WorldWideScience

Sample records for understanding ecological processes

  1. Ecological Understanding 2: Transformation--A Key to Ecological Understanding.

    Science.gov (United States)

    Carlsson, Britta

    2002-01-01

    Describes the structure and general features of the phenomenon of ecological understanding. Presents qualitatively different ways of experiencing cycling of matter and the flow of energy in the context of ecosystems. The idea of transformation is key to the development of ecological understanding. (Contains 17 references.) (Author/YDS)

  2. Revisiting the Holy Grail: using plant functional traits to understand ecological processes.

    Science.gov (United States)

    Funk, Jennifer L; Larson, Julie E; Ames, Gregory M; Butterfield, Bradley J; Cavender-Bares, Jeannine; Firn, Jennifer; Laughlin, Daniel C; Sutton-Grier, Ariana E; Williams, Laura; Wright, Justin

    2017-05-01

    One of ecology's grand challenges is developing general rules to explain and predict highly complex systems. Understanding and predicting ecological processes from species' traits has been considered a 'Holy Grail' in ecology. Plant functional traits are increasingly being used to develop mechanistic models that can predict how ecological communities will respond to abiotic and biotic perturbations and how species will affect ecosystem function and services in a rapidly changing world; however, significant challenges remain. In this review, we highlight recent work and outstanding questions in three areas: (i) selecting relevant traits; (ii) describing intraspecific trait variation and incorporating this variation into models; and (iii) scaling trait data to community- and ecosystem-level processes. Over the past decade, there have been significant advances in the characterization of plant strategies based on traits and trait relationships, and the integration of traits into multivariate indices and models of community and ecosystem function. However, the utility of trait-based approaches in ecology will benefit from efforts that demonstrate how these traits and indices influence organismal, community, and ecosystem processes across vegetation types, which may be achieved through meta-analysis and enhancement of trait databases. Additionally, intraspecific trait variation and species interactions need to be incorporated into predictive models using tools such as Bayesian hierarchical modelling. Finally, existing models linking traits to community and ecosystem processes need to be empirically tested for their applicability to be realized. © 2016 Cambridge Philosophical Society.

  3. Macrosystems ecology: novel methods and new understanding of multi-scale patterns and processes

    Science.gov (United States)

    Songlin Fei; Qinfeng Guo; Kevin Potter

    2016-01-01

    As the global biomes are increasingly threatened by human activities, understanding of macroscale patterns and processes is pressingly needed for effective management and policy making. Macrosystems ecology, which studies multiscale ecologicalpatterns and processes, has gained growing interest in the research community. However, as a relatively new field in...

  4. Using Ancient DNA to Understand Evolutionary and Ecological Processes

    DEFF Research Database (Denmark)

    Orlando, Ludovic Antoine Alexandre; Cooper, Alan

    2014-01-01

    Ancient DNA provides a unique means to record genetic change through time and directly observe evolutionary and ecological processes. Although mostly based on mitochondrial DNA, the increasing availability of genomic sequences is leading to unprecedented levels of resolution. Temporal studies of ...

  5. Microbial ecology to manage processes in environmental biotechnology.

    Science.gov (United States)

    Rittmann, Bruce E

    2006-06-01

    Microbial ecology and environmental biotechnology are inherently tied to each other. The concepts and tools of microbial ecology are the basis for managing processes in environmental biotechnology; and these processes provide interesting ecosystems to advance the concepts and tools of microbial ecology. Revolutionary advancements in molecular tools to understand the structure and function of microbial communities are bolstering the power of microbial ecology. A push from advances in modern materials along with a pull from a societal need to become more sustainable is enabling environmental biotechnology to create novel processes. How do these two fields work together? Five principles illuminate the way: (i) aim for big benefits; (ii) develop and apply more powerful tools to understand microbial communities; (iii) follow the electrons; (iv) retain slow-growing biomass; and (v) integrate, integrate, integrate.

  6. Inferring local ecological processes amid species pool influences

    DEFF Research Database (Denmark)

    Lessard, Jean-Philippe; Belmaker, Jonathan; Myers, Jonathan A.

    2012-01-01

    studies, null models of community structure, and ecologically explicit definitions of the species pool as a means to compare predominant ecological processes among regions. By uniting concepts and tools from community ecology and macroecology, this approach might facilitate synthesis and resolve many......Resolving contingencies in community ecology requires comparative studies of local communities along broad-scale environmental gradients and in different biogeographic regions. However, comparisons of local ecological processes among regions require a synthetic understanding of how the species pool...... of potential community members influences the structure of ecological communities. Here, we outline an integrative approach for quantifying local ecological processes while explicitly accounting for species pool influences. Specifically, we highlight the utility of combining geographically replicated local...

  7. Watersheds in Baltimore, Maryland: understanding and application of integrated ecological and social processes

    Science.gov (United States)

    Steward T.A. Pickett; Kenneth T. Belt; Michael F. Galvin; Peter M. Groffman; J. Morgan Grove; Donald C. Outen; Richard V. Pouyat; William P. Stack; Mary L. Cadenasso

    2007-01-01

    The Water and Watersheds program has made significant and lasting contributions to the basic understanding of the complex ecological system of Baltimore, MD. Funded at roughly the same time as the urban Long- Term Ecological Research (LTER) project in Baltimore, the Water and Watersheds grant and the LTER grant together established the Baltimore Ecosystem Study (BES)...

  8. Understanding protected area resilience: a multi-scale, social-ecological approach

    Science.gov (United States)

    Cumming, Graeme S.; Allen, Craig R.; Ban, Natalie C.; Biggs, Duan; Biggs, Harry C.; Cumming, David H.M; De Vos, Alta; Epstein, Graham; Etienne, Michel; Maciejewski, Kristine; Mathevet, Raphael; Moore, Christine; Nenadovic, Mateja; Schoon, Michael

    2015-01-01

    Protected areas (PAs) remain central to the conservation of biodiversity. Classical PAs were conceived as areas that would be set aside to maintain a natural state with minimal human influence. However, global environmental change and growing cross-scale anthropogenic influences mean that PAs can no longer be thought of as ecological islands that function independently of the broader social-ecological system in which they are located. For PAs to be resilient (and to contribute to broader social-ecological resilience), they must be able to adapt to changing social and ecological conditions over time in a way that supports the long-term persistence of populations, communities, and ecosystems of conservation concern. We extend Ostrom's social-ecological systems framework to consider the long-term persistence of PAs, as a form of land use embedded in social-ecological systems, with important cross-scale feedbacks. Most notably, we highlight the cross-scale influences and feedbacks on PAs that exist from the local to the global scale, contextualizing PAs within multi-scale social-ecological functional landscapes. Such functional landscapes are integral to understand and manage individual PAs for long-term sustainability. We illustrate our conceptual contribution with three case studies that highlight cross-scale feedbacks and social-ecological interactions in the functioning of PAs and in relation to regional resilience. Our analysis suggests that while ecological, economic, and social processes are often directly relevant to PAs at finer scales, at broader scales, the dominant processes that shape and alter PA resilience are primarily social and economic.

  9. Hierarchical structure of ecological and non-ecological processes of differentiation shaped ongoing gastropod radiation in the Malawi Basin.

    Science.gov (United States)

    Van Bocxlaer, Bert

    2017-09-13

    Ecological processes, non-ecological processes or a combination of both may cause reproductive isolation and speciation, but their specific roles and potentially complex interactions in evolutionary radiations remain poorly understood, which defines a central knowledge gap at the interface of microevolution and macroevolution. Here I examine genome scans in combination with phenotypic and environmental data to disentangle how ecological and non-ecological processes contributed to population differentiation and speciation in an ongoing radiation of Lanistes gastropods from the Malawi Basin. I found a remarkable hierarchical structure of differentiation mechanisms in space and time: neutral and mutation-order processes are older and occur mainly between regions, whereas more recent adaptive processes are the main driver of genetic differentiation and reproductive isolation within regions. The strongest differentiation occurs between habitats and between regions, i.e. when ecological and non-ecological processes act synergistically. The structured occurrence of these processes based on the specific geographical setting and ecological opportunities strongly influenced the potential for evolutionary radiation. The results highlight the importance of interactions between various mechanisms of differentiation in evolutionary radiations, and suggest that non-ecological processes are important in adaptive radiations, including those of cichlids. Insight into such interactions is critical to understanding large-scale patterns of organismal diversity. © 2017 The Author(s).

  10. Ecological forestry in the Southeast: Understanding the ecology of fuels

    Science.gov (United States)

    R.J. Mitchell; J.K. Hiers; J. O’Brien; G. Starr

    2009-01-01

    Fire is a dominant disturbance within many forested ecosystems worldwide. Understanding the complex feedbacks among vegetation as a fuel for fire, the effects of fuels on fire behavior, and the impact of fire behavior on future vegetation are critical for sustaining biodiversity in fire-dependent forests. Nonetheless, understanding in fire ecology has been limited in...

  11. Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation

    Science.gov (United States)

    Christopher A. Lepczyk; Myla F. J. Aronson; Karl L. Evans; Mark A. Goddard; Susannah B. Lerman; J. Scott MacIvor

    2017-01-01

    As urban areas expand, understanding how ecological processes function in cities has become increasingly important for conserving biodiversity. Urban green spaces are critical habitats to support biodiversity, but we still have a limited understanding of their ecology and how they function to conserve biodiversity at local and landscape scales across multiple taxa....

  12. Experiential Learning as a Constraint-Led Process: An Ecological Dynamics Perspective

    Science.gov (United States)

    Brymer, Eric; Davids, Keith

    2014-01-01

    In this paper we present key ideas for an ecological dynamics approach to learning that reveal the importance of learner-environment interactions to frame outdoor experiential learning. We propose that ecological dynamics provides a useful framework for understanding the interacting constraints of the learning process and for designing learning…

  13. Bacteriophage ecology in environmental biotechnology processes.

    Science.gov (United States)

    Shapiro, Orr H; Kushmaro, Ariel

    2011-06-01

    Heterotrophic bacteria are an integral part of any environmental biotechnology process (EBP). Therefore, factors controlling bacterial abundance, activity, and community composition are central to the understanding of such processes. Among these factors, top-down control by bacteriophage predation has so far received very limited attention. With over 10(8) particles per ml, phage appear to be the most numerous biological entities in EBP. Phage populations in EBP appear to be highly dynamic and to correlate with the population dynamics of their hosts and genomic evidence suggests bacteria evolve to avoid phage predation. Clearly, there is much to learn regarding bacteriophage in EBP before we can truly understand the microbial ecology of these globally important systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Understanding cities as social-ecological systems

    CSIR Research Space (South Africa)

    Du Plessis, C

    2008-09-01

    Full Text Available This paper builds on earlier ecological approaches to urban development, as well as more recent thinking in the fields of sustainability science, resilience thinking and complexity theory, to propose a conceptual framework for understanding cities...

  15. Do we understand children's restlessness? Constructing ecologically valid understandings through reflexive cooperation

    Directory of Open Access Journals (Sweden)

    Anna Helle-Valle

    2015-12-01

    Full Text Available Attention-deficit/hyperactivity disorder (ADHD is the most widely used children's mental health diagnosis today, but the validity of the diagnosis is controversial, for instance, because it might conceal relational and ecological dimensions of restlessness. We invited parents and professionals from one local community in western Norway to participate in cooperative group discussions on how to conceptualize and understand children's restlessness. We carried out a thematic and reflexive analysis of the cooperative group discussions on ADHD and children's restlessness, and present findings related to three ecological levels inspired by Bronfenbrenner's ecological systems model. At the level of the individual, restlessness was discussed as individual trait, as the expectation to be seen and heard, and as a result of traumatization. At the level of dyad, group or family, restlessness was discussed as a relational phenomenon and as parents' problems. At the level of community, restlessness was discussed as lack of cooperation and lack of structures or resources. Our findings show how contextualized and cooperative reflexivity can contribute to more valid understandings of children's restlessness, and how cooperative inquiry can stimulate reflections about solidarity and sustainability in relation to adult's actions.

  16. Rivers are social–ecological systems: Time to integrate human dimensions into riverscape ecology and management

    Science.gov (United States)

    Dunham, Jason B.; Angermeier, Paul L.; Crausbay, Shelley D.; Cravens, Amanda; Gosnell, Hannah; McEvoy, Jamie; Moritz, Max A.; Raheem, Nejem; Sanford, Todd

    2018-01-01

    Incorporation of concepts from landscape ecology into understanding and managing riverine ecosystems has become widely known as riverscape ecology. Riverscape ecology emphasizes interactions among processes at different scales and their consequences for valued ecosystem components, such as riverine fishes. Past studies have focused strongly on understanding the ecological processes in riverscapes and how human actions modify those processes. It is increasingly clear, however, that an understanding of the drivers behind actions that lead to human modification also merit consideration, especially regarding how those drivers influence management efficacy. These indirect drivers of riverscape outcomes can be understood in the context of a diverse array of social processes, which we collectively refer to as human dimensions. Like ecological phenomena, social processes also exhibit complex interactions across spatiotemporal scales. Greater emphasis on feedbacks between social and ecological processes will lead scientists and managers to more completely understand riverscapes as complex, dynamic, interacting social–ecological systems. Emerging applications in riverscapes, as well as studies of other ecosystems, provide examples that can lead to stronger integration of social and ecological science. We argue that conservation successes within riverscapes may not come from better ecological science, improved ecosystem service analyses, or even economic incentives if the fundamental drivers of human behaviors are not understood and addressed in conservation planning and implementation.

  17. A framework for understanding the concerns of ecological designers

    International Nuclear Information System (INIS)

    DeKay, M.

    1992-01-01

    This paper creates a theoretical framework of analysis for understanding the concerns and methods of ecological designers. Various definitions of ecological design are reviewed to show its basis in natural ecological systems, either as analog or as context, and its purpose as creating sustainability. Ecological design methods are categorized as conceptual, factual, or integrative. The characteristics and definitions of these methods are explained and several practitioners and theorists classified. Lyle's concept of ecosystematic order is used to show the basis of methods in either a building architecture or a landscape architecture perspective. A matrix is generated and applied to a representative of each category, showing the concerns of each in terms of the integration of human and natural ecosystem structure, function, and location

  18. Living in the branches: population dynamics and ecological processes in dendritic networks

    Science.gov (United States)

    Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.

    2007-01-01

    Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.

  19. Seafloor Eruptions Offer a Teachable Moment to Help SEAS Students Understand Important Geological and Ecological Processes

    Science.gov (United States)

    Goehring, L.; Williams, C. S.

    2006-12-01

    In education parlance, a teachable moment is an opportunity that arises when students are engaged and primed to learn, typically in response to some memorable event. Earthquakes, volcanic eruptions, even natural disasters, if meaningful to the student, often serve to catalyze intense learning. Recent eruptions at the East Pacific Rise offer a potential teachable moment for students and teachers involved with SEAS, a Ridge 2000 education outreach program. SEAS uses a combination of web-facilitated and teacher-directed activities to make the remote deep-sea environment and the process of science relevant and meaningful. SEAS is a web-based, inquiry-oriented education program for middle and high school students. It features the science associated with Ridge 2000 research. Since 2003, SEAS has focused on the integrated study site at the East Pacific Rise (EPR) to help students understand geological and ecological processes at mid-ocean ridges and hydrothermal vents. SEAS students study EPR bathymetry maps, images of lava formations, photomosaics of diffuse flow communities, succession in the Bio-Geo Transect, as well as current research conducted during spring cruises. In the Classroom to Sea Lab, students make direct comparisons between shallow-water mussels and vent mussels (from the EPR) to understand differences in feeding strategies. The recent eruptions and loss of seafloor fauna at this site offer the Ridge 2000 program the opportunity to help students better understand the ephemeral and episodic nature of ridge environments, as well as the realities and processes of science (particularly field science). In January 2007, the SEAS program will again sail with a Ridge 2000 research team, and will work with scientists to report findings through the SEAS website. The eruptions at the EPR covered much of the study site, and scientists' instruments and experiments, in fresh lava. We intend to highlight the recency and effect of the eruptions, using the students

  20. teacidng ecological principles as a basis for understanding

    African Journals Online (AJOL)

    using strategies based on the food chain concept, but most respondents were ... ecology and form the basis for an understanding of the food web concept which, .... web for the system by: a) filling in the blocks provided. (figure 3), b) writing ...

  1. Process-based models are required to manage ecological systems in a changing world

    Science.gov (United States)

    K. Cuddington; M.-J. Fortin; L.R. Gerber; A. Hastings; A. Liebhold; M. OConnor; C. Ray

    2013-01-01

    Several modeling approaches can be used to guide management decisions. However, some approaches are better fitted than others to address the problem of prediction under global change. Process-based models, which are based on a theoretical understanding of relevant ecological processes, provide a useful framework to incorporate specific responses to altered...

  2. Resilience, political ecology, and well-being: an interdisciplinary approach to understanding social-ecological change in coastal Bangladesh

    Directory of Open Access Journals (Sweden)

    Sonia F. Hoque

    2017-06-01

    Full Text Available The commodification of peasant livelihoods through export-oriented aquaculture has brought about significant social-ecological changes in low-lying coastal areas in many parts of Asia. A better understanding of the underlying drivers and distributional effects of these changes requires integration of social and ecological approaches that often have different epistemological origins. Resilience thinking has gained increased traction in social-ecological systems research because it provides a dynamic analysis of the cross-scalar interactions between multiple conditions and processes. However, the system-oriented perspective inherent in resilience thinking fails to acknowledge the heterogeneous values, interests, and power of social actors and their roles in navigating social-ecological change. Incorporation of political ecology and well-being perspectives can provide an actor-oriented analysis of the trade-offs associated with change and help to determine which state is desirable for whom. However, empirical demonstrations of such interdisciplinary approaches remain scarce. Here, we explore the combined application of resilience, political ecology, and well-being in investigating the root causes of social-ecological change and identifying the winners and losers of system transformation through empirical analysis of the differential changes in farming systems in two villages in coastal Bangladesh. Using the adaptive cycle as a structuring model, we examine the evolution of the shrimp aquaculture system over the past few decades, particularly looking at the power dynamics between households of different wealth classes. We found that although asymmetric land ownership and political ties enabled the wealthier households to reach their desired farming system in one village, social resilience achieved through memory, leadership, and crisis empowered poorer households to exercise their agency in another village. Material dimensions such as improved

  3. Integrating survey and molecular approaches to better understand wildlife disease ecology.

    Directory of Open Access Journals (Sweden)

    Brendan D Cowled

    Full Text Available Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design versus transmission (molecular case series study design and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37-45%. The median Salmonella DICE coefficient (or Salmonella genetic similarity was 52% (interquartile range [IQR]: 42-62%. Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is

  4. Integrating Survey and Molecular Approaches to Better Understand Wildlife Disease Ecology

    Science.gov (United States)

    Cowled, Brendan D.; Ward, Michael P.; Laffan, Shawn W.; Galea, Francesca; Garner, M. Graeme; MacDonald, Anna J.; Marsh, Ian; Muellner, Petra; Negus, Katherine; Quasim, Sumaiya; Woolnough, Andrew P.; Sarre, Stephen D.

    2012-01-01

    Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa) population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design) versus transmission (molecular case series study design) and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37–45%). The median Salmonella DICE coefficient (or Salmonella genetic similarity) was 52% (interquartile range [IQR]: 42–62%). Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density) determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is driven by

  5. Understanding vaginal microbiome complexity from an ecological perspective

    Science.gov (United States)

    Hickey, Roxana J.; Zhou, Xia; Pierson, Jacob D.; Ravel, Jacques; Forney, Larry J.

    2012-01-01

    The various microbiota normally associated with the human body have an important influence on human development, physiology, immunity, and nutrition. This is certainly true for the vagina wherein communities of mutualistic bacteria constitute the first line of defense for the host by excluding invasive, nonindigenous organisms that may cause disease. In recent years much has been learned about the bacterial species composition of these communities and how they differ between individuals of different ages and ethnicities. A deeper understanding of their origins and the interrelationships of constituent species is needed to understand how and why they change over time or in response to changes in the host environment. Moreover, there are few unifying theories to explain the ecological dynamics of vaginal ecosystems as they respond to disturbances caused by menses and human activities such as intercourse, douching, and other habits and practices. This fundamental knowledge is needed to diagnose and assess risk to disease. Here we summarize what is known about the species composition, structure, and function of bacterial communities in the human vagina and the applicability of ecological models of community structure and function to understanding the dynamics of this and other ecosystems that comprise the human microbiome. PMID:22683415

  6. Network approaches for understanding rainwater management from a social-ecological systems perspective

    Directory of Open Access Journals (Sweden)

    Steven D. Prager

    2015-12-01

    Full Text Available The premise of this research is to better understand how approaches to implementing rainwater management practices can be informed by understanding how the people living and working in agroecosystems are connected to one another. Because these connections are via both social interactions and functional characteristics of the landscape, a social-ecological network emerges. Using social-ecological network theory, we ask how understanding the structure of interactions can lead to improved rainwater management interventions. Using a case study situated within a small sub-basin in the Fogera area of the Blue Nile Basin of Ethiopia, we build networks of smallholders based both on the biophysical and social-institutional landscapes present in the study site, with the smallholders themselves as the common element between the networks. In turn we explore how structures present in the networks may serve to guide decision making regarding both where and with whom rainwater management interventions could be developed. This research thus illustrates an approach for constructing a social-ecological network and demonstrates how the structures of the network yield insights for tailoring the implementation of rainwater management practices to the social and ecological setting.

  7. teacidng ecological principles as a basis for understanding ...

    African Journals Online (AJOL)

    progressing from the food chain to the food web concept, and that this may constitute a block in later understanding, should form a valuable point of departure for teachers as lack of any significant difference between the results of the three groups used in this study suggests that if clear ecological concepts are not developed ...

  8. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology

    Science.gov (United States)

    Eisenhauer, Nico; Powell, Jeff R; Grace, James B.; Bowker, Matthew A.

    2015-01-01

    In this perspectives paper we highlight a heretofore underused statistical method in soil ecological research, structural equation modeling (SEM). SEM is commonly used in the general ecological literature to develop causal understanding from observational data, but has been more slowly adopted by soil ecologists. We provide some basic information on the many advantages and possibilities associated with using SEM and provide some examples of how SEM can be used by soil ecologists to shift focus from describing patterns to developing causal understanding and inspiring new types of experimental tests. SEM is a promising tool to aid the growth of soil ecology as a discipline, particularly by supporting research that is increasingly hypothesis-driven and interdisciplinary, thus shining light into the black box of interactions belowground.

  9. An ecological method to understand agricultural standardization in peach orchard ecosystems.

    Science.gov (United States)

    Wan, Nian-Feng; Zhang, Ming-Yi; Jiang, Jie-Xian; Ji, Xiang-Yun; Hao-Zhang

    2016-02-22

    While the worldwide standardization of agricultural production has been advocated and recommended, relatively little research has focused on the ecological significance of such a shift. The ecological concerns stemming from the standardization of agricultural production may require new methodology. In this study, we concentrated on how ecological two-sidedness and ecological processes affect the standardization of agricultural production which was divided into three phrases (pre-, mid- and post-production), considering both the positive and negative effects of agricultural processes. We constructed evaluation indicator systems for the pre-, mid- and post-production phases and here we presented a Standardization of Green Production Index (SGPI) based on the Full Permutation Polygon Synthetic Indicator (FPPSI) method which we used to assess the superiority of three methods of standardized production for peaches. The values of SGPI for pre-, mid- and post-production were 0.121 (Level IV, "Excellent" standard), 0.379 (Level III, "Good" standard), and 0.769 × 10(-2) (Level IV, "Excellent" standard), respectively. Here we aimed to explore the integrated application of ecological two-sidedness and ecological process in agricultural production. Our results are of use to decision-makers and ecologists focusing on eco-agriculture and those farmers who hope to implement standardized agricultural production practices.

  10. Mess management in microbial ecology: Rhetorical processes of disciplinary integration

    Science.gov (United States)

    McCracken, Christopher W.

    As interdisciplinary work becomes more common in the sciences, research into the rhetorical processes mediating disciplinary integration becomes more vital. This dissertation, which takes as its subject the integration of microbiology and ecology, combines a postplural approach to rhetoric of science research with Victor Turner's "social drama" analysis and a third-generation activity theory methodological framework to identify conceptual and practical conflicts in interdisciplinary work and describe how, through visual and verbal communication, scientists negotiate these conflicts. First, to understand the conflicting disciplinary principles that might impede integration, the author conducts a Turnerian analysis of a disciplinary conflict that took place in the 1960s and 70s, during which American ecologists and biologists debated whether they should participate in the International Biological Program (IBP). Participation in the IBP ultimately contributed to the emergence of ecology as a discipline distinct from biology, and Turnerian social drama analysis of the debate surrounding participation lays bare the conflicting principles separating biology and ecology. Second, to answer the question of how these conflicting principles are negotiated in practice, the author reports on a yearlong qualitative study of scientists working in a microbial ecology laboratory. Focusing specifically on two case studies from this fieldwork that illustrate the key concept of textually mediated disciplinary integration, the author's analysis demonstrates how scientific objects emerge in differently situated practices, and how these objects manage to cohere despite their multiplicity through textually mediated rhetorical processes of calibration and alignment.

  11. An Ecological Understanding of Youth Suicide in South Korea

    Science.gov (United States)

    Lee, Seung-yeon; Hong, Jun Sung; Espelage, Dorothy L.

    2010-01-01

    This article reviews risk factors for youth suicide in South Korea (hereafter referred to as Korea), based on the ecological systems theory. Although youth suicide is a major concern for Korean society, understanding of this phenomenon has been limited since most of the empirical studies address personal characteristics without much consideration…

  12. [Ecological security of wastewater treatment processes: a review].

    Science.gov (United States)

    Yang, Sai; Hua, Tao

    2013-05-01

    Though the regular indicators of wastewater after treatment can meet the discharge requirements and reuse standards, it doesn't mean the effluent is harmless. From the sustainable point of view, to ensure the ecological and human security, comprehensive toxicity should be considered when discharge standards are set up. In order to improve the ecological security of wastewater treatment processes, toxicity reduction should be considered when selecting and optimizing the treatment processes. This paper reviewed the researches on the ecological security of wastewater treatment processes, with the focus on the purposes of various treatment processes, including the processes for special wastewater treatment, wastewater reuse, and for the safety of receiving waters. Conventional biological treatment combined with advanced oxidation technologies can enhance the toxicity reduction on the base of pollutants removal, which is worthy of further study. For the process aimed at wastewater reuse, the integration of different process units can complement the advantages of both conventional pollutants removal and toxicity reduction. For the process aimed at ecological security of receiving waters, the emphasis should be put on the toxicity reduction optimization of process parameters and process unit selection. Some suggestions for the problems in the current research and future research directions were put forward.

  13. From patterns to emerging processes in mechanistic urban ecology.

    Science.gov (United States)

    Shochat, Eyal; Warren, Paige S; Faeth, Stanley H; McIntyre, Nancy E; Hope, Diane

    2006-04-01

    Rapid urbanization has become an area of crucial concern in conservation owing to the radical changes in habitat structure and loss of species engendered by urban and suburban development. Here, we draw on recent mechanistic ecological studies to argue that, in addition to altered habitat structure, three major processes contribute to the patterns of reduced species diversity and elevated abundance of many species in urban environments. These activities, in turn, lead to changes in animal behavior, morphology and genetics, as well as in selection pressures on animals and plants. Thus, the key to understanding urban patterns is to balance studying processes at the individual level with an integrated examination of environmental forces at the ecosystem scale.

  14. Understanding the Foraging Ecology of Beaked and Short-Finned Pilot Whales in Hawaiian Waters

    Science.gov (United States)

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Understanding the Foraging Ecology of Beaked and Short...SEP 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Understanding the Foraging Ecology of Beaked and Short...and Hildebrand, J. (2008). “Temporal pattern in the acoustic signals of beaked whales at Cross Seamount .” Biol. Lett. 4, 208-211. Lammers, M.O

  15. Studying the complexity of change: toward an analytical framework for understanding deliberate social-ecological transformations

    Directory of Open Access Journals (Sweden)

    Michele-Lee Moore

    2014-12-01

    Full Text Available Faced with numerous seemingly intractable social and environmental challenges, many scholars and practitioners are increasingly interested in understanding how to actively engage and transform the existing systems holding such problems in place. Although a variety of analytical models have emerged in recent years, most emphasize either the social or ecological elements of such transformations rather than their coupled nature. To address this, first we have presented a definition of the core elements of a social-ecological system (SES that could potentially be altered in a transformation. Second, we drew on insights about transformation from three branches of literature focused on radical change, i.e., social movements, socio-technical transitions, and social innovation, and gave consideration to the similarities and differences with the current studies by resilience scholars. Drawing on these findings, we have proposed a framework that outlines the process and phases of transformative change in an SES. Future research will be able to utilize the framework as a tool for analyzing the alteration of social-ecological feedbacks, identifying critical barriers and leverage points and assessing the outcome of social-ecological transformations.

  16. Understanding the biological underpinnings of ecohydrological processes

    Science.gov (United States)

    Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.

    2012-12-01

    has precluded determination of sufficient theoretical development. Understanding the land-surface response and feedback to climate change requires a mechanistic understanding of the coupling of ecological and hydrological processes and an expansion of theory from the life sciences to appropriately contribute to the broader Earth system science goal.

  17. Seeing the Hani People’s Traditional Ecological Understanding from the Perspective of Folk Literature

    Institute of Scientific and Technical Information of China (English)

    Li Guangrong

    2016-01-01

    the practicalities of place, and folk literature has its own particularity. Folk literature is created by several folk artists from gen-eration to generation. It might be a result from sev-eral people’s discussions during the creative process or when the work is passed down, hence, it is typically collective work and has typically mass characteristics. Although the individual plays a significant role in the creation of a work, the content of folk literature does not always reflect a single artist’s idea, but the idea of a group. There-fore, we say that the harmonious ecological under-standing reflected in the Hani literature actually re-flects an overall awareness of the Hani people. Why did the Hani form this kind of common awareness, then? We believe that it is decided by the Hani’s living environment and common cultural resources. Most Hani people live in the mountain-ous or semi-mountainous areas between Mt. Ailao and Mt. Mengle. The living environment partly in-fluences ideology. Because of the level of inacces-sability, and self -sufficient life style, communi-cation among the different Hani villages is rare, however, what they see every day in their living ar-eas are mountains; therefore, their similar living environment leads them to have a similar under-standing of the mountains. The Hani are a “migrated ethnic group”. Their ancestors originally lived in the remote north. Due to natural and social causes, they moved south. Following the cultural development and improvement of natural conditions, their popu-lation gradually increased. After they stepped into the mountainous areas of Mt. Ailao, they had im-proved material conditions and peaceful life, and the population dramatically increased. Later, they settled down in the broad area of the Honghe and Lishejiang drainage basins. The Hani’s history of migration and development indicates that no matter how large a population they have, and how they are scattered, their culture has the same origin

  18. Increasing connectivity between metapopulation ecology and landscape ecology.

    Science.gov (United States)

    Howell, Paige E; Muths, Erin; Hossack, Blake R; Sigafus, Brent H; Chandler, Richard B

    2018-05-01

    Metapopulation ecology and landscape ecology aim to understand how spatial structure influences ecological processes, yet these disciplines address the problem using fundamentally different modeling approaches. Metapopulation models describe how the spatial distribution of patches affects colonization and extinction, but often do not account for the heterogeneity in the landscape between patches. Models in landscape ecology use detailed descriptions of landscape structure, but often without considering colonization and extinction dynamics. We present a novel spatially explicit modeling framework for narrowing the divide between these disciplines to advance understanding of the effects of landscape structure on metapopulation dynamics. Unlike previous efforts, this framework allows for statistical inference on landscape resistance to colonization using empirical data. We demonstrate the approach using 11 yr of data on a threatened amphibian in a desert ecosystem. Occupancy data for Lithobates chiricahuensis (Chiricahua leopard frog) were collected on the Buenos Aires National Wildlife Refuge (BANWR), Arizona, USA from 2007 to 2017 following a reintroduction in 2003. Results indicated that colonization dynamics were influenced by both patch characteristics and landscape structure. Landscape resistance increased with increasing elevation and distance to the nearest streambed. Colonization rate was also influenced by patch quality, with semi-permanent and permanent ponds contributing substantially more to the colonization of neighboring ponds relative to intermittent ponds. Ponds that only hold water intermittently also had the highest extinction rate. Our modeling framework can be widely applied to understand metapopulation dynamics in complex landscapes, particularly in systems in which the environment between habitat patches influences the colonization process. © 2018 by the Ecological Society of America.

  19. Integrating evo-devo with ecology for a better understanding of phenotypic evolution.

    Science.gov (United States)

    Santos, M Emília; Berger, Chloé S; Refki, Peter N; Khila, Abderrahman

    2015-11-01

    Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. © The Author 2015. Published by Oxford University Press.

  20. A Social-Ecological, Process-Oriented Perspective on Political Violence and Child Development.

    Science.gov (United States)

    Cummings, E Mark; Goeke-Morey, Marcie; Merrilees, Christine E; Taylor, Laura K; Shirlow, Peter A

    2014-06-01

    Youths' risk for adjustment problems in contexts of political violence is well-documented. However, outcomes vary widely, with many children functioning well. Accordingly, moving beyond further documenting the risk for many negative outcomes associated with living in contexts of political violence, a second generation of research is moving towards identifying the mechanisms and conditions that contribute to children's adjustment. Increasing support is emerging for understanding effects on children in terms of changes in the social contexts in which children live, and in the psychological processes engaged by these social ecologies. Selected themes are considered, including (a) the need to study multiple levels of the social ecology, (b) differentiating between the effects of exposure to contexts of political versus non-political violence, and (c) theories about explanatory processes. Selected research pertinent to these directions is reviewed, including findings from a six-wave longitudinal study on political violence and children in Northern Ireland.

  1. Estimating and mapping ecological processes influencing microbial community assembly.

    Science.gov (United States)

    Stegen, James C; Lin, Xueju; Fredrickson, Jim K; Konopka, Allan E

    2015-01-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.

  2. Estimating and Mapping Ecological Processes Influencing Microbial Community Assembly

    Directory of Open Access Journals (Sweden)

    James C Stegen

    2015-05-01

    Full Text Available Ecological community assembly is governed by a combination of (i selection resulting from among-taxa differences in performance; (ii dispersal resulting from organismal movement; and (iii ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.

  3. Beyond positivist ecology: toward an integrated ecological ethics.

    Science.gov (United States)

    Norton, Bryan G

    2008-12-01

    A post-positivist understanding of ecological science and the call for an "ecological ethic" indicate the need for a radically new approach to evaluating environmental change. The positivist view of science cannot capture the essence of environmental sciences because the recent work of "reflexive" ecological modelers shows that this requires a reconceptualization of the way in which values and ecological models interact in scientific process. Reflexive modelers are ecological modelers who believe it is appropriate for ecologists to examine the motives for their choices in developing models; this self-reflexive approach opens the door to a new way of integrating values into public discourse and to a more comprehensive approach to evaluating ecological change. This reflexive building of ecological models is introduced through the transformative simile of Aldo Leopold, which shows that learning to "think like a mountain" involves a shift in both ecological modeling and in values and responsibility. An adequate, interdisciplinary approach to ecological valuation, requires a re-framing of the evaluation questions in entirely new ways, i.e., a review of the current status of interdisciplinary value theory with respect to ecological values reveals that neither of the widely accepted theories of environmental value-neither economic utilitarianism nor intrinsic value theory (environmental ethics)-provides a foundation for an ecologically sensitive evaluation process. Thus, a new, ecologically sensitive, and more comprehensive approach to evaluating ecological change would include an examination of the metaphors that motivate the models used to describe environmental change.

  4. Ecosystem management via interacting models of political and ecological processes

    Directory of Open Access Journals (Sweden)

    Haas, T. C.

    2004-01-01

    Full Text Available The decision to implement environmental protection options is a political one. Political realities may cause a country to not heed the most persuasive scientific analysis of an ecosystem's future health. A predictive understanding of the political processes that result in ecosystem management decisions may help guide ecosystem management policymaking. To this end, this article develops a stochastic, temporal model of how political processes influence and are influenced by ecosystem processes. This model is realized in a system of interacting influence diagrams that model the decision making of a country's political bodies. These decisions interact with a model of the ecosystem enclosed by the country. As an example, a model for Cheetah (Acinonyx jubatus management in Kenya is constructed and fitted to decision and ecological data.

  5. Using ecological production functions to link ecological ...

    Science.gov (United States)

    Ecological production functions (EPFs) link ecosystems, stressors, and management actions to ecosystem services (ES) production. Although EPFs are acknowledged as being essential to improve environmental management, their use in ecological risk assessment has received relatively little attention. Ecological production functions may be defined as usable expressions (i.e., models) of the processes by which ecosystems produce ES, often including external influences on those processes. We identify key attributes of EPFs and discuss both actual and idealized examples of their use to inform decision making. Whenever possible, EPFs should estimate final, rather than intermediate, ES. Although various types of EPFs have been developed, we suggest that EPFs are more useful for decision making if they quantify ES outcomes, respond to ecosystem condition, respond to stressor levels or management scenarios, reflect ecological complexity, rely on data with broad coverage, have performed well previously, are practical to use, and are open and transparent. In an example using pesticides, we illustrate how EPFs with these attributes could enable the inclusion of ES in ecological risk assessment. The biggest challenges to ES inclusion are limited data sets that are easily adapted for use in modeling EPFs and generally poor understanding of linkages among ecological components and the processes that ultimately deliver the ES. We conclude by advocating for the incorporation into E

  6. Understanding psychiatric disorder by capturing ecologically relevant features of learning and decision-making.

    Science.gov (United States)

    Scholl, Jacqueline; Klein-Flügge, Miriam

    2017-09-28

    Recent research in cognitive neuroscience has begun to uncover the processes underlying increasingly complex voluntary behaviours, including learning and decision-making. Partly this success has been possible by progressing from simple experimental tasks to paradigms that incorporate more ecological features. More specifically, the premise is that to understand cognitions and brain functions relevant for real life, we need to introduce some of the ecological challenges that we have evolved to solve. This often entails an increase in task complexity, which can be managed by using computational models to help parse complex behaviours into specific component mechanisms. Here we propose that using computational models with tasks that capture ecologically relevant learning and decision-making processes may provide a critical advantage for capturing the mechanisms underlying symptoms of disorders in psychiatry. As a result, it may help develop mechanistic approaches towards diagnosis and treatment. We begin this review by mapping out the basic concepts and models of learning and decision-making. We then move on to consider specific challenges that emerge in realistic environments and describe how they can be captured by tasks. These include changes of context, uncertainty, reflexive/emotional biases, cost-benefit decision-making, and balancing exploration and exploitation. Where appropriate we highlight future or current links to psychiatry. We particularly draw examples from research on clinical depression, a disorder that greatly compromises motivated behaviours in real-life, but where simpler paradigms have yielded mixed results. Finally, we highlight several paradigms that could be used to help provide new insights into the mechanisms of psychiatric disorders. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Dynamic monitoring of landscape patterns and ecological processes

    Indian Academy of Sciences (India)

    Landscape patterns and ecological processes have been in long-term research focus in the field of landscape ecology, but how to measure their quantitative relations is still open. This work chooses the Hulunbeier grassland as the study area where ecosystem shows high vulnerability, frequent evolvement of landscape ...

  8. Social-ecological research in urban natural areas: an emergent process for integration

    Science.gov (United States)

    Michelle L. Johnson; D. S. Novem Auyeung; Nancy F. Sonti; Clara C. Pregitzer; Heather L. McMillen; Richard Hallett; Lindsay K. Campbell; Helen M. Forgione; Mina Kim; Sarah Charlop-Powers; Erika S. Svendsen

    2018-01-01

    Understanding the structure and function of urban landscapes requires integrating social and ecological research. Here, we integrate parallel social and ecological assessments of natural areas within New York City. We examined social data (from a rapid assessment of park use and meaning, collected at a park zone level) alongside ecological data (froma plot-based...

  9. Forbidden versus permitted interactions: Disentangling processes from patterns in ecological network analysis.

    Science.gov (United States)

    Strona, Giovanni; Veech, Joseph A

    2017-07-01

    Several studies have identified the tendency for species to share interacting partners as a key property to the functioning and stability of ecological networks. However, assessing this pattern has proved challenging in several regards, such as finding proper metrics to assess node overlap (sharing), and using robust null modeling to disentangle significance from randomness. Here, we bring attention to an additional, largely neglected challenge in assessing species' tendency to share interacting partners. In particular, we discuss and illustrate with two different case studies how identifying the set of "permitted" interactions for a given species (i.e. interactions that are not impeded, e.g. by lack of functional trait compatibility) is paramount to understand the ecological and co-evolutionary processes at the basis of node overlap and segregation patterns.

  10. Process Network Approach to Understanding How Forest Ecosystems Adapt to Changes

    Science.gov (United States)

    Kim, J.; Yun, J.; Hong, J.; Kwon, H.; Chun, J.

    2011-12-01

    Sustainability challenges are transforming science and its role in society. Complex systems science has emerged as an inevitable field of education and research, which transcends disciplinary boundaries and focuses on understanding of the dynamics of complex social-ecological systems (SES). SES is a combined system of social and ecological components and drivers that interact and give rise to results, which could not be understood on the basis of sociological or ecological considerations alone. However, both systems may be viewed as a network of processes, and such a network hierarchy may serve as a hinge to bridge social and ecological systems. As a first step toward such effort, we attempted to delineate and interpret such process networks in forest ecosystems, which play a critical role in the cycles of carbon and water from local to global scales. These cycles and their variability, in turn, play an important role in the emergent and self-organizing interactions between forest ecosystems and their environment. Ruddell and Kumar (2009) define a process network as a network of feedback loops and the related time scales, which describe the magnitude and direction of the flow of energy, matter, and information between the different variables in a complex system. Observational evidence, based on micrometeorological eddy covariance measurements, suggests that heterogeneity and disturbances in forest ecosystems in monsoon East Asia may facilitate to build resilience for adaptation to change. Yet, the principles that characterize the role of variability in these interactions remain elusive. In this presentation, we report results from the analysis of multivariate ecohydrologic and biogeochemical time series data obtained from temperate forest ecosystems in East Asia based on information flow statistics.

  11. Estimation and Application of Ecological Memory Functions in Time and Space

    Science.gov (United States)

    Itter, M.; Finley, A. O.; Dawson, A.

    2017-12-01

    A common goal in quantitative ecology is the estimation or prediction of ecological processes as a function of explanatory variables (or covariates). Frequently, the ecological process of interest and associated covariates vary in time, space, or both. Theory indicates many ecological processes exhibit memory to local, past conditions. Despite such theoretical understanding, few methods exist to integrate observations from the recent past or within a local neighborhood as drivers of these processes. We build upon recent methodological advances in ecology and spatial statistics to develop a Bayesian hierarchical framework to estimate so-called ecological memory functions; that is, weight-generating functions that specify the relative importance of local, past covariate observations to ecological processes. Memory functions are estimated using a set of basis functions in time and/or space, allowing for flexible ecological memory based on a reduced set of parameters. Ecological memory functions are entirely data driven under the Bayesian hierarchical framework—no a priori assumptions are made regarding functional forms. Memory function uncertainty follows directly from posterior distributions for model parameters allowing for tractable propagation of error to predictions of ecological processes. We apply the model framework to simulated spatio-temporal datasets generated using memory functions of varying complexity. The framework is also applied to estimate the ecological memory of annual boreal forest growth to local, past water availability. Consistent with ecological understanding of boreal forest growth dynamics, memory to past water availability peaks in the year previous to growth and slowly decays to zero in five to eight years. The Bayesian hierarchical framework has applicability to a broad range of ecosystems and processes allowing for increased understanding of ecosystem responses to local and past conditions and improved prediction of ecological

  12. Understanding the physical dynamics and ecological interactions in tidal stream energy environments

    Science.gov (United States)

    Fraser, Shaun; Williamson, Benjamin J.; Nikora, Vladimir; Scott, Beth E.

    2017-04-01

    Tidal stream energy devices are intended to operate in energetic physical environments characterised by high flows and extreme turbulence. These environments are often of ecological importance to a range of marine species. Understanding the physical dynamics and ecological interactions at fine scales in such sites is essential for device/array design and to understand environmental impacts. However, investigating fine scale characteristics requires high resolution field measurements which are difficult to attain and interpret, with data often confounded by interference related to turbulence. Consequently, field observations in tidal stream energy environments are limited and require the development of specialised analysis methods and so significant knowledge gaps are still present. The seabed mounted FLOWBEC platform is addressing these knowledge gaps using upward facing instruments to collect information from around marine energy infrastructure. Multifrequency and multibeam echosounder data provide detailed information on the distribution and interactions of biological targets, such as fish and diving seabirds, while simultaneously recording the scales and intensity of turbulence. Novel processing methodologies and instrument integration techniques have been developed which combine different data types and successfully separates signal from noise to reveal new evidence about the behaviour of mobile species and the structure of turbulence at all speeds of the tide and throughout the water column. Multiple platform deployments in the presence and absence of marine energy infrastructure reveal the natural characteristics of high energy sites, and enable the interpretation of the physical and biological impacts of tidal stream devices. These methods and results are relevant to the design and consenting of marine renewable energy technologies, and provide novel information on the use of turbulence for foraging opportunities in high energy sites by mobile species.

  13. A synthesis of dominant ecological processes in intensive shrimp ponds and adjacent coastal environments in NE Australia

    International Nuclear Information System (INIS)

    Burford, M.A.; Costanzo, S.D.; Dennison, W.C.; Jackson, C.J.; Jones, A.B.; McKinnon, A.D.; Preston, N.P.; Trott, L.A.

    2003-01-01

    One of the key environmental concerns about shrimp farming is the discharge of waters with high levels of nutrients and suspended solids into adjacent waterways. In this paper we synthesize the results of our multidisciplinary research linking ecological processes in intensive shrimp ponds with their downstream impacts in tidal, mangrove-lined creeks. The incorporation of process measurements and bioindicators, in addition to water quality measurements, improved our understanding of the effect of shrimp farm discharges on the ecological health of the receiving water bodies. Changes in water quality parameters were an oversimplification of the ecological effects of water discharges, and use of key measures including primary production rates, phytoplankton responses to nutrients, community shifts in zooplankton and δ 15 N ratios in marine plants have the potential to provide more integrated and robust measures. Ultimately, reduction in nutrient discharges is most likely to ensure the future sustainability of the industry

  14. An ecological process model of systems change.

    Science.gov (United States)

    Peirson, Leslea J; Boydell, Katherine M; Ferguson, H Bruce; Ferris, Lorraine E

    2011-06-01

    In June 2007 the American Journal of Community Psychology published a special issue focused on theories, methods and interventions for systems change which included calls from the editors and authors for theoretical advancement in this field. We propose a conceptual model of systems change that integrates familiar and fundamental community psychology principles (succession, interdependence, cycling of resources, adaptation) and accentuates a process orientation. To situate our framework we offer a definition of systems change and a brief review of the ecological perspective and principles. The Ecological Process Model of Systems Change is depicted, described and applied to a case example of policy driven systems level change in publicly funded social programs. We conclude by identifying salient implications for thinking and action which flow from the Model.

  15. A conceptual framework for understanding the perspectives on the causes of the science-practice gap in ecology and conservation.

    Science.gov (United States)

    Bertuol-Garcia, Diana; Morsello, Carla; N El-Hani, Charbel; Pardini, Renata

    2018-05-01

    Applying scientific knowledge to confront societal challenges is a difficult task, an issue known as the science-practice gap. In Ecology and Conservation, scientific evidence has been seldom used directly to support decision-making, despite calls for an increasing role of ecological science in developing solutions for a sustainable future. To date, multiple causes of the science-practice gap and diverse approaches to link science and practice in Ecology and Conservation have been proposed. To foster a transparent debate and broaden our understanding of the difficulties of using scientific knowledge, we reviewed the perceived causes of the science-practice gap, aiming to: (i) identify the perspectives of ecologists and conservation scientists on this problem, (ii) evaluate the predominance of these perspectives over time and across journals, and (iii) assess them in light of disciplines studying the role of science in decision-making. We based our review on 1563 sentences describing causes of the science-practice gap extracted from 122 articles and on discussions with eight scientists on how to classify these sentences. The resulting process-based framework describes three distinct perspectives on the relevant processes, knowledge and actors in the science-practice interface. The most common perspective assumes only scientific knowledge should support practice, perceiving a one-way knowledge flow from science to practice and recognizing flaws in knowledge generation, communication, and/or use. The second assumes that both scientists and decision-makers should contribute to support practice, perceiving a two-way knowledge flow between science and practice through joint knowledge-production/integration processes, which, for several reasons, are perceived to occur infrequently. The last perspective was very rare, and assumes scientists should put their results into practice, but they rarely do. Some causes (e.g. cultural differences between scientists and decision

  16. An Assessment of Students' Understanding of Ecosystem Concepts: Conflating Ecological Systems and Cycles

    Science.gov (United States)

    Jordan, Rebecca; Gray, Steven; Demeter, Marylee; Lui, Lei; Hmelo-Silver, Cindy E.

    2009-01-01

    Teaching ecological concepts in schools is important in promoting natural science and environmental education for young learners. Developing educational programs is difficult, however, because of complicated ecological processes operating on multiple levels, the unlimited nature of potential system interactions (given the openness of systems), and…

  17. Biosemiotics and ecological monitoring

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2001-01-01

    of the qualitative and relational aspects that can only be grasped by considering the semiotic networks operative in complex ecological and cultural systems. In this paper, it is suggested that a biosemiotic approach to ecology may prove useful for the modelling process, which in turn will allow the construction...... of meaningful monitoring systems. It is also contended that a biosemiotic approach may also serve to better integrate our understanding and monitoring of ecosystems into the cultural process of searching for (human) sustainability....

  18. Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, William [Navarro Research and Engineering

    2016-05-23

    The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uranium processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.

  19. Understanding Suicide among Sexual Minority Youth in America: An Ecological Systems Analysis

    Science.gov (United States)

    Hong, Jun Sung; Espelage, Dorothy L.; Kral, Michael J.

    2011-01-01

    This article examines major risk factors for suicide among sexual minority youth using Bronfenbrenner's ecological systems theory. Although suicidal behavior among sexual minority youth is a major public concern in the United States, understanding of this phenomenon has been limited since the majority of empirical research studies have addressed…

  20. Understanding the earth systems of Malawi: Ecological sustainability, culture, and place-based education

    Science.gov (United States)

    Glasson, George E.; Frykholm, Jeffrey A.; Mhango, Ndalapa A.; Phiri, Absalom D.

    2006-07-01

    The purpose of this 2-year study was to investigate Malawian teacher educators' perspectives and dispositions toward teaching about ecological sustainability issues in Malawi, a developing country in sub-Sahara Africa. This study was embedded in a larger theoretical framework of investigating earth systems science through the understanding of nature-knowledge-culture systems from local, place-based perspectives. Specifically, we were interested in learning more about eco-justice issues that are related to environmental degradation in Malawi and the potential role of inquiry-oriented pedagogies in addressing these issues. In a science methods course, the African educators' views on deforestation and teaching about ecological sustainability were explored within the context of the local environment and culture. Teachers participated in inquiry pedagogies designed to promote the sharing of perspectives related to the connections between culture and ecological degradation. Strategies encouraging dialogue and reflection included role-playing, class discussions, curriculum development activities, teaching experiences with children, and field trips to a nature preserve. Data were analyzed from postcolonial and critical pedagogy of place theoretical perspectives to better understand the hybridization of viewpoints influenced by both Western and indigenous science and the political hegemonies that impact sustainable living in Malawi. Findings suggested that the colonial legacy of Malawi continues to impact the ecological sustainability issue of deforestation. Inquiry-oriented pedagogies and connections to indigenous science were embraced by the Malawian educators as a means to involve children in investigation, decision making, and ownership of critical environmental issues.

  1. Ecological implications of behavioural syndromes.

    Science.gov (United States)

    Sih, Andrew; Cote, Julien; Evans, Mara; Fogarty, Sean; Pruitt, Jonathan

    2012-03-01

    Interspecific trait variation has long served as a conceptual foundation for our understanding of ecological patterns and dynamics. In particular, ecologists recognise the important role that animal behaviour plays in shaping ecological processes. An emerging area of interest in animal behaviour, the study of behavioural syndromes (animal personalities) considers how limited behavioural plasticity, as well as behavioural correlations affects an individual's fitness in diverse ecological contexts. In this article we explore how insights from the concept and study of behavioural syndromes provide fresh understanding of major issues in population ecology. We identify several general mechanisms for how population ecology phenomena can be influenced by a species or population's average behavioural type, by within-species variation in behavioural type, or by behavioural correlations across time or across ecological contexts. We note, in particular, the importance of behavioural type-dependent dispersal in spatial ecology. We then review recent literature and provide new syntheses for how these general mechanisms produce novel insights on five major issues in population ecology: (1) limits to species' distribution and abundance; (2) species interactions; (3) population dynamics; (4) relative responses to human-induced rapid environmental change; and (5) ecological invasions. © 2012 Blackwell Publishing Ltd/CNRS.

  2. Ecological Rationality: A Framework for Understanding and Aiding the Aging Decision Maker

    Directory of Open Access Journals (Sweden)

    Rui eMata

    2012-02-01

    Full Text Available Ecological rationality sees human rationality as the result of the adaptive fit between the human mind and the environment. The concept of ecological rationality focuses the study of cognition on two key questions: First, what are the environmental regularities to which people’s decision strategies are matched, and how frequently do these regularities occur in natural environments? Second, how well can people adapt their use of specific strategies to particular environments? Research on aging suggests a number of changes in cognitive function, for instance, deficits in learning and memory that may impact decision-making skills. However, it has been shown that simple strategies can work well in many natural environments, which suggests that age-related deficits in strategy use may not necessarily translate into diminished decision performance. Consequently, we argue that predictions about the impact of aging on decision performance depend not only on how aging affects decision-relevant capacities but also on the decision ecology in which decisions are made. In sum, we propose that the concept of the ecological rationality is crucial to understanding and aiding the aging decision maker.

  3. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    1998-01-01

    Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of

  4. Conservation success as a function of good alignment of social and ecological structures and processes.

    Science.gov (United States)

    Bodin, Orjan; Crona, Beatrice; Thyresson, Matilda; Golz, Anna-Lea; Tengö, Maria

    2014-10-01

    How to create and adjust governing institutions so that they align (fit) with complex ecosystem processes and structures across scales is an issue of increasing concern in conservation. It is argued that lack of such social-ecological fit makes governance and conservation difficult, yet progress in explicitly defining and rigorously testing what constitutes a good fit has been limited. We used a novel modeling approach and data from case studies of fishery and forest conservation to empirically test presumed relationships between conservation outcomes and certain patterns of alignment of social-ecological interdependences. Our approach made it possible to analyze conservation outcome on a systems level while also providing information on how individual actors are positioned in the complex web of social-ecological interdependencies. We found that when actors who shared resources were also socially linked, conservation at the level of the whole social-ecological system was positively affected. When the scales at which individual actors used resources and the scale at which ecological resources were interconnected to other ecological resources were aligned through tightened feedback loops, conservation outcome was better than when they were not aligned. The analysis of individual actors' positions in the web of social-ecological interdependencies was helpful in understanding why a system has a certain level of social-ecological fit. Results of analysis of positions showed that different actors contributed in very different ways to achieve a certain fit and revealed some underlying difference between the actors, for example in terms of actors' varying rights to access and use different ecological resources. © 2014 Society for Conservation Biology.

  5. Enhancing the ecological risk assessment process.

    Science.gov (United States)

    Dale, Virginia H; Biddinger, Gregory R; Newman, Michael C; Oris, James T; Suter, Glenn W; Thompson, Timothy; Armitage, Thomas M; Meyer, Judith L; Allen-King, Richelle M; Burton, G Allen; Chapman, Peter M; Conquest, Loveday L; Fernandez, Ivan J; Landis, Wayne G; Master, Lawrence L; Mitsch, William J; Mueller, Thomas C; Rabeni, Charles F; Rodewald, Amanda D; Sanders, James G; van Heerden, Ivor L

    2008-07-01

    The Ecological Processes and Effects Committee of the US Environmental Protection Agency Science Advisory Board conducted a self-initiated study and convened a public workshop to characterize the state of the ecological risk assessment (ERA), with a view toward advancing the science and application of the process. That survey and analysis of ERA in decision making shows that such assessments have been most effective when clear management goals were included in the problem formulation; translated into information needs; and developed in collaboration with decision makers, assessors, scientists, and stakeholders. This process is best facilitated when risk managers, risk assessors, and stakeholders are engaged in an ongoing dialogue about problem formulation. Identification and acknowledgment of uncertainties that have the potential to profoundly affect the results and outcome of risk assessments also improves assessment effectiveness. Thus we suggest 1) through peer review of ERAs be conducted at the problem formulation stage and 2) the predictive power of risk-based decision making be expanded to reduce uncertainties through analytical and methodological approaches like life cycle analysis. Risk assessment and monitoring programs need better integration to reduce uncertainty and to evaluate risk management decision outcomes. Postdecision audit programs should be initiated to evaluate the environmental outcomes of risk-based decisions. In addition, a process should be developed to demonstrate how monitoring data can be used to reduce uncertainties. Ecological risk assessments should include the effects of chemical and nonchemical stressors at multiple levels of biological organization and spatial scale, and the extent and resolution of the pertinent scales and levels of organization should be explicitly considered during problem formulation. An approach to interpreting lines of evidence and weight of evidence is critically needed for complex assessments, and it would

  6. A resurgence in field research is essential to better understand the diversity, ecology, and evolution of microbial eukaryotes.

    Science.gov (United States)

    Heger, Thierry J; Edgcomb, Virginia P; Kim, Eunsoo; Lukeš, Julius; Leander, Brian S; Yubuki, Naoji

    2014-01-01

    The discovery and characterization of protist communities from diverse environments are crucial for understanding the overall evolutionary history of life on earth. However, major questions about the diversity, ecology, and evolutionary history of protists remain unanswered, notably because data obtained from natural protist communities, especially of heterotrophic species, remain limited. In this review, we discuss the challenges associated with "field protistology", defined here as the exploration, characterization, and interpretation of microbial eukaryotic diversity within the context of natural environments or field experiments, and provide suggestions to help fill this important gap in knowledge. We also argue that increased efforts in field studies that combine molecular and microscopical methods offer the most promising path toward (1) the discovery of new lineages that expand the tree of eukaryotes; (2) the recognition of novel evolutionary patterns and processes; (3) the untangling of ecological interactions and functions, and their roles in larger ecosystem processes; and (4) the evaluation of protist adaptations to a changing climate. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  7. Civic Ecology: A Postmodern Approach to Ecological Sustainability

    Science.gov (United States)

    Lopes, V. L.

