval of data in this study using the documentation, observation sheets, and test. The test use t-test formula to determine whether there is a difference in student's understanding of mathematical concepts. Before the t-test, should be used to test the homogeneity and normality. Based in the analysis of these data with t0 = 2.9 there is a difference in student's understanding of mathematical concepts between experimental and control class. Percentage of students experimental class with score more than 65 was 76.9% and 56.4% of students control class. Thus be concluded, the ability of understanding mathematical concepts students who use the cooperative learning model type STAD with RME approach better than students using the regular learning. So that cooperative learning model type STAD with RME approach is well used in learning process.

  9. PREVENTION OF SPINAL DISORDERS IN CHILDRENI- IV GRADE

    Directory of Open Access Journals (Sweden)

    Dejаn Gojković

    2012-09-01

    Full Text Available Problem physical activities children younger school-age children, with the basic tasks research is construction kinesitherapy adequate prevention and avoid postural disorders spinal column, optimal ontogenetic level morphological( anthropological development.The main objective research is contents teaching physical education as well as and content that can be put in regular program teaching physical education with the basic task prevention potential and eliminate disorders spinal column, with auxiliary a harmonious biological development. The entities from which he was carried out sample size for this research is defined as population students male primary schools I- IV grade.The first and basic condition was that they are included in teaching physical education in the course of this research sample is taked 400 respondents.-according to the manner elections respondents sample was targeted selected.were taken I- IV grade elementary schools in Bijeljina, Teslic, Foca and Pale.

  10. The Effect of Recycling Education on High School Students' Conceptual Understanding about Ecology: A Study on Matter Cycle

    Science.gov (United States)

    Ugulu, Ilker; Yorek, Nurettin; Baslar, Suleyman

    2015-01-01

    The objective of this study is to analyze and determine whether a developed recycling education program would lead to a positive change in the conceptual understanding of ecological concepts associated with matter cycles by high school students. The research was conducted on 68 high school 10th grade students (47 female and 21 male students). The…

  11. Impact of Curriculum on Understanding of Professional Practice: A Longitudinal Study of Students Commencing Dental Education

    Science.gov (United States)

    Kieser, Jules A.; Dall'Alba, Gloria; Livingstone, Vicki

    2009-01-01

    This longitudinal study examines changes in understanding of dental practice among a cohort of students in the early years of a dentistry programme. In their first two professional years, we identified five distinct understandings of dental practice that we have ordered from least to most comprehensive: "relieving pain or generally caring for…

  12. From Phenotype to Genotype: Exploring Middle School Students' Understanding of Genetic Inheritance in a Web-Based Environment

    Science.gov (United States)

    Williams, Michelle; Montgomery, Beronda L.; Manokore, Viola

    2012-01-01

    Research shows that students face challenges as they learn about genetic inheritance. The challenges could emanate from the fact that genetic inheritance involves unseen processes at different organizational levels. We explored students' understanding of heredity and related concepts such as cells and reproduction using a Web-based Science Inquiry…

  13. The Effect of Interactive Lecture Demonstrations on Students' Understanding of Heat and Temperature: A Study from Thailand

    Science.gov (United States)

    Tanahoung, Choksin; Chitaree, Ratchapak; Soankwan, Chernchok; Sharma, Manjula D.; Johnston, Ian D.

    2009-01-01

    The purpose of this study was to investigate the effectiveness of Interactive Lecture Demonstrations over traditional instruction on university students' understanding of heat and temperature. The participants were 327 first year undergraduate students from two science classes in two academic years from the same university in Thailand. One class…

  14. GeoWall use in an Introductory Geology laboratory: Impacts in Student Understanding of Field Mapping Concepts

    Science.gov (United States)

    Ross, L. E.; Kelly, M.; Springer, A. E.

    2003-12-01

    In the Fall semester of 2003, Northern Arizona University will introduce the GeoWall to its introductory geology courses. This presents an opportunity to assess the impact of this new technology on students' understanding of basic topographic concepts and the spatial relationships between geology, topography, and hydrology on a field trip. Introductory Geology fulfills the Lab Science component of the Liberal Studies Program at Northern Arizona University. The class is open to all Northern Arizona University students, and is most commonly taken by non-science majors. In this class students learn to: locate their position using maps, identify common minerals and rocks, recognize the relationship between geology and geomorphology, visualize how rocks exposed at the surface continue into the subsurface, and to draw conclusions about possible geologic hazards in different settings. In this study we will report how a GeoWall 3D visualization technology was used in a field study of a graben south of Flagstaff. The goal of the field exercise is to improve students' ability to synthesize data collected at field stops into a conceptual model of the graben, linking geology, geomorphology and hydrology. We plan to present a quantitative assessment of the GeoWall learning objectives from data collected from a paired test and control group of students. Teaching assistants (TAs) with two or more lab classes have been identified; these TAs will participate in both GeoWall and non-GeoWall lab exercises. The GeoWall use will occur outside of normal lab hours to avoid disrupting the lab schedule during the eighth week of lab. This field preparation exercise includes a 3D visualization of the Lake Mary graben rendered with the ROMA software. The following week, all students attend the graben field trip; immediately following the trip, students will interviewed about their gain in understanding of the geologic features illustrated during the field trip. The results of the post

  15. Difference in Understanding of the Need for Using Radiation in Various Fields between Students Majoring in Radiation and Non-Radiation Related Studies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok [Dept. of Radiological Tecknology, Daegu Health College, Daegu (Korea, Republic of)

    2011-12-15

    As a way of improving social receptivity of using radiation, this study looked into the difference of understanding the need of using radiation in various fields between students majoring in radiation and non-radiation related studies, who will influence public opinion in the long term. This study also provides data needed for developing efficient strategies for projects promoting the public's awareness of using radiation. Of the students in the 79 schools sampled, 24%(177) were in 4 year colleges and 146 were junior colleges in educational statistics service (http://cesi.kedi.re.kr) In November 2010 1,945 students were selected as a sample, and they were given surveys on the need of using radiation in different fields. As a result, both between students majoring in radiation and non-radiation related studies showed a high level of understanding the need for radiation in the medical field and showed a low level of understanding of the need for radiation in the agricultural field. In all 6 fields of radiation use, students majoring in radiation related studies showed higher levels of understanding for the need to use radiation than students majoring in radiation and non-radiation related studies. In each field, male students and those who have experience medical radiation and relevant education had higher level of understanding. This shows we need to improve the understanding of the cases of female students and those who have not had experiences with medical radiation and to provide relevant education through various kinds of information. The characteristics of the groups that are shown in the results of this study are considered to be helpful for efficiently for project promoting the public's awareness of using radiation.

  16. Difference in Understanding of the Need for Using Radiation in Various Fields between Students Majoring in Radiation and Non-Radiation Related Studies

    International Nuclear Information System (INIS)

    Han, Eun Ok

    2011-01-01

    As a way of improving social receptivity of using radiation, this study looked into the difference of understanding the need of using radiation in various fields between students majoring in radiation and non-radiation related studies, who will influence public opinion in the long term. This study also provides data needed for developing efficient strategies for projects promoting the public's awareness of using radiation. Of the students in the 79 schools sampled, 24%(177) were in 4 year colleges and 146 were junior colleges in educational statistics service (http://cesi.kedi.re.kr) In November 2010 1,945 students were selected as a sample, and they were given surveys on the need of using radiation in different fields. As a result, both between students majoring in radiation and non-radiation related studies showed a high level of understanding the need for radiation in the medical field and showed a low level of understanding of the need for radiation in the agricultural field. In all 6 fields of radiation use, students majoring in radiation related studies showed higher levels of understanding for the need to use radiation than students majoring in radiation and non-radiation related studies. In each field, male students and those who have experience medical radiation and relevant education had higher level of understanding. This shows we need to improve the understanding of the cases of female students and those who have not had experiences with medical radiation and to provide relevant education through various kinds of information. The characteristics of the groups that are shown in the results of this study are considered to be helpful for efficiently for project promoting the public's awareness of using radiation.

  17. Lost in Translation: Understanding Students' Use of Social Networking and Online Resources to Support Early Clinical Practices. A National Survey of Graduate Speech-Language Pathology Students

    Science.gov (United States)

    Boster, Jamie B.; McCarthy, John W.

    2018-01-01

    The Internet is a source of many resources for graduate speech-language pathology (SLP) students. It is important to understand the resources students are aware of, which they use, and why they are being chosen as sources of information for therapy activities. A national online survey of graduate SLP students was conducted to assess their…

  18. Leveraging Conceptual Frameworks to Improve Students' Mental Organization of Astronomy Understanding

    Science.gov (United States)

    Slater, Timothy F.; Lee, K. M.

    2006-06-01

    Many different types of schematic diagrams are useful in helping students organize and internalize their developing understanding in introductory astronomy courses. These include Venn Diagrams, Flowcharts, Concept Maps, among others, which illustrate the relationships between astronomical objects and dynamic concepts. These conceptual framework diagrams have been incorporated into the NSF-funded ClassAction project. ClassAction is a collection of electronic materials designed to enhance the metacognitive skills of college and university introductory astronomy survey students by promoting interactive engagement and providing rapid feedback in a highly visual setting. The main effort is targeted at creating dynamic think-pair-share questions supported by simulations, animations, and visualizations to be projected in the lecture classroom. The infrastructure allows instructors to recast these questions into alternative forms based on their own pedagogical preferences and feedback from the class. The recourses can be easily selected from a FLASH computer database and are accompanied by outlines, graphics, and numerous simulations which the instructor can use to provide student feedback and, when necessary, remediation. ClassAction materials are publicly available online at URL: http://astro.unl.edu and is funded by NSF Grant #0404988.

  19. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    Science.gov (United States)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  20. Making the Invisible Visible: Enhancing Students' Conceptual Understanding by Introducing Representations of Abstract Objects in a Simulation

    Science.gov (United States)

    Olympiou, Georgios; Zacharias, Zacharia; deJong, Ton

    2013-01-01

    This study aimed to identify if complementing representations of concrete objects with representations of abstract objects improves students' conceptual understanding as they use a simulation to experiment in the domain of "Light and Color". Moreover, we investigated whether students' prior knowledge is a factor that must be considered in deciding…

  1. Understanding How Key Institutional Agents Provide Southeast Asian American Students with Access to Social Capital in College

    Science.gov (United States)

    Museus, Samuel D.; Mueller, M. Kalehua.

    2018-01-01

    In this study, we focus on understanding how institutional agents can and do foster success among Southeast Asian American (SEAA) students in higher education. Specifically, qualitative methods were utilized to examine the experiences of 34 SEAA undergraduate students at 5 public 4-year colleges and universities across the United States and…

  2. Investigating a Link between Pre-Calculus Students' Uses of Graphing Calculators and Their Understanding of Mathematical Symbols

    Science.gov (United States)

    Kenney, Rachael H.

    2014-01-01

    This study examined ways in which students make use of a graphing calculator and how use relates to comfort and understanding with mathematical symbols. Analysis involved examining students' words and actions in problem solving to identify evidence of algebraic insight. Findings suggest that some symbols and symbolic structures had strong…

  3. Transuranium perrhenates: Np(IV), Pu(IV) and (III), Am (III)

    International Nuclear Information System (INIS)

    Silvestre, Jean-Paul; Freundlich, William; Pages, Monique

    1977-01-01

    Synthesis in aqueous solution and by solid state reactions, crystallographical characterization and study of the stability of some transuranium perrhenates: Asup(n+)(ReO 4 - )sub(n) (A=Np(IV), Pu(IV), Pu(III), Am(III) [fr

  4. Development of psychosocial case studies by students to improve their ability to understand and analyze human behavior

    OpenAIRE

    Saldaña, Omar; Rodríguez Carballeira, Álvaro; Espelt, Esteve; Jiménez, Yirsa; Porrúa, Clara; Escartín Solanelles, Jordi; Castrechini Trotta, Ángela; Codina, Núria (Codina Mata); Pestana, José Vicente; Vidal i Moranta, Tomeu

    2015-01-01

    This study presents an active learning methodology based on the development and analysis of case studies by college students and explores its effects on academic performance and on students' capacity of understanding and analysing human behaviour. A group of 54 students who were taking the course Social Psychology at the University of Barcelona developed written stories where psychosocial concepts were represented. Results showed that participants, after developing their own case studies, imp...