    2013-12-01

    Human agency is transforming the planetary processes at unprecedented rates risking damaging essential life-support systems. Climate change, massive species extinction, land degradation, resources depletion, overpopulation, poverty and social injustice are all the result of human choices and non-sustainable ways of life. The survival of our modern economic systems depends upon insatiable consumption - a simple way of life no longer satisfies most people. Detached, instrumental rationality has created an ideal of liberalism based on individual pursuit of self-interest, leading the way into unprecedented material progress but bringing with it human alienation, social injustice, and ecological degradation. The purpose of this presentation is to introduce a community-based systems response to a growing sense that the interlocked social-ecological crisis is as much a problem of human thought and behavior as it is about identifying carrying capacities and CO2 concentrations in the atmosphere. This approach, referred to here as civic ecology, presents a new and important paradigm shift in sustainability practice that attempts to bring together and integrate ecological ideas and postmodern thinking. As such, it is as much a holistic, dynamic, and synergistic approach to ecological sustainability, as it is a philosophy of life and ethical perspective born of ecological understanding and insight. Civic ecology starts with the proposition that the key factor determining the health of the ecosphere is the behavior of human beings, and therefore many of the most important issues related to sustainability lie in the areas of human thought and culture. Thus, the quest for sustainability must include as a central concern the transformation of psychological and behavioral patterns that have become an imminent danger to planetary health. At the core of this understanding is a fundamental paradigm shift from the basic commitments of modern Western culture to its model of mechanism

  8. Putting ecology in environmental remediation: The strategic planning process

    International Nuclear Information System (INIS)

    Kapustka, L.A.; Williams, B.A.

    1991-01-01

    Traditional ecological studies have been conducted on many sites impacted by hazardous wastes. Yet in many cases, the information obtained has had limited value in the selection of remediation options. This paper discusses the importance of developing an ecological risk-based strategic plan to fulfill the scientific and social needs demanded in the remediation and restoration of hazardous waste sites. Ecological issues need to be considered seriously at the earliest phases of the scoping process. The decisions regarding selection of assessment endpoints and data quality objectives must be incorporated from the start to insure that cost-efficient and useful measurements are used. It is too late to develop effective ecological studies after the engineering decisions have been made. Strategic planning that integrates ecological concerns will minimize the frustration and the cost associated with clean up of hazardous waste sites and maximize the likelihood of successful site restoration

  9. Long term socio-ecological research across temporal and spatial scales

    Science.gov (United States)

    Singh, S. J.; Haberl, H.

    2012-04-01

    Long term socio-ecological research across temporal and spatial scales Simron Jit Singh and Helmut Haberl Institute of Social Ecology, Vienna, Austria Understanding trajectories of change in coupled socio-ecological (or human-environment) systems requires monitoring and analysis at several spatial and temporal scales. Long-term ecosystem research (LTER) is a strand of research coupled with observation systems and infrastructures (LTER sites) aimed at understanding how global change affects ecosystems around the world. In recent years it has been increasingly recognized that sustainability concerns require extending this approach to long-term socio-ecological research, i.e. a more integrated perspective that focuses on interaction processes between society and ecosystems over longer time periods. Thus, Long-Term Socio-Ecological Research, abbreviated LTSER, aims at observing, analyzing, understanding and modelling of changes in coupled socio-ecological systems over long periods of time. Indeed, the magnitude of the problems we now face is an outcome of a much longer process, accelerated by industrialisation since the nineteenth century. The paper will provide an overview of a book (in press) on LTSER with particular emphasis on 'socio-ecological transitions' in terms of material, energy and land use dynamics across temporal and spatial scales.

  10. Ecological rationality: a framework for understanding and aiding the aging decision maker.

    Science.gov (United States)

    Mata, Rui; Pachur, Thorsten; von Helversen, Bettina; Hertwig, Ralph; Rieskamp, Jörg; Schooler, Lael

    2012-01-01

    The notion of ecological rationality sees human rationality as the result of the adaptive fit between the human mind and the environment. Ecological rationality focuses the study of decision making on two key questions: First, what are the environmental regularities to which people's decision strategies are matched, and how frequently do these regularities occur in natural environments? Second, how well can people adapt their use of specific strategies to particular environmental regularities? Research on aging suggests a number of changes in cognitive function, for instance, deficits in learning and memory that may impact decision-making skills. However, it has been shown that simple strategies can work well in many natural environments, which suggests that age-related deficits in strategy use may not necessarily translate into reduced decision quality. Consequently, we argue that predictions about the impact of aging on decision performance depend not only on how aging affects decision-relevant capacities but also on the decision environment in which decisions are made. In sum, we propose that the concept of the ecological rationality is crucial to understanding and aiding the aging decision maker.

  11. Geospatial Assessment of Forest Fragmentation and its Implications for Ecological Processes in Tropical Forests

    Directory of Open Access Journals (Sweden)

    Adepoju Kayode Adewale

    2017-11-01

    Full Text Available The study assessed the patterns of spatio-temporal configuration imposed on a forest landscape in Southwestern Nigeria due to fragmentation for the period 1986 – 2010 in order to understand the relationship between landscape patterns and the ecological processes influencing the distribution of species in tropical forest environment. Time-series Landsat TM and ETM satellite images and forest inventory data were pre-processed and classified into four landuse/landcover categories using maximum likelihood classification algorithm. Fragstats software was used for the computation of seven landscape and six class level metrics to provide indicators of fragmentation and landscape connectivity from the classified images.

  12. Making ecological models adequate

    Science.gov (United States)

    Getz, Wayne M.; Marshall, Charles R.; Carlson, Colin J.; Giuggioli, Luca; Ryan, Sadie J.; Romañach, Stephanie; Boettiger, Carl; Chamberlain, Samuel D.; Larsen, Laurel; D'Odorico, Paolo; O'Sullivan, David

    2018-01-01

    Critical evaluation of the adequacy of ecological models is urgently needed to enhance their utility in developing theory and enabling environmental managers and policymakers to make informed decisions. Poorly supported management can have detrimental, costly or irreversible impacts on the environment and society. Here, we examine common issues in ecological modelling and suggest criteria for improving modelling frameworks. An appropriate level of process description is crucial to constructing the best possible model, given the available data and understanding of ecological structures. Model details unsupported by data typically lead to over parameterisation and poor model performance. Conversely, a lack of mechanistic details may limit a model's ability to predict ecological systems’ responses to management. Ecological studies that employ models should follow a set of model adequacy assessment protocols that include: asking a series of critical questions regarding state and control variable selection, the determinacy of data, and the sensitivity and validity of analyses. We also need to improve model elaboration, refinement and coarse graining procedures to better understand the relevancy and adequacy of our models and the role they play in advancing theory, improving hind and forecasting, and enabling problem solving and management.

  13. Planting the SEED : Towards a Spatial Economic Ecological Database for a shared understanding of the Dutch Wadden area

    NARCIS (Netherlands)

    Daams, Michiel N.; Sijtsma, Frans J.

    In this paper we address the characteristics of a publicly accessible Spatial Economic Ecological Database (SEED) and its ability to support a shared understanding among planners and experts of the economy and ecology of the Dutch Wadden area. Theoretical building blocks for a Wadden SEED are

  14. Ecological palaeoecology: a missing link between ecology and evolution

    Directory of Open Access Journals (Sweden)

    Rull, V.

    2014-12-01

    Full Text Available Palaeoecology is more than a palaeoenvironmental discipline; it is a science that is well-suited for supplying the empirical evidence necessary to test ecological hypotheses and contributes to our understanding of the interface of ecology and evolution. A critical time frame in palaeoecology is the often-overlooked Q-time dimension (centuries to millennia, which tends to be the most appropriate time dimension to examine ecology–evolution interactions. This paper discusses these topics from a conceptual perspective and provides examples of the contributions of palaeoecology to the study of ecology–evolution interactions. It also admonishes researchers about the threats of overlooking palaeoecology. Specifically, this paper argues that the neglect of palaeoecology may result in the loss of empirical support for ecology and its interactions with evolution as DNA-based phylogenetic and phylogeographic studies become more and more prevalent. The main concepts discussed are the time continuum, the notion of ecological palaeoecology and the empirical nature of palaeoecology in the face of more hypothetical approaches. More practically speaking, several examples are provided that highlight the utility of ecological palaeoecology for understanding a variety of processes, including ecological succession, community– environment equilibria, community assembly, biotic responses to environmental change, speciation and extinction, and biodiversity conservation. The ecology–evolution interface is analysed using two processes in which these disciplines interact intensively: ecological succession and long-range migration. This work concludes that both ecological palaeoecology (including ancient DNA records and DNA-based phylogenetics and phylogeography are needed to better understand the biosphere ecologically and the processes occurring at the ecology–evolution interface.La paleoecología es más que una disciplina ambiental, ya que proporciona las

  15. [A process of aquatic ecological function regionalization: The dual tree framework and conceptual model].

    Science.gov (United States)

    Guo, Shu Hai; Wu, Bo

    2017-12-01

    Aquatic ecological regionalization and aquatic ecological function regionalization are the basis of water environmental management of a river basin and rational utilization of an aquatic ecosystem, and have been studied in China for more than ten years. Regarding the common problems in this field, the relationship between aquatic ecological regionalization and aquatic ecological function regionalization was discussed in this study by systematic analysis of the aquatic ecological zoning and the types of aquatic ecological function. Based on the dual tree structure, we put forward the RFCH process and the diamond conceptual model. Taking Liaohe River basin as an example and referring to the results of existing regionalization studies, we classified the aquatic ecological function regions based on three-class aquatic ecological regionalization. This study provided a process framework for aquatic ecological function regionalization of a river basin.

  16. Understanding Action and Adventure Sports Participation-An Ecological Dynamics Perspective.

    Science.gov (United States)

    Immonen, Tuomas; Brymer, Eric; Orth, Dominic; Davids, Keith; Feletti, Francesco; Liukkonen, Jarmo; Jaakkola, Timo

    2017-12-01

    Previous research has considered action and adventure sports using a variety of associated terms and definitions which has led to confusing discourse and contradictory research findings. Traditional narratives have typically considered participation exclusively as the pastime of young people with abnormal characteristics or personalities having unhealthy and pathological tendencies to take risks because of the need for thrill, excitement or an adrenaline 'rush'. Conversely, recent research has linked even the most extreme forms of action and adventure sports to positive physical and psychological health and well-being outcomes. Here, we argue that traditional frameworks have led to definitions, which, as currently used by researchers, ignore key elements constituting the essential merit of these sports. In this paper, we suggest that this lack of conceptual clarity in understanding cognitions, perception and action in action and adventure sports requires a comprehensive explanatory framework, ecological dynamics which considers person-environment interactions from a multidisciplinary perspective. Action and adventure sports can be fundamentally conceptualized as activities which flourish through creative exploration of novel movement experiences, continuously expanding and evolving beyond predetermined environmental, physical, psychological or sociocultural boundaries. The outcome is the emergence of a rich variety of participation styles and philosophical differences within and across activities. The purpose of this paper is twofold: (a) to point out some limitations of existing research on action and adventure sports; (b) based on key ideas from emerging research and an ecological dynamics approach, to propose a holistic multidisciplinary model for defining and understanding action and adventure sports that may better guide future research and practical implications.

  17. World-Ecology and Ireland: The Neoliberal Ecological Regime

    Directory of Open Access Journals (Sweden)

    Sharae Deckard

    2016-03-01

    Full Text Available Since the collapse of the Celtic Tiger, the socio-economic particularity of neoliberal capitalism in its Irish manifestation has increasingly been critiqued, but little attention has been paid to neoliberalism as ecology within Ireland. This article conducts an exploratory survey of the characteristics of the Irish neoliberal ecological regime during and after the Celtic Tiger, identifying the opening of new commodity frontiers (such as fracking, water, agro-biotechnology, and biopharma constituted in the neoliberal drive to appropriate and financialize nature. I argue for the usefulness of applying not only the tools of world-systems analysis, but also Jason W. Moore’s world-ecological paradigm, to analysis of Ireland as a semi-periphery. What is crucial to a macro-ecological understanding of Ireland’s role in the neoliberal regime of the world-ecology is the inextricability of its financial role as a tax haven and secrecy jurisdiction zone from its environmental function as a semi-peripheral pollution and water haven. We can adapt Jason W. Moore’s slogan that “Wall Street…becomes a way of organizing all of nature, characterized by the financialization of any income-generating activity” (Moore 2011b: 39 to say that to say that the “IFSC is a way of organizing nature,” with pernicious consequences for water, energy, and food systems in Ireland. Financial service centers and pharmaceutical factories, plantations and cattle ranches, tax havens and pollution havens, empires and common markets are all forms of environment-making that constellate human relations and extra-human processes into new ecological regimes. More expansive, dialectical understandings of “ecology” as comprising the whole of socio-ecological relations within the capitalist world-ecology—from farming to pharma to financialization—are crucial to forming configurations of knowledge able not only to take account of Ireland’s role in the environmental

  18. Spatial ecology across scales.

    Science.gov (United States)

    Hastings, Alan; Petrovskii, Sergei; Morozov, Andrew

    2011-04-23

    The international conference 'Models in population dynamics and ecology 2010: animal movement, dispersal and spatial ecology' took place at the University of Leicester, UK, on 1-3 September 2010, focusing on mathematical approaches to spatial population dynamics and emphasizing cross-scale issues. Exciting new developments in scaling up from individual level movement to descriptions of this movement at the macroscopic level highlighted the importance of mechanistic approaches, with different descriptions at the microscopic level leading to different ecological outcomes. At higher levels of organization, different macroscopic descriptions of movement also led to different properties at the ecosystem and larger scales. New developments from Levy flight descriptions to the incorporation of new methods from physics and elsewhere are revitalizing research in spatial ecology, which will both increase understanding of fundamental ecological processes and lead to tools for better management.

  19. Aquifers and hyporheic zones: Towards an ecological understanding of groundwater

    Science.gov (United States)

    Hancock, Peter J.; Boulton, Andrew J.; Humphreys, William F.

    2005-03-01

    Ecological constraints in subsurface environments relate directly to groundwater flow, hydraulic conductivity, interstitial biogeochemistry, pore size, and hydrological linkages to adjacent aquifers and surface ecosystems. Groundwater ecology has evolved from a science describing the unique subterranean biota to its current form emphasising multidisciplinary studies that integrate hydrogeology and ecology. This multidisciplinary approach seeks to elucidate the function of groundwater ecosystems and their roles in maintaining subterranean and surface water quality. In aquifer-surface water ecotones, geochemical gradients and microbial biofilms mediate transformations of water chemistry. Subsurface fauna (stygofauna) graze biofilms, alter interstitial pore size through their movement, and physically transport material through the groundwater environment. Further, changes in their populations provide signals of declining water quality. Better integrating groundwater ecology, biogeochemistry, and hydrogeology will significantly advance our understanding of subterranean ecosystems, especially in terms of bioremediation of contaminated groundwaters, maintenance or improvement of surface water quality in groundwater-dependent ecosystems, and improved protection of groundwater habitats during the extraction of natural resources. Overall, this will lead to a better understanding of the implications of groundwater hydrology and aquifer geology to distributions of subsurface fauna and microbiota, ecological processes such as carbon cycling, and sustainable groundwater management. Les contraintes écologiques dans les environnements de subsurface sont en relation directe avec les écoulements des eaux souterraines, la conductivité hydraulique, la biogéochimie des milieux interstitiels, la taille des pores, et les liens hydrologiques avec les aquifères et les écosystèmes adjacents. L'écologie des eaux souterraines a évolué d'une science décrivant uniquement les

  20. Understanding the Ecological Adoption of Solar Water Heaters Among Customers of Island Economies

    Directory of Open Access Journals (Sweden)

    Pudaruth Sharmila

    2017-04-01

    Full Text Available This paper explores the major factors impacting upon the ecological adoption of solar water heaters in Mauritius. The paper applies data reduction technique by using exploratory factor analysis on a sample of 228 respondents and condenses a set of 32 attributes into a list of 8 comprehensible factors impacting upon the sustained adoption of solar water heater in Mauritius. Multiple regression analysis was also conducted to investigate upon the most predictive factor influencing the adoption of solar water heaters in Mauritius. The empirical estimates of the regression analysis have also depicted that the most determining factor pertaining to the ‘government incentives for solar water heaters’ impacts upon the adoption of solar water heaters. These results can be related to sustainable adoption of green energy whereby targeted incentive mechanisms can be formulated with the aim to accelerate and cascade solar energy adoption in emerging economies. A novel conceptual model was also proposed in this paper, whereby, ecological stakeholders in the sustainable arena could use the model as a reference to pave the way to encourage adoption of solar water heating energy. This research represents a different way of understanding ecological customers by developing an expanding on an original scale development for the survey on the ecological adoption of solar water heaters.

  1. Current ecological understanding of fungal-like pathogens of fish: what lies beneath?

    Directory of Open Access Journals (Sweden)

    Rodolphe Elie Gozlan

    2014-02-01

    Full Text Available Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity.

  2. A Global Lake Ecological Observatory Network (GLEON) for synthesising high-frequency sensor data for validation of deterministic ecological models

    Science.gov (United States)

    David, Hamilton P; Carey, Cayelan C.; Arvola, Lauri; Arzberger, Peter; Brewer, Carol A.; Cole, Jon J; Gaiser, Evelyn; Hanson, Paul C.; Ibelings, Bas W; Jennings, Eleanor; Kratz, Tim K; Lin, Fang-Pang; McBride, Christopher G.; de Motta Marques, David; Muraoka, Kohji; Nishri, Ami; Qin, Boqiang; Read, Jordan S.; Rose, Kevin C.; Ryder, Elizabeth; Weathers, Kathleen C.; Zhu, Guangwei; Trolle, Dennis; Brookes, Justin D

    2014-01-01

    A Global Lake Ecological Observatory Network (GLEON; www.gleon.org) has formed to provide a coordinated response to the need for scientific understanding of lake processes, utilising technological advances available from autonomous sensors. The organisation embraces a grassroots approach to engage researchers from varying disciplines, sites spanning geographic and ecological gradients, and novel sensor and cyberinfrastructure to synthesise high-frequency lake data at scales ranging from local to global. The high-frequency data provide a platform to rigorously validate process- based ecological models because model simulation time steps are better aligned with sensor measurements than with lower-frequency, manual samples. Two case studies from Trout Bog, Wisconsin, USA, and Lake Rotoehu, North Island, New Zealand, are presented to demonstrate that in the past, ecological model outputs (e.g., temperature, chlorophyll) have been relatively poorly validated based on a limited number of directly comparable measurements, both in time and space. The case studies demonstrate some of the difficulties of mapping sensor measurements directly to model state variable outputs as well as the opportunities to use deviations between sensor measurements and model simulations to better inform process understanding. Well-validated ecological models provide a mechanism to extrapolate high-frequency sensor data in space and time, thereby potentially creating a fully 3-dimensional simulation of key variables of interest.

  3. Challenges for Social-Ecological Transformations: Contributions from Social and Political Ecology

    Directory of Open Access Journals (Sweden)

    Christoph Görg

    2017-06-01

    Full Text Available Transformation has become a major topic of sustainability research. This opens up new perspectives, but at the same time, runs the danger to convert into a new critical orthodoxy which narrows down analytical perspectives. Most research is committed towards a political-strategic approach towards transformation. This focus, however, clashes with ongoing transformation processes towards un-sustainability. The paper presents cornerstones of an integrative approach to social-ecological transformations (SET, which builds upon empirical work and conceptual considerations from Social Ecology and Political Ecology. We argue that a critical understanding of the challenges for societal transformations can be advanced by focusing on the interdependencies between societies and the natural environment. This starting point provides a more realistic understanding of the societal and biophysical constraints of sustainability transformations by emphasising the crisis-driven and contested character of the appropriation of nature and the power relations involved. Moreover, it pursues a transdisciplinary mode of research, decisive for adequately understanding any strategy for transformations towards sustainability. Such a conceptual approach of SET is supposed to better integrate the analytical, normative and political-strategic dimension of transformation research. We use the examples of global land use patterns, neo-extractivism in Latin America and the global water crisis to clarify our approach.

  4. Microbial ecology and starter culture technology in coffee processing.

    Science.gov (United States)

    Vinícius de Melo Pereira, Gilberto; Soccol, Vanete Thomaz; Brar, Satinder Kaur; Neto, Ensei; Soccol, Carlos Ricardo

    2017-09-02

    Coffee has been for decades the most commercialized food product and most widely consumed beverage in the world, with over 600 billion cups served per year. Before coffee cherries can be traded and processed into a final industrial product, they have to undergo postharvest processing on farms, which have a direct impact on the cost and quality of a coffee. Three different methods can be used for transforming the coffee cherries into beans, known as wet, dry, and semi-dry methods. In all these processing methods, a spontaneous fermentation is carried out in order to eliminate any mucilage still stuck to the beans and helps improve beverage flavor by microbial metabolites. The microorganisms responsible for the fermentation (e.g., yeasts and lactic acid bacteria) can play a number of roles, such as degradation of mucilage (pectinolytic activity), inhibition of mycotoxin-producing fungi growth, and production of flavor-active components. The use of starter cultures (mainly yeast strains) has emerged in recent years as a promising alternative to control the fermentation process and to promote quality development of coffee product. However, scarce information is still available about the effects of controlled starter cultures in coffee fermentation performance and bean quality, making it impossible to use this technology in actual field conditions. A broader knowledge about the ecology, biochemistry, and molecular biology could facilitate the understanding and application of starter cultures for coffee fermentation process. This review provides a comprehensive coverage of these issues, while pointing out new directions for exploiting starter cultures in coffee processing.

  5. Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches

    Science.gov (United States)

    Hall, E.K.; Maixner, F.; Franklin, O.; Daims, H.; Richter, A.; Battin, T.

    2011-01-01

    Currently, one of the biggest challenges in microbial and ecosystem ecology is to develop conceptual models that organize the growing body of information on environmental microbiology into a clear mechanistic framework with a direct link to ecosystem processes. Doing so will enable development of testable hypotheses to better direct future research and increase understanding of key constraints on biogeochemical networks. Although the understanding of phenotypic and genotypic diversity of microorganisms in the environment is rapidly accumulating, how controls on microbial physiology ultimately affect biogeochemical fluxes remains poorly understood. We propose that insight into constraints on biogeochemical cycles can be achieved by a more rigorous evaluation of microbial community biomass composition within the context of ecological stoichiometry. Multiple recent studies have pointed to microbial biomass stoichiometry as an important determinant of when microorganisms retain or recycle mineral nutrients. We identify the relevant cellular components that most likely drive changes in microbial biomass stoichiometry by defining a conceptual model rooted in ecological stoichiometry. More importantly, we show how X-ray microanalysis (XRMA), nanoscale secondary ion mass spectroscopy (NanoSIMS), Raman microspectroscopy, and in situ hybridization techniques (for example, FISH) can be applied in concert to allow for direct empirical evaluation of the proposed conceptual framework. This approach links an important piece of the ecological literature, ecological stoichiometry, with the molecular front of the microbial revolution, in an attempt to provide new insight into how microbial physiology could constrain ecosystem processes.

  6. Community Ecology

    CERN Document Server

    1988-01-01

    This book presents the proceedings of a workshop on community ecology organized at Davis, in April, 1986, sponsored by the Sloan Foundation. There have been several recent symposia on community ecology (Strong et. al., 1984, Diamond and Case, 1987) which have covered a wide range of topics. The goal of the workshop at Davis was more narrow: to explore the role of scale in developing a theoretical approach to understanding communities. There are a number of aspects of scale that enter into attempts to understand ecological communities. One of the most basic is organizational scale. Should community ecology proceed by building up from population biology? This question and its ramifications are stressed throughout the book and explored in the first chapter by Simon Levin. Notions of scale have long been important in understanding physical systems. Thus, in understanding the interactions of organisms with their physical environment, questions of scale become paramount. These more physical questions illustrate the...

  7. Ecological Risk Assessment Process under the Endangered Species Act

    Science.gov (United States)

    This document provides an overview of the Environmental Protection Agency’s (EPA) ecological risk assessment process for the evaluation of potential risk to endangered and threatened (listed) species from exposure to pesticides.

  8. Evolution in a Community Context: On Integrating Ecological Interactions and Macroevolution.

    Science.gov (United States)

    Weber, Marjorie G; Wagner, Catherine E; Best, Rebecca J; Harmon, Luke J; Matthews, Blake

    2017-04-01

    Despite a conceptual understanding that evolution and species interactions are inextricably linked, it remains challenging to study ecological and evolutionary dynamics together over long temporal scales. In this review, we argue that, despite inherent challenges associated with reconstructing historical processes, the interplay of ecology and evolution is central to our understanding of macroevolution and community coexistence, and cannot be safely ignored in community and comparative phylogenetic studies. We highlight new research avenues that foster greater consideration of both ecological and evolutionary dynamics as processes that occur along branches of phylogenetic trees. By promoting new ways forward using this perspective, we hope to inspire further integration that creatively co-utilizes phylogenies and ecological data to study eco-evolutionary dynamics over time and space. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Political ecology, ecological economics, and public health: interfaces for the sustainability of development and health promotion].

    Science.gov (United States)

    Porto, Marcelo Firpo; Martinez-Alier, Joan

    2007-01-01

    This article proposes to focus contributions from political ecology and ecological economics to the field of collective health with a view towards integrating the discussions around health promotion, socio-environmental sustainability, and development. Ecological economics is a recent interdisciplinary field that combines economists and other professionals from the social, human, and life sciences. The field has developed new concepts and methodologies that seek to grasp the relationship between the economy and ecological and social processes such as social metabolism and metabolic profile, thereby interrelating economic, material, and energy flows and producing indicators and indexes for (un)sustainability. Meanwhile, political ecology approaches ecological issues and socio-environmental conflicts based on the economic and power dynamics characterizing modern societies. Collective health and the discussions on health promotion can expand our understanding of territory, communities, and the role of science and institutions based on the contributions of political ecology and ecological economics in analyzing development models and the distributive and socio-environmental conflicts generated by them.

  10. The Importance of Ecology-Based Nature Education Project in Terms of Nature Integration and Understanding the Human-Ecosystem Relationship

    Science.gov (United States)

    Meydan, Ali

    2011-01-01

    The aim of this project is to define the importance of 12-day ecology-based education training upon integration with nature and understanding the human-ecosystem relationship. In accordance with this purpose, there has been collected some survey data interviewing with the participants of "Lake Beysehir National Park and Ecology-based Nature…

  11. Natural disturbance and stand development principles for ecological forestry

    Science.gov (United States)

    Jerry F. Franklin; Robert J. Mitchell; Brian J. Palik

    2007-01-01

    Foresters use natural disturbances and stand development processes as models for silvicultural practices in broad conceptual ways. Incorporating an understanding of natural disturbance and stand development processes more fully into silvicultural practice is the basis for an ecological forestry approach. Such an approach must include 1) understanding the importance of...

  12. Social-ecological resilience and geomorphic systems

    Science.gov (United States)

    Chaffin, Brian C.; Scown, Murray

    2018-03-01

    Governance of coupled social-ecological systems (SESs) and the underlying geomorphic processes that structure and alter Earth's surface is a key challenge for global sustainability amid the increasing uncertainty and change that defines the Anthropocene. Social-ecological resilience as a concept of scientific inquiry has contributed to new understandings of the dynamics of change in SESs, increasing our ability to contextualize and implement governance in these systems. Often, however, the importance of geomorphic change and geomorphological knowledge is somewhat missing from processes employed to inform SES governance. In this contribution, we argue that geomorphology and social-ecological resilience research should be integrated to improve governance toward sustainability. We first provide definitions of engineering, ecological, community, and social-ecological resilience and then explore the use of these concepts within and alongside geomorphology in the literature. While ecological studies often consider geomorphology as an important factor influencing the resilience of ecosystems and geomorphological studies often consider the engineering resilience of geomorphic systems of interest, very few studies define and employ a social-ecological resilience framing and explicitly link the concept to geomorphic systems. We present five key concepts-scale, feedbacks, state or regime, thresholds and regime shifts, and humans as part of the system-which we believe can help explicitly link important aspects of social-ecological resilience inquiry and geomorphological inquiry in order to strengthen the impact of both lines of research. Finally, we discuss how these five concepts might be used to integrate social-ecological resilience and geomorphology to better understand change in, and inform governance of, SESs. To compound these dynamics of resilience, complex systems are nested and cross-scale interactions from smaller and larger scales relative to the system of interest

  13. An evolutionary ecology of individual differences

    Science.gov (United States)

    Dall, Sasha R. X.; Bell, Alison M.; Bolnick, Daniel I.; Ratnieks, Francis L. W.

    2014-01-01

    Individuals often differ in what they do. This has been recognised since antiquity. Nevertheless, the ecological and evolutionary significance of such variation is attracting widespread interest, which is burgeoning to an extent that is fragmenting the literature. As a first attempt at synthesis, we focus on individual differences in behaviour within populations that exceed the day-to-day variation in individual behaviour (i.e. behavioural specialisation). Indeed, the factors promoting ecologically relevant behavioural specialisation within natural populations are likely to have far-reaching ecological and evolutionary consequences. We discuss such individual differences from three distinct perspectives: individual niche specialisations, the division of labour within insect societies and animal personality variation. In the process, while recognising that each area has its own unique motivations, we identify a number of opportunities for productive ‘crossfertilisation’ among the (largely independent) bodies of work. We conclude that a complete understanding of evolutionarily and ecologically relevant individual differences must specify how ecological interactions impact the basic biological process (e.g. Darwinian selection, development and information processing) that underpin the organismal features determining behavioural specialisations. Moreover, there is likely to be covariation amongst behavioural specialisations. Thus, we sketch the key elements of a general framework for studying the evolutionary ecology of individual differences. PMID:22897772

  14. Ecological homogenization of residential macrosystems

    Science.gov (United States)

    Peter M. Groffman; Meghan Avolio; Jeannine Cavender-Bares; Neil D. Bettez; J. Morgan Grove; Sharon J. Hall; Sarah E. Hobbie; Kelli L. Larson; Susannah B. Lerman; Dexter H. Locke; James B. Heffernan; Jennifer L. Morse; Christopher Neill; Kristen C. Nelson; Jarlath O' Neil-Dunne; Diane E. Pataki; Colin Polsky; Rinku Roy Chowdhury; Tara L. E. Trammell

    2017-01-01

    Similarities in planning, development and culture within urban areas may lead to the convergence of ecological processes on continental scales. Transdisciplinary, multi-scale research is now needed to understand and predict the impact of human-dominated landscapes on ecosystem structure and function.

  15. Information-Theoretic Approach May Shed a Light to a Better Understanding and Sustaining the Integrity of Ecological-Societal Systems under Changing Climate

    Science.gov (United States)

    Kim, J.

    2016-12-01

    Considering high levels of uncertainty, epistemological conflicts over facts and values, and a sense of urgency, normal paradigm-driven science will be insufficient to mobilize people and nation toward sustainability. The conceptual framework to bridge the societal system dynamics with that of natural ecosystems in which humanity operates remains deficient. The key to understanding their coevolution is to understand `self-organization.' Information-theoretic approach may shed a light to provide a potential framework which enables not only to bridge human and nature but also to generate useful knowledge for understanding and sustaining the integrity of ecological-societal systems. How can information theory help understand the interface between ecological systems and social systems? How to delineate self-organizing processes and ensure them to fulfil sustainability? How to evaluate the flow of information from data through models to decision-makers? These are the core questions posed by sustainability science in which visioneering (i.e., the engineering of vision) is an essential framework. Yet, visioneering has neither quantitative measure nor information theoretic framework to work with and teach. This presentation is an attempt to accommodate the framework of self-organizing hierarchical open systems with visioneering into a common information-theoretic framework. A case study is presented with the UN/FAO's communal vision of climate-smart agriculture (CSA) which pursues a trilemma of efficiency, mitigation, and resilience. Challenges of delineating and facilitating self-organizing systems are discussed using transdisciplinary toold such as complex systems thinking, dynamic process network analysis and multi-agent systems modeling. Acknowledgments: This study was supported by the Korea Meteorological Administration Research and Development Program under Grant KMA-2012-0001-A (WISE project).

  16. An ecological interface for supporting situation awareness during malfunction and process and automation

    International Nuclear Information System (INIS)

    Ohtsu, Masataka; Furukawa, Hiroshi; Inagaki, Toshiyuki; Monta, Kazuo

    2000-01-01

    This paper describes the outline of an experiment to investigate the effect of an ecological interface for supporting situation awareness during malfunction of process. We developed an ecological interface and an conventional interface for the simulator SCARLETT of a virtual plant that have two process control modes (automatic process control mode and manual process control mode). The purpose of this experiment is to investigate how interface and process control mode have any effects on situation awareness of human operator during malfunction of process, whether there are any interaction between interface and process control mode. We have been conducted this experiment now. (author)

  17. Automated experimentation in ecological networks.

    Science.gov (United States)

    Lurgi, Miguel; Robertson, David

    2011-05-09

    In ecological networks, natural communities are studied from a complex systems perspective by representing interactions among species within them in the form of a graph, which is in turn analysed using mathematical tools. Topological features encountered in complex networks have been proved to provide the systems they represent with interesting attributes such as robustness and stability, which in ecological systems translates into the ability of communities to resist perturbations of different kinds. A focus of research in community ecology is on understanding the mechanisms by which these complex networks of interactions among species in a community arise. We employ an agent-based approach to model ecological processes operating at the species' interaction level for the study of the emergence of organisation in ecological networks. We have designed protocols of interaction among agents in a multi-agent system based on ecological processes occurring at the interaction level between species in plant-animal mutualistic communities. Interaction models for agents coordination thus engineered facilitate the emergence of network features such as those found in ecological networks of interacting species, in our artificial societies of agents. Agent based models developed in this way facilitate the automation of the design an execution of simulation experiments that allow for the exploration of diverse behavioural mechanisms believed to be responsible for community organisation in ecological communities. This automated way of conducting experiments empowers the study of ecological networks by exploiting the expressive power of interaction models specification in agent systems.

  18. Using a social-ecological systems perspective to understand tourism and landscape interactions in coastal areas

    Directory of Open Access Journals (Sweden)

    Jasper Hessel Heslinga

    2017-04-01

    Full Text Available Purpose – The purpose of this paper is to look at the potential synergies between tourism and landscapes and examine the potential contribution of tourism to build social-ecological resilience in the Dutch Wadden. Design/methodology/approach – The authors reveal how a social-ecological systems perspective can be used to conceptualize the Wadden as a coupled and dynamic system. This paper is a conceptual analysis that applies this approach to the Dutch Wadden. The data used for the inquiry primarily comes from a literature review. Findings – The authors argue that the social-ecological systems perspective is a useful approach and could be used to improve the governance of multi-functional socio-ecological systems in coastal areas. Opportunities for synergies between tourism and landscapes have been overlooked. The authors consider that tourism and nature protection are potentially compatible and that the synergies should be identified. Research limitations/implications – This paper is only a conceptual application rather than an empirical case study. Further research to actually apply the methodology is needed. Practical implications – Managers of protected areas should consider applying a social-ecological systems approach. Social implications – The views of a wide variety of stakeholders should be considered in landscape planning. Originality/value – The value of this paper lies in the articulation of the social-ecological systems perspective as a way to identify and understand the complex interactions between tourism and landscape, and the potential synergies between them.

  19. Understanding Immigrant College Students: Applying a Developmental Ecology Framework to the Practice of Academic Advising

    Science.gov (United States)

    Stebleton, Michael J.

    2011-01-01

    Immigrant college student populations continue to grow, but the complexity of their unique needs and issues remain relatively unknown. To gain a better understanding of the multiple contextual factors impacting immigrant students from a systems-based approach, I applied Bronfenbrenner's (1977) human ecology framework to the study. Students…

  20. Ecologizing Our Cities: A Particular, Process-Function View of Southern California, from within Complexity

    Directory of Open Access Journals (Sweden)

    Ashwani Vasishth

    2015-08-01

    Full Text Available Cities, as the quintessential socio-technological artifacts of human civilization, are seen to set us apart from nature. But an ecosystem view from nested scale-hierarchical process-function ecology shows us that cities are best seen as the emergent and nodal end points of interactive flows of matter, energy and information. From within such a view, a clear need emerges to ecologize our cities by better integrating them back with nature. Arguing from such an ecosystem approach to depicting reality, this paper proposes that tracing the processes and functions which constitute the morphology of the city leads us to articulate an urban ecology that incorporates heat island mitigations, urban forestry, and ecological landscape management (taken both as the introduction of native vegetation and the insertion of increased proportions of pervious paving, all considered within the framework of an integrative ecosystem approach to land use planning. More importantly, such an approach to urban ecology is useful because, as a mode of intervention, it rests on—indeed, requires—an acknowledgement in ecological planning of the often amorphous and usually only indirectly sensible atmospheric, biogeochemical and hydrological processes and functions.

  1. Understanding and enhancing future infrastructure resiliency: a socio-ecological approach.

    Science.gov (United States)

    Sage, Daniel; Sircar, Indraneel; Dainty, Andrew; Fussey, Pete; Goodier, Chris

    2015-07-01

    The resilience of any system, human or natural, centres on its capacity to adapt its structure, but not necessarily its function, to a new configuration in response to long-term socio-ecological change. In the long term, therefore, enhancing resilience involves more than simply improving a system's ability to resist an immediate threat or to recover to a stable past state. However, despite the prevalence of adaptive notions of resilience in academic discourse, it is apparent that infrastructure planners and policies largely continue to struggle to comprehend longer-term system adaptation in their understanding of resilience. Instead, a short-term, stable system (STSS) perspective on resilience is prevalent. This paper seeks to identify and problematise this perspective, presenting research based on the development of a heuristic 'scenario-episode' tool to address, and challenge, it in the context of United Kingdom infrastructure resilience. The aim is to help resilience practitioners to understand better the capacities of future infrastructure systems to respond to natural, malicious threats. © 2015 The Author(s). Disasters © Overseas Development Institute, 2015.

  2. [Towards understanding human ecology in nursing practice: a concept analysis].

    Science.gov (United States)

    Huynh, Truc; Alderson, Marie

    2010-06-01

    Human ecology is an umbrella concept encompassing several social, physical, and cultural elements existing in the individual's external environment. The pragmatic utility method was used to analyze the "human ecology" concept in order to ascertain the conceptual fit with nursing epistemology and to promote its use by nurses in clinical practice. Relevant articles for the review were retrieved from the MEDLINE, CINAHL, PsycINFO, and CSA databases using the terms "human ecology," "environment," "nursing," and "ecology." Data analysis revealed that human ecology is perceived as a theoretical perspective designating a complex, multilayered, and multidimensional system, one that comprises individuals and their reciprocal interactions with their global environments and the subsequent impact of these interactions upon their health. Human ecology preconditions include the individuals, their environments, and their transactions. Attributes of this concept encompass the characteristics of an open system (e.g., interdependence, reciprocal).

  3. Simulation of ecological processes using response functions method

    International Nuclear Information System (INIS)

    Malkina-Pykh, I.G.; Pykh, Yu. A.

    1998-01-01

    The article describes further development and applications of the already well-known response functions method (MRF). The method is used as a basis for the development of mathematical models of a wide set of ecological processes. The model of radioactive contamination of the ecosystems is chosen as an example. The mathematical model was elaborated for the description of 90 Sr dynamics in the elementary ecosystems of various geographical zones. The model includes the blocks corresponding with the main units of any elementary ecosystem: lower atmosphere, soil, vegetation, surface water. Parameters' evaluation was provided on a wide set of experimental data. A set of computer simulations was done on the model to prove the possibility of the model's use for ecological forecasting

  4. Population genetics meets ecological genomics and community ecology in Cornus Florida

    Science.gov (United States)

    Understanding evolutionary/ecological consequences of alien pests on native forests is important to conservation. Cornus florida L. subsp. florida is an ecologically important understory tree in forests of the eastern United States but faces heavy mortality from dogwood anthracnose. Understanding ge...

  5. Scenarios of Earth system change in western Canada: Conceptual understanding and process insights from the Changing Cold Regions Network

    Science.gov (United States)

    DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Turetsky, M. R.; Baltzer, J. L.; Pietroniro, A.; Marsh, P.; Carey, S.; Howard, A.; Barr, A.; Elshamy, M.

    2017-12-01

    The interior of western Canada has been experiencing rapid, widespread, and severe hydroclimatic change in recent decades, and this is projected to continue in the future. To better assess future hydrological, cryospheric and ecological states and fluxes under future climates, a regional hydroclimate project was formed under the auspices of the Global Energy and Water Exchanges (GEWEX) project of the World Climate Research Programme; the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) aims to understand, diagnose, and predict interactions among the changing Earth system components at multiple spatial scales over the Mackenzie and Saskatchewan River basins of western Canada. A particular challenge is in applying land surface and hydrological models under future climates, as system changes and cold regions process interactions are not often straightforward, and model structures and parameterizations based on historical observations and understanding of contemporary system functioning may not adequately capture these complexities. To address this and provide guidance and direction to the modelling community, CCRN has drawn insights from a multi-disciplinary perspective on the process controls and system trajectories to develop a set of feasible scenarios of change for the 21st century across the region. This presentation will describe CCRN's efforts towards formalizing these insights and applying them in a large-scale modelling context. This will address what are seen as the most critical processes and key drivers affecting hydrological, cryospheric and ecological change, how these will most likely evolve in the coming decades, and how these are parameterized and incorporated as future scenarios for terrestrial ecology, hydrological functioning, permafrost state, glaciers, agriculture, and water management.

  6. The ecology and biogeochemistry of stream biofilms.

    Science.gov (United States)

    Battin, Tom J; Besemer, Katharina; Bengtsson, Mia M; Romani, Anna M; Packmann, Aaron I

    2016-04-01

    Streams and rivers form dense networks, shape the Earth's surface and, in their sediments, provide an immensely large surface area for microbial growth. Biofilms dominate microbial life in streams and rivers, drive crucial ecosystem processes and contribute substantially to global biogeochemical fluxes. In turn, water flow and related deliveries of nutrients and organic matter to biofilms constitute major constraints on microbial life. In this Review, we describe the ecology and biogeochemistry of stream biofilms and highlight the influence of physical and ecological processes on their structure and function. Recent advances in the study of biofilm ecology may pave the way towards a mechanistic understanding of the effects of climate and environmental change on stream biofilms and the biogeochemistry of stream ecosystems.

  7. Stochastic analysis in production process and ecology under uncertainty

    CERN Document Server

    Bieda, Bogusław

    2014-01-01

    The monograph addresses a problem of stochastic analysis based on the uncertainty assessment by simulation and application of this method in ecology and steel industry under uncertainty. The first chapter defines the Monte Carlo (MC) method and random variables in stochastic models. Chapter two deals with the contamination transport in porous media. Stochastic approach for Municipal Solid Waste transit time contaminants modeling using MC simulation has been worked out. The third chapter describes the risk analysis of the waste to energy facility proposal for Konin city, including the financial aspects. Environmental impact assessment of the ArcelorMittal Steel Power Plant, in Kraków - in the chapter four - is given. Thus, four scenarios of the energy mix production processes were studied. Chapter five contains examples of using ecological Life Cycle Assessment (LCA) - a relatively new method of environmental impact assessment - which help in preparing pro-ecological strategy, and which can lead to reducing t...

  8. Stochastic Community Assembly: Does It Matter in Microbial Ecology?

    Science.gov (United States)

    Zhou, Jizhong; Ning, Daliang

    2017-12-01

    Understanding the mechanisms controlling community diversity, functions, succession, and biogeography is a central, but poorly understood, topic in ecology, particularly in microbial ecology. Although stochastic processes are believed to play nonnegligible roles in shaping community structure, their importance relative to deterministic processes is hotly debated. The importance of ecological stochasticity in shaping microbial community structure is far less appreciated. Some of the main reasons for such heavy debates are the difficulty in defining stochasticity and the diverse methods used for delineating stochasticity. Here, we provide a critical review and synthesis of data from the most recent studies on stochastic community assembly in microbial ecology. We then describe both stochastic and deterministic components embedded in various ecological processes, including selection, dispersal, diversification, and drift. We also describe different approaches for inferring stochasticity from observational diversity patterns and highlight experimental approaches for delineating ecological stochasticity in microbial communities. In addition, we highlight research challenges, gaps, and future directions for microbial community assembly research. Copyright © 2017 American Society for Microbiology.

  9. A parametric interpretation of Bayesian Nonparametric Inference from Gene Genealogies: Linking ecological, population genetics and evolutionary processes.

    Science.gov (United States)

    Ponciano, José Miguel

    2017-11-22

    Using a nonparametric Bayesian approach Palacios and Minin (2013) dramatically improved the accuracy, precision of Bayesian inference of population size trajectories from gene genealogies. These authors proposed an extension of a Gaussian Process (GP) nonparametric inferential method for the intensity function of non-homogeneous Poisson processes. They found that not only the statistical properties of the estimators were improved with their method, but also, that key aspects of the demographic histories were recovered. The authors' work represents the first Bayesian nonparametric solution to this inferential problem because they specify a convenient prior belief without a particular functional form on the population trajectory. Their approach works so well and provides such a profound understanding of the biological process, that the question arises as to how truly "biology-free" their approach really is. Using well-known concepts of stochastic population dynamics, here I demonstrate that in fact, Palacios and Minin's GP model can be cast as a parametric population growth model with density dependence and environmental stochasticity. Making this link between population genetics and stochastic population dynamics modeling provides novel insights into eliciting biologically meaningful priors for the trajectory of the effective population size. The results presented here also bring novel understanding of GP as models for the evolution of a trait. Thus, the ecological principles foundation of Palacios and Minin (2013)'s prior adds to the conceptual and scientific value of these authors' inferential approach. I conclude this note by listing a series of insights brought about by this connection with Ecology. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  10. Ecology and evolution of mammalian biodiversity.

    Science.gov (United States)

    Jones, Kate E; Safi, Kamran

    2011-09-12

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future.

  11. Ecology and evolution of mammalian biodiversity

    Science.gov (United States)

    Jones, Kate E.; Safi, Kamran

    2011-01-01

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future. PMID:21807728

  12. Philosophy of ecology

    CERN Document Server

    Brown, Bryson; Peacock, Kent A

    2011-01-01

    The most pressing problems facing humanity today - over-population, energy shortages, climate change, soil erosion, species extinctions, the risk of epidemic disease, the threat of warfare that could destroy all the hard-won gains of civilization, and even the recent fibrillations of the stock market - are all ecological or have a large ecological component. in this volume philosophers turn their attention to understanding the science of ecology and its huge implications for the human project. To get the application of ecology to policy or other practical concerns right, humanity needs a clear and disinterested philosophical understanding of ecology which can help identify the practical lessons of science. Conversely, the urgent practical demands humanity faces today cannot help but direct scientific and philosophical investigation toward the basis of those ecological challenges that threaten human survival. This book will help to fuel the timely renaissance of interest in philosophy of ecology that is now oc...

  13. Using ecological production functions to link ecological processes to ecosystem services.

    Science.gov (United States)

    Ecological production functions (EPFs) link ecosystems, stressors, and management actions to ecosystem services (ES) production. Although EPFs are acknowledged as being essential to improve environmental management, their use in ecological risk assessment has received relatively ...

  14. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward.

    Science.gov (United States)

    Richards, Christina L; Alonso, Conchita; Becker, Claude; Bossdorf, Oliver; Bucher, Etienne; Colomé-Tatché, Maria; Durka, Walter; Engelhardt, Jan; Gaspar, Bence; Gogol-Döring, Andreas; Grosse, Ivo; van Gurp, Thomas P; Heer, Katrin; Kronholm, Ilkka; Lampei, Christian; Latzel, Vít; Mirouze, Marie; Opgenoorth, Lars; Paun, Ovidiu; Prohaska, Sonja J; Rensing, Stefan A; Stadler, Peter F; Trucchi, Emiliano; Ullrich, Kristian; Verhoeven, Koen J F

    2017-12-01

    Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  15. Ecological assessment of integrated bioenergy systems using the Sustainable Process Index

    International Nuclear Information System (INIS)

    Krotscheck, C.; Konig, F.; Obernberger, I.

    2000-01-01

    Biomass utilisation for energy production presently faces an uphill battle against fossil fuels. The use of biomass must offer additional benefits to compensate for higher prices: on the basis of a life cycle assessment (using BEAM to evaluate a variety of integrated bioenergy systems in connection with the Sustainable Process Index as a highly aggregated environmental pressure index) it is shown that integrated bioenergy systems are superior to fossil fuel systems in terms of environmental compatibility. The implementation of sustainability measures provides additional valuable information that might help in constructing and optimising integrated bioenergy systems. For a set of reference processes, among them fast pyrolysis, atmospheric gasification, integrated gasification combined cycle (IGCC), combustion and steam cycle (CS) and conventional hydrolysis, a detailed impact assessment is shown. Sensitivity analyses of the most important ecological parameters are calculated, giving an overview of the impacts of various stages in the total life cycle and showing 'what really matters'. Much of the ecological impact of integrated bioenergy systems is induced by feedstock production. It is mainly the use of fossil fuels in cultivation, harvesting and transportation as well as the use of fertilisers in short-rotation coppice production that impose considerable ecological pressure. Concerning electricity generation the most problematic pressures are due to gaseous emissions, most notably the release of NO x . Moreover, a rather complicated process (high amount of grey energy) and the use of fossil pilot fuel (co-combustion) leads to a rather weak ecological performance in contrast to other 100% biomass-based systems. (author)

  16. When mechanism matters: Bayesian forecasting using models of ecological diffusion

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.

    2017-01-01

    Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.

  17. Effects of season on ecological processes in extensive earthen tilapia ponds in Southeastern Brazil.

    Science.gov (United States)

    Favaro, E G P; Sipaúba-Tavares, L H; Milstein, A

    2015-11-01

    In Southeastern Brazil tilapia culture is conducted in extensive and semi-intensive flow-through earthen ponds, being water availability and flow management different in the rainy and dry seasons. In this region lettuce wastes are a potential cheap input for tilapia culture. This study examined the ecological processes developing during the rainy and dry seasons in three extensive flow-through earthen tilapia ponds fertilized with lettuce wastes. Water quality, plankton and sediment parameters were sampled monthly during a year. Factor analysis was used to identify the ecological processes occurring within the ponds and to construct a conceptual graphic model of the pond ecosystem functioning during the rainy and dry seasons. Processes related to nitrogen cycling presented differences between both seasons while processes related to phosphorus cycling did not. Ecological differences among ponds were due to effects of wind protection by surrounding vegetation, organic loading entering, tilapia density and its grazing pressure on zooplankton. Differences in tilapia growth among ponds were related to stocking density and ecological process affecting tilapia food availability and intraspecific competition. Lettuce wastes addition into the ponds did not produce negative effects, thus this practice may be considered a disposal option and a low-cost input source for tilapia, at least at the amounts applied in this study.

  18. The assembly and disassembly of ecological networks.

    Science.gov (United States)

    Bascompte, Jordi; Stouffer, Daniel B

    2009-06-27

    Global change has created a severe biodiversity crisis. Species are driven extinct at an increasing rate, and this has the potential to cause further coextinction cascades. The rate and shape of these coextinction cascades depend very much on the structure of the networks of interactions across species. Understanding network structure and how it relates to network disassembly, therefore, is a priority for system-level conservation biology. This process of network collapse may indeed be related to the process of network build-up, although very little is known about both processes and even less about their relationship. Here we review recent work that provides some preliminary answers to these questions. First, we focus on network assembly by emphasizing temporal processes at the species level, as well as the structural building blocks of complex ecological networks. Second, we focus on network disassembly as a consequence of species extinctions or habitat loss. We conclude by emphasizing some general rules of thumb that can help in building a comprehensive framework to understand the responses of ecological networks to global change.

  19. Ecological mechanisms linking protected areas to surrounding lands.

    Science.gov (United States)

    Hansen, Andrew J; DeFries, Ruth

    2007-06-01

    Land use is expanding and intensifying in the unprotected lands surrounding many of the world's protected areas. The influence of this land use change on ecological processes is poorly understood. The goal of this paper is to draw on ecological theory to provide a synthetic framework for understanding how land use change around protected areas may alter ecological processes and biodiversity within protected areas and to provide a basis for identifying scientifically based management alternatives. We first present a conceptual model of protected areas embedded within larger ecosystems that often include surrounding human land use. Drawing on case studies in this Invited Feature, we then explore a comprehensive set of ecological mechanisms by which land use on surrounding lands may influence ecological processes and biodiversity within reserves. These mechanisms involve changes in ecosystem size, with implications for minimum dynamic area, species-area effect, and trophic structure; altered flows of materials and disturbances into and out of reserves; effects on crucial habitats for seasonal and migration movements and population source/sink dynamics; and exposure to humans through hunting, poaching, exotics species, and disease. These ecological mechanisms provide a basis for assessing the vulnerability of protected areas to land use. They also suggest criteria for designing regional management to sustain protected areas in the context of surrounding human land use. These design criteria include maximizing the area of functional habitats, identifying and maintaining ecological process zones, maintaining key migration and source habitats, and managing human proximity and edge effects.

  20. Chasing Ecological Interactions.

    Science.gov (United States)

    Jordano, Pedro

    2016-09-01

    Basic research on biodiversity has concentrated on individual species-naming new species, studying distribution patterns, and analyzing their evolutionary relationships. Yet biodiversity is more than a collection of individual species; it is the combination of biological entities and processes that support life on Earth. To understand biodiversity we must catalog it, but we must also assess the ways species interact with other species to provide functional support for the Tree of Life. Ecological interactions may be lost well before the species involved in those interactions go extinct; their ecological functions disappear even though they remain. Here, I address the challenges in studying the functional aspects of species interactions and how basic research is helping us address the fast-paced extinction of species due to human activities.

  1. Influencing adaptation processes on the Australian rangelands for social and ecological resilience

    Directory of Open Access Journals (Sweden)

    Nadine A. Marshall

    2014-06-01

    Full Text Available Resource users require the capacity to cope and adapt to climate changes affecting resource condition if they, and their industries, are to remain viable. Understanding individual-scale responses to a changing climate will be an important component of designing well-targeted, broad-scale strategies and policies. Because of the interdependencies between people and ecosystems, understanding and supporting resilience of resource-dependent people may be as important an aspect of effective resource management as managing the resilience of ecological components. We refer to the northern Australian rangelands as an example of a system that is particularly vulnerable to the impacts of climate change and look for ways to enhance the resilience of the system. Vulnerability of the social system comprises elements of adaptive capacity and sensitivity to change (resource dependency as well as exposure, which is not examined here. We assessed the adaptive capacity of 240 cattle producers, using four established dimensions, and investigated the association between adaptive capacity and climate sensitivity (or resource dependency as measured through 14 established dimensions. We found that occupational identity, employability, networks, strategic approach, environmental awareness, dynamic resource use, and use of technology were all positively correlated with at least one dimension of adaptive capacity and that place attachment was negatively correlated with adaptive capacity. These results suggest that adaptation processes could be influenced by focusing on adaptive capacity and these aspects of climate sensitivity. Managing the resilience of individuals is critical to processes of adaptation at higher levels and needs greater attention if adaptation processes are to be shaped and influenced.

  2. Synergistic selection between ecological niche and mate preference primes diversification.

    Science.gov (United States)

    Boughman, Janette W; Svanbäck, Richard

    2017-01-01

    The ecological niche and mate preferences have independently been shown to be important for the process of speciation. Here, we articulate a novel mechanism by which ecological niche use and mate preference can be linked to promote speciation. The degree to which individual niches are narrow and clustered affects the strength of divergent natural selection and population splitting. Similarly, the degree to which individual mate preferences are narrow and clustered affects the strength of divergent sexual selection and assortative mating between diverging forms. This novel perspective is inspired by the literature on ecological niches; it also explores mate preferences and how they may contribute to speciation. Unlike much comparative work, we do not search for evolutionary patterns using proxies for adaptation and sexual selection, but rather we elucidate how ideas from niche theory relate to mate preference, and how this relationship can foster speciation. Recognizing that individual and population niches are conceptually and ecologically linked to individual and population mate preference functions will significantly increase our understanding of rapid evolutionary diversification in nature. It has potential to help solve the difficult challenge of testing the role of sexual selection in the speciation process. We also identify ecological factors that are likely to affect individual niche and individual mate preference in synergistic ways and as a consequence to promote speciation. The ecological niche an individual occupies can directly affect its mate preference. Clusters of individuals with narrow, differentiated niches are likely to have narrow, differentiated mate preference functions. Our approach integrates ecological and sexual selection research to further our understanding of diversification processes. Such integration may be necessary for progress because these processes seem inextricably linked in the natural world. © 2016 The Author(s). Evolution

  3. What makes process models understandable?

    NARCIS (Netherlands)

    Mendling, J.; Reijers, H.A.; Cardoso, J.; Alonso, G.; Dadam, P.; Rosemann, M.

    2007-01-01

    Despite that formal and informal quality aspects are of significant importance to business process modeling, there is only little empirical work reported on process model quality and its impact factors. In this paper we investigate understandability as a proxy for quality of process models and focus

  4. DEVELOPMENT OF ECOLOGICAL CULTURE OF STUDENTS IN THE PROCESS OF INTERCULTURAL COMMUNICATION IN FOREIGN LANGUAGE

    Directory of Open Access Journals (Sweden)

    L. M. Andryukhina

    2017-01-01

    Full Text Available Introduction. High level of ecological culture in modern society is the most important condition of self-preservation and sustainable development of a human civilization. The processes of globalization force to consider environmental problems with a support on polycultural practice, to take into account national and regional peculiarities in their integrity. Thus, there is the need of the international cooperation not only at the government level, but also at the levels of expert communities, separate groups of society and citizens of the country. Moreover, ecological culture is constantly highlighted in numerous studies, materials and documents of the international forums, summits and conferences of the UN and UNESCO. The aim of this publication is to present the authors’ didactic complex of development tools of ecological culture of students, and to show the potential of teaching foreign languages (on the example of French for students’ ecological culture formation by means of development of cross-cultural communicative competence.  Methodology and research methods. Culturological approach has been chosen as a key approach for creation of integrative model of development of ecological culture. The methods involve: the system-based analysis of the content of ecological education; generalization of the theory and practice of implementation of the international strategies of ecological culture development and the analysis of efficiency of the pedagogical technologies intended for this purpose; modeling of the process of formation of ecological culture of students. The diagnostics of components of students’ ecological culture has been performed by means of internal questioning, observation, and comparative analysis of group interactions. Also, pedagogical ascertaining experiments, methods of pedagogical design for forms of the educational environment organization, design of the educational programmes, and methods of graphical

  5. Challenges in microbial ecology: Building predictive understanding of community function and dynamics

    DEFF Research Database (Denmark)

    Widder, Stefanie; Allen, Rosalind J.; Pfeiffer, Thomas

    2016-01-01

    The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth's soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly...... complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development...... is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved....

  6. Data Assimilation at FLUXNET to Improve Models towards Ecological Forecasting (Invited)

    Science.gov (United States)

    Luo, Y.

    2009-12-01

    Dramatically increased volumes of data from observational and experimental networks such as FLUXNET call for transformation of ecological research to increase its emphasis on quantitative forecasting. Ecological forecasting will also meet the societal need to develop better strategies for natural resource management in a world of ongoing global change. Traditionally, ecological forecasting has been based on process-based models, informed by data in largely ad hoc ways. Although most ecological models incorporate some representation of mechanistic processes, today’s ecological models are generally not adequate to quantify real-world dynamics and provide reliable forecasts with accompanying estimates of uncertainty. A key tool to improve ecological forecasting is data assimilation, which uses data to inform initial conditions and to help constrain a model during simulation to yield results that approximate reality as closely as possible. In an era with dramatically increased availability of data from observational and experimental networks, data assimilation is a key technique that helps convert the raw data into ecologically meaningful products so as to accelerate our understanding of ecological processes, test ecological theory, forecast changes in ecological services, and better serve the society. This talk will use examples to illustrate how data from FLUXNET have been assimilated with process-based models to improve estimates of model parameters and state variables; to quantify uncertainties in ecological forecasting arising from observations, models and their interactions; and to evaluate information contributions of data and model toward short- and long-term forecasting of ecosystem responses to global change.

  7. Ecological succession as an energy dispersal process.

    Science.gov (United States)

    Würtz, Peter; Annila, Arto

    2010-04-01

    Ecological succession is described by the 2nd law of thermodynamics. According to the universal law of the maximal energy dispersal, an ecosystem evolves toward a stationary state in its surroundings by consuming free energy via diverse mechanisms. Species are the mechanisms that conduct energy down along gradients between repositories of energy which consist of populations at various thermodynamic levels. The salient characteristics of succession, growing biomass production, increasing species richness and shifting distributions of species are found as consequences of the universal quest to diminish energy density differences in least time. The analysis reveals that during succession the ecosystem's energy transduction network, i.e., the food web organizes increasingly more effective in the free energy reduction by acquiring new, more effective and abandoning old, less effective species of energy transduction. The number of species does not necessarily peak at the climax state that corresponds to the maximum-entropy partition of species maximizing consumption of free energy. According to the theory of evolution by natural selection founded on statistical physics of open systems, ecological succession is one among many other evolutionary processes. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Representing and managing uncertainty in qualitative ecological models

    NARCIS (Netherlands)

    Nuttle, T.; Bredeweg, B.; Salles, P.; Neumann, M.

    2009-01-01

    Ecologists and decision makers need ways to understand systems, test ideas, and make predictions and explanations about systems. However, uncertainty about causes and effects of processes and parameter values is pervasive in models of ecological systems. Uncertainty associated with incomplete

  9. Ecological communities with Lotka-Volterra dynamics

    Science.gov (United States)

    Bunin, Guy

    2017-04-01

    Ecological communities in heterogeneous environments assemble through the combined effect of species interaction and migration. Understanding the effect of these processes on the community properties is central to ecology. Here we study these processes for a single community subject to migration from a pool of species, with population dynamics described by the generalized Lotka-Volterra equations. We derive exact results for the phase diagram describing the dynamical behaviors, and for the diversity and species abundance distributions. A phase transition is found from a phase where a unique globally attractive fixed point exists to a phase where multiple dynamical attractors exist, leading to history-dependent community properties. The model is shown to possess a symmetry that also establishes a connection with other well-known models.

  10. Ecological Stoichiometry of Ocean Plankton

    Science.gov (United States)

    Moreno, Allison R.; Martiny, Adam C.

    2018-01-01

    Marine plankton elemental stoichiometric ratios can deviate from the Redfield ratio (106C:16N:1P); here, we examine physiological and biogeochemical mechanisms that lead to the observed variation across lineages, regions, and seasons. Many models of ecological stoichiometry blend together acclimative and adaptive responses to environmental conditions. These two pathways can have unique molecular mechanisms and stoichiometric outcomes, and we attempt to disentangle the two processes. We find that interactions between environmental conditions and cellular growth are key to understanding stoichiometric regulation, but the growth rates of most marine plankton populations are poorly constrained. We propose that specific physiological mechanisms have a strong impact on plankton and community stoichiometry in nutrient-rich environments, whereas biogeochemical interactions are important for the stoichiometry of the oligotrophic gyres. Finally, we outline key areas with missing information that is needed to advance understanding of the present and future ecological stoichiometry of ocean plankton.

  11. Landscape Ecology

    DEFF Research Database (Denmark)

    Christensen, Andreas Aagaard; Brandt, Jesper; Svenningsen, Stig Roar

    2017-01-01

    Landscape ecology is an interdisciplinary field of research and practice that deals with the mutual association between the spatial configuration and ecological functioning of landscapes, exploring and describing processes involved in the differentiation of spaces within landscapes......, and the ecological significance of the patterns which are generated by such processes. In landscape ecology, perspectives drawn from existing academic disciplines are integrated based on a common, spatially explicit mode of analysis developed from classical holistic geography, emphasizing spatial and landscape...... pattern analysis and ecological interaction of land units. The landscape is seen as a holon: an assemblage of interrelated phenomena, both cultural and biophysical, that together form a complex whole. Enduring challenges to landscape ecology include the need to develop a systematic approach able...

  12. Behaviour as a Lever of Ecological Transition? Understanding and Acting on Individual Behaviour and Collective Dynamics

    International Nuclear Information System (INIS)

    Martin, Solange; Gaspard, Albane

    2017-01-01

    Beyond broad policy declarations, the implementation of ecological transition - which consists mainly in curbing consumption of energy and raw materials in our societies - requires substantial behavioural change at the collective, but also, quite obviously, the individual level. Yet, though there is general consensus around the principle of embarking on the path to transition, things get more complicated when it comes to changing our practices and habits. Can we act on individual behaviour and collective dynamics in respect of this particular aim of ecological transition, and, if so, how are we to go about it? Solange Martin and Albane Gaspard have examined this question for the French Environment and Energy Management Agency (ADEME) and offer us the fruit of their labours here. They show, for example, how the social and human sciences help to understand behaviour both at the individual level and in its collective dimensions, and they outline different possible lines of action to modify it. But, given the entanglement between various levels, it is essential, if we are to act effectively on behaviour, to combine approaches, tools and actors, and to analyse and understand social practices thoroughly before implementing political projects or measures

  13. Bringing an ecological view of change to Landsat-based remote sensing

    Science.gov (United States)

    Kennedy, Robert E.; Andrefouet, Serge; Cohen, Warren; Gomez, Cristina; Griffiths, Patrick; Hais, Martin; Healey, Sean; Helmer, Eileen H.; Hostert, Patrick; Lyons, Mitchell; Meigs, Garrett; Pflugmacher, Dirk; Phinn, Stuart; Powell, Scott; Scarth, Peter; Susmita, Sen; Schroeder, Todd A.; Schneider, Annemarie; Sonnenschein, Ruth; Vogelmann, James; Wulder, Michael A.; Zhu, Zhe

    2014-01-01

    When characterizing the processes that shape ecosystems, ecologists increasingly use the unique perspective offered by repeat observations of remotely sensed imagery. However, the concept of change embodied in much of the traditional remote-sensing literature was primarily limited to capturing large or extreme changes occurring in natural systems, omitting many more subtle processes of interest to ecologists. Recent technical advances have led to a fundamental shift toward an ecological view of change. Although this conceptual shift began with coarser-scale global imagery, it has now reached users of Landsat imagery, since these datasets have temporal and spatial characteristics appropriate to many ecological questions. We argue that this ecologically relevant perspective of change allows the novel characterization of important dynamic processes, including disturbances, long-term trends, cyclical functions, and feedbacks, and that these improvements are already facilitating our understanding of critical driving forces, such as climate change, ecological interactions, and economic pressures.

  14. Understanding the psychology of bullying: Moving toward a social-ecological diathesis-stress model.

    Science.gov (United States)

    Swearer, Susan M; Hymel, Shelley

    2015-01-01

    With growing recognition that bullying is a complex phenomenon, influenced by multiple factors, research findings to date have been understood within a social-ecological framework. Consistent with this model, we review research on the known correlates and contributing factors in bullying/victimization within the individual, family, peer group, school and community. Recognizing the fluid and dynamic nature of involvement in bullying, we then expand on this model and consider research on the consequences of bullying involvement, as either victim or bully or both, and propose a social-ecological, diathesis-stress model for understanding the bullying dynamic and its impact. Specifically, we frame involvement in bullying as a stressful life event for both children who bully and those who are victimized, serving as a catalyst for a diathesis-stress connection between bullying, victimization, and psychosocial difficulties. Against this backdrop, we suggest that effective bullying prevention and intervention efforts must take into account the complexities of the human experience, addressing both individual characteristics and history of involvement in bullying, risk and protective factors, and the contexts in which bullying occurs, in order to promote healthier social relationships. (c) 2015 APA, all rights reserved).

  15. Predator transitory spillover induces trophic cascades in ecological sinks

    DEFF Research Database (Denmark)

    Casini, Michele; Blenckner, Thorsten; Möllmann, Christian

    2012-01-01

    Understanding the effects of cross-system fluxes is fundamental in ecosystem ecology and biological conservation. Source-sink dynamics and spillover processes may link adjacent ecosystems by movement of organisms across system boundaries. However, effects of temporal variability in these cross-sy...... in structuring natural systems. The integration of regional and local processes is central to predict species and ecosystem responses to future climate changes and ongoing anthropogenic disturbances......Understanding the effects of cross-system fluxes is fundamental in ecosystem ecology and biological conservation. Source-sink dynamics and spillover processes may link adjacent ecosystems by movement of organisms across system boundaries. However, effects of temporal variability in these cross......-system fluxes on a whole marine ecosystem structure have not yet been presented. Here we show, using 35 y of multitrophic data series from the Baltic Sea, that transitory spillover of the top-predator cod from its main distribution area produces cascading effects in the whole food web of an adjacent and semi...

  16. Aspects of an ecological theory of language

    DEFF Research Database (Denmark)

    Bang, J. C.; Trampe, W.

    2014-01-01

    Our aim and knowledge-constitutive interest is to identify some central aspects of an ecological theory of language. In our understanding of building an integrative ecological theory of language, it seems useful to look first for roots of a special ecological understanding of language. Here...

  17. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    Science.gov (United States)

    Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick

    2014-01-01

    Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  18. Transgenerational stress-adaption: an opportunity for ecological epigenetics.

    Science.gov (United States)

    Weinhold, Arne

    2018-01-01

    In the recent years, there has been considerable interest to investigate the adaptive transgenerational plasticity of plants and how a "stress memory" can be transmitted to the following generation. Although, increasing evidence suggests that transgenerational adaptive responses have widespread ecological relevance, the underlying epigenetic processes have rarely been elucidated. On the other hand, model plant species have been deeply investigated in their genome-wide methylation landscape without connecting this to the ecological reality of the plant. What we need is the combination of an ecological understanding which plant species would benefit from transgenerational epigenetic stress-adaption in their natural habitat, combined with a deeper molecular analysis of non-model organisms. Only such interdisciplinary linkage in an ecological epigenetic study could unravel the full potential that epigenetics could play for the transgenerational stress-adaption of plants.

  19. Separating macroecological pattern and process: comparing ecological, economic, and geological systems.

    Directory of Open Access Journals (Sweden)

    Benjamin Blonder

    Full Text Available Theories of biodiversity rest on several macroecological patterns describing the relationship between species abundance and diversity. A central problem is that all theories make similar predictions for these patterns despite disparate assumptions. A troubling implication is that these patterns may not reflect anything unique about organizational principles of biology or the functioning of ecological systems. To test this, we analyze five datasets from ecological, economic, and geological systems that describe the distribution of objects across categories in the United States. At the level of functional form ('first-order effects', these patterns are not unique to ecological systems, indicating they may reveal little about biological process. However, we show that mechanism can be better revealed in the scale-dependency of first-order patterns ('second-order effects'. These results provide a roadmap for biodiversity theory to move beyond traditional patterns, and also suggest ways in which macroecological theory can constrain the dynamics of economic systems.

  20. Separating macroecological pattern and process: comparing ecological, economic, and geological systems.

    Science.gov (United States)

    Blonder, Benjamin; Sloat, Lindsey; Enquist, Brian J; McGill, Brian

    2014-01-01

    Theories of biodiversity rest on several macroecological patterns describing the relationship between species abundance and diversity. A central problem is that all theories make similar predictions for these patterns despite disparate assumptions. A troubling implication is that these patterns may not reflect anything unique about organizational principles of biology or the functioning of ecological systems. To test this, we analyze five datasets from ecological, economic, and geological systems that describe the distribution of objects across categories in the United States. At the level of functional form ('first-order effects'), these patterns are not unique to ecological systems, indicating they may reveal little about biological process. However, we show that mechanism can be better revealed in the scale-dependency of first-order patterns ('second-order effects'). These results provide a roadmap for biodiversity theory to move beyond traditional patterns, and also suggest ways in which macroecological theory can constrain the dynamics of economic systems.

  1. [Ecological memory and its potential applications in ecology: a review].

    Science.gov (United States)

    Sun, Zhong-yu; Ren, Hai

    2011-03-01

    Ecological memory (EM) is defined as the capability of the past states or experiences of a community to influence the present or future ecological responses of the community. As a relatively new concept, EM has received considerable attention in the study of ecosystem structure and function, such as community succession, ecological restoration, biological invasion, and natural resource management. This review summarized the definition, components, and categories of EM, and discussed the possible mechanisms and affecting factors of EM. Also, the potential applications of EM were proposed, in order to further understand the mechanisms of community succession and to guide ecological restoration.

  2. ECOLOGICAL AND ECONOMIC ASPECTS OF REFINING PROCESSING OF SILUMINS

    Directory of Open Access Journals (Sweden)

    G. A. Rumjantseva

    2011-01-01

    Full Text Available Application of the method of mathematical planning of experiments enabled to receive dependences of mechanical characteristics of alloy AK9 in cast state, grade of porosity by the scale VIAM and quantity of escaping dust at flux processing on composition of fining flux metal. The composition of fining flux metal, providing minimum dust discharge and way of assessment of degree of discharge harmfulness by the amount of ecological tax is offered.

  3. Aerobic Granular Sludge: Effect of Salt and Insights into Microbial Ecology

    KAUST Repository

    Wang, Zhongwei

    2017-01-01

    Like other artificial microbial ecosystems (e.g. CAS plant and anaerobic digester), a firm understanding of the microbial ecology of AGS system is essential for process design and optimization. The second part

  4. Integrating Social Science into the Long-Term Ecological Research (LTER) Network: Social Dimensions of Ecological Change and Ecological Dimensions of Social Change

    Science.gov (United States)

    Charles L. Redman; J. Morgan Grove; Lauren H. Kuby; Lauren H. Kuby

    2004-01-01

    The integration of the social sciences into long-term ecological research is an urgent priority. To address this need, a group of social, earth, and life scientists associated with the National Science Foundation's (NSF) Long-Term Ecological Research (LTER) Network have articulated a conceptual framework for understanding the human dimensions of ecological change...

  5. Ecological hierarchies and self-organisation - Pattern analysis, modelling and process integration across scales

    Science.gov (United States)

    Reuter, H.; Jopp, F.; Blanco-Moreno, J. M.; Damgaard, C.; Matsinos, Y.; DeAngelis, D.L.

    2010-01-01

    A continuing discussion in applied and theoretical ecology focuses on the relationship of different organisational levels and on how ecological systems interact across scales. We address principal approaches to cope with complex across-level issues in ecology by applying elements of hierarchy theory and the theory of complex adaptive systems. A top-down approach, often characterised by the use of statistical techniques, can be applied to analyse large-scale dynamics and identify constraints exerted on lower levels. Current developments are illustrated with examples from the analysis of within-community spatial patterns and large-scale vegetation patterns. A bottom-up approach allows one to elucidate how interactions of individuals shape dynamics at higher levels in a self-organisation process; e.g., population development and community composition. This may be facilitated by various modelling tools, which provide the distinction between focal levels and resulting properties. For instance, resilience in grassland communities has been analysed with a cellular automaton approach, and the driving forces in rodent population oscillations have been identified with an agent-based model. Both modelling tools illustrate the principles of analysing higher level processes by representing the interactions of basic components.The focus of most ecological investigations on either top-down or bottom-up approaches may not be appropriate, if strong cross-scale relationships predominate. Here, we propose an 'across-scale-approach', closely interweaving the inherent potentials of both approaches. This combination of analytical and synthesising approaches will enable ecologists to establish a more coherent access to cross-level interactions in ecological systems. ?? 2010 Gesellschaft f??r ??kologie.

  6. Monitoring needs to perform ecological risk assessments in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Kraeuchi, N.

    1999-07-01

    There is enormous pressure to come up with answers to questions asked by politicians and the public concerning the development of the environment and the potential risks society might be confronted with. Forests for example are expected to fulfill specific functions (e.g., timber production, protection of soil and water resources, recreation). As the environmental and social context itself is rapidly changing it is unknown what uses of a forest will appear in the future. The changing social and ecological context under which forestry operates is therefore calling for an appropriate management mode to deal with uncertainties. There is a need to act, monitor the results, learn from the past, adapt to new conditions through planning and to accept a philosophy of managing an ecosystem with the purpose of reducing potential future socio-ecological and environmental risk by understanding potential problems before they arise. Thus, ecosystem-based management must follow established ecological principles and appropriate guidelines must be derived from a thorough understanding of the origin of the risks potentially threatening the forests and the relevant ecosystem processes. In order to evaluate the likelihood that adverse ecological effects may occur as a result of exposure to one or more stressors long-term monitoring data, information, assumptions and uncertainties need to be systematically evaluated and analyzed. This is needed to understand and predict the relationships between stressors and ecological effects in a way that is useful for environmental decision making.

  7. Annual report of ecological research at the Savannah River Ecology Laboratory

    International Nuclear Information System (INIS)

    1984-09-01

    This report summarizes research conducted at the Savannah River Ecology Laboratory (SREL) during the annual period ending August 1, 1984. SREL is a regional research facility at the Savannah River Plant operated by the University of Georgia through a contract with the Department of Energy. It is part of the University of Georgia's Institute of Ecology. The overall goal of the research is to develop an understanding of the impact of various energy technologies and management practices on the ecosystems of the southeastern United States. SREL research is conducted by interdisciplinary research teams organized under three major divisions: (1) Biogeochemical Ecology, (2) Wetlands Ecology, and (3) Stress and Wildlife Ecology

  8. The Population Ecology of Technology: An Empirical Study of US Biotechnology Patents from 1976 to 2003

    Science.gov (United States)

    van den Oord, Ad; van Witteloostuijn, Arjen

    2017-01-01

    A detailed understanding of technological change as an evolutionary process is currently not well understood. To increase our understanding, we build upon theory from organizational ecology to develop a model of endogenous technological growth and determine to what extent the pattern of technological growth can be attributed to the structural or systemic characteristics of the technology itself. Through an empirical investigation of patent data in the biotechnology industry from 1976 to 2003, we find that a technology’s internal (i.e., density and diversity) ecological characteristics have a positive effect on its growth rate. The niche’s external characteristics of crowding and status have a negative effect on its growth rate. Hence, applying theory from organizational ecology increases our understanding of technological change as an evolutionary process. We discuss the implications of our findings for the study of technological growth and evolution, and suggest avenues for further research. PMID:28081570

  9. Emergence Unites Ecology and Society

    Directory of Open Access Journals (Sweden)

    Ronald L. Trosper

    2005-06-01

    Full Text Available The effort to combine analysis of ecosystems and social systems requires a firm theoretical basis. When humans are present in an ecosystem, their actions affect emergent structures; this paper examines forms of emergence that account for the presence of humans. Humans monitor and regulate ecosystems based on their cultural systems. Cultural systems consist of concepts linked in complicated ways that can form consistent world views, can contain inconsistencies, and may or may not accurately model the properties of a social-ecological system. Consequently, human monitoring and regulating processes will differ, depending on cultural systems. Humans, as agents, change or maintain pre-existing material and cultural emergent structures. The presentation is illustrated with a case study of fire-prone forests. The paper shows that explicit attention to emergence serves very well in unifying the following requirements for social-ecological analysis: coherent and observable definitions of sustainability; ways to link ecological and social phenomena; ways to understand cultural reasons for stability and instability in dynamic social-ecological systems; and ways to include human self-evaluation and culture within dynamic models of social-ecological systems. Analysis of cultural emergent structures clarifies many differences in assumptions among the fields of economics, sociology, political science, ecology, and ecological economics. Because it can be readily applied to empirical questions, the framework provides a good way to organize policy analysis that is not dominated by one or another discipline.

  10. Measuring ecological function on California's rangelands

    Science.gov (United States)

    Porzig, E.

    2016-12-01

    There is a need for a better understanding of ecosystem processes on rangelands and how management decisions influence these processes on scales that are both ecologically and socially relevant. Point Blue Conservation Science's Rangeland Monitoring Network is a coordinated effort to collect standardized data on birds, vegetation, and soils on rangelands throughout California. We work with partners, including private landowners, land trusts, state and federal agencies, and others, to measure bird and plant abundance and diversity and three soil dynamic properties (water infiltration, bulk density, and organic carbon). Here, we present data from our first two years of monitoring on over 50 ranches in 17 counties. By collecting data on the scope and scale of variation in ecological function across rangelands and the relationship with management practices, we aim to advance rangeland management, restoration, and conservation.

  11. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    Directory of Open Access Journals (Sweden)

    Niels Jobstvogt

    Full Text Available Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  12. Influences of Coupled Hydrologic and Microbial Processes on River Corridor Biogeochemistry and Ecology

    Science.gov (United States)

    Scheibe, T. D.; Song, H. S.; Stegen, J.; Graham, E.; Bao, J.; Goldman, A.; Zhou, T.; Crump, A.; Hou, Z.; Hammond, G. E.; Chen, X.; Huang, M.; Zhang, X.; Nelson, W. C.; Garayburu-Caruso, V. A.

    2017-12-01

    The exchange of water between rivers and surrounding subsurface environments (hydrologic exchange flows or HEFs) is a vital aspect of river ecology and watershed function. HEFs play a key role in water quality, nutrient cycling, and ecosystem health, and they modulate water temperatures and enhance exchange of terrestrial and aquatic nutrients, which lead to elevated biogeochemical activity. However, these coupled hydrologic and microbiological processes are not well understood, particularly in the context of large managed river systems with highly variable discharge, and are poorly represented in system-scale quantitative models. Using the 75 km Hanford Reach of the Columbia River as the research domain, we apply high-resolution flow simulations supported by field observations to understand how variable river discharge interacts with hydromorphic and hydrogeologic structures to generate HEFs and distributions of subsurface residence times. We combine this understanding of hydrologic processes with microbiological activity measurements and reactive transport models to elucidate the holistic impacts of variable discharge on river corridor (surface and subsurface) ecosystems. In particular, our project seeks to develop and test new conceptual and numerical models that explicitly incorporate i) the character (chemical speciation and thermodynamics) of natural organic matter as it varies along flow paths and through mixing of groundwater and surface water, and ii) the history-dependent response of microbial communities to varying time scales of inundation associated with fluctuations in river discharge. The results of these high-resolution mechanistic models are guiding formulation and parameterization of reduced-order models applicable at reach to watershed scales. New understanding of coupled hydrology and microbiology in the river corridor will play a key role in reduction of uncertainties associated with major Earth system biogeochemical fluxes, improving

  13. Higher-order neural processing tunes motion neurons to visual ecology in three species of hawkmoths.

    Science.gov (United States)

    Stöckl, A L; O'Carroll, D; Warrant, E J

    2017-06-28

    To sample information optimally, sensory systems must adapt to the ecological demands of each animal species. These adaptations can occur peripherally, in the anatomical structures of sensory organs and their receptors; and centrally, as higher-order neural processing in the brain. While a rich body of investigations has focused on peripheral adaptations, our understanding is sparse when it comes to central mechanisms. We quantified how peripheral adaptations in the eyes, and central adaptations in the wide-field motion vision system, set the trade-off between resolution and sensitivity in three species of hawkmoths active at very different light levels: nocturnal Deilephila elpenor, crepuscular Manduca sexta , and diurnal Macroglossum stellatarum. Using optical measurements and physiological recordings from the photoreceptors and wide-field motion neurons in the lobula complex, we demonstrate that all three species use spatial and temporal summation to improve visual performance in dim light. The diurnal Macroglossum relies least on summation, but can only see at brighter intensities. Manduca, with large sensitive eyes, relies less on neural summation than the smaller eyed Deilephila , but both species attain similar visual performance at nocturnal light levels. Our results reveal how the visual systems of these three hawkmoth species are intimately matched to their visual ecologies. © 2017 The Author(s).

  14. The Effect of Recycling Education on High School Students' Conceptual Understanding about Ecology: A Study on Matter Cycle

    Science.gov (United States)

    Ugulu, Ilker; Yorek, Nurettin; Baslar, Suleyman

    2015-01-01

    The objective of this study is to analyze and determine whether a developed recycling education program would lead to a positive change in the conceptual understanding of ecological concepts associated with matter cycles by high school students. The research was conducted on 68 high school 10th grade students (47 female and 21 male students). The…

  15. New directions in coral reef microbial ecology.

    Science.gov (United States)

    Garren, Melissa; Azam, Farooq

    2012-04-01

    Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. Children's Ecology Books.

    Science.gov (United States)

    Lussenhop, Martha

    Selected for this listing of children's books are fiction and non-fiction books which add to an understanding of ecology, broadly considered here as the study of the interrelationships of organisms to each other and their environment. General ecology, natural resources, man and his environment, evolution and adaptation, appreciation, survival,…

  17. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions.

    Science.gov (United States)

    Burdon, J J; Thrall, P H; Ericson, L

    2013-08-01

    Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Monitoring the Long-Term Performance of Engineered Containment Systems: Role of Ecological Processes

    International Nuclear Information System (INIS)

    Traynham, B.; Clarke, J.H.; Burger, J.; Waugh, J.

    2009-01-01

    Engineered covers have been widely used to minimize water infiltration into landfills used by U. S. Department of Energy (DOE) for the disposal of radioactive and hazardous chemical waste. The degradation of engineered covers over time is a complex process that is influenced by site specific characteristics, the structure and dynamics of the indigenous plant community, and the interplay of physical and biological factors at contaminated sites. It is necessary to develop a rigorous method to evaluate long-term performance of covers and other engineered barriers with quantification of risk and uncertainty. Because many of the contaminants of concern are long-lived, this methodology must consider changes in the environmental setting (e.g., precipitation, temperature) and cover components for long time periods (>100 years). Current monitoring approaches focus solely on hydrologic properties of the cover system. Additionally, cover design guidelines, such as those from RCRA, are not performance based and do not consider long-term site-specific influences such as climate, vegetation, and soils. Fundamental ecological processes such as succession are not even factored into current models, yet they directly affect the integrity of landfill covers through biointrusion, erosion, and water balance. Therefore, it is useful to identify ecological parameters and processes most important to performance for prioritization of site characterization and long-term monitoring activities. This investigation into the role of ecological monitoring of isolation containment systems utilizes the software platform GoldSim to identify important parameters and processes for performance verification and monitoring. (authors)

  19. An ecological public health approach to understanding the relationships between sustainable urban environments, public health and social equity.

    Science.gov (United States)

    Bentley, Michael

    2014-09-01

    The environmental determinants of public health and social equity present many challenges to a sustainable urbanism-climate change, water shortages and oil dependency to name a few. There are many pathways from urban environments to human health. Numerous links have been described but some underlying mechanisms behind these relationships are less understood. Combining theory and methods is a way of understanding and explaining how the underlying structures of urban environments relate to public health and social equity. This paper proposes a model for an ecological public health, which can be used to explore these relationships. Four principles of an ecological public health-conviviality, equity, sustainability and global responsibility-are used to derive theoretical concepts that can inform ecological public health thinking, which, among other things, provides a way of exploring the underlying mechanisms that link urban environments to public health and social equity. Theories of more-than-human agency inform ways of living together (conviviality) in urban areas. Political ecology links the equity concerns about environmental and social justice. Resilience thinking offers a better way of coming to grips with sustainability. Integrating ecological ethics into public health considers the global consequences of local urban living and thus attends to global responsibility. This way of looking at the relationships between urban environments, public health and social equity answers the call to craft an ecological public health for the twenty-first century by re-imagining public health in a way that acknowledges humans as part of the ecosystem, not separate from it, though not central to it. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Ecological literacy and beyond: Problem-based learning for future professionals.

    Science.gov (United States)

    Lewinsohn, Thomas M; Attayde, José Luiz; Fonseca, Carlos Roberto; Ganade, Gislene; Jorge, Leonardo Ré; Kollmann, Johannes; Overbeck, Gerhard E; Prado, Paulo Inácio; Pillar, Valério D; Popp, Daniela; da Rocha, Pedro L B; Silva, Wesley Rodrigues; Spiekermann, Annette; Weisser, Wolfgang W

    2015-03-01

    Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.

  1. Central role of the cell in microbial ecology.

    Science.gov (United States)

    Zengler, Karsten

    2009-12-01

    Over the last few decades, advances in cultivation-independent methods have significantly contributed to our understanding of microbial diversity and community composition in the environment. At the same time, cultivation-dependent methods have thrived, and the growing number of organisms obtained thereby have allowed for detailed studies of their physiology and genetics. Still, most microorganisms are recalcitrant to cultivation. This review not only conveys current knowledge about different isolation and cultivation strategies but also discusses what implications can be drawn from pure culture work for studies in microbial ecology. Specifically, in the light of single-cell individuality and genome heterogeneity, it becomes important to evaluate population-wide measurements carefully. An overview of various approaches in microbial ecology is given, and the cell as a central unit for understanding processes on a community level is discussed.

  2. Using circuit theory to model connectivity in ecology, evolution, and conservation.

    Science.gov (United States)

    McRae, Brad H; Dickson, Brett G; Keitt, Timothy H; Shah, Viral B

    2008-10-01

    Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.

  3. What is dental ecology?

    Science.gov (United States)

    Cuozzo, Frank P; Sauther, Michelle L

    2012-06-01

    Teeth have long been used as indicators of primate ecology. Early work focused on the links between dental morphology, diet, and behavior, with more recent years emphasizing dental wear, microstructure, development, and biogeochemistry, to understand primate ecology. Our study of Lemur catta at the Beza Mahafaly Special Reserve, Madagascar, has revealed an unusual pattern of severe tooth wear and frequent tooth loss, primarily the result of consuming a fallback food for which these primates are not dentally adapted. Interpreting these data was only possible by combining our areas of expertise (dental anatomy [FC] and primate ecology [MS]). By integrating theoretical, methodological, and applied aspects of both areas of research, we adopted the term "dental ecology"-defined as the broad study of how teeth respond to the environment. Specifically, we view dental ecology as an interpretive framework using teeth as a vehicle for understanding an organism's ecology, which builds upon earlier work, but creates a new synthesis of anatomy and ecology that is only possible with detailed knowledge of living primates. This framework includes (1) identifying patterns of dental pathology and tooth use-wear, within the context of feeding ecology, behavior, habitat variation, and anthropogenic change, (2) assessing ways in which dental development and biogeochemical signals can reflect habitat, environmental change and/or stress, and (3) how dental microstructure and macro-morphology are adapted to, and reflect feeding ecology. Here we define dental ecology, provide a short summary of the development of this perspective, and place our new work into this context. Copyright © 2012 Wiley Periodicals, Inc.

  4. PROMOTION OF ECOLOGIC PRODUCT CERTIFICATION AS INSTRUMENT TO SPEED UP THE ECOLOGIC AGRICULTURE

    Directory of Open Access Journals (Sweden)

    George MOISE

    2014-04-01

    Full Text Available This paper present a vision about the possibility to speed up the conversion process to an ecological agriculture in Romania. The link from ecological products consumer and ecologic agricultural producer is also explained from point of view of certification process. Presenting the consumer mentality and principles and rules of organic farming and certification can open the way to a sustainable and ecological agriculture.

  5. Considerations in representing human individuals in social ecological models

    Science.gov (United States)

    Manfredo, Michael J.; Teel, Tara L.; Gavin, Michael C.; Fulton, David C.

    2017-01-01

    In this chapter we focus on how to integrate the human individual into social-ecological systems analysis, and how to improve research on individual thought and action regarding the environment by locating it within the broader social-ecological context. We discuss three key questions as considerations for future research: (1) is human thought conceptualized as a dynamic and adaptive process, (2) is the individual placed in a multi-level context (including within-person levels, person-group interactions, and institutional and structural factors), and (3) is human thought seen as mutually constructed with the social and natural environment. Increased emphasis on the individual will be essential if we are to understand agency, innovation, and adaptation in social-ecological systems.

  6. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings

    Science.gov (United States)

    Corenblit, Dov; Baas, Andreas C. W.; Bornette, Gudrun; Darrozes, José; Delmotte, Sébastien; Francis, Robert A.; Gurnell, Angela M.; Julien, Frédéric; Naiman, Robert J.; Steiger, Johannes

    2011-06-01

    This review article presents recent advances in the field of biogeomorphology related to the reciprocal coupling between Earth surface processes and landforms, and ecological and evolutionary processes. The aim is to present to the Earth Science community ecological and evolutionary concepts and associated recent conceptual developments for linking geomorphology and biota. The novelty of the proposed perspective is that (1) in the presence of geomorphologic-engineer species, which modify sediment and landform dynamics, natural selection operating at the scale of organisms may have consequences for the physical components of ecosystems, and particularly Earth surface processes and landforms; and (2) in return, these modifications of geomorphologic processes and landforms often feed back to the ecological characteristics of the ecosystem (structure and function) and thus to biological characteristics of engineer species and/or other species (adaptation and speciation). The main foundation concepts from ecology and evolutionary biology which have led only recently to an improved conception of landform dynamics in geomorphology are reviewed and discussed. The biogeomorphologic macroevolutionary insights proposed explicitly integrate geomorphologic niche-dimensions and processes within an ecosystem framework and reflect current theories of eco-evolutionary and ecological processes. Collectively, these lead to the definition of an integrated model describing the overall functioning of biogeomorphologic systems over ecological and evolutionary timescales.

  7. Understanding Patients? Process to Use Medical Marijuana

    OpenAIRE

    Crowell, Tara L

    2016-01-01

    Given the necessity to better understand the process patients need to go through in order to seek treatment via medical marijuana, this study investigates this process to better understand this phenomenon. Specifically, Compassion Care Foundation (CCF) and Stockton University worked together to identify a solution to this problem. Specifically, 240 new patients at CCF were asked to complete a 1-page survey regarding various aspects associated with their experience prior to their use of medici...

  8. A machine learning approach to understand business processes

    NARCIS (Netherlands)

    Maruster, L.

    2003-01-01

    Business processes (industries, administration, hospitals, etc.) become nowadays more and more complex and it is difficult to have a complete understanding of them. The goal of the thesis is to show that machine learning techniques can be used successfully for understanding a process on the basis of

  9. Testing the ecological consequences of evolutionary change using elements.

    Science.gov (United States)

    Jeyasingh, Punidan D; Cothran, Rickey D; Tobler, Michael

    2014-02-01

    Understanding the ecological consequences of evolutionary change is a central challenge in contemporary biology. We propose a framework based on the ˜25 elements represented in biology, which can serve as a conduit for a general exploration of poorly understood evolution-to-ecology links. In this framework, known as ecological stoichiometry, the quantity of elements in the inorganic realm is a fundamental environment, while the flow of elements from the abiotic to the biotic realm is due to the action of genomes, with the unused elements excreted back into the inorganic realm affecting ecological processes at higher levels of organization. Ecological stoichiometry purposefully assumes distinct elemental composition of species, enabling powerful predictions about the ecological functions of species. However, this assumption results in a simplified view of the evolutionary mechanisms underlying diversification in the elemental composition of species. Recent research indicates substantial intraspecific variation in elemental composition and associated ecological functions such as nutrient excretion. We posit that attention to intraspecific variation in elemental composition will facilitate a synthesis of stoichiometric information in light of population genetics theory for a rigorous exploration of the ecological consequences of evolutionary change.

  10. Flow effects on benthic stream invertebrates and ecological processes

    Science.gov (United States)

    Koprivsek, Maja; Brilly, Mitja

    2010-05-01

    Flow is the main abiotic factor in the streams. Flow affects the organisms in many direct and indirect ways. The organisms are directly affected by various hydrodynamic forces and mass transfer processes like drag forces, drift, shear stress, food and gases supply and washing metabolites away. Indirect effects on the organisms are determining and distribution of the particle size and structure of the substrate and determining the morphology of riverbeds. Flow does not affect only on individual organism, but also on many ecological effects. To expose just the most important: dispersal of the organisms, habitat use, resource acquisition, competition and predator-prey interactions. Stream invertebrates are adapted to the various flow conditions in many kinds of way. Some of them are avoiding the high flow with living in a hyporeic zone, while the others are adapted to flow with physical adaptations (the way of feeding, respiration, osmoregulation and resistance to draught), morphological adaptations (dorsoventrally flattened shape of organism, streamlined shape of organism, heterogeneous suckers, silk, claws, swimming hair, bristles and ballast gravel) or with behaviour. As the flow characteristics in a particular stream vary over a broad range of space and time scales, it is necessary to measure accurately the velocity in places where the organisms are present to determine the actual impact of flow on aquatic organisms. By measuring the mean flow at individual vertical in a single cross-section, we cannot get any information about the velocity situation close to the bottom of the riverbed where the stream invertebrates are living. Just measuring the velocity near the bottom is a major problem, as technologies for measuring the velocity and flow of natural watercourses is not adapted to measure so close to the bottom. New researches in the last two decades has shown that the thickness of laminar border layer of stones in the stream is only a few 100 micrometers, what

  11. Possibilities of the Integration of the Method of the Ecologically Oriented Independent Scientific Research in the Study Process

    Science.gov (United States)

    Grizans, Jurijs; Vanags, Janis

    2010-01-01

    The aim of this paper is to analyse possibilities of the integration of the method of the ecologically oriented independent scientific research in the study process. In order to achieve the set aim, the following scientific research methods were used: analysis of the conceptual guidelines for the development of environmentally oriented entrepreneurship, interpretation of the experts' evaluation of the ecologically oriented management, analysis of the results of the students' ecologically oriented independent scientific research, as well as monographic and logically constructive methods. The results of the study give an opportunity to make conclusions and to develop conceptual recommendations on how to introduce future economics and business professionals with the theoretical and practical aspects of ecologically oriented management during the study process.

  12. [Regional ecological construction and mission of landscape ecology].

    Science.gov (United States)

    Xiao, Duning; Xie, Fuju; Wei, Jianbing

    2004-10-01

    The eco-construction on regional and landscape scale is the one which can be used to specific landscape and intercrossing ecosystem in specific region including performing scientific administration of ecosystem and optimizing environmental function. Recently, the government has taken a series of significant projects into action, such as national forest protection item, partly forest restoration, and adjustment of water, etc. Enforcing regional eco-construction and maintaining the ecology security of the nation have become the strategic requisition. In various regions, different eco-construction should be applied, for example, performing ecological safeguard measure in ecological sensitive zone, accommodating the ecological load in ecological fragile zone, etc., which can control the activities of human being, so that, sustainable development can be reached. Facing opportunity and challenge in the development of landscape ecology, we have some key topics: landscape pattern of ecological security, land use and ecological process, landscape changes under human activity stress, quantitative evaluation of the influence on human being activities, evaluation of zonal ecological security and advance warning of ecological risk, and planning and optimizing of model in landscape eco-construction.

  13. Scale Mismatches in Social-Ecological Systems: Causes, Consequences, and Solutions

    Directory of Open Access Journals (Sweden)

    Graeme S. Cumming

    2006-06-01

    Full Text Available Scale is a concept that transcends disciplinary boundaries. In ecology and geography, scale is usually defined in terms of spatial and temporal dimensions. Sociological scale also incorporates space and time, but adds ideas about representation and organization. Although spatial and temporal location determine the context for social and ecological dynamics, social-ecological interactions can create dynamic feedback loops in which humans both influence and are influenced by ecosystem processes. We hypothesize that many of the problems encountered by societies in managing natural resources arise because of a mismatch between the scale of management and the scale(s of the ecological processes being managed. We use examples from southern Africa and the southern United States to address four main questions: (1 What is a "scale mismatch?" (2 How are scale mismatches generated? (3 What are the consequences of scale mismatches? (4 How can scale mismatches be resolved? Scale mismatches occur when the scale of environmental variation and the scale of social organization in which the responsibility for management resides are aligned in such a way that one or more functions of the social-ecological system are disrupted, inefficiencies occur, and/or important components of the system are lost. They are generated by a wide range of social, ecological, and linked social-ecological processes. Mismatches between the scales of ecological processes and the institutions that are responsible for managing them can contribute to a decrease in social-ecological resilience, including the mismanagement of natural resources and a decrease in human well-being. Solutions to scale mismatches usually require institutional changes at more than one hierarchical level. Long-term solutions to scale mismatch problems will depend on social learning and the development of flexible institutions that can adjust and reorganize in response to changes in ecosystems. Further research is

  14. Poverty, Disease, and the Ecology of Complex Systems

    Science.gov (United States)

    Pluciński, Mateusz M.; Murray, Megan B.; Farmer, Paul E.; Barrett, Christopher B.; Keenan, Donald C.

    2014-01-01

    Understanding why some human populations remain persistently poor remains a significant challenge for both the social and natural sciences. The extremely poor are generally reliant on their immediate natural resource base for subsistence and suffer high rates of mortality due to parasitic and infectious diseases. Economists have developed a range of models to explain persistent poverty, often characterized as poverty traps, but these rarely account for complex biophysical processes. In this Essay, we argue that by coupling insights from ecology and economics, we can begin to model and understand the complex dynamics that underlie the generation and maintenance of poverty traps, which can then be used to inform analyses and possible intervention policies. To illustrate the utility of this approach, we present a simple coupled model of infectious diseases and economic growth, where poverty traps emerge from nonlinear relationships determined by the number of pathogens in the system. These nonlinearities are comparable to those often incorporated into poverty trap models in the economics literature, but, importantly, here the mechanism is anchored in core ecological principles. Coupled models of this sort could be usefully developed in many economically important biophysical systems—such as agriculture, fisheries, nutrition, and land use change—to serve as foundations for deeper explorations of how fundamental ecological processes influence structural poverty and economic development. PMID:24690902

  15. Conservation endocrinology: A noninvasive tool to understand relationships between carnivore colonization and ecological carrying capacity

    Science.gov (United States)

    Berger, J.; Testa, J.W.; Roffe, T.; Monfort, S.L.

    1999-01-01

    Reproductive technology, especially the diagnosis of pregnancy by radioimmunoassay of fecal steroid metabolites, is an important component of captive propagation, but its role in our understanding of ecological interactions and in situ biological restoration has been more limited. Where large herbivores have been 'released' from predation by the extirpation of carnivores, controversy often exists about possible detrimental effects at the ecosystem level A related concern is that the reestablishment of large carnivores may decrease the availability of prey populations for human subsistence. We suggest that pregnancy assays can be a valuable tool to help distinguish between the roles of predation versus food-imposed limitations on population size and their effects on juvenile recruitment in wild species. We explored this issue through analyses of fecal progestagen concentration (FPC) levels to document pregnancy in moose (Alces alces) in the southern Greater Yellowstone Ecosystem, a site where wolves (Canis lupus) and grizzly bears (Ursus arctos) are recolonizing former habitats after an absence of more than 60 years. Pregnancy was clearly discernible (mean FPC for pregnant and nonpregnant females, respectively: 10.60 vs. 2.57 ??g/g; p endocrinology can be applied to issues involving reproductive events within an ecological context. They also affirm that noninvasive and generally inexpensive endocrinological procedures will be applicable to understanding interactions between recolonizing predators and prey, an issue that will continue to arise because of global restoration efforts, and to the study of rare ungulates in remote systems where data on reproductive events are difficult to obtain.

  16. Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling.

    Science.gov (United States)

    Iglesias, Virginia; Yospin, Gabriel I; Whitlock, Cathy

    2014-01-01

    Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques for paleoecological modeling; and (3) evaluate opportunities for coupling of paleoecological and ecological modeling approaches to better understand the causes and consequences of past, present, and future fire activity.

  17. Understanding r-process nucleosynthesis with dwarf galaxies

    Science.gov (United States)

    Ji, Alexander P.

    2018-06-01

    The Milky Way's faintest dwarf galaxy satellites each sample short, independent bursts of star formation from the first 1-2 Gyr of the universe. Their simple formation history makes them ideal systems to understand how rare events like neutron star mergers contribute to early enrichment of r-process elements. I will focus on the ultra-faint galaxy Reticulum II, which experienced a single prolific r-process event that left ~80% of its stars extremely enriched in r-process elements. I will present abundances of ~40 elements derived from the highest signal-to-noise high-resolution spectrum ever taken for an ultra-faint dwarf galaxy star. Precise measurements of elements from all three r-process peaks reaffirm the universal nature of the r-process abundance pattern from Ba to Ir. The first r-process peak is significantly lower than solar but matches other r-process enhanced stars. This constrains the neutron-richness of r-process ejecta in neutron star mergers. The radioactive element thorium is detected with a somewhat low abundance. Naive application of currently predicted initial production ratios could imply an age >20 Gyr, but more likely indicates that the initial production ratios require revision. The abundance of lighter elements up to Zn are consistent with extremely metal-poor Milky Way halo stars. These elements may eventually provide a way to test for other hypothesized r-process sites, but only after a more detailed understanding of the chemical evolution in this galaxy. Reticulum II provides a clean view of early r-process enrichment that can be used to understand the increasing number of r-process measurements in other dwarf galaxies.

  18. Ecology-driven stereotypes override race stereotypes

    OpenAIRE

    Williams, Keelah E. G.; Sng, Oliver; Neuberg, Steven L.

    2015-01-01

    Ecological features shape people’s goals, strategies, and behaviors. Our research suggests that social perceivers possess a lay understanding of ecology’s influence on behavior, resulting in ecology-driven stereotypes. Moreover, because race is confounded with ecology in the United States, Americans’ stereotypes about racial groups may actually reflect their stereotypes about these groups’ presumed home ecologies. In a series of studies, we demonstrate that (i) individuals possess ecology-dri...

  19. Assessment and management of ecological integrity: Chapter 12

    Science.gov (United States)

    Kwak, Thomas J.; Freeman, Mary C.

    2010-01-01

    Assessing and understanding the impacts of human activities on aquatic ecosystems has long been a focus of ecologists, water resources managers, and fisheries scientists. While traditional fisheries management focused on single-species approaches to enhance fish stocks, there is a growing emphasis on management approaches at community and ecosystem levels. Of course, as fisheries managers shift their attention from narrow (e.g., populations) to broad organizational scales (e.g., communities or ecosystems), ecological processes and management objectives become more complex. At the community level, fisheries managers may strive for a fish assemblage that is complex, persistent, and resilient to disturbance. Aquatic ecosystem level objectives may focus on management for habitat quality and ecological processes, such as nutrient dynamics, productivity, or trophic interactions, but a long-term goal of ecosystem management may be to maintain ecological integrity. However, human users and social, economic, and political demands of fisheries management often result in a reduction of ecological integrity in managed systems, and this conflict presents a principal challenge for the modern fisheries manager. The concepts of biotic integrity and ecological integrity are being applied in fisheries science, natural resource management, and environmental legislation, but explicit definitions of these terms are elusive. Biotic integrity of an ecosystem may be defined as the capability of supporting and maintaining an integrated, adaptive community of organisms having a species composition, diversity, and functional organization comparable to that of a natural habitat of the region (Karr and Dudley 1981). Following that, ecological integrity is the summation of chemical, physical, and biological integrity. Thus, the concept of ecological integrity extends beyond fish and represents a holistic approach for ecosystem management that is especially applicable to aquatic systems. The

  20. The community ecology of pathogens: coinfection, coexistence and community composition.

    Science.gov (United States)

    Seabloom, Eric W; Borer, Elizabeth T; Gross, Kevin; Kendig, Amy E; Lacroix, Christelle; Mitchell, Charles E; Mordecai, Erin A; Power, Alison G

    2015-04-01

    Disease and community ecology share conceptual and theoretical lineages, and there has been a resurgence of interest in strengthening links between these fields. Building on recent syntheses focused on the effects of host community composition on single pathogen systems, we examine pathogen (microparasite) communities using a stochastic metacommunity model as a starting point to bridge community and disease ecology perspectives. Such models incorporate the effects of core community processes, such as ecological drift, selection and dispersal, but have not been extended to incorporate host-pathogen interactions, such as immunosuppression or synergistic mortality, that are central to disease ecology. We use a two-pathogen susceptible-infected (SI) model to fill these gaps in the metacommunity approach; however, SI models can be intractable for examining species-diverse, spatially structured systems. By placing disease into a framework developed for community ecology, our synthesis highlights areas ripe for progress, including a theoretical framework that incorporates host dynamics, spatial structuring and evolutionary processes, as well as the data needed to test the predictions of such a model. Our synthesis points the way for this framework and demonstrates that a deeper understanding of pathogen community dynamics will emerge from approaches working at the interface of disease and community ecology. © 2015 John Wiley & Sons Ltd/CNRS.

  1. Building bridges across subdisciplines in marine ecology

    Directory of Open Access Journals (Sweden)

    Lawrence R. Pomeroy

    2004-04-01

    Full Text Available Ecology has evolved many subdisciplines whose members do not necessarily communicate regularly through attending the same meetings or reading and publishing in the same journals. As a result, explanations of ecological processes are often limited to a single factor, process, or group of organisms, and this limited approach may fail to provide the best understanding of how communities and ecosystems are assembled and function. Specifically, there is a need to bring together information on the interplay of top-down and bottom-up influences on complete communities consisting of both macroorganisms and microorganisms. A number of examples from the recent literature illustrate the problems encountered in achieving this goal. These include declining fish populations, estuarine eutrophication, the complex origin of a toxic dinoflagellate bloom, and the interactions of microorganisms and macrooorganisms in marine planktonic food webs.

  2. Ecological palaeoecology: a missing link between ecology and evolution

    OpenAIRE

    Rull, V.

    2014-01-01

    Palaeoecology is more than a palaeoenvironmental discipline; it is a science that is well-suited for supplying the empirical evidence necessary to test ecological hypotheses and contributes to our understanding of the interface of ecology and evolution. A critical time frame in palaeoecology is the often-overlooked Q-time dimension (centuries to millennia), which tends to be the most appropriate time dimension to examine ecology–evolution interactions. This paper discusses these topics from a...

  3. An interdisciplinary approach towards improved understanding of soil deformation during compaction

    DEFF Research Database (Denmark)

    Keller, T.; Lamandé, Mathieu; Peth, S.

    2013-01-01

    and validation of new soil compaction models. The integration of concepts underlying dynamic processes that modify soil pore spaces and bulk properties will improve the understanding of how soil management affect vital soil mechanical, hydraulic and ecological functions supporting plant growth.......Soil compaction not only reduces available pore volume in which fluids are stored, but it alters the arrangement of soil constituents and pore geometry, thereby adversely impacting fluid transport and a range of soil ecological functions. Quantitative understanding of stress transmission...... and deformation processes in arable soils remains limited. Yet such knowledge is essential for better predictions of effects of soil management practices such as agricultural field traffic on soil functioning. Concepts and theory used in agricultural soil mechanics (soil compaction and soil tillage) are often...

  4. Spatially explicit modeling in ecology: A review

    Science.gov (United States)

    DeAngelis, Donald L.; Yurek, Simeon

    2017-01-01

    The use of spatially explicit models (SEMs) in ecology has grown enormously in the past two decades. One major advancement has been that fine-scale details of landscapes, and of spatially dependent biological processes, such as dispersal and invasion, can now be simulated with great precision, due to improvements in computer technology. Many areas of modeling have shifted toward a focus on capturing these fine-scale details, to improve mechanistic understanding of ecosystems. However, spatially implicit models (SIMs) have played a dominant role in ecology, and arguments have been made that SIMs, which account for the effects of space without specifying spatial positions, have an advantage of being simpler and more broadly applicable, perhaps contributing more to understanding. We address this debate by comparing SEMs and SIMs in examples from the past few decades of modeling research. We argue that, although SIMs have been the dominant approach in the incorporation of space in theoretical ecology, SEMs have unique advantages for addressing pragmatic questions concerning species populations or communities in specific places, because local conditions, such as spatial heterogeneities, organism behaviors, and other contingencies, produce dynamics and patterns that usually cannot be incorporated into simpler SIMs. SEMs are also able to describe mechanisms at the local scale that can create amplifying positive feedbacks at that scale, creating emergent patterns at larger scales, and therefore are important to basic ecological theory. We review the use of SEMs at the level of populations, interacting populations, food webs, and ecosystems and argue that SEMs are not only essential in pragmatic issues, but must play a role in the understanding of causal relationships on landscapes.

  5. Population Ecology (Organizational Ecology): An Experiential Exercise Demonstrating How Organizations in an Industry Are Born, Change, and Die

    Science.gov (United States)

    MacMillan, Karen; Komar, Jennifer

    2018-01-01

    This article describes a classroom exercise that is designed to help students understand the basic tenets of population ecology (also known as organizational ecology). The macro-level, longitudinal approach to understanding organizations can be difficult for students to conceptualize as it involves systems thinking. This exercise makes the theory…

  6. A social ecological conceptual framework for understanding adolescent health literacy in the health education classroom.

    Science.gov (United States)

    Wharf Higgins, Joan; Begoray, Deborah; MacDonald, Marjorie

    2009-12-01

    With the rising concern over chronic health conditions and their prevention and management, health literacy is emerging as an important public health issue. As with the development of other forms of literacy, the ability for students to be able to access, understand, evaluate and communicate health information is a skill best developed during their years of public schooling. Health education curricula offer one approach to develop health literacy, yet little is known about its influence on neither students nor their experiences within an educational context. In this article, we describe our experience applying a social ecological model to investigating the implementation of a health education curriculum in four high schools in British Columbia, Canada. We used the model to guide a conceptual understanding of health literacy, develop research questions, select data collection strategies, and interpret the findings. Reflections and recommendations for using the model are offered.

  7. The dimensionality of ecological networks

    DEFF Research Database (Denmark)

    Eklöf, Anna; Jacob, Ute; Kopp, Jason

    2013-01-01

    How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks......, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small (... the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link...

  8. In search of an adaptive social-ecological approach to understanding a tropical city

    Science.gov (United States)

    A.E. Lugo; C.M. Concepcion; L.E. Santiago-Acevedo; T.A. Munoz-Erickson; J.C. Verdejo Ortiz; R. Santiago-Bartolomei; J. Forero-Montana; C.J. Nytch; H. Manrique; W. Colon-Cortes

    2012-01-01

    This essay describes our effort to develop a practical approach to the integration of the social and ecological sciences in the context of a Latin-American city such as San Juan, Puerto Rico. We describe our adaptive social-ecological approach in the historical context of the developing paradigms of the Anthropocene, new integrative social and ecological sciences, and...

  9. Ecological mechanisms for the coevolution of mating systems and defence.

    Science.gov (United States)

    Campbell, Stuart A

    2015-02-01

    The diversity of flowering plants is evident in two seemingly unrelated aspects of life history: sexual reproduction, exemplified by the stunning variation in flower form and function, and defence, often in the form of an impressive arsenal of secondary chemistry. Researchers are beginning to appreciate that plant defence and reproduction do not evolve independently, but, instead, may have reciprocal and interactive (coevolutionary) effects on each other. Understanding the mechanisms for mating-defence interactions promises to broaden our understanding of how ecological processes can generate these two rich sources of angiosperm diversity. Here, I review current research on the role of herbivory as a driver of mating system evolution, and the role of mating systems in the evolution of defence strategies. I outline different ecological mechanisms and processes that could generate these coevolutionary patterns, and summarize theoretical and empirical support for each. I provide a conceptual framework for linking plant defence with mating system theory to better integrate these two research fields.

  10. The role of ecology, neutral processes and antagonistic coevolution in an apparent sexual arms race.

    Science.gov (United States)

    Perry, Jennifer C; Garroway, Colin J; Rowe, Locke

    2017-09-01

    Some of the strongest examples of a sexual 'arms race' come from observations of correlated evolution in sexually antagonistic traits among populations. However, it remains unclear whether these cases truly represent sexually antagonistic coevolution; alternatively, ecological or neutral processes might also drive correlated evolution. To investigate these alternatives, we evaluated the contributions of intersex genetic correlations, ecological context, neutral genetic divergence and sexual coevolution in the correlated evolution of antagonistic traits among populations of Gerris incognitus water striders. We could not detect intersex genetic correlations for these sexually antagonistic traits. Ecological variation was related to population variation in the key female antagonistic trait (spine length, a defence against males), as well as body size. Nevertheless, population covariation between sexually antagonistic traits remained substantial and significant even after accounting for all of these processes. Our results therefore provide strong evidence for a contemporary sexual arms race. © 2017 John Wiley & Sons Ltd/CNRS.