  5. Results from a Pilot Study of a Curriculum Unit Designed to Help Middle School Students Understand Chemical Reactions in Living Systems

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Flanagan, Jean C.; Roseman, Jo Ellen

    2012-01-01

    Students often have trouble understanding key biology ideas because they lack an understanding of foundational chemistry ideas. AAAS Project 2061 is collaborating with BSCS in the development a curriculum unit that connects core chemistry and biochemistry ideas in order to help eighth grade students build the conceptual foundation needed for high…

  6. Understanding Shakespeare's "Julius Caesar" Online: A Student Casebook to Issues, Sources, and Historical Documents.

    Science.gov (United States)

    Derrick, Thomas

    This casebook of materials about William Shakespeare's "Julius Caesar" will enrich students' understanding of the historical context of the play and encourage interpretations of its cultural meaning. Shakespeare's "Julius Caesar" reflects perennial cultural concerns about order and freedom, particularly as they clash in the…

  7. Pengaruh Program Gemar Membaca terhadap Kemampuan Mengarang Siswa Kelas IV SD

    Directory of Open Access Journals (Sweden)

    Hakimah Saidah

    2017-12-01

    Full Text Available The reading program is another name for reading literature used by SDN Bugangan 02Semarang. Implementation of the program likes to read that is 15 minutes before the learning activities of students reading books with the title as he wishes. In this study students are given a book entitled "a collection of children's stories about the habit of eating healthy food". This short story contains six titles of children with a theme of healthy food. This theme is in accordance with the 9th grade theme teacher's book. This study aims to determine the effect of reading programs on the ability to make students. This research uses Pre-Experiment Designs with quantitative approach. The sample of this research is all students of grade IV SDN Bugangan 02 Semarang. The results of this study indicate that reading programs affect students' writing ability.

  8. Students' Understanding of the Nature of Matter and Chemical Reactions--A Longitudinal Study of Conceptual Restructuring

    Science.gov (United States)

    Øyehaug, Anne Bergliot; Holt, Anne

    2013-01-01

    This longitudinal study aims to provide greater insight into how students' understanding of matter and chemical reactions develops over time and how their knowledge structures are restructured. Four case-study students in a Norwegian primary school were followed for two years from age 10-11 to age 12-13. Researchers were responsible for…

  9. A Qualitative Study of Agricultural Literacy in Urban Youth: What Do Elementary Students Understand about the Agri-Food System?

    Science.gov (United States)

    Hess, Alexander J.; Trexler, Cary J.

    2011-01-01

    Agricultural literacy of K-12 students is a national priority for both scientific and agricultural education professional organizations. Development of curricula to address this priority has not been informed by research on what K-12 students understand about the agri-food system. While students' knowledge of food and fiber system facts have been…

  10. Teaching Games for Understanding: A Comprehensive Approach to Promote Student's Motivation in Physical Education.

    Science.gov (United States)

    Hortigüela Alcalá, David; Hernando Garijo, Alejandra

    2017-10-01

    It seems important to consider students' attitudes towards physical education (PE), and the way they learn sports. The present study examines students' perceptions of motivation and achievement in PE after experiencing three consecutive sport units. Two hundred and thirty seven students from the 1st, 2nd, 3rd, and 4th grade in a high school in Burgos (Spain) and two teachers agreed to participate. They were divided into two groups in order to compare two instructional approaches. The experimental group (A), 128 students, experienced Teaching Games for Understanding (TGfU), while the control group (B), 109 students, experienced a technical-traditional approach. Each group was taught by a different teacher. The study followed a mixed-method research design with quantitative (questionnaire) and qualitative (interview) data. Results revealed that group A showed greater motivation and achievement in PE than group B. Significant differences were found in achievement. Participants with better academic results in group A were more positive in sport participation. Meanwhile, students who practiced more extracurricular sports in group B were more actively involved in sport. Teachers disagreed greatly on the way sport should be taught in PE.

  11. Understanding the importance of teachers in facilitating student success: Contemporary science, practice, and policy.

    Science.gov (United States)

    Jimerson, Shane R; Haddock, Aaron D

    2015-12-01

    Teacher quality has a vital influence on student success or failure. Thus, further research regarding teacher effectiveness, teacher evaluation, teacher well-being, and teacher contributions is essential to inform school psychologists and allied educational professionals who collaborate and consult with teachers to facilitate student success. In this special topic section of School Psychology Quarterly, a series of 6 articles further elucidate teachers' powerful contributions to student outcomes along with concrete, research-based ways for school psychologists to support and collaborate with teachers. The studies included in the special section describe how teacher support facilitates students' positive academic and social-emotional outcomes and how students' attitudes toward learning moderate the association between the classroom environment and students' academic achievement. Studies also report on the development and validation of self-report measures focused on both teacher subjective well-being and teachers' use of evidence-based practices. Finally, the articles included in the special topic section offer insights and ideas for refining teacher evaluation practices, understanding the factors contributing to program implementation fidelity, and improving prevention, early identification, and intervention efforts aimed at fostering school completion and positive youth development. (c) 2015 APA, all rights reserved).

  12. Coordination and solvent extraction behaviour of oxozirconium(IV), thorium(IV) and dioxouranium(VI)

    International Nuclear Information System (INIS)

    Dash, K.C.

    1989-01-01

    The systematic liquid-liquid extraction behaviour of oxozirconium (IV), thorium(IV) and dioxouranium(VI) have been investigated using a number of synthesised and commercial chelating extractants. The synergism or antagonism for these processes in presence of neutral donor ligands have also been identified and the conditions for separation and isolation of pure individual metal ions have been established. The coordination behaviour of oxozirconium(IV), thorium(IV) and dioxouranium(VI) with a large number of mono- and polydentate ligands have been studied. With oxozirconium(IV), invariably always a cyclic, tetranuclear species is obtained, derived from the tetrameric structure of the parent ZrOCl 2 .8H 2 O which is actually (Zr 4 (OH) 8 (H 2 O) 16 )Cl 8 .12H 2 O. No simple, monomeric oxozirconium(IV) complex was obtained. Uranium(VI) and thorium(IV) form a wide variety of complexes of higher coordination numbers and several bi- and trinuclear complexes were also characterised where the two adjacent metal centres are joined to each other by a double hydroxo-bridge. (author). 69 refs., 3 figs., 4 tabs

  13. Understanding your student: Using the VARK model

    Directory of Open Access Journals (Sweden)

    I J Prithishkumar

    2014-01-01

    Full Text Available Background: Students have different preferences in the assimilation and processing of information. The VARK learning style model introduced by Fleming includes a questionnaire that identifies a person′s sensory modality preference in learning. This model classifies students into four different learning modes; visual (V, aural (A, read/write (R, and kinesthetic (K. Materials and Methods: The 16-point multiple choice VARK questionnaire version 7.1 was distributed to first year undergraduate medical students after obtaining permission for use.Results: Seventy-nine students (86.8% were multimodal in their learning preference, and 12 students (13.8% were unimodal. The highest unimodal preference was K-7.7%. Surprisingly, there were no visual unimodal learners. The commonest learning preference was the bimodal category, of which the highest percentage was seen in the AK (33% and AR (16.5% category. The most common trimodal preference was ARK (8.9%. The total individual scores in each category were V-371, A-588, R/W-432, and K-581; auditory and kinesthetic being the highest preference. Visual mode had the lowest overall score. There was no significant difference in preference between the sexes. Conclusion: Students possess a wide diversity in learning preferences. This necessitates teachers to effectively deliver according to the needs of the student. Multiple modalities of information presentation are necessary to keep the attention and motivation of our students requiring a shift from the traditional large-group teacher-centric lecture method to an interactive, student-centric multimodal approach.

  14. Relationship of beliefs, epistemology, and alternate conceptions to college student understanding of evolution and common descent

    Science.gov (United States)

    Miller, Joyce Catherine

    Quantitative and qualitative methodologies were combined to explore the relationships between an understanding of evolution and 4 epistemology factors: (a) control of learning, (b) speed of learning , (c) stability of knowledge, and (d) belief in evolution/creationism. A 17-item instrument was developed that reliably measured a belief in creationism and subtle differences between this belief and an acceptance of evolution. The subjects were 45 students enrolled in a biology course at a 2-year community college. Evolution was taught in a traditional format, and common descent was taught in an inquiry-based laboratory session consisting of: (a) a comparison of hemoglobin DNA sequences of the human, chimpanzee, and gorilla; and (b) a comparison of 8 primate skull casts, including the modern human, chimpanzee, gorilla, and five prehistoric fossils. Prior to instruction the students completed an epistemology questionnaire and a knowledge test about evolution. Five weeks after instruction, the students completed a posttest. A t-test revealed no differences between the pretest and the posttest. However, the group of students that scored higher on the posttest than on the pretest was found to have a stronger belief in the uncertainty of knowledge. Pearson r was computed to check for relationships between the 4 epistemological factors and the understanding of evolution. There was a significant relationship between a belief in creationism and a lessor understanding of evolution as measured on both the pretest and the posttest (ps humans evolved from the chimpanzee. Additionally, students grouped the 8 primate skulls into just 2 categories: human and animals. Other misconceptions included a nonevolutionary use of the term, related, and the use of naive organizers leading to incorrect conclusions about the relatedness of certain organisms, such as a connection between fish and whales. These organizers included: (a) similarity of traits, (b) environment, (c) relative size, (d

  15. Validation of the Portuguese DSM-IV-MR-J.

    Science.gov (United States)

    Calado, Filipa; Alexandre, Joana; Griffiths, Mark D

    2016-01-01

    Youth problem gambling is viewed as an emergent public health issue in many countries, and is also an emerging area of public concern in Portugal. However, there is currently no Portuguese instrument that focuses specifically on the measurement of problem gambling among young people. Consequently, the present study aimed to validate the DSM-IV-MR-J for use among Portuguese adolescents and to examine its' psychometric properties. A cross-cultural adaption of this instrument to the Portuguese language was performed using the translation and back translation method. The final version of the instrument was administered to 753 Portuguese high school and first year college students. The findings revealed an acceptable internal reliability and replicated the one-factor structure of this scale. Based on these findings, the Portuguese DSM-IV-MR-J appears to be a valid and reliable instrument, and provides a much needed psychometric tool for the development of more research on youth gambling in Portugal.