  11. Activity theory and genre ecology: Conceptual tools for understanding technical communication

    Directory of Open Access Journals (Sweden)

    Winberg, Christine

    2005-12-01

    Full Text Available This paper reports on a year-long project in an architectural technology department, which studied students’ oral language development in plenary discussions in a first year History and Appreciation of Architecture course. Data was obtained by videotaping classroom activities, and by interviewing the lecturer and students who were participants in the course. The data was analysed, using categories suggested by Activity Theory. The category of ‘rules’ was selected from the activity system for further analysis, using a Genre Ecology approach. The findings of the study show how technical communication is managed within a classroom based activity system comprising lecturer and students, and graphic and verbal texts, in a context of learning. Learning, teaching, and expert discourses of the architectural review genre interact and are negotiated by participants. Through participation in plenary discussion, students from diverse backgrounds contribute to one another’s experience of architectural design, and by valuing and responding to students’ contributions, the lecturer facilitates students’ understanding of the ‘rules’ of architectural communication, and enables students to access an expanded repertoire of the genre of architectural review.

  12. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology.

    Science.gov (United States)

    Iversen, Colleen M; McCormack, M Luke; Powell, A Shafer; Blackwood, Christopher B; Freschet, Grégoire T; Kattge, Jens; Roumet, Catherine; Stover, Daniel B; Soudzilovskaia, Nadejda A; Valverde-Barrantes, Oscar J; van Bodegom, Peter M; Violle, Cyrille

    2017-07-01

    Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.

  13. Temporal ecology in the Anthropocene.

    Science.gov (United States)

    Wolkovich, E M; Cook, B I; McLauchlan, K K; Davies, T J

    2014-11-01

    Two fundamental axes - space and time - shape ecological systems. Over the last 30 years spatial ecology has developed as an integrative, multidisciplinary science that has improved our understanding of the ecological consequences of habitat fragmentation and loss. We argue that accelerating climate change - the effective manipulation of time by humans - has generated a current need to build an equivalent framework for temporal ecology. Climate change has at once pressed ecologists to understand and predict ecological dynamics in non-stationary environments, while also challenged fundamental assumptions of many concepts, models and approaches. However, similarities between space and time, especially related issues of scaling, provide an outline for improving ecological models and forecasting of temporal dynamics, while the unique attributes of time, particularly its emphasis on events and its singular direction, highlight where new approaches are needed. We emphasise how a renewed, interdisciplinary focus on time would coalesce related concepts, help develop new theories and methods and guide further data collection. The next challenge will be to unite predictive frameworks from spatial and temporal ecology to build robust forecasts of when and where environmental change will pose the largest threats to species and ecosystems, as well as identifying the best opportunities for conservation. © 2014 John Wiley & Sons Ltd/CNRS.

  14. An ecological perspective of Listeria monocytogenes biofilms in food processing facilities.

    Science.gov (United States)

    Valderrama, Wladir B; Cutter, Catherine N

    2013-01-01

    Listeria monocytogenes can enter the food chain at virtually any point. However, food processing environments seem to be of particular importance. From an ecological point of view, food processing facilities are microbial habitats that are constantly disturbed by cleaning and sanitizing procedures. Although L. monocytogenes is considered ubiquitous in nature, it is important to recognize that not all L. monocytogenes strains appear to be equally distributed; the distribution of the organism seems to be related to certain habitats. Currently, no direct evidence exists that L. monocytogenes-associated biofilms have played a role in food contamination or foodborne outbreaks, likely because biofilm isolation and identification are not part of an outbreak investigation, or the definition of biofilm is unclear. Because L. monocytogenes is known to colonize surfaces, we suggest that contamination patterns may be studied in the context of how biofilm formation is influenced by the environment within food processing facilities. In this review, direct and indirect epidemiological and phenotypic evidence of lineage-related biofilm formation capacity to specific ecological niches will be discussed. A critical view on the development of the biofilm concept, focused on the practical implications, strengths, and weaknesses of the current definitions also is discussed. The idea that biofilm formation may be an alternative surrogate for microbial fitness is proposed. Furthermore, current research on the influence of environmental factors on biofilm formation is discussed.

  15. Social Interface Model: Theorizing Ecological Post-Delivery Processes for Intervention Effects.

    Science.gov (United States)

    Pettigrew, Jonathan; Segrott, Jeremy; Ray, Colter D; Littlecott, Hannah

    2018-01-03

    Successful prevention programs depend on a complex interplay among aspects of the intervention, the participant, the specific intervention setting, and the broader set of contexts with which a participant interacts. There is a need to theorize what happens as participants bring intervention ideas and behaviors into other life-contexts, and theory has not yet specified how social interactions about interventions may influence outcomes. To address this gap, we use an ecological perspective to develop the social interface model. This paper presents the key components of the model and its potential to aid the design and implementation of prevention interventions. The model is predicated on the idea that intervention message effectiveness depends not only on message aspects but also on the participants' adoption and adaptation of the message vis-à-vis their social ecology. The model depicts processes by which intervention messages are received and enacted by participants through social processes occurring within and between relevant microsystems. Mesosystem interfaces (negligible interface, transference, co-dependence, and interdependence) can facilitate or detract from intervention effects. The social interface model advances prevention science by theorizing that practitioners can create better quality interventions by planning for what occurs after interventions are delivered.

  16. The ecology of primate material culture.

    Science.gov (United States)

    Koops, Kathelijne; Visalberghi, Elisabetta; van Schaik, Carel P

    2014-11-01

    Tool use in extant primates may inform our understanding of the conditions that favoured the expansion of hominin technology and material culture. The 'method of exclusion' has, arguably, confirmed the presence of culture in wild animal populations by excluding ecological and genetic explanations for geographical variation in behaviour. However, this method neglects ecological influences on culture, which, ironically, may be critical for understanding technology and thus material culture. We review all the current evidence for the role of ecology in shaping material culture in three habitual tool-using non-human primates: chimpanzees, orangutans and capuchin monkeys. We show that environmental opportunity, rather than necessity, is the main driver. We argue that a better understanding of primate technology requires explicit investigation of the role of ecological conditions. We propose a model in which three sets of factors, namely environment, sociality and cognition, influence invention, transmission and retention of material culture. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Water Saving Strategies & Ecological Modernisation

    DEFF Research Database (Denmark)

    Hoffmann, Birgitte; Jensen, Jesper Ole; Elle, Morten

    2005-01-01

    Drawing on case studies of water saving campaigns and new collaborations, the pa-per will serve, on the one hand, as an interpretation of the water saving strategy in Co-penhagen in the light of Ecological Modernisation, and on the other hand, as a critical discussion of Ecological Modernisation...... as a frame for understanding resource manage-ment. The water management in Copenhagen has in recent years undergone a rather radi-cal transition. Along with strong drivers for resource management in the region the mu-nicipal water supplier has tested and implemented a number of initiatives to promote sus...... to 125 l/capita/day in 2002. A series of different strategies, targets and tools have been implemented: Emphasizing demand side instead of supply side, using and communicating indicators, formulating goals for reducing water consumption and developing learning processes in water management. A main...

  18. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  19. The population ecology of technology : An empirical study of US biotechnology patents from 1976 to 2003

    NARCIS (Netherlands)

    Van Oord, Ad Den; Van Witteloostuijn, Arjen

    2017-01-01

    A detailed understanding of technological change as an evolutionary process is currently not well understood. To increase our understanding, we build upon theory from organizational ecology to develop a model of endogenous technological growth and determine to what extent the pattern of

  20. Development and Evaluation of a Three-Tier Diagnostic Test to Assess Undergraduate Primary Teachers' Understanding of Ecological Footprint

    Science.gov (United States)

    Liampa, Vasiliki; Malandrakis, George N.; Papadopoulou, Penelope; Pnevmatikos, Dimitrios

    2017-08-01

    This study focused on the development and validation of a three-tier multiple-choice diagnostic instrument about the ecological footprint. Each question in the three-tier test comprised by; (a) the content tier, assessing content knowledge; (b) the reason tier, assessing explanatory knowledge; and (c) the confidence tier that differentiates lack of knowledge from misconception through the use of a certainty response index. Based on the literature, the propositional knowledge statements and the identified misconceptions of 97 student-teachers, a first version of the test was developed and subsequently administered to another group of 219 student-teachers from Primary and Early Childhood Education Departments. Due to the complexity of the ecological footprint concept, and that it is a newly introduced concept, unknown to the public, both groups have been previously exposed to relevant instruction. Experts in the field established face and content validity. The reliability, in terms of Cronbach's alpha, was found adequate (α = 0.839), and the test-retest reliability, as indicated by Pearson r, was also satisfactory (0.554). The mean performance of the students was 56.24% in total score, 59.75% in content tiers and 48.05% in reason tiers. A variety of concepts about the ecological footprint were also observed. The test can help educators to understand the alternative views that students hold about the ecological footprint concept and assist them in developing the concept through appropriately designed teaching methods and materials.

  1. Effect of Linked Rules on Business Process Model Understanding

    DEFF Research Database (Denmark)

    Wang, Wei; Indulska, Marta; Sadiq, Shazia

    2017-01-01

    Business process models are widely used in organizations by information systems analysts to represent complex business requirements and by business users to understand business operations and constraints. This understanding is extracted from graphical process models as well as business rules. Prior...

  2. Sustainability science: accounting for nonlinear dynamics in policy and social-ecological systems

    Science.gov (United States)

    Resilience is an emergent property of complex systems. Understanding resilience is critical for sustainability science, as linked social-ecological systems and the policy process that governs them are characterized by non-linear dynamics. Non-linear dynamics in these systems mean...

  3. Understanding spearfishing in a coral reef fishery: Fishers' opportunities, constraints, and decision-making.

    Science.gov (United States)

    Pavlowich, Tyler; Kapuscinski, Anne R

    2017-01-01

    Social and ecological systems come together during the act of fishing. However, we often lack a deep understanding of the fishing process, despite its importance for understanding and managing fisheries. A quantitative, mechanistic understanding of the opportunities fishers encounter, the constraints they face, and how they make decisions within the context of opportunities and constraints will enhance the design of fisheries management strategies to meet linked ecological and social objectives and will improve scientific capacity to predict impacts of different strategies. We examined the case of spearfishing in a Caribbean coral reef fishery. We mounted cameras on fishers' spearguns to observe the fish they encountered, what limited their ability to catch fish, and how they made decisions about which fish to target. We observed spearfishers who dove with and without the assistance of compressed air, and compared the fishing process of each method using content analysis of videos and decision models of fishers' targeting selections. Compressor divers encountered more fish, took less time to catch each fish, and had a higher rate of successful pursuits. We also analyzed differences among taxa in this multispecies fishery, because some taxa are known to be ecologically or economically more valuable than others. Parrotfish are ecologically indispensable for healthy coral reefs, and they were encountered and captured more frequently than any other taxon. Fishers made decisions about which fish to target based on a fish's market value, proximity to the fisher, and taxon. The information uncovered on fishers' opportunities, constraints, and decision making has implications for managing this fishery and others. Moreover, it demonstrates the value of pursuing an improved understanding of the fishing process from the perspective of the fishers.

  4. Understanding Quality in Process Modelling: Towards a Holistic Perspective

    Directory of Open Access Journals (Sweden)

    Jan Recker

    2007-09-01

    Full Text Available Quality is one of the main topics in current conceptual modelling research, as is the field of business process modelling. Yet, widely acknowledged academic contributions towards an understanding or measurement of business process model quality are limited at best. In this paper I argue that the development of methodical theories concerning the measurement or establishment of process model quality must be preceded by methodological elaborations on business process modelling. I further argue that existing epistemological foundations of process modelling are insufficient for describing all extrinsic and intrinsic traits of model quality. This in turn has led to a lack of holistic understanding of process modelling. Taking into account the inherent social and purpose-oriented character of process modelling in contemporary organizations I present a socio-pragmatic constructionist methodology of business process modelling and sketch out implications of this perspective towards an understanding of process model quality. I anticipate that, based on this research, theories can be developed that facilitate the evaluation of the ’goodness’ of a business process model.

  5. Overview of climate information needs for ecological effects models

    Energy Technology Data Exchange (ETDEWEB)

    Peer, R.L.

    1990-01-01

    Atmospheric scientists engaged in climate change research require a basic understanding of how ecological effects models incorporate climate. The report provides an overview of existing ecological models that might be used to model climate change effects on vegetation. Some agricultural models and statistical methods are also discussed. The weather input data requirements, weather simulation methods, and other model characteristics relevant to climate change research are described for a selected number of models. The ecological models are classified as biome, ecosystem, or tree models; the ecosystem models are further subdivided into species dynamics or process models. In general, ecological modelers have had to rely on readily available meteorological data such as temperature and rainfall. Although models are becoming more sophisticated in their treatment of weather and require more kinds of data (such as wind, solar radiation, or potential evapotranspiration), modelers are still hampered by a lack of data for many applications. Future directions of ecological effects models and the climate variables that will be required by the models are discussed.

  6. Dynamics in artifact ecologies

    DEFF Research Database (Denmark)

    Bødker, Susanne; Klokmose, Clemens Nylandsted

    2012-01-01

    We increasingly interact with multiple interactive artifacts with overlapping capabilities during our daily activities. It has previously been shown that the use of an interactive artifact cannot be understood in isolation, but artifacts must be understood as part of an artifact ecology, where...... artifacts influence the use of others. Understanding this interplay becomes more and more essential for interaction design as our artifact ecologies grow. This paper continues a recent discourse on artifact ecologies. Through interviews with iPhone users, we demonstrate that relationships between artifacts...... in artifact ecologies cannot be understood as static, instead they evolve dynamically over time. We provide activity theory-based concepts to explain these dynamics....

  7. Understanding Aquatic Rhizosphere Processes Through Metabolomics and Metagenomics Approach

    Science.gov (United States)

    Lee, Yong Jian; Mynampati, Kalyan; Drautz, Daniela; Arumugam, Krithika; Williams, Rohan; Schuster, Stephan; Kjelleberg, Staffan; Swarup, Sanjay

    2013-04-01

    The aquatic rhizosphere is a region around the roots of aquatic plants. Many studies focusing on terrestrial rhizosphere have led to a good understanding of the interactions between the roots, its exudates and its associated rhizobacteria. The rhizosphere of free-floating roots, however, is a different habitat that poses several additional challenges, including rapid diffusion rates of signals and nutrient molecules, which are further influenced by the hydrodynamic forces. These can lead to rapid diffusion and complicates the studying of diffusible factors from both plant and/or rhizobacterial origins. These plant systems are being increasingly used for self purification of water bodies to provide sustainable solution. A better understanding of these processes will help in improving their performance for ecological engineering of freshwater systems. The same principles can also be used to improve the yield of hydroponic cultures. Novel toolsets and approaches are needed to investigate the processes occurring in the aquatic rhizosphere. We are interested in understanding the interaction between root exudates and the complex microbial communities that are associated with the roots, using a systems biology approach involving metabolomics and metagenomics. With this aim, we have developed a RhizoFlowCell (RFC) system that provides a controlled study of aquatic plants, observed the root biofilms, collect root exudates and subject the rhizosphere system to changes in various chemical or physical perturbations. As proof of concept, we have used RFC to test the response of root exudation patterns of Pandanus amaryllifolius after exposure to the pollutant naphthalene. Complexity of root exudates in the aquatic rhizosphere was captured using this device and analysed using LC-qTOF-MS. The highly complex metabolomic profile allowed us to study the dynamics of the response of roots to varying levels of naphthalene. The metabolic profile changed within 5mins after spiking with

  8. Introduction to Ecological Landscaping: A Holistic Description and Framework to Guide the Study and Management of Urban Landscape Parcels

    Directory of Open Access Journals (Sweden)

    Parwinder Grewal

    2008-01-01

    Full Text Available Urbanized ecosystems and urban human populations are expanding around the world causing many negative environmental effects. A challenge for achieving sustainable urban social-ecological systems is understanding how urbanized landscapes can be designed and managed to minimize negative outcomes. To this end, an interdisciplinary Ecological Landscaping conference was organized to examine the interacting sociocultural and ecological causes and consequences of landscaping practices and products. This special issue of Cities and the Environment contains a diverse set of articles arising from that conference. In this introductory paper, we describe the meaning of ecological landscaping and a new conceptual framework that helps organize the topic’s complex issues. The essence of ecological landscaping is a holistic systems-thinking perspective for understanding the interrelationships among physical-ecological and sociocultural variables that give rise to the patterns and processes of biodiversity, abiotic conditions, and ecosystem processes within and among individually-managed urban landscape parcels. This perspective suggests that 1 variables not considered part of traditional landscaping and 2 the effects of landscaping within an individual parcel on variables outside of it must both be considered when making design and management decisions about a parcel. To illustrate how these points help create a more holistic, ecological approach to landscaping, a traditional ecosystem model is used to create a framework for discussing how sociocultural and physical-ecological inputs to a landscape parcel affect its characteristics and outputs. As exemplified by papers in this issue, an integrated sociocultural-ecological approach to the study of urban landscaping practices and products is needed to 1 understand why and how humans design and mange urban landscape parcels, 2 describe how the combined characteristics and outputs of many parcels give rise to the

  9. Understanding movement data and movement processes: current and emerging directions.

    Science.gov (United States)

    Schick, Robert S; Loarie, Scott R; Colchero, Fernando; Best, Benjamin D; Boustany, Andre; Conde, Dalia A; Halpin, Patrick N; Joppa, Lucas N; McClellan, Catherine M; Clark, James S

    2008-12-01

    Animal movement has been the focus on much theoretical and empirical work in ecology over the last 25 years. By studying the causes and consequences of individual movement, ecologists have gained greater insight into the behavior of individuals and the spatial dynamics of populations at increasingly higher levels of organization. In particular, ecologists have focused on the interaction between individuals and their environment in an effort to understand future impacts from habitat loss and climate change. Tools to examine this interaction have included: fractal analysis, first passage time, Lévy flights, multi-behavioral analysis, hidden markov models, and state-space models. Concurrent with the development of movement models has been an increase in the sophistication and availability of hierarchical bayesian models. In this review we bring these two threads together by using hierarchical structures as a framework for reviewing individual models. We synthesize emerging themes in movement ecology, and propose a new hierarchical model for animal movement that builds on these emerging themes. This model moves away from traditional random walks, and instead focuses inference on how moving animals with complex behavior interact with their landscape and make choices about its suitability.

  10. Advancing ecological understandings through technological transformations in noninvasive genetics

    Science.gov (United States)

    Albano Beja-Pereira; Rita Oliveira; Paulo C. Alves; Michael K. Schwartz; Gordon Luikart

    2009-01-01

    Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological...

  11. Asian Eden : large herbivore ecology in India

    NARCIS (Netherlands)

    Ahrestani, F.S.

    2009-01-01

    The study of large mammalian herbivore ecology has a strong allometric tradition. The
    majority of studies that have helped better understand how body mass affects large herbivore
    ecology in the tropics, from a biological, functional, and ecological perspective, are from
    Africa.

  12. Ecological processes in the cycling of radionuclides within arctic ecosystems

    International Nuclear Information System (INIS)

    Hanson, W.C.

    1986-01-01

    Worldwide fallout radionuclides in arctic ecosystems was investigated ecologically by circumpolar nations during 1959-80. Several of the radionuclides are isotopes of elements which currently contribute to arctic haze; they thus serve as effective tracers of biogeochemical processes. Investigations demonstrated the effective concentration of several radionuclides, particularly strontium-90 (an alkaline earth metal) and cesium-137 (a light alkali metal) which are chemical analogs of calcium and potassium, two very important stable elements in biotic systems. Transfer of 137 Cs through the lichen-cariboureindeer-man food chain characteristic of circumpolar nations, resulted in body burdens in Inuit that were 20 to 200 times greater than those in human populations of temperature latitudes. Radiation exposures from 90 Sr, 137 Cs and other natural and worldwide fallout radionuclides, were two to three times greater than for most other world populations. These results demonstrate the concentration capabilities of arctic ecosystems for several groups of chemical elements that have counterparts in arctic haze. These elements, therefore, provide the basis for considering the ecological implications of current situations

  13. A Cognition-based View of Decision Processes in Complex Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    Kathi K. Beratan

    2007-06-01

    Full Text Available This synthesis paper is intended to provide an overview of individual and collective decision-making processes that might serve as a theoretical foundation for a complexity-based approach to environmental policy design and natural resource management planning. Human activities are the primary drivers of change in the Earth's biosphere today, so efforts to shift the trajectory of social-ecological systems must focus on changes in individual and collective human behavior. Recent advances in understanding the biological basis of thought and memory offer insights of use in designing management and planning processes. The human brain has evolved ways of dealing with complexity and uncertainty, and is particularly attuned to social information. Changes in an individual's schemas, reflecting changes in the patterns of neural connections that are activated by particular stimuli, occur primarily through nonconsious processes in response to experiential learning during repeated exposure to novel situations, ideas, and relationships. Discourse is an important mechanism for schema modification, and thus for behavior change. Through discourse, groups of people construct a shared story - a collective model - that is useful for predicting likely outcomes of actions and events. In effect, good stories are models that filter and organize distributed knowledge about complex situations and relationships in ways that are readily absorbed by human cognitive processes. The importance of discourse supports the view that collaborative approaches are needed to effectively deal with environmental problems and natural resource management challenges. Methods derived from the field of mediation and dispute resolution can help us take advantage of the distinctly human ability to deal with complexity and uncertainty. This cognitive view of decision making supports fundamental elements of resilience management and adaptive co-management, including fostering social learning

  14. Creating multithemed ecological regions for macroscale ecology: Testing a flexible, repeatable, and accessible clustering method

    Science.gov (United States)

    Cheruvelil, Kendra Spence; Yuan, Shuai; Webster, Katherine E.; Tan, Pang-Ning; Lapierre, Jean-Francois; Collins, Sarah M.; Fergus, C. Emi; Scott, Caren E.; Norton Henry, Emily; Soranno, Patricia A.; Filstrup, Christopher T.; Wagner, Tyler

    2017-01-01

    Understanding broad-scale ecological patterns and processes often involves accounting for regional-scale heterogeneity. A common way to do so is to include ecological regions in sampling schemes and empirical models. However, most existing ecological regions were developed for specific purposes, using a limited set of geospatial features and irreproducible methods. Our study purpose was to: (1) describe a method that takes advantage of recent computational advances and increased availability of regional and global data sets to create customizable and reproducible ecological regions, (2) make this algorithm available for use and modification by others studying different ecosystems, variables of interest, study extents, and macroscale ecology research questions, and (3) demonstrate the power of this approach for the research question—How well do these regions capture regional-scale variation in lake water quality? To achieve our purpose we: (1) used a spatially constrained spectral clustering algorithm that balances geospatial homogeneity and region contiguity to create ecological regions using multiple terrestrial, climatic, and freshwater geospatial data for 17 northeastern U.S. states (~1,800,000 km2); (2) identified which of the 52 geospatial features were most influential in creating the resulting 100 regions; and (3) tested the ability of these ecological regions to capture regional variation in water nutrients and clarity for ~6,000 lakes. We found that: (1) a combination of terrestrial, climatic, and freshwater geospatial features influenced region creation, suggesting that the oft-ignored freshwater landscape provides novel information on landscape variability not captured by traditionally used climate and terrestrial metrics; and (2) the delineated regions captured macroscale heterogeneity in ecosystem properties not included in region delineation—approximately 40% of the variation in total phosphorus and water clarity among lakes was at the regional

  15. A social ecology approach to understanding urban ecosystems and landscapes

    Science.gov (United States)

    J. Morgan Grove; Karen E. Hinson; Robert J. Northrop

    2003-01-01

    The shape and dynamics of cities are the result of physical, biological, and social forces. We include the term dynamic to emphasize that cities change over time and are the result of both idiosyncratic events and dominant trends. To begin to understand the patterns and processes of cities, we approach the idiosyncratic and dominant - whether it is physical, biological...

  16. Interpretation and evaluation of the US Environmental Protection Agency ecological risk assessment guidelines

    CSIR Research Space (South Africa)

    Murray, K

    1999-10-01

    Full Text Available In order to facilitate a common understanding, on-going debate and increasing application of ecological risk assessment (ERA) in South Africa, the ERA process of the US Environmental Protection Agency (EPA) has been summarised and evaluated...

  17. Predictive systems ecology.

    Science.gov (United States)

    Evans, Matthew R; Bithell, Mike; Cornell, Stephen J; Dall, Sasha R X; Díaz, Sandra; Emmott, Stephen; Ernande, Bruno; Grimm, Volker; Hodgson, David J; Lewis, Simon L; Mace, Georgina M; Morecroft, Michael; Moustakas, Aristides; Murphy, Eugene; Newbold, Tim; Norris, K J; Petchey, Owen; Smith, Matthew; Travis, Justin M J; Benton, Tim G

    2013-11-22

    Human societies, and their well-being, depend to a significant extent on the state of the ecosystems that surround them. These ecosystems are changing rapidly usually in response to anthropogenic changes in the environment. To determine the likely impact of environmental change on ecosystems and the best ways to manage them, it would be desirable to be able to predict their future states. We present a proposal to develop the paradigm of predictive systems ecology, explicitly to understand and predict the properties and behaviour of ecological systems. We discuss the necessary and desirable features of predictive systems ecology models. There are places where predictive systems ecology is already being practised and we summarize a range of terrestrial and marine examples. Significant challenges remain but we suggest that ecology would benefit both as a scientific discipline and increase its impact in society if it were to embrace the need to become more predictive.

  18. The raison d'être of chemical ecology.

    Science.gov (United States)

    Raguso, Robert A; Agrawal, Anurag A; Douglas, Angela E; Jander, Georg; Kessler, André; Poveda, Katja; Thaler, Jennifer S

    2015-03-01

    Chemical ecology is a mechanistic approach to understanding the causes and consequences of species interactions, distribution, abundance, and diversity. The promise of chemical ecology stems from its potential to provide causal mechanisms that further our understanding of ecological interactions and allow us to more effectively manipulate managed systems. Founded on the notion that all organisms use endogenous hormones and chemical compounds that mediate interactions, chemical ecology has flourished over the past 50 years since its origin. In this essay we highlight the breadth of chemical ecology, from its historical focus on pheromonal communication, plant-insect interactions, and coevolution to frontier themes including community and ecosystem effects of chemically mediated species interactions. Emerging approaches including the -omics, phylogenetic ecology, the form and function of microbiomes, and network analysis, as well as emerging challenges (e.g., sustainable agriculture and public health) are guiding current growth of this field. Nonetheless, the directions and approaches we advocate for the future are grounded in classic ecological theories and hypotheses that continue to motivate our broader discipline.

  19. Annual report 2015. Institute of Resource Ecology

    International Nuclear Information System (INIS)

    Stumpf, Thorsten

    2016-01-01

    The Institute of Resource Ecology (IRE) is one of the eight institutes of the Helmholtz- Zentrum Dresden-Rossendorf (HZDR). The research activities are mainly integrated into the program ''Nuclear Waste Management, Safety and Radiation Research (NUSAFE)'' of the Helmholtz Association (HGF) and focused on the topics ''Safety of Nuclear Waste Disposal'' and ''Safety Research for Nuclear Reactors''. Additionally, various activities have been started investigating chemical and environmental aspects of processing and recycling of strategic metals, namely rare earth elements. These activities are located in the HGF program ''Energy Efficiency, Materials and Resources (EMR)''. Thus, all scientific work of the IRE belongs to the research field ''Energy'' of the HGF. The research objective is the protection of humans and the environment from hazards caused by pollutants resulting from technical processes that produce energy and raw materials. Treating technology and ecology as a unity is the major scientific challenge in assuring the safety of technical processes and gaining their public acceptance. We investigate the ecological risks ensued by radioactive and non-radioactive metals in the context of nuclear waste disposal, the production of energy in nuclear power plants and in processes along the value chain of metalliferous raw materials. A common goal is to generate better understanding about the dominating processes essential for metal mobilization and immobilization on the molecular level by using advanced spectroscopic methods. This in turn enables us to assess the macroscopic phenomena, including models, codes and data for predictive calculations, which determine the transport and distribution of contaminants in the environment.

  20. Annual report 2016. Institute of Resource Ecology

    International Nuclear Information System (INIS)

    Stumpf, Thorsten; Foerstendorf, Harald; Bok, Frank; Richter, Anke

    2017-01-01

    The Institute of Resource Ecology (IRE) is one of the eight institutes of the Helmholtz-Zentrum Dresden - Rossendorf (HZDR). The research activities are mainly integrated into the program ''Nuclear Waste Management, Safety and Radiation Research (NUSAFE)'' of the Helmholtz Association (HGF) and focused on the topics ''Safety of Nuclear Waste Disposal'' and ''Safety Research for Nuclear Reactors''. Additionally, various activities have been started investigating chemical and environmental aspects of processing and recycling of strategic metals, namely rare earth elements. These activities are located in the HGF program ''Energy Efficiency, Materials and Resources (EMR)''. Both programs, and therefore all work which is done at IRE, belong to the research sector ''Energy'' of the HGF. The research objectives are the protection of humans and the environment from hazards caused by pollutants resulting from technical processes that produce energy and raw materials. Treating technology and ecology as a unity is the major scientific challenge in assuring the safety of technical processes and gaining their public acceptance. We investigate the ecological risks exerted by radioactive and non-radioactive metals in the context of nuclear waste disposal, the production of energy in nuclear power plants and in processes along the value chain of metalliferous raw materials. A common goal is to generate better understanding about the dominating processes essential for metal mobilization and immobilization on the molecular level by using advanced spectroscopic methods. This in turn enables us to assess the macroscopic phenomena, including models, codes and data for predictive calculations, which determine the transport and distribution of contaminants in the environment.

  1. Preventing regime shifts on the Colorado Plateau: Application of ecological threshold concepts to land management decision making

    Science.gov (United States)

    Investigating the mechanisms responsible for ecological thresholds is essential to understanding processes leading to ecosystem regime shifts. Dryland ecosystems are especially prone to threshold behavior wherein stressor-mediated alteration of patterns and processes can shift systems to alternative...

  2. Resilient development and environmental justice in divided territory: political ecology in the San Diego-Tijuana bioregion.

    Directory of Open Access Journals (Sweden)

    K. Haines

    2015-04-01

    Full Text Available This paper explores issues in the expansion of environmental justice rhetoric to the developing world, and propose insights from resilience theory, political ecology, and bioregionalism as supplements. I do this from the frame of the San Diego-Tijuana region, where regional inequalities are stark and global processes have a heavy local footprint. Sharing a broadly-defined natural region, the growing evidence of ecological crisis increasingly calls for collaboration between two communities which often perceive themselves as relatively disconnected. Understanding challenges to social-ecological resilience and environmental justice in the San Diego-Tijuana region, however, also requires understanding it as an inflection point for global economic, military, and human migration flows occurring at many scales. It is in the context of building effective regional collaboration that environmental justice must engage the analyses of scale and political economy contained in political ecology as a challenge. I suggest, however, that any environmental justice discourse informed by political ecology cannot remain abstract from the local context. A “bioregional” community forged around shared ecological systems may serve as an important resource for creating social-ecological resilience in politically divided territory.

  3. Understanding Patients’ Process to Use Medical Marijuana

    Directory of Open Access Journals (Sweden)

    Tara L Crowell

    2016-09-01

    Full Text Available Given the necessity to better understand the process patients need to go through in order to seek treatment via medical marijuana, this study investigates this process to better understand this phenomenon. Specifically, Compassion Care Foundation (CCF and Stockton University worked together to identify a solution to this problem. Specifically, 240 new patients at CCF were asked to complete a 1-page survey regarding various aspects associated with their experience prior to their use of medicinal marijuana—diagnosis, what prompted them to seek treatment, level of satisfaction with specific stages in the process, total length of time the process took, and patient’s level of pain. Results reveal numerous patient diagnoses for which medical marijuana is being prescribed; the top 4 most common are intractable skeletal spasticity, chronic and severe pain, multiple sclerosis, and inflammatory bowel disease. Next, results indicate a little over half of the patients were first prompted to seek alternative treatment from their physicians, while the remaining patients indicated that other sources such as written information along with friends, relatives, media, and the Internet persuaded them to seek treatment. These data indicate that a variety of sources play a role in prompting patients to seek alternative treatment and is a critical first step in this process. Additional results posit that once patients began the process of qualifying to receive medical marijuana as treatment, the process seemed more positive even though it takes patients on average almost 6 months to obtain their first treatment after they started the process. Finally, results indicate that patients are reporting a moderately high level of pain prior to treatment. Implication of these results highlights several important elements in the patients’ initial steps toward seeking medical marijuana, along with the quality and quantity of the process patients must engage in prior to

  4. Interactions between temperature and nutrients across levels of ecological organization.

    Science.gov (United States)

    Cross, Wyatt F; Hood, James M; Benstead, Jonathan P; Huryn, Alexander D; Nelson, Daniel

    2015-03-01

    Temperature and nutrient availability play key roles in controlling the pathways and rates at which energy and materials move through ecosystems. These factors have also changed dramatically on Earth over the past century as human activities have intensified. Although significant effort has been devoted to understanding the role of temperature and nutrients in isolation, less is known about how these two factors interact to influence ecological processes. Recent advances in ecological stoichiometry and metabolic ecology provide a useful framework for making progress in this area, but conceptual synthesis and review are needed to help catalyze additional research. Here, we examine known and potential interactions between temperature and nutrients from a variety of physiological, community, and ecosystem perspectives. We first review patterns at the level of the individual, focusing on four traits--growth, respiration, body size, and elemental content--that should theoretically govern how temperature and nutrients interact to influence higher levels of biological organization. We next explore the interactive effects of temperature and nutrients on populations, communities, and food webs by synthesizing information related to community size spectra, biomass distributions, and elemental composition. We use metabolic theory to make predictions about how population-level secondary production should respond to interactions between temperature and resource supply, setting up qualitative predictions about the flows of energy and materials through metazoan food webs. Last, we examine how temperature-nutrient interactions influence processes at the whole-ecosystem level, focusing on apparent vs. intrinsic activation energies of ecosystem processes, how to represent temperature-nutrient interactions in ecosystem models, and patterns with respect to nutrient uptake and organic matter decomposition. We conclude that a better understanding of interactions between temperature and

  5. The ecological impacts of marine debris

    NARCIS (Netherlands)

    Rochman, Chelsea M.; Browne, Mark Anthony; Underwood, A.J.; Franeker, Van Jan A.; Thompson, Richard C.; Amaral-Zettler, Linda A.

    2016-01-01

    Anthropogenic debris contaminates marine habitats globally, leading to several perceived ecological impacts. Here, we critically and systematically review the literature regarding impacts of debris from several scientific fields to understand the weight of evidence regarding the ecological

  6. Advancing ecological understandings through technological transformations in noninvasive genetics.

    Science.gov (United States)

    Beja-Pereira, Albano; Oliveira, Rita; Alves, Paulo C; Schwartz, Michael K; Luikart, Gordon

    2009-09-01

    Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological advances continue to make noninvasive approaches among the most used and rapidly advancing areas in genetics. Here, we review recent advances in noninvasive genetics and how they allow us to address important research and management questions thanks to improved techniques for DNA extraction, preservation, amplification and data analysis. We show that many advances come from the fields of forensics, human health and domestic animal health science, and suggest that molecular ecologists explore literature from these fields. Finally, we discuss how the combination of advances in each step of a noninvasive genetics study, along with fruitful areas for future research, will continually increase the power and role of noninvasive genetics in molecular ecology and conservation genetics. © 2009 Blackwell Publishing Ltd.

  7. Ecology of estuaries

    International Nuclear Information System (INIS)

    Kennish, M.J.

    1992-01-01

    Ecology of Estuaries: Anthropogenic Effects represents the most definitive and comprehensive source of reference information available on the human impact on estuarine ecosystems. The book discusses both acute and insidious pollution problems plaguing these coastal ecotones. It also provides a detailed examination of the deleterious and pervasive effects of human activities on biotic communities and sensitive habitat areas in estuaries. Specific areas covered include organic loading, oil pollution, polynuclear aromatic hydrocarbons, chlorinated hydrocarbons, heavy metals, dredging and dredge-spoil disposal, radionuclides, as well as other contaminants and processes. The diverse components of these anthropogenic influences are assembled in an organized framework and presented in a clear and concise style that will facilitate their understanding

  8. Ecological principles relevant to nuclear war

    International Nuclear Information System (INIS)

    Hutchinson, T.C.; Cropper, W.P. Jr.; Grover, H.D.

    1985-01-01

    The ecological principles outlined are very basic ones; the authors anticipate a readership trained in a broad range of disciplines, including those unfamiliar with the academic discipline of ecology. The authors include substantial discussion on ecophysiology (i.e., the responses of organisms to their environment) because this is relevant to the new understanding of the potential climatic consequences of nuclear war. In particular, the physiological sensitivity of organisms to reduced levels of light and temperature are a key part of the analysis of the potential ecological effects and agricultural effects of nuclear war. Much of the ecological analysis has been organized around major biological units called biomes. The authors describe the biome concept and discuss some of the environmental-climatic factors that are believed to control biome distribution. Emphasis is given to plants because of their controlling influence on ecosystem functions through their role as primary producers. Future reports are needed to address more fully the potential effects on animals. Much more research needs to be done on both plant and animal responses to the types of perturbations possible for the aftermath of a nuclear war. Another important element for analysis of the potential ecological consequences of nuclear war concerns recovery processes. As the post-nuclear war environmental extremes ameliorate, ecological communities in devastated regions would begin to reorganize. It is not possible to predict the course of such a succession precisely, but some principles concerning post-perturbation replacement (such as seed banks and germination), relevant successional patterns, and organism strategies are discussed

  9. Using Ants as bioindicators: Multiscale Issues in Ant Community Ecology

    Directory of Open Access Journals (Sweden)

    Alan Andersen

    1997-06-01

    Full Text Available Ecological patterns and processes are characteristically scale dependent, and research findings often cannot be translated easily from one scale to another. Conservation biology is challenged by a lack of congruence between the spatial scales of ecological research (typically involving small plots and land management (typically involving whole landscapes. Here, I discuss spatial scaling issues as they relate to an understanding of ant communities and, consequently, their use as bioindicators in land management. Our perceptions of fundamental patterns and processes in ant communities depend on scale: taxa that are behaviorally dominant at one scale are not necessarily so at others, functional groups recognized at one scale are often inappropriate for others, and the role of competition in community structure depends on the scale of analysis. Patterns of species richness and composition, and the ability of total richness to be estimated by surrogates, are all also scale dependent. Ant community ecology has a tradition of detailed studies in small plots, but the use of ants as bioindicators requires a predictive understanding of community structure and dynamics at a range of spatial scales. Such an appreciation of ant communities and their most effective use as bioindicators is best served by studies integrating results from plot-scale research with the broad-scale paradigms of biogeography, systematics, and evolutionary biology.

  10. Functional ecology of aquatic phagotrophic protists - Concepts, limitations, and perspectives.

    Science.gov (United States)

    Weisse, Thomas; Anderson, Ruth; Arndt, Hartmut; Calbet, Albert; Hansen, Per Juel; Montagnes, David J S

    2016-08-01

    Functional ecology is a subdiscipline that aims to enable a mechanistic understanding of patterns and processes from the organismic to the ecosystem level. This paper addresses some main aspects of the process-oriented current knowledge on phagotrophic, i.e. heterotrophic and mixotrophic, protists in aquatic food webs. This is not an exhaustive review; rather, we focus on conceptual issues, in particular on the numerical and functional response of these organisms. We discuss the evolution of concepts and define parameters to evaluate predator-prey dynamics ranging from Lotka-Volterra to the Independent Response Model. Since protists have extremely versatile feeding modes, we explore if there are systematic differences related to their taxonomic affiliation and life strategies. We differentiate between intrinsic factors (nutritional history, acclimatisation) and extrinsic factors (temperature, food, turbulence) affecting feeding, growth, and survival of protist populations. We briefly consider intraspecific variability of some key parameters and constraints inherent in laboratory microcosm experiments. We then upscale the significance of phagotrophic protists in food webs to the ocean level. Finally, we discuss limitations of the mechanistic understanding of protist functional ecology resulting from principal unpredictability of nonlinear dynamics. We conclude by defining open questions and identifying perspectives for future research on functional ecology of aquatic phagotrophic protists. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  11. Analogical thinking in ecology: looking beyond disciplinary boundaries.

    Science.gov (United States)

    Colyvan, Mark; Ginzburg, Lev R

    2010-06-01

    We consider several ways in which a good understanding of modern techniques and principles in physics can elucidate ecology, and we focus on analogical reasoning between these two branches of science. Analogical reasoning requires an understanding of both sciences and an appreciation of the similarities and points of contact between the two. In the current ecological literature on the relationship between ecology and physics, there has been some misunderstanding about the nature of modern physics and its methods. Physics is seen as being much cleaner and tidier than ecology. When compared to this idealized, fictional version of physics, ecology looks very different, and the prospect of ecology and physics learning from one another is questionable. We argue that physics, once properly understood, is more like ecology than ecologists have thus far appreciated. Physicists and ecologists can and do learn from each other, and, in this paper, we outline how analogical reasoning can facilitate such exchanges.

  12. Seed isotopic analysis as a tool to understand ecological processes influencing plant development and physiology: the case study of Quercus rotundifolia Lam. in a desertification gradient in Mediterranean areas

    Science.gov (United States)

    Oliveira, Tatiana; Silva, Anabela; Rodrigues, Carla; Antunes Antunes, Cristina; Pinho, Pedro; Ramos, Alzira; João Pereira, Maria; Branquinho, Cristina; Máguas, Cristina

    2014-05-01

    Plant responses to climate change highly depend on the temporal variability in precipitation events and on plant specific strategies, such as drought tolerance and resilience. Within the different plant organs, seeds have become an important research tool in the past years to study plant development and nutrients allocation. Key features of seeds such as the tendency to accumulate and store nutrient compounds open many possibilities to explore isotope analysis (13C, 15N and 18O), with many outcomes in fields from ecology to food traceability. The application of light stable isotopes to plant materials have been used to study both physiological (i.e. photosynthesis and stomatal conductance), nutrients uptake and metabolism (origin of nitrogen and symbiotic associations) as well as many ecological processes, which will produce a distinctive isotope fingerprint on the plant tissues. Thus, the isotopic composition of certain bio and geo-elements of seeds, yielding relevant information on plant ecophysiology, are able to relate the plant functioning with local climatic conditions (e.g., temperature and precipitation). The application of isotope analysis in this way can be used as a proxy to understand complex environmental degradation processes such as land degradation in drylands resulting from various factors including climatic variations and human activities. In this study acorns of Quercus ilex plants were sampled during 2012-2013 in a region of southern Portugal, according to (i) soil land-use; (ii) aridity and desertification indexes. The approach developed combined plant seed analysis (seed morphology and compounds quantification) with isotope ratio mass spectrometry (δ13C, δ15N and δ18O) as a "tool" to study changes in plant ecophysiology over time and space. Seeds allow studies at specific temporal scale (development period) which varies according to its biology and depends on the climatic conditions where the plant is grown (i.e, seed's biomass integrate

  13. Ecological optimization for an irreversible magnetic Ericsson refrigeration cycle

    International Nuclear Information System (INIS)

    Wang Hao; Wu Guo-Xing

    2013-01-01

    An irreversible Ericsson refrigeration cycle model is established, in which multi-irreversibilities such as finite-rate heat transfer, regenerative loss, heat leakage, and the efficiency of the regenerator are taken into account. Expressions for several important performance parameters, such as the cooling rate, coefficient of performance (COP), power input, exergy output rate, entropy generation rate, and ecological function are derived. The influences of the heat leakage and the time of the regenerative processes on the ecological performance of the refrigerator are analyzed. The optimal regions of the ecological function, cooling rate, and COP are determined and evaluated. Furthermore, some important parameter relations of the refrigerator are revealed and discussed in detail. The results obtained here have general significance and will be helpful in gaining a deep understanding of the magnetic Ericsson refrigeration cycle. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    International Nuclear Information System (INIS)

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K.

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of ''refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs

  15. Elder Abuse by Adult Children: An Applied Ecological Framework for Understanding Contextual Risk Factors and the Intergenerational Character of Quality of Life.

    Science.gov (United States)

    Schiamberg, Lawrence B.; Gans, Daphna

    2000-01-01

    Using an applied ecological model, this study focuses on contextual risk factors of elder abuse. Five levels of environment were used to interpret existing research on risk factors. Configuration of risk factors provides a framework for understanding the intergenerational character of quality of life for older adults, developing recommendations…

  16. [Process of land use transition and its impact on regional ecological quality in the Middle Reaches of Heihe River, China].

    Science.gov (United States)

    Wang, Fu Hong; Zhao, Rui Feng; Zhang, Li Hua; Li, Hong Wei

    2017-12-01

    Land use transition is one of the main drivers of regional ecosystem change in arid area, which directly affects human well-being. Based on the satellite images of 1987, 2001 and 2016, the change detection assessment model and ecological response model were used to analyze the process of land use transition and response of ecological quality during 1987-2016 in the ecologically fragile middle reaches of the Heihe River. The results showed that the land use change was significant during 1987-2016 and the total change increased significantly, as well as the continuous increase of the cultivated land and construction land. There was a strong tendency of transform from grassland to cultivated land, while the tendency of transforming unused land to other land classes was not strong under a random process of gain or loss. During 1987-2016, the ecological quality of the study area displayed a decreasing trend as a whole and the ecological land decreased by 2.8%. The land use transition with the greatest impact on the ecological environment degradation was the transition of the grassland to the cultivated land and unused land. Therefore, in order to promote the sustainable use of regional land resources and to improve the regional ecological quality, it is necessary to allocate the proportion of production land and ecological land according to the regional water resources.

  17. Volcano ecology at Chaiten, Chile: geophysical processes interact with forest ecosystems

    Science.gov (United States)

    Swanson, F. J.; Crisafulli, C.; Jones, J. A.; Lara, A.

    2010-12-01

    The May 2008 eruption of Chaiten Volcano (Chile) offers many insights into volcano ecology -ecological responses to volcanic and associated hydrologic processes and ecosystem development in post-eruption landscapes. Varied intensities of pyroclastic density currents (PDC) and thickness of tephra fall deposits (to 50+ cm) created strong gradients of disturbance in several hundred square kilometers of native forest in a sector north to southeast from the volcano. A gradient from tree removal to toppled forest to standing, scorched forest extends 1.5 km northward from the caldera rim along the trajectory of a PDC. Close to the vent (e.g., 2 km NE from rim) a rain of ca. 10 cm of gravel tephra stripped foliage and twigs from tree canopies; farther away (23 km SE) 10 cm of fine tephra loaded the canopy, causing extensive fall of limbs >8 cm diameter. Even in the severely disturbed, north-flank PDC zone, surviving bamboo, ferns, and other herbs sprouted from pre-eruption soil and other refugia; sprouts of new foliage appeared on the boles and major limbs of several species of toppled and scorched, standing trees; animals including vertebrates (rodents and amphibians) and terrestrial invertebrates (e.g., insects and arachnids) either survived or quickly recolonized; and a diverse fungal community began decomposing the vast dead wood resource. During the second growing season we documented the presence of some plant species that had colonized by seed. Within two years after the eruption secondary ecological disturbances resulting from channel change and overbank deposition of fluvially transported tephra created new patches of damaged forest in riparian zones of streams draining the north flank and along the Rio Rayas and Rio Chaiten. These features parallel observations in the intensively-studied, post-1980-eruption landscape of Mount St. Helens over a similar time period. However, several aspects of ecological response to the two eruptions differ because of differences

  18. Ecological Insights into the Dynamics of Plant Biomass-Degrading Microbial Consortia.

    Science.gov (United States)

    Jiménez, Diego Javier; Dini-Andreote, Francisco; DeAngelis, Kristen M; Singer, Steven W; Salles, Joana Falcão; van Elsas, Jan Dirk

    2017-10-01

    Plant biomass (PB) is an important resource for biofuel production. However, the frequent lack of efficiency of PB saccharification is still an industrial bottleneck. The use of enzyme cocktails produced from PB-degrading microbial consortia (PB-dmc) is a promising approach to optimize this process. Nevertheless, the proper use and manipulation of PB-dmc depends on a sound understanding of the ecological processes and mechanisms that exist in these communities. This Opinion article provides an overview of arguments as to how spatiotemporal nutritional fluxes influence the successional dynamics and ecological interactions (synergism versus competition) between populations in PB-dmc. The themes of niche occupancy, 'sugar cheaters', minimal effective consortium, and the Black Queen Hypothesis are raised as key subjects that foster our appraisal of such systems. Here we provide a conceptual framework that describes the critical topics underpinning the ecological basis of PB-dmc, giving a solid foundation upon which further prospective experimentation can be developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory

    Directory of Open Access Journals (Sweden)

    Nina Welti

    2017-07-01

    Full Text Available Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates. ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1 changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2 changing trophic dynamics influences the transformation and

  20. An integrated framework for health and ecological risk assessment

    International Nuclear Information System (INIS)

    Suter, Glenn W.; Vermeire, Theo; Munns, Wayne R.; Sekizawa, Jun

    2005-01-01

    The worldHealth Organization's (WHO's) International Program for Chemical Safety has developed a framework for performing risk assessments that integrate the assessment of risks to human health and risks to nonhuman organisms and ecosystems. The WHO's framework recognizes that stakeholders and risk managers have their own processes that are parallel to the scientific process of risk assessment and may interact with the risk assessment at various points, depending on the context. Integration of health and ecology provides consistent expressions of assessment results, incorporates the interdependence of humans and the environment, uses sentinel organisms, and improves the efficiency and quality of assessments relative to independent human health and ecological risk assessments. The advantage of the framework to toxicologists lies in the opportunity to use understanding of toxicokinetics and toxicodynamics to inform the integrated assessment of all exposed species

  1. Integrated ecological-economic fisheries models - evaluation, review and challenges for implementation

    DEFF Research Database (Denmark)

    Nielsen, J. Rasmus; Thunberg, Eric; Holland, Daniel S.

    2018-01-01

    and comparative evaluation of 35 IESFM´s applied to marine fisheries and marine ecosystem resources to identify the characteristics that determine their usefulness, effectiveness and implementation. The focus is on fully integrated models that allow for feedbacks between ecological and human processes though......Marine ecosystems evolve under many interconnected and area-specific pressures. In order to fulfill society's intensifying and diversifying needs whilst ensuring ecologically sustainable development, more effective marine spatial planning and broader-scope management of marine resources...... is necessary. Integrated ecological–socioeconomic fisheries models (IESFM) of marine systems are nee¬ded to evaluate impacts and sustainability of potential management actions and understand, and anti¬ci¬pate ecological, economic, and social dynamics at a range of scales from local to national and regional...

  2. Theoretical Approaches in Evolutionary Ecology: Environmental Feedback as a Unifying Perspective.

    Science.gov (United States)

    Lion, Sébastien

    2018-01-01

    Evolutionary biology and ecology have a strong theoretical underpinning, and this has fostered a variety of modeling approaches. A major challenge of this theoretical work has been to unravel the tangled feedback loop between ecology and evolution. This has prompted the development of two main classes of models. While quantitative genetics models jointly consider the ecological and evolutionary dynamics of a focal population, a separation of timescales between ecology and evolution is assumed by evolutionary game theory, adaptive dynamics, and inclusive fitness theory. As a result, theoretical evolutionary ecology tends to be divided among different schools of thought, with different toolboxes and motivations. My aim in this synthesis is to highlight the connections between these different approaches and clarify the current state of theory in evolutionary ecology. Central to this approach is to make explicit the dependence on environmental dynamics of the population and evolutionary dynamics, thereby materializing the eco-evolutionary feedback loop. This perspective sheds light on the interplay between environmental feedback and the timescales of ecological and evolutionary processes. I conclude by discussing some potential extensions and challenges to our current theoretical understanding of eco-evolutionary dynamics.

  3. Social learning research in ecological economics

    NARCIS (Netherlands)

    Siebenhüner, Bernd; Rodela, Romina; Ecker, Franz

    2016-01-01

    Social learning studies emerged as part of the ecological economics research agenda rather recently. Questions of how human societies and organisations learn and transition on the basis of environmental knowledge relate to the core ideas of ecological economics with its pluralistic understanding

  4. Ecological rationality: a framework for understanding and aiding the aging decision maker

    OpenAIRE

    Mata, Rui; Pachur, Thorsten; von Helversen, Bettina; Hertwig, Ralph; Rieskamp, Jörg; Schooler, Lael

    2012-01-01

    The notion of ecological rationality sees human rationality as the result of the adaptive fit between the human mind and the environment. Ecological rationality focuses the study of decision making on two key questions: First, what are the environmental regularities to which people’s decision strategies are matched, and how frequently do these regularities occur in natural environments? Second, how well can people adapt their use of specific strategies to particular environmental regularities...

  5. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K. (ed.)

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs. (MHB)

  6. Ecosystem Services are Social-ecological Services in a Traditional Pastoral System: the Case of California's Mediterranean Rangelands

    Directory of Open Access Journals (Sweden)

    Lynn Huntsinger

    2014-03-01

    Full Text Available When attempting to value ecosystem services and support their production, two critical aspects may be neglected. The term "ecosystem services" implies that they are a function of natural processes; yet, human interaction with the environment may be key to the production of many. This can contribute to a misconception that ecosystem service production depends on, or is enhanced by, the coercion or removal of human industry. Second, in programs designed to encourage ecosystem service production and maintenance, too often the inter-relationship of such services with social and ecological processes and drivers at multiple scales is ignored. Thinking of such services as "social-ecological services" can reinforce the importance of human culture, perspectives, and economies to the production of ecosystem services. Using a social-ecological systems perspective, we explore the integral role of human activity and decisions at pasture, ranch, and landscape scales. Just as it does for understanding ecosystems, a hierarchical, multiscaled framework facilitates exploring the complexity of social-ecological systems as producers of ecosystem services, to develop approaches for the conservation of such services. Using California's Mediterranean rangelands as a study area, we suggest that using a multiscaled approach that considers the importance of the differing drivers and processes at each scale and the interactions among scales, and that incorporates social-ecological systems concepts, may help avoid mistakes caused by narrow assumptions about "natural" systems, and a lack of understanding of the need for integrated, multiscaled conservation programs.

  7. [Progress and prospects on evaluation of ecological restoration: a review of the 5th World Conference on Ecological Restoration].

    Science.gov (United States)

    Ding, Jing-Yi; Zhao, Wen-Wu

    2014-09-01

    The 5th World Conference on Ecological Restoration was held in Madison, Wisconsin, USA on October 6-11, 2013. About 1200 delegates from more than 50 countries attended the conference, and discussed the latest developments in different thematic areas of ecological restoration. Discussions on evaluation of ecological restoration were mainly from three aspects: The construction for evaluation indicator system of ecological restoration; the evaluation methods of ecological restoration; monitoring and dynamic evaluation of ecological restoration. The meeting stressed the importance of evaluation in the process of ecological restoration and concerned the challenges in evaluation of ecological restoration. The conference had the following enlightenments for China' s research on evaluation of ecological restoration: 1) Strengthening the construction of comprehensive evaluation indicators system and focusing on the multi-participation in the evaluation process. 2) Paying more attentions on scale effect and scale transformation in the evaluation process of ecological restoration. 3) Expanding the application of 3S technology in assessing the success of ecological restoration and promoting the dynamic monitoring of ecological restoration. 4) Carrying out international exchanges and cooperation actively, and promoting China's international influence in ecological restoration research.

  8. Statistical ecology comes of age

    Science.gov (United States)

    Gimenez, Olivier; Buckland, Stephen T.; Morgan, Byron J. T.; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M.; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M.; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric

    2014-01-01

    The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1–4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data. PMID:25540151

  9. Statistical ecology comes of age.

    Science.gov (United States)

    Gimenez, Olivier; Buckland, Stephen T; Morgan, Byron J T; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric

    2014-12-01

    The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1-4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data.

  10. [Coupling coordinated development of ecological-economic system in Loess Plateau].

    Science.gov (United States)

    Zhang, Qing-Feng; Wu, Fa-Qi; Wang, Li; Wang, Jian

    2011-06-01

    Based on system theory, a coupling coordinated development model of ecological-economic system in Loess Plateau was established, and the evaluation criteria and basic types of the coordinated development of the ecological-economic system were proposed. The county-level coupling coordinated development of the ecological-economic system was also discussed, based on the local characteristics. The interactions between the ecological and economic systems in Loess Plateau could be divided into four stages, i.e., seriously disordered development stage, mild-disordered development stage, low-level coordinated development stage, and high level well-coordinated development stage. At each stage, there existed a cyclic process of profit and loss-antagonist-running-dominant-synchronous development. The coupling development degree of the ecological-economic system in Loess Plateau was overall at a lower level, being about 62.7% of the counties at serious disorder, 30.1% of the counties at mild disorder, and 7.1% of the counties at low but coordinated level. The coupling development degree based on the model established in this study could better reflect the current social-economic and ecological environment situations, especially the status of coordination. To fully understand the coupling of ecological-economic system and to adopt appropriate development mode would be of significance to promote the county-level coordinated development in Loess Plateau.

  11. Integrating models with data in ecology and palaeoecology: advances towards a model-data fusion approach.

    Science.gov (United States)

    Peng, Changhui; Guiot, Joel; Wu, Haibin; Jiang, Hong; Luo, Yiqi

    2011-05-01

    It is increasingly being recognized that global ecological research requires novel methods and strategies in which to combine process-based ecological models and data in cohesive, systematic ways. Model-data fusion (MDF) is an emerging area of research in ecology and palaeoecology. It provides a new quantitative approach that offers a high level of empirical constraint over model predictions based on observations using inverse modelling and data assimilation (DA) techniques. Increasing demands to integrate model and data methods in the past decade has led to MDF utilization in palaeoecology, ecology and earth system sciences. This paper reviews key features and principles of MDF and highlights different approaches with regards to DA. After providing a critical evaluation of the numerous benefits of MDF and its current applications in palaeoecology (i.e., palaeoclimatic reconstruction, palaeovegetation and palaeocarbon storage) and ecology (i.e. parameter and uncertainty estimation, model error identification, remote sensing and ecological forecasting), the paper discusses method limitations, current challenges and future research direction. In the ongoing data-rich era of today's world, MDF could become an important diagnostic and prognostic tool in which to improve our understanding of ecological processes while testing ecological theory and hypotheses and forecasting changes in ecosystem structure, function and services. © 2011 Blackwell Publishing Ltd/CNRS.

  12. A Dual Process Approach to Understand Tourists’ Destination Choice Processes

    DEFF Research Database (Denmark)

    Kock, Florian; Josiassen, Alexander; Assaf, Albert

    2017-01-01

    Most studies that investigate tourists' choices of destinations apply the concept of mental destination representations, also referred to as destination image. The present study investigates tourists’ destination choice processes by conceptualizing how different components of destination image...... are mentally processed in tourists' minds. Specifically, the seminal dual processing approach is applied to the destination image literature. By doing this, we argue that some components of mental destination representations are processed systematically while others serve as inputs for heuristics...... that individuals apply to inform their decision making. Understanding how individuals make use of their mental destination representations and how they color their decision-making is essential in order to better explain tourist behavior....

  13. Annual report 2014. Institute of Resource Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Thorsten (ed.)

    2015-07-01

    The Institute of Resource Ecology (IRE) is one of the eight institutes of the Helmholtz-Zentrum Dresden - Rossendorf (HZDR). The research activities are mainly integrated into the program ''Nuclear Waste Management, Safety and Radiation Research (NUSAFE)'' of the Helmholtz Association (HGF) and focused on the topics ''Safety of Nuclear Waste Disposal'' and ''Safety Research for Nuclear Reactors''. Additionally, various activities have been started investigating chemical and environmental aspects of processing and recycling of strategic metals, namely rare earth elements. These activities are located in the HGF program ''Energy Efficiency, Materials and Resources (EMR)''. Both programs, and therefore all work which is done at IRE, belong to the research sector ''Energy'' of the HGF. The research objectives are the protection of humans and the environment from hazards caused by pollutants resulting from technical processes that produce energy and raw materials. Treating technology and ecology as a unity is the major scientific challenge in assuring the safety of technical processes and gaining their public acceptance. We investigate the ecological risks exerted by radioactive and nonradioactive metals in the context of nuclear waste disposal, the production of energy in nuclear power plants, and in processes along the value chain of metalliferous raw materials. A common goal is to generate better understanding about the dominating processes essential for metal mobilization and immobilization on the molecular level by using advanced spectroscopic methods. This in turn enables us to assess the macroscopic phenomena, including models, codes, and data for predictive calculations, which determine the transport and distribution of contaminants in the environment.

  14. Annual report 2015. Institute of Resource Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Thorsten (ed.)

    2016-07-01

    The Institute of Resource Ecology (IRE) is one of the eight institutes of the Helmholtz- Zentrum Dresden-Rossendorf (HZDR). The research activities are mainly integrated into the program ''Nuclear Waste Management, Safety and Radiation Research (NUSAFE)'' of the Helmholtz Association (HGF) and focused on the topics ''Safety of Nuclear Waste Disposal'' and ''Safety Research for Nuclear Reactors''. Additionally, various activities have been started investigating chemical and environmental aspects of processing and recycling of strategic metals, namely rare earth elements. These activities are located in the HGF program ''Energy Efficiency, Materials and Resources (EMR)''. Thus, all scientific work of the IRE belongs to the research field ''Energy'' of the HGF. The research objective is the protection of humans and the environment from hazards caused by pollutants resulting from technical processes that produce energy and raw materials. Treating technology and ecology as a unity is the major scientific challenge in assuring the safety of technical processes and gaining their public acceptance. We investigate the ecological risks ensued by radioactive and non-radioactive metals in the context of nuclear waste disposal, the production of energy in nuclear power plants and in processes along the value chain of metalliferous raw materials. A common goal is to generate better understanding about the dominating processes essential for metal mobilization and immobilization on the molecular level by using advanced spectroscopic methods. This in turn enables us to assess the macroscopic phenomena, including models, codes and data for predictive calculations, which determine the transport and distribution of contaminants in the environment.

  15. Annual report 2016. Institute of Resource Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Thorsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Foerstendorf, Harald; Bok, Frank; Richter, Anke (eds.) [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    The Institute of Resource Ecology (IRE) is one of the eight institutes of the Helmholtz-Zentrum Dresden - Rossendorf (HZDR). The research activities are mainly integrated into the program ''Nuclear Waste Management, Safety and Radiation Research (NUSAFE)'' of the Helmholtz Association (HGF) and focused on the topics ''Safety of Nuclear Waste Disposal'' and ''Safety Research for Nuclear Reactors''. Additionally, various activities have been started investigating chemical and environmental aspects of processing and recycling of strategic metals, namely rare earth elements. These activities are located in the HGF program ''Energy Efficiency, Materials and Resources (EMR)''. Both programs, and therefore all work which is done at IRE, belong to the research sector ''Energy'' of the HGF. The research objectives are the protection of humans and the environment from hazards caused by pollutants resulting from technical processes that produce energy and raw materials. Treating technology and ecology as a unity is the major scientific challenge in assuring the safety of technical processes and gaining their public acceptance. We investigate the ecological risks exerted by radioactive and non-radioactive metals in the context of nuclear waste disposal, the production of energy in nuclear power plants and in processes along the value chain of metalliferous raw materials. A common goal is to generate better understanding about the dominating processes essential for metal mobilization and immobilization on the molecular level by using advanced spectroscopic methods. This in turn enables us to assess the macroscopic phenomena, including models, codes and data for predictive calculations, which determine the transport and distribution of contaminants in the environment.

  16. Annual report 2014. Institute of Resource Ecology

    International Nuclear Information System (INIS)

    Stumpf, Thorsten

    2015-01-01

    The Institute of Resource Ecology (IRE) is one of the eight institutes of the Helmholtz-Zentrum Dresden - Rossendorf (HZDR). The research activities are mainly integrated into the program ''Nuclear Waste Management, Safety and Radiation Research (NUSAFE)'' of the Helmholtz Association (HGF) and focused on the topics ''Safety of Nuclear Waste Disposal'' and ''Safety Research for Nuclear Reactors''. Additionally, various activities have been started investigating chemical and environmental aspects of processing and recycling of strategic metals, namely rare earth elements. These activities are located in the HGF program ''Energy Efficiency, Materials and Resources (EMR)''. Both programs, and therefore all work which is done at IRE, belong to the research sector ''Energy'' of the HGF. The research objectives are the protection of humans and the environment from hazards caused by pollutants resulting from technical processes that produce energy and raw materials. Treating technology and ecology as a unity is the major scientific challenge in assuring the safety of technical processes and gaining their public acceptance. We investigate the ecological risks exerted by radioactive and nonradioactive metals in the context of nuclear waste disposal, the production of energy in nuclear power plants, and in processes along the value chain of metalliferous raw materials. A common goal is to generate better understanding about the dominating processes essential for metal mobilization and immobilization on the molecular level by using advanced spectroscopic methods. This in turn enables us to assess the macroscopic phenomena, including models, codes, and data for predictive calculations, which determine the transport and distribution of contaminants in the environment.

  17. Annual report 2013. Institute of Resource Ecology

    International Nuclear Information System (INIS)

    Stumpf, Thorsten

    2013-01-01

    The Institute of Resource Ecology (IRE) is one of the eight institutes of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The Research activities are mainly integrated into the program ''Nuclear Safety Research (NUSAFE)'' of the Helmholtz Association (HGF) and focused on the topics ''Safety of Nuclear Waste Disposal'' and ''Safety Research for Nuclear Reactors''. Additionally, various activities have been started investigating chemical and environmental aspects of processing and recycling of strategic metals, namely rare earth elements. These activities are located in the HGF program ''Energy Efficiency, Materials and Resources (EMR)''. Both programs, and therefore all work which is done at IRE, belong to the research sector ''Energy'' of the HGF. The research objectives are the protection of humans and the environment from hazards caused by pollutants resulting from technical processes that produce energy and raw materials. Treating technology and ecology as a unity is the major scientific challenge in assuring the safety of technical processes and gaining their public acceptance. Namely, we investigate the ecological risks exerted by radioactive and non-radioactive metals in the context of nuclear waste disposal, the production of energy in nuclear power plants and in processes along the value chain of metalliferous raw materials. A common goal is to generate better understanding about the dominating processes essential for metal mobilization and immobilization on the molecular level. This in turn enables us to assess the macroscopic phenomena, including models, codes and data for predictive calculations, which determine the transport and distribution of contaminants in the environment.

  18. Annual report 2013. Institute of Resource Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Thorsten (ed.)

    2013-07-01

    The Institute of Resource Ecology (IRE) is one of the eight institutes of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The Research activities are mainly integrated into the program ''Nuclear Safety Research (NUSAFE)'' of the Helmholtz Association (HGF) and focused on the topics ''Safety of Nuclear Waste Disposal'' and ''Safety Research for Nuclear Reactors''. Additionally, various activities have been started investigating chemical and environmental aspects of processing and recycling of strategic metals, namely rare earth elements. These activities are located in the HGF program ''Energy Efficiency, Materials and Resources (EMR)''. Both programs, and therefore all work which is done at IRE, belong to the research sector ''Energy'' of the HGF. The research objectives are the protection of humans and the environment from hazards caused by pollutants resulting from technical processes that produce energy and raw materials. Treating technology and ecology as a unity is the major scientific challenge in assuring the safety of technical processes and gaining their public acceptance. Namely, we investigate the ecological risks exerted by radioactive and non-radioactive metals in the context of nuclear waste disposal, the production of energy in nuclear power plants and in processes along the value chain of metalliferous raw materials. A common goal is to generate better understanding about the dominating processes essential for metal mobilization and immobilization on the molecular level. This in turn enables us to assess the macroscopic phenomena, including models, codes and data for predictive calculations, which determine the transport and distribution of contaminants in the environment.

  19. Individual-based modeling of ecological and evolutionary processes

    Science.gov (United States)

    DeAngelis, Donald L.; Mooij, Wolf M.

    2005-01-01

    Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential-equation and difference-equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis for IBMs by describing five major types of individual variation in IBMs: spatial, ontogenetic, phenotypic, cognitive, and genetic. IBMs are now used in almost all subfields of ecology and evolutionary biology. We map those subfields and look more closely at selected key papers on fish recruitment, forest dynamics, sympatric speciation, metapopulation dynamics, maintenance of diversity, and species conservation. Theorists are currently divided on whether IBMs represent only a practical tool for extending classical theory to more complex situations, or whether individual-based theory represents a radically new research program. We feel that the tension between these two poles of thinking can be a source of creativity in ecology and evolutionary theory.

  20. Ecological studies in the NRDA process: Some guidelines for what is necessary and what is not

    International Nuclear Information System (INIS)

    Rebilliard, G.A.

    1993-01-01

    Biological resources are usually the primary focus of a natural resource damage assessment (NRDA). The NRDA should emphasize ecological studies on resources that sustained substantial injuries resulting in significant reduction of services and loss of use, and thus in substantial damages. Further, assessment costs should be ''reasonable.'' Congress, in passing the laws providing for NRDAs, did not intend that every conceivable injury to every biological resource be documented; this is economically and scientifically unreasonable. Congress did however intend that the NRDA process should be objective, based on sound science, and focused on restoration of the injured resources and services. Appropriate ecological studies should focus on the dominant sensitive habitats, major recreational species, threatened, endangered and otherwise ''sensitive'' species, and ecologically ''key'' species. However, many NRDAs have been and are being conducted in an adversarial atmosphere where the threat of litigation, not cooperation, prevails. This results in additional studies of insignificant, extremely speculative, and/or highly improbable injuries that objective, experienced ecologists would agree will not have ecological significance and should not result in damages. These studies waste time and money for all parties involved. They erode the credibility of the scientists involved as well as the credibility of the whole NRDA process. Examples of both necessary and unnecessary studies will be drawn from several oil spills including Exxon Valdez, Exxon Bayway Pipeline Leak, and Shell Martinez Manufacturing complex

  1. Towards Integrating Political Ecology into Resilience-Based Management

    OpenAIRE

    Amy Quandt

    2016-01-01

    One of the biggest challenges faced today is how to sustainably manage social-ecological systems for both ecological conservation and human wellbeing. This paper explores two approaches to understanding such systems: resilience thinking and political ecology. Resilience thinking is a framework that emerged over the last 40 years as a management strategy for social-ecological systems, and a resilient social-ecological system is capable of absorbing disturbances and still retaining its basic fu...

  2. Ecology of zoonotic infectious diseases in bats: current knowledge and future directions

    Science.gov (United States)

    Hayman, D.T.; Bowen, R.A.; Cryan, P.M.; McCracken, G.F.; O'Shea, T.J.; Peel, A.J.; Gilbert, A.; Webb, C.T.; Wood, J.L.

    2013-01-01

    Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics.

  3. Ecology of Zoonotic Infectious Diseases in Bats: Current Knowledge and Future Directions

    Science.gov (United States)

    Hayman, D T S; Bowen, R A; Cryan, P M; McCracken, G F; O’Shea, T J; Peel, A J; Gilbert, A; Webb, C T; Wood, J L N

    2013-01-01

    Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics. PMID:22958281

  4. A Foray into Fungal Ecology: Understanding Fungi and Their Functions Across Ecosystems

    Science.gov (United States)

    Francis, N.; Dunkirk, N. C.; Peay, K.

    2015-12-01

    Despite their incredible diversity and importance to terrestrial ecosystems, fungi are not included in a standard high school science curriculum. This past summer, however, my work for the Stanford EARTH High School Internship program introduced me to fungal ecology through experiments involving culturing, genomics and root dissections. The two fungal experiments I worked on had very different foci, both searching for answers to broad ecological questions of fungal function and physiology. The first, a symbiosis experiment, sought to determine if the partners of the nutrient exchange between pine trees and their fungal symbionts could choose one another. The second experiment, a dung fungal succession project, compared the genetic sequencing results of fungal extractions from dung versus fungal cultures from dung. My part in the symbiosis experiment involved dissection, weighing and encapsulation of root tissue samples characterized based on the root thickness and presence of ectomycorrhizal fungi. The dung fungi succession project required that I not only learn how to culture various genera of dung fungi but also learn how to extract DNA and RNA for sequencing from the fungal tissue. Although I primarily worked with dung fungi cultures and thereby learned about their unique physiologies, I also learned about the different types of genetic sequencing since the project compared sequences of cultured fungi versus Next Generation sequencing of all fungi present within a dung pellet. Through working on distinct fungal projects that reassess how information about fungi is known within the field of fungal ecology, I learned not only about the two experiments I worked on but also many past related experiments and inquiries through reading scientific papers. Thanks to my foray into fungal research, I now know not only the broader significance of fungi in ecological research but also how to design and conduct ecological experiments.

  5. Emerging beliefs frustrate ecological literacy and meaning-making for students

    Science.gov (United States)

    Fleischer, Stuart

    2011-03-01

    In their treatise, Mitchell and Mueller extend David Orr's notions of ecological literacy (2005) to include biophilia (Wilson 1984) and ecojustice (Mueller 2009). In his writings, David Orr claims that the US is in an "ecological crisis" and that this stems from a crisis of education. The authors outline Orr's theory of ecological literacy as a lens to understand Earth's ecology in view of long-term survival. In their philosophical analysis of Orr's theory, Mitchell and Mueller argue that we move beyond the "shock doctrine" perspective of environmental crisis. By extending Orr's concept of ecological literacy to include biophilia and ecojustice, and by recognizing the importance of experience-in-learning, the authors envision science education as a means to incorporate values and morals within a sustainable ideology of educational reform. Through this forum, I reflect on the doxastic logic and certain moral and social epistemological concepts that may subsequently impact student understanding of ecojustice, biophilia, and moral education. In addition, I assert the need to examine myriad complexities of assisting learners to become ecologically literate at the conceptual and procedural level (Bybee in Achieving scientific literacy: from purposes to practices, Heinemann Educational Books, Portsmouth, 1997), including what Kegan (In over our heads: the mental demands of modern life, Harvard University Press, Cambridge, 1994) refers to as "Third Order" and "Fourth Order" thinking: notions of meaning-construction or meaning-organizational capacity to understand good stewardship of the Earth's environment. Learners who are still in the process of developing reflective and metacognitive skills "cannot have internal conversation about what is actual versus what is possible, because no `self' is yet organized that can put these two categories together" (p. 34). Mitchell and Mueller indicate that middle school learners should undergo a transformation in order to reflect

  6. Advancing the integration of history and ecology for conservation.

    Science.gov (United States)

    Szabó, Péter; Hédl, Radim

    2011-08-01

    The important role of humans in the development of current ecosystems was recognized decades ago; however, the integration of history and ecology in order to inform conservation has been difficult. We identified four issues that hinder historical ecological research and considered possible solutions. First, differences in concepts and methods between the fields of ecology and history are thought to be large. However, most differences stem from miscommunication between ecologists and historians and are less substantial than is usually assumed. Cooperation can be achieved by focusing on the features ecology and history have in common and through understanding and acceptance of differing points of view. Second, historical ecological research is often hampered by differences in spatial and temporal scales between ecology and history. We argue that historical ecological research can only be conducted at extents for which sources in both disciplines have comparable resolutions. Researchers must begin by clearly defining the relevant scales for the given purpose. Third, periods for which quantitative historical sources are not easily accessible (before AD 1800) have been neglected in historical ecological research. Because data from periods before 1800 are as relevant to the current state of ecosystems as more recent data, we suggest that historical ecologists actively seek out data from before 1800 and apply analytic methods commonly used in ecology to these data. Fourth, humans are not usually considered an intrinsic ecological factor in current ecological research. In our view, human societies should be acknowledged as integral parts of ecosystems and societal processes should be recognized as driving forces of ecosystem change. © 2011 Society for Conservation Biology.

  7. River networks as ecological corridors: A coherent ecohydrological perspective

    Science.gov (United States)

    Rinaldo, Andrea; Gatto, Marino; Rodriguez-Iturbe, Ignacio

    2018-02-01

    This paper draws together several lines of argument to suggest that an ecohydrological framework, i.e. laboratory, field and theoretical approaches focused on hydrologic controls on biota, has contributed substantially to our understanding of the function of river networks as ecological corridors. Such function proves relevant to: the spatial ecology of species; population dynamics and biological invasions; the spread of waterborne disease. As examples, we describe metacommunity predictions of fish diversity patterns in the Mississippi-Missouri basin, geomorphic controls imposed by the fluvial landscape on elevational gradients of species' richness, the zebra mussel invasion of the same Mississippi-Missouri river system, and the spread of proliferative kidney disease in salmonid fish. We conclude that spatial descriptions of ecological processes in the fluvial landscape, constrained by their specific hydrologic and ecological dynamics and by the ecosystem matrix for interactions, i.e. the directional dispersal embedded in fluvial and host/pathogen mobility networks, have already produced a remarkably broad range of significant results. Notable scientific and practical perspectives are thus open, in the authors' view, to future developments in ecohydrologic research.

  8. The ecological impact assessment of a proposed road development (the Slovak approach)

    International Nuclear Information System (INIS)

    Igondova, Erika; Pavlickova, Katarina; Majzlan, Oto

    2016-01-01

    The construction of roads is one of the most widespread forms of natural landscape modification. Over the last 20 years, dozens of road constructions have been assessed in Slovakia, which makes it possible to talk about methodological positives and negatives. A special feature of Slovakia is that many planned or renovated roads are located in protected areas or are in contact with them (including Natura 2000 sites). Therefore, it is important to understand the scope of the roads' ecological impacts and find ways for their appropriate evaluation and incorporation into the Environmental Impact Assessment process. For this reason, the Ecological Impact Assessment methodology can be used as a basis for our research, which consists of three stages. In the first stage (scoping), a buffer circumventing the proposed road is created to determine the area for impact prediction and evaluation. Subsequently, the landscape structure and baseline landscape conditions are discussed, a map of current landscape structure is created and the current ecological status of the affected area is calculated. In the second stage (the evaluation of ecological resources), important ecological parts of the landscape are delineated. This step is based on the importance of previous information and its vulnerability, and leads to the mapping of the road ecological impact zone. In the third stage (impact assessment), important ecological parts are spatially correlated with the proposed road construction. Finally, the significance of ecological impacts of the activity is evaluated by applying specific criteria (duration, reversibility, magnitude, size and road ecological impact zone significance). A scale is proposed for each criterion to evaluate the total significance of impacts. In this way, detailed significant ecological impacts can be found which will help lead to proposed correct mitigation measures and a post-project analysis. - Highlights: • This paper proposes a methodology for the Ec

  9. The ecological impact assessment of a proposed road development (the Slovak approach)

    Energy Technology Data Exchange (ETDEWEB)

    Igondova, Erika, E-mail: erika.igondova@gmail.com; Pavlickova, Katarina, E-mail: pavlickova60@gmail.com; Majzlan, Oto, E-mail: majzlan@fns.uniba.sk

    2016-07-15

    The construction of roads is one of the most widespread forms of natural landscape modification. Over the last 20 years, dozens of road constructions have been assessed in Slovakia, which makes it possible to talk about methodological positives and negatives. A special feature of Slovakia is that many planned or renovated roads are located in protected areas or are in contact with them (including Natura 2000 sites). Therefore, it is important to understand the scope of the roads' ecological impacts and find ways for their appropriate evaluation and incorporation into the Environmental Impact Assessment process. For this reason, the Ecological Impact Assessment methodology can be used as a basis for our research, which consists of three stages. In the first stage (scoping), a buffer circumventing the proposed road is created to determine the area for impact prediction and evaluation. Subsequently, the landscape structure and baseline landscape conditions are discussed, a map of current landscape structure is created and the current ecological status of the affected area is calculated. In the second stage (the evaluation of ecological resources), important ecological parts of the landscape are delineated. This step is based on the importance of previous information and its vulnerability, and leads to the mapping of the road ecological impact zone. In the third stage (impact assessment), important ecological parts are spatially correlated with the proposed road construction. Finally, the significance of ecological impacts of the activity is evaluated by applying specific criteria (duration, reversibility, magnitude, size and road ecological impact zone significance). A scale is proposed for each criterion to evaluate the total significance of impacts. In this way, detailed significant ecological impacts can be found which will help lead to proposed correct mitigation measures and a post-project analysis. - Highlights: • This paper proposes a methodology for the

  10. Overview of a workshop to expand the use of emerging technology to understand the ecology of grouse in a changing climate

    Science.gov (United States)

    Jennifer Forbey; Gail Patricelli; Donna Delparte; Alan Krakauer; Peter Olsoy; Marcella Fremgen; Jordan Nobler; Nancy Glenn; Lucas Spaete; Bryce Richardson; Lisa Shipley; Jessica. Mitchell

    2016-01-01

    We held a workshop related to the use of emerging technology to understand the ecology of grouse on 03 September 2015 from 08:00 to 17:30 at the Reykjavik Family Park and Zoo, Reykjavik, Iceland as part of the 13th International Grouse Symposium. Our overall objective was to translate technological advances in remote sensing, rapid biochemical assays, and robotics to...

  11. The Gut Microbiota of Rural Papua New Guineans: Composition, Diversity Patterns, and Ecological Processes

    Directory of Open Access Journals (Sweden)

    Inés Martínez

    2015-04-01

    Full Text Available Although recent research revealed an impact of westernization on diversity and composition of the human gut microbiota, the exact consequences on metacommunity characteristics are insufficiently understood, and the underlying ecological mechanisms have not been elucidated. Here, we have compared the fecal microbiota of adults from two non-industrialized regions in Papua New Guinea (PNG with that of United States (US residents. Papua New Guineans harbor communities with greater bacterial diversity, lower inter-individual variation, vastly different abundance profiles, and bacterial lineages undetectable in US residents. A quantification of the ecological processes that govern community assembly identified bacterial dispersal as the dominant process that shapes the microbiome in PNG but not in the US. These findings suggest that the microbiome alterations detected in industrialized societies might arise from modern lifestyle factors limiting bacterial dispersal, which has implications for human health and the development of strategies aimed to redress the impact of westernization.

  12. Landscape Ecology

    DEFF Research Database (Denmark)

    Christensen, Andreas Aagaard; Brandt, Jesper; Svenningsen, Stig Roar

    2017-01-01

    , and the ecological significance of the patterns which are generated by such processes. In landscape ecology, perspectives drawn from existing academic disciplines are integrated based on a common, spatially explicit mode of analysis developed from classical holistic geography, emphasizing spatial and landscape...... to translate positivist readings of the environment and hermeneutical perspectives on socioecological interaction into a common framework or terminology....

  13. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2005-01-01

    Increasingly, information systems must be developed and implemented as a part of business change. This is a challenge for the IS project manager, since business change and information systems development usually are performed as separate processes. Thus, there is a need to understand and manage......-technical innovation in a situation where the organisational change process and the IS development process are parallel but incongruent. We also argue that iterative software engineering frameworks are well structured to support process interaction. Finally, we advocate that the IS project manager needs to manage...... the relationship between these two kinds of processes. To understand the interaction between information systems development and planned organisational change we introduce the concept of process interaction. We draw on a longitudinal case study of an IS development project that used an iterative and incremental...

  14. An Integrated Approach to Modelling the Economy-Society-Ecology System in Urbanization Process

    Directory of Open Access Journals (Sweden)

    Yunqiang Liu

    2014-04-01

    Full Text Available Urbanization has become a key part of social and economic progress in the 21st Century, but achieving healthy and safe urban development has a long way to go for many developed and developing countries. Urbanization has been recognized as a complex ecosystem which is affected by economic, social, and ecological factors. With this in mind, this paper looks at many factors to first evaluate based on the matter-element (ME method and then model an Economy-Society-Ecology (ESE subsystem using a hybrid method by a fuzzy analytical hierarchy process (FAHP, and then by using the entropy method (EM to determine the relevant index weights. To avoid subjectivity when defining the model’s boundaries, the technique for order preference by similarity to an ideal solution (TOPSIS is introduced. Then, a coupling coordination degree model focusing on the degree of coordination in the ESE subsystem is established. Panel data collected from 2003 to 2012 for Chengdu, China, is then simulated to analyze the development process. The results show that: (1 The quality of urbanization continues to improve and the phasic features are presented; (2 The sensitivity analysis of subsystem weight shown that it had less effect on the coupling coordinated system; (3 The coordination in the ESE subsystem has also improved. However, the development rate of the economic subsystem is greater than that of the societal and ecological subsystem. The approach used here therefore, is shown to provide a promising basis for policy-making to support healthy urban development.

  15. Annual Research Review: What is Resilience within the Social Ecology of Human Development?

    Science.gov (United States)

    Ungar, Michael; Ghazinour, Mehdi; Richter, Jorg

    2013-01-01

    Background: The development of Bronfenbrenner's bio-social-ecological systems model of human development parallels advances made to the theory of resilience that progressively moved from a more individual (micro) focus on traits to a multisystemic understanding of person-environment reciprocal processes. Methods: This review uses…

  16. IMPRINT OF THE PAST: ECOLOGICAL HISTORY OF NEW BEDFORD HARBOR

    Science.gov (United States)

    To have an understanding of ecological conditions in a highly impacted area, it is important to look at how past events affected current conditions. Historical studies provide an understanding of how current ecological conditions arose, provide information to identify past pollut...

  17. Estimating the ecology of extinct species with paleoecological data assimilation

    Science.gov (United States)

    Raiho, A.; McLachlan, J. S.; Dietze, M.

    2017-12-01

    In order to understand long term, unobservable ecosystem processes, ecologists must use both paleoecoloigcal data and ecosystem models. Models parameterize species competitive interactions using modern data. But, modern ecological or physiological observations are not available for extinct species, making it difficult for models to conceptualize their ecology. For instance, American chestnut (Castanea dentata), who played a large role in forests of northeastern US, was decimated by disease to virtual extinction. Since chestnut's demise, defining its ecology has been controversial. Models typically assume that chestnut's ecology was very similar to oak; They parameterize chestnut like oak species. These assumptions are drawn from paleoecological data, but these data are often reported without uncertainty. Since the paleoecological data are often reported without uncertainty, paleoecological data has never been directly incorporated with ecosystem models. We developed a Bayesian statistical model to estimate fractional composition from paleoecological data with uncertainty. Then, we assimilated this data product into an ecosystem model for long term forest succession using a generalized ensemble adjustment filter to determine which species demographic parameters lead to changes in species composition over the last 2,000 years at Harvard Forest. We found that chestnut was strongly negatively correlated with white pine (Pinus strobus) and red oak (Quercus rubra) in the process covariance matrix, suggesting a strong competitive interaction that is not currently understood by models for forest succession. These findings provide support for utilizing a data assimilation framework to ecologically interpret paleoecological data or data products to learn about the ecology of extinct species.

  18. Increasing process understanding by analyzing complex interactions in experimental data

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Allesø, Morten; Kristensen, Henning Gjelstrup

    2009-01-01

    understanding of a coating process. It was possible to model the response, that is, the amount of drug released, using both mentioned techniques. However, the ANOVAmodel was difficult to interpret as several interactions between process parameters existed. In contrast to ANOVA, GEMANOVA is especially suited...... for modeling complex interactions and making easily understandable models of these. GEMANOVA modeling allowed a simple visualization of the entire experimental space. Furthermore, information was obtained on how relative changes in the settings of process parameters influence the film quality and thereby drug......There is a recognized need for new approaches to understand unit operations with pharmaceutical relevance. A method for analyzing complex interactions in experimental data is introduced. Higher-order interactions do exist between process parameters, which complicate the interpretation...

  19. [Engineering issues of microbial ecology in space agriculture].

    Science.gov (United States)

    Yamashita, Masamichi; Ishikawa, Yoji; Oshima, Tairo

    2005-03-01

    Closure of the materials recycle loop for water-foods-oxygen is the primary purpose of space agriculture on Mars and Moon. A microbial ecological system takes a part of agriculture to process our metabolic excreta and inedible biomass and convert them to nutrients and soil substrate for cultivating plants. If we extend the purpose of space agriculture to the creation and control of a healthy and pleasant living environment, we should realize that our human body should not be sterilized but exposed to the appropriate microbial environment. We are proposing a use of hyper-thermophilic aerobic composting microbial ecology in space agriculture. Japan has a broad historical and cultural background on this subject. There had been agriculture that drove a closed loop of materials between consuming cities and farming villages in vicinity. Recent environmental problems regarding garbage collection and processing in towns have motivated home electronics companies to innovate "garbage composting" machines with bacterial technology. Based on those matured technology, together with new insights on microbiology and microbial ecology, we have been developing a conceptual design of space agriculture on Moon and Mars. There are several issues to be answered in order to prove effectiveness of the use of microbial systems in space. 1) Can the recycled nutrients, processed by the hyper-thermal aerobic composting microbial ecology, be formed in the physical and chemical state or configuration, with which plants can uptake those nutrients? A possibility of removing any major components of fertilizer from its recycle loop is another item to be evaluated. 2) What are the merits of forming soil microbial ecology around the root system of plants? This might be the most crucial question. Recent researches exhibit various mutually beneficial relationships among soil microbiota and plants, and symbiotic ecology in composting bacteria. It is essential to understand those features, and define

  20. Isolation by environmental distance in mobile marine species: molecular ecology of franciscana dolphins at their southern range.

    Science.gov (United States)

    Mendez, Martin; Rosenbaum, Howard C; Subramaniam, Ajit; Yackulic, Charles; Bordino, Pablo

    2010-06-01

    The assessment of population structure is a valuable tool for studying the ecology of endangered species and drafting conservation strategies. As we enhance our understanding about the structuring of natural populations, it becomes important that we also understand the processes behind these patterns. However, there are few rigorous assessments of the influence of environmental factors on genetic patterns in mobile marine species. Given their dispersal capabilities and localized habitat preferences, coastal cetaceans are adequate study species for evaluating environmental effects on marine population structure. The franciscana dolphin, a rare coastal cetacean endemic to the Western South Atlantic, was studied to examine these issues. We analysed genetic data from the mitochondrial DNA and 12 microsatellite markers for 275 franciscana samples utilizing frequency-based, maximum-likelihood and Bayesian algorithms to assess population structure and migration patterns. This information was combined with 10 years of remote sensing environmental data (chlorophyll concentration, water turbidity and surface temperature). Our analyses show the occurrence of genetically isolated populations within Argentina, in areas that are environmentally distinct. Combined evidence of genetic and environmental structure suggests that isolation by distance and a process here termed isolation by environmental distance can explain the observed correlations. Our approach elucidated important ecological and conservation aspects of franciscana dolphins, and has the potential to increase our understanding of ecological processes influencing genetic patterns in other marine species.

  1. 36 CFR 219.20 - Ecological sustainability.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Ecological sustainability... Sustainability § 219.20 Ecological sustainability. To achieve ecological sustainability, the responsible official... diversity and species diversity are components of ecological sustainability. The planning process must...

  2. Ecologization Processes in Society Today: the Challenge of Globalization

    Directory of Open Access Journals (Sweden)

    Aurelija Samoškienė

    2012-07-01

    Full Text Available Negative impact on the environment made by human activity is discussed in this article as well as main problems caused by interaction with negative environmental changes. Ecologization conception and its evolution are analyzed chronologically. Key perspectives of scientific research in the ecologization field are determined; the context of today’s society is taken into account.Article in Lithuanian

  3. Empowering Learning through Natural, Human, and Building Ecologies.

    Science.gov (United States)

    Kobet, Robert J.

    This article asserts that it is critical to understand the connections between human ecology and building ecology to create humane environments that show inspiration and creativity and that also serve diverse needs. It calls for efforts to: (1) construct an environmental education approach that fuses the three ecologies (natural, human, and…

  4. Natural History: the sense of wonder, creativity and progress in ecology

    Directory of Open Access Journals (Sweden)

    Paul K. Dayton

    2001-12-01

    Full Text Available This essay addresses the question of blending natural history and ecological wisdom into the genuine creativity exemplified by Prof. Ramon Margalef. Many have observed that modern biology is a triumph of precision over accuracy, and that ecology has sought maturity by striving toward this model in which the precision value of the tools has supplanted important questions. In pursuing a model of hard science, ecology has struggled with Popperian approaches designed to create a thin patina of real science over the vast seas of uncertainty so admired by the naturalists. We start with a discussion of the importance of natural history in ecology and conservation, and the present state of natural history in academic ecology. We then discuss the respect for natural history in human cultures, and conclude that an infatuation with authority has obfuscated the important truths to be found in nature. We consider some general processes associated with creativity, and finally we ask how natural history influences creativity in ecology. We conclude that the soaring creativity exemplified by Ramon Margalef is based on a joyful almost spiritual understanding of natural history and the courage to avoid authority.

  5. Urban Ecological Stewardship: Understanding the Structure, Function and Network of Community-based Urban Land Management

    Directory of Open Access Journals (Sweden)

    Lindsay K. Campbell

    2008-01-01

    Full Text Available Urban environmental stewardship activities are on the rise in cities throughout the Northeast. Groups participating in stewardship activities range in age, size, and geography and represent an increasingly complex and dynamic arrangement of civil society, government and business sectors. To better understand the structure, function and network of these community-based urban land managers, an assessment was conducted in 2004 by the research subcommittee of the Urban Ecology Collaborative. The goal of the assessment was to better understand the role of stewardship organizations engaged in urban ecology initiatives in selected major cities in the Northeastern U.S.: Boston, New Haven, New York City, Pittsburgh, Baltimore, and Washington, D.C. A total of 135 active organizations participated in this assessment. Findings include the discovery of a dynamic social network operating within cities, and a reserve of social capital and expertise that could be better utilized. Although often not the primary land owner, stewardship groups take an increasingly significant responsibility for a wide range of land use types including street and riparian corridors, vacant lots, public parks and gardens, green roofs, etc. Responsibilities include the delivery of public programs as well as daily maintenance and fundraising support. While most of the environmental stewardship organizations operate on staffs of zero or fewer than ten, with small cohorts of community volunteers, there is a significant difference in the total amount of program funding. Nearly all respondents agree that committed resources are scarce and insufficient with stewards relying upon and potentially competing for individual donations, local foundations, and municipal support. This makes it a challenge for the groups to grow beyond their current capacity and to develop long-term programs critical to resource management and education. It also fragments groups, making it difficult for planners and

  6. Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics.

    Science.gov (United States)

    Jeltsch, Florian; Bonte, Dries; Pe'er, Guy; Reineking, Björn; Leimgruber, Peter; Balkenhol, Niko; Schröder, Boris; Buchmann, Carsten M; Mueller, Thomas; Blaum, Niels; Zurell, Damaris; Böhning-Gaese, Katrin; Wiegand, Thorsten; Eccard, Jana A; Hofer, Heribert; Reeg, Jette; Eggers, Ute; Bauer, Silke

    2013-01-01

    Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of 'movement ecology'. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide 'mobile links' between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through 'equalizing' and 'stabilizing' mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels.

  7. Developing a shared understanding of the Upper Mississippi River: the foundation of an ecological resilience assessment

    Science.gov (United States)

    Bouska, Kristen; Houser, Jeff N.; De Jager, Nathan R.; Hendrickson, Jon S.

    2018-01-01

    The Upper Mississippi River System (UMRS) is a large and complex floodplain river ecosystem that spans the jurisdictions of multiple state and federal agencies. In support of ongoing ecosystem restoration and management by this broad partnership, we are undertaking a resilience assessment of the UMRS. We describe the UMRS in the context of an ecological resilience assessment. Our description articulates the temporal and spatial extent of our assessment of the UMRS, the relevant historical context, the valued services provided by the system, and the fundamental controlling variables that determine its structure and function. An important objective of developing the system description was to determine the simplest, adequate conceptual understanding of the UMRS. We conceptualize a simplified UMRS as three interconnected subsystems: lotic channels, lentic off-channel areas, and floodplains. By identifying controlling variables within each subsystem, we have developed a shared understanding of the basic structure and function of the UMRS, which will serve as the basis for ongoing quantitative evaluations of factors that likely contribute to the resilience of the UMRS. As we undertake the subsequent elements of a resilience assessment, we anticipate our improved understanding of interactions, feedbacks, and critical thresholds will assist natural resource managers to better recognize the system’s ability to adapt to existing and new stresses.

  8. A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling

    Science.gov (United States)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-06-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  9. A 2-D process-based model for suspended sediment dynamics: A first step towards ecological modeling

    Science.gov (United States)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-01-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  10. [Applied ecology: retrospect and prospect].

    Science.gov (United States)

    He, Xingyuan; Zeng, Dehui

    2004-10-01

    Applied ecology is evolved into a principal part of modern ecology that rapidly develops. The major stimulus for the development of applied ecology roots in seeking the solutions for the problems of human populations, resources and environments. Through four decades, the science of applied ecology has been becoming a huge group of disciplines. The future for the applied ecology should concern more with human-influenced and managed ecosystems, and acknowledge humans as the components of ecosystems. Nowadays and in future, the top-priorities in applied ecology should include following fields: sustainable ecosystems and biosphere, ecosystem services and ecological design, ecological assessment of genetically modified organisms, ecology of biological invasions, epidemical ecology, ecological forecasting, ecological process and its control. The authors believe that the comprehensive and active research hotspots coupled some new traits would occur around these fields in foreseeable future.

  11. An analytically tractable model for community ecology with many species

    Science.gov (United States)

    Dickens, Benjamin; Fisher, Charles; Mehta, Pankaj; Pankaj Mehta Biophysics Theory Group Team

    A fundamental problem in community ecology is to understand how ecological processes such as selection, drift, and immigration yield observed patterns in species composition and diversity. Here, we present an analytically tractable, presence-absence (PA) model for community assembly and use it to ask how ecological traits such as the strength of competition, diversity in competition, and stochasticity affect species composition in a community. In our PA model, we treat species as stochastic binary variables that can either be present or absent in a community: species can immigrate into the community from a regional species pool and can go extinct due to competition and stochasticity. Despite its simplicity, the PA model reproduces the qualitative features of more complicated models of community assembly. In agreement with recent work on large, competitive Lotka-Volterra systems, the PA model exhibits distinct ecological behaviors organized around a special (``critical'') point corresponding to Hubbell's neutral theory of biodiversity. Our results suggest that the concepts of ``phases'' and phase diagrams can provide a powerful framework for thinking about community ecology and that the PA model captures the essential ecological dynamics of community assembly. Pm was supported by a Simons Investigator in the Mathematical Modeling of Living Systems and a Sloan Research Fellowship.

  12. The repository ecology an approach to understanding repository and service interactions

    CERN Document Server

    CERN. Geneva; Hagemann, Melissa

    2007-01-01

    An increasing number of university institutions and other organisations are deciding to deploy repositories and a growing number of formal and informal distributed services are supporting or capitalising on the information these repositories provide. Despite reasonably well understood technical architectures, early majority adopters may struggle to articulate their place within the actualities of a wider information environment. The idea of a repository ecology provides developers and administrators with a useful way of articulating and analysing their place in the information environment, and the technical and organisational interactions they have, or are developing, with other parts of such an environment. This presentation will provide an overview of the concept of a repository ecology and examine some examples from the domains of scholarly communications and elearning.

  13. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-06-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread. 

  14. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-02-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important for the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread.

  15. The importance of understanding during the teaching process

    Directory of Open Access Journals (Sweden)

    Dubljanin Saša

    2015-01-01

    Full Text Available Learning in the teaching process often goes on without proper understanding which is one of important problems that modern didactics tries to solve. In order to direct the totality of teaching towards understanding it is necessary to answer the question what understanding is, which is why we analysed different philosophical views on the concept of understanding and stressed their semblance to pedagogic explanations. Different kinds of understanding were analyzed as well as their role and contribution in different teaching situations, especially in the context of problem solving. As an alternative to the teaching based on accumulation of knowledge the characteristics and some principles of teaching focused on understanding are described, and the need for stimulating and developing understanding as an important goal of education. The results of our research unequivocally show that learning with understanding enables students to memorize the teaching material better, as well as to understand the whole teaching subject and efficiently apply the acquired knowledge out of school, and leads to more flexible behaviour and better coping in everyday life.

  16. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context.

    Science.gov (United States)

    Terhorst, Casey P; Lennon, Jay T; Lau, Jennifer A

    2014-06-22

    Evolution can occur on ecological time-scales, affecting community and ecosystem processes. However, the importance of evolutionary change relative to ecological processes remains largely unknown. Here, we analyse data from a long-term experiment in which we allowed plant populations to evolve for three generations in dry or wet soils and used a reciprocal transplant to compare the ecological effect of drought and the effect of plant evolutionary responses to drought on soil microbial communities and nutrient availability. Plants that evolved under drought tended to support higher bacterial and fungal richness, and increased fungal : bacterial ratios in the soil. Overall, the magnitudes of ecological and evolutionary effects on microbial communities were similar; however, the strength and direction of these effects depended on the context in which they were measured. For example, plants that evolved in dry environments increased bacterial abundance in dry contemporary environments, but decreased bacterial abundance in wet contemporary environments. Our results suggest that interactions between recent evolutionary history and ecological context affect both the direction and magnitude of plant effects on soil microbes. Consequently, an eco-evolutionary perspective is required to fully understand plant-microbe interactions.

  17. Structural complexity, movement bias, and metapopulation extinction risk in dendritic ecological networks

    Science.gov (United States)

    Campbell Grant, Evan H.

    2011-01-01

    Spatial complexity in metacommunities can be separated into 3 main components: size (i.e., number of habitat patches), spatial arrangement of habitat patches (network topology), and diversity of habitat patch types. Much attention has been paid to lattice-type networks, such as patch-based metapopulations, but interest in understanding ecological networks of alternative geometries is building. Dendritic ecological networks (DENs) include some increasingly threatened ecological systems, such as caves and streams. The restrictive architecture of dendritic ecological networks might have overriding implications for species persistence. I used a modeling approach to investigate how number and spatial arrangement of habitat patches influence metapopulation extinction risk in 2 DENs of different size and topology. Metapopulation persistence was higher in larger networks, but this relationship was mediated by network topology and the dispersal pathways used to navigate the network. Larger networks, especially those with greater topological complexity, generally had lower extinction risk than smaller and less-complex networks, but dispersal bias and magnitude affected the shape of this relationship. Applying these general results to real systems will require empirical data on the movement behavior of organisms and will improve our understanding of the implications of network complexity on population and community patterns and processes.

  18. Understanding the decline and resilience loss of a long-lived social-ecological system: insights from system dynamics

    Directory of Open Access Journals (Sweden)

    Alicia Tenza

    2017-06-01

    Full Text Available Collapse of social-ecological systems (SESs is a common process in human history. Depletion of natural resources, scarcity of human capital, or both, is/are common pathways toward collapse. We use the system dynamics approach to better understand specific problems of small-scale, long-lived SESs. We present a qualitative (or conceptual model using the conceptualization process of the system dynamics approach to study the dynamics of an oasis in Mexico that has witnessed a dramatic transition to decline in recent decades. We used indepth interviews, participant observation, expert opinions, and official statistical data sets to define the boundaries, and structure in a causal loop diagram of our studied system. We described historical trends and showed the reference mode for the main system variables (observed data, and analyzed the expected system behavior according to the system structure. We identified the main drivers that changed the system structure, as well as structural changes, and the effects of these changes on the dynamics, resilience, and vulnerability of this SES. We found that the tendency of this SES toward collapse was triggered by exogenous factors (growth of modern agriculture in nearby valleys, and socio-political relocation, and was maintained by an endogenous structure. These structural changes weakened the resilience of this SES. One of these changes resulted in a long-term maladaptation of the SES, which increased its vulnerability to frequent system disturbances (hurricanes and droughts. The conceptual model developed provides an in-depth qualitative description of the system, with an important amount of qualitative and quantitative information, to establish the structural hypothesis of the observed behavior. Using this qualitative model, the next research steps are to develop a quantitative model to test the qualitative theories, and to explore future scenarios of system resilience for decision-making processes to

  19. Bridging food webs, ecosystem metabolism, and biogeochemistry using ecological stoichiometry theory

    DEFF Research Database (Denmark)

    Welti, Nina; Striebel, Maren; Ulseth, Amber J.

    2017-01-01

    process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency......, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment....

  20. Task-specific visual cues for improving process model understanding

    NARCIS (Netherlands)

    Petrusel, Razvan; Mendling, Jan; Reijers, Hajo A.

    2016-01-01

    Context Business process models support various stakeholders in managing business processes and designing process-aware information systems. In order to make effective use of these models, they have to be readily understandable. Objective Prior research has emphasized the potential of visual cues to

  1. Ecological Vulnerability Assessment Based on Fuzzy Analytical Method and Analytic Hierarchy Process in Yellow River Delta.

    Science.gov (United States)

    Wu, Chunsheng; Liu, Gaohuan; Huang, Chong; Liu, Qingsheng; Guan, Xudong

    2018-04-25

    The Yellow River Delta (YRD), located in Yellow River estuary, is characterized by rich ecological system types, and provides habitats or migration stations for wild birds, all of which makes the delta an ecological barrier or ecotone for inland areas. Nevertheless, the abundant natural resources of YRD have brought huge challenges to the area, and frequent human activities and natural disasters have damaged the ecological systems seriously, and certain ecological functions have been threatened. Therefore, it is necessary to determine the status of the ecological environment based on scientific methods, which can provide scientifically robust data for the managers or stakeholders to adopt timely ecological protection measures. The aim of this study was to obtain the spatial distribution of the ecological vulnerability (EV) in YRD based on 21 indicators selected from underwater status, soil condition, land use, landform, vegetation cover, meteorological conditions, ocean influence, and social economy. In addition, the fuzzy analytic hierarchy process (FAHP) method was used to obtain the weights of the selected indicators, and a fuzzy logic model was constructed to obtain the result. The result showed that the spatial distribution of the EV grades was regular, while the fuzzy membership of EV decreased gradually from the coastline to inland area, especially around the river crossing, where it had the lowest EV. Along the coastline, the dikes had an obviously protective effect for the inner area, while the EV was higher in the area where no dikes were built. This result also showed that the soil condition and groundwater status were highly related to the EV spatially, with the correlation coefficients −0.55 and −0.74 respectively, and human activities had exerted considerable pressure on the ecological environment.

  2. Interior Design Education within a Human Ecological Framework

    Science.gov (United States)

    Kaup, Migette L.; Anderson, Barbara G.; Honey, Peggy

    2007-01-01

    An education based in human ecology can greatly benefit interior designers as they work to understand and improve the human condition. Design programs housed in colleges focusing on human ecology can improve the interior design profession by taking advantage of their home base and emphasizing the human ecological framework in the design curricula.…

  3. Relationship among values, beliefs, norms and ecological behaviour.

    Science.gov (United States)

    González López, Antonio; Amérigo Cuervo-Arango, María

    2008-11-01

    The present study focuses mainly on the relationship between psychological constructs and ecological behaviour. Empirical analysis links personal values, ecological beliefs, consequences of environmental conditions, denial of ecological obligation, environmental control, personal norms and environment protection behaviour. Survey data from a path analysis of a Spanish sample of 403 individuals were used, showing that ecological beliefs, personal norms and eco-altruistic values have become the main psychological explanatory variables of environment protective behaviour. Ecological beliefs, when measured by the New Ecological Paradigm Scale, affected ecological behaviour decisively. Environmental and altruistic values were shown to be related to moral obligation, and a basic variable to understand behaviour. Personal norm mediated the effects of values and environmental control on ecological behaviour.

  4. Ecology for the shrinking city (JA) | Science Inventory | US ...

    Science.gov (United States)

    This article brings together the concepts of shrinking cities—the hundreds of cities worldwide experiencing long-term population loss—and ecology for the city. Ecology for the city is the application of a social–ecological understanding to shaping urban form and function along sustainable trajectories. Ecology for the shrinking city therefore acknowledges that urban transformations to sustainable trajectories may be quite different in shrinking cities as compared with growing cities. Shrinking cities are well poised for transformations, because shrinking is perceived as a crisis and can mobilize the social capacity to change. Ecology is particularly well suited to contribute solutions because of the extent of vacant land in shrinking cities that can be leveraged for ecosystem-services provisioning. A crucial role of an ecology for the shrinking city is identifying innovative pathways that create locally desired amenities that provide ecosystem services and contribute to urban sustainability at multiple scales. This paper brings together the concepts of ecology for the city and shrinking cities – the hundreds of cities worldwide experiencing long-term population loss. Ecology for the city is the application of social-ecological understanding to shaping urban form and function along sustainable trajectories. Ecology for the shrinking city acknowledges that urban transformations to sustainable trajectories may be quite different in shrinking cities as compa

  5. Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology.

    Science.gov (United States)

    Bibby, Kyle

    2014-02-01

    The recent rise in "omics"-enabled approaches has lead to improved understanding in many areas of microbial ecology. However, despite the importance that viruses play in a broad microbial ecology context, viral ecology remains largely not integrated into high-throughput microbial ecology studies. A fundamental hindrance to the integration of viral ecology into omics-enabled microbial ecology studies is the lack of suitable reference bacteriophage genomes in reference databases-currently, only 0.001% of bacteriophage diversity is represented in genome sequence databases. This commentary serves to highlight this issue and to promote bacteriophage genome sequencing as a valuable scientific undertaking to both better understand bacteriophage diversity and move towards a more holistic view of microbial ecology.

  6. Trophic Ecology of Benthic Marine Invertebrates with Bi-Phasic Life Cycles: What Are We Still Missing?

    Science.gov (United States)

    Calado, Ricardo; Leal, Miguel Costa

    2015-01-01

    The study of trophic ecology of benthic marine invertebrates with bi-phasic life cycles is critical to understand the mechanisms shaping population dynamics. Moreover, global climate change is impacting the marine environment at an unprecedented level, which promotes trophic mismatches that affect the phenology of these species and, ultimately, act as drivers of ecological and evolutionary change. Assessing the trophic ecology of marine invertebrates is critical to understanding maternal investment, larval survival to metamorphosis, post-metamorphic performance, resource partitioning and trophic cascades. Tools already available to assess the trophic ecology of marine invertebrates, including visual observation, gut content analysis, food concentration, trophic markers, stable isotopes and molecular genetics, are reviewed and their main advantages and disadvantages for qualitative and quantitative approaches are discussed. The challenges to perform the partitioning of ingestion, digestion and assimilation are discussed together with different approaches to address each of these processes for short- and long-term fingerprinting. Future directions for research on the trophic ecology of benthic marine invertebrates with bi-phasic life cycles are discussed with emphasis on five guidelines that will allow for systematic study and comparative meta-analysis to address important unresolved questions. © 2015 Elsevier Ltd. All rights reserved.

  7. Ecological Understanding 1: Ways of Experiencing Photosynthesis.

    Science.gov (United States)

    Carlsson, Britta

    2002-01-01

    Investigates 10 student teachers' understanding of the different ways in which the function of the ecosystem could be experienced. Explores the functional aspects of the ecosystem using a system approach. Concludes that the idea of transformation is crucial to more complex ways of understanding photosynthesis. (Contains 62 references.) (Author/YDS)

  8. The ecological economics: An ecological economics

    International Nuclear Information System (INIS)

    Castiblanco R, Carmenza

    2007-01-01

    Ecological Economics arise as a scientific discipline aimed to integrate concepts of economics, ecology, thermodynamics, ethic and other natural and social sciences in order to incorporate a biophysical and integrated perspective of the inter dependences between economies and environment, from a plural conception and a methodology beyond disciplines. Ecological Economics studies the black box of economic processes usually excluded of the traditional economics: thermodynamics and ecology. Although it is relatively a new field of study, it has been strengthening its theoretical framework with scientific basis and analytic principles that lead to its identification as a new discipline that show a whole new paradigm. The scope of this article is to show the conceptual and methodological bases, the main founders, approaches and central debates of this new discipline. This brief introduction is a preamble to the papers of the meeting Ecological Economics: a perspective for Colombia included in this number, that took place on September 22 - 27 of 2007, at the National University of Colombia at Bogota. During tree days national and international experts, professors, researchers, workers of environmental sector and people interested on environmental issues joined together to know the conceptual and methodological achievements reached of this discipline; as well as to analyse and evaluate the environmental problems of the country, from the systemic, interdisciplinary and general perspective that it promotes

  9. Reef sharks: recent advances in ecological understanding to inform conservation.

    Science.gov (United States)

    Osgood, G J; Baum, J K

    2015-12-01

    Sharks are increasingly being recognized as important members of coral-reef communities, but their overall conservation status remains uncertain. Nine of the 29 reef-shark species are designated as data deficient in the IUCN Red List, and three-fourths of reef sharks had unknown population trends at the time of their assessment. Fortunately, reef-shark research is on the rise. This new body of research demonstrates reef sharks' high site restriction, fidelity and residency on coral reefs, their broad trophic roles connecting reef communities and their high population genetic structure, all information that should be useful for their management and conservation. Importantly, recent studies on the abundance and population trends of the three classic carcharhinid reef sharks (grey reef shark Carcharhinus amblyrhynchos, blacktip reef shark Carcharhinus melanopterus and whitetip reef shark Triaenodon obesus) may contribute to reassessments identifying them as more vulnerable than currently realized. Because over half of the research effort has focused on only these three reef sharks and the nurse shark Ginglymostoma cirratum in only a few locales, there remain large taxonomic and geographic gaps in reef-shark knowledge. As such, a large portion of reef-shark biodiversity remains uncharacterized despite needs for targeted research identified in their red list assessments. A research agenda for the future should integrate abundance, life history, trophic ecology, genetics, habitat use and movement studies, and expand the breadth of such research to understudied species and localities, in order to better understand the conservation requirements of these species and to motivate effective conservation solutions. © 2015 The Fisheries Society of the British Isles.

  10. The repository ecology: an approach to understanding repository and service interactions

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    An increasing number of university institutions and other organisations are deciding to deploy repositories and a growing number of formal and informal distributed services are supporting or capitalising on the information these repositories provide. Despite reasonably well understood technical architectures, early majority adopters may struggle to articulate their place within the actualities of a wider information environment. The idea of a repository ecology provides developers and administrators with a useful way of articulating and analysing their place in the information environment, and the technical and organisational interactions they have, or are developing, with other parts of such an environment. This presentation will provide an overview of the concept of a repository ecology and examine some examples from the domains of scholarly communications and elearning. View John Robertson's biography

  11. Towards an Ecology of Participation: Process Philosophy and Co-Creation of Higher Education Curricula

    Science.gov (United States)

    Taylor, Carol A.; Bovill, Catherine

    2018-01-01

    This article brings together the authors' previous work on co-created curricula (Bovill, 2013a, 2014; Bovill et al., 2011) and on partnership and ethics (Taylor, 2015; Taylor and Robinson, 2014), to develop the concept of co-created curricula as an ecology of participation. In doing so, it deploys Alfred North Whitehead's process philosophy to…

  12. The pre-history of modern ecological economics

    DEFF Research Database (Denmark)

    Røpke, Inge

    This paper provides a historical perspective for the discussion on ecological economics as a special field of research. By studying the historical background of ecological economics, the present discussions and tensions inside the field might become easier to understand and to relate to. The stud...

  13. Ecology and evolution of plant–pollinator interactions

    Science.gov (United States)

    Mitchell, Randall J.; Irwin, Rebecca E.; Flanagan, Rebecca J.; Karron, Jeffrey D.

    2009-01-01

    Background Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. Scope In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant–Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come. PMID:19482881

  14. Ecology and evolution of plant-pollinator interactions.

    Science.gov (United States)

    Mitchell, Randall J; Irwin, Rebecca E; Flanagan, Rebecca J; Karron, Jeffrey D

    2009-06-01

    Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant-pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant-Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come.

  15. Perspectives on why digital ecologies matter: combining population genetics and ecologically informed agent-based models with GIS for managing dipteran livestock pests.

    Science.gov (United States)

    Peck, Steven L

    2014-10-01

    It is becoming clear that handling the inherent complexity found in ecological systems is an essential task for finding ways to control insect pests of tropical livestock such as tsetse flies, and old and new world screwworms. In particular, challenging multivalent management programs, such as Area Wide Integrated Pest Management (AW-IPM), face daunting problems of complexity at multiple spatial scales, ranging from landscape level processes to those of smaller scales such as the parasite loads of individual animals. Daunting temporal challenges also await resolution, such as matching management time frames to those found on ecological and even evolutionary temporal scales. How does one deal with representing processes with models that involve multiple spatial and temporal scales? Agent-based models (ABM), combined with geographic information systems (GIS), may allow for understanding, predicting and managing pest control efforts in livestock pests. This paper argues that by incorporating digital ecologies in our management efforts clearer and more informed decisions can be made. I also point out the power of these models in making better predictions in order to anticipate the range of outcomes possible or likely. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.

  16. Sparking interest in restaurant dishes? Cognitive and affective processes underlying dish design and ecological origin. An fMRI study.