  16. Understanding Richard Wright's "Black Boy": A Student Casebook to Issues, Sources, and Historical Documents.

    Science.gov (United States)

    Felgar, Robert

    In "Black Boy," Richard Wright triumphs over an ugly, racist world by fashioning an inspiring, powerful, beautiful, and fictionalized autobiography. To help students understand and appreciate his story in the cultural, political, racial, social, and literary contexts of its time, this casebook provides primary historical documents,…

  17. Validation of practical notebook Morphophysiology IV

    Directory of Open Access Journals (Sweden)

    Rafael Capote Martínez

    2012-03-01

    Full Text Available Since the implementation of the Morphophysiology, 2007-2008 academic year, has shown a low achievement and motivation of students in individual and independent study. Most of them do not possess the skills or general intellectual development freelancing enough to assimilate the great independence required by this new learning model. Therefore, it was decided to introduce a new medium of instruction notebook handy morphophysiology IV which is an orientation guide for individual and independent study of students at the same time improves the management process of the educational process, whose usefulness is intended to validate. They surveyed 345 (94.8% who choose different specialties including Physical Culture. It was used in the survey, the questionnaire technique questions and answers, the closed first, and combining the direct and indirect, with some filter. This study was conducted through the comparison test of proportions between independent samples, using the Microstat statistical system, with a significance level of α = 0.05 (P <0.05. The 97.33% and 95.6% of students classified as necessary and useful respectively, the Practical Notebook, based on teaching assignments. The 67.84% of students suggests that the effectiveness of Practical Notebook is achieved when it is developed in a coordinated manner from staff student effort, reflections set out in groups or teams of study and the guiding role and facilitator professor, where it appears that forces develop participatory techniques. It is concluded that the Practical Notebook, acts as a methodological guide guiding, and developed through teaching assignments by students during individual and independent study, represents an effective tool for the learning process, contributing significantly to the improvement morphophysiology the curricular discipline.

  18. Understanding Campus Culture and Student Coping Strategies for Mental Health Issues in Five Canadian Colleges and Universities

    Science.gov (United States)

    Giamos, Dimitris; Lee, Alex Young Soo; Suleiman, Amanda; Stuart, Heather; Chen, Shu-Ping

    2017-01-01

    This study aimed to better understand campus mental health culture and student mental health coping strategies, and to identify the mental health needs of students as well as gaps in mental health services within postsecondary education. A videovoice method was used to identify and document health-related issues and advocate for change. Forty-one…

  19. Using Laboratory Activities Enhanced with Concept Cartoons to Support Progression in Students' Understanding of Acid-Base Concepts

    Science.gov (United States)

    Ozmen, Haluk; Demircioglu, Gokhan; Burhan, Yasemin; Naseriazar, Akbar; Demircioglu, Hulya

    2012-01-01

    The aim of this study is to examine the effectiveness of an intervention based on a series of laboratory activities enhanced with concept cartoons. The purpose of the intervention was to enhance students' understanding of acid-base chemistry for eight grade students' from two classes in a Turkish primary school. A pretest-posttest non-equivalent…

  20. Increasing nursing students' understanding and accuracy with medical dose calculations: A collaborative approach.

    Science.gov (United States)

    Mackie, Jane E; Bruce, Catherine D

    2016-05-01

    Accurate calculation of medication dosages can be challenging for nursing students. Specific interventions related to types of errors made by nursing students may improve the learning of this important skill. The objective of this study was to determine areas of challenge for students in performing medication dosage calculations in order to design interventions to improve this skill. Strengths and weaknesses in the teaching and learning of medication dosage calculations were assessed. These data were used to create online interventions which were then measured for the impact on student ability to perform medication dosage calculations. The setting of the study is one university in Canada. The qualitative research participants were 8 nursing students from years 1-3 and 8 faculty members. Quantitative results are based on test data from the same second year clinical course during the academic years 2012 and 2013. Students and faculty participated in one-to-one interviews; responses were recorded and coded for themes. Tests were implemented and scored, then data were assessed to classify the types and number of errors. Students identified conceptual understanding deficits, anxiety, low self-efficacy, and numeracy skills as primary challenges in medication dosage calculations. Faculty identified long division as a particular content challenge, and a lack of online resources for students to practice calculations. Lessons and online resources designed as an intervention to target mathematical and concepts and skills led to improved results and increases in overall pass rates for second year students for medication dosage calculation tests. This study suggests that with concerted effort and a multi-modal approach to supporting nursing students, their abilities to calculate dosages can be improved. The positive results in this study also point to the promise of cross-discipline collaborations between nursing and education. Copyright © 2016 Elsevier Ltd. All rights

  1. A cognitive framework for analyzing and describing introductory students' use and understanding of mathematics in physics

    Science.gov (United States)

    Tuminaro, Jonathan

    Many introductory, algebra-based physics students perform poorly on mathematical problem solving tasks in physics. There are at least two possible, distinct reasons for this poor performance: (1) students simply lack the mathematical skills needed to solve problems in physics, or (2) students do not know how to apply the mathematical skills they have to particular problem situations in physics. While many students do lack the requisite mathematical skills, a major finding from this work is that the majority of students possess the requisite mathematical skills, yet fail to use or interpret them in the context of physics. In this thesis I propose a theoretical framework to analyze and describe students' mathematical thinking in physics. In particular, I attempt to answer two questions. What are the cognitive tools involved in formal mathematical thinking in physics? And, why do students make the kinds of mistakes they do when using mathematics in physics? According to the proposed theoretical framework there are three major theoretical constructs: mathematical resources, which are the knowledge elements that are activated in mathematical thinking and problem solving; epistemic games, which are patterns of activities that use particular kinds of knowledge to create new knowledge or solve a problem; and frames, which are structures of expectations that determine how individuals interpret situations or events. The empirical basis for this study comes from videotaped sessions of college students solving homework problems. The students are enrolled in an algebra-based introductory physics course. The videotapes were transcribed and analyzed using the aforementioned theoretical framework. Two important results from this work are: (1) the construction of a theoretical framework that offers researchers a vocabulary (ontological classification of cognitive structures) and grammar (relationship between the cognitive structures) for understanding the nature and origin of

  2. AN APPRAISAL OF INSTRUCTIONAL UNITS TO ENHANCE STUDENT UNDERSTANDING OF PROFIT-MAXIMIZING PRINCIPLES. RESEARCH SERIES IN AGRICULTURAL EDUCATION.

    Science.gov (United States)

    BARKER, RICHARD L.; BENDER, RALPH E.

    TWENTY-TWO SELECTED OHIO VOCATIONAL AGRICULTURE TEACHERS AND 262 JUNIOR AND SENIOR VOCATIONAL AGRICULTURE STUDENTS PARTICIPATED IN A STUDY TO MEASURE THE RELATIVE EFFECTIVENESS OF NEWLY DEVELOPED INSTRUCTIONAL UNITS DESIGNED TO ENHANCE STUDENT UNDERSTANDING OF PROFIT-MAXIMIZING PRINCIPLES IN FARM MANAGEMENT. FARM MANAGEMENT WAS TAUGHT IN THE…

  3. The Effect of Brain Based Learning on Second Grade Junior Students' Mathematics Conceptual Understanding on Polyhedron

    Science.gov (United States)

    Suarsana, I. Made; Widiasih, Ni Putu Santhi; Suparta, I. Nengah

    2018-01-01

    The aim of this study is to examine the effect of Brain Based Learning on second grade junior high school students? conceptual understanding on polyhedron. This study was conducted by using post-test only control group quasi-experimental design. The subjects of this study were 148 students that divided into three classes. Two classes were taken as…

  4. Representational Classroom Practices that Contribute to Students' Conceptual and Representational Understanding of Chemical Bonding

    Science.gov (United States)

    Hilton, Annette; Nichols, Kim

    2011-01-01

    Understanding bonding is fundamental to success in chemistry. A number of alternative conceptions related to chemical bonding have been reported in the literature. Research suggests that many alternative conceptions held by chemistry students result from previous teaching; if teachers are explicit in the use of representations and explain their…

  5. Perceptual Influence of Ugandan Biology Students' Understanding of HIV/AIDS

    Science.gov (United States)

    Mutonyi, Harriet; Nashon, Samson; Nielsen, Wendy S.

    2010-08-01

    In Uganda, curbing the spread of HIV/AIDS has largely depended on public and private media messages about the disease. Media campaigns based on Uganda’s cultural norms of communication are metaphorical, analogical and simile-like. The topic of HIV/AIDS has been introduced into the Senior Three (Grade 11) biology curriculum in Uganda. To what extent do students’ pre-conceptions of the disease, based on these media messages influence students’ development of conceptual understanding of the disease, its transmission and prevention? Of significant importance is the impact the conceptions students have developed from the indirect media messages on classroom instruction on HIV/AIDS. The study is based in a theoretical framework of conceptual change in science learning. An interpretive case study to determine the impact of Ugandan students’ conceptions or perceptions on classroom instruction about HIV/AIDS, involving 160 students aged 15-17, was conducted in four different Ugandan high schools: girls boarding, boys boarding, mixed boarding, and mixed day. Using questionnaires, focus group discussions, recorded biology lessons and informal interviews, students’ preconceptions of HIV/AIDS and how these impact lessons on HIV/AIDS were discerned. These preconceptions fall into four main categories: religious, political, conspiracy and traditional African worldviews. Results of data analysis suggest that students’ prior knowledge is persistent even after biology instructions. This has implications for current teaching approaches, which are mostly teacher-centred in Ugandan schools. A rethinking of the curriculum with the intent of offering science education programs that promote understanding of the science of HIV/AIDS as opposed to what is happening now—insensitivity to misconceptions about the disease—is needed.

  6. Improving students' understanding by using on-going education research to refine active learning activities in a first-year electronics course

    International Nuclear Information System (INIS)

    Mazzolini, Alexander Peter; Daniel, Scott Arthur

    2015-01-01

    Interactive Lecture Demonstrations (ILDs) have been used across introductory university physics as a successful active learning (AL) strategy to improve students’ conceptual understanding. We have developed ILDs for more complex topics in our first-year electronics course. In 2006 we began developing ILDs to improve students’ conceptual understanding of Operational Amplifiers (OAs) and negative feedback in amplification circuits. The ILDs were used after traditional lecture instruction to help students consolidate their understanding. We developed a diagnostic test, to be administered to students both before and after the ILDs, as a measure of how effective the ILDs were in improving students’ understanding.

  7. Cultural Capital of Migrant Students: Teachers' and Students' Perspectives and Understandings.

    Science.gov (United States)

    Romanowski, Michael H.

    2003-01-01

    A study examined the role played by cultural capital in the education of migrant students. Observations and interviews with administrators, faculty, and students during a summer migrant program in a rural Ohio school district indicate that the cultural capital of migrant students, particularly family loyalty, often conflicted with the cultural…

  8. Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment

    Science.gov (United States)

    Stone, Elisa M.

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations—for example, hypothesizing, data analysis, or use of controls—and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level. PMID:24591508

  9. Guiding students to develop an understanding of scientific inquiry: a science skills approach to instruction and assessment.

    Science.gov (United States)

    Stone, Elisa M

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations-for example, hypothesizing, data analysis, or use of controls-and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level.

  10. Understanding Loan Use and Debt Burden among Low-Income and Minority Students at a Large Urban Community College

    Science.gov (United States)

    Luna-Torres, Maria; McKinney, Lyle; Horn, Catherine; Jones, Sara

    2018-01-01

    This study examined a sample of community college students from a diverse, large urban community college system in Texas. To gain a deeper understanding about the effects of background characteristics on student borrowing behaviors and enrollment outcomes, the study employed descriptive statistics and regression techniques to examine two separate…

  11. These terrifying three words: A qualitative, mixed methods study of students' and mentors' understandings of 'fitness to practise'.

    Science.gov (United States)

    Haycock-Stuart, Elaine; MacLaren, Jessica; McLachlan, Alison; James, Christine

    2016-08-01

    There is little empirical published research pertaining to fitness to practise and pre-registration nursing students. Much of the existing fitness to practise literature focuses on medical students and there is a preponderance of literature reviews and descriptive or discursive papers. The multicentre study aimed to explore students' and mentor's understandings of fitness to practise processes in pre-registration nursing programmes. A qualitative study in the interpretive paradigm with interpretive analysis involving 6 focus groups and 4 face-to-face interviews with nursing students and mentors. Eleven Higher Education Institutions providing pre-registration nursing education in the UK. Data were collected January 2014-March 2015 following ethical approval. Purposive sampling was used to recruit mentors and nursing (but not midwifery) students from pre-registration nursing programmes at different stages of educational preparation. Qualitatively driven semi-structured focus groups (n=6) and interviews (n=4) were conducted with a total of 35 participants (17 pre-registration nursing students and 18 nursing mentors). Three themes identified from the student and mentor data are considered: Conceptualising Fitness to Practise; Good Health and Character; and Fear and Anxiety Surrounding Fitness to Practise Processes. Uncertainty about understandings of fitness to practise contributed to a pervasive fear among students and reluctance among mentors to raise concerns about a student's fitness to practise. Both students and mentors expressed considerable anxiety and engaged in catastrophic thinking about fitness to practise processes. Higher Education Institutes should reinforce to students that they are fit to practise the majority of the time and reduce the negative emotional loading of fitness to practise processes and highlight learning opportunities. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  12. Synthesis and characterization of chiral thorium(IV) and uranium(IV) benzamidinate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, Sebastian; Maerz, Juliane; Kaden, Peter; Patzschke, Michael; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements

    2017-06-01

    Two chiral benzamidinate complexes of tetravalent actinides (Th(IV) and U(IV)) were synthesized using a salt metathesis reaction of the corresponding actinide(IV) tetrachlorides and the potassium salt of the chiral benzamidine (S,S)-N,N-Bis-(1-phenylethyl)-benzamidine ((S)-HPEBA). The structure of the complexes was determined with single crystal X-ray diffraction. These are the first examples of chiral amidinate complexes of actinides.

  13. "Toward High School Biology": Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better…

  14. Influence on Levels of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts.

    Science.gov (United States)

    Nakhleh, Mary B.; Krajcik, Joseph S.

    1994-01-01

    Involves secondary students in a study designed to allow investigation into how different levels of information presented by various technologies (chemical indicators, pH meters, and microcomputer-based laboratories-MBLs) affected students' understanding of acid, base, and pH concepts. Results showed that students using MBLs exhibited a greater…

  15. iväkoti Riemula

    OpenAIRE

    Alanko, Reetta; Ihanamäki, Katja

    2012-01-01

    Opinnäytetyössä kuvataan yleisesti päivähoidon kehitystä Suomessa sekä päivähoitoa yrittäjän näkökulmasta, tuoden esille sen tämän päivän haasteet ja mahdollisuudet. Työssä on pohdittu yhteistyön merkitystä kunnan kanssa ja sitä, miten kunta voi osaltaan joko rajoittaa tai edesauttaa yksityisen päivähoitoyrityksen toimintaa. Opinnäytetyössä kerrotaan teoriassa Päiväkoti Riemula nimisen, erityispäivähoitopalveluita tarjoavan yrityksen perustamiseen liittyvistä suunnitelmista. Suunnitelluss...

  16. Understanding Personal Learning Environment Perspectives of Thai International Tourism and Hospitality Higher Education Students

    Science.gov (United States)

    Tanyong, Siriwan; Sharafuddin, Mohamed Ali

    2016-01-01

    This paper is part of a periodic research conducted in developing a personal learning environment for Thailand's higher education students with English as medium of instruction. The objective of the first phase in this research was to understand the personal learning environment perspectives of Thai International tourism and hospitality higher…

  17. Understanding the Nernst Equation and Other Electrochemical Concepts: An Easy Experimental Approach for Students

    Science.gov (United States)

    Vidal-Iglesias, Francisco J.; Solla-Gullon, Jose; Rodes, Antonio; Herrero, Enrique; Aldaz, Antonio

    2012-01-01

    The goal of the present laboratory experiment is to deepen the understanding of the Nernst equation and some other concepts that are essential in electrochemistry. In this practical laboratory session, students first learn that the equilibrium potential of an electrode is related to the difference between two equilibrium inner electric potentials…

  18. Availability of Japanese Government's supplemental texts on radiation reflecting the Fukushima Daiichi Nuclear Power Plant accident for elementary and secondary education from dental students' understanding.

    Science.gov (United States)

    Yoshida, Midori; Honda, Eiichi; Dashpuntsag, Oyunbat; Maeda, Naoki; Hosoki, Hidehiko; Sakama, Minoru; Tada, Toshiko

    2016-05-01

    Following the Fukushima Nuclear Power Plant accident, the Japanese government created two supplemental texts about radiation reflecting the accident for elementary, middle school, and high school students. These texts were made to explain radiation and consequently to obtain public consent for the continuation of the nuclear program. The present study aimed to evaluate the appropriateness of the content of the texts and to collect the basic data on the level of understanding necessary to improve radiation education. Lectures on radiology including nuclear energy and the Fukushima accident were given to 44 fourth-year dental students in 2013. The questionnaire was administered in 2014 when these students were in their sixth-year. The survey was also administered to 40 first-year students and 41 fourth-year students who hadn't any radiology lectures. Students rated their level of understanding of 50 phrases used in the texts on a four-point scale (understanding = 3, a little knowledge = 2, having heard = 1, no knowledge = 0). Questions on taking an advanced physics course in high school and means of learning about radiation in daily life were also asked. The level of understanding of phrases in the supplemental text for middle and high school students was significantly higher among sixth-year students (mean = 1.43) than among first-year (mean = 1.12) or fourth-year (mean = 0.93) students (p radiation from television but four-year and six-year students learning about radiation from newspaper scored significantly higher (p radiation education should be improved by using visual material and preparing educators to teach the material for improving the public's understanding of radiation use-especially nuclear power generation because the phrases used in the supplementary texts are very difficult for students to understand. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Anatomy of Teaching Anatomy: Do Prosected Cross Sections Improve Students Understanding of Spatial and Radiological Anatomy?

    Directory of Open Access Journals (Sweden)

    L. B. Samarakoon

    2016-01-01

    Full Text Available Introduction. Cadaveric dissections and prosections have traditionally been part of undergraduate medical teaching. Materials and Methods. Hundred and fifty-nine first-year students in the Faculty of Medicine, University of Colombo, were invited to participate in the above study. Students were randomly allocated to two age and gender matched groups. Both groups were exposed to identical series of lectures regarding anatomy of the abdomen and conventional cadaveric prosections of the abdomen. The test group (n=77, 48.4% was also exposed to cadaveric cross-sectional slices of the abdomen to which the control group (n=82, 51.6% was blinded. At the end of the teaching session both groups were assessed by using their performance in a timed multiple choice question paper as well as ability to identify structures in abdominal CT films. Results. Scores for spatial and radiological anatomy were significantly higher among the test group when compared with the control group (P<0.05, CI 95%. Majority of the students in both control and test groups agreed that cadaveric cross section may be useful for them to understand spatial and radiological anatomy. Conclusion. Introduction of cadaveric cross-sectional prosections may help students to understand spatial and radiological anatomy better.

  20. Understanding science teaching effectiveness: examining how science-specific and generic instructional practices relate to student achievement in secondary science classrooms

    Science.gov (United States)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-12-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student achievement can provide teachers with beneficial information about how to best engage their students in meaningful science learning. To address this need, this study examined the instructional practices that 99 secondary biology teachers used in their classrooms and employed regression to determine which instructional practices are predictive of students' science achievement. Results revealed that the secondary science teachers who had well-managed classroom environments and who provided opportunities for their students to engage in student-directed investigation-related experiences were more likely to have increased student outcomes, as determined by teachers' value-added measures. These findings suggest that attending to both generic and subject-specific aspects of science teachers' instructional practice is important for understanding the underlying mechanisms that result in more effective science instruction in secondary classrooms. Implications about the use of these observational measures within teacher evaluation systems are discussed.

  1. THE APPLICATION OF RECIPROCAL TEACHING METHOD FOR IMPROVING THE UNDERSTANDING OF MATHEMATICS CONCEPT OF 7TH GRADE STUDENTS SMP NEGERI 2 DEPOK.

    Directory of Open Access Journals (Sweden)

    Tatag Bagus Argikas

    2016-10-01

    Full Text Available This research aims to: (1 describe the implementation of learning mathematics with Reciprocal Teaching methods that is for improving the concept of learning understanding mathematic in class VIIA SMP Negeri 2 Depok. (2 Knowing the increased understanding of student learning in class VIIA SMP Negeri 2 Depok use Reciprocal Teaching methods. This research constitutes an action in class that is according along the teacher. The data of research was collated by sheet observations and each evaluation of cycles. That is done in two cycles. The first was retrieved the average value of student learning achievement of 70.96%. The second was retrieved achievement of 90.32%. Thus this learning model can increase student learning understanding.   Key word: The understanding of Mathematical Concept, Reciprocal Teaching Method.

  2. Evaluating College Students' Conceptual Knowledge of Modern Physics: Test of Understanding on Concepts of Modern Physics (TUCO-MP)

    Science.gov (United States)

    Akarsu, Bayram

    2011-01-01

    In present paper, we propose a new diagnostic test to measure students' conceptual knowledge of principles of modern physics topics. Over few decades since born of physics education research (PER), many diagnostic instruments that measure students' conceptual understanding of various topics in physics, the earliest tests developed in PER are Force…

  3. What Does It Mean for a Student to Understand the First-Year Calculus? Perspectives of 24 Experts

    Science.gov (United States)

    Sofronas, Kimberly S.; DeFranco, Thomas C.; Vinsonhaler, Charles; Gorgievski, Nicholas; Schroeder, Larissa; Hamelin, Chris

    2011-01-01

    This article presents the views of 24 nationally recognized authorities in the field of mathematics, and in particular the calculus, on student understanding of the first-year calculus. A framework emerged that includes four overarching end goals for understanding of the first-year calculus: (a) mastery of the fundamental concepts and-or skills of…

  4. Preservice Teachers' Understanding of Variable

    Science.gov (United States)

    Brown, Sue; Bergman, Judy

    2013-01-01

    This study examines the research on middle school students' understanding of variables and explores preservice elementary and middle school teachers' knowledge of variables. According to research studies, middle school students have limited understanding of variables. Many studies have examined the performance of middle school students and offered…

  5. Understanding the Greenhouse Effect by Embodiment--Analysing and Using Students' and Scientists' Conceptual Resources

    Science.gov (United States)

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding…

  6. The Impact of Project-Based Learning on Fourth-Grade Students' Understanding in Reading

    Science.gov (United States)

    Williams, Dana L.

    2017-01-01

    The purpose of this quantitative, non-experimental, descriptive study was to determine if participation in project-based learning developed the understanding students need to transfer their knowledge and skills to achieve higher composite and reading scores, as well as demonstrate the ability to read increasingly complex texts on the ACT Aspire as…

  7. The Effect of Constructivist Science Teaching on 4th Grade Students' Understanding of Matter

    Science.gov (United States)

    Cakici, Yilmaz; Yavuz, Gulben

    2010-01-01

    In the last three decades, the constructivist approach has been the dominant ideology in the field of educational research. The aim of this study is to explore the effect of constructivist science teaching on the students' understanding about matter, and to compare the effectiveness of a constructivist approach over traditional teaching methods.…

  8. IV access in dental practice.

    LENUS (Irish Health Repository)

    Fitzpatrick, J J

    2009-04-01

    Intravenous (IV) access is a valuable skill for dental practitioners in emergency situations and in IV sedation. However, many people feel some apprehension about performing this procedure. This article explains the basic principles behind IV access, and the relevant anatomy and physiology, as well as giving a step-by-step guide to placing an IV cannula.

  9. Students' Understanding of External Representations of the Potassium Ion Channel Protein Part II: Structure-Function Relationships and Fragmented Knowledge

    Science.gov (United States)

    Harle, Marissa; Towns, Marcy H.

    2012-01-01

    Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This study focuses on students' understanding of three external representations (ribbon diagram, wireframe, and hydrophobic/hydrophilic) of the potassium ion channel protein. Analysis…

  10. What Happened in Dialogical Classes of Intercultural Understanding?: An Analysis of Exchanging Classes between Chinese and Japanese University Students.