    Science.gov (United States)

    Muñoz-Leiva, Francisco; Gómez-Carmona, Diego

    2018-06-14

    The objective of the current paper is to verify to what extent the presentation of a restaurant dish and the origin of its food provoke reactions in the consumer's brain during the visualization and the decision-making process, from an exploratory approach. The two independent variables singled out for study were whether the presentation was well or poorly presented and if the ingredients were ecological or non-ecological. The results applying the functional magnetic resonance image (fMRI) methodology reveal that well-presented dishes activate areas in the brain linked to the network of emotions indicating that the visualization in restaurant menus is not a purely cognitive and self-reflexive process but retains a strong affective component. Furthermore, the presence of this component is kept at the moment of choosing a dish, as observed by the activation of the gyrus cingulate, region linked to the regulatory processes of emotions. Hence, research ratifies the existence of an emotional factor during the entire process of decision-making carried out in a restaurant. Yet it is true that exposure to an ecological menu provokes activation of the medial frontal cortex, a region connected to higher reasoning and attention, suggesting that stimuli from well-presented dishes of ecological origin trigger neuronal responses related to high-level cognitive processes. The practical implications derived, along with its limitations and the future research opportunities, are interesting for both developing theory and also practice. Therefore, scholars are encouraged to further test some research proposals (e.g. moderating role of salubrity or simultaneously eye tracking method). Copyright © 2017. Published by Elsevier Inc.

  17. Ecology for a changing earth

    International Nuclear Information System (INIS)

    Brown, J.H.; Roughgarden, J.

    1990-01-01

    To forecast the ecological impact of global change, research initiatives are needed on the explicit role of humans in ecological systems, and on how ecological processes functioning at different spatial and temporal scales are coupled. Furthermore, to synthesize the results of ecological research for Congress, policymakers, and the general public, a new agency, called the United States Ecological Survey (USES) is urgently required. Also, a national commitment to environmental health, as exemplified by establishing a National Institutes of the Environment (NIE), should be a goal

  18. Developing interprofessional education online: An ecological systems theory analysis.

    Science.gov (United States)

    Bluteau, Patricia; Clouder, Lynn; Cureton, Debra

    2017-07-01

    This article relates the findings of a discourse analysis of an online asynchronous interprofessional learning initiative involving two UK universities. The impact of the initiative is traced over three intensive periods of online interaction, each of several-weeks duration occurring over a three-year period, through an analysis of a random sample of discussion forum threads. The corpus of rich data drawn from the forums is interpreted using ecological systems theory, which highlights the complexity of interaction of individual, social and cultural elements. Ecological systems theory adopts a life course approach to understand how development occurs through processes of progressively more complex reciprocal interaction between people and their environment. This lens provides a novel approach for analysis and interpretation of findings with respect to the impact of pre-registration interprofessional education and the interaction between the individual and their social and cultural contexts as they progress through 3/4 years of their programmes. Development is mapped over time (the chronosystem) to highlight the complexity of interaction across microsystems (individual), mesosystems (curriculum and institutional/care settings), exosystems (community/wider local context), and macrosystems (national context and culture). This article illustrates the intricacies of students' interprofessional development over time and the interactive effects of social ecological components in terms of professional knowledge and understanding, wider appreciation of health and social care culture and identity work. The implications for contemporary pre-registration interprofessional education and the usefulness and applicability of ecological systems theory for future research and development are considered.

  19. A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses

    OpenAIRE

    Buttigieg, Pier Luigi; Ramette, Alban Nicolas

    2014-01-01

    The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynami...

  20. FORMATION OF ECOLOGICAL AWARENESS AND ENVIRONMENTAL CULTURE OF MEDICAL STUDENTS

    Directory of Open Access Journals (Sweden)

    Olena Snisar

    2017-03-01

    Full Text Available The article considers the important problem of searching and introducing innovative forms and methods of ecological upbringing and environmental education in the educational process of the medical educational establishment. Medical workers first face the negative impact of environmental problems on human health, therefore formation of high level of their environmental awareness and culture, ability to apply knowledge of medical ecology while performing their professional duties is an important condition for their qualitative vocational training. The aim of the article is to analyze the benefits of creating an environmental squad in the medical educational establishment with a purpose to create a high level of the studets’ environmental awareness, environmental culture and expositive behavior. The experience of the environmental squad Cherkasy medical academy to attract students to the ecological and elucidative and environmental protection, scientific research ecologically oriented. Effective methods and forms of environmental squad’s work in spreading ecological knowledge are characterized, the main topics of scientific research work are presented. Stages of forming ecological awareness and ecological culture of future doctors have been analyzed, while working in the environmental squad, from expanding and systematization of ecological knowledge to the development of ecological style of thinking and environmentally safe behavior. The results of the study led to the conclusion that activity of such structure as an ecological squad in the medical educational establishment provides improved ecological upbringing and environmental education and allows training of medical specialists, who understand the danger of a complicated ecological situation for human health, will promote healthy lifestyle, help reduce the negative impact of harmful factors on the health of patients, as well as a conscious citizen, which is a patriot of his country, take

  1. The Futures Wheel: A method for exploring the implications of social-ecological change

    Science.gov (United States)

    D.N. Bengston

    2015-01-01

    Change in social-ecological systems often produces a cascade of unanticipated consequences. Natural resource professionals and other stakeholders need to understand the possible implications of cascading change to prepare for it. The Futures Wheel is a "smart group" method that uses a structured brainstorming process to uncover and evaluate multiple levels of...

  2. The political ecology of lead poisoning in eastern North Carolina.

    Science.gov (United States)

    Hanchette, Carol L

    2008-06-01

    In the United States, childhood blood lead levels have dropped substantially since 1991, when the Centers for Disease Control and Prevention (CDC) implemented new screening guidelines. Many states, including North Carolina, have established successful screening and intervention programs. Still, pockets of higher lead poisoning rates continue to be a problem in some geographic areas. One of these areas consists of several counties in eastern North Carolina. This cluster of higher rates cannot be explained by poverty and housing characteristics alone. Instead, the explanation requires an understanding of place that encompasses a range of historical, social, political, and economic processes. This paper utilizes a political ecology approach to provide a deeper understanding of how these processes can contribute to ill health.

  3. Preface to: Indian Ocean biogeochemical processes and ecological variability

    Digital Repository Service at National Institute of Oceanography (India)

    Hood, R.R.; Naqvi, S.W.A.; Wiggert, J.D.

    monsoonal in fluence. The biogeochemical and ecological impacts of this complex physical forcing are not yet fully understood. The Indian Ocean is truly one of the last great frontiers of ocea- nographic research. In addition, it appears... to be particularly vulnerable to climate change and anthropogenic impacts, yet it has been more than a decade since the last coordinated international study of biogeochemical and ecological proc esses was undertaken in this region. To obtain a better un...

  4. Primate dental ecology: How teeth respond to the environment.

    Science.gov (United States)

    Cuozzo, Frank P; Ungar, Peter S; Sauther, Michelle L

    2012-06-01

    Teeth are central for the study of ecology, as teeth are at the direct interface between an organism and its environment. Recent years have witnessed a rapid growth in the use of teeth to understand a broad range of topics in living and fossil primate biology. This in part reflects new techniques for assessing ways in which teeth respond to, and interact with, an organism's environment. Long-term studies of wild primate populations that integrate dental analyses have also provided a new context for understanding primate interactions with their environments. These new techniques and long-term field studies have allowed the development of a new perspective-dental ecology. We define dental ecology as the broad study of how teeth respond to, or interact with, the environment. This includes identifying patterns of dental pathology and tooth use-wear, as they reflect feeding ecology, behavior, and habitat variation, including areas impacted by anthropogenic disturbance, and how dental development can reflect environmental change and/or stress. The dental ecology approach, built on collaboration between dental experts and ecologists, holds the potential to provide an important theoretical and practical framework for inferring ecology and behavior of fossil forms, for assessing environmental change in living populations, and for understanding ways in which habitat impacts primate growth and development. This symposium issue brings together experts on dental morphology, growth and development, tooth wear and health, primate ecology, and paleontology, to explore the broad application of dental ecology to questions of how living and fossil primates interact with their environments. Copyright © 2012 Wiley Periodicals, Inc.

  5. Quantitative plant ecology

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2014-01-01

    This e-book is written in the Wolfram' CDF format (download free CDF player from Wolfram.com) The objective of this e-book is to introduce the population ecological concepts for measuring and predicting the ecological success of plant species. This will be done by focusing on the measurement...... and statistical modelling of plant species abundance and the relevant ecological processes that control species abundance. The focus on statistical modelling and likelihood function based methods also means that more algorithm based methods, e.g. ordination techniques and boosted regression tress...

  6. Life as a sober citizen: Aldo Leopold's Wildlife Ecology 118

    Science.gov (United States)

    Theiss, Nancy Stearns

    This historic case study addressed the issue of the lack of citizen action toward environmentally responsible behavior. Although there have been studies regarding components of environmental responsible behavior [ERB], there has been little focus on historic models of exemplary figures of ERB. This study examined one of the first conservation courses in the United States, Wildlife Ecology 118, taught by Aldo Leopold (1887--1948) for 13 years at the University of Wisconsin. Today, Aldo Leopold is recognized as an exemplary conservationist whose land ethic is cited as providing the ecological approach needed for understanding the complex issues of modern society. The researcher conjectured that examination of one of the first environmental education courses could support and strengthen environmental education practices by providing a heuristic perspective. The researcher used two different strategies for analysis of the case. For Research Question One---"What were Leopold's teaching strategies in Wildlife Ecology 118?"---the researcher used methods of comparative historical analysis. The researcher examined the learning outcomes that Leopold used in Wildlife Ecology 118 and compared them against a rubric of the Four Strands for Environmental Education (North American Association for Environmental Education [NAAEE], 1999). The Four Strands for Environmental Education are the current teaching strategies used by educators. The results indicated that Wildlife Ecology 118 scored high in Knowledge of Processes and Systems and Environmental Problem Solving strands. Leopold relied on historic case examples and animal biographies to build stories that engaged students. Field trips gave students practical experience for environmental knowledge with special emphasis on phenology. For Research Question Two---"What was the context of the lessons in Wildlife Ecology 118?"---the researcher used environmental history methods for analysis. Context provided the knowledge and

  7. Ecology-driven stereotypes override race stereotypes

    Science.gov (United States)

    Williams, Keelah E. G.; Sng, Oliver; Neuberg, Steven L.

    2016-01-01

    Why do race stereotypes take the forms they do? Life history theory posits that features of the ecology shape individuals’ behavior. Harsh and unpredictable (“desperate”) ecologies induce fast strategy behaviors such as impulsivity, whereas resource-sufficient and predictable (“hopeful”) ecologies induce slow strategy behaviors such as future focus. We suggest that individuals possess a lay understanding of ecology’s influence on behavior, resulting in ecology-driven stereotypes. Importantly, because race is confounded with ecology in the United States, we propose that Americans’ stereotypes about racial groups actually reflect stereotypes about these groups’ presumed home ecologies. Study 1 demonstrates that individuals hold ecology stereotypes, stereotyping people from desperate ecologies as possessing faster life history strategies than people from hopeful ecologies. Studies 2–4 rule out alternative explanations for those findings. Study 5, which independently manipulates race and ecology information, demonstrates that when provided with information about a person’s race (but not ecology), individuals’ inferences about blacks track stereotypes of people from desperate ecologies, and individuals’ inferences about whites track stereotypes of people from hopeful ecologies. However, when provided with information about both the race and ecology of others, individuals’ inferences reflect the targets’ ecology rather than their race: black and white targets from desperate ecologies are stereotyped as equally fast life history strategists, whereas black and white targets from hopeful ecologies are stereotyped as equally slow life history strategists. These findings suggest that the content of several predominant race stereotypes may not reflect race, per se, but rather inferences about how one’s ecology influences behavior. PMID:26712013

  8. Ecological interactions affecting population-level responses to chemical stress in Mesocyclops leuckarti.

    Science.gov (United States)

    Kulkarni, Devdutt; Hommen, Udo; Schäffer, Andreas; Preuss, Thomas G

    2014-10-01

    Higher tiers of ecological risk assessment (ERA) consider population and community-level endpoints. At the population level, the phenomenon of density dependence is one of the most important ecological processes that influence population dynamics. In this study, we investigated how different mechanisms of density dependence would influence population-level ERA of the cyclopoid copepod Mesocyclops leuckarti under toxicant exposure. We used a combined approach of laboratory experiments and individual-based modelling. An individual-based model was developed for M. leuckarti to simulate population dynamics under triphenyltin exposure based on individual-level ecological and toxicological data from laboratory experiments. The study primarily aimed to-(1) determine which life-cycle processes, based on feeding strategies, are most significant in determining density dependence (2) explore how these mechanisms of density dependence affect extrapolation from individual-level effects to the population level under toxicant exposure. Model simulations showed that cannibalism of nauplii that were already stressed by TPT exposure contributed to synergistic effects of biotic and abiotic factors and led to a twofold stress being exerted on the nauplii, thereby resulting in a higher population vulnerability compared to the scenario without cannibalism. Our results suggest that in population-level risk assessment, it is easy to underestimate toxicity unless underlying ecological interactions including mechanisms of population-level density regulation are considered. This study is an example of how a combined approach of experiments and mechanistic modelling can lead to a thorough understanding of ecological processes in ecotoxicology and enable a more realistic ERA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Understanding Combustion Processes Through Microgravity Research

    Science.gov (United States)

    Ronney, Paul D.

    1998-01-01

    A review of research on the effects of gravity on combustion processes is presented, with an emphasis on a discussion of the ways in which reduced-gravity experiments and modeling has led to new understanding. Comparison of time scales shows that the removal of buoyancy-induced convection leads to manifestations of other transport mechanisms, notably radiative heat transfer and diffusional processes such as Lewis number effects. Examples from premixed-gas combustion, non-premixed gas-jet flames, droplet combustion, flame spread over solid and liquid fuels, and other fields are presented. Promising directions for new research are outlined, the most important of which is suggested to be radiative reabsorption effects in weakly burning flames.

  10. ENVIRONMENTAL PHILOSOPHY AND ECOLOGICAL CULTURE

    Directory of Open Access Journals (Sweden)

    Kalimat M. Alilova

    2017-01-01

    Full Text Available Aim. The aim of the research is to study environmental problems related to the decline of culture, the importance of philosophy in overcoming private and personal interests as well as the unilateral approach of man in his relationship to nature. The study shows how philosophy can participate in the formation of ecological culture, a new ecological consciousness in man, while ecological culture is called upon to resist technocratic stereotypes and the course of history was aimed at preventing the biosphere from becoming deserted. Discussion. On the basis of the analysis of literary sources, we used the method of socio-cultural and socio-natural approaches based on the possibility of philosophy to introduce a new life into culture, new ecological values and new ecological principles. To solve these problems, environmental philosophy develops new theories. Representatives of different cultures, ethnic groups, nations, religions must learn to coexist with each other. We consider philosophy as a means of teaching rapprochement between peoples and creating new opportunities for understanding and improving the environmental situation. Cultural development makes it possible to assess the level of a man’s knowledge of nature, himself and the world around him. Ecological culture is a way of connecting man with nature on the basis of deeper knowledge and understanding. Philosophy says that you cannot move away from nature and be lauded over it since this will destroy culture. Rational doctrines tend to put a person above other living beings so the synthesis of philosophy with culture can have a positive ecological meaning. Conclusion. The findings obtained can be recommended for practical use in schools, starting from primary school, as well as in secondary special educational institutions and universities. It is necessary to work on the motivation and values of people, develop a common and ecological culture. Only a cultured person can move from

  11. Human Ecology: Acid Rain and Public Policy.

    Science.gov (United States)

    Bybee, Rodger W.

    1983-01-01

    A connection between science and society can be seen in the human and ecological dimensions of one contemporary problem: acid rain. Introduces a human ecological theme and relationships between acid rain and public policy, considering scientific understanding and public awareness, scientific research and public policy, and national politics and…

  12. Bridging the gap between ecology and spatial planning

    NARCIS (Netherlands)

    Opdam, P.; Vos, C.C.; Foppen, R.

    2002-01-01

    Landscapes are studied by pattern (the geographical approach) and by process (the ecological approach within landscape ecology). The future of landscape ecology depends on whether the two approaches can be integrated. We present an approach to bridge the gap between the many detailed process studies

  13. Evolutionary ecology of virus emergence.

    Science.gov (United States)

    Dennehy, John J

    2017-02-01

    The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment. © 2016 New York Academy of Sciences.

  14. Developing improved MD codes for understanding processive cellulases

    International Nuclear Information System (INIS)

    Crowley, M F; Nimlos, M R; Himmel, M E; Uberbacher, E C; Iii, C L Brooks; Walker, R C

    2008-01-01

    The mechanism of action of cellulose-degrading enzymes is illuminated through a multidisciplinary collaboration that uses molecular dynamics (MD) simulations and expands the capabilities of MD codes to allow simulations of enzymes and substrates on petascale computational facilities. There is a class of glycoside hydrolase enzymes called cellulases that are thought to decrystallize and processively depolymerize cellulose using biochemical processes that are largely not understood. Understanding the mechanisms involved and improving the efficiency of this hydrolysis process through computational models and protein engineering presents a compelling grand challenge. A detailed understanding of cellulose structure, dynamics and enzyme function at the molecular level is required to direct protein engineers to the right modifications or to understand if natural thermodynamic or kinetic limits are in play. Much can be learned about processivity by conducting carefully designed molecular dynamics (MD) simulations of the binding and catalytic domains of cellulases with various substrate configurations, solvation models and thermodynamic protocols. Most of these numerical experiments, however, will require significant modification of existing code and algorithms in order to efficiently use current (terascale) and future (petascale) hardware to the degree of parallelism necessary to simulate a system of the size proposed here. This work will develop MD codes that can efficiently use terascale and petascale systems, not just for simple classical MD simulations, but also for more advanced methods, including umbrella sampling with complex restraints and reaction coordinates, transition path sampling, steered molecular dynamics, and quantum mechanical/molecular mechanical simulations of systems the size of cellulose degrading enzymes acting on cellulose

  15. Methodical ecologization principles in construction management

    OpenAIRE

    Nuzhina Irina Pavlovna; Yudakhina Olga Borisovna

    2015-01-01

    In the article the subject of ecologization of construction sector is presented, the necessity of ecologization technology and technological processes is proved. The article also presents principles of ecologically friendly management of construction and investment activities and describes these principles in detail.

  16. Geography, ecology and emerging infectious diseases.

    Science.gov (United States)

    Mayer, J D

    2000-04-01

    Emerging infectious diseases are the focus of increased attention and even alarm in the scholarly and popular literature. The emergence of new diseases and the resurgence of older and previously recognized infectious diseases both in developing and developed country poses challenges for understanding the ecological web of causation, including social, economic, environmental and biological components. This paper is a synthesis of the major characteristics of emerging diseases, in an interdisciplinary context. Political ecology is one framework for analysis that is promising in developing a modified ecology of disease.

  17. Ecological risk estimation

    International Nuclear Information System (INIS)

    Bartell, S.M.; Gardner, R.H.; O'Neill, R.V.

    1992-01-01

    Ecological risk assessment, the process that evaluates the likelihood that adverse ecological effects may occur or are occurring as a result of exposure to one or more stressors, is being developed by the US EPA as a tool for decision making. This book presents one approach to risk assessment-that of applying laboratory toxicity data within an ecosystem model to predict the potential ecological consequences of toxic chemicals. Both Standard Water Column Model (SWACOM), using zooplankton and fish, and Monte Carlo simulations are discussed in detail, along with quantitative explanations for many responses. Simplifying assumptions are explicitly presented. The final chapter discusses strengths, weaknesses, and future directions of the approach. The book is appropriate for anyone who does or uses ecological risk assessment methodologies

  18. Ecological processes for Environmental Impact Assessment in Coastal Waters; Engan no kankyo eikyo hyoka (EIA) eno seitaigakuteki apurochi

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Kimitoshi. [Environmental Assessment Dept., Tokyo (Japan)

    1999-03-25

    This paper focuses on a method for estimating adverse effects on natural environment by economic development in coastal waters in Japan. In particular, the most critical relations concerning the impact on marine organisms is pointed out and discussed according to an environmental impact assessment. Relations between environmental impact assessment and marine organisms needs a quantitative ecological approach in order to succeed in sustainable development of coastal waters management. Recently, the Environment Agency of Japan pointed out the unreliability and the theme on accuracy and the staff for biology and ecology in the environmental impact study. Ecological response to environmental impact occurs in a wide spectrum of physiological and biological and biological functions. Therefore biological monitoring measures must correspond to the given time-space scale of natural mechanisms. For the evaluation of environmental impact, it is desire able to develop of experimental technics and collect biological and ecological basic data for the object. I Reconstructing the following: 1. Reconstructing a clearlistic EIA process by EIA agencies and practitioners, 2. Scorping the biological and ecological issues by EIA professionals, 3. Using the current computer technology, 4. Considering monitoring systems over scales of time and space for the ecological target and 5. Making available to public all monitoring data and reports of EIA. (author)

  19. [Ecology and ecologies].

    Science.gov (United States)

    Valera, Luca

    2011-01-01

    Ecology (from the Greek words οιχοσ, "house" and λογια "study of") is the science of the "house", since it studies the environments where we live. There are three main ways of thinking about Ecology: Ecology as the study of interactions (between humans and the environment, between humans and living beings, between all living beings, etc.), Ecology as the statistical study of interactions, Ecology as a faith, or rather as a science that requires a metaphysical view. The history of Ecology shows us how this view was released by the label of "folk sense" to gain the epistemological status of science, a science that strives to be interdisciplinary. So, the aim of Ecology is to study, through a scientific methodology, the whole natural world, answering to very different questions, that arise from several fields (Economics, Biology, Sociology, Philosophy, etc.). The plurality of issues that Ecology has to face led, during the Twentieth-century, to branch off in several different "ecologies". As a result, each one of these new approaches chose as its own field a more limited and specific portion of reality.

  20. Conventional and ecological public health.

    Science.gov (United States)

    Rayner, G

    2009-09-01

    This paper suggests that current models of public health are no longer sufficient as a means for understanding the health challenges of the anthropogenic age, and argues for an alternative based upon an ecological model. The roots of this perspective originated within the Victorian era, although it found only limited expression at that time. Ecological thinking in public health has only been revived relatively recently. Derived from an analysis of obesity, this paper proposes the development of an approach to ecological public health based on four dimensions of existence: the material, the physiological, the social and the cultural-cognitive. The implications for public policy are considered.

  1. West African Journal of Applied Ecology: Submissions

    African Journals Online (AJOL)

    Author Guidelines. Instructions To Authors Papers for submission to the West African Journal of Applied Ecology should be written in English and should not exceed 8,000 words in total ... Authors publish in the Journal with the understanding that they assign their copyright to the West Africa Journal of Applied Ecology.

  2. Probing the evolution, ecology and physiology of marine protists using transcriptomics.

    Science.gov (United States)

    Caron, David A; Alexander, Harriet; Allen, Andrew E; Archibald, John M; Armbrust, E Virginia; Bachy, Charles; Bell, Callum J; Bharti, Arvind; Dyhrman, Sonya T; Guida, Stephanie M; Heidelberg, Karla B; Kaye, Jonathan Z; Metzner, Julia; Smith, Sarah R; Worden, Alexandra Z

    2017-01-01

    Protists, which are single-celled eukaryotes, critically influence the ecology and chemistry of marine ecosystems, but genome-based studies of these organisms have lagged behind those of other microorganisms. However, recent transcriptomic studies of cultured species, complemented by meta-omics analyses of natural communities, have increased the amount of genetic information available for poorly represented branches on the tree of eukaryotic life. This information is providing insights into the adaptations and interactions between protists and other microorganisms and macroorganisms, but many of the genes sequenced show no similarity to sequences currently available in public databases. A better understanding of these newly discovered genes will lead to a deeper appreciation of the functional diversity and metabolic processes in the ocean. In this Review, we summarize recent developments in our understanding of the ecology, physiology and evolution of protists, derived from transcriptomic studies of cultured strains and natural communities, and discuss how these novel large-scale genetic datasets will be used in the future.

  3. Learning about social-ecological trade-offs

    Directory of Open Access Journals (Sweden)

    Diego Galafassi

    2017-03-01

    Full Text Available Trade-offs are manifestations of the complex dynamics in interdependent social-ecological systems. Addressing trade-offs involves challenges of perception due to the dynamics of interdependence. We outline the challenges associated with addressing trade-offs and analyze knowledge coproduction as a practice that may contribute to tackling trade-offs in social-ecological systems. We discuss this through a case study in coastal Kenya in which an iterative knowledge coproduction process was facilitated to reveal social-ecological trade-offs in the face of ecological and socioeconomic change. Representatives of communities, government, and NGOs attended two integrative workshops in which methods derived from systems thinking, dialogue, participatory modeling, and scenarios were applied to encourage participants to engage and evaluate trade-offs. Based on process observation and interviews with participants and scientists, our analysis suggests that this process lead to increased appreciation of interdependences and the way in which trade-offs emerge from complex dynamics of interdependent factors. The process seemed to provoke a reflection of knowledge assumptions and narratives, and management goals for the social-ecological system. We also discuss how stakeholders link these insights to their practices.

  4. Cumulative Effects Assessment: Linking Social, Ecological, and Governance Dimensions

    Directory of Open Access Journals (Sweden)

    Marian Weber

    2012-06-01

    Full Text Available Setting social, economic, and ecological objectives is ultimately a process of social choice informed by science. In this special feature we provide a multidisciplinary framework for the use of cumulative effects assessment in land use planning. Forest ecosystems are facing considerable challenges driven by population growth and increasing demands for resources. In a suite of case studies that span the boreal forest of Western Canada to the interior Atlantic forest of Paraguay we show how transparent and defensible methods for scenario analysis can be applied in data-limited regions and how social dimensions of land use change can be incorporated in these methods, particularly in aboriginal communities that have lived in these ecosystems for generations. The case studies explore how scenario analysis can be used to evaluate various land use options and highlight specific challenges with identifying social and ecological responses, determining thresholds and targets for land use, and integrating local and traditional knowledge in land use planning. Given that land use planning is ultimately a value-laden and often politically charged process we also provide some perspective on various collective and expert-based processes for identifying cumulative impacts and thresholds. The need for good science to inform and be informed by culturally appropriate democratic processes calls for well-planned and multifaceted approaches both to achieve an informed understanding of both residents and governments of the interactive and additive changes caused by development, and to design action agendas to influence such change at the ecological and social level.

  5. Protected areas as social-ecological systems: perspectives from resilience and social-ecological systems theory.

    Science.gov (United States)

    Cumming, Graeme S; Allen, Craig R

    2017-09-01

    Conservation biology and applied ecology increasingly recognize that natural resource management is both an outcome and a driver of social, economic, and ecological dynamics. Protected areas offer a fundamental approach to conserving ecosystems, but they are also social-ecological systems whose ecological management and sustainability are heavily influenced by people. This editorial, and the papers in the invited feature that it introduces, discuss three emerging themes in social-ecological systems approaches to understanding protected areas: (1) the resilience and sustainability of protected areas, including analyses of their internal dynamics, their effectiveness, and the resilience of the landscapes within which they occur; (2) the relevance of spatial context and scale for protected areas, including such factors as geographic connectivity, context, exchanges between protected areas and their surrounding landscapes, and scale dependency in the provision of ecosystem services; and (3) efforts to reframe what protected areas are and how they both define and are defined by the relationships of people and nature. These emerging themes have the potential to transform management and policy approaches for protected areas and have important implications for conservation, in both theory and practice. © 2017 by the Ecological Society of America.

  6. Enhancing continental-scale understanding of agriculture: Integrating the National Ecological Observatory Network (NEON) with existing research networks to address global change.

    Science.gov (United States)

    Kelly, G.

    2015-12-01

    Over the past decade, there has been a resurgence of interest in the sustainability of the world's food system and its contributions to feeding the world's population as well as to ensuring environmental sustainability of the planet. The elements of this grand challenge are by now well known. Analysis of agricultural sustainability is made more challenging by the fact that the local responses to these global drivers of change are extremely variable in space and time due to the biophysical and geopolitical heterogeneity across the United States, and the world. Utilizing research networks allows the scientific community to leverage existing knowledge, models and data to develop a framework for understanding the interplay between global change drivers, regional, and continental sustainability of US agriculture. For example, well-established instrumented and calibrated research networks will allow for the examination of the potential tradeoffs between: 1) crop production, 2) land use and carbon emissions and sequestration, 3) groundwater depletion, and 4) nitrogen dynamics. NEON represents a major investment in scientific infrastructure in support of ecological research at a continental scale and is intended to address multiple ecological grand challenges. NEON will collect data from automated sensors and sample organisms and ecological variables in 20 eco-climatic domains. We will provide examples of how NEON's full potential can be realized when these data are combined with long term experimental results and other sensor networks [e.g., Ameriflux, Fluxnet, the Long-term Ecological Research Program (LTER), the Long-term Agroecosystem Research Network (LTAR)], Critical Zone Observatory (CZO).

  7. Does Gender Affect a Scientist's Research Output in Evolutionary Ecology?

    Science.gov (United States)

    Bonnet, Xavier; Shine, Richard; Lourdais, Olivier

    To examine how an author's gender influences his or her research output, the authors analyzed (not simply scored) more than 900 published articles in nine leading scientific journals in the field of evolutionary ecology. Women were strongly underrepresented in all countries, but this bias is decreasing. Men and women differed significantly in their fields of research, with women preferentially conducting projects on behavior rather than evolution or ecology. Most aspects of the structure of published articles and the level of conceptual generality were unaffected by an author's gender. Because discriminatory practices by reviewers and editors can be manifested in attributes of the articles that survive the review process, the latter result suggests a lack of gender-based discrimination during the review process. Gender differences in research output presumably reflect a complex array of genetic and social influences; a clearer understanding of these causal factors may help identify (and thus reduce) gender-based discrimination.

  8. Functional ecology of free-living nitrogen fixation: A contemporary perspective

    Science.gov (United States)

    Reed, Sasha C.; Cleveland, Cory C.; Townsend, Alan R.

    2011-01-01

    Nitrogen (N) availability is thought to frequently limit terrestrial ecosystem processes, and explicit consideration of N biogeochemistry, including biological N2 fixation, is central to understanding ecosystem responses to environmental change. Yet, the importance of free-living N2 fixation—a process that occurs on a wide variety of substrates, is nearly ubiquitous in terrestrial ecosystems, and may often represent the dominant pathway for acquiring newly available N—is often underappreciated. Here, we draw from studies that investigate free-living N2 fixation from functional, physiological, genetic, and ecological perspectives. We show that recent research and analytical advances have generated a wealth of new information that provides novel insight into the ecology of N2 fixation as well as raises new questions and priorities for future work. These priorities include a need to better integrate free-living N2 fixation into conceptual and analytical evaluations of the N cycle's role in a variety of global change scenarios.

  9. Philosophical Issues in Ecology: Recent Trends and Future Directions

    Directory of Open Access Journals (Sweden)

    Mark Colyvan

    2009-12-01

    Full Text Available Philosophy of ecology has been slow to become established as an area of philosophical interest, but it is now receiving considerable attention. This area holds great promise for the advancement of both ecology and the philosophy of science. Insights from the philosophy of science can advance ecology in a number of ways. For example, philosophy can assist with the development of improved models of ecological hypothesis testing and theory choice. Philosophy can also help ecologists understand the role and limitations of mathematical models in ecology. On the other side, philosophy of science will be advanced by having ecological case studies as part of the stock of examples. Ecological case studies can shed light on old philosophical topics as well as raise novel issues for the philosophy of science. For example, understanding theoretical terms such as "biodiversity" is important for scientific reasons, but such terms also carry political importance. Formulating appropriate definitions for such terms is thus not a purely scientific matter, and this may prompt a reevaluation of philosophical accounts of defining theoretical terms. We consider some of the topics currently receiving attention in the philosophy of ecology and other topics in need of attention. Our aim is to prompt further exchange between ecology and philosophy of science and to help set the agenda for future work in the philosophy of ecology. The topics covered include: the role of mathematical models, environmental problem formulation, biodiversity, and environmental ethics.

  10. Larval Performance in the Context of Ecological Diversification and Speciation in Lycaeides Butterflies

    Directory of Open Access Journals (Sweden)

    Cynthia F. Scholl

    2012-01-01

    Full Text Available The role of ecology in diversification has been widely investigated, though few groups have been studied in enough detail to allow comparisons of different ecological traits that potentially contribute to reproductive isolation. We investigated larval performance within a species complex of Lycaeides butterflies. Caterpillars from seven populations were reared on five host plants, asking if host-specific, adaptive larval traits exist. We found large differences in performance across plants and fewer differences among populations. The patterns of performance are complex and suggest both conserved traits (i.e., plant effects across populations and more recent dynamics of local adaptation, in particular for L. melissa that has colonized an exotic host. We did not find a relationship between oviposition preference and larval performance, suggesting that preference did not evolve to match performance. Finally, we put larval performance within the context of several other traits that might contribute to ecologically based reproductive isolation in the Lycaeides complex. This larger context, involving multiple ecological and behavioral traits, highlights the complexity of ecological diversification and emphasizes the need for detailed studies on the strength of putative barriers to gene flow in order to fully understand the process of ecological speciation.

  11. Understanding and Managing the Assessment Process

    Science.gov (United States)

    Gene Lessard; Scott Archer; John R. Probst; Sandra Clark

    1999-01-01

    Taking an ecological approach to management, or ecosystem management, is a developing approach for managing natural resources within the context of large geogaphic scales and over multiple time frames. Recently, the Council on Environmental Quality (CEQ) (IEMTF 1995) defined an ecosystem as "...an interconnected community of living things, including humans, and...

  12. Trophodynamics as a Tool for Understanding Coral Reef Ecosystems

    Directory of Open Access Journals (Sweden)

    Stacy L. Bierwagen

    2018-02-01

    Full Text Available The increased frequency of publications concerning trophic ecology of coral reefs suggests a degree of interest in the role species and functional groups play in energy flow within these systems. Coral reef ecosystems are particularly complex, however, and assignment of trophic positions requires precise knowledge of mechanisms driving food webs and population dynamics. Competent analytical tools and empirical analysis are integral to defining ecosystem processes and avoiding misinterpretation of results. Here we examine the contribution of trophodynamics to informing ecological roles and understanding of coral reef ecology. Applied trophic studies of coral reefs were used to identify recent trends in methodology and analysis. Although research is increasing, clear definitions and scaling of studies is lacking. Trophodynamic studies will require more precise spatial and temporal data collection and analysis using multiple methods to fully explore the complex interactions within coral reef ecosystems.

  13. Online ecological and environmental data

    CERN Document Server

    Baldwin, Virginia Ann

    2014-01-01

    Discover important Internet resources for research data made public individually and collectively by researchers from a variety of entities in the fields of environmental studies and ecology Online Ecological and Environmental Data explores innovative projects from a diverse array of institutions that have made environmental and ecological research information freely available online. You will find a wealth of Web site listings with URLs and complete descriptions, data field descriptions, controlled vocabulary examples, and Web screen shots that demonstrate how to use a specific site. The book will help you locate the data, procedures, instruments, notes, and other descriptive information that scientists and engineers need for replicating and building on the research of others. With Online Ecological and Environmental Data, you''ll gain a better understanding of: * the cooperative design, development, and management of interdisciplinary data * cataloging multidisciplinary environmental data * data netw...

  14. How do land-based salmonid farms affect stream ecology?

    International Nuclear Information System (INIS)

    Tello, A.; Corner, R.A.; Telfer, T.C.

    2010-01-01

    Increasing research is highlighting the fact that streams provide crucial ecosystem services through the biogeochemical and ecological processes they sustain. Freshwater land-based salmonid farms commonly discharge their effluents into low order, headwater streams, partly due to the fact that adequate freshwater resources for production are commonly found in undisturbed areas. We review the effects of salmonid farm effluents on different biological components of stream ecosystems. Relevant considerations related to the temporal and spatial scales of effluent discharge and ecological effects are discussed. These highlight the need to characterize the patterns of stressor discharge when assessing environmental impacts and designing ecological effects studies. The potential role of multiple stressors in disrupting ecosystem structure and function is discussed with an emphasis on aquaculture veterinary medicines. Further research on the effects of veterinary medicines using relevant exposure scenarios would significantly contribute to our understanding of their impact in relation to other effluent stressors. - This article reviews the effects of aquaculture effluents on stream ecosystems with an emphasis on veterinary medicines and the temporal patterns of effluent discharge.

  15. Toward a social-ecological theory of forest macrosystems for improved ecosystem management

    Science.gov (United States)

    Kleindl, William J.; Stoy, Paul C.; Binford, Michael W.; Desai, Ankur R.; Dietze, Michael C.; Schultz, Courtney A.; Starr, Gregory; Staudhammer, Christina; Wood, David J. A.

    2018-01-01

    The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales?

  16. Ecological and economic interests in design process of thermal power plant

    International Nuclear Information System (INIS)

    Sander, M.

    1996-01-01

    In design process of thermal power plant various ecological and economic contradictory interests are brought in focus. Requests on environmental protection written in laws, standards and international treaties are increasing investment costs and energy production costs. In a design phase there is a task to reconcile these contradictory requests. The paper presents relationship between technology and environmental protection with a focus on air pollution. Air pollution and human health is considered taking in account the role of design phase in thermal power plants project and human health problems. International laws and standards are presented with moral dilemmas concerning low investment costs and high environmental standards. (author)

  17. Ecological and evolutionary processes at expanding range margins.

    Science.gov (United States)

    Thomas, C D; Bodsworth, E J; Wilson, R J; Simmons, A D; Davies, Z G; Musche, M; Conradt, L

    2001-05-31

    Many animals are regarded as relatively sedentary and specialized in marginal parts of their geographical distributions. They are expected to be slow at colonizing new habitats. Despite this, the cool margins of many species' distributions have expanded rapidly in association with recent climate warming. We examined four insect species that have expanded their geographical ranges in Britain over the past 20 years. Here we report that two butterfly species have increased the variety of habitat types that they can colonize, and that two bush cricket species show increased fractions of longer-winged (dispersive) individuals in recently founded populations. Both ecological and evolutionary processes are probably responsible for these changes. Increased habitat breadth and dispersal tendencies have resulted in about 3- to 15-fold increases in expansion rates, allowing these insects to cross habitat disjunctions that would have represented major or complete barriers to dispersal before the expansions started. The emergence of dispersive phenotypes will increase the speed at which species invade new environments, and probably underlies the responses of many species to both past and future climate change.

  18. The burden of disaster: Part I. Challenges and opportunities within a child's social ecology.

    Science.gov (United States)

    Noffsinger, Mary A; Pfefferbaum, Betty; Pfefferbaum, Rose L; Sherrib, Kathleen; Norris, Fran H

    2012-01-01

    Child development and adaptation are best understood as biological and psychological individual processes occurring within the context of interconnecting groups, systems, and communities which, along with family, constitute the child's social ecology. This first of two articles describes the challenges and opportunities within a child's social ecology consisting of Micro-, Meso-, Exo-, and Macrosystems. The parent-child relationship, the most salient Microsystem influence in children's lives, plays an influential role in children's reactions to and recovery from disasters. Children, parents, and other adults participate in Mesosystem activities at schools and faith-based organizations. The Exosystem--including workplaces, social agencies, neighborhood, and mass media--directly affects important adults in children's lives. The Macrosystem affects disaster response and recovery indirectly through intangible cultural, social, economic, and political structures and processes. Children's responses to adversity occur in the context of these dynamically interconnected and interdependent nested environments, all of which endure the burden of disaster Increased understanding of the influences of and the relationships between key components contributes to recovery and rebuilding efforts, limiting disruption to the child and his or her social ecology A companion article (R. L. Pfefferbaum et al., in press) describes interventions across the child's social ecology.

  19. Ecological forestry: Much more than retention harvesting

    Science.gov (United States)

    Brian J. Palik; Anthony W. D' Amato

    2017-01-01

    We read with interest the recent Journal of Forestry article on "Conceptual Ambiguities and Practical Challenges of Ecological Forestry: A Critical Review" (Batavia and Nelson 2016). In it, Batavia and Nelson do a good job of bringing attention to the concept of ecological forestry, and we agree that a clear understanding of what it is...

  20. Using a social-ecological systems perspective to understand tourism and landscape interactions in coastal areas

    NARCIS (Netherlands)

    Heslinga, Jasper; Groote, Peter D.; Vanclay, Francis

    2017-01-01

    Purpose The purpose of this paper is to look at the potential synergies between tourism and landscapes and examine the potential contribution of tourism to build social-ecological resilience in the Dutch Wadden. Design/methodology/approach The authors reveal how a social-ecological systems

  1. Can Law Foster Social-Ecological Resilience?

    Directory of Open Access Journals (Sweden)

    Ahjond S. Garmestani

    2013-06-01

    Full Text Available Law plays an essential role in shaping natural resource and environmental policy, but unfortunately, many environmental laws were developed around the prevailing scientific understanding that there was a "balance of nature" that could be managed and sustained. This view assumes that natural resource managers have the capacity to predict the behavior of ecological systems, know what its important functional components are, and successfully predict the outcome of management interventions. This paper takes on this problem by summarizing and synthesizing the contributions to this Special Feature (Law and Social-Ecological Resilience, Part I: Contributions from Resilience 2011, focusing on the interaction of law and social-ecological resilience, and then offering recommendations for the integration of law and social-ecological resilience.

  2. Ecological information on radiation hazards

    International Nuclear Information System (INIS)

    Matveev, V.V.; Stas', K.N.

    1992-01-01

    The accident at Chernobyl has affected health and has had economic consequences, and it has sharpened the call throughout the work for safety in industry, the supervision of technological processes, and monitoring effects on the environment. Safety and monitoring in the nuclear industry are being given a great deal of attention, and experience is being accumulated on methods of handling such tasks by virtue of the above and also because of features in nuclear processes and the plants based on them and the specific features of ionizing radiation and radioactive substances. The accident at Chernobyl showed that this apparently ill-encompassing monitoring was insufficient. One needs in essence a systematic approach to methods of obtaining, processing, and distributing information as well as organizational measures that together represent an ecological information system. This should be the basis on the one hand for an efficient system for safe operation of existing and developing industrial areas and for minimizing the adverse consequences of accidents, while on the other it should provide for understanding between social movements, specialists, and the population as regards particular ecological situations. To provide a clean environment and deal with pollution, one needs first of all reliable and prompt information on the states of natural and industrial areas, since without detailed evidence one cannot take any action and ensure a positive outcome. Such information is obtained with special equipment and monitoring systems. Monitoring implies the following: (1) measuring physical quantities or nuclide concentrations characterizing the physical fields, compositions, or states of objects or media; (2) interpreting the measurements and forecasting developments and effects

  3. The Ecology of Human Mobility

    KAUST Repository

    Meekan, Mark G.

    2017-02-03

    Mobile phones and other geolocated devices have produced unprecedented volumes of data on human movement. Analysis of pooled individual human trajectories using big data approaches has revealed a wealth of emergent features that have ecological parallels in animals across a diverse array of phenomena including commuting, epidemics, the spread of innovations and culture, and collective behaviour. Movement ecology, which explores how animals cope with and optimize variability in resources, has the potential to provide a theoretical framework to aid an understanding of human mobility and its impacts on ecosystems. In turn, big data on human movement can be explored in the context of animal movement ecology to provide solutions for urgent conservation problems and management challenges.

  4. Chemistry teachers’ understanding of science process skills in relation of science process skills assessment in chemistry learning

    Science.gov (United States)

    Hikmah, N.; Yamtinah, S.; Ashadi; Indriyanti, N. Y.

    2018-05-01

    A Science process skill (SPS) is a fundamental scientific method to achieve good knowledge. SPS can be categorized into two levels: basic and integrated. Learning SPS helps children to grow as individuals who can access knowledge and know how to acquire it. The primary outcomes of the scientific process in learning are the application of scientific processes, scientific reasoning, accurate knowledge, problem-solving, and understanding of the relationship between science, technology, society, and everyday life’s events. Teachers’ understanding of SPS is central to the application of SPS in a learning process. Following this point, this study aims to investigate the high school chemistry teachers’ understanding of SPS pertains to their assessment of SPS in chemistry learning. The understanding of SPS is measured from the conceptual and operational aspects of SPS. This research uses qualitative analysis method, and the sample consists of eight chemistry teachers selected by random sampling. A semi-structured interview procedure is used to collect the data. The result of the analysis shows that teachers’ conceptual and operational understanding of SPS is weak. It affects the accuracy and appropriateness of the teacher’s selection of SPS assessment in chemistry learning.

  5. Wildlife disease ecology from the individual to the population: Insights from a long-term study of a naturally infected European badger population.

    Science.gov (United States)

    McDonald, Jenni L; Robertson, Andrew; Silk, Matthew J

    2018-01-01

    Long-term individual-based datasets on host-pathogen systems are a rare and valuable resource for understanding the infectious disease dynamics in wildlife. A study of European badgers (Meles meles) naturally infected with bovine tuberculosis (bTB) at Woodchester Park in Gloucestershire (UK) has produced a unique dataset, facilitating investigation of a diverse range of epidemiological and ecological questions with implications for disease management. Since the 1970s, this badger population has been monitored with a systematic mark-recapture regime yielding a dataset of >15,000 captures of >3,000 individuals, providing detailed individual life-history, morphometric, genetic, reproductive and disease data. The annual prevalence of bTB in the Woodchester Park badger population exhibits no straightforward relationship with population density, and both the incidence and prevalence of Mycobacterium bovis show marked variation in space. The study has revealed phenotypic traits that are critical for understanding the social structure of badger populations along with mechanisms vital for understanding disease spread at different spatial resolutions. Woodchester-based studies have provided key insights into how host ecology can influence infection at different spatial and temporal scales. Specifically, it has revealed heterogeneity in epidemiological parameters; intrinsic and extrinsic factors affecting population dynamics; provided insights into senescence and individual life histories; and revealed consistent individual variation in foraging patterns, refuge use and social interactions. An improved understanding of ecological and epidemiological processes is imperative for effective disease management. Woodchester Park research has provided information of direct relevance to bTB management, and a better appreciation of the role of individual heterogeneity in disease transmission can contribute further in this regard. The Woodchester Park study system now offers a rare

  6. Is the phototransformation of pharmaceuticals a natural purification process that decreases ecological and human health risks?

    International Nuclear Information System (INIS)

    Wang, Xiao-Huan; Lin, Angela Yu-Chen

    2014-01-01

    Sunlight photodegradation has long been considered a significant process in lowering the concentrations of pharmaceuticals in surface waters and thus decreasing the ecological risk. For the first time, this study identified the significance of investigating the environmental photodegradation of a pharmaceutical residue mixture (rather than a single compound) and the associated toxicity of transformation byproducts in environmental waters, including rivers, hospital wastewaters, and effluents from wastewater treatment plants and pharmaceutical production facilities. Pharmaceuticals undergo phototransformation rather than mineralization (11–23% in 34 h). Pharmaceutical mixtures could possibly act as dissolved organic matter for each individual compound and subsequently affect the photolysis rates. The increased toxicity of irradiated pharmaceutical mixtures challenges the validity of the current understanding of sunlight photolysis. The implications of this work suggest that current knowledge concerning the occurrence, natural attenuation, ecotoxicity, and human health risks of pharmaceuticals is far from complete; photolysis is not necessarily a purification process. -- Highlights: • Pharmaceutical mixtures could possibly act as DOMs for each other. • Pharmaceuticals underwent merely phototransformation rather than mineralization. • Increased toxicity from photo byproducts associated with the pharmaceutical mixture. • Phototransformation does not necessary mitigate the risk to human and the ecosystem. -- Transformation byproducts associated with a pharmaceutical mixture could be more toxic, and phototransformation does not necessary mitigate the risk to humans and the ecosystem

  7. Ecological impact assessment

    International Nuclear Information System (INIS)

    Thomas, J.M.; Eberhardt, L.L.

    1975-01-01

    Quantitative problems in accomplishing ecological impact assessment with particular reference to defining population effects are discussed with some comments on the two approaches most commonly used, e.g., the experimental and simulation models. Some alternatives are suggested because both methods will probably fail to detect real population effects mostly due to poor understanding of ecosystems or because of the limitations inherent in field census methods. Most judgments of ecological impact are not quantitatively defensible but are qualitative, subjective, or political in nature. An examination of aggregates of data from various nuclear power plant sites may be one way to obtain enough replication to judge ecological impact. Thus, currently available data from such studies as well as appropriate demographic, vegetation, census, and bibliographic material could offer an interesting challenge to computer professionals if such an undertaking were contemplated. Present research programs at PNL and computer involvement are described. Future possibilities and directions are discussed. (U.S.)

  8. Inferring biodiversity maintenance mechanisms from ecological pattern

    Science.gov (United States)

    Ostling, Annette

    Among a set of competitors for a single common resource, the best will simply exclude the others. Yet in nature we can see astounding diversity of competing species. Do close similarities in species' response to the local environment primarily explain their coexistence? Or is this diversity possible because of differences between species that stabilize their coexistence? And if so, what particular differences between species are important in particular communities? Some ecological communities lend themselves to experimental manipulation to begin to answer these questions. Yet for many other communities, such as tree species in forests, the logistical hurdles to this approach are daunting. Faster progress could be made in ecology if insight into biodiversity maintenance mechanisms could be gained from patterns exhibited in local ecological communities, such as how coexisting species are distributed in their ecological traits and relative abundance. Hurdles that we need to overcome to be able to gain such insight include: 1) further developing neutral theory, a quantitative process-based null model of community pattern resulting when species similarities are what allow their coexistence, and 2) better understanding what patterns to expect when species differences dominate instead, particularly in the context of stochasticity and immigration. I will describe our ongoing research to overcome these hurdles, to provide better tools for analyzing observed pattern. National Science Foundation Advancing Theory in Biology Grant 1038678, Danish National Research Foundation Grant DNRF 96 for the Center of Macroecology, Evolution and Climate.

  9. [Darwinism as a constraint of ecological pluralism].

    Science.gov (United States)

    Giliarov, A M

    2003-01-01

    In his respond to critical remarks of Mirkin (2003), the author claims that pluralism in ecology is not only its strength but also a weakness. Contemporary ecology became less pluralistic and this can be considered as good sign of maturing science. Ecological pluralism can be exemplified by the coexistence in 1920-30s of two different approaches to plant community: that of Frederic Clements in USA and that of Josias Braun-Blanquet in France. However the way to progress in this branch of ecology was paved rather by heretical ideas of Henry Gleason in USA and Ramensky in Russia (both authors independently developed non-holistic view of community as an assemblage of individualistically distributed species) than by "peaceful" coexistence of well-established schools, representatives of which tried not to interfere into argumentation of each other. Notable success in ecology of last decades was connected with several new methodologies, e.g. macroecology that concerned large scale of space and time. However Darwinism in its attempt to explain the order of nature referring to its origin remains the most universal and fruitful methodology of ecology. The success of Darwinism in ecology is understandable because this generalizing theory is based on the same universal principles that underlie the survival of any population. Ecologists and evolutionary biologists trying to understand various natural patterns actually deal with the same fundamental laws, i.e. exponential population growth, limitation of this growth by resource shortage and/or press of predators, the existence of individual variability in survival, etc.

  10. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession.

    Science.gov (United States)

    Dini-Andreote, Francisco; Stegen, James C; van Elsas, Jan Dirk; Salles, Joana Falcão

    2015-03-17

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.

  11. Current ecological research towards completion criteria in Queensland

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, A.; Mulligan, D.; Bellairs, S.; Harwood, M. [University of Queensland, St. Lucia, Qld. (Australia). Centre for Mined Land Rehabilitation

    1998-12-31

    There is a growing recognition of the need for criteria to determine when rehabilitation is successful or complete. Moreover, with the current emphasis on sustainability, criteria need to embrace a range of ecological attributes which in turn require an understanding of the ecosystems being created. This paper describes current research by the Centre for Mined Land Rehabilitation on ecosystem development at a number of operations throughout Queensland in the a bauxite, heavy mineral sands, gold and coal mining sectors. Case studies are presented which cover a number of ecological processes including nutrient cycling, vegetation succession and seedling recruitment. They are based in a range of different environments and encompass several different proposed end land uses. The paper demonstrates the utility of an hierarchical approach in assessing rehabilitation success, and that different elements within the hierarchy have differing levels of importance depending on specific minesite conditions. 22 refs., 3 figs.

  12. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild.

    Science.gov (United States)

    Helm, Barbara; Visser, Marcel E; Schwartz, William; Kronfeld-Schor, Noga; Gerkema, Menno; Piersma, Theunis; Bloch, Guy

    2017-11-19

    Most processes within organisms, and most interactions between organisms and their environment, have distinct time profiles. The temporal coordination of such processes is crucial across levels of biological organization, but disciplines differ widely in their approaches to study timing. Such differences are accentuated between ecologists, who are centrally concerned with a holistic view of an organism in relation to its external environment, and chronobiologists, who emphasize internal timekeeping within an organism and the mechanisms of its adjustment to the environment. We argue that ecological and chronobiological perspectives are complementary, and that studies at the intersection will enable both fields to jointly overcome obstacles that currently hinder progress. However, to achieve this integration, we first have to cross some conceptual barriers, clarifying prohibitively inaccessible terminologies. We critically assess main assumptions and concepts in either field, as well as their common interests. Both approaches intersect in their need to understand the extent and regulation of temporal plasticity, and in the concept of 'chronotype', i.e. the characteristic temporal properties of individuals which are the targets of natural and sexual selection. We then highlight promising developments, point out open questions, acknowledge difficulties and propose directions for further integration of ecological and chronobiological perspectives through Wild Clock research.This article is part of the themed issue 'Wild Clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'. © 2017 The Author(s).

  13. A pharm-ecological perspective of terrestrial and aquatic plant-herbivore interactions.

    Science.gov (United States)

    Forbey, Jennifer Sorensen; Dearing, M Denise; Gross, Elisabeth M; Orians, Colin M; Sotka, Erik E; Foley, William J

    2013-04-01

    We describe some recent themes in the nutritional and chemical ecology of herbivores and the importance of a broad pharmacological view of plant nutrients and chemical defenses that we integrate as "Pharm-ecology". The central role that dose, concentration, and response to plant components (nutrients and secondary metabolites) play in herbivore foraging behavior argues for broader application of approaches derived from pharmacology to both terrestrial and aquatic plant-herbivore systems. We describe how concepts of pharmacokinetics and pharmacodynamics are used to better understand the foraging phenotype of herbivores relative to nutrient and secondary metabolites in food. Implementing these concepts into the field remains a challenge, but new modeling approaches that emphasize tradeoffs and the properties of individual animals show promise. Throughout, we highlight similarities and differences between the historic and future applications of pharm-ecological concepts in understanding the ecology and evolution of terrestrial and aquatic interactions between herbivores and plants. We offer several pharm-ecology related questions and hypotheses that could strengthen our understanding of the nutritional and chemical factors that modulate foraging behavior of herbivores across terrestrial and aquatic systems.

  14. Fundamental ecology is fundamental.

    Science.gov (United States)

    Courchamp, Franck; Dunne, Jennifer A; Le Maho, Yvon; May, Robert M; Thébaud, Christophe; Hochberg, Michael E

    2015-01-01

    The primary reasons for conducting fundamental research are satisfying curiosity, acquiring knowledge, and achieving understanding. Here we develop why we believe it is essential to promote basic ecological research, despite increased impetus for ecologists to conduct and present their research in the light of potential applications. This includes the understanding of our environment, for intellectual, economical, social, and political reasons, and as a major source of innovation. We contend that we should focus less on short-term, objective-driven research and more on creativity and exploratory analyses, quantitatively estimate the benefits of fundamental research for society, and better explain the nature and importance of fundamental ecology to students, politicians, decision makers, and the general public. Our perspective and underlying arguments should also apply to evolutionary biology and to many of the other biological and physical sciences. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin

    Science.gov (United States)

    Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.

  16. Ecological effects assessment: requirements vs state-of-the-art

    International Nuclear Information System (INIS)

    McKenzie, D.H.; Thomas, J.M.; Eberhardt, L.L.

    1981-05-01

    Concerns for environmental quality, the ecologist's understanding of ecosystems, and the ability to quantitatively sample and evaluate hypotheses have contributed to current requirements and the state-of-the-art in ecological effects assessments in refard to nuclear power plants. The current cooling system approaches, data collection programs, and ecological effects assessments reflect these contributions. Over a decade of experience provides the basis for a timely review and evaluation of current proactice. The magnitude of economic and environmental resources being committed to cooling system alternatives mandates that the decision-making process result in as many optimal choices as possible. In addition, the resources being devoted to environmental data collection and integration provide considerable motivation for providing meaningful input to the decision-making process. It is maintained that the input should be as quantitative and as free from subjective content as is reasonably possible. An alternative viewpoint suggests that the past several decades of experience be considered but a first step, and the current task to be one of designing a second step

  17. The microbial ecology of permafrost

    DEFF Research Database (Denmark)

    Jansson, Janet; Tas, Neslihan

    2014-01-01

    Permafrost constitutes a major portion of the terrestrial cryosphere of the Earth and is a unique ecological niche for cold-adapted microorganisms. There is a relatively high microbial diversity in permafrost, although there is some variation in community composition across different permafrost......-gas emissions. This Review describes new data on the microbial ecology of permafrost and provides a platform for understanding microbial life strategies in frozen soil as well as the impact of climate change on permafrost microorganisms and their functional roles....

  18. Making big communities small: using network science to understand the ecological and behavioral requirements for community social capital.

    Science.gov (United States)

    Neal, Zachary

    2015-06-01

    The concept of social capital is becoming increasingly common in community psychology and elsewhere. However, the multiple conceptual and operational definitions of social capital challenge its utility as a theoretical tool. The goals of this paper are to clarify two forms of social capital (bridging and bonding), explicitly link them to the structural characteristics of small world networks, and explore the behavioral and ecological prerequisites of its formation. First, I use the tools of network science and specifically the concept of small-world networks to clarify what patterns of social relationships are likely to facilitate social capital formation. Second, I use an agent-based model to explore how different ecological characteristics (diversity and segregation) and behavioral tendencies (homophily and proximity) impact communities' potential for developing social capital. The results suggest diverse communities have the greatest potential to develop community social capital, and that segregation moderates the effects that the behavioral tendencies of homophily and proximity have on community social capital. The discussion highlights how these findings provide community-based researchers with both a deeper understanding of the contextual constraints with which they must contend, and a useful tool for targeting their efforts in communities with the greatest need or greatest potential.