    Science.gov (United States)

    Pian, Chengnan

    2017-09-01

    Chinese and Japanese university students make an exchanging of opinions regarding the topic "making a mobile phone call in the bus". Both sides of the communication can achieve different changes of cognition through different ways. This paper focuses on Chinese university students, and analyzes their cognition of the traffic etiquette in Japan and China. Unlike Japanese university students' change of cognition, Chinese university students have made more negative evaluation on Japanese traffic etiquette after the communication. However, this does not mean to shield their traffic etiquette. They have the two-way changes of cognition in both social etiquette and personal behavior. These changes may be related to the unbalanced dialogue relationship, as well as the generation of hot issues. How to generate the hot issues, and promote the two-way movement of understanding are the important clues for the design of communication curriculum to enhance the cultural understanding.

  11. Longitudinal study of student conceptual understanding in electricity and magnetism

    Directory of Open Access Journals (Sweden)

    S. J. Pollock

    2009-12-01

    Full Text Available We have investigated the long-term effect of student-centered instruction at the freshman level on juniors’ performance on a conceptual survey of Electricity and Magnetism (E&M. We measured student performance on a research-based conceptual instrument—the Brief Electricity & Magnetism Assessment (BEMA–over a period of 8 semesters (2004–2007. Concurrently, we introduced the University of Washington's Tutorials in Introductory Physics as part of our standard freshman curriculum. Freshmen took the BEMA before and after this Tutorial-based introductory course, and juniors took it after completion of their traditional junior-level E&M I and E&M II courses. We find that, on average, individual BEMA scores do not change significantly after completion of the introductory course—neither from the freshman to the junior year, nor from upper-division E&M I to E&M II. However, we find that juniors who had completed a non-Tutorial freshman course scored significantly lower on the (post-upper-division BEMA than those who had completed the reformed freshman course—indicating a long-term positive impact of freshman Tutorials on conceptual understanding.

  12. Angiotensin IV possibly acts through PKMzeta in the hippocampus to regulate cognitive memory in rats.

    Science.gov (United States)

    Chow, Lok-Hi; Tao, Pao-Luh; Chen, Yuan-Hao; Lin, Yu-Hui; Huang, Eagle Yi-Kung

    2015-10-01

    Ang IV is an endogenous peptide generated from the degradation of angiotensin II. Ang IV was found to enhance learning and memory in CNS. PKMzeta was identified to be a fragment of PKCzeta (protein kinase Czeta). Its continuous activation was demonstrated to be correlated with the formation of memory in the hippocampus. Therefore, we investigated whether PKMzeta participates in the effects of Ang IV on memory. We first examined the effect of Ang IV on non-spatial memory/cognition in modified object recognition test in rats. Our data showed that Ang IV could increase the exploration time on novel object. The co-administration of ZIP (PKMzeta inhibitor) with Ang IV significantly blocked the effect by Ang IV. The effects of Ang IV on hippocampal LTP at the CA1 region were also evaluated. Ang IV significantly increased the amplitude and slope of the EPSPs, which was consistent with other reports. Surprisingly, instead of potentiating LTP, Ang IV caused a failed maintenance of LTP. Moreover, there was no quantitative change in PKMzeta induced by Ang IV and/or ZIP after behavioral experiments. Taken together, our data re-confirmed the finding of the positive effect of Ang IV to enhance memory/cognition. The increased strength of EPSPs with Ang IV could also have certain functional relevance. Since the behavioral results suggested the involvement of PKMzeta, we hypothesized that the enhancement of memory/cognition by Ang IV may rely on an increase in PKMzeta activity. Overall, the present study provided important advances in our understanding of the action of Ang IV in the hippocampus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Examing nursing students' understanding of the cardiovascular system in a BSN program

    Science.gov (United States)

    Stuart, Parker Emerson

    This study investigated the alignment of important cardiovascular system (CVS) concepts identified by expert nurses with nursing student's knowledge. Specifically, it focused on the prevalence of nursing students' alternative conceptions for these important concepts as a potential reason for a theory-practice gap in nursing (Corlett, 2000; Jordan, 1994). This is the first study to target nursing student alternative conceptions exclusively whereas other studies focused on diverse groups of undergraduates' CVS knowledge (Michael et al., 2002). The study was divided into two phases and used a case study approach with each phase of the study representing a single case. The first phase of the study sought to understand what CVS concepts expert nurses deemed relevant to their daily practice and how these experts used these concepts. The second phase identified nursing student alternative conceptions through the use of open-ended scenarios based on the results of phase I. For the first phase of the study involved four CVS expert nurses practicing in emergency rooms and cardiac intensive care units at two local hospitals. Interviews were used to elicit important CVS concepts. The expert nurses identified five broad concepts as important to their practice. These concepts were a) cardiovascular anatomical concepts; b) cardiovascular physiological concepts; c) homeostasis and diseases of the CVS; d) the interdependence and interaction of the CVS with other organ systems and e) the intersection of the CVS and technology in patient diagnosis and treatment. These finding reinforce concepts already being taught to nursing students but also suggest that instruction should focus more on how the CVS interacts with other organ systems and how technology and the CVS interact. The presence of alternative conceptions in the nursing students was examined through the use of open-ended questions. A total of 17 students fully completed the scenario questions. Results indicate that this

  14. Using art and story to explore how primary school students in rural Tanzania understand planetary health: a qualitative analysis

    Directory of Open Access Journals (Sweden)

    Elizabeth VanWormer, PhD

    2018-05-01

    Full Text Available Background: The global planetary health community increasingly recognises the need to prepare students to investigate and address connections between environmental change and human health. As we strive to support education on planetary health themes for students of all ages, understanding students' concepts of linkages between the health of people and animals, and their shared environments might advance educational approaches. Children living in villages bordering Ruaha National Park in Iringa Region, Tanzania, have direct experience of these connections as they share a water-stressed but biodiverse environment with domestic animals and wildlife. Livelihoods in these villages depend predominantly on crop and livestock production, including extensive pastoralist livestock keeping. Through qualitative research, we aim to explore and describe Tanzanian primary school students' understanding of connections between human health and the environment. Methods: Working with 26 village primary schools in Iringa Rural District, Tanzania, we adapted an art and story outreach activity to explore student perceptions of planetary health concepts. Following a standardised training session, a lead teacher at each primary school helped students aged 12–15 years form small teams to independently develop and illustrate a story centred on themes of how human health depends on water sources, wildlife, livestock, climate, and forest or grassland resources. Students were encouraged to discuss these themes with their teachers, peers, and families while developing their stories to gain broader as well as historical perspectives. The students generated stories that incorporated solutions to challenges within these themes. Written materials and illustrations were collected from each school along with data on sex and tribe of the group members. We translated all stories from Swahili to English for analysis. The primary outcomes of interest in analysing the students

  15. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  16. Crafting an International Study of Students' Conceptual Understanding of Astronomy

    Science.gov (United States)

    Slater, Stephanie; Bretones, P. S.; McKinnon, D.; Schleigh, S.; Slater, T. F.; Astronomy, Center; Education Research, Physics

    2013-01-01

    Large international investigations into the learning of science, such as the TIMSS and PISA studies, have been enlightening with regard to effective instructional practices. Data from these studies revealed weaknesses and promising practices within nations' educational systems, with evidence to suggest that these studies have led to international reforms in science education. However, these reforms have focused on the general characteristics of teaching and learning across all sciences. While extraordinarily useful, these studies have provided limited insight for any given content domain. To date, there has been no systematic effort to measure individual's conceptual astronomy understanding across the globe. This paper describes our motivations for a coordinated, multinational study of astronomy understanding. First, reformed education is based upon knowing the preexisting knowledge state of our students. The data from this study will be used to assist international astronomy education and public outreach (EPO) professionals in their efforts to improve practices across global settings. Second, while the US astronomy EPO community has a long history of activity, research has established that many practices are ineffective in the face of robust misconceptions (e.g.: seasons). Within an international sample we hope to find subpopulations that do not conform to our existing knowledge of student misconceptions, leading us to cultural or educational practices that hint at alternative, effective means of instruction. Finally, it is our hope that this first venture into large-scale disciplinary collaboration will help us to craft a set of common languages and practices, building capacity and leading toward long-term cooperation across the international EPO community. This project is sponsored and managed by the Center for Astronomy & Physics Education Research (CAPER), in collaboration with members of the International Astronomical Union-Commission 46. We are actively

  17. Teaching structure: student use of software tools for understanding macromolecular structure in an undergraduate biochemistry course.

    Science.gov (United States)

    Jaswal, Sheila S; O'Hara, Patricia B; Williamson, Patrick L; Springer, Amy L

    2013-01-01

    Because understanding the structure of biological macromolecules is critical to understanding their function, students of biochemistry should become familiar not only with viewing, but also with generating and manipulating structural representations. We report a strategy from a one-semester undergraduate biochemistry course to integrate use of structural representation tools into both laboratory and homework activities. First, early in the course we introduce the use of readily available open-source software for visualizing protein structure, coincident with modules on amino acid and peptide bond properties. Second, we use these same software tools in lectures and incorporate images and other structure representations in homework tasks. Third, we require a capstone project in which teams of students examine a protein-nucleic acid complex and then use the software tools to illustrate for their classmates the salient features of the structure, relating how the structure helps explain biological function. To ensure engagement with a range of software and database features, we generated a detailed template file that can be used to explore any structure, and that guides students through specific applications of many of the software tools. In presentations, students demonstrate that they are successfully interpreting structural information, and using representations to illustrate particular points relevant to function. Thus, over the semester students integrate information about structural features of biological macromolecules into the larger discussion of the chemical basis of function. Together these assignments provide an accessible introduction to structural representation tools, allowing students to add these methods to their biochemical toolboxes early in their scientific development. © 2013 by The International Union of Biochemistry and Molecular Biology.

  18. Understanding the motivation: a qualitative study of dental students' choice of professional career.

    Science.gov (United States)

    Gallagher, J; Clarke, W; Wilson, N

    2008-05-01

    Given the changing nature of the dental workforce, and the need to retain the services of future members, it is important to understand why current dental students perceive that they were motivated to study dentistry. Qualitative research provides the opportunity to explore the underlying issues in addition to informing subsequent quantitative research. The objectives of this research were to investigate final-year dental students' motivation for studying dentistry and how they perceive this has been modified during their undergraduate degree programme. Purposive sampling of a representative group of 35 final-year dental students at King's College London Dental Institute to participate in audio-taped focus groups. Qualitative data were analysed using Framework Methodology. The findings suggest a strong emphasis on having a career, providing 'professional status', 'financial benefits', 'job security, flexibility and independence' and 'good quality of life'. Students reported being attracted by features of the job, supported to a greater or lesser extent by personal experience, family and friends. It appears however that students' initial motivation is being tempered by their experiences during their undergraduate degree programme, in particular, the 'responsibilities of an intensive professional education', their 'mounting student debt' and the perception of 'feeling undervalued'. This perception related to dentistry in general and National Health Service dentistry in particular, being undervalued, by government, patients, the public and members of the dental profession. Students' vision of a 'contained professional career' within health care, providing status and financial benefits, appears to have influenced their choice of dentistry. Pressures relating to student life and policy changes are perceived as impacting on key components of professional life, particularly status in the social and economic order. The implications for educators, professional leaders and

  19. Thinking about television science: How students understand the nature of science from different program genres

    Science.gov (United States)

    Dhingra, Koshi

    2003-02-01

    Student views on the nature of science are shaped by a variety of out-of-school forces and television-mediated science is a significant force. To attempt to achieve a science for all, we need to recognize and understand the diverse messages about science that students access and think about on a regular basis. In this work I examine how high school students think about science that is mediated by four different program genres on television: documentary, magazine-format programming, network news, and dramatic or fictional programming. The following categories of findings are discussed: the ethics and validity of science, final form science, science as portrayed by its practitioners, and school science and television science. Student perceptions of the nature of science depicted on the program sample used in this study ranged from seeing science as comprising tentative knowledge claims to seeing science as a fixed body of facts.

  20. Towards a Theoretical Framework for Understanding PGCE Student Teacher Learning in the Wild Coast Rural Schools' Partnership Project

    Science.gov (United States)

    Pennefather, Jane

    2016-01-01

    This article focuses on a theoretical model that I am developing in order to understand student teacher learning in a rural context and the enabling conditions that can support this learning. The question of whether a supervised teaching practice in a rural context can contribute to the development of student teacher professional learning and…

  1. Starting a learning progression for agricultural literacy: A qualitative study of urban elementary student understandings of agricultural and science education benchmarks

    Science.gov (United States)

    Hess, Alexander Jay

    Science and agriculture professional organizations have argued for agricultural literacy as a goal for K-12 public education. Due to the complexity of our modern agri-food system, with social, economic, and environmental concerns embedded, an agriculturally literate society is needed for informed decision making, democratic participation, and system reform. While grade-span specific benchmarks for gauging agri-food system literacy have been developed, little attention has been paid to existing ideas individuals hold about the agri-food system, how these existing ideas relate to benchmarks, how experience shapes such ideas, or how ideas change overtime. Developing a body of knowledge on students' agri-food system understandings as they develop across K-12 grades can ground efforts seeking to promote a learning progression toward agricultural literacy. This study compares existing perceptions held by 18 upper elementary students from a large urban center in California to agri-food system literacy benchmarks and examines the perceptions against student background and experiences. Data were collected via semi-structured interviews and analyzed using the constant comparative method. Constructivist theoretical perspectives framed the study. No student had ever grown their own food, raised a plant, or cared for an animal. Participation in school fieldtrips to farms or visits to a relative's garden were agricultural experiences most frequently mentioned. Students were able to identify common food items, but could not elaborate on their origins, especially those that were highly processed. Students' understanding of post-production activities (i.e. food processing, manufacturing, or food marketing) was not apparent. Students' understanding of farms reflected a 1900's subsistence farming operation commonly found in a literature written for the primary grades. Students were unaware that plants and animals were selected for production based on desired genetic traits. Obtaining

  2. Complexation of the An(IV) by NTA; Complexation des An(IV) par le NTA

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, L. [Paris-11 Univ., 91 - Orsay (France)]|[CEA Valrho, Lab. de Chimie des Actinides (LCA), 30 - Marcoule (France)

    2006-07-01

    In the framework of the Nuclear and Environmental Toxicology program, developed in France, it has been decided to take again the studies concerning the actinides decorporation. A similar study of the neptunium complexation by the citrate ions has been carried out on the complexation of Np(IV) with the nitrilotriacetic acid (NTA). The NTA can be considered as a model molecule of the de-corporating molecules (amino-carboxy- ligand). The results of the spectrophotometric measurements being encouraging, the behaviour of several actinides at the same oxidation state (+IV) (Th(IV), U(IV), Np(IV), and Pu(IV)) has been determined. The experimental results are presented. In order to determine the structure of the complexes of stoichiometry 1:2 An(IV)-(NTA){sub 2} in solution, quantic chemistry calculations and EXAFS measurements have been carried out in parallel. These studies confirm the presence of An(IV)-nitrogen bonds whose length decreases from thorium to plutonium and indicate the presence of a water molecule bound to the thorium and the uranium (coordination number 8 for Np/Pu, 9 for Th/U). The evolution of the complexation constants determined in this study in terms of 1/r (r ionic radius of the cation taking into account its coordination number 8 or 9) confirms the change of the coordination number between Th/U and Np/Pu. (O.M.)

  3. Penggunaan Metode Eksperimen dalam Peningkatan Pembelajaran IPA tentang Fotosintesis Siswa Kelas IV SDN Lemujut Sidoarjo

    Directory of Open Access Journals (Sweden)

    rofiqoh nirwana

    2016-09-01

    Full Text Available Use of Experiment Method in Improving Natural Science About Charateristic Light on IV Grede Student in SDN Lemujut. This research   is   describe the step of the experimental method in  learning about, to describe the behavior of students in the following subjects, and to improve result learning with experimental method. This study uses classroom action research and conducted in three cycles, each include the planning, implementation, observation and reflection. The result showed that the application of the experimental method in natural science improved  learning, the behavior of students in the following subjects, as well as student learning result.

  4. Characterizing the development of students' understandings regarding the second law of thermodynamics: Using learning progressions to illuminate thinking in high school chemistry

    Science.gov (United States)

    Cunningham, Kevin D.

    As demonstrated by their emphasis in the new, national, science education standards, learning progressions (LPs) have become a valuable means of informing teaching and learning. LPs serve this role by isolating the key components of central skills and understandings, and by describing how those abilities and concepts tend to develop over time among students in a particular context. Some LPs also identify common challenges students experience in learning specific content and suggest methods of instruction and assessment, particularly ways in which difficulties can be identified and addressed. LPs are research-based and created through the integration of content analyses and interpretations of student performances with respect to the skills and understandings in question. The present research produced two LPs portraying the development of understandings associated with the second law of thermodynamics as evidenced by the evolving explanations for the spontaneity and irreversibility of diffusion and the cooling of a hot object constructed periodically by twenty students over two consecutive years in high school chemistry. While the curriculum they experienced did not emphasize the processes of diffusion and cooling or the second law and its applications, these students received prolonged instruction regarding key aspects of the particulate nature of matter. Working in small groups and as individuals, they were also taught and regularly expected to create, test, and revise particulate-based, conceptual models to account for the properties and behavior of a wide variety of common phenomena. Although some students quickly exhibited dramatic improvements in explaining and understanding the phenomena of interest, conceptual development for most was evolutionary rather than revolutionary, and success in explaining one phenomenon did not generally translate into successes in explaining related but different phenomena. Few students reached the uppermost learning goals of

  5. Race to improve student understanding of uncertainty: Using LEGO race cars in the physics lab

    Science.gov (United States)

    Parappilly, Maria; Hassam, Christopher; Woodman, Richard J.

    2018-01-01

    Laboratories using LEGO race cars were developed for students in an introductory physics topic with a high early drop-out rate. In a 2014 pilot study, the labs were offered to improve students' confidence with experiments and laboratory skills, especially uncertainty propagation. This intervention was extended into the intro level physics topic the next year, for comparison and evaluation. Considering the pilot study, we subsequently adapted the delivery of the LEGO labs for a large Engineering Mechanics cohort. A qualitative survey of the students was taken to gain insight into their perception of the incorporation of LEGO race cars into physics labs. For Engineering, the findings show that LEGO physics was instrumental in teaching students the measurement and uncertainty, improving their lab reporting skills, and was a key factor in reducing the early attrition rate. This paper briefly recalls the results of the pilot study, and how variations in the delivery yielded better learning outcomes. A novel method is proposed for how LEGO race cars in a physics lab can help students increase their understanding of uncertainty and motivate them towards physics practicals.

  6. Understanding student early departure from a Master of Public Health programme in South Africa

    Directory of Open Access Journals (Sweden)

    T Dlungwane

    2017-10-01

    Full Text Available Background. Student departure from university without completing a qualification is a major concern in higher education. Higher Education South Africa reported that in undergraduate studies, 35% of students depart after the first year and only 15% of students who enrol complete their degree within the minimum permissible time. At postgraduate level, the departure from Masters programmes in South Africa (SA ranged from 30% to 67% in 2010. Early departure refers to students who leave an academic programme within the first semester of commencing their studies. At one SA university, there were a total of 109 first-time Master of Public Health (MPH student registrations in 2013 and 2014. By the end of the first semester in the respective years, a total of 27 students actively deregistered from the programme and 11 students did not sit the first-semester examinations, representing an aggregate 35% rate of early departure. The factors associated with early departure at the University of KwaZulu-Natal are not well understood. Objective. To understand factors associated with early departure in the MPH programme at the University of KwaZulu-Natal. Method. A mixed-methods design was implemented. Students who departed within the first semester of commencing the MPH programme in 2013/2014 were followed up. Data were collected using self-administered questionnaires and in-depth interviews. Results. Failure to balance work and academic obligations with poor time management, stress and academic demands related to the programme, and insufficient academic progress were found to be associated with student early departure from the MPH programme. Conclusion. Student early departure from the MPH programme was influenced by multifaceted factors. Senior students can mentor new students as early as possible in their programme. The orientation block should include development activities such as time management, stress management and effective study skills to assist

  7. The Effect of Using Virtual Laboratory on Grade 10 Students' Conceptual Understanding and Their Attitudes towards Physics

    Science.gov (United States)

    Faour, Malak Abou; Ayoubi, Zalpha

    2018-01-01

    This study investigated the effect of using (VL) on grade 10 students' conceptual understanding of the direct current electric circuit and their attitudes towards physics. The research used a quantitative experimental approach. The sample of the study was formed of 50 students of the tenth grade, aged 14 to 16 years old, of an official secondary…

  8. Students Serving Christ: Understanding the Role of Student Subcultures on a College Campus

    Science.gov (United States)

    Magolda, Peter; Ebben, Kelsey

    2007-01-01

    This article uses the Students Serving Christ student organization to examine the role of student subcultures in higher education. Using subculture theories, this article examines the origins of student subcultures, explores how subcultures are formed and sustained, reveals what counts as normal within and among student subcultures, investigates…

  9. Challenges and Changes: Developing Teachers' and Initial Teacher Education Students' Understandings of the Nature of Science

    Science.gov (United States)

    Ward, Gillian; Haigh, Mavis

    2017-12-01

    Teachers need an understanding of the nature of science (NOS) to enable them to incorporate NOS into their teaching of science. The current study examines the usefulness of a strategy for challenging or changing teachers' understandings of NOS. The teachers who participated in this study were 10 initial teacher education chemistry students and six experienced teachers from secondary and primary schools who were introduced to an explicit and reflective activity, a dramatic reading about a historical scientific development. Concept maps were used before and after the activity to assess teachers' knowledge of NOS. The participants also took part in a focus group interview to establish whether they perceived the activity as useful in developing their own understanding of NOS. Initial analysis led us to ask another group, comprising seven initial teacher education chemistry students, to take part in a modified study. These participants not only completed the same tasks as the previous participants but also completed a written reflection commenting on whether the activity and focus group discussion enhanced their understanding of NOS. Both Lederman et al.'s (Journal of Research in Science Teaching, 39(6), 497-521, 2002) concepts of NOS and notions of "naive" and "informed" understandings of NOS and Hay's (Studies in Higher Education, 32(1), 39-57, 2007) notions of "surface" and "deep" learning were used as frameworks to examine the participants' specific understandings of NOS and the depth of their learning. The ways in which participants' understandings of NOS were broadened or changed by taking part in the dramatic reading are presented. The impact of the data-gathering tools on the participants' professional learning is also discussed.

  10. Teachers' Understanding of Algebraic Generalization

    Science.gov (United States)

    Hawthorne, Casey Wayne

    Generalization has been identified as a cornerstone of algebraic thinking (e.g., Lee, 1996; Sfard, 1995) and is at the center of a rich conceptualization of K-8 algebra (Kaput, 2008; Smith, 2003). Moreover, mathematics teachers are being encouraged to use figural-pattern generalizing tasks as a basis of student-centered instruction, whereby teachers respond to and build upon the ideas that arise from students' explorations of these activities. Although more and more teachers are engaging their students in such generalizing tasks, little is known about teachers' understanding of generalization and their understanding of students' mathematical thinking in this domain. In this work, I addressed this gap, exploring the understanding of algebraic generalization of 4 exemplary 8th-grade teachers from multiple perspectives. A significant feature of this investigation is an examination of teachers' understanding of the generalization process, including the use of algebraic symbols. The research consisted of two phases. Phase I was an examination of the teachers' understandings of the underlying quantities and quantitative relationships represented by algebraic notation. In Phase II, I observed the instruction of 2 of these teachers. Using the lens of professional noticing of students' mathematical thinking, I explored the teachers' enacted knowledge of algebraic generalization, characterizing how it supported them to effectively respond to the needs and queries of their students. Results indicated that teachers predominantly see these figural patterns as enrichment activities, disconnected from course content. Furthermore, in my analysis, I identified conceptual difficulties teachers experienced when solving generalization tasks, in particular, connecting multiple symbolic representations with the quantities in the figures. Moreover, while the teachers strived to overcome the challenges of connecting different representations, they invoked both productive and unproductive

  11. Determination of Factors Related to Students' Understandings of Heat, Temperature and Internal Energy Concepts

    Science.gov (United States)

    Gurcay, Deniz; Gulbas, Etna

    2018-01-01

    The purpose of this research is to investigate the relationships between high school students' learning approaches and logical thinking abilities and their understandings of heat, temperature and internal energy concepts. Learning Approach Questionnaire, Test of Logical Thinking and Three-Tier Heat, Temperature and Internal Energy Test were used…

  12. An Integrated Academic Literacy Approach to Improving Students' Understanding of Plagiarism in an Accounting Course

    Science.gov (United States)

    Powell, Lisa; Singh, Nishani

    2016-01-01

    Plagiarism in higher education is a widespread and complex issue. Students' understanding of plagiarism differs as a result of combining their prior learning about referencing with their current experience of institutional policies and generic resources. Plagiarism was identified as a major learning issue in a core second-year undergraduate…

  13. Force, Velocity, and Work: The Effects of Different Contexts on Students' Understanding of Vector Concepts Using Isomorphic Problems

    Science.gov (United States)

    Barniol, Pablo; Zavala, Genaro

    2014-01-01

    In this article we compare students' understanding of vector concepts in problems with no physical context, and with three mechanics contexts: force, velocity, and work. Based on our "Test of Understanding of Vectors," a multiple-choice test presented elsewhere, we designed two isomorphic shorter versions of 12 items each: a test with no…

  14. Somatoform disorders and rheumatic diseases: from DSM-IV to DSM-V.

    Science.gov (United States)

    Alciati, A; Atzeni, F; Sgiarovello, P; Sarzi-Puttini, P

    2014-06-06

    Medically unexplained symptoms are considered 'somatoform disorders' in the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). The introduction of this nosographic category has been helpful in drawing attention to a previously neglected area, but has not been successful in promoting an understanding of the disorders' biological basis and treatment implications, probably because of a series of diagnostic shortcomings. The newly proposed DSM-V diagnostic criteria try to overcome the limitations of the DSM-IV definition, which was organised centrally around the concept of medically unexplained symptoms, by emphasising the extent to which a patient's thoughts, feelings and behaviours concerning their somatic symptoms are disproportionate or excessive. This change is supported by a growing body of evidence showing that psychological and behavioural features play a major role in causing patient disability and maintaining high level of health care use. Pain disorders is the sub-category of DSM-IV somatoform disorders that most closely resembles fibromyalgia. Regardless of the diagnostic changes recently brought about by DSM-V, neuroimaging studies have identified important components of the mental processes associated with a DSM- IV diagnosis of pain disorder.

  15. The Effects of Conceptual Understanding Procedures (CUPs) Towards Critical Thinking Skills of Senior High School Students

    Science.gov (United States)

    Sukaesih, S.; Sutrisno

    2017-04-01

    The aim of the study was to analyse the effect of the application of Conceptual Understanding Procedures (CUPs) learning to the students’ critical thinking skills in the matter of categorisaed in SMA Negeri 1 Larangan. This study was quasi-experimental design using nonequivalent control group design. The population in this study was entire class X. The samples that were taken by convenience sampling were class X MIA 1 and X MIA 2. Primary data in the study was the student’s critical thinking skills, which was supported by student activity, the level of adherence to the CUPs learning model, student opinion and teacher opinion. N-gain test results showed that the students’ critical thinking skills of experimental class increased by 89.32%, while the control group increased by 57.14%. Activity grade of experimental class with an average value of 72.37 was better than that of the control class with an average of only 22.69 student and teacher opinions to the learning were excellegoodnt. Based on this study concluded that the model of Conceptual Understanding Procedures (CUPs) had an effect on the student’s critical thinking skills in the matter of protest in SMA Negeri 1 Larangan.

  16. A Dual Case Study: Students' Perceptions, Self-Efficacy and Understanding of the Nature of Science in Varied Introductory Biology Laboratories

    Science.gov (United States)

    Quigley, Dena Beth Boans

    Since World War II, science education has been at the forefront of curricular reforms. Although the philosophical approach to science education has changed numerous times, the importance of the laboratory has not waned. A laboratory is meant to allow students to encounter scientific concepts in a very real, hands-on way so that they are able to either recreate experiments that have given rise to scientific theories or to use science to understand a new idea. As the interactive portion of science courses, the laboratory should not only reinforce conceptual ideas, but help students to understand the process of science and interest them in learning more about science. However, most laboratories have fallen into a safe pattern having teachers and students follow a scientific recipe, removing the understanding of and interest in science for many participants. In this study, two non-traditional laboratories are evaluated and compared with a traditional laboratory in an effort to measure student satisfaction, self-efficacy, attitudes towards science, and finally their epistemology of the nature of science (NOS). Students in all populations were administered a survey at the beginning and the end of their spring 2016 laboratory, and the survey was a mixture of qualitative questions and quantitative instruments. Overall, students who participated in one of the non-traditional labs rated their satisfaction higher and used affirming supportive statements. They also had significant increases in self-efficacy from pre to post, while the students in the traditional laboratory had a significant decrease. The students in the traditional laboratory had significant changed in attitudes towards science, as did the students in one of the non-traditional laboratories. All students lacked a firm grasp of the tenets of NOS, although one laboratory that includes explicit discussions of NOS saw improvement in at least on tenet. Data for two non-major biology laboratory populations was

  17. A journey of negotiation and belonging: understanding students' transitions to science and engineering in higher education

    Science.gov (United States)

    Holmegaard, Henriette Tolstrup; Madsen, Lene Møller; Ulriksen, Lars

    2014-09-01

    The paper presents results from a longitudinal study of students' decisions to enrol on a higher education science programme and their experiences of it. The aim is to give insights into students' transition process and negotiation of identity. This is done by following a cohort of 38 students in a series of qualitative interviews during a 3-year period starting as they were about to finish upper secondary school. We find that the students' choice of study is an ongoing process of meaning-making, which continues when the students enter higher education and continuously work on their identities to gain a sense of belonging to their science or engineering programme. The use of a narrative methodology provides understanding of choice of study as involving changes in future perspectives and in the interpretation of past experiences. Further, we gain access into how this meaning-making process over time reflects the students' negotiations in terms of belonging to higher education and their coping strategies when their expectations of their new programme interact with their first-year experiences.

  18. Acceptance as a Normative Aspect of the Process of Coming to Understand Emotionally Charged Concepts: Upper-Secondary School Students Make Meaning of Gender

    Science.gov (United States)

    Trostek, Jonas R.

    2016-01-01

    Previous research on how students' acceptance of emotionally charged theories relates to their understanding is based on the measurement of acceptance and understanding as two separate variables. As an alternative, the present study takes a qualitative approach with the aim of exploring what 24 upper-secondary school students accept when they come…

  19. Rhetorical meta-language to promote the development of students' writing skills and subject matter understanding

    Science.gov (United States)

    Pelger, Susanne; Sigrell, Anders

    2016-01-01

    students' understanding of their subject matter.

  20. Effectiveness of Science-Technology-Society (STS) Instruction on Student Understanding of the Nature of Science and Attitudes toward Science

    Science.gov (United States)

    Akcay, Behiye; Akcay, Hakan

    2015-01-01

    The study reports on an investigation about the impact of science-technology-society (STS) instruction on middle school student understanding of the nature of science (NOS) and attitudes toward science compared to students taught by the same teacher using traditional textbook-oriented instruction. Eight lead teachers used STS instruction an…

  1. Problems of Understanding English Ironic Expressions by M.A. Students of Applied Linguistics at Mu'tah University in Jordan

    Science.gov (United States)

    Al Khawaldeh, Suhaib

    2015-01-01

    The present study attempts to investigate the problems of understanding English ironic expressions M.A. of Applied Linguistics students at Mu'tah University in Jordan. This quantitative and qualitative study includes 15 of M.A. students of Applied Linguistics at Mu'tah University. The participants were selected randomly. Two research instruments…

  2. Understanding physics

    CERN Document Server

    Mansfield, Michael

    2011-01-01

    Understanding Physics - Second edition is a comprehensive, yet compact, introductory physics textbook aimed at physics undergraduates and also at engineers and other scientists taking a general physics course. Written with today's students in mind, this text covers the core material required by an introductory course in a clear and refreshing way. A second colour is used throughout to enhance learning and understanding. Each topic is introduced from first principles so that the text is suitable for students without a prior background in physics. At the same time the book is designed to enable

  3. Design and Development Computer-Based E-Learning Teaching Material for Improving Mathematical Understanding Ability and Spatial Sense of Junior High School Students

    Science.gov (United States)

    Nurjanah; Dahlan, J. A.; Wibisono, Y.

    2017-02-01

    This paper aims to make a design and development computer-based e-learning teaching material for improving mathematical understanding ability and spatial sense of junior high school students. Furthermore, the particular aims are (1) getting teaching material design, evaluation model, and intrument to measure mathematical understanding ability and spatial sense of junior high school students; (2) conducting trials computer-based e-learning teaching material model, asessment, and instrument to develop mathematical understanding ability and spatial sense of junior high school students; (3) completing teaching material models of computer-based e-learning, assessment, and develop mathematical understanding ability and spatial sense of junior high school students; (4) resulting research product is teaching materials of computer-based e-learning. Furthermore, the product is an interactive learning disc. The research method is used of this study is developmental research which is conducted by thought experiment and instruction experiment. The result showed that teaching materials could be used very well. This is based on the validation of computer-based e-learning teaching materials, which is validated by 5 multimedia experts. The judgement result of face and content validity of 5 validator shows that the same judgement result to the face and content validity of each item test of mathematical understanding ability and spatial sense. The reliability test of mathematical understanding ability and spatial sense are 0,929 and 0,939. This reliability test is very high. While the validity of both tests have a high and very high criteria.

  4. Can a model of study activity increase didactic dialogue and students' understanding of learning in IPE?

    DEFF Research Database (Denmark)

    Hansen, Bodil Winther; Hatt, Camusa

    at Metropolitan University College. Since 2013 all UCS have worked with a nationally decided study activity model. The model outlines four different types of learning activities. Students are introduced to courses via the model to heighten their understanding of course design and the expectations...... combining quantitative surveys, interviews, observation and focus groups. Comparisonldiscussion: The presentation will discuss the ambition to optimize dialogue about learning between lecturers and students by using a model of study activity. Results related to the value and potential of the model as seen...... by both lecturers and students will be presented. Findings/results/outcomes/effects: Students point out that the model can be a useful tool to gain an overview of learning activities and the amount of time they are expected to spend in courses. When lecturers introduce courses via the model it deepens...

  5. Workshop on Friction: Understanding and Addressing Students' Difficulties in Learning Science through a Hermeneutical Perspective

    Science.gov (United States)

    Ha, Sangwoo; Lee, Gyoungho; Kalman, Calvin S.

    2013-01-01

    Hermeneutics is useful in science and science education by emphasizing the process of understanding. The purpose of this study was to construct a workshop based upon hermeneutical principles and to interpret students' learning in the workshop through a hermeneutical perspective. When considering the history of Newtonian mechanics, it could be…

  6. The Relationship between Student Leaders' Constructive Development, Their Leadership Identity, and Their Understanding of Leadership

    Science.gov (United States)

    Sessa, Valerie I.; Ploskonka, Jillian; Alvarez, Elphys L.; Dourdis, Steven; Dixon, Christopher; Bragger, Jennifer D.

    2016-01-01

    The purpose of our research was to use Day, Harrison, and Halpin's, (2009) theory of leadership development as a premise to investigate how students' constructive development is related to their leader identity development and understanding of leadership. Baxter Magolda's Model of Epistemological Reflection (MER, 1988, 2001) was used to understand…

  7. The Effect of Guided Inquiry-Based Instruction on Middle School Students' Understanding of Lunar Concepts

    Science.gov (United States)

    Trundle, Kathy Cabe; Atwood, Ronald K.; Christopher, John E.; Sackes, Mesut

    2010-01-01

    This study investigated the effect of non-traditional guided inquiry instruction on middle school students' conceptual understandings of lunar concepts. Multiple data sources were used to describe participants' conceptions of lunar phases and their cause, including drawings, interviews, and a lunar shapes card sort. The data were analyzed via a…

  8. Effects of Jigsaw and Animation Techniques on Students' Understanding of Concepts and Subjects in Electrochemistry

    Science.gov (United States)

    Doymus, Kemal; Karacop, Ataman; Simsek, Umit

    2010-01-01

    This study investigated the effect of jigsaw cooperative learning and animation versus traditional teaching methods on students' understanding of electrochemistry in a first-year general chemistry course. This study was carried out in three different classes in the department of primary science education during the 2007-2008 academic year. The…

  9. Does the thought count? Gratitude understanding in elementary school students.

    Science.gov (United States)

    Poelker, Katelyn E; Kuebli, Janet E

    2014-01-01

    Gratitude, although studied throughout history by scholars from diverse backgrounds, has been largely understudied in psychology until recently. The psychological literature on gratitude is expanding, but it is still particularly limited with children. The authors compared younger (first- and second-grade students; n = 30) and older (fourth- and fifth-grade students; n = 27) children on gratitude-related ratings surrounding gift giving vignettes that included either a desirable (e.g., a birthday cupcake) or an undesirable (e.g., a melted ice cream cone) gift. Empathy was also measured. Hierarchical regressions revealed different patterns of predictors for desirable and undesirable gifts. For desirable gifts, liking significantly predicted gratitude and liking predicted effort. For undesirable gifts, older children and those who perceived the target as liking the gift more predicted higher gratitude ratings. Finally, higher gratitude rating predicted both higher ratings of giver effort (i.e., intention or how hard did the giver try to give a nice gift) and liking of the undesirable gifts. More research on children's understanding of gratitude is needed but these results suggest that school-aged children take into account givers' intentions and thoughts behind gift giving in determining feelings of gratitude. Limitations and directions for future research are also discussed.

  10. Determinatio of Psychometrics Index of SNAP-IV Rating Scale in Parents Execution

    Directory of Open Access Journals (Sweden)

    Seyyed Jalal Sadrosadat

    2008-01-01

    Full Text Available Objective: SNAP-IV rating scale to diagnosis Attention Deficit Hyperactivity Disorder (ADHD developed by Swanson, Nolan and Pelham. The aim of this study is determination of psychometrics specifications of this scale. Materials & Methods: This Descriptive research is a methodological, applied and validity assessment study. One thousand students at 7 to 12 age of primary school in Tehran city were selected by cluster sampling. Then the students mothers was asked to complete rating scale to consider behavior of their children.30 staff members of sample group were retest after one mounts. Diagnostic interview was administered at 36 members of sample group. Data were analyzed by using pearsonian correlation coefficient, Kolmogorof – Smirnoff and Behrens – Fisher T test. Results: Criterion validity was 48%, factor analysis was detected 3 factors that explain 56% of the total variance. Reliability coefficient was 82% . internal consistency coefficient was 90% and split –half coefficient was 76%, Cut-off point in scale and subscales was 1.57,1.47 and 1.9 respectively. Conclusion: The SNAP-IV Rating scales have fit psychometrics specifications. Therefore, it is useable in various diagnostic and therapeutic conditioning.

  11. WebAssign: Assessing Your Students' Understanding Continuously

    Science.gov (United States)

    Risley, John S.

    1999-11-01

    Motivating students to learn is a constant challenge for faculty. Technology can play a significant role. One such solution is WebAssign — a web-based homework system that offers new teaching and learning opportunities for educators and their students. WebAssign delivers, collects, grades, and records customized homework assignments over the Internet. Students get immediate feedback with credit and instructors can implement "Just-in-Time" teaching. In this talk, I will describe how assignments can be generated with different numerical values for each question, giving each student a unique problem to solve. This feature encourages independent thinking with the benefit of collaborative learning. Example assignments taken from textbook questions and intellectually engaging Java applet simulations will be shown. Studies and first-hand experience on the educational impact of using WebAssign will also be discussed.

  12. The Analysis of the Grade of the Students' Understanding in "Linear Algebra" in National College of Technology

    OpenAIRE

    中沢, 喜昌

    1989-01-01

    We gave linear algebra lessons to the fifth grade students as an elective subject and analyzed that to what extent students understood the linear algebra, judging from the result of questionaires and tests. It showed that they are good at the problems accompanied by calculations such as inverse matrix, simultaneous linear equation, and proper value problem and that, on the contrary, it is difficult to understand the abstract notion like linear space and linear map.

  13. Toward High School Biology: Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better foundation, we used research-based design principles and collaborated in the development of a curricular intervention that applies chemistry ideas to living and nonliving contexts. Six eighth grade teachers and their students participated in a test of the unit during the Spring of 2013. Two of the teachers had used an earlier version of the unit the previous spring. The other four teachers were randomly assigned either to implement the unit or to continue teaching the same content using existing materials. Pre- and posttests were administered, and the data were analyzed using Rasch modeling and hierarchical linear modeling. The results showed that, when controlling for pretest score, gender, language, and ethnicity, students who used the curricular intervention performed better on the posttest than the students using existing materials. Additionally, students who participated in the intervention held fewer misconceptions. These results demonstrate the unit’s promise in improving students’ understanding of the targeted ideas. PMID:27909024

  14. Chinese college students' understanding of Internet ethical issues: A survey of awareness and attitude

    Institute of Scientific and Technical Information of China (English)

    Yuelin LI; Ying LI; Ang LI

    2014-01-01

    Purpose:This study examines Chinese college students' awareness of ethical issues surrounding the use of information resources and the Internet and their attitude to these issues.Design/methodology/approach:A survey was conducted.Two hundred questionnaires were distributed to students of 9 universities at different levels in Tianjin,China;171 were returned.Descriptive statistics were performed to analyze the data.Findings:The results indicate that Chinese college students usually ignored the negative influence of fake or pornographic or other indecent information,invasion of privacy and theft of confidential information,and violation of intellectual property rights.Although they could distinguish to some extent between ethical and unethical behavior,they were not concerned about others' unethical behavior on the Web.The study also indicates that gender,age,academic major and expertise in using computers were related to the students' awareness of ethical issues relating to the use of the Internet and their attitude to these issues.Research limitations:The sample is limited to the universities in Tianjin.A larger sample,which includes colleges and universities in the western or other developing areas in China,is needed to further validate our findings.Practical implications:The study helps educators and academic librarians better understand Chinese college students' awareness of and attitude to ethical issues surrounding the use of the Internet.It thus could assist them in the improvement of information ethics education for college students.Originality/value:This study was one of the first empirical studies to investigate the factors influencing Chinese college students' awareness of and attitude to Internet ethical issues.

  15. Understanding students' and clinicians' experiences of informal interprofessional workplace learning: an Australian qualitative study.

    Science.gov (United States)

    Rees, Charlotte E; Crampton, Paul; Kent, Fiona; Brown, Ted; Hood, Kerry; Leech, Michelle; Newton, Jennifer; Storr, Michael; Williams, Brett

    2018-04-17

    While postgraduate studies have begun to shed light on informal interprofessional workplace learning, studies with preregistration learners have typically focused on formal and structured work-based learning. The current study investigated preregistration students' informal interprofessional workplace learning by exploring students' and clinicians' experiences of interprofessional student-clinician (IPSC) interactions. A qualitative interview study using narrative techniques was conducted. Student placements across multiple clinical sites in Victoria, Australia. Through maximum variation sampling, 61 participants (38 students and 23 clinicians) were recruited from six professions (medicine, midwifery, nursing, occupational therapy, paramedicine and physiotherapy). We conducted 12 group and 10 individual semistructured interviews. Themes were identified through framework analysis, and the similarities and differences in subthemes by participant group were interrogated. Six themes relating to four research questions were identified: (1) conceptualisations of IPSC interactions; (2) context for interaction experiences; (3) the nature of interaction experiences; (4) factors contributing to positive or negative interactions; (5) positive or negative consequences of interactions and (6) suggested improvements for IPSC interactions. Seven noteworthy differences in subthemes between students and clinicians and across the professions were identified. Despite the results largely supporting previous postgraduate research, the findings illustrate greater breadth and depth of understandings, experiences and suggestions for preregistration education. Educators and students are encouraged to seek opportunities for informal interprofessional learning afforded by the workplace. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. The Contribution of Conceptual Change Texts Accompanied by Concept Mapping to Eleventh-Grade Students Understanding of Cellular Respiration Concepts

    Science.gov (United States)

    Al khawaldeh, Salem A.; Al Olaimat, Ali M.

    2010-01-01

    The present study conducted to investigate the contribution of conceptual change texts, accompanied by concept mapping instruction to eleventh-grade students' understanding of cellular respiration concepts, and their retention of this understanding. Cellular respiration concepts test was developed as a result of examination of related literature…

  17. A SEM Model in Assessing the Effect of Convergent, Divergent and Logical Thinking on Students' Understanding of Chemical Phenomena

    Science.gov (United States)

    Stamovlasis, D.; Kypraios, N.; Papageorgiou, G.

    2015-01-01

    In this study, structural equation modeling (SEM) is applied to an instrument assessing students' understanding of chemical change. The instrument comprised items on understanding the structure of substances, chemical changes and their interpretation. The structural relationships among particular groups of items are investigated and analyzed using…

  18. Exploring Effects of High School Students' Mathematical Processing Skills and Conceptual Understanding of Chemical Concepts on Algorithmic Problem Solving

    Science.gov (United States)

    Gultepe, Nejla; Yalcin Celik, Ayse; Kilic, Ziya

    2013-01-01

    The purpose of the study was to examine the effects of students' conceptual understanding of chemical concepts and mathematical processing skills on algorithmic problem-solving skills. The sample (N = 554) included grades 9, 10, and 11 students in Turkey. Data were collected using the instrument "MPC Test" and with interviews. The MPC…

  19. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    Science.gov (United States)

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  20. Understanding the Educational Lives of Community College Students: A Photovoice Project, a Bourdieusian Interpretation, and Habitus Dissonance Spark Theory

    Science.gov (United States)

    Latz, Amanda O.

    2012-01-01

    Too little research exists that provides windows into the day-to-day lives of community college students. The purpose of this paper is to explicate one finding and concomitant grounded theory derived from a photovoice project aimed at understanding the educational lives of community college students. Participants saw the community college as a…