  19. Minding the ecological body: neuropsychoanalysis and ecopsychoanalysis.

    Science.gov (United States)

    Dodds, Joseph

    2013-01-01

    Neuropsychoanalysis explores experimentally and theoretically the philosophically ancient discussion of the relation of mind and body, and seems well placed to overcome the problem of a "mindless" neuroscience and a "brainless" psychology and psychotherapy, especially when combined with a greater awareness that the body itself, not only the brain, provides the material substrate for the emergent phenomenon we call mind. However, the mind-brain-body is itself situated within a complex ecological world, interacting with other mind-brain-bodies and the "non-human environment." This occurs both synchronically and diachronically as the organism and its environment (living and non-living) interact in highly complex often non-linear ways. Psychoanalysis can do much to help unmask the anxieties, deficits, conflicts, phantasies, and defenses crucial in understanding the human dimension of the ecological crisis. Yet, psychoanalysis still largely remains not only a "psychology without biology," which neuropsychoanalysis seeks to remedy, but also a "psychology without ecology." Ecopsychoanalysis (Dodds, 2011b; Dodds and Jordan, 2012) is a new transdisciplinary approach drawing on a range of fields such as psychoanalysis, psychology, ecology, philosophy, science, complexity theory, esthetics, and the humanities. It attempts to play with what each approach has to offer in the sense of a heterogeneous assemblage of ideas and processes, mirroring the interlocking complexity, chaos, and turbulence of nature itself. By emphasizing the way the mind-brain-body studied by neuropsychoanalysis is embedded in wider social and ecological networks, ecopsychoanalysis can help open up the relevance of neuropsychoanalysis to wider fields of study, including those who are concerned with what Wilson (2003) called "the future of life."

  20. Minding the Ecological Body: Neuropsychoanalysis and Ecopsychoanalysis

    Science.gov (United States)

    Dodds, Joseph

    2013-01-01

    Neuropsychoanalysis explores experimentally and theoretically the philosophically ancient discussion of the relation of mind and body, and seems well placed to overcome the problem of a “mindless” neuroscience and a “brainless” psychology and psychotherapy, especially when combined with a greater awareness that the body itself, not only the brain, provides the material substrate for the emergent phenomenon we call mind. However, the mind-brain-body is itself situated within a complex ecological world, interacting with other mind-brain-bodies and the “non-human environment.” This occurs both synchronically and diachronically as the organism and its environment (living and non-living) interact in highly complex often non-linear ways. Psychoanalysis can do much to help unmask the anxieties, deficits, conflicts, phantasies, and defenses crucial in understanding the human dimension of the ecological crisis. Yet, psychoanalysis still largely remains not only a “psychology without biology,” which neuropsychoanalysis seeks to remedy, but also a “psychology without ecology.” Ecopsychoanalysis (Dodds, 2011b; Dodds and Jordan, 2012) is a new transdisciplinary approach drawing on a range of fields such as psychoanalysis, psychology, ecology, philosophy, science, complexity theory, esthetics, and the humanities. It attempts to play with what each approach has to offer in the sense of a heterogeneous assemblage of ideas and processes, mirroring the interlocking complexity, chaos, and turbulence of nature itself. By emphasizing the way the mind-brain-body studied by neuropsychoanalysis is embedded in wider social and ecological networks, ecopsychoanalysis can help open up the relevance of neuropsychoanalysis to wider fields of study, including those who are concerned with what Wilson (2003) called “the future of life.” PMID:23533027

  1. UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS

    Data.gov (United States)

    National Aeronautics and Space Administration — UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS AMY MCGOVERN, TIMOTHY SUPINIE, DAVID JOHN GAGNE II, NATHANIEL TROUTMAN,...

  2. Where Lies the Risk? An Ecological Approach to Understanding Child Mental Health Risk and Vulnerabilities in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Olayinka Atilola

    2014-01-01

    Full Text Available Efforts at improving child-health and development initiatives in sub-Saharan Africa had focused on the physical health of children due to the neglect of child and adolescent mental health (CAMH policy initiatives. A thorough and broad-based understanding of the prevalent child mental-health risk and vulnerability factors is needed to successfully articulate CAMH policies. In this discourse, we present a narrative on the child mental-health risk and vulnerability factors in sub-Saharan Africa. Through an ecological point of view, we identified widespread family poverty, poor availability and uptake of childcare resources, inadequate community and institutional childcare systems, and inadequate framework for social protection for vulnerable children as among the risk and vulnerability factors for CAMH in the region. Others are poor workplace policy/practice that does not support work-family life balance, poor legislative framework for child protection, and some harmful traditional practices. We conclude that an ecological approach shows that child mental-health risks are diverse and cut across different layers of the care environment. The approach also provides a broad and holistic template from which appropriate CAMH policy direction in sub-Saharan Africa can be understood.

  3. Where lies the risk? An ecological approach to understanding child mental health risk and vulnerabilities in sub-saharan Africa.

    Science.gov (United States)

    Atilola, Olayinka

    2014-01-01

    Efforts at improving child-health and development initiatives in sub-Saharan Africa had focused on the physical health of children due to the neglect of child and adolescent mental health (CAMH) policy initiatives. A thorough and broad-based understanding of the prevalent child mental-health risk and vulnerability factors is needed to successfully articulate CAMH policies. In this discourse, we present a narrative on the child mental-health risk and vulnerability factors in sub-Saharan Africa. Through an ecological point of view, we identified widespread family poverty, poor availability and uptake of childcare resources, inadequate community and institutional childcare systems, and inadequate framework for social protection for vulnerable children as among the risk and vulnerability factors for CAMH in the region. Others are poor workplace policy/practice that does not support work-family life balance, poor legislative framework for child protection, and some harmful traditional practices. We conclude that an ecological approach shows that child mental-health risks are diverse and cut across different layers of the care environment. The approach also provides a broad and holistic template from which appropriate CAMH policy direction in sub-Saharan Africa can be understood.

  4. Where Lies the Risk? An Ecological Approach to Understanding Child Mental Health Risk and Vulnerabilities in Sub-Saharan Africa

    Science.gov (United States)

    Atilola, Olayinka

    2014-01-01

    Efforts at improving child-health and development initiatives in sub-Saharan Africa had focused on the physical health of children due to the neglect of child and adolescent mental health (CAMH) policy initiatives. A thorough and broad-based understanding of the prevalent child mental-health risk and vulnerability factors is needed to successfully articulate CAMH policies. In this discourse, we present a narrative on the child mental-health risk and vulnerability factors in sub-Saharan Africa. Through an ecological point of view, we identified widespread family poverty, poor availability and uptake of childcare resources, inadequate community and institutional childcare systems, and inadequate framework for social protection for vulnerable children as among the risk and vulnerability factors for CAMH in the region. Others are poor workplace policy/practice that does not support work-family life balance, poor legislative framework for child protection, and some harmful traditional practices. We conclude that an ecological approach shows that child mental-health risks are diverse and cut across different layers of the care environment. The approach also provides a broad and holistic template from which appropriate CAMH policy direction in sub-Saharan Africa can be understood. PMID:24834431

  5. Natural histories of infectious disease: ecological vision in twentieth-century biomedical science.

    Science.gov (United States)

    Anderson, Warwick

    2004-01-01

    During the twentieth century, disease ecology emerged as a distinct disciplinary network within infectious diseases research. The key figures were Theobald Smith, F. Macfarlane Burnet, René Dubos, and Frank Fenner. They all drew on Darwinian evolutionism to fashion an integrative (but rarely holistic) understanding of disease processes, distinguishing themselves from reductionist "chemists" and mere "microbe hunters." They sought a more complex, biologically informed epidemiology. Their emphasis on competition and mutualism in the animated environment differed from the physical determinism that prevailed in much medical geography and environmental health research. Disease ecology derived in part from studies of the interaction of organisms - micro and macro - in tropical medicine, veterinary pathology, and immunology. It developed in postcolonial settler societies. Once a minority interest, disease ecology has attracted more attention since the 1980s for its explanations of disease emergence, antibiotic resistance, bioterrorism, and the health impacts of climate change.

  6. Ecology of gelatious plankton

    DEFF Research Database (Denmark)

    Jaspers, Cornelia

    as a result of this invasion and its ecological and economic impacts. In 2005, when M. leidyi was sighted in Northern Europe for the first time, similar consequences were feared. The aim of my PhD project was to understand the potential impact of M. leidyi on the Baltic Sea ecosystem and constrains on its...... in high and intermediate saline areas in Northern Europe. While the ecological impact of M. leidyi in the central Baltic appears to be limited concern, the environment in other European waters should be more favourable to their populations. In these areas, it is suggested that M. leidyi constitutes...

  7. Conceptual Analysis: The Charcoal-Agriculture Nexus to Understand the Socio-Ecological Contexts Underlying Varied Sustainability Outcomes in African Landscapes

    Directory of Open Access Journals (Sweden)

    Miyuki Iiyama

    2017-06-01

    Full Text Available The production of charcoal is an important socio-economic activity in sub-Saharan Africa (SSA. Charcoal production is one of the leading drivers of rural land-use changes in SSA, although the intensity of impacts on the multi-functionality of landscapes varies considerably. Within a given landscape, charcoal production is closely interconnected to agriculture production both as major livelihoods, while both critically depend on the same ecosystem services. The interactions between charcoal and agricultural production systems can lead to positive synergies of impacts, but will more often result in trade-offs and even vicious cycles. Such sustainability outcomes vary from one site to another due to the heterogeneity of contexts, including agricultural production systems that affect the adoption of technologies and practices. Trade-offs or cases of vicious cycles occur when one-off resource exploitation of natural trees for charcoal production for short-term economic gains permanently impairs ecosystem functions. Given the fact that charcoal, as an important energy source for the growing urban populations and an essential livelihood for the rural populations, cannot be readily substituted in SSA, there must be policies to support charcoal production. Policies should encourage sustainable technologies and practices, either by establishing plantations or by encouraging regeneration, whichever is more suitable for the local environment. To guide context-specific interventions, this paper presents a new perspective—the charcoal-agriculture nexus—aimed at facilitating the understanding of the socio-economic and ecological interactions of charcoal and agricultural production. The nexus especially highlights two dimensions of the socio-ecological contexts: charcoal value chains and tenure systems. Combinations of the two are assumed to underlie varied socio-economic and ecological sustainability outcomes by conditioning incentive mechanisms to affect

  8. SOCIO-ECOLOGICAL THEORIES AND EMPIRICAL RESEARCH. COMPARING SOCIAL-ECOLOGICAL SCHOOLS OF THOUGHTS IN ACTION

    OpenAIRE

    Bousquet, F.; Anderies, M.; Antona, M.; Bassett, T.; Benjaminsen, T.; Bonato, O.; Castro, M.; Gautier, D.; Gunderson, L.; Janssen, M.; Kinzig, A.; Lecoq, M.; Lynam, T.; Mathevet, R.; Perrings, C.

    2015-01-01

    Environmental problems, at local scale as well as global scale, are now considered as key issues and scientists are encouraged to be part of the process to address these issues. For the last decades, scholars have been focusing on the study of interactions between social dynamics and ecological processes and produced a set of concepts and scientific discourses aiming at framing the analysis of socio-ecological dynamics and eventually at orienting interventions. Scientific discourses are produ...

  9. Process models as tools in forestry research and management

    Science.gov (United States)

    Kurt Johnsen; Lisa Samuelson; Robert Teskey; Steve McNulty; Tom Fox

    2001-01-01

    Forest process models are mathematical representations of biological systems that incorporate our understanding of physiological and ecological mechanisms into predictive algorithms. These models were originally designed and used for research purposes, but are being developed for use in practical forest management. Process models designed for research...

  10. Scrambled eggs: mechanical forces as ecological factors in early development.

    Science.gov (United States)

    Moore, Steven W

    2003-01-01

    Many ecological interactions involve, at some level, mechanical forces and the movements or structural deformations they produce. Although the most familiar examples involve the functional morphology of adult structures, all life history stages (not just the adults) are subject to the laws of physics. Moreover, the success of every lineage depends on the success of every life history stage (again, not just the adults). Therefore, insights gained by using mechanical engineering principles and techniques to study ecological interactions between gametes, embryos, larvae, and their environment are essential to a well-rounded understanding of development, ecology, and evolution. Here I draw on examples from the literature and my own research to illustrate ways in which mechanical forces in the environment shape development. These include mechanical forces acting as selective factors (e.g., when coral gamete size and shape interact with turbulent water flow to determine fertilization success) and as developmental cues (e.g., when plant growth responds to gravity or bone growth responds to mechanical loading). I also examine the opposite cause-and-effect relationship by considering examples in which the development of organisms impacts ecologically relevant mechanical forces. Finally, I discuss the potential for ecological pattern formation as a result of feedback loops created by such bidirectional interactions between developmental processes and mechanical forces in the environment.

  11. Individual-based modeling of ecological and evolutionary processes

    NARCIS (Netherlands)

    DeAngelis, D.L.; Mooij, W.M.

    2005-01-01

    Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential and difference equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis

  12. Suppressive composts: microbial ecology links between abiotic environments and healthy plants.

    Science.gov (United States)

    Hadar, Yitzhak; Papadopoulou, Kalliope K

    2012-01-01

    Suppressive compost provides an environment in which plant disease development is reduced, even in the presence of a pathogen and a susceptible host. Despite the numerous positive reports, its practical application is still limited. The main reason for this is the lack of reliable prediction and quality control tools for evaluation of the level and specificity of the suppression effect. Plant disease suppression is the direct result of the activity of consortia of antagonistic microorganisms that naturally recolonize the compost during the cooling phase of the process. Thus, it is imperative to increase the level of understanding of compost microbial ecology and population dynamics. This may lead to the development of an ecological theory for complex ecosystems as well as favor the establishment of hypothesis-driven studies.

  13. Long-Term Research in Ecology and Evolution (LTREE): 2015 survey data.

    Science.gov (United States)

    Bradford, Mark A; Leiserowitz, Anthony; Feinberg, Geoffrey; Rosenthal, Seth A; Lau, Jennifer A

    2017-11-01

    To systematically assess views on contributions and future activities for long-term research in ecology and evolution (LTREE), we conducted and here provide data responses and associated metadata for a survey of ecological and evolutionary scientists. The survey objectives were to: (1) Identify and prioritize research questions that are important to address through long-term, ecological field experiments; and (2) understand the role that these experiments might play in generating and applying ecological and evolutionary knowledge. The survey was developed adhering to the standards of the American Association for Public Opinion Research. It was administered online using Qualtrics Survey Software. Survey creation was a multi-step process, with questions and format developed and then revised with, for example, input from an external advisory committee comprising senior and junior ecological and evolutionary researchers. The final questionnaire was released to ~100 colleagues to ensure functionality and then fielded 2 d later (January 7 th , 2015). Two professional societies distributed it to their membership, including the Ecological Society of America, and it was posted to three list serves. The questionnaire was available through February 8th 2015 and completed by 1,179 respondents. The distribution approach targeted practicing ecologists and evolutionary biologists in the U.S. Quantitative (both ordinal and categorical) closed-ended questions used a predefined set of response categories, facilitating direct comparison across all respondents. Qualitative, open-ended questions, provided respondents the opportunity to develop their own answers. We employed quantitative questions to score views on the extent to which long-term experimental research has contributed to understanding in ecology and evolutionary biology; its role compared to other approaches (e.g., short-term experiments); justifications for and caveats to long-term experiments; and the relative importance

  14. Toward understanding dynamic annealing processes in irradiated ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael Thomas [Texas A & M Univ., College Station, TX (United States)

    2013-05-01

    High energy particle irradiation inevitably generates defects in solids. The ballistic formation and thermalization of the defect creation process occur rapidly, and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic annealing is crucial since such processes play an important role in the formation of stable postirradiation disorder in ion-beam-processing of semiconductors, and determines the “radiation tolerance” of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken.

  15. Development of an ecological momentary assessment scale for appetite

    OpenAIRE

    Kikuchi, Hiroe; Yoshiuchi, Kazuhiro; Inada, Shuji; Ando, Tetsuya; Yamamoto, Yoshiharu

    2015-01-01

    Background An understanding of eating behaviors is an important element of health education and treatment in clinical populations. To understand the biopsychosocial profile of eating behaviors in an ecologically valid way, ecological momentary assessment (EMA) is appropriate because its use is able to overcome the recall bias in patient-reported outcomes (PROs). As appetite is a key PRO associated with eating behaviors, this study was done to develop an EMA scale to evaluate the within-indivi...

  16. Functional genetics of intraspecific ecological interactions in Arabidopsis thaliana

    OpenAIRE

    Wolf, Jason B.; Mutic, Joshua J.; Kover, Paula X.

    2011-01-01

    Studying the genetic basis of traits involved in ecological interactions is a fundamental part of elucidating the connections between evolutionary and ecological processes. Such knowledge allows one to link genetic models of trait evolution with ecological models describing interactions within and between species. Previous work has shown that connections between genetic and ecological processes in Arabidopsis thaliana may be mediated by the fact that quantitative trait loci (QTL) with ‘direct...

  17. Optimization of the scheme for natural ecology planning of urban rivers based on ANP (analytic network process) model.

    Science.gov (United States)

    Zhang, Yichuan; Wang, Jiangping

    2015-07-01

    Rivers serve as a highly valued component in ecosystem and urban infrastructures. River planning should follow basic principles of maintaining or reconstructing the natural landscape and ecological functions of rivers. Optimization of planning scheme is a prerequisite for successful construction of urban rivers. Therefore, relevant studies on optimization of scheme for natural ecology planning of rivers is crucial. In the present study, four planning schemes for Zhaodingpal River in Xinxiang City, Henan Province were included as the objects for optimization. Fourteen factors that influenced the natural ecology planning of urban rivers were selected from five aspects so as to establish the ANP model. The data processing was done using Super Decisions software. The results showed that important degree of scheme 3 was highest. A scientific, reasonable and accurate evaluation of schemes could be made by ANP method on natural ecology planning of urban rivers. This method could be used to provide references for sustainable development and construction of urban rivers. ANP method is also suitable for optimization of schemes for urban green space planning and design.

  18. Ecological stability of landscape - ecological infrastructure - ecological management

    International Nuclear Information System (INIS)

    1992-01-01

    The Field Workshop 'Ecological Stability of Landscape - Ecological Infrastructure - Ecological Management' was held within a State Environmental Programme financed by the Federal Committee for the Environment. The objectives of the workshop were to present Czech and Slovak approaches to the ecological stability of the landscape by means of examples of some case studies in the field, and to exchange ideas, theoretical knowledge and practical experience on implementing the concept of ecological infrastructure in landscape management. Out of 19 papers contained in the proceedings, 3 items were inputted to the INIS system. (Z.S.)

  19. From ecological records to big data: the invention of global biodiversity.

    Science.gov (United States)

    Devictor, Vincent; Bensaude-Vincent, Bernadette

    2016-12-01

    This paper is a critical assessment of the epistemological impact of the systematic quantification of nature with the accumulation of big datasets on the practice and orientation of ecological science. We examine the contents of big databases and argue that it is not just accumulated information; records are translated into digital data in a process that changes their meanings. In order to better understand what is at stake in the 'datafication' process, we explore the context for the emergence and quantification of biodiversity in the 1980s, along with the concept of the global environment. In tracing the origin and development of the global biodiversity information facility (GBIF) we describe big data biodiversity projects as a techno-political construction dedicated to monitoring a new object: the global diversity. We argue that, biodiversity big data became a powerful driver behind the invention of the concept of the global environment, and a way to embed ecological science in the political agenda.

  20. The application of the Internet of Things to animal ecology.

    Science.gov (United States)

    Guo, Songtao; Qiang, Min; Luan, Xiaorui; Xu, Pengfei; He, Gang; Yin, Xiaoyan; Xi, Luo; Jin, Xuelin; Shao, Jianbin; Chen, Xiaojiang; Fang, Dingyi; Li, Baoguo

    2015-11-01

    For ecologists, understanding the reaction of animals to environmental changes is critical. Using networked sensor technology to measure wildlife and environmental parameters can provide accurate, real-time and comprehensive data for monitoring, research and conservation of wildlife. This paper reviews: (i) conventional detection technology; (ii) concepts and applications of the Internet of Things (IoT) in animal ecology; and (iii) the advantages and disadvantages of IoT. The current theoretical limits of IoT in animal ecology are also discussed. Although IoT offers a new direction in animal ecological research, it still needs to be further explored and developed as a theoretical system and applied to the appropriate scientific frameworks for understanding animal ecology. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  1. A Multi-Scalar Approach to Theorizing Socio-Ecological Dynamics of Urban Residential Landscapes

    Directory of Open Access Journals (Sweden)

    Rinku Roy Chowdhury

    2011-01-01

    Full Text Available Urban residential expansion increasingly drives land use, land cover and ecological changes worldwide, yet social science theories explaining such change remain under-developed. Existing theories often focus on processes occurring at one scale, while ignoring other scales. Emerging evidence from four linked U.S. research sites suggests it is essential to examine processes at multiple scales simultaneously when explaining the evolution of urban residential landscapes. Additionally, focusing on urbanization dynamics across multiple sites with a shared research design may yield fruitful comparative insights. The following processes and social-hierarchical scales significantly influence the spatial configurations of residential landscapes: household-level characteristics and environmental attitudes; formal and informal institutions at the neighborhood scale; and municipal-scale land-use governance. While adopting a multi-scale and multi-site approach produces research challenges, doing so is critical to advancing understanding of coupled socio-ecological systems and associated vulnerabilities in a dynamic and environmentally important setting: residential landscapes.

  2. The Ecology of Human Mobility.

    Science.gov (United States)

    Meekan, Mark G; Duarte, Carlos M; Fernández-Gracia, Juan; Thums, Michele; Sequeira, Ana M M; Harcourt, Rob; Eguíluz, Víctor M

    2017-03-01

    Mobile phones and other geolocated devices have produced unprecedented volumes of data on human movement. Analysis of pooled individual human trajectories using big data approaches has revealed a wealth of emergent features that have ecological parallels in animals across a diverse array of phenomena including commuting, epidemics, the spread of innovations and culture, and collective behaviour. Movement ecology, which explores how animals cope with and optimize variability in resources, has the potential to provide a theoretical framework to aid an understanding of human mobility and its impacts on ecosystems. In turn, big data on human movement can be explored in the context of animal movement ecology to provide solutions for urgent conservation problems and management challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University's Institute of Ecology. The laboratory's overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M ampersand O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give

  4. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University`s Institute of Ecology. The laboratory`s overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M&O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give.

  5. The ecological atlas. 3. rev. ed.

    International Nuclear Information System (INIS)

    Seager, J.

    1993-01-01

    ''The ecological atlas'' translates expert knowledge in a way that makes it accessable to the general public. In 37 double sided maps in four colours it gives information about the health of our planet and the quality of human life. Under 8 different angles: (the earth's habitat, food and drinking water, housing, energy, industry, armament, consumer needs and 'green politics'). ''The ecological atlas'' describes the effects of worldwide ecological effects: climatic disasters, the greenhouse effect, the hole in the ozone layer, destruction of the tropical rainforests, the effects of extensive farming and increasing urbanization. Pages of comprehensive commentaries complement the maps and aid understanding of their problem areas. (orig./DG) [de

  6. [Urban ecological risk assessment: a review].

    Science.gov (United States)

    Wang, Mei-E; Chen, Wei-Ping; Peng, Chi

    2014-03-01

    With the development of urbanization and the degradation of urban living environment, urban ecological risks caused by urbanization have attracted more and more attentions. Based on urban ecology principles and ecological risk assessment frameworks, contents of urban ecological risk assessment were reviewed in terms of driven forces, risk resources, risk receptors, endpoints and integrated approaches for risk assessment. It was suggested that types and degrees of urban economical and social activities were the driven forces for urban ecological risks. Ecological functional components at different levels in urban ecosystems as well as the urban system as a whole were the risk receptors. Assessment endpoints involved in changes of urban ecological structures, processes, functional components and the integrity of characteristic and function. Social-ecological models should be the major approaches for urban ecological risk assessment. Trends for urban ecological risk assessment study should focus on setting a definite protection target and criteria corresponding to assessment endpoints, establishing a multiple-parameter assessment system and integrative assessment approaches.

  7. Ecological scale and forest development: squirrels, dietary fungi, and vascular plants in managed and unmanaged forests.

    Science.gov (United States)

    A.B. Carey; J. Kershner; B. Biswell; L.S. Dominguez de Toledo

    1999-01-01

    Understanding ecological processes and their spatial scales is key to managing ecosystems for biodiversity, especially for species associated with late-seral forest. We focused on 2 species of squirrel (Sciuridae: northern flying squirrel, Glaucomys sabrinus, and Townsend's chipmunk, Tamias townsendii) in a crosssectional survey of managed and natural stands in...

  8. Protected areas as social-ecological systems: perspectives from resilience and social-ecological systems theory

    Science.gov (United States)

    Cumming, Graeme S.; Allen, Craig R.

    2017-01-01

    Conservation biology and applied ecology increasingly recognize that natural resource management is both an outcome and a driver of social, economic, and ecological dynamics. Protected areas offer a fundamental approach to conserving ecosystems, but they are also social-ecological systems whose ecological management and sustainability are heavily influenced by people. This editorial, and the papers in the invited feature that it introduces, discuss three emerging themes in social-ecological systems approaches to understanding protected areas: (1) the resilience and sustainability of protected areas, including analyses of their internal dynamics, their effectiveness, and the resilience of the landscapes within which they occur; (2) the relevance of spatial context and scale for protected areas, including such factors as geographic connectivity, context, exchanges between protected areas and their surrounding landscapes, and scale dependency in the provision of ecosystem services; and (3) efforts to reframe what protected areas are and how they both define and are defined by the relationships of people and nature. These emerging themes have the potential to transform management and policy approaches for protected areas and have important implications for conservation, in both theory and practice.

  9. Art and artistic processes bridge knowledge systems about social-ecological change: An empirical examination with Inuit artists from Nunavut, Canada

    Directory of Open Access Journals (Sweden)

    Kaitlyn J. Rathwell

    2016-06-01

    Full Text Available The role of art and artistic processes is one fruitful yet underexplored area of social-ecological resilience. Art and art making can nurture Indigenous knowledge and at the same time bridge knowledge across generations and cultures (e.g., Inuit and scientific. Experiences in two Inuit communities in northern Canada (Cape Dorset and Pangnirtung, Nunavut provide the context in which we empirically examine the mechanisms through which art and art making may bridge knowledge systems about social-ecological change. Art making and artworks create continuity between generations via symbols and skill development (e.g., seal skin stretching for a modern artistic mural and by creating mobile and adaptive boundary objects that function as a shared reference point to connect different social worlds. Our results indicate how art and artistic processes may bridge knowledge systems through six mechanisms, and in so doing contribute to social-ecological resilience during change and uncertainty. These mechanisms are (1 embedding knowledge, practice and belief into art objects; (2 sharing knowledge using the language of art; (3 sharing of art making skills; (4 art as a contributor to monitoring social-ecological change; (5 the role of art in fostering continuity through time; and (6 art as a site of knowledge coproduction.

  10. Ecological Reserve: Towards a common understanding for river management in South Africa

    CSIR Research Space (South Africa)

    Van Wyk, E

    2006-07-01

    Full Text Available The legal requirement for an Ecological Reserve established in South Africa’s water law is commonly regarded by stakeholders as being in direct competition with the needs of humans. This has resulted in much debate and varying interpretations...

  11. Nutritional Ecology and Human Health.

    Science.gov (United States)

    Raubenheimer, David; Simpson, Stephen J

    2016-07-17

    In contrast to the spectacular advances in the first half of the twentieth century with micronutrient-related diseases, human nutrition science has failed to stem the more recent rise of obesity and associated cardiometabolic disease (OACD). This failure has triggered debate on the problems and limitations of the field and what change is needed to address these. We briefly review the two broad historical phases of human nutrition science and then provide an overview of the main problems that have been implicated in the poor progress of the field with solving OACD. We next introduce the field of nutritional ecology and show how its ecological-evolutionary foundations can enrich human nutrition science by providing the theory to help address its limitations. We end by introducing a modeling approach from nutritional ecology, termed nutritional geometry, and demonstrate how it can help to implement ecological and evolutionary theory in human nutrition to provide new direction and to better understand and manage OACD.

  12. The ecological importance of intraspecific variation.

    Science.gov (United States)

    Des Roches, Simone; Post, David M; Turley, Nash E; Bailey, Joseph K; Hendry, Andrew P; Kinnison, Michael T; Schweitzer, Jennifer A; Palkovacs, Eric P

    2018-01-01

    Human activity is causing wild populations to experience rapid trait change and local extirpation. The resulting effects on intraspecific variation could have substantial consequences for ecological processes and ecosystem services. Although researchers have long acknowledged that variation among species influences the surrounding environment, only recently has evidence accumulated for the ecological importance of variation within species. We conducted a meta-analysis comparing the ecological effects of variation within a species (intraspecific effects) with the effects of replacement or removal of that species (species effects). We evaluated direct and indirect ecological responses, including changes in abundance (or biomass), rates of ecological processes and changes in community composition. Our results show that intraspecific effects are often comparable to, and sometimes stronger than, species effects. Species effects tend to be larger for direct ecological responses (for example, through consumption), whereas intraspecific effects and species effects tend to be similar for indirect responses (for example, through trophic cascades). Intraspecific effects are especially strong when indirect interactions alter community composition. Our results summarize data from the first generation of studies examining the relative ecological effects of intraspecific variation. Our conclusions can help inform the design of future experiments and the formulation of strategies to quantify and conserve biodiversity.

  13. Ecological opportunity and predator-prey interactions: linking eco-evolutionary processes and diversification in adaptive radiations.

    Science.gov (United States)

    Pontarp, Mikael; Petchey, Owen L

    2018-03-14

    Much of life's diversity has arisen through ecological opportunity and adaptive radiations, but the mechanistic underpinning of such diversification is not fully understood. Competition and predation can affect adaptive radiations, but contrasting theoretical and empirical results show that they can both promote and interrupt diversification. A mechanistic understanding of the link between microevolutionary processes and macroevolutionary patterns is thus needed, especially in trophic communities. Here, we use a trait-based eco-evolutionary model to investigate the mechanisms linking competition, predation and adaptive radiations. By combining available micro-evolutionary theory and simulations of adaptive radiations we show that intraspecific competition is crucial for diversification as it induces disruptive selection, in particular in early phases of radiation. The diversification rate is however decreased in later phases owing to interspecific competition as niche availability, and population sizes are decreased. We provide new insight into how predation tends to have a negative effect on prey diversification through decreased population sizes, decreased disruptive selection and through the exclusion of prey from parts of niche space. The seemingly disparate effects of competition and predation on adaptive radiations, listed in the literature, may thus be acting and interacting in the same adaptive radiation at different relative strength as the radiation progresses. © 2018 The Authors.

  14. Towards a concept of community artifact ecology in HCI?

    DEFF Research Database (Denmark)

    Saad-Sulonen, Joanna; Korsgaard, Henrik

    or workplaces do. This has implications on understanding how to research and design HCI for communities but also on refining the ecological perspective in HCI. We look in particular at examples from preliminary research on a local self-organised urban community and discuss what existing concepts in the ecology......In this paper we introduce the concept of community artifact ecology. We argue that taking a community perspective on the concept of artifact ecologies is relevant in HCI because communities are also dealing with multitudes of artifacts, in ways di↵erent that individuals, organizations...

  15. Towards an Understanding of Enabling Process Knowing in Global Software Development: A Case Study

    DEFF Research Database (Denmark)

    Zahedi, Mansooreh; Babar, Muhammad Ali

    2014-01-01

    Shared understanding of Software Engineering (SE) processes, that we call process knowing, is required for effective communication and coordination and communication within a team in order to improve team performance. SE Process knowledge can include roles, responsibilities and flow of informatio...... challenges of lack of process knowing and how an organization can enable process knowing for achieving the desired results that also help in increasing social interactions and positive behavioral changes......Shared understanding of Software Engineering (SE) processes, that we call process knowing, is required for effective communication and coordination and communication within a team in order to improve team performance. SE Process knowledge can include roles, responsibilities and flow of information...... over a project lifecycle. Developing and sustaining process knowledge can be more challenging in Global Software Development (GSD). GSD distances can limit the ability of a team to develop a common understanding of processes. Anecdotes of the problems caused by lack of common understanding of processes...

  16. Assessing the Role of Socio-Ecological Learning in Participatory Governance: Building Resilience in Six Brazilian River Basin Committees

    Directory of Open Access Journals (Sweden)

    Anne Browning-Aiken

    2014-08-01

    Full Text Available Brazil has embedded the socio-ecological learning process in the participatory management of river basin councils through its “sister laws” on water and the environment. GTHIDRO or, Grupo Transdisciplinar de Pesquisas em Governança da Água e do Território/Tecnologias Sociais para a Gestão da Água (TSGA, a transdisciplinary group of researchers at the Federal University of Santa Catarina, took these laws and developed new interpretations of socio-ecological learning. They incorporated an ethical component and a dynamic and complex program of participatory “cycles of learning” that brought committees and communities to a common understanding of socio-ecological processes, laws, and potential for collective action. Using resilience theory as a framework for understanding how to sustain and enhance adaptive capacity (Folke et al., 2002, this paper analyzes the processes of socio-ecological learning, including focus groups, physical dynamics that blend the conceptual with the physical, visioning, socio-ecological mapping, project planning and community celebrations through interviews, meeting notes, and written documents of the six case studies. The potential for socio-ecological learning as a tool for building the capacity of basin committees (Turvo, Ermo, Nova Veneza, Orleans e Braço do Norte in the southern part of the state, Urubici in the mountainous region, and Concordia in the middle eastern part to plan and implement projects is substantiated as an important tool for building the resilience of the combined systems. The case studies indicate that their greatest achievement is the Strategic Planning Model for Sustainable Development, entitled PEDS, which diagrams how to improve the management core group’s capacity to plan and implement projects of their own design, using strategies they have learned and networks they have established in their watershed and state. While the potential for conflict over water and energy between the

  17. Understanding system disturbance and ecosystem services in restored saltmarshes: Integrating physical and biogeochemical processes

    Science.gov (United States)

    Spencer, K. L.; Harvey, G. L.

    2012-06-01

    Coastal saltmarsh ecosystems occupy only a small percentage of Earth's land surface, yet contribute a wide range of ecosystem services that have significant global economic and societal value. These environments currently face significant challenges associated with climate change, sea level rise, development and water quality deterioration and are consequently the focus of a range of management schemes. Increasingly, soft engineering techniques such as managed realignment (MR) are being employed to restore and recreate these environments, driven primarily by the need for habitat (re)creation and sustainable coastal flood defence. Such restoration schemes also have the potential to provide additional ecosystem services including climate regulation and waste processing. However, these sites have frequently been physically impacted by their previous land use and there is a lack of understanding of how this 'disturbance' impacts the delivery of ecosystem services or of the complex linkages between ecological, physical and biogeochemical processes in restored systems. Through the exploration of current data this paper determines that hydrological, geomorphological and hydrodynamic functioning of restored sites may be significantly impaired with respects to natural 'undisturbed' systems and that links between morphology, sediment structure, hydrology and solute transfer are poorly understood. This has consequences for the delivery of seeds, the provision of abiotic conditions suitable for plant growth, the development of microhabitats and the cycling of nutrients/contaminants and may impact the delivery of ecosystem services including biodiversity, climate regulation and waste processing. This calls for a change in our approach to research in these environments with a need for integrated, interdisciplinary studies over a range of spatial and temporal scales incorporating both intensive and extensive research design.

  18. Microbial ecology of the Agaricus bisporus mushroom cropping process.

    Science.gov (United States)

    McGee, Conor F

    2018-02-01

    Agaricus bisporus is the most widely cultivated mushroom species in the world. Cultivation is commenced by inoculating beds of semi-pasteurised composted organic substrate with a pure spawn of A. bisporus. The A. bisporus mycelium subsequently colonises the composted substrate by degrading the organic material to release nutrients. A layer of peat, often called "casing soil", is laid upon the surface of the composted substrate to induce the development of the mushroom crop and maintain compost environmental conditions. Extensive research has been conducted investigating the biochemistry and genetics of A. bisporus throughout the cultivation process; however, little is currently known about the wider microbial ecology that co-inhabits the composted substrate and casing layers. The compost and casing microbial communities are known to play important roles in the mushroom production process. Microbial species present in the compost and casing are known for (1) being an important source of nitrogen for the A. bisporus mycelium, (2) releasing sugar residues through the degradation of the wheat straw in the composted substrate, (3) playing a critical role in inducing development of the A. bisporus fruiting bodies and (4) acting as pathogens by parasitising the mushroom mycelium/crop. Despite a long history of research into the mushroom cropping process, an extensive review of the microbial communities present in the compost and casing has not as of yet been undertaken. The aim of this review is to provide a comprehensive summary of the literature investigating the compost and casing microbial communities throughout cultivation of the A. bisporus mushroom crop.

  19. Towards an Ecological Inquiry in Child-Computer Interaction

    DEFF Research Database (Denmark)

    Smith, Rachel Charlotte; Iversen, Ole Sejer; Hjermitslev, Thomas

    2013-01-01

    The paper introduces an Ecological Inquiry as a methodological approach for designing technology with children. The inquiry is based on the ‘ecological turn’ in HCI, Ubiquitous Computing and Participatory Design that shift the emphasis of design from technological artifacts to entire use ecologies...... into which technologies are integrated. Our Ecological Inquiry extends Cooperative Inquiry in three directions: from understanding to emergence of social practices and meanings, from design of artifacts to hybrid environments, and from a focus on technology to appropriations through design and use. We...... exemplify our approach in a case study in which we designed social technologies for hybrid learning environments with children in two schools, and discuss how an Ecological Inquiry can inform existing approaches in CCI....

  20. Special issue introduction: Ecological modernization

    DEFF Research Database (Denmark)

    Massa, Ilmo; Andersen, Mikael Skou

    2000-01-01

    The contributions to this special issue of the Journal of Environmental Policy and Planning stem from an international conference on ecological modernization that took place at the Department of Social Policy of the University of Helsinki, Finland, in late 1998. They have been selected, among other...... reasons, for their possible contribution to conceptual understanding and clarification. While recent publications have explored the implications of ecological modernization in different settings (Mol & Sonnenfeld, 2000), here we try to put the concept under the microscope again, in the hope of clarifying...

  1. Proactive ecology for the Anthropocene

    Directory of Open Access Journals (Sweden)

    F. Stuart Chapin

    2013-12-01

    Full Text Available Abstract The rapid, directional global changes that characterize the Anthropocene provide unprecedented opportunities for ecologists and other scientists to discover new paradigms that shape our understanding of the ways that the world is changing. These paradigms will likely focus more strongly on interactions, feedbacks, thresholds, and model uncertainty than on steady-state dynamics and statistical uncertainty. We advocate a shift in ecology and other disciplines to a more proactive leadership role in defining problems and possibilities in a rapidly changing world rather than being relegated to a reactive role of trying to fix the problems after the horse has left the barn. This requires not only renewed commitment by ecologists (and other citizens to a more proactive ethic of environmental citizenship but also institutional changes in education, the scientific review and funding processes, and promotion and tenure processes to encourage and celebrate those who seek to shape trajectories toward greater ecosystem and social resilience and well-being.

  2. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup

    Science.gov (United States)

    Dreyer, Pia; Haahr, Anita; Martinsen, Bente

    2011-01-01

    The creative processes of understanding patients’ experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905–1981), this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients’ experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an “flash of insight” is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients’ experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients’ experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience. PMID:22076123

  3. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup

    Directory of Open Access Journals (Sweden)

    Annelise Norlyk

    2011-11-01

    Full Text Available The creative processes of understanding patients’ experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905–1981, this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients’ experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an “flash of insight” is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients’ experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients’ experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience.

  4. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup.

    Science.gov (United States)

    Norlyk, Annelise; Dreyer, Pia; Haahr, Anita; Martinsen, Bente

    2011-01-01

    The creative processes of understanding patients' experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905-1981), this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients' experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an "flash of insight" is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients' experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients' experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience.

  5. Statistical physics of community ecology: a cavity solution to MacArthur’s consumer resource model

    Science.gov (United States)

    Advani, Madhu; Bunin, Guy; Mehta, Pankaj

    2018-03-01

    A central question in ecology is to understand the ecological processes that shape community structure. Niche-based theories have emphasized the important role played by competition for maintaining species diversity. Many of these insights have been derived using MacArthur’s consumer resource model (MCRM) or its generalizations. Most theoretical work on the MCRM has focused on small ecosystems with a few species and resources. However theoretical insights derived from small ecosystems many not scale up to large ecosystems with many resources and species because large systems with many interacting components often display new emergent behaviors that cannot be understood or deduced from analyzing smaller systems. To address these shortcomings, we develop a statistical physics inspired cavity method to analyze MCRM when both the number of species and the number of resources is large. Unlike previous work in this limit, our theory addresses resource dynamics and resource depletion and demonstrates that species generically and consistently perturb their environments and significantly modify available ecological niches. We show how our cavity approach naturally generalizes niche theory to large ecosystems by accounting for the effect of collective phenomena on species invasion and ecological stability. Our theory suggests that such phenomena are a generic feature of large, natural ecosystems and must be taken into account when analyzing and interpreting community structure. It also highlights the important role that statistical-physics inspired approaches can play in furthering our understanding of ecology.

  6. Quantitative approaches in climate change ecology

    DEFF Research Database (Denmark)

    Brown, Christopher J.; Schoeman, David S.; Sydeman, William J.

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between...... climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer‐reviewed articles that examined relationships...

  7. Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression

    DEFF Research Database (Denmark)

    Bini, L. M.; Diniz-Filho, J. A. F.; Rangel, T. F. L. V. B.

    2009-01-01

    A major focus of geographical ecology and macroecology is to understand the causes of spatially structured ecological patterns. However, achieving this understanding can be complicated when using multiple regression, because the relative importance of explanatory variables, as measured by regress...

  8. Study on Ecological Risk Assessment of Guangxi Coastal Zone Based on 3s Technology

    Science.gov (United States)

    Zhong, Z.; Luo, H.; Ling, Z. Y.; Huang, Y.; Ning, W. Y.; Tang, Y. B.; Shao, G. Z.

    2018-05-01

    This paper takes Guangxi coastal zone as the study area, following the standards of land use type, divides the coastal zone of ecological landscape into seven kinds of natural wetland landscape types such as woodland, farmland, grassland, water, urban land and wetlands. Using TM data of 2000-2015 such 15 years, with the CART decision tree algorithm, for analysis the characteristic of types of landscape's remote sensing image and build decision tree rules of landscape classification to extract information classification. Analyzing of the evolution process of the landscape pattern in Guangxi coastal zone in nearly 15 years, we may understand the distribution characteristics and change rules. Combined with the natural disaster data, we use of landscape index and the related risk interference degree and construct ecological risk evaluation model in Guangxi coastal zone for ecological risk assessment results of Guangxi coastal zone.

  9. Techno-ecological synergy: a framework for sustainable engineering.

    Science.gov (United States)

    Bakshi, Bhavik R; Ziv, Guy; Lepech, Michael D

    2015-02-03

    Even though the importance of ecosystems in sustaining all human activities is well-known, methods for sustainable engineering fail to fully account for this role of nature. Most methods account for the demand for ecosystem services, but almost none account for the supply. Incomplete accounting of the very foundation of human well-being can result in perverse outcomes from decisions meant to enhance sustainability and lost opportunities for benefiting from the ability of nature to satisfy human needs in an economically and environmentally superior manner. This paper develops a framework for understanding and designing synergies between technological and ecological systems to encourage greater harmony between human activities and nature. This framework considers technological systems ranging from individual processes to supply chains and life cycles, along with corresponding ecological systems at multiple spatial scales ranging from local to global. The demand for specific ecosystem services is determined from information about emissions and resource use, while the supply is obtained from information about the capacity of relevant ecosystems. Metrics calculate the sustainability of individual ecosystem services at multiple spatial scales and help define necessary but not sufficient conditions for local and global sustainability. Efforts to reduce ecological overshoot encourage enhancement of life cycle efficiency, development of industrial symbiosis, innovative designs and policies, and ecological restoration, thus combining the best features of many existing methods. Opportunities for theoretical and applied research to make this framework practical are also discussed.

  10. Microbial ecology of Vietnamese Tra fish (Pangasius hypophthalmus) fillets during processing.

    Science.gov (United States)

    Tong Thi, Anh Ngoc; Noseda, Bert; Samapundo, Simbarashe; Nguyen, Binh Ly; Broekaert, Katrien; Rasschaert, Geertrui; Heyndrickx, Marc; Devlieghere, Frank

    2013-10-15

    There are numerous factors that can have an impact on the microbial ecology and quality of frozen Pangasius hypophthalmus fillets during processing in Vietnam. The presence of spoilage bacteria along the processing line can shorten the shelf-life of thawed frozen fish products. Therefore, the spoilage microbiota throughout the processing chain of two companies (BC: large scale factory, chlorine-based process, BW: large scale factory, water-based process and SC: small scale factory, chlorine-based process) was identified by culture-dependent techniques and 16S rRNA gene sequencing. The microbiological counts were observed to be insignificantly different (p>0.05) between BC and BW. Surprisingly, chlorine treated fillets from the SC line were revealed to have significantly higher microbial counts than potable water treated fillets at BW line. This was determined to be a result of temperature abuse during processing at SC, with temperatures even greater than 10 °C being recorded from skinning onwards. On the contrary, the microbiota related to spoilage for BC and BW lines was determined by 16S rRNA gene sequencing to be more diverse than that on the SC line. A total of 174 isolates, 20 genera and 38 species were identified along the processing chains. The genera Aeromonas, Acinetobacter, Lactococcus and Enterococcus were prevalent at various processing steps on all the processing lines evaluated. A diverse range of isolates belonging to the Enterobacteriaceae such as Providencia, Shigella, Klebsiella, Enterobacter and Wautersiella were isolated from fillets sampled on the SC line whereas Serratia was only observed on fillets sampled on the BC and BW lines. The results can be used to improve Good Manufacturing Practices for processed Pangasius fillets and to select effective measures to prolong the shelf-life of thawed Vietnamese Pangasius fillets products. © 2013.

  11. Improving the reviewing process in Ecology and Evolutionary Biology

    Directory of Open Access Journals (Sweden)

    Grossman, G. D.

    2014-06-01

    Full Text Available I discuss current issues in reviewing and editorial practices in ecology and evolutionary biology and suggest possible solutions for current problems. The reviewing crisis is unlikely to change unless steps are taken by journals to provide greater inclusiveness and incentives to reviewers. In addition, both journals and institutions should reduce their emphasis on publication numbers (least publishable units and impact factors and focus instead on article synthesis and quality which will require longer publications. Academic and research institutions should consider reviewing manuscripts and editorial positions an important part of a researcher’s professional activities and reward them accordingly. Rewarding reviewers either monetarily or via other incentives such as free journal subscriptions may encourage participation in the reviewing process for both profit and non–profit journals. Reviewer performance will likely be improved by measures that increase inclusiveness, such as sending reviews and decision letters to reviewers. Journals may be able to evaluate the efficacy of their reviewing process by comparing citations of rejected but subsequently published papers with those published within the journal at similar times. Finally, constructive reviews: 1 identify important shortcomings and suggest solutions when possible, 2 distinguish trivial from non–trivial problems, and 3 include editor’s evaluations of the reviews including identification of trivial versus substantive comments (i.e., those that must be addressed.

  12. MELA: Modelling in Ecology with Location Attributes

    Directory of Open Access Journals (Sweden)

    Ludovica Luisa Vissat

    2016-10-01

    Full Text Available Ecology studies the interactions between individuals, species and the environment. The ability to predict the dynamics of ecological systems would support the design and monitoring of control strategies and would help to address pressing global environmental issues. It is also important to plan for efficient use of natural resources and maintenance of critical ecosystem services. The mathematical modelling of ecological systems often includes nontrivial specifications of processes that influence the birth, death, development and movement of individuals in the environment, that take into account both biotic and abiotic interactions. To assist in the specification of such models, we introduce MELA, a process algebra for Modelling in Ecology with Location Attributes. Process algebras allow the modeller to describe concurrent systems in a high-level language. A key feature of concurrent systems is that they are composed of agents that can progress simultaneously but also interact - a good match to ecological systems. MELA aims to provide ecologists with a straightforward yet flexible tool for modelling ecological systems, with particular emphasis on the description of space and the environment. Here we present four example MELA models, illustrating the different spatial arrangements which can be accommodated and demonstrating the use of MELA in epidemiological and predator-prey scenarios.

  13. Introduction to the Special Issue: Beyond traits: integrating behaviour into plant ecology and biology.

    Science.gov (United States)

    Cahill, James F

    2015-10-26

    The way that plants are conceptualized in the context of ecological understanding is changing. In one direction, a reductionist school is pulling plants apart into a list of measured 'traits', from which ecological function and outcomes of species interactions may be inferred. This special issue offers an alternative, and more holistic, view: that the ecological functions performed by a plant will be a consequence not only of their complement of traits but also of the ways in which their component parts are used in response to environmental and social conditions. This is the realm of behavioural ecology, a field that has greatly advanced our understanding of animal biology, ecology and evolution. Included in this special issue are 10 articles focussing not on the tried and true metaphor that plant growth is similar to animal movement, but instead on how application of principles from animal behaviour can improve our ability to understand plant biology and ecology. The goals are not to draw false parallels, nor to anthropomorphize plant biology, but instead to demonstrate how existing and robust theory based on fundamental principles can provide novel understanding for plants. Key to this approach is the recognition that behaviour and intelligence are not the same. Many organisms display complex behaviours despite a lack of cognition (as it is traditionally understood) or any hint of a nervous system. The applicability of behavioural concepts to plants is further enhanced with the realization that all organisms face the same harsh forces of natural selection in the context of finding resources, mates and coping with neighbours. As these ecological realities are often highly variable in space and time, it is not surprising that all organisms-even plants-exhibit complex behaviours to handle this variability. The articles included here address diverse topics in behavioural ecology, as applied to plants: general conceptual understanding, plant nutrient foraging, root

  14. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2012-01-01

    Software-based information systems must be developed and implemented as a part of business change. This is a major challenge, since business change and the development of software-based information systems usually are performed in separate processes. Thus, there is a need to understand and manage...... critical events in the case, what led to the events, and what the consequences are. We discuss the implications for information systems research and in particular we discuss the contribution to project management of iterative and incremental software development.......Software-based information systems must be developed and implemented as a part of business change. This is a major challenge, since business change and the development of software-based information systems usually are performed in separate processes. Thus, there is a need to understand and manage...

  15. The Evolutionary Ecology of Multi-Queen Breeding in Ants

    DEFF Research Database (Denmark)

    Huszár, Dóra Borbála

    on other ant species to better understand the social syndromes and how supercolonies function. Foremost, this would help to manage invasive supercolonies that harm humans and biodiversity, but could also provide contribution to our general understanding on how ecology, especially demography impacts upon......). Multi-queen breeding requires both social and life-history adaptations from individuals to decrease intra-colony conflicts and to ensure that sterile workers receive inclusive fitness benefits despite lowered relatedness. However, it remains unclear exactly what ecological and life-history covariates...

  16. Meaning Emergence in the Ecology of Dialogical Systems

    DEFF Research Database (Denmark)

    Trasmundi, S. B.; Steffensen, S. V.

    2016-01-01

    This article is an empirically based theoretical contribution to the investigation of meaningmaking in the ecology of human interaction and interactivity. It presents an ecological perspective on meaning-making that pivots on how agents pick up information directly in their organism...... Analysis to investigate how the agents oscillate between being a multi-agent-system with shared, tightly coordinated agency and a loosely coupled dialogical system where the individuals bring forth an understanding based on their professional backgrounds and expertise. On this view, an ecological approach...

  17. Understanding the Advising Learning Process Using Learning Taxonomies

    Science.gov (United States)

    Muehleck, Jeanette K.; Smith, Cathleen L.; Allen, Janine M.

    2014-01-01

    To better understand the learning that transpires in advising, we used Anderson et al.'s (2001) revision of Bloom's (1956) taxonomy and Krathwohl, Bloom, and Masia's (1964) affective taxonomy to analyze eight student-reported advising outcomes from Smith and Allen (2014). Using the cognitive processes and knowledge domains of Anderson et al.'s…

  18. The microbial diversity, distribution, and ecology of permafrost in China: a review.

    Science.gov (United States)

    Hu, Weigang; Zhang, Qi; Tian, Tian; Cheng, Guodong; An, Lizhe; Feng, Huyuan

    2015-07-01

    Permafrost in China mainly located in high-altitude areas. It represents a unique and suitable ecological niche that can be colonized by abundant microbes. Permafrost microbial community varies across geographically separated locations in China, and some lineages are novel and possible endemic. Besides, Chinese permafrost is a reservoir of functional microbial groups involved in key biogeochemical cycling processes. In future, more work is necessary to determine if these phylogenetic groups detected by DNA-based methods are part of the viable microbial community, and their functional roles and how they potentially respond to climate change. This review summaries recent studies describing microbial biodiversity found in permafrost and associated environments in China, and provides a framework for better understanding the microbial ecology of permafrost.

  19. Breeding ecology of the Seychelles Black Parrot Coracopsis barklyi ...

    African Journals Online (AJOL)

    Knowledge of breeding ecology is required for many conservation interventions. The Seychelles Black Parrot Coracopsis barklyi, endemic to the island of Praslin, is vulnerable to extinction. We aimed to improve understanding of C. barklyi breeding ecology to aid conservation planning. We present the results of four years of ...

  20. Behavior Analysis and Ecological Psychology: Past, Present, and Future. A Review of Harry Heft's Ecological Psychology in Context

    Science.gov (United States)

    Morris, Edward K

    2009-01-01

    Relations between behavior analysis and ecological psychology have been strained for years, notwithstanding the occasional comment on their affinities. Harry Heft's (2001) Ecological Psychology in Context provides an occasion for reviewing anew those relations and affinities. It describes the genesis of ecological psychology in James's radical empiricism; addresses Holt's neorealism and Gestalt psychology; and synthesizes Gibson's ecological psychology and Barker's ecobehavioral science as a means for understanding everyday human behavior. Although behavior analysis is excluded from this account, Heft's book warrants a review nonetheless: It describes ecological psychology in ways that are congruent and complementary with behavior analysis (e.g., nonmediational theorizing; the provinces of natural history and natural science). After introducing modern ecological psychology, I comment on (a) Heft's admirable, albeit selective, historiography; (b) his ecological psychology—past and present—as it relates to Skinner's science and system (e.g., affordances, molar behavior); (c) his misunderstandings of Skinner's behaviorism (e.g., reductionistic, mechanistic, molecular); and (d) the theoretical status of Heft's cognitive terms and talk (i.e., in ontology, epistemology, syntax). I conclude by considering the alliance and integration of ecological psychology and behavior analysis, and their implications for unifying and transforming psychology as a life science, albeit more for the future than at present. PMID:20354604

  1. Aesthetic Engagement, Ecosophy C, and Ecological Appreciation

    Directory of Open Access Journals (Sweden)

    Cheng Xiangzhan

    2013-01-01

    Full Text Available With the aim of healing the earth and sustain a healthy ecosystem for all life forms, not humankind alone, ecoaesthetics emerges as a critique of Enlightenment mentality and of modern aesthetics as it is embodied in it. This mentality contributes greatly to the global ecological crisis and to other problem areas, such as population, economic, political and religious ones. In my understanding of aesthetics, ecoaesthetics is defined as the theory of ecological aesthetic appreciation.[1] With ecoaesthetics as my research horizon, there are at least two reasons for me to pay special attention to American philosopher Arnold Berleant’s conception of aesthetic engagement and his aesthetic theory based on it, an aesthetics of engagement. The first is our shared theme, which is the critique of modern aesthetics. The second reason is more complex for it involves the crucial question of the proper manner of aesthetic appreciation. From the perspective of ecoaesthetics, the contemplation of objects by a separated perceiver, an approach that is based on the modern philosophical dualism of subject and object, is unsatisfactory and inadequate. Berleant’s aesthetic engagement is a more satisfactory account of appreciation that is aesthetic and ecological. This emphasizes the ecological continuity or interrelatedness between the human appreciator and objects. Of course, any theory can occasion critique and development. Based on Berleant’s idea of aesthetic engagement, I would like to propose Ecosophy C. This can be contrasted with Ecosophy T proposed by the Norwegian, Arne Naess, and with traditional Chinese aesthetic wisdom. In contrast with these, I would like to develop my own view of ecological understanding. In order to construct a more comprehensive and reasonable ecoaesthetics, my Ecosophy C contains eight points that are crucial in building an ecological model of aesthetic appreciation for this period of ecological crisis.

  2. How landscape scale changes affect ecological processes in conservation areas: external factors influence land use by zebra (Equus burchelli) in the Okavango Delta.

    Science.gov (United States)

    Bartlam-Brooks, Hattie L A; Bonyongo, Mpaphi C; Harris, Stephen

    2013-09-01

    Most large-bodied wildlife populations in sub-Saharan Africa only survive in conservation areas, but are continuing to decline because external changes influence ecological processes within reserves, leading to a lack of functionality. However, failure to understand how landscape scale changes influence ecological processes limits our ability to manage protected areas. We used GPS movement data to calculate dry season home ranges for 14 zebra mares in the Okavango Delta and investigated the effects of a range of landscape characteristics (number of habitat patches, mean patch shape, mean index of juxtaposition, and interspersion) on home range size. Resource utilization functions (RUF) were calculated to investigate how specific landscape characteristics affected space use. Space use by all zebra was clustered. In the wetter (Central) parts of the Delta home range size was negatively correlated with the density of habitat patches, more complex patch shapes, low juxtaposition of habitats and an increased availability of floodplain and grassland habitats. In the drier (Peripheral) parts of the Delta, higher use by zebra was also associated with a greater availability of floodplain and grassland habitats, but a lower density of patches and simpler patch shapes. The most important landscape characteristic was not consistent between zebra within the same area of the Delta, suggesting that no single foraging strategy is substantially superior to others, and so animals using different foraging strategies may all thrive. The distribution and complexity of habitat patches are crucial in determining space use by zebra. The extent and duration of seasonal flooding is the principal process affecting habitat patch characteristics in the Okavango Delta, particularly the availability of floodplains, which are the habitat at greatest risk from climate change and anthropogenic disturbance to the Okavango's catchment basin. Understanding how the factors that determine habitat

  3. The ecological foundations of transmission potential and vector-borne disease in urban landscapes.

    Science.gov (United States)

    LaDeau, Shannon L; Allan, Brian F; Leisnham, Paul T; Levy, Michael Z

    2015-07-01

    Urban transmission of arthropod-vectored disease has increased in recent decades. Understanding and managing transmission potential in urban landscapes requires integration of sociological and ecological processes that regulate vector population dynamics, feeding behavior, and vector-pathogen interactions in these unique ecosystems. Vectorial capacity is a key metric for generating predictive understanding about transmission potential in systems with obligate vector transmission. This review evaluates how urban conditions, specifically habitat suitability and local temperature regimes, and the heterogeneity of urban landscapes can influence the biologically-relevant parameters that define vectorial capacity: vector density, survivorship, biting rate, extrinsic incubation period, and vector competence.Urban landscapes represent unique mosaics of habitat. Incidence of vector-borne disease in urban host populations is rarely, if ever, evenly distributed across an urban area. The persistence and quality of vector habitat can vary significantly across socio-economic boundaries to influence vector species composition and abundance, often generating socio-economically distinct gradients of transmission potential across neighborhoods.Urban regions often experience unique temperature regimes, broadly termed urban heat islands (UHI). Arthropod vectors are ectothermic organisms and their growth, survival, and behavior are highly sensitive to environmental temperatures. Vector response to UHI conditions is dependent on regional temperature profiles relative to the vector's thermal performance range. In temperate climates UHI can facilitate increased vector development rates while having countervailing influence on survival and feeding behavior. Understanding how urban heat island (UHI) conditions alter thermal and moisture constraints across the vector life cycle to influence transmission processes is an important direction for both empirical and modeling research.There remain

  4. Emergence, institutionalization and renewal: Rhythms of adaptive governance in complex social-ecological systems.

    Science.gov (United States)

    Chaffin, Brian C; Gunderson, Lance H

    2016-01-01

    Adaptive governance provides the capacity for environmental managers and decision makers to confront variable degrees of uncertainty inherent to complex social-ecological systems. Current theoretical conceptualizations of adaptive governance represent a series of structures and processes best suited for either adapting or transforming existing environmental governance regimes towards forms flexible enough to confront rapid ecological change. As the number of empirical examples of adaptive governance described in the literature grows, the conceptual basis of adaptive governance remains largely under theorized. We argue that reconnecting adaptive governance with foundational concepts of ecological resilience-specifically Panarchy and the adaptive cycle of complex systems-highlights the importance of episodic disturbances and cross-scale interactions in triggering reorganizations in governance. By envisioning the processes of adaptive governance through the lens of Panarchy, scholars and practitioners alike will be better able to identify the emergence of adaptive governance, as well as take advantage of opportunities to institutionalize this type of governance in pursuit of sustainability outcomes. The synergistic analysis of adaptive governance and Panarchy can provide critical insight for analyzing the role of social dynamics during oscillating periods of stability and instability in social-ecological systems. A deeper understanding of the potential for cross-scale interactions to shape adaptive governance regimes may be useful as society faces the challenge of mitigating the impacts of global environmental change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Next steps in the development of ecological soil clean-up values for metals.

    Science.gov (United States)

    Wentsel, Randall; Fairbrother, Anne

    2014-07-01

    This special series in Integrated Environmental Assessment Management presents the results from 6 workgroups that were formed at the workshop on Ecological Soil Levels-Next Steps in the Development of Metal Clean-Up Values (17-21 September 2012, Sundance, Utah). This introductory article presents an overview of the issues assessors face when conducting risk assessments for metals in soils, key US Environmental Protection Agency (USEPA) documents on metals risk assessment, and discusses the importance of leveraging from recent major terrestrial research projects, primarily to address Registration, Evaluation, Authorization and Restriction of Chemical Substances (REACH) requirements in Europe, that have significantly advanced our understanding of the behavior and toxicity of metals in soils. These projects developed large data sets that are useful for the risk assessment of metals in soil environments. The workshop attendees met to work toward developing a process for establishing ecological soil clean-up values (Eco-SCVs). The goal of the workshop was to progress from ecological soil screening values (Eco-SSLs) to final clean-up values by providing regulators with the methods and processes to incorporate bioavailability, normalize toxicity thresholds, address food-web issues, and incorporate background concentrations. The REACH data sets were used by workshop participants as case studies in the development of the ecological standards for soils. The workshop attendees discussed scientific advancements in bioavailability, soil biota and wildlife case studies, soil processes, and food-chain modeling. In addition, one of the workgroups discussed the processes needed to frame the topics to gain regulatory acceptance as a directive or guidance by Canada, the USEPA, or the United States. © 2013 SETAC.

  6. Ecological education and environmental protection training

    International Nuclear Information System (INIS)

    Motiejuniene, E.

    1998-01-01

    One of important directions of teaching processes in Lithuania now is ecological education and environment protection training. The real possibility to involve scientists into students, teachers ecological education appeared since 1993 when scientific programme 'Ignalina NPP and the Environment' was launched. Scientists working at Drukshiai Ecological Station together with specialists from Pedagogical University and Institute of Pedagogy prepared teaching programmes, methodical aids. During 1993 - 1997 31 measures - ecological camps for schoolchildren and students as well as seminars and workshops for teachers were organized; 551 participants took part. (author)

  7. Urban Evolutionary Ecology and the Potential Benefits of Implementing Genomics.

    Science.gov (United States)

    Schell, Christopher J

    2018-02-14

    Urban habitats are quickly becoming exceptional models to address adaptation under rapid environmental change, given the expansive temporal and spatial scales with which anthropogenic landscape conversion occurs. Urban ecologists in the last 10-15 years have done an extraordinary job of highlighting phenotypic patterns that correspond with urban living, as well as delineating urban population structure using traditional genetic markers. The underpinning genetic mechanisms that govern those phenotypic patterns, however, are less well established. Moreover, the power of traditional molecular studies is constrained by the number of markers being evaluated, which limits the potential to assess fine-scale population structure potentially common in urban areas. With the recent proliferation of low-cost, high-throughput sequencing methods, we can begin to address an emerging question in urban ecology: are species adapted to local optima within cities or are they expressing latent phenotypic plasticity? Here, I provide a comprehensive review of previous urban ecological studies, with special focus on the molecular ecology and phenotypic adjustments documented in urban terrestrial and amphibious fauna. I subsequently pinpoint areas in the literature that could benefit from a genomic investigation and briefly discuss the suitability of specific techniques in addressing eco-evolutionary questions within urban ecology. Though many challenges exist with implementing genomics into urban ecology, such studies provide an exceptional opportunity to advance our understanding of eco-evolutionary processes in metropolitan areas. © The American Genetic Association 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  9. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases.

    Science.gov (United States)

    Wu, Zhiqiang; Yang, Li; Ren, Xianwen; He, Guimei; Zhang, Junpeng; Yang, Jian; Qian, Zhaohui; Dong, Jie; Sun, Lilian; Zhu, Yafang; Du, Jiang; Yang, Fan; Zhang, Shuyi; Jin, Qi

    2016-03-01

    Studies have demonstrated that ~60%-80% of emerging infectious diseases (EIDs) in humans originated from wild life. Bats are natural reservoirs of a large variety of viruses, including many important zoonotic viruses that cause severe diseases in humans and domestic animals. However, the understanding of the viral population and the ecological diversity residing in bat populations is unclear, which complicates the determination of the origins of certain EIDs. Here, using bats as a typical wildlife reservoir model, virome analysis was conducted based on pharyngeal and anal swab samples of 4440 bat individuals of 40 major bat species throughout China. The purpose of this study was to survey the ecological and biological diversities of viruses residing in these bat species, to investigate the presence of potential bat-borne zoonotic viruses and to evaluate the impacts of these viruses on public health. The data obtained in this study revealed an overview of the viral community present in these bat samples. Many novel bat viruses were reported for the first time and some bat viruses closely related to known human or animal pathogens were identified. This genetic evidence provides new clues in the search for the origin or evolution pattern of certain viruses, such as coronaviruses and noroviruses. These data offer meaningful ecological information for predicting and tracing wildlife-originated EIDs.

  10. Scientific Understanding from Long Term Observations: Insights from the Long Term Ecological Research (LTER) Program

    Science.gov (United States)

    Gosz, J.

    2001-12-01

    The network dedicated to Long Term Ecological Research (LTER) in the United States has grown to 24 sites since it was formed in 1980. Long-term research and monitoring are performed on parameters thatare basic to all ecosystems and are required to understand patterns, processes, and relationship to change. Collectively, the sites in the LTER Network provide opportunities to contrast marine, coastal, and continental regions, the full range of climatic gradients existing in North America, and aquatic and terrestrial habitats in a range of ecosystem types. The combination of common core areas and long-term research and monitoring in many habitats have allowed unprecedented abilities to understand and compare complex temporal and spatial dynamics associated with issues like climate change, effects of pollution, biodiversity and landuse. For example, McMurdo Dry Valley in the Antarctic has demonstrated an increase in glacier mass since 1993 which coincides with a period of cooler than normal summers and more than average snowfall. In contrast, the Bonanza Creek and Toolik Lake sites in Alaska have recorded a warming period unprecedented in the past 200 years. Nitrogen deposition effects have been identified through long-term watershed studies on biogeochemical cycles, especially at Coweeta Hydrological Lab, Harvard Forest, and the Hubbard Brook Experimental Forest. In aquatic systems, such as the Northern Temperate Lakes site, long-term data revealed time lags in effects of invaders and disturbance on lake communities. Biological recovery from an effect such as lake acidification was shown to lag behind chemical recovery. The long-term changes documented over 2 decades have been instrumental in influencing management practices in many of the LTER areas. In Puerto Rico, the Luquillo LTER demonstrated that dams obstruct migrations of fish and freshwater shrimp and water abstraction at low flows can completely obliterate downstream migration of juveniles and damage

  11. Aerobic Granular Sludge: Effect of Salt and Insights into Microbial Ecology

    KAUST Repository

    Wang, Zhongwei

    2017-12-01

    Aerobic granular sludge (AGS) technology is a next-generation technology for the biological treatment of wastewater. The advantages of AGS in terms of small footprint, low operation and capital cost and high effluent quality makes it a strong candidate for replacing conventional biological wastewater treatment based on activated sludge (CAS) process, and potentially become the standard for biological wastewater treatment in the future. Saline wastewater is generated from many industrial processes as well as from the use of sea water as a secondary quality water for non-potable use such as toilet flushing to mitigate shortage of fresh water in some coastal cities. Salt is known to inhibit biological wastewater treatment processes in terms of organic and nutrient removal. In the first part of my dissertation, I conducted three lab-scale experiments to 1) evaluate the effect of salt on granulation and nutrient removal in AGS (330 days); 2) develop engineering strategies to mitigate the adverse effect of salt on nutrient removal of AGS (164 days); and 3) compare the effect of salt on the stoichiometry and kinetics of different phosphate accumulating organisms (PAO) clades (PAOI and PAOII) and to determine the effect of potassium and sodium ions on the activities of different PAO clades (225 days). Like other artificial microbial ecosystems (e.g. CAS plant and anaerobic digester), a firm understanding of the microbial ecology of AGS system is essential for process design and optimization. The second part of my dissertation reported the first microbial ecology study of a full-scale AGS plant with the aim of addressing the role of regional (i.e. immigration) versus local factors in shaping the microbial community assembly of different-sized microbial aggregates in AGS. The microbial communities in a full-scale AGS plant in Garmerwolde, The Netherlands, was characterized periodically over 180 days using Illumina sequencing of 16S ribosomal RNA amplicons of the V3-V4

  12. Influence of microbial community diversity and function on pollutant removal in ecological wastewater treatment.

    Science.gov (United States)

    Bai, Yaohui; Huo, Yang; Liao, Kailingli; Qu, Jiuhui

    2017-10-01

    Traditional wastewater treatments based on activated sludge often encounter the problems of bulking and foaming, as well as malodor. To solve these problems, new treatment technologies have emerged in recent decades, including the ecological wastewater treatment process, which introduces selected local plants into the treatment system. With a focus on the underlying mechanisms of the ecological treatment process, we explored the microbial community biomass, composition, and function in the treatment system to understand the microbial growth in this system and its role in pollutant removal. Flow cytometry analysis revealed that ecological treatment significantly decreased influent bacterial quantity, with around 80% removal. 16S rRNA gene sequencing showed that the ecological treatment also altered the bacterial community structure of the wastewater, leading to a significant change in Comamonadaceae in the effluent. In the internal ecological system, because most of microbes aggregate in the plant rhizosphere and the sludge under plant roots, we selected two plant species (Nerium oleander and Arundo donax) to study the characteristics of rhizosphere and sludge microbes. Metagenomic results showed that the microbial community composition and function differed between the two species, and the microbial communities of A. donax were more sensitive to seasonal effects. Combined with their greater biomass and abundance of metabolic genes, microbes associated with N. oleander showed a greater contribution to pollutant removal. Further, the biodegradation pathways of some micropollutants, e.g., atrazine, were estimated.

  13. Processing of biological waste. Ecological efficiency and potential; Behandlung von Bioabfaellen. Oekoeffizienz und Potenziale

    Energy Technology Data Exchange (ETDEWEB)

    Pitschke, Thorsten; Peche, Rene; Tronecker, Dieter; Kreibe, Siegfried [bifa Umweltinstitut GmbH, Augsburg (Germany)

    2013-07-01

    The sustainable usage of biological wastes has to be focused on the targets protection of resources and minimization of environmental impact. The only focus on the energy inventory is not sufficient. The following recommendations are summarized: separated bio-waste collection is usually more eco-efficient; the optimized bio-waste processing should be available according to the biodegradability; anaerobic degradation for biogas production and subsequent aerobic degradation of the fermentation product for compost can be combined; low-emission operational standards should be mandatory, innovation and investment should be promoted b reliable boundary conditions; ecological aspects should be equivalent to low-cost considerations; regulatory measures should be implemented for separated bio-waste collection and processing.

  14. Cultivation of bacteria with ecological capsules in space

    Science.gov (United States)

    Sugiura, K.; Hashimoto, H.; Ishikawa, Y.; Kawasaki, Y.; Kobayashi, K.; Seki, K.; Koike, J.; Saito, T.

    1999-01-01

    A hermetically materially-closed aquatic microcosm containing bacteria, algae, and invertebrates was developed as a tool for determining the changes of ecological systems in space. The species composition was maintained for more than 365 days. The microcosm could be readily replicated. The results obtained from the simulation models indicated that there is a self-regulation homeostasis in coupling of production and consumption, which make the microcosm remarkably stable, and that the transfer of metabolites by diffusion is one of the important factors determining the behavior of the system. The microcosms were continuously irradiated using a 60 Co source. After 80 days, no elimination of organisms was found at any of the three irradiation levels (0.015, 0.55 and 3.0 mGy/day). The number of radio-resistance bacteria mutants was not increased in the microcosm at three irradiation levels. We proposed to research whether this microcosm is self-sustainable in space. When an aquatic ecosystem comes under stress due to the micro-gravity and enhanced radiation environment in space, whether the ecosystem is self-sustainable is not known. An aquatic ecosystem shows what happens as a result of the self-organizational processes of selection and adaptation. A microcosm is a useful tool for understanding such processes. We have proposed researching whether a microcosm is self-sustainable in space. The benefits of this project will be: (1) To acquire data for design of a Controlled Ecological Life Support System, (2) Possibility of microbial mutation in a space station. We report that a hermetically materially-closed microcosm, which could be a useful tool for determining changes of ecological processes in space, was developed, and that the effects of microgravity and enhanced radiation on the hermetically materially-closed microcosm were estimated through measurements on the Earth and simulation models.

  15. Buccal dental microwear variability in extant African Hominoidea: taxonomy versus ecology.

    Science.gov (United States)

    Galbany, Jordi; Estebaranz, Ferran; Martínez, Laura M; Pérez-Pérez, Alejandro

    2009-07-01

    Buccal microwear patterns on teeth are good indicators of the abrasiveness of foodstuffs and have been used to trace the dietary habits of fossil species, including primates and hominids. However, few studies have addressed the variability of this microwear. The abrasiveness of dietary components depends not only on the hardness of the particles ingested, but also on the presence of dust and other exogenous elements introduced during food processing. These elements are responsible for the microwear typology observed on the enamel surfaces of primate teeth. Here we analyzed the variability of buccal microwear patterns in African Great Apes (Gorilla gorilla and Pan troglodytes), using tooth molds obtained from the original specimens held in several osteological collections. Our results suggest that ecological adaptations at subspecies or population level account for differences in microwear patterns, which are attributed to habitat and ecological conditions within populations rather than differences between species. The findings from studies on the variability of buccal dental microwear in extant species will contribute to a better understanding of extinct hominids' diet and ecology.

  16. Ecological Modernization and the Global Economy

    NARCIS (Netherlands)

    Mol, A.P.J.

    2002-01-01

    This paper explores what an ecological modernization perspective has to offer in an era marked by globalization. Globalization processes and dynamics are mostly seen as detrimental to the environment. The point that an ecological modernization perspective puts on the research agenda is that,

  17. Once upon a time : Understanding team processes as relational event networks

    NARCIS (Netherlands)

    Leenders, R.T.A.J.; Contractor, N.; DeChurch, L.

    2016-01-01

    For as long as groups and teams have been the subject of scientific inquiry, researchers have been interested in understanding the relationships that form within them, and the pace at which these relationships develop and change. Despite this interest in understanding the process underlying the

  18. Importance of isotopes for understanding the sedimentation processes

    International Nuclear Information System (INIS)

    Manjunatha, B.R.

    2012-01-01

    Isotopes of either radioactive or stable depending upon radiation emitted or not respectively which have wide applications in understanding not only the history of sedimentation, but also provide information about paleoclimate. Stable isotope mass difference occurs due to changes in physicochemical conditions of the ambient environment, for instance temperature, evaporation, precipitation, redox processes, and changes in the mobility of elements during weathering processes, biological uptake, metabolism, re-mineralization of biogenic material, etc. In contrast, radionuclides emit radiation because of excess of neutrons present in the nucleus when compared to protons of an atom. The decay of radioactive isotopes is unaffected despite changes in physicochemical variations; hence, they are useful for determining ages of different types of materials on earth. The radioisotopes can be classified based on origin and half life into primordial or long-lived, cosmogenic and artificial radionuclides or fission products. In this study, the importance of 137 Cs artificial radionuclides will be highlighted to understand short-term sedimentation processes, particularly in estuaries, deltas/continental shelf of west coast of India. The distribution of 137 Cs in sediments of south-western continental margin of India indicates that coastal marginal environments are filters or sinks for fall-out radionuclides. The sparse of 137 Cs in the open continental shelf environment indicates that most of sediments are either older or sediments being diluted by components generated in the marine environment

  19. Parasites as drivers of key processes in aquatic ecosystems: Facts and future directions.

    Science.gov (United States)

    Sures, B; Nachev, M; Pahl, M; Grabner, D; Selbach, C

    2017-09-01

    Despite the advances in our understanding of the ecological importance of parasites that we have made in recent years, we are still far away from having a complete picture of the ecological implications connected to parasitism. In the present paper we highlight key issues that illustrate (1) important contributions of parasites to biodiversity, (2) their integral role in ecosystems, (3) as well as their ecological effects as keystone species (4) and in biological invasion processes. By using selected examples from aquatic ecosystems we want to provide an insight and generate interest into the topic, and want to show directions for future research in the field of ecological parasitology. This may help to convince more parasitologists and ecologists contributing and advancing our understanding of the complex and fascinating interplay of parasites, hosts and ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Ecological sustainability and personal behavior: relations demonstrated by the decision-making process of selecting a certain transportation mean

    Energy Technology Data Exchange (ETDEWEB)

    Priewasser, Reinhold [Linz Univ., Inst. for Environmental Management in Enterprises and Regions, Linz (Austria)

    1999-07-01

    Facing the aim of ecological sustainability only little emphasis has been placed on the fact that the extent of environmental stresses is not only a consequence of certain factual or structural conditions but also essentially determined by varying human behaviour patterns. Technologies and structures are not ecologically effective by themselves, their environmental relevance strongly depends on the persons' way of acting within the prevailing system. Recognising the importance of that perspective psychological and social theories about the generation of personal behaviour as well as the theoretical models of learning can offer useful indications concerning the interpersonal and extrapersonal preconditions of environmentally oriented acting. With reference to the decision-making process of selecting a certain transportation mean, the influences of rational and emotional factors and obstacles to an ecologically sustainable personal act should be exemplary demonstrated. At the same time very effective points of departure for behavioural change can be identified. (Author)

  1. Green” Technology and Ecologically Unequal Exchange: The Environmental and Social Consequences of Ecological Modernization in the World-System

    Directory of Open Access Journals (Sweden)

    Eric Bonds

    2015-08-01

    Full Text Available This paper contributes to understandings of ecologically unequal exchange within the world-systems perspective by offering a series of case studies of ecological modernization in the automobile industry. The case studies demonstrate that “green” technologies developed and instituted in core nations often require specific raw materials that are extracted from the periphery and semi-periphery. Extraction of such natural resources causes significant environmental degradation and often displaces entire communities from their land. Moreover, because states often use violence and repression to facilitate raw material extraction, the widespread commercialization of “green” technologies can result in serious human rights violations. These findings challenge ecological modernization theory, which rests on the assumption that the development and commercialization of more ecologically-efficient technologies is universally beneficial.

  2. Landscape moderation of biodiversity patterns and processes - eight hypotheses

    NARCIS (Netherlands)

    Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batary, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.; Ewers, R.M.; Frund, J.; Holt, R.D.; Holzschuh, A.; Klein, A.M.; Kleijn, D.; Kremen, C.; Landis, D.A.; Laurance, W.F.; Lindenmayer, D.B.; Scherber, C.; Sodhi, N.; Steffan-Dewenter, I.; Thies, C.; Putten, van der W.H.; Westphal, C.

    2012-01-01

    Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which

  3. Directional connectivity in hydrology and ecology

    Science.gov (United States)

    Larsen, Laurel G.; Choi, Jungyill; Nungesser, Martha K.; Harvey, Judson W.

    2012-01-01

    Quantifying hydrologic and ecological connectivity has contributed to understanding transport and dispersal processes and assessing ecosystem degradation or restoration potential. However, there has been little synthesis across disciplines. The growing field of ecohydrology and recent recognition that loss of hydrologic connectivity is leading to a global decline in biodiversity underscore the need for a unified connectivity concept. One outstanding need is a way to quantify directional connectivity that is consistent, robust to variations in sampling, and transferable across scales or environmental settings. Understanding connectivity in a particular direction (e.g., streamwise, along or across gradient, between sources and sinks, along cardinal directions) provides critical information for predicting contaminant transport, planning conservation corridor design, and understanding how landscapes or hydroscapes respond to directional forces like wind or water flow. Here we synthesize progress on quantifying connectivity and develop a new strategy for evaluating directional connectivity that benefits from use of graph theory in ecology and percolation theory in hydrology. The directional connectivity index (DCI) is a graph-theory based, multiscale metric that is generalizable to a range of different structural and functional connectivity applications. It exhibits minimal sensitivity to image rotation or resolution within a given range and responds intuitively to progressive, unidirectional change. Further, it is linearly related to the integral connectivity scale length—a metric common in hydrology that correlates well with actual fluxes—but is less computationally challenging and more readily comparable across different landscapes. Connectivity-orientation curves (i.e., directional connectivity computed over a range of headings) provide a quantitative, information-dense representation of environmental structure that can be used for comparison or detection of

  4. Directional connectivity in hydrology and ecology.

    Science.gov (United States)

    Larsen, Laurel G; Choi, Jungyill; Nungesser, Martha K; Harvey, Judson W

    2012-12-01

    Quantifying hydrologic and ecological connectivity has contributed to understanding transport and dispersal processes and assessing ecosystem degradation or restoration potential. However, there has been little synthesis across disciplines. The growing field of ecohydrology and recent recognition that loss of hydrologic connectivity is leading to a global decline in biodiversity underscore the need for a unified connectivity concept. One outstanding need is a way to quantify directional connectivity that is consistent, robust to variations in sampling, and transferable across scales or environmental settings. Understanding connectivity in a particular direction (e.g., streamwise, along or across gradient, between sources and sinks, along cardinal directions) provides critical information for predicting contaminant transport, planning conservation corridor design, and understanding how landscapes or hydroscapes respond to directional forces like wind or water flow. Here we synthesize progress on quantifying connectivity and develop a new strategy for evaluating directional connectivity that benefits from use of graph theory in ecology and percolation theory in hydrology. The directional connectivity index (DCI) is a graph-theory based, multiscale metric that is generalizable to a range of different structural and functional connectivity applications. It exhibits minimal sensitivity to image rotation or resolution within a given range and responds intuitively to progressive, unidirectional change. Further, it is linearly related to the integral connectivity scale length--a metric common in hydrology that correlates well with actual fluxes--but is less computationally challenging and more readily comparable across different landscapes. Connectivity-orientation curves (i.e., directional connectivity computed over a range of headings) provide a quantitative, information-dense representation of environmental structure that can be used for comparison or detection of

  5. STUDY ON ECOLOGICAL RISK ASSESSMENT OF GUANGXI COASTAL ZONE BASED ON 3S TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Z. Zhong

    2018-05-01

    Full Text Available This paper takes Guangxi coastal zone as the study area, following the standards of land use type, divides the coastal zone of ecological landscape into seven kinds of natural wetland landscape types such as woodland, farmland, grassland, water, urban land and wetlands. Using TM data of 2000–2015 such 15 years, with the CART decision tree algorithm, for analysis the characteristic of types of landscape’s remote sensing image and build decision tree rules of landscape classification to extract information classification. Analyzing of the evolution process of the landscape pattern in Guangxi coastal zone in nearly 15 years, we may understand the distribution characteristics and change rules. Combined with the natural disaster data, we use of landscape index and the related risk interference degree and construct ecological risk evaluation model in Guangxi coastal zone for ecological risk assessment results of Guangxi coastal zone.

  6. Algae-bacteria interactions: Evolution, ecology and emerging applications.

    Science.gov (United States)

    Ramanan, Rishiram; Kim, Byung-Hyuk; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2016-01-01

    Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. DECISION STRATEGIES AND COGNITIVE ADAPTATIONS TO ECOLOGY

    Directory of Open Access Journals (Sweden)

    Poleszczuk Jan

    2017-06-01

    Full Text Available In this paper, I discuss the concept of adaptive rationality. I present a simple model of ecology and the set of decision rules. The basic structure of the process of cognitive adaptation to ecology is described as a structure comprising (1 perceptual space, (2 a function valuating perceived items, (3 a set of available decision rules and (4 the adaptation process - identification and selection of the best strategies in given ecological conditions. The presented model of ecosystem allows a conclusion that completely opposite strategies may be compatible with the assumption of adaptive rationality.

  8. Adopting an ecological view of metropolitan landscape: the case of "three circles" system for ecological construction and restoration in Beijing area.

    Science.gov (United States)

    Zhang, Feng; Zhang, Xin-shi

    2004-01-01

    Ecological construction and restoration for sustainable development are now a driving paradigm. It is increasingly recognized that ecological principles, especially landscape ecology theory, are not only necessary but also essential to maintain the long-term sustainability worldwide. Key landscape ecology principles-element, structure and process, dynamics, heterogeneity, hierarchies, connectivity, place and time were reviewed, and use Beijing area as a case study to illustrate how these principles might be applied to ecological construction and restoration, to eventually achieve sustainability. An example to more effectively incorporate the ecological principles in sustainable planning in China was presented.

  9. Parallel ecological networks in ecosystems

    Science.gov (United States)

    Olff, Han; Alonso, David; Berg, Matty P.; Eriksson, B. Klemens; Loreau, Michel; Piersma, Theunis; Rooney, Neil

    2009-01-01

    In ecosystems, species interact with other species directly and through abiotic factors in multiple ways, often forming complex networks of various types of ecological interaction. Out of this suite of interactions, predator–prey interactions have received most attention. The resulting food webs, however, will always operate simultaneously with networks based on other types of ecological interaction, such as through the activities of ecosystem engineers or mutualistic interactions. Little is known about how to classify, organize and quantify these other ecological networks and their mutual interplay. The aim of this paper is to provide new and testable ideas on how to understand and model ecosystems in which many different types of ecological interaction operate simultaneously. We approach this problem by first identifying six main types of interaction that operate within ecosystems, of which food web interactions are one. Then, we propose that food webs are structured among two main axes of organization: a vertical (classic) axis representing trophic position and a new horizontal ‘ecological stoichiometry’ axis representing decreasing palatability of plant parts and detritus for herbivores and detrivores and slower turnover times. The usefulness of these new ideas is then explored with three very different ecosystems as test cases: temperate intertidal mudflats; temperate short grass prairie; and tropical savannah. PMID:19451126

  10. Language control in different contexts: the behavioural ecology of bilingual speakers

    Directory of Open Access Journals (Sweden)

    David William Green

    2011-05-01

    Full Text Available This paper proposes that different experimental contexts (single or dual language contexts permit different neural loci at which words in the target language can be selected. However, in order to develop a fuller understanding of the neural circuit mediating language control we need to consider the community context in which bilingual speakers typically use their two languages (the behavioural ecology of bilingual speakers. The contrast between speakers from code-switching and non-code switching communities offers a way to increase our understanding of the cortical, subcortical and, in particular, cerebellar structures involved in language control. It will also help us identify the non-verbal behavioural correlates associated with these control processes.

  11. Evaluating nurse understanding and participation in the informed consent process.

    Science.gov (United States)

    Axson, Sydney A; Giordano, Nicholas A; Hermann, Robin M; Ulrich, Connie M

    2017-01-01

    Informed consent is fundamental to the autonomous decision-making of patients, yet much is still unknown about the process in the clinical setting. In an evolving healthcare landscape, nurses must be prepared to address patient understanding and participate in the informed consent process to better fulfill their well-established role as patient advocates. This study examines hospital-based nurses' experiences and understandings of the informed consent process. This qualitative descriptive study utilized a semi-structured interview approach identifying thematic concerns, experiences, and knowledge of informed consent across a selected population of clinically practicing nurses. Participants and research context: In all, 20 baccalaureate prepared registered nurses practicing in various clinical settings (i.e. critical care, oncology, medical/surgical) at a large northeastern academic medical center in the United States completed semi-structured interviews and a demographic survey. The mean age of participants was 36.6 years old, with a mean of 12.2 years of clinical experience. Ethical considerations: Participation in this study involved minimal risk and no invasive measures. This study received Institutional Review Board approval from the University of Pennsylvania. All participants voluntarily consented. The majority of participants (N = 19) believe patient safety is directly linked to patient comprehension of the informed consent process. However, when asked if nurses have a defined role in the informed consent process, nearly half did not agree (N = 9). Through this qualitative approach, three major nursing roles emerged: the nurse as a communicator, the nurse as an advocate, and the clerical role of the nurse. This investigation contributes to the foundation of ethical research that will better prepare nurses for patient engagement, advance current understanding of informed consent, and allow for future development of solutions. Nurses are at the forefront of

  12. Integrating continental-scale ecological data into university courses: Developing NEON's Online Learning Portal

    Science.gov (United States)

    Wasser, L. A.; Gram, W.; Lunch, C. K.; Petroy, S. B.; Elmendorf, S.

    2013-12-01

    'Big Data' are becoming increasingly common in many fields. The National Ecological Observatory Network (NEON) will be collecting data over the 30 years, using consistent, standardized methods across the United States. Similar efforts are underway in other parts of the globe (e.g. Australia's Terrestrial Ecosystem Research Network, TERN). These freely available new data provide an opportunity for increased understanding of continental- and global scale processes such as changes in vegetation structure and condition, biodiversity and landuse. However, while 'big data' are becoming more accessible and available, integrating big data into the university courses is challenging. New and potentially unfamiliar data types and associated processing methods, required to work with a growing diversity of available data, may warrant time and resources that present a barrier to classroom integration. Analysis of these big datasets may further present a challenge given large file sizes, and uncertainty regarding best methods to properly statistically summarize and analyze results. Finally, teaching resources, in the form of demonstrative illustrations, and other supporting media that might help teach key data concepts, take time to find and more time to develop. Available resources are often spread widely across multi-online spaces. This presentation will overview the development of NEON's collaborative University-focused online education portal. Portal content will include 1) interactive, online multi-media content that explains key concepts related to NEON's data products including collection methods, key metadata to consider and consideration of potential error and uncertainty surrounding data analysis; and 2) packaged 'lab' activities that include supporting data to be used in an ecology, biology or earth science classroom. To facilitate broad use in classrooms, lab activities will take advantage of freely and commonly available processing tools, techniques and scripts. All

  13. Sampling in ecology and evolution - bridging the gap between theory and practice

    Science.gov (United States)

    Albert, C.H.; Yoccoz, N.G.; Edwards, T.C.; Graham, C.H.; Zimmermann, N.E.; Thuiller, W.

    2010-01-01

    Sampling is a key issue for answering most ecological and evolutionary questions. The importance of developing a rigorous sampling design tailored to specific questions has already been discussed in the ecological and sampling literature and has provided useful tools and recommendations to sample and analyse ecological data. However, sampling issues are often difficult to overcome in ecological studies due to apparent inconsistencies between theory and practice, often leading to the implementation of simplified sampling designs that suffer from unknown biases. Moreover, we believe that classical sampling principles which are based on estimation of means and variances are insufficient to fully address many ecological questions that rely on estimating relationships between a response and a set of predictor variables over time and space. Our objective is thus to highlight the importance of selecting an appropriate sampling space and an appropriate sampling design. We also emphasize the importance of using prior knowledge of the study system to estimate models or complex parameters and thus better understand ecological patterns and processes generating these patterns. Using a semi-virtual simulation study as an illustration we reveal how the selection of the space (e.g. geographic, climatic), in which the sampling is designed, influences the patterns that can be ultimately detected. We also demonstrate the inefficiency of common sampling designs to reveal response curves between ecological variables and climatic gradients. Further, we show that response-surface methodology, which has rarely been used in ecology, is much more efficient than more traditional methods. Finally, we discuss the use of prior knowledge, simulation studies and model-based designs in defining appropriate sampling designs. We conclude by a call for development of methods to unbiasedly estimate nonlinear ecologically relevant parameters, in order to make inferences while fulfilling requirements of

  14. An ecologically-based method for selecting ecological indicators for assessing risks to biological diversity from genetically-engineered plants

    DEFF Research Database (Denmark)

    Andow, D. A.; Lövei, Gabor L; Arpaia, Salvatore

    2013-01-01

    into ecological functional groups and selecting those that deliver the identified environmental values. (3) All of the species or ecosystem processes related to the selected functional groups are identified and (4) multi-criteria decision analysis (MCDA) is used to rank the indicator endpoint entities, which may...... adverse effects to biological diversity. The approach starts by (1) identifying the local environmental values so the ERA addresses specific concerns associated with local biological diversity. The model simplifies the indicator endpoint selection problem by (2) classifying biological diversity...... be species or ecological processes. MCDA focuses on those species and processes that are critical for the identified ecological functions and are likely to be highly exposed to the GE organism. The highest ranked indicator entities are selected for the next step. (5) Relevant risk hypotheses are identified...

  15. Societal rationality; towards an understanding of decision making processes in society

    International Nuclear Information System (INIS)

    Wahlstroem, Bjoern

    2001-01-01

    In a search for new ways to structure decision making on complex and controversial issues it is necessary to build an understanding of why traditional decision making processes break down. One reason is connected to the issues themselves. They represent steps into the unknown and decisions should therefore be made with prudence. A second reason is connected to a track record according to which new technologies are seen as generating more problems than solutions. A third and more fundamental reason is connected to the decision making processes themselves and a need to find better ways to approach difficult questions in the society. One way to approach societal decision making processes is to investigate their hidden rationality in an attempt to understand causes of observed difficulties. The paper is based mainly on observations from the nuclear industry, but it builds also on controversies experienced in attempts to agree on global efforts towards sustainable approaches to development. It builds on an earlier paper, which discussed the basis of rationality both on an individual and a societal level. Research in societal decision making has to rely on a true multi-disciplinary approach. It is nor enough to understand the technical and scientific models by which outcomes are predicted, but it is also necessary to understand how people make sense of their environment and how they co-operate. Rationality is in this connection one of the key concepts, with an understanding that people always are rational in their own frame of action. The challenge in this connection is to understand how this subjective rationality is formed. Societal rationality has to do with the allocation of resources. There are decisions in which several conflicting views have to be considered. Spending time and resources ex ante may support a consensus ex post, but unfortunately there is no panacea for approaching difficult decisions. Decisions with an uncertain future have to be more robust than

  16. Societal rationality; towards an understanding of decision making processes in society

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, Bjoern [Technical Research Centre of Finland, Espoo (Finland)

    2001-07-01

    In a search for new ways to structure decision making on complex and controversial issues it is necessary to build an understanding of why traditional decision making processes break down. One reason is connected to the issues themselves. They represent steps into the unknown and decisions should therefore be made with prudence. A second reason is connected to a track record according to which new technologies are seen as generating more problems than solutions. A third and more fundamental reason is connected to the decision making processes themselves and a need to find better ways to approach difficult questions in the society. One way to approach societal decision making processes is to investigate their hidden rationality in an attempt to understand causes of observed difficulties. The paper is based mainly on observations from the nuclear industry, but it builds also on controversies experienced in attempts to agree on global efforts towards sustainable approaches to development. It builds on an earlier paper, which discussed the basis of rationality both on an individual and a societal level. Research in societal decision making has to rely on a true multi-disciplinary approach. It is nor enough to understand the technical and scientific models by which outcomes are predicted, but it is also necessary to understand how people make sense of their environment and how they co-operate. Rationality is in this connection one of the key concepts, with an understanding that people always are rational in their own frame of action. The challenge in this connection is to understand how this subjective rationality is formed. Societal rationality has to do with the allocation of resources. There are decisions in which several conflicting views have to be considered. Spending time and resources ex ante may support a consensus ex post, but unfortunately there is no panacea for approaching difficult decisions. Decisions with an uncertain future have to be more robust than

  17. An interdisciplinary political ecology of drinking water quality. Exploring socio-ecological inequalities in Lilongwe's water supply network

    NARCIS (Netherlands)

    Rusca, Maria; Boakye-Ansah, Akosua Sarpong; Loftus, Alex; Ferrero, Giuliana; van der Zaag, P.

    2017-01-01

    Urban political ecology attempts to unravel and politicize the socio-ecological processes that produce uneven waterscapes. At the core of this analysis are the choreographies of power that influence how much water flows through urban infrastructure as well as where it flows, thereby shaping

  18. Weed ecology and population dynamics

    Science.gov (United States)

    A global rise in herbicide resistant weed genotypes, coupled with a growing demand for food produced with minimal external synthetic inputs, is driving producer interest in reducing reliance on herbicides for weed management. An improved understanding of weed ecology can support the design of weed s...

  19. Using process monitor wafers to understand directed self-assembly defects

    Science.gov (United States)

    Cao, Yi; Her, YoungJun; Delgadillo, Paulina R.; Vandenbroeck, Nadia; Gronheid, Roel; Chan, Boon Teik; Hashimoto, Yukio; Romo, Ainhoa; Somervell, Mark; Nafus, Kathleen; Nealey, Paul F.

    2013-03-01

    As directed self-assembly (DSA) has gained momentum over the past few years, questions about its application to high volume manufacturing have arisen. One of the major concerns is about the fundamental limits of defectivity that can be attained with the technology. If DSA applications demonstrate defectivity that rivals of traditional lithographic technologies, the pathway to the cost benefits of the technology creates a very compelling case for its large scale implementation. To address this critical question, our team at IMEC has established a process monitor flow to track the defectivity behaviors of an exemplary chemo-epitaxy application for printing line/space patterns. Through establishing this baseline, we have been able to understand both traditional lithographic defect sources in new materials as well as new classes of assembly defects associated with DSA technology. Moreover, we have explored new materials and processing to lower the level of the defectivity baseline. The robustness of the material sets and process is investigated as well. In this paper, we will report the understandings learned from the IMEC DSA process monitor flow.

  20. Key ecological responses to nitrogen are altered by climate change

    Science.gov (United States)

    Greaver, T.L.; Clark, C.M.; Compton, J.E.; Vallano, D.; Talhelm, A. F.; Weaver, C.P.; Band, L.E.; Baron, Jill S.; Davidson, E.A.; Tague, C.L.; Felker-Quinn, E.; Lynch, J.A.; Herrick, J.D.; Liu, L.; Goodale, C.L.; Novak, K. J.; Haeuber, R. A.

    2016-01-01

    Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

  1. Community ecology in a changing environment: Perspectives from the Quaternary.

    Science.gov (United States)

    Jackson, Stephen T; Blois, Jessica L

    2015-04-21

    Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a "missing middle": Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit.

  2. The significance of the Danube ecological corridor in the proceedings of implementing ecological networks in Serbia

    Directory of Open Access Journals (Sweden)

    Filipović Dejan

    2015-01-01

    Full Text Available With the modern processes for exploiting land people have altered the original appearance of areas and created cultural environments. The remaining natural environments, whether protected or not, take up a relatively small portion of space and represent isolated islands which in itself can not be sufficient for the preservation of biodiversity or for the fulfillment of national, regional or international goals and commitments related to their preservation. In order to secure the preservation of biodiversity, the strengthening of integrity and the natural processes, such as animal migrations, succession of vegetation and evolution processes, the communication between natural habitats is imperative. Ecological corridors, as integral elements of ecological networks, ensure the preservation of vital ecological interactions by providing a connection between different habitats or areas. Depending on a range of factors, from the fulfillment of demands of different species to the connecting of regions, corridors of local, sub-regional, regional and international importance are identified. The Danube ecological corridor is one of the most significant corridors of international importance which encompasses a large number of habitats which are part of the natural watercourse of the corridor. There are numerous protected areas in the Danube coastal area on Serbia's territory which present themselves as central areas for forming the ecological network, such as: Gornje Podunavlje, Karađorđevo, Fruška Gora, Titelski Breg hill, Kovalski rit marsh, Dunavski loess bluffs, the Sava mouth, Labudovo okno, Deliblato sands, Đerdap and Mala Vrbica. The diverse and mosaic vegetation of the floodplain, as well as the consistency of the protected areas within the Danube corridor have a direct influence on the quality and functionality of this corridor. The goal of this paper is to show the significance of the Danube ecological corridor in the process of implementing

  3. Combining aesthetic with ecological values for landscape sustainability.

    Science.gov (United States)

    Yang, Dewei; Luo, Tao; Lin, Tao; Qiu, Quanyi; Luo, Yunjian

    2014-01-01

    Humans receive multiple benefits from various landscapes that foster ecological services and aesthetic attractiveness. In this study, a hybrid framework was proposed to evaluate ecological and aesthetic values of five landscape types in Houguanhu Region of central China. Data from the public aesthetic survey and professional ecological assessment were converted into a two-dimensional coordinate system and distribution maps of landscape values. Results showed that natural landscapes (i.e. water body and forest) contributed positively more to both aesthetic and ecological values than semi-natural and human-dominated landscapes (i.e. farmland and non-ecological land). The distribution maps of landscape values indicated that the aesthetic, ecological and integrated landscape values were significantly associated with landscape attributes and human activity intensity. To combine aesthetic preferences with ecological services, the methods (i.e. field survey, landscape value coefficients, normalized method, a two-dimensional coordinate system, and landscape value distribution maps) were employed in landscape assessment. Our results could facilitate to identify the underlying structure-function-value chain, and also improve the understanding of multiple functions in landscape planning. The situation context could also be emphasized to bring ecological and aesthetic goals into better alignment.

  4. Biological, ecological and agronomic significance of plant phenolic ...

    African Journals Online (AJOL)

    Our understanding of some phenolic compounds in the last few decades has greatly improved. However, their biological, ecological and agronomical significance in the rhizosphere of most symbiotic legumes is much less clear. Further understanding of these biomolecules will increase our knowledge of their contribution in ...

  5. The importance of topographically corrected null models for analyzing ecological point processes.

    Science.gov (United States)

    McDowall, Philip; Lynch, Heather J

    2017-07-01

    Analyses of point process patterns and related techniques (e.g., MaxEnt) make use of the expected number of occurrences per unit area and second-order statistics based on the distance between occurrences. Ecologists working with point process data often assume that points exist on a two-dimensional x-y plane or within a three-dimensional volume, when in fact many observed point patterns are generated on a two-dimensional surface existing within three-dimensional space. For many surfaces, however, such as the topography of landscapes, the projection from the surface to the x-y plane preserves neither area nor distance. As such, when these point patterns are implicitly projected to and analyzed in the x-y plane, our expectations of the point pattern's statistical properties may not be met. When used in hypothesis testing, we find that the failure to account for the topography of the generating surface may bias statistical tests that incorrectly identify clustering and, furthermore, may bias coefficients in inhomogeneous point process models that incorporate slope as a covariate. We demonstrate the circumstances under which this bias is significant, and present simple methods that allow point processes to be simulated with corrections for topography. These point patterns can then be used to generate "topographically corrected" null models against which observed point processes can be compared. © 2017 by the Ecological Society of America.

  6. Post-ecological discourse in the making.

    Science.gov (United States)

    Zeyer, Albert; Roth, Wolff-Michael

    2013-01-01

    This article analyses the discourse of 15- to16-year-old Swiss junior high school students in order to understand public discourse on the environment and environmental protection. Discourse analysis reveals four interpretive repertoires as the building blocks for the so-called post-ecological discourse, which can be used to describe important aspects of current ways of talking about ecological issues in Europe. We show that 10 theoretically identifiable dimensions of this discourse can be understood in terms of a mutual interplay between the four interpretive repertoires. Post-ecological discourse in today's (Swiss) society appears to be at its core a loss-of-control-discourse, which leads (in our students) to a latent eco-depression. Thus, the public understanding of science can be affected by unintended consequences of the talk itself (in this case an unintended environmental depression), that is, by the inherent characteristics of the involved repertoires, here especially the so-called folk science repertoire. Fostering public understanding of science is thus not merely a question of providing the public with scientific 'facts'. It is also an issue of paying attention to the available discursive repertoires. If necessary, viable alternative repertoires may have to be offered. In school, for example, conversations about the nature of science, and about complexity and applied ethics might help students learn new interpretive repertoires and how to mobilize these in talking about the environment and environmental protection.

  7. The consideration of ecological safety in judicial practice-also on the ecological safety legislation

    Institute of Scientific and Technical Information of China (English)

    L(U) Zhongmei

    2006-01-01

    Ecological safety has been one of the hot issues of environmental law in recent years.The maintenance of ecological safety has become one of the legislative principles,as exemplified by the revision of the Law of Sand Prevention and Sand.Management and the Law against Solid Waste Environmental Pollution,and the relevant rules that will be established.However actual cases will still happen,whether the legislators have made the statutory law or not.While scholars and legislators are debating,the judges have to handle cases and render judgments.Through the analysis of a case,this article will discuss the feasibility for judges to make ecological safety considerations in the judicial process by applying the principle of good faith and will also discuss the legislative issues related to ecological safety.

  8. Testing a social ecological model for relations between political violence and child adjustment in Northern Ireland.

    Science.gov (United States)

    Cummings, E Mark; Merrilees, Christine E; Schermerhorn, Alice C; Goeke-Morey, Marcie C; Shirlow, Peter; Cairns, Ed

    2010-05-01

    Relations between political violence and child adjustment are matters of international concern. Past research demonstrates the significance of community, family, and child psychological processes in child adjustment, supporting study of interrelations between multiple social ecological factors and child adjustment in contexts of political violence. Testing a social ecological model, 300 mothers and their children (M = 12.28 years, SD = 1.77) from Catholic and Protestant working class neighborhoods in Belfast, Northern Ireland, completed measures of community discord, family relations, and children's regulatory processes (i.e., emotional security) and outcomes. Historical political violence in neighborhoods based on objective records (i.e., politically motivated deaths) were related to family members' reports of current sectarian antisocial behavior and nonsectarian antisocial behavior. Interparental conflict and parental monitoring and children's emotional security about both the community and family contributed to explanatory pathways for relations between sectarian antisocial behavior in communities and children's adjustment problems. The discussion evaluates support for social ecological models for relations between political violence and child adjustment and its implications for understanding relations in other parts of the world.

  9. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup

    OpenAIRE

    Annelise Norlyk; Pia Dreyer; Anita Haahr; Bente Martinsen

    2011-01-01

    The creative processes of understanding patients’ experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905-1981), this article aims to illustrate Løgstrup’s thinking as a way to elaborate the creation of cognition and understanding of patients’ experiences. We suggest that Løgstrup’s thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomeno...

  10. Development of a zoning-based environmental-ecological-coupled model for lakes to assess lake restoration effect

    Science.gov (United States)

    Xu, Mengjia; Zou, Changxin; Zhao, Yanwei

    2017-04-01

    Environmental/ecological models are widely used for lake management as they provide a means to understand physical, chemical and biological processes in highly complex ecosystems. Most research focused on the development of environmental (water quality) and ecological models, separately. Limited studies were developed to couple the two models, and in these limited coupled models, a lake was regarded as a whole for analysis (i.e., considering the lake to be one well-mixed box), which was appropriate for small-scale lakes and was not sufficient to capture spatial variations within middle-scale or large-scale lakes. This paper seeks to establish a zoning-based environmental-ecological-coupled model for a lake. The Baiyangdian Lake, the largest freshwater lake in Northern China, was adopted as the study case. The coupled lake models including a hydrodynamics and water quality model established by MIKE21 and a compartmental ecological model used STELLA software have been established for middle-sized Baiyangdian Lake to realize the simulation of spatial variations of ecological conditions. On the basis of the flow field distribution results generated by MIKE21 hydrodynamics model, four water area zones were used as an example for compartmental ecological model calibration and validation. The results revealed that the developed coupled lake models can reasonably reflected the changes of the key state variables although there remain some state variables that are not well represented by the model due to the low quality of field monitoring data. Monitoring sites in a compartment may not be representative of the water quality and ecological conditions in the entire compartment even though that is the intention of compartment-based model design. There was only one ecological observation from a single monitoring site for some periods. This single-measurement issue may cause large discrepancies particularly when sampled site is not representative of the whole compartment. The

  11. Study on the balance mechanism of interests in marine ecological compensation

    Science.gov (United States)

    Qian, Cao; Hongjun, Cao; Hongcai, Yan

    2017-11-01

    From the point of view of game theory and through establishing the game model of the subject and object of marine ecological compensation, this paper makes a research on the balance mechanism the interests of marine ecological compensation. The results show that the optimal amount of capital investment of environmental protection enterprises for ecological compensation depends not only on energy conservation and emission reduction of itself as well as competition enterprises, but also on the policy support for ecological compensation. At the same time, it is limited by the public’s understanding and acceptance for ecological compensation.

  12. Applying historical ecology to natural resource management institutions

    DEFF Research Database (Denmark)

    Petty, Aaron M.; Isendahl, Christian; Brenkert-Smith, Hannah

    2015-01-01

    Understanding the linkages between social and ecological systems is key to developing sustainable natural resource management (NRM) institutions. Frequently, however, insufficient attention is paid to the historical development of NRM institutions. Instead, discussion largely focuses on models...... of economic efficiency at the expense of the cultural, historical, and ecological contexts within which institutions develop. Here we use the research program of historical ecology to explore the development, maintenance, and change of two contemporary fire management institutions in northern Australia...... and Colorado, USA, to demonstrate how social institutions and ecological systems change and resist change over time and how institutions interact across scales to negotiate contrasting goals and motivations. We argue that these NRM institutions are not strictly speaking evolutionary or adaptive...

  13. Focus on CSIR research in water resources: Modelling complex biophysical processes associated with diseases. Case study: the ecology of vibriocholerae in the Mozambican channel

    CSIR Research Space (South Africa)

    Du Preez, M

    2007-08-01

    Full Text Available will be undertaken. Non-linear dynamics and chaos theory will be applied to enhance our understanding of the link between the microbial ecology, remote sensing and meteorological data. Focus on CSIR Research in Water Resources Contact details: CSIR Natural...

  14. Understanding the IT/business partnership - a business process perspective

    DEFF Research Database (Denmark)

    Siurdyban, Artur

    2014-01-01

    From a business process perspective, the business value of information technologies (IT) stems from how they improve or enable business processes. At the same time, in the field of strategic IT/business alignment, the locus of discussion has been how IT/business partnerships enhance the value of IT....... Despite this apparent relationship, the business process perspective has been absent from the IT/business alignment discussion. In this paper, we use the case of an industrial company to develop a model for understanding IT/business partnerships in business process terms. Based on our findings, we define...... these partnerships by allocating responsibilities between central IT and the local business during two stages of a process lifecycle: formation and standardization. The significance of the findings lies in how the model’s configuration leads to different types of IT units’ process centricity. This in turn affects...

  15. ECOLOGICAL FOOTPRINT ANALYSIS OF CANNED SWEET CORN

    Directory of Open Access Journals (Sweden)

    Phairat Usubharatana

    2016-07-01

    Full Text Available There has been a notable increase in both consumer knowledge and awareness regarding the ecological benefits of green products and services. Manufacturers now pay more attention to green, environmentally friendly production processes. Two significant tools that can facilitate such a goal are life cycle assessment (LCA and ecological footprint (EF. This study aimed to analyse and determine the damage to the environment, focusing on the canned fruit and vegetable processing. Canned sweet corn (340 g was selected for the case study. All inputs and outputs associated with the product system boundary were collected through field surveys. The acquired inventory was then analysed and evaluated using both LCA and EF methodology. The results were converted into an area of biologically productive land and presented as global hectares (gha. The ecological footprint of one can of sweet corn was calculated as 6.51E-04 gha. The three factors with the highest impact on ecological footprint value were the corn kernels used in the process, the packaging and steam, equivalent to 2.93E-04 gha, 1.19E-04 gha and 1.17E-04 gha respectively. To promote the sustainable development, the company should develop new technology or utilize better management techniques to reduce the ecological footprint of canned food production.

  16. Towards a Stochastic Predictive Understanding of Ecosystem Functioning and Resilience to Environmental Changes

    Science.gov (United States)

    Pappas, C.

    2017-12-01

    Terrestrial ecosystem processes respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Process-based modeling of ecosystem functioning is therefore challenging, especially when long-term predictions are envisioned. Here we analyze the statistical properties of hydrometeorological and ecosystem variability, i.e., the variability of ecosystem process related to vegetation carbon dynamics, from hourly to decadal timescales. 23 extra-tropical forest sites, covering different climatic zones and vegetation characteristics, are examined. Micrometeorological and reanalysis data of precipitation, air temperature, shortwave radiation and vapor pressure deficit are used to describe hydrometeorological variability. Ecosystem variability is quantified using long-term eddy covariance flux data of hourly net ecosystem exchange of CO2 between land surface and atmosphere, monthly remote sensing vegetation indices, annual tree-ring widths and above-ground biomass increment estimates. We find that across sites and timescales ecosystem variability is confined within a hydrometeorological envelope that describes the range of variability of the available resources, i.e., water and energy. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. We derive an analytical model, combining deterministic harmonics and stochastic processes, that represents major mechanisms and uncertainties and mimics the observed pattern of hydrometeorological and ecosystem variability. This stochastic framework offers a parsimonious and mathematically tractable approach for modelling ecosystem functioning and for understanding its response and resilience to environmental changes. Furthermore, this framework reflects well the observed ecological memory, an inherent property of ecosystem functioning that is currently not

  17. A model for understanding and learning of the game process of computer games

    DEFF Research Database (Denmark)

    Larsen, Lasse Juel; Majgaard, Gunver

    This abstract focuses on the computer game design process in the education of engineers at the university level. We present a model for understanding the different layers in the game design process, and an articulation of their intricate interconnectedness. Our motivation is propelled by our daily...... teaching practice of game design. We have observed a need for a design model that quickly can create an easily understandable overview over something as complex as the design processes of computer games. This posed a problem: how do we present a broad overview of the game design process and at the same...... time make sure that the students learn to act and reflect like game designers? We fell our game design model managed to just that end. Our model entails a guideline for the computer game design process in its entirety, and at same time distributes clear and easy understandable insight to a particular...

  18. Understanding and Predicting the Process of Software Maintenance Releases

    Science.gov (United States)

    Basili, Victor; Briand, Lionel; Condon, Steven; Kim, Yong-Mi; Melo, Walcelio L.; Valett, Jon D.

    1996-01-01

    One of the major concerns of any maintenance organization is to understand and estimate the cost of maintenance releases of software systems. Planning the next release so as to maximize the increase in functionality and the improvement in quality are vital to successful maintenance management. The objective of this paper is to present the results of a case study in which an incremental approach was used to better understand the effort distribution of releases and build a predictive effort model for software maintenance releases. This study was conducted in the Flight Dynamics Division (FDD) of NASA Goddard Space Flight Center(GSFC). This paper presents three main results: 1) a predictive effort model developed for the FDD's software maintenance release process; 2) measurement-based lessons learned about the maintenance process in the FDD; and 3) a set of lessons learned about the establishment of a measurement-based software maintenance improvement program. In addition, this study provides insights and guidelines for obtaining similar results in other maintenance organizations.

  19. Missing ecology: integrating ecological perspectives with the social-ecological system framework

    Directory of Open Access Journals (Sweden)

    Graham Epstein

    2013-08-01

    Full Text Available The social-ecological systems framework was designed to provide a common research tool for interdisciplinary investigations of social-ecological systems. However, its origin in institutional studies of the commons belies its interdisciplinary ambitions and highlights its relatively limited attention to ecology and natural scientific knowledge. This paper considers the biophysical components of the framework and its epistemological foundations as it relates to the incorporation of knowledge from the natural sciences. It finds that the mixture of inductive and deductive reasoning associated with socially-oriented investigations of these systems is lacking on the ecological side, which relies upon induction alone. As a result the paper proposes the addition of a seventh core sub-system to the social-ecological systems framework, ecological rules, which would allow scholars to explicitly incorporate knowledge from the natural sciences for deductive reasoning. The paper shows, through an instructive case study, how the addition of ecological rules can provide a more nuanced description of the factors that contribute to outcomes in social-ecological systems.

  20. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions.

    Science.gov (United States)

    Zhou, Jin; Lyu, Yihua; Richlen, Mindy; Anderson, Donald M; Cai, Zhonghua

    2016-01-01

    Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in marine ecology field. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbour diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS.