WorldWideScience

Sample records for understanding cellular interactions

  1. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Micropatterned co-culture of hepatocyte spheroids layered on non-parenchymal cells to understand heterotypic cellular interactions

    Directory of Open Access Journals (Sweden)

    Hidenori Otsuka, Kohei Sasaki, Saya Okimura, Masako Nagamura and Yuichi Nakasone

    2013-01-01

    Full Text Available Microfabrication and micropatterning techniques in tissue engineering offer great potential for creating and controlling cellular microenvironments including cell–matrix interactions, soluble stimuli and cell–cell interactions. Here, we present a novel approach to generate layered patterning of hepatocyte spheroids on micropatterned non-parenchymal feeder cells using microfabricated poly(ethylene glycol (PEG hydrogels. Micropatterned PEG-hydrogel-treated substrates with two-dimensional arrays of gelatin circular domains (phgr = 100 μm were prepared by photolithographic method. Only on the critical structure of PEG hydrogel with perfect protein rejection, hepatocytes were co-cultured with non-parenchymal cells to be led to enhanced hepatocyte functions. Then, we investigated the mechanism of the functional enhancement in co-culture with respect to the contributions of soluble factors and direct cell–cell interactions. In particular, to elucidate the influence of soluble factors on hepatocyte function, hepatocyte spheroids underlaid with fibroblasts (NIH/3T3 mouse fibroblasts or endothelial cells (BAECs: bovine aortic endothelial cells were compared with physically separated co-culture of hepatocyte monospheroids with NIH3T3 or BAEC using trans-well culture systems. Our results suggested that direct heterotypic cell-to-cell contact and soluble factors, both of these between hepatocytes and fibroblasts, significantly enhanced hepatocyte functions. In contrast, direct heterotypic cell-to-cell contact between hepatocytes and endothelial cells only contributed to enhance hepatocyte functions. This patterning technique can be a useful experimental tool for applications in basic science, drug screening and tissue engineering, as well as in the design of artificial liver devices.

  3. CELLULAR INTERACTIONS MEDIATED BY GLYCONECTIDS

    Directory of Open Access Journals (Sweden)

    O.Popescu

    1999-01-01

    Full Text Available Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of isolated and purified glyconectins revealed the presence of specific carbohydrate structures, acidic glycans, different from classical glycosaminoglycans. Such acidic glycans of high molecular weight containing fucose, glucuronic or galacturonic acids, and sulfate groups, originally found in sponges and sea urchin embryos, may represent a new class of carbohydrate carcino-embryonal antigens in mice and humans. Such interactions between biological macromolecules are usually investigated by kinetic binding studies, calorimetric methods, X-ray diffraction, nuclear magnetic resonance, and other spectroscopic analyses. However, these methods do not supply a direct estimation of the intermolecular binding forces that are fundamental for the function of the ligand-receptor association. Recently, we have introduced atomic force microscopy to quantify the binding strength between cell adhesion proteoglycans. Measurement of binding forces intrinsic to cell adhesion proteoglycans is necessary to assess their contribution to the maintenance of the anatomical integrity of multicellular organisms. As a model, we selected the glyconectin 1, a cell adhesion proteoglycan isolated from the marine sponge Microciona prolifera. This glyconectin mediates in vivo cell recognition and aggregation via homophilic, species-specific, polyvalent, and calcium ion-dependent carbohydrate-carbohydrate interactions. Under physiological conditions, an adhesive force of up to 400 piconewtons

  4. Intravital microscopy: new insights into cellular interactions.

    Science.gov (United States)

    Gavins, Felicity N E

    2012-10-01

    Inflammation is the body's way of combating invading pathogens or noxious stimuli. Under normal conditions, the complex host response of rubor, dolor, calor, tumor, and functio laesa is essential for survival and the return to homeostasis. However, unregulated inflammation is all too often observed in diseases such as rheumatoid arthritis, stroke, and cancer. The host inflammatory response is governed by a number of tightly regulated processes that enable cellular trafficking to occur at the sites of damage to ultimately ensure the resolution of inflammation. Intravital microscopy (IVM) provides quantitative, qualitative, and dynamic insights into cell biology and these cellular interactions. This review highlights the pros and cons of this specialized technique and how it has evolved to help understand the physiology and pathophysiology of inflammatory events in a number of different disease states, leading to a number of potential therapeutic targets for drug discovery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. High Content Screening: Understanding Cellular Pathway

    International Nuclear Information System (INIS)

    Mohamed Zaffar Ali Mohamed Amiroudine; Daryl Jesus Arapoc; Zainah Adam; Shafii Khamis

    2015-01-01

    High content screening (HCS) is the convergence between cell-based assays, high-resolution fluorescence imaging, phase-contrast imaging of fixed- or live-cell assays, tissues and small organisms. It has been widely adopted in the pharmaceutical and biotech industries for target identification and validation and as secondary screens to reveal potential toxicities or to elucidate a drugs mechanism of action. By using the ImageXpress® Micro XLS System HCS, the complex network of key players controlling proliferation and apoptosis can be reduced to several sentinel markers for analysis. Cell proliferation and apoptosis are two key areas in cell biology and drug discovery research. Understanding the signaling pathways in cell proliferation and apoptosis is important for new therapeutic discovery because the imbalance between these two events is predominant in the progression of many human diseases, including cancer. The DNA binding dye DAPI is used to determine the nuclear size and nuclear morphology as well as cell cycle phases by DNA content. Images together with MetaXpress® analysis results provide a convenient and easy to use solution to high volume image management. In particular, HCS platform is beginning to have an important impact on early drug discovery, basic research in systems cell biology, and is expected to play a role in personalized medicine or revealing off-target drug effects. (author)

  6. Cellular mechanisms in drug - radiation interaction

    International Nuclear Information System (INIS)

    Trott, K.R.

    1979-01-01

    Some cytotoxic drugs, especially those belonging to the group of antibiotics and antimetabolites, sensitize the cells having survived drug treatment to the subsequent irradiation by either increasing the slope of the radiation dose response curves or by decreasing extrapolation number. Bleomycin was found to interact with radiation in L-cells and FM3A cells, but not in HeLa-cells. The data with EMT-6 cells suggest that the interaction depends on drug dose: no interaction occurred after the exposure to bleomycin which killed only 20 - 40% of the cells; yet the exposure to bleomycin which killed 90% of the cells in addition sensitized the surviving cells by the DMF of 1.3. The sensitization found 24 hr after the exposure of HeLa cells to methotrexate was due to cell synchronization. Other cytostatic drugs were found to synchronize proliferating cells even better. Therefore, the fluctuation of radiosensitivity has been commonly observed after the termination of exposure to these drugs. Preirradiation may lead to the change in drug dose response curves. The recruitment of resting cells into cycle occurs hours or days later, in some irradiated normal and malignant tissues. Since many cytostatic drugs are far more active in proliferating cells than in resting cells, the recruitment after irradiation may lead to the sudden increase in drug sensitivity, days after the irradiation. No single, simple theory seems to exist to classify and predict the cellular response to combined modality treatment. (Yamashita, S.)

  7. Carbohydrate involvement in cellular interactions in sea urchin gastrulation.

    Science.gov (United States)

    Khurrum, Maria; Hernandez, Astrid; Eskalaei, Melika; Badali, Oliver; Coyle-Thompson, Cathy; Oppenheimer, Steven B

    2004-01-01

    disaggregated into single cells. These studies may lead to a better understanding of the molecular basis of mechanisms that control cellular interactions during development.

  8. Recent advances in understanding the cellular roles of GSK-3.

    Science.gov (United States)

    Cormier, Kevin W; Woodgett, James R

    2017-01-01

    Glycogen synthase kinase-3 (GSK-3) is a ubiquitously expressed protein kinase that sits at the nexus of multiple signaling pathways. Its deep integration into cellular control circuits is consummate to its implication in diseases ranging from mood disorders to diabetes to neurodegenerative diseases and cancers. The selectivity and insulation of such a promiscuous kinase from unwanted crosstalk between pathways, while orchestrating a multifaceted response to cellular stimuli, offer key insights into more general mechanisms of cell regulation. Here, we review recent advances that have contributed to the understanding of GSK-3 and its role in driving appreciation of intracellular signal coordination.

  9. Cell surface engineering to control cellular interactions

    OpenAIRE

    Custódio, Catarina A.; Mano, João F.

    2016-01-01

    Cell surface composition determines all interactions of the cell with its environment, thus cell functions such as adhesion, migration and cell–cell interactions can potentially be controlled by engineering and manipulating the cell membrane. Cell membranes present a rich repertoire of molecules, therefore a versatile ground for modification. However the complex and dynamic nature of the cell surface is also a major challenge for cell surface engineering that should also involve strategies co...

  10. The Nobel Prize for understanding autophagy, a cellular mechanism ...

    Indian Academy of Sciences (India)

    This processof autophagy (self-eating) maintains cellular homeostasis and helps the cell and the organism to surviveduring periods of stress, such as starvation, by recycling the cellular components to generate amino acidsand nutrients needed for producing energy. Autophagy and ubiquitin-proteasome system are the two ...

  11. Invitro Studies on the Mechanism of Cellular Interactions of Some ...

    African Journals Online (AJOL)

    The displaced 65Zn appeared to bind mainly to cellular components of molecular weight 60,000 – 10,000 Daltons. The mechanism of interactions between zinc and other trace elements such as copper and iron is partly due to their binding to common intracellular proteins within the cytoplasm of the mucosa cells of the ...

  12. Advances in the formation, use and understanding of multi-cellular spheroids.

    Science.gov (United States)

    Achilli, Toni-Marie; Meyer, Julia; Morgan, Jeffrey R

    2012-10-01

    Developing in vitro models for studying cell biology and cell physiology is of great importance to the fields of biotechnology, cancer research, drug discovery, toxicity testing, as well as the emerging fields of tissue engineering and regenerative medicine. Traditional two-dimensional (2D) methods of mammalian cell culture have several limitations and it is increasingly recognized that cells grown in a three-dimensional (3D) environment more closely represent normal cellular function due to the increased cell-to-cell interactions, and by mimicking the in vivo architecture of natural organs and tissues. In this review, we discuss the methods to form 3D multi-cellular spheroids, the advantages and limitations of these methods, and assays used to characterize the function of spheroids. The use of spheroids has led to many advances in basic cell sciences, including understanding cancer cell interactions, creating models for drug discovery and cancer metastasis, and they are being investigated as basic units for engineering tissue constructs. As so, this review will focus on contributions made to each of these fields using spheroid models. Multi-cellular spheroids are rich in biological content and mimic better the in vivo environment than 2D cell culture. New technologies to form and analyze spheroids are rapidly increasing their adoption and expanding their applications.

  13. Synchronization of fractional fuzzy cellular neural networks with interactions

    Science.gov (United States)

    Ma, Weiyuan; Li, Changpin; Wu, Yujiang; Wu, Yongqing

    2017-10-01

    In this paper, we introduce fuzzy theory into the fractional cellular neural networks to dynamically enhance the coupling strength and propose a fractional fuzzy neural network model with interactions. Using the Lyapunov principle of fractional differential equations, we design the adaptive control schemes to realize the synchronization and obtain the synchronization criteria. Finally, we provide some numerical examples to show the effectiveness of our obtained results.

  14. The Nobel Prize for understanding autophagy, a cellular mechanism ...

    Indian Academy of Sciences (India)

    The Nobel Prize in Physiology or Medicine, 2016, was awarded to Prof Yoshinori Ohsumi from TokyoInstitute of Technology, Yokohoma, Japan, for his work that helped in understanding the molecularmechanisms of autophagy, a process used by most eukaryotic cells to degrade a portion of cytoplasmincluding damaged ...

  15. Understanding nucleic acid-ion interactions.

    Science.gov (United States)

    Lipfert, Jan; Doniach, Sebastian; Das, Rhiju; Herschlag, Daniel

    2014-01-01

    Ions surround nucleic acids in what is referred to as an ion atmosphere. As a result, the folding and dynamics of RNA and DNA and their complexes with proteins and with each other cannot be understood without a reasonably sophisticated appreciation of these ions' electrostatic interactions. However, the underlying behavior of the ion atmosphere follows physical rules that are distinct from the rules of site binding that biochemists are most familiar and comfortable with. The main goal of this review is to familiarize nucleic acid experimentalists with the physical concepts that underlie nucleic acid-ion interactions. Throughout, we provide practical strategies for interpreting and analyzing nucleic acid experiments that avoid pitfalls from oversimplified or incorrect models. We briefly review the status of theories that predict or simulate nucleic acid-ion interactions and experiments that test these theories. Finally, we describe opportunities for going beyond phenomenological fits to a next-generation, truly predictive understanding of nucleic acid-ion interactions.

  16. Advances in understanding river-groundwater interactions

    Science.gov (United States)

    Brunner, Philip; Therrien, René; Renard, Philippe; Simmons, Craig T.; Franssen, Harrie-Jan Hendricks

    2017-09-01

    River-groundwater interactions are at the core of a wide range of major contemporary challenges, including the provision of high-quality drinking water in sufficient quantities, the loss of biodiversity in river ecosystems, or the management of environmental flow regimes. This paper reviews state of the art approaches in characterizing and modeling river and groundwater interactions. Our review covers a wide range of approaches, including remote sensing to characterize the streambed, emerging methods to measure exchange fluxes between rivers and groundwater, and developments in several disciplines relevant to the river-groundwater interface. We discuss approaches for automated calibration, and real-time modeling, which improve the simulation and understanding of river-groundwater interactions. Although the integration of these various approaches and disciplines is advancing, major research gaps remain to be filled to allow more complete and quantitative integration across disciplines. New possibilities for generating realistic distributions of streambed properties, in combination with more data and novel data types, have great potential to improve our understanding and predictive capabilities for river-groundwater systems, especially in combination with the integrated simulation of the river and groundwater flow as well as calibration methods. Understanding the implications of different data types and resolution, the development of highly instrumented field sites, ongoing model development, and the ultimate integration of models and data are important future research areas. These developments are required to expand our current understanding to do justice to the complexity of natural systems.

  17. Screening of cellular proteins that interact with the classical swine ...

    Indian Academy of Sciences (India)

    In the current study, aiming to find more clues in understanding the molecular mechanisms of CSFV NS5A's function, the yeast two-hybrid (Y2H) system was adopted to screen for CSFV NS5A interactive proteins in the cDNA library of the swine umbilical vein endothelial cell (SUVEC). Alignment with the NCBI database ...

  18. Investigation of cellular responses upon interaction with silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Subbiah R

    2015-08-01

    Full Text Available Ramesh Subbiah,1,2 Seong Beom Jeon,3,4 Kwideok Park,1,2 Sang Jung Ahn,4,5 Kyusik Yun3 1Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 2Department of Biomedical Engineering, Korea University of Science and Technology, Daejon, 3Department of Bionanotechnology, Gachon University, Gyeonggi-do, 4Centre for Advanced Instrumentation, Korea Research Institute of Standard and Science, 5Major of Nano Science, Korea University of Science and Technology, Daejeon, Republic of Korea Abstract: In order for nanoparticles (NPs to be applied in the biomedical field, a thorough investigation of their interactions with biological systems is required. Although this is a growing area of research, there is a paucity of comprehensive data in cell-based studies. To address this, we analyzed the physicomechanical responses of human alveolar epithelial cells (A549, mouse fibroblasts (NIH3T3, and human bone marrow stromal cells (HS-5, following their interaction with silver nanoparticles (AgNPs. When compared with kanamycin, AgNPs exhibited moderate antibacterial activity. Cell viability ranged from ≤80% at a high AgNPs dose (40 µg/mL to >95% at a low dose (10 µg/mL. We also used atomic force microscopy-coupled force spectroscopy to evaluate the biophysical and biomechanical properties of cells. This revealed that AgNPs treatment increased the surface roughness (P<0.001 and stiffness (P<0.001 of cells. Certain cellular changes are likely due to interaction of the AgNPs with the cell surface. The degree to which cellular morphology was altered directly proportional to the level of AgNP-induced cytotoxicity. Together, these data suggest that atomic force microscopy can be used as a potential tool to develop a biomechanics-based biomarker for the evaluation of NP-dependent cytotoxicity and cytopathology. Keywords: AFM, roughness, nanoindentation, biomarker, cytotoxicity, biomechanics

  19. Understanding and modelling Man-Machine Interaction

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    1991-01-01

    This paper gives an overview of the current state of the art in man machine systems interaction studies, focusing on the problems derived from highly automated working environments and the role of humans in the control loop. In particular, it is argued that there is a need for sound approaches to design and analysis of Man-Machine Interaction (MMI), which stem from the contribution of three expertises in interfacing domains, namely engineering, computer science and psychology: engineering for understanding and modelling plants and their material and energy conservation principles; psychology for understanding and modelling humans and their cognitive behaviours; computer science for converting models in sound simulations running in appropriate computer architectures. (author)

  20. Understanding and modelling man-machine interaction

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    1996-01-01

    This paper gives an overview of the current state of the art in man-machine system interaction studies, focusing on the problems derived from highly automated working environments and the role of humans in the control loop. In particular, it is argued that there is a need for sound approaches to the design and analysis of man-machine interaction (MMI), which stem from the contribution of three expertises in interfacing domains, namely engineering, computer science and psychology: engineering for understanding and modelling plants and their material and energy conservation principles; psychology for understanding and modelling humans an their cognitive behaviours; computer science for converting models in sound simulations running in appropriate computer architectures. (orig.)

  1. Species as Stressors: Heterospecific Interactions and the Cellular Stress Response under Global Change.

    Science.gov (United States)

    Gunderson, Alex R; King, Emily E; Boyer, Kirsten; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    Anthropogenic global change is predicted to increase the physiological stress of organisms through changes in abiotic conditions such as temperature, pH, and pollution. However, organisms can also experience physiological stress through interactions with other species, especially parasites, predators, and competitors. The stress of species interactions could be an important driver of species' responses to global change as the composition of biological communities change through factors such as distributional and phenological shifts. Interactions between biotic and abiotic stressors could also induce non-linear physiological stress responses under global change. One of the primary means by which organisms deal with physiological stress is through the cellular stress response (CSR), which is broadly the upregulation of a conserved set of genes that facilitate the removal and repair of damaged macromolecules. Here, we present data on behavioral interactions and CSR gene expression for two competing species of intertidal zone porcelain crab (Petrolisthes cinctipes and Petrolisthes manimaculis). We found that P. cinctipes and P. manimaculis engage in more agonistic behaviors when interacting with heterospecifics than conspecifics; however, we found no evidence that heterospecific interactions induced a CSR in these species. In addition to our new data, we review the literature with respect to CSR induction via species interactions, focusing on predator-prey systems and heterospecific competition. We find extensive evidence for predators to induce cellular stress and aspects of the CSR in prey, even in the absence of direct physical contact between species. Effects of heterospecific competition on the CSR have been studied far less, but we do find evidence that agonistic interactions with heterospecifics can induce components of the CSR. Across all published studies, there is clear evidence that species interactions can lead to cellular stress and induction of the CSR

  2. Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance.

    Science.gov (United States)

    Rouch, D A; Lee, B T; Morby, A P

    1995-02-01

    Bacterial resistances to metals are heterogeneous in both their genetic and biochemical bases. Metal resistance may be chromosomally-, plasmid- or transposon-encoded, and one or more genes may be involved: at the biochemical level at least six different mechanisms are responsible for resistance. Various types of resistance mechanisms can occur singly or in combination and for a particular metal different mechanisms of resistance can occur in the same species. To understand better the diverse responses of bacteria to metal ion challenge we have constructed a qualitative model for the selection of metal resistance in bacteria. How a bacterium becomes resistant to a particular metal depends on the number and location of cellular components sensitive to the specific metal ion. Other important selective factors include the nature of the uptake systems for the metal, the role and interactions of the metal in the normal metabolism of the cell and the availability of plasmid (or transposon) encoded resistance mechanisms. The selection model presented is based on the interaction of these factors and allows predictions to be made about the evolution of metal resistance in bacterial populations. It also allows prediction of the genetic basis and of mechanisms of resistance which are in substantial agreement with those in well-documented populations. The interaction of, and selection for resistance to, toxic substances in addition to metals, such as antibiotics and toxic analogues, involve similar principles to those concerning metals. Potentially, models for selection of resistance to any substance can be derived using this approach.

  3. FishFace: interactive atlas of zebrafish craniofacial development at cellular resolution

    Science.gov (United States)

    2013-01-01

    Background The vertebrate craniofacial skeleton may exhibit anatomical complexity and diversity, but its genesis and evolution can be understood through careful dissection of developmental programs at cellular resolution. Resources are lacking that include introductory overviews of skeletal anatomy coupled with descriptions of craniofacial development at cellular resolution. In addition to providing analytical guidelines for other studies, such an atlas would suggest cellular mechanisms underlying development. Description We present the Fish Face Atlas, an online, 3D-interactive atlas of craniofacial development in the zebrafish Danio rerio. Alizarin red-stained skulls scanned by fluorescent optical projection tomography and segmented into individual elements provide a resource for understanding the 3D structure of the zebrafish craniofacial skeleton. These data provide the user an anatomical entry point to confocal images of Alizarin red-stained zebrafish with transgenically-labelled pharyngeal arch ectomesenchyme, chondrocytes, and osteoblasts, which illustrate the appearance, morphogenesis, and growth of the mandibular and hyoid cartilages and bones, as viewed in live, anesthetized zebrafish during embryonic and larval development. Confocal image stacks at high magnification during the same stages provide cellular detail and suggest developmental and evolutionary hypotheses. Conclusion The FishFace Atlas is a novel learning tool for understanding craniofacial skeletal development, and can serve as a reference for a variety of studies, including comparative and mutational analyses. PMID:23714426

  4. Understanding complex interactions using social network analysis.

    Science.gov (United States)

    Pow, Janette; Gayen, Kaberi; Elliott, Lawrie; Raeside, Robert

    2012-10-01

    The aim of this paper is to raise the awareness of social network analysis as a method to facilitate research in nursing research. The application of social network analysis in assessing network properties has allowed greater insight to be gained in many areas including sociology, politics, business organisation and health care. However, the use of social networks in nursing has not received sufficient attention. Review of literature and illustration of the application of the method of social network analysis using research examples. First, the value of social networks will be discussed. Then by using illustrative examples, the value of social network analysis to nursing will be demonstrated. The method of social network analysis is found to give greater insights into social situations involving interactions between individuals and has particular application to the study of interactions between nurses and between nurses and patients and other actors. Social networks are systems in which people interact. Two quantitative techniques help our understanding of these networks. The first is visualisation of the network. The second is centrality. Individuals with high centrality are key communicators in a network. Applying social network analysis to nursing provides a simple method that helps gain an understanding of human interaction and how this might influence various health outcomes. It allows influential individuals (actors) to be identified. Their influence on the formation of social norms and communication can determine the extent to which new interventions or ways of thinking are accepted by a group. Thus, working with key individuals in a network could be critical to the success and sustainability of an intervention. Social network analysis can also help to assess the effectiveness of such interventions for the recipient and the service provider. © 2012 Blackwell Publishing Ltd.

  5. Thymocyte migration: an affair of multiple cellular interactions?

    Directory of Open Access Journals (Sweden)

    Savino W.

    2003-01-01

    Full Text Available Cell migration is a crucial event in the general process of thymocyte differentiation. The cellular interactions involved in the control of this migration are beginning to be defined. At least chemokines and extracellular matrix proteins appear to be part of the game. Cells of the thymic microenvironment produce these two groups of molecules, whereas developing thymocytes express the corresponding receptors. Moreover, although chemokines and extracellular matrix can drive thymocyte migration per se, a combined role for these molecules appears to contribute to the resulting migration patterns of thymocytes in their various stages of differentiation. The dynamics of chemokine and extracellular matrix production and degradation is not yet well understood. However, matrix metalloproteinases are likely to play a role in the breakdown of intrathymic extracellular matrix contents. Thus, the physiological migration of thymocytes should be envisioned as a resulting vector of multiple, simultaneous and/or sequential stimuli involving chemokines, adhesive and de-adhesive extracellular matrix proteins, as well as matrix metalloproteinases. Accordingly, it is conceivable that any pathological change in any of these loops may result in the alteration of normal thymocyte migration. This seems to be the case in murine infection by the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas' disease. A better knowledge of the physiological mechanisms governing thymocyte migration will provide new clues for designing therapeutic strategies targeting developing T cells.

  6. Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Pallab [School of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai 400076 (India); Giri, Jyotsnendu [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai 400076 (India); Banerjee, Rinti [School of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai 400076 (India); Bellare, Jayesh [School of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai 400076 (India); Bahadur, Dhirendra [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai 400076 (India)]. E-mail: dhirenb@iitb.ac.in

    2007-04-15

    In vitro cytocompatibility and cellular interactions of lauric acid and dextran-coated magnetite nanoparticles were evaluated with two different cell lines (mouse fibroblast and human cervical carcinoma). Lauric acid-coated magnetite nanoparticles were less cytocompatible than dextran-coated magnetite nanoparticles and cellular uptake of lauric acid-coated magnetic nanoparticles was more than that of dextran-coated magnetite nanoparticles. Lesser cytocompatibility and higher uptake of lauric acid-coated magnetite nanoparticles as compared to dextran-coated magnetic nanoparticles may be due to different cellular interactions by coating material. Thus, coating plays an important role in modulation of biocompatibility and cellular interaction of magnetic nanoparticles.

  7. Understanding the Properties of Interactive Televised Characters

    Science.gov (United States)

    Claxton, Laura J.; Ponto, Katelyn C.

    2013-01-01

    Children's television programming frequently uses interactive characters that appear to directly engage the viewers. These characters encourage children to answer questions and perform actions to help the characters solve problems in the televised world. Children readily engage in these interactions; however, it is unclear why they do so. To…

  8. Control In Cellular Activity By Interaction Of Peptides | Umar Dikko ...

    African Journals Online (AJOL)

    An experiments was conducted in the previous years using EGF, PTH-rP and PTH(1-34) to investigate the interaction between these peptides on the proliferation of JAR human chariocarcinoma cells. Here the interaction between some of the fragments of hypercalcaemic factor PTH-rP and PTH(1-34) were considered with ...

  9. Screening of cellular proteins that interact with the classical swine ...

    Indian Academy of Sciences (India)

    The interactions detected by the Y2H system should be considered as preliminary results. Since identifying novel pathways and host targets, which play essential roles during infection, may provide potential targets for therapeutic development. The finding of proteins obtained from the SUVEC cDNA library that interact with ...

  10. Understanding protein–protein interactions by genetic suppression

    Indian Academy of Sciences (India)

    Unknown

    Protein–protein interactions influence many cellular processes and it is increasingly being felt that even a weak and remote interplay between two subunits of a protein or between two proteins in a complex may govern the fate of a par- ticular biochemical pathway. In a bacterial system where the complete genome ...

  11. Understanding protein–protein interactions by genetic suppression

    Indian Academy of Sciences (India)

    Protein–protein interactions influence many cellular processes and it is increasingly being felt that even a weak and remote interplay between two subunits of a protein or between two proteins in a complex may govern the fate of a particular biochemical pathway. In a bacterial system where the complete genome sequence ...

  12. Interactions between cyclodextrins and cellular components: Towards greener medical applications?

    Directory of Open Access Journals (Sweden)

    Loïc Leclercq

    2016-12-01

    Full Text Available In the field of host–guest chemistry, some of the most widely used hosts are probably cyclodextrins (CDs. As CDs are able to increase the water solubility of numerous drugs by inclusion into their hydrophobic cavity, they have been widespread used to develop numerous pharmaceutical formulations. Nevertheless, CDs are also able to interact with endogenous substances that originate from an organism, tissue or cell. These interactions can be useful for a vast array of topics including cholesterol manipulation, treatment of Alzheimer’s disease, control of pathogens, etc. In addition, the use of natural CDs offers the great advantage of avoiding or reducing the use of common petroleum-sourced drugs. In this paper, the general features and applications of CDs have been reviewed as well as their interactions with isolated biomolecules leading to the formation of inclusion or exclusion complexes. Finally, some potential medical applications are highlighted throughout several examples.

  13. Protein-lipid interactions: from membrane domains to cellular networks

    National Research Council Canada - National Science Library

    Tamm, Lukas K

    2005-01-01

    ... membranes is the lipid bilayer. Embedded in the fluid lipid bilayer are proteins of various shapes and traits. This volume illuminates from physical, chemical and biological angles the numerous - mostly quite weak - interactions between lipids, proteins, and proteins and lipids that define the delicate, highly dynamic and yet so stable fabri...

  14. Cellular interactions of surface modified nanoporous silicon particles.

    Science.gov (United States)

    Bimbo, Luis M; Sarparanta, Mirkka; Mäkilä, Ermei; Laaksonen, Timo; Laaksonen, Päivi; Salonen, Jarno; Linder, Markus B; Hirvonen, Jouni; Airaksinen, Anu J; Santos, Hélder A

    2012-05-21

    In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, (125)I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi nanoparticles incubated in pH 7.4, which renders the particles the possibility for further track-imaging applications. The results highlight the potential of HFBII coating for improving wettability, increasing biocompatibility and possible intestinal association of PSi nanoparticulates for drug delivery applications.

  15. The interaction of fluorescent nanodiamond probes with cellular media.

    Science.gov (United States)

    Hemelaar, Simon R; Nagl, Andreas; Bigot, François; Rodríguez-García, Melissa M; de Vries, Marcel P; Chipaux, Mayeul; Schirhagl, Romana

    2017-01-01

    Fluorescent nanodiamonds (FNDs) are promising tools to image cells, bioanalytes and physical quantities such as temperature, pressure, and electric or magnetic fields with nanometer resolution. To exploit their potential for intracellular applications, the FNDs have to be brought into contact with cell culture media. The interactions between the medium and the diamonds crucially influence sensitivity as well as the ability to enter cells. The authors demonstrate that certain proteins and salts spontaneously adhere to the FNDs and may cause aggregation. This is a first investigation on the fundamental questions on how (a) FNDs interact with the medium, and (b) which proteins and salts are being attracted. A differentiation between strongly binding and weakly binding proteins is made. Not all proteins participate in the formation of FND aggregates. Surprisingly, some main components in the medium seem to play no role in aggregation. Simple strategies to prevent aggregation are discussed. These include adding the proteins, which are naturally present in the cell culture to the diamonds first and then inserting them in the full medium. Graphical abstractSchematic of the interaction of nanodiamonds with cell culture medium. Certain proteins and salts adhere to the diamond surface and lead to aggregation or to formation of a protein corona.

  16. Heterogeneous Chemistry: Understanding Aerosol/Oxidant Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Joyce E. Penner

    2005-03-14

    Global radiative forcing of nitrate and ammonium aerosols has mostly been estimated from aerosol concentrations calculated at thermodynamic equilibrium or using approximate treatments for their uptake by aerosols. In this study, a more accurate hybrid dynamical approach (DYN) was used to simulate the uptake of nitrate and ammonium by aerosols and the interaction with tropospheric reactive nitrogen chemistry in a three-dimensional global aerosol and chemistry model, IMPACT, which also treats sulfate, sea salt and mineral dust aerosol. 43% of the global annual average nitrate aerosol burden, 0.16 TgN, and 92% of the global annual average ammonium aerosol burden, 0.29 TgN, exist in the fine mode (D<1.25 {micro}m) that scatters most efficiently. Results from an equilibrium calculation differ significantly from those of DYN since the fraction of fine-mode nitrate to total nitrate (gas plus aerosol) is 9.8%, compared to 13% in DYN. Our results suggest that the estimates of aerosol forcing from equilibrium concentrations will be underestimated. We also show that two common approaches used to treat nitrate and ammonium in aerosol in global models, including the first-order gas-to-particle approximation based on uptake coefficients (UPTAKE) and a hybrid method that combines the former with an equilibrium model (HYB), significantly overpredict the nitrate uptake by aerosols especially that by coarse particles, resulting in total nitrate aerosol burdens higher than that in DYN by +106% and +47%, respectively. Thus, nitrate aerosol in the coarse mode calculated by HYB is 0.18 Tg N, a factor of 2 more than that in DYN (0.086 Tg N). Excessive formation of the coarse-mode nitrate in HYB leads to near surface nitrate concentrations in the fine mode lower than that in DYN by up to 50% over continents. In addition, near-surface HNO{sub 3} and NO{sub x} concentrations are underpredicted by HYB by up to 90% and 5%, respectively. UPTAKE overpredicts the NO{sub x} burden by 56% and near

  17. Generation and Comprehensive Analysis of an Influenza Virus Polymerase Cellular Interaction Network▿†§

    Science.gov (United States)

    Tafforeau, Lionel; Chantier, Thibault; Pradezynski, Fabrine; Pellet, Johann; Mangeot, Philippe E.; Vidalain, Pierre-Olivier; Andre, Patrice; Rabourdin-Combe, Chantal; Lotteau, Vincent

    2011-01-01

    The influenza virus transcribes and replicates its genome inside the nucleus of infected cells. Both activities are performed by the viral RNA-dependent RNA polymerase that is composed of the three subunits PA, PB1, and PB2, and recent studies have shown that it requires host cell factors to transcribe and replicate the viral genome. To identify these cellular partners, we generated a comprehensive physical interaction map between each polymerase subunit and the host cellular proteome. A total of 109 human interactors were identified by yeast two-hybrid screens, whereas 90 were retrieved by literature mining. We built the FluPol interactome network composed of the influenza virus polymerase (PA, PB1, and PB2) and the nucleoprotein NP and 234 human proteins that are connected through 279 viral-cellular protein interactions. Analysis of this interactome map revealed enriched cellular functions associated with the influenza virus polymerase, including host factors involved in RNA polymerase II-dependent transcription and mRNA processing. We confirmed that eight influenza virus polymerase-interacting proteins are required for virus replication and transcriptional activity of the viral polymerase. These are involved in cellular transcription (C14orf166, COPS5, MNAT1, NMI, and POLR2A), translation (EIF3S6IP), nuclear transport (NUP54), and DNA repair (FANCG). Conversely, we identified PRKRA, which acts as an inhibitor of the viral polymerase transcriptional activity and thus is required for the cellular antiviral response. PMID:21994455

  18. Generation and comprehensive analysis of an influenza virus polymerase cellular interaction network.

    Science.gov (United States)

    Tafforeau, Lionel; Chantier, Thibault; Pradezynski, Fabrine; Pellet, Johann; Mangeot, Philippe E; Vidalain, Pierre-Olivier; Andre, Patrice; Rabourdin-Combe, Chantal; Lotteau, Vincent

    2011-12-01

    The influenza virus transcribes and replicates its genome inside the nucleus of infected cells. Both activities are performed by the viral RNA-dependent RNA polymerase that is composed of the three subunits PA, PB1, and PB2, and recent studies have shown that it requires host cell factors to transcribe and replicate the viral genome. To identify these cellular partners, we generated a comprehensive physical interaction map between each polymerase subunit and the host cellular proteome. A total of 109 human interactors were identified by yeast two-hybrid screens, whereas 90 were retrieved by literature mining. We built the FluPol interactome network composed of the influenza virus polymerase (PA, PB1, and PB2) and the nucleoprotein NP and 234 human proteins that are connected through 279 viral-cellular protein interactions. Analysis of this interactome map revealed enriched cellular functions associated with the influenza virus polymerase, including host factors involved in RNA polymerase II-dependent transcription and mRNA processing. We confirmed that eight influenza virus polymerase-interacting proteins are required for virus replication and transcriptional activity of the viral polymerase. These are involved in cellular transcription (C14orf166, COPS5, MNAT1, NMI, and POLR2A), translation (EIF3S6IP), nuclear transport (NUP54), and DNA repair (FANCG). Conversely, we identified PRKRA, which acts as an inhibitor of the viral polymerase transcriptional activity and thus is required for the cellular antiviral response.

  19. Designing an experiment to measure cellular interaction forces

    Science.gov (United States)

    McAlinden, Niall; Glass, David G.; Millington, Owain R.; Wright, Amanda J.

    2013-09-01

    Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. The force applied by the laser beam on the trapped object can be accurately determined allowing any external forces acting on the trapped object to be deduced. We aim to design a series of experiments that use an optical trap to measure and quantify the interaction force between immune cells. In order to cause minimum perturbation to the sample we plan to directly trap T cells and remove the need to introduce exogenous beads to the sample. This poses a series of challenges and raises questions that need to be answered in order to design a set of effect end-point experiments. A typical cell is large compared to the beads normally trapped and highly non-uniform - can we reliably trap such objects and prevent them from rolling and re-orientating? In this paper we show how a spatial light modulator can produce a triple-spot trap, as opposed to a single-spot trap, giving complete control over the object's orientation and preventing it from rolling due, for example, to Brownian motion. To use an optical trap as a force transducer to measure an external force you must first have a reliably calibrated system. The optical trapping force is typically measured using either the theory of equipartition and observing the Brownian motion of the trapped object or using an escape force method, e.g. the viscous drag force method. In this paper we examine the relationship between force and displacement, as well as measuring the maximum displacement from equilibrium position before an object falls out of the trap, hence determining the conditions under which the different calibration methods should be applied.

  20. Understanding cyanobacteria-zooplankton interactions in a more eutrophic world

    NARCIS (Netherlands)

    Ger, K.A.; Hansson, L-A.; Lurling, M.

    2014-01-01

    1.We review and update recent observations of cyanobacteria–zooplankton interactions, identify theoretical and methodological limitations and evaluate approaches necessary for understanding the effects of increasing cyanobacterial blooms on plankton dynamics. The emphasis on oversimplified studies

  1. Understanding cyanobacteria-zooplankton interactions in a more eutrophic world

    NARCIS (Netherlands)

    Ger, K.A.; Hansson, L.; Lurling, M.F.L.L.W.

    2014-01-01

    1.We review and update recent observations of cyanobacteria–zooplankton interactions, identify theoretical and methodological limitations and evaluate approaches necessary for understanding the effects of increasing cyanobacterial blooms on plankton dynamics. 2.The emphasis on oversimplified studies

  2. Social interactions of eating behaviour among high school students: a cellular automata approach.

    Science.gov (United States)

    Dabbaghian, Vahid; Mago, Vijay K; Wu, Tiankuang; Fritz, Charles; Alimadad, Azadeh

    2012-10-09

    Overweight and obesity in children and adolescents is a global epidemic posing problems for both developed and developing nations. The prevalence is particularly alarming in developed nations, such as the United States, where approximately one in three school-aged adolescents (ages 12-19) are overweight or obese. Evidence suggests that weight gain in school-aged adolescents is related to energy imbalance exacerbated by the negative aspects of the school food environment, such as presence of unhealthy food choices. While a well-established connection exists between the food environment, presently there is a lack of studies investigating the impact of the social environment and associated interactions of school-age adolescents. This paper uses a mathematical modelling approach to explore how social interactions among high school adolescents can affect their eating behaviour and food choice. In this paper we use a Cellular Automata (CA) modelling approach to explore how social interactions among school-age adolescents can affect eating behaviour, and food choice. Our CA model integrates social influences and transition rules to simulate the way individuals would interact in a social community (e.g., school cafeteria). To replicate these social interactions, we chose the Moore neighbourhood which allows all neighbours (eights cells in a two-dimensional square lattice) to influence the central cell. Our assumption is that individuals belong to any of four states; Bring Healthy, Bring Unhealthy, Purchase Healthy, and Purchase Unhealthy, and will influence each other according to parameter settings and transition rules. Simulations were run to explore how the different states interact under varying parameter settings. This study, through simulations, illustrates that students will change their eating behaviour from unhealthy to healthy as a result of positive social and environmental influences. In general, there is one common characteristic of changes across time

  3. Understanding the genetic and molecular pathogenesis of Friedreich’s ataxia through animal and cellular models

    Science.gov (United States)

    Martelli, Alain; Napierala, Marek; Puccio, Hélène

    2012-01-01

    In 1996, a link was identified between Friedreich’s ataxia (FRDA), the most common inherited ataxia in men, and alterations in the gene encoding frataxin (FXN). Initial studies revealed that the disease is caused by a unique, most frequently biallelic, expansion of the GAA sequence in intron 1 of FXN. Since the identification of this link, there has been tremendous progress in understanding frataxin function and the mechanism of FRDA pathology, as well as in developing diagnostics and therapeutic approaches for the disease. These advances were the subject of the 4th International Friedreich’s Ataxia Conference held on 5th–7th May in the Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. More than 200 scientists gathered from all over the world to present the results of research spanning all areas of investigation into FRDA (including clinical aspects, FRDA pathogenesis, genetics and epigenetics of the disease, development of new models of FRDA, and drug discovery). This review provides an update on the understanding of frataxin function, developments of animal and cellular models of the disease, and recent advances in trying to uncover potential molecules for therapy. PMID:22382366

  4. Opportunistic activation of TRP receptors by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication.

    Science.gov (United States)

    Bradshaw, Heather B; Raboune, Siham; Hollis, Jennifer L

    2013-03-19

    Transient receptor potential channels (TRPs) form a large family of ubiquitous non-selective cation channels that function as cellular sensors and in many cases regulate intracellular calcium. Identification of the endogenous ligands that activate these TRP receptors is still under intense investigation with the majority of these channels still remaining "orphans." That these channels respond to a variety of external stimuli (e.g. plant-derived lipids, changes in temperature, and changes in pH) provides a framework for their abilities as cellular sensors, however, the mechanism of direct activation is still under much debate and research. In the cases where endogenous ligands (predominately lipids) have shown direct activation of a channel, multiple ligands have been shown to activate the same channel suggesting that these receptors are "promiscuous" in nature. Lipidomics of a growing class of endogenous lipids, N-acyl amides, the most famous of which is N-arachidonoyl ethanolamine (the endogenous cannabinoid, Anandamide) is providing a novel set of ligands that have been shown to activate some members of the TRP family and have the potential to deorphanize many more. Here it is argued that activation of TRPV receptors, a subset of the larger family of TRPs, by multiple endogenous lipids that are structurally analogous is a model system to drive our understanding that many TRP receptors are not promiscuous, but are more characteristically "opportunistic" in nature; exploiting the structural similarity and biosynthesis of a narrow range of analogous endogenous lipids. In addition, this manuscript will compare the activation properties of TRPC5 to the activity profile of an "orphan" lipid, N-palmitoyl glycine; further demonstrating that lipidomics aimed at expanding our knowledge of the family of N-acyl amides has the potential to provide novel avenues of research for TRP receptors. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Increasing process understanding by analyzing complex interactions in experimental data

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Allesø, Morten; Kristensen, Henning Gjelstrup

    2009-01-01

    There is a recognized need for new approaches to understand unit operations with pharmaceutical relevance. A method for analyzing complex interactions in experimental data is introduced. Higher-order interactions do exist between process parameters, which complicate the interpretation...... understanding of a coating process. It was possible to model the response, that is, the amount of drug released, using both mentioned techniques. However, the ANOVAmodel was difficult to interpret as several interactions between process parameters existed. In contrast to ANOVA, GEMANOVA is especially suited...... for modeling complex interactions and making easily understandable models of these. GEMANOVA modeling allowed a simple visualization of the entire experimental space. Furthermore, information was obtained on how relative changes in the settings of process parameters influence the film quality and thereby drug...

  6. Platelet adhesion and cellular interaction with poly(ethylene oxide) immobilized onto silicone rubber membrane surfaces.

    Science.gov (United States)

    Hsiue, G H; Lee, S D; Chang, P C

    1996-01-01

    Cellular interaction and platelet adsorption were investigated on poly(ethylene oxide) (PEO) immobilized silicone rubber membrane (SR) which has polyacrylic acid grafts on the surfaces. Polyacrylic acid (PAA) had been introduced to the SR surface after Ar plasma treatment of SR surfaces to introduce peroxide groups. Surface characterizations were made using ATR-FTIR, ESCA, SEM, and contact angle measurements. Experimental results obtained by ESCA high resolution curve fitting spectra indicated that the amount of bisamino PEO of different molecular weights immobilized onto SR surfaces were similar, which showed that the influence of the length of molecular chains (-C-C-O-) on the reactivity of terminal amino group is negligible. The wettability of modified SR surfaces increased with an increase in PEO molecular weight. Biological studies such as corneal epithelial cell culture and blood platelet adhesion were performed to understand the biocompatibility of modified SR surfaces. Biological studies using corneal epithelial cells showed that cell migration, attachment and proliferation onto PEO-20000 immobilized SR surface were suppressed, whereas these biological activities on PEO-600 were enhanced. Another study on platelet adhesion revealed that many platelets attached to PEO-600 immobilized SR, while platelet deposition was rarely observed on SR grafted with PEO-3350. The effects of different PEO molecular chains on biological response were discussed.

  7. Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions.

    Directory of Open Access Journals (Sweden)

    Thomas Wallach

    2013-03-01

    Full Text Available Essentially all biological processes depend on protein-protein interactions (PPIs. Timing of such interactions is crucial for regulatory function. Although circadian (~24-hour clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc. contributing to temporal organization of cellular physiology in an unprecedented manner.

  8. Special Issue: Redox Active Natural Products and Their Interaction with Cellular Signalling Pathways

    Directory of Open Access Journals (Sweden)

    Claus Jacob

    2014-11-01

    Full Text Available During the last decade, research into natural products has experienced a certain renaissance. The urgent need for more and more effective antibiotics in medicine, the demand for ecologically friendly plant protectants in agriculture, “natural” cosmetics and the issue of a sustainable and healthy nutrition in an ageing society have fuelled research into Nature’s treasure chest of “green gold”. Here, redox active secondary metabolites from plants, fungi, bacteria and other (micro-organisms often have been at the forefront of the most interesting developments. These agents provide powerful means to interfere with many, probably most cellular signaling pathways in humans, animals and lower organisms, and therefore can be used to protect, i.e., in form of antioxidants, and to frighten off or even kill, i.e., in form of repellants, antibiotics, fungicides and selective, often catalytic “sensor/effector” anticancer agents. Interestingly, whilst natural product research dates back many decades, in some cases even centuries, and compounds such as allicin and various flavonoids have been investigated thoroughly in the past, it has only recently become possible to investigate their precise interactions and mode(s of action inside living cells. Here, fluorescent staining and labelling on the one side, and appropriate detection, either qualitatively under the microscope or quantitatively in flow cytometers and plate readers, on the other, enable researchers to obtain the various pieces of information necessary to construct a fairly complete puzzle of how such compounds act and interact in living cells. Complemented by the more traditional activity assays and Western Blots, and increasingly joined by techniques such as proteomics, chemogenetic screening and mRNA profiling, these cell based bioanalytical techniques form a powerful platform for “intracellular diagnostics”. In the case of redox active compounds, especially of Reactive Sulfur

  9. Plant-herbivore interaction: dissection of the cellular pattern of Tetranychus urticae feeding on the host plant

    Directory of Open Access Journals (Sweden)

    Nicolas Bensoussan

    2016-07-01

    Full Text Available The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae, is one of the most polyphagous herbivores feeding on cell contents of over 1,100 plant species including more than 150 crops. It is being established as a model for chelicerate herbivores with tools that enable tracking of reciprocal responses in plant-spider mite interactions. However, despite their important pest status and a growing understanding of the molecular basis of interactions with plant hosts, knowledge of the way mites interface with the plant while feeding and the plant damage directly inflicted by mites is lacking. Here, utilizing histology and microscopy methods, we uncovered several key features of T. urticae feeding. By following the stylet path within the plant tissue, we determined that the stylet penetrates the leaf either in between epidermal pavement cells or through a stomatal opening, without damaging the epidermal cellular layer. Our recordings of mite feeding established that duration of the feeding event ranges from several minutes to more than half an hour, during which time mites consume a single mesophyll cell in a pattern that is common to both bean and Arabidopsis plant hosts. In addition, this study determined that leaf chlorotic spots, a common symptom of mite herbivory, do not form as an immediate consequence of mite feeding. Our results establish a cellular context for the plant-spider mite interaction that will support our understanding of the molecular mechanisms and cell signaling associated with spider mite feeding.

  10. Recent advances in interactions of designed nanoparticles and cells with respect to cellular uptake, intracellular fate, degradation and cytotoxicity.

    Science.gov (United States)

    Deng, Jun; Gao, Changyou

    2016-10-14

    The unique features of nanomaterials have led to their rapid development in the biomedical field. In particular, functionalized nanoparticles (NPs) are extensively used in the delivery of drugs and genes, bio-imaging and diagnosis. Hence, the interaction between NPs and cells is one of the most important issues towards understanding the true nature of the NP-mediated biological effects. Moreover, the intracellular safety concern of the NPs as a result of intracellular NP degradation remains to be clarified in detail. This review presents recent advances in the interactions of designed NPs and cells. The focus includes the governing factors on cellular uptake and the intracellular fate of NPs, and the degradation of NPs and its influence on nanotoxicity. Some basic consideration is proposed for optimizing the NP-cell interaction and designing NPs of better biocompatiblity for biomedical application.

  11. Cellular interactions between L-arginine and asymmetric dimethylarginine: Transport and metabolism.

    Science.gov (United States)

    Shin, Soyoung; Thapa, Subindra Kazi; Fung, Ho-Leung

    2017-01-01

    This study was aimed to examine the effect of L-arginine (ARG) exposure on the disposition of asymmetric dimethylarginine (ADMA) in human endothelial cells. Although the role of ADMA as an inhibitor of endothelial nitric oxide synthase (eNOS) is well-recognized, cellular interactions between ARG and ADMA are not well-characterized. EA.hy926 human vascular endothelial cells were exposed to 15N4-ARG, and the concentrations of 15N4-ARG and ADMA in the cell lysate and incubation medium were determined by a liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) assay. Nitric oxide (NO) production was estimated by utilizing cumulative nitrite concentration via a fluorometric assay. Cells incubated with 15N4-ARG exhibited enhanced nitrite production as well as 15N4-ARG cellular uptake. These changes were accompanied by a decrease in cellular ADMA level and increase in extracellular ADMA level, indicating an efflux of endogenous ADMA from the cell. The time courses of ADMA efflux as well as nitrite accumulation in parallel with 15N4-ARG uptake were characterized. Following preincubation with 15N4-ARG and D7-ADMA, the efflux of cellular 15N4-ARG and D7-ADMA was significantly stimulated by high concentrations of ARG or ADMA in the incubation medium, demonstrating trans-stimulated cellular transport of these two amino acids. D7-ADMA metabolism was inhibited in the presence of added ARG. These results demonstrated that in addition to an interaction at the level of eNOS, ARG and ADMA may mutually influence their cellular availability via transport and metabolic interactions.

  12. Understanding the cellular mode of action of vernakalant using a computational model: answers and new questions

    Directory of Open Access Journals (Sweden)

    Loewe Axel

    2015-09-01

    Full Text Available Vernakalant is a new antiarrhythmic agent for the treatment of atrial fibrillation. While it has proven to be effective in a large share of patients in clinical studies, its underlying mode of action is not fully understood. In this work, we aim to link experimental data from the subcellular, tissue, and system level using an in-silico approach. A Hill’s equation-based drug model was extended to cover the frequency dependence of sodium channel block. Two model variants were investigated: M1 based on subcellular data and M2 based on tissue level data. 6 action potential (AP markers were evaluated regarding their dose, frequency and substrate dependence. M1 comprising potassium, sodium, and calcium channel block reproduced the reported prolongation of the refractory period. M2 not including the effects on potassium channels reproduced reported AP morphology changes on the other hand. The experimentally observed increase of ERP accompanied by a shortening of APD90 was not reproduced. Thus, explanations for the drug-induced changes are provided while none of the models can explain the effects in their entirety. These results foster the understanding of vernakalant’s cellular mode of action and point out relevant gaps in our current knowledge to be addressed in future in-silico and experimental research on this aspiring antiarrhythmic agent.

  13. Mechanistic understanding of cellular level of water in plant-based food material

    Science.gov (United States)

    Khan, Md. Imran H.; Kumar, C.; Karim, M. A.

    2017-06-01

    Understanding of water distribution in plant-based food material is crucial for developing an accurate heat and mass transfer drying model. Generally, in plant-based food tissue, water is distributed in three different spaces namely, intercellular water, intracellular water, and cell wall water. For hygroscopic material, these three types of water transport should be considered for actual understanding of heat and mass transfer during drying. However, there is limited study dedicated to the investigation of the moisture distribution in a different cellular environment in the plant-based food material. Therefore, the aim of the present study was to investigate the proportion of intercellular water, intracellular water, and cell wall water inside the plant-based food material. During this study, experiments were performed for two different plant-based food tissues namely, eggplant and potato tissue using 1H-NMR-T2 relaxometry. Various types of water component were calculated by using multicomponent fits of the T2 relaxation curves. The experimental result showed that in potato tissue 80-82% water exist in intracellular space; 10-13% water in intercellular space and only 4-6% water exist in the cell wall space. In eggplant tissue, 90-93% water in intracellular space, 4-6% water exists in intercellular space and the remaining percentage of water is recognized as cell wall water. The investigated results quantify different types of water in plant-based food tissue. The highest proportion of water exists in intracellular spaces. Therefore, it is necessary to include different transport mechanism for intracellular, intercellular and cell wall water during modelling of heat and mass transfer during drying.

  14. Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity

    Science.gov (United States)

    Liang, Jie; Qian, Hong

    2010-01-01

    Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand “complex behavior” and complexity theory, and from which important biological insight can be gained. PMID:24999297

  15. Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images

    Directory of Open Access Journals (Sweden)

    Paul Grégory

    2010-07-01

    Full Text Available Abstract Background Sub-cellular structures interact in numerous direct and indirect ways in order to fulfill cellular functions. While direct molecular interactions crucially depend on spatial proximity, other interactions typically result in spatial correlations between the interacting structures. Such correlations are the target of microscopy-based co-localization analysis, which can provide hints of potential interactions. Two complementary approaches to co-localization analysis can be distinguished: intensity correlation methods capitalize on pattern discovery, whereas object-based methods emphasize detection power. Results We first reinvestigate the classical co-localization measure in the context of spatial point pattern analysis. This allows us to unravel the set of implicit assumptions inherent to this measure and to identify potential confounding factors commonly ignored. We generalize object-based co-localization analysis to a statistical framework involving spatial point processes. In this framework, interactions are understood as position co-dependencies in the observed localization patterns. The framework is based on a model of effective pairwise interaction potentials and the specification of a null hypothesis for the expected pattern in the absence of interaction. Inferred interaction potentials thus reflect all significant effects that are not explained by the null hypothesis. Our model enables the use of a wealth of well-known statistical methods for analyzing experimental data, as demonstrated on synthetic data and in a case study considering virus entry into live cells. We show that the classical co-localization measure typically under-exploits the information contained in our data. Conclusions We establish a connection between co-localization and spatial interaction of sub-cellular structures by formulating the object-based interaction analysis problem in a spatial statistics framework based on nearest-neighbor distance

  16. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    Science.gov (United States)

    2015-01-01

    conclusion, biomechanical interactions with membrane lipids are involved in cellular uptake and endosomal escape of NPs. Biophysical interaction studies could help us better understand the role of membrane lipids in cellular uptake and intracellular trafficking of NPs. PMID:24911361

  17. Protein-protein interactions within the ensemble, eukaryotic V-ATPase, and its concerted interactions with cellular machineries.

    Science.gov (United States)

    Balakrishna, Asha Manikkoth; Manimekalai, Malathy Sony Subramanian; Grüber, Gerhard

    2015-10-01

    The V1VO-ATPase (V-ATPase) is the important proton-pump in eukaryotic cells, responsible for pH-homeostasis, pH-sensing and amino acid sensing, and therefore essential for cell growths and metabolism. ATP-cleavage in the catalytic A3B3-hexamer of V1 has to be communicated via several so-called central and peripheral stalk units to the proton-pumping VO-part, which is membrane-embedded. A unique feature of V1VO-ATPase regulation is its reversible disassembly of the V1 and VO domain. Actin provides a network to hold the V1 in proximity to the VO, enabling effective V1VO-assembly to occur. Besides binding to actin, the 14-subunit V-ATPase interacts with multi-subunit machineries to form cellular sensors, which regulate the pH in cellular compartments or amino acid signaling in lysosomes. Here we describe a variety of subunit-subunit interactions within the V-ATPase enzyme during catalysis and its protein-protein assembling with key cellular machineries, essential for cellular function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. DP 71 AND BETA DYSTROGLYCAN INTERACTION: A MOLECULAR MODELING APPROACH TO UNDERSTAND DUCHENNE MUSCULAR DYSTROPHY

    Directory of Open Access Journals (Sweden)

    Simanti Bhattacharya,

    2013-12-01

    Full Text Available Dp 71 is the most prevalent and widely expressed non muscle isoform of dystrophin (Dp and its mutations are associated with Duchenne muscular dystrophy, a severe form of muscular disorder. Dp 71 deviates from the canonical Dp by means of its truncated N terminal which also has abolished certain amino acids that comprise WW domain in the canonical form. This WW domain is very crucial for Dp’s interaction with partner proteins to establish a bridge between extra cellular matrices and cellular cytoskeleton. In our current study we have employed molecular modeling technique to understand the structural architecture of the N terminal region of Dp 71 and its deviation from the canonical form. We have further extended our studies to analyze the interaction probabilities between Dp 71 and β-DG applying molecular docking. Our studies for the first time have revealed that in spite of the underlying differences in terms of amino acids and structural organization, Dp 71 can interact with β-DG with its N terminal region which shares the similar molecular surface with the canonical form of Dp. These findings have opened up a platform to investigate the molecular interactions, spatio temporal orientations of the amino acids of Dp 71 and β-DG to understand the onset of DMD in much more greater detail

  19. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2005-01-01

    Increasingly, information systems must be developed and implemented as a part of business change. This is a challenge for the IS project manager, since business change and information systems development usually are performed as separate processes. Thus, there is a need to understand and manage......-technical innovation in a situation where the organisational change process and the IS development process are parallel but incongruent. We also argue that iterative software engineering frameworks are well structured to support process interaction. Finally, we advocate that the IS project manager needs to manage...... the relationship between these two kinds of processes. To understand the interaction between information systems development and planned organisational change we introduce the concept of process interaction. We draw on a longitudinal case study of an IS development project that used an iterative and incremental...

  20. Effects of multiple enzyme–substrate interactions in basic units of cellular signal processing

    International Nuclear Information System (INIS)

    Seaton, D D; Krishnan, J

    2012-01-01

    Covalent modification cycles are a ubiquitous feature of cellular signalling networks. In these systems, the interaction of an active enzyme with the unmodified form of its substrate is essential for signalling to occur. However, this interaction is not necessarily the only enzyme–substrate interaction possible. In this paper, we analyse the behaviour of a basic model of signalling in which additional, non-essential enzyme–substrate interactions are possible. These interactions include those between the inactive form of an enzyme and its substrate, and between the active form of an enzyme and its product. We find that these additional interactions can result in increased sensitivity and biphasic responses, respectively. The dynamics of the responses are also significantly altered by the presence of additional interactions. Finally, we evaluate the consequences of these interactions in two variations of our basic model, involving double modification of substrate and scaffold-mediated signalling, respectively. We conclude that the molecular details of protein–protein interactions are important in determining the signalling properties of enzymatic signalling pathways. (paper)

  1. Understanding metallic bonding: Structure, process and interaction by Rasch analysis

    Science.gov (United States)

    Cheng, Maurice M. W.; Oon, Pey-Tee

    2016-08-01

    This paper reports the results of a survey of 3006 Year 10-12 students on their understandings of metallic bonding. The instrument was developed based on Chi's ontological categories of scientific concepts and students' understanding of metallic bonding as reported in the literature. The instrument has two parts. Part one probed into students' understanding of metallic bonding as (a) a submicro structure of metals, (b) a process in which individual metal atoms lose their outermost shell electrons to form a 'sea of electrons' and octet metal cations or (c) an all-directional electrostatic force between delocalized electrons and metal cations, that is, an interaction. Part two assessed students' explanation of malleability of metals, for example (a) as a submicro structural rearrangement of metal atoms/cations or (b) based on all-directional electrostatic force. The instrument was validated by the Rasch Model. Psychometric assessment showed that the instrument possessed reasonably good properties of measurement. Results revealed that it was reliable and valid for measuring students' understanding of metallic bonding. Analysis revealed that the structure, process and interaction understandings were unidimensional and in an increasing order of difficulty. Implications for the teaching of metallic bonding, particular through the use of diagrams, critiques and model-based learning, are discussed.

  2. A cellular automata-based land use and transport interaction model applied to Jeddah, Saudi Arabia

    NARCIS (Netherlands)

    Aljoufie, Mohammed; Zuidgeest, M.H.P.; Brussel, M.J.G.; van Vliet, Jasper; van Maarseveen, M.F.A.M.

    2013-01-01

    Understanding the interaction between urban land-use change and transport is critical for urban planning as well as for transport planning, particularly in the case of rapidly growing and motorising cities, such as Jeddah in Saudi Arabia. Dynamic land use and transport interaction models provide a

  3. KDM5 interacts with Foxo to modulate cellular levels of oxidative stress.

    Directory of Open Access Journals (Sweden)

    Xingyin Liu

    2014-10-01

    Full Text Available Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding.

  4. Towards a systems understanding of plant-microbe interactions

    Directory of Open Access Journals (Sweden)

    Akira eMine

    2014-08-01

    Full Text Available Plants are closely associated with microorganisms including pathogens and mutualists that influence plant fitness. Molecular genetic approaches have uncovered a number of signaling components from both plants and microbes and their mode of actions. However, signaling pathways are highly interconnected and influenced by diverse sets of environmental factors. Therefore, it is important to have systems views in order to understand the true nature of plant-microbe interactions. Indeed, systems biology approaches have revealed previously overlooked or misinterpreted properties of the plant immune signaling network. Experimental reconstruction of biological networks using exhaustive combinatorial mutants is particularly powerful to elucidate network structure and properties and relationships among network components. Recent advances in metagenomics of microbial communities associated with plants further point to the importance of systems approaches and open a research area of microbial community reconstruction. In this review, we highlight the importance of a systems understanding of plant-microbe interactions, with a special emphasis on reconstruction strategies.

  5. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  6. Pseudomonas predators: understanding and exploiting phage-host interactions.

    Science.gov (United States)

    De Smet, Jeroen; Hendrix, Hanne; Blasdel, Bob G; Danis-Wlodarczyk, Katarzyna; Lavigne, Rob

    2017-09-01

    Species in the genus Pseudomonas thrive in a diverse set of ecological niches and include crucial pathogens, such as the human pathogen Pseudomonas aeruginosa and the plant pathogen Pseudomonas syringae. The bacteriophages that infect Pseudomonas spp. mirror the widespread and diverse nature of their hosts. Therefore, Pseudomonas spp. and their phages are an ideal system to study the molecular mechanisms that govern virus-host interactions. Furthermore, phages are principal catalysts of host evolution and diversity, which directly affects the ecological roles of environmental and pathogenic Pseudomonas spp. Understanding these interactions not only provides novel insights into phage biology but also advances the development of phage therapy, phage-derived antimicrobial strategies and innovative biotechnological tools that may be derived from phage-bacteria interactions.

  7. Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes.

    Directory of Open Access Journals (Sweden)

    Greta E Weiss

    2015-02-01

    Full Text Available During blood stage Plasmodium falciparum infection, merozoites invade uninfected erythrocytes via a complex, multistep process involving a series of distinct receptor-ligand binding events. Understanding each element in this process increases the potential to block the parasite's life cycle via drugs or vaccines. To investigate specific receptor-ligand interactions, they were systematically blocked using a combination of genetic deletion, enzymatic receptor cleavage and inhibition of binding via antibodies, peptides and small molecules, and the resulting temporal changes in invasion and morphological effects on erythrocytes were filmed using live cell imaging. Analysis of the videos have shown receptor-ligand interactions occur in the following sequence with the following cellular morphologies; 1 an early heparin-blockable interaction which weakly deforms the erythrocyte, 2 EBA and PfRh ligands which strongly deform the erythrocyte, a process dependant on the merozoite's actin-myosin motor, 3 a PfRh5-basigin binding step which results in a pore or opening between parasite and host through which it appears small molecules and possibly invasion components can flow and 4 an AMA1-RON2 interaction that mediates tight junction formation, which acts as an anchor point for internalization. In addition to enhancing general knowledge of apicomplexan biology, this work provides a rational basis to combine sequentially acting merozoite vaccine candidates in a single multi-receptor-blocking vaccine.

  8. Nuclear Fusion Research Understanding Plasma-Surface Interactions

    CERN Document Server

    Clark, Robert E.H

    2005-01-01

    It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.

  9. Pollution prevention and energy conservation: Understanding the interactions

    International Nuclear Information System (INIS)

    Purcell, A.H.

    1992-01-01

    The traditional view holds that pollution prevention is good for energy conservation and vice versa. Analysis of pollution prevention and energy conservation activities indicates, however, that interactions and synergies between environmental and energy factors can mean that pollution prevention can be energy intensive and, conversely, that energy conservation can lead to increased pollution. Full cost accounting, taking into account all media, must be performed before precise pollution prevention-energy conservation interrelationships can be characterized and quantified. Use of a pollution prevention-energy conservation matrix can further this understanding

  10. Nonlinear mode interaction in equal-leg angle struts susceptible to cellular buckling.

    Science.gov (United States)

    Bai, L; Wang, F; Wadee, M A; Yang, J

    2017-11-01

    A variational model that describes the interactive buckling of a thin-walled equal-leg angle strut under pure axial compression is presented. A formulation combining the Rayleigh-Ritz method and continuous displacement functions is used to derive a system of differential and integral equilibrium equations for the structural component. Solving the equations using numerical continuation reveals progressive cellular buckling (or snaking) arising from the nonlinear interaction between the weak-axis flexural buckling mode and the strong-axis flexural-torsional buckling mode for the first time-the resulting behaviour being highly unstable. Physical experiments conducted on 10 cold-formed steel specimens are presented and the results show good agreement with the variational model.

  11. The "resident's dilemma"? Values and strategies of medical residents for education interactions: a cellular automata simulation.

    Science.gov (United States)

    Heckerling, P S; Gerber, B S; Weiner, S J

    2006-01-01

    Medical residents engage in formal and informal education interactions with fellow residents during the working day, and can choose whether to spend time and effort on such interactions. Time and effort spent on such interactions can bring learning and personal satisfaction to residents, but may also delay completion of clinical work. Using hypothetical cases, we assessed the values and strategies of internal medicine residents at one hospital for both cooperative and non-cooperative education interactions with fellow residents. We then used these data and cellular automata models of two-person games to simulate repeated interactions between residents, and to determine which strategies resulted in greatest accrued value. We conducted sensitivity analyses on several model parameters, to test the robustness of dominant strategies to model assumptions. Twenty-nine of the 57 residents (50.9%) valued cooperation more than non-cooperation no matter what the other resident did during the current interaction. Similarly, thirty-six residents (63.2%) endorsed an unconditional always-cooperate strategy no matter what the other resident had done during their previous interaction. In simulations, an always-cooperate strategy accrued more value (776.42 value units) than an aggregate of strategies containing non-cooperation components (675.0 value units, p = 0.052). Only when the probability of strategy errors reached 50%, or when values were re-ordered to match those of a Prisoner's Dilemma, did non-cooperation-based strategies accrue the most value. Cooperation-based values and strategies were most frequent among our residents, and dominated in simulations of repeated education interactions between them.

  12. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs.

    Science.gov (United States)

    Zhang, Yijun; Fan, Miaomiao; Zhang, Xue; Huang, Feng; Wu, Kang; Zhang, Junsong; Liu, Jun; Huang, Zhuoqiong; Luo, Haihua; Tao, Liang; Zhang, Hui

    2014-12-01

    The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4(+) T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1-encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Understanding interfirm relationships in business ecosystems with interactive visualization.

    Science.gov (United States)

    Basole, Rahul C; Clear, Trustin; Hu, Mengdie; Mehrotra, Harshit; Stasko, John

    2013-12-01

    Business ecosystems are characterized by large, complex, and global networks of firms, often from many different market segments, all collaborating, partnering, and competing to create and deliver new products and services. Given the rapidly increasing scale, complexity, and rate of change of business ecosystems, as well as economic and competitive pressures, analysts are faced with the formidable task of quickly understanding the fundamental characteristics of these interfirm networks. Existing tools, however, are predominantly query- or list-centric with limited interactive, exploratory capabilities. Guided by a field study of corporate analysts, we have designed and implemented dotlink360, an interactive visualization system that provides capabilities to gain systemic insight into the compositional, temporal, and connective characteristics of business ecosystems. dotlink360 consists of novel, multiple connected views enabling the analyst to explore, discover, and understand interfirm networks for a focal firm, specific market segments or countries, and the entire business ecosystem. System evaluation by a small group of prototypical users shows supporting evidence of the benefits of our approach. This design study contributes to the relatively unexplored, but promising area of exploratory information visualization in market research and business strategy.

  14. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls.

    Science.gov (United States)

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T V; Alyethodi, Rafeeque R; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly (P ATPase Β1, ATPase B2, and ATPase B3 is highly correlated (P ATPase beta family genes for cellular thermotolerance in cattle.

  15. Understanding complex host-microbe interactions in Hydra

    Science.gov (United States)

    Bosch, Thomas C.G.

    2012-01-01

    Any multicellular organism may be considered a metaorganism or holobiont—comprised of the macroscopic host and synergistic interdependence with bacteria, archaea, fungi, viruses, and numerous other microbial and eukaryotic species including algal symbionts. Defining the individual microbe-host conversations in these consortia is a challenging but necessary step on the path to understanding the function of the associations as a whole. Dissecting the fundamental principles that underlie all host-microbe interactions requires simple animal models with only a few specific bacterial species. Here I present Hydra as such a model with one of the simplest epithelia in the animal kingdom, with the availability of a fully sequenced genome and numerous genomic tools, and with few associated bacterial species. PMID:22688725

  16. Current understanding of interactions between nanoparticles and the immune system.

    Science.gov (United States)

    Dobrovolskaia, Marina A; Shurin, Michael; Shvedova, Anna A

    2016-05-15

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure-activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle-immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15years of research on the immunotoxicity of engineered nanomaterials. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhaohua, E-mail: ztang@jsd.claremont.edu [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Lin, Ren-Jang [Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010 (United States); Murray, Johanne; Carr, Antony [Genome Damage and Stability Center, University of Sussex, Falmer, BN1 9RQ (United Kingdom)

    2012-10-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  18. Different approaches, one target: understanding cellular mechanisms of Parkinson's and Alzheimer's diseases.

    Science.gov (United States)

    Torrão, Andréa S; Café-Mendes, Cecilia C; Real, Caroline C; Hernandes, Marina S; Ferreira, Ana F B; Santos, Taisa O; Chaves-Kirsten, Gabriela P; Mazucanti, Caio H Y; Ferro, Emer S; Scavone, Cristoforo; Britto, Luiz R G

    2012-10-01

    Neurodegenerative disorders are undoubtedly an increasing problem in the health sciences, given the increase of life expectancy and occasional vicious life style. Despite the fact that the mechanisms of such diseases are far from being completely understood, a large number of studies that derive from both the basic science and clinical approaches have contributed substantial data in that direction. In this review, it is discussed several frontiers of basic research on Parkinson's and Alzheimer's diseases, in which research groups from three departments of the Institute of Biomedical Sciences of the University of São Paulo have been involved in a multidisciplinary effort. The main focus of the review involves the animal models that have been developed to study cellular and molecular aspects of those neurodegenerative diseases, including oxidative stress, insulin signaling and proteomic analyses, among others. We anticipate that this review will help the group determine future directions of joint research in the field and, more importantly, set the level of cooperation we plan to develop in collaboration with colleagues of the Nucleus for Applied Neuroscience Research that are mostly involved with clinical research in the same field.

  19. Cellular and molecular pathways of extremely-low-frequency electromagnetic field interactions with living systems

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S.

    1992-06-01

    There is growing evidence that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes ;in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, and the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers.

  20. Towards a better understanding of Lactobacillus rhamnosus GG - host interactions

    Science.gov (United States)

    2014-01-01

    Lactobacillus rhamnosus GG (LGG) is one of the most widely used probiotic strains. Various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea, and stimulation of immune responses that promote vaccination or even prevent certain allergic symptoms. However, not all intervention studies could show a clinical benefit and even for the same conditions, the results are not univocal. Clearly, the host phenotype governed by age, genetics and environmental factors such as the endogenous microbiota, plays a role in whether individuals are responders or non-responders. However, we believe that a detailed knowledge of the bacterial physiology and the LGG molecules that play a key role in its host-interaction capacity is crucial for a better understanding of its potential health benefits. Molecules that were yet identified as important factors governing host interactions include its adhesive pili or fimbriae, its lipoteichoic acid molecules, its major secreted proteins and its galactose-rich exopolysaccharides, as well as specific DNA motifs. Nevertheless, future studies are needed to correlate specific health effects to these molecular effectors in LGG, and also in other probiotic strains. PMID:25186587

  1. Molecular and Cellular Mechanisms of Sperm-Oocyte Interactions Opinions Relative to in Vitro Fertilization (IVF)

    Science.gov (United States)

    Anifandis, George; Messini, Christina; Dafopoulos, Konstantinos; Sotiriou, Sotiris; Messinis, Ioannis

    2014-01-01

    One of the biggest prerequisites for pregnancy is the fertilization step, where a human haploid spermatozoon interacts and penetrates one haploid oocyte in order to produce the diploid zygote. Although fertilization is defined by the presence of two pronuclei and the extraction of the second polar body the process itself requires preparation of both gametes for fertilization to take place at a specific time. These preparations include a number of consecutive biochemical and molecular events with the help of specific molecules and with the consequential interaction between the two gametes. These events take place at three different levels and in a precise order, where the moving spermatozoon penetrates (a) the outer vestments of the oocyte, known as the cumulus cell layer; (b) the zona pellucida (ZP); where exocytosis of the acrosome contents take place and (c) direct interaction of the spermatozoon with the plasma membrane of the oocyte, which involves a firm adhesion of the head of the spermatozoon with the oocyte plasma membrane that culminates with the fusion of both sperm and oocyte membranes (Part I). After the above interactions, a cascade of molecular signal transductions is initiated which results in oocyte activation. Soon after the entry of the first spermatozoon into the oocyte and oocyte activation, the oocyte’s coat (the ZP) and the oocyte’s plasma membrane seem to change quickly in order to initiate a fast block to a second spermatozoon (Part II). Sometimes, two spermatozoa fuse with one oocyte, an incidence of 1%–2%, resulting in polyploid fetuses that account for up to 10%–20% of spontaneously aborted human conceptuses. The present review aims to focus on the first part of the human sperm and oocyte interactions, emphasizing the latest molecular and cellular mechanisms controlling this process. PMID:25054321

  2. Molecular and Cellular Mechanisms of Sperm-Oocyte Interactions Opinions Relative to in Vitro Fertilization (IVF

    Directory of Open Access Journals (Sweden)

    George Anifandis

    2014-07-01

    Full Text Available One of the biggest prerequisites for pregnancy is the fertilization step, where a human haploid spermatozoon interacts and penetrates one haploid oocyte in order to produce the diploid zygote. Although fertilization is defined by the presence of two pronuclei and the extraction of the second polar body the process itself requires preparation of both gametes for fertilization to take place at a specific time. These preparations include a number of consecutive biochemical and molecular events with the help of specific molecules and with the consequential interaction between the two gametes. These events take place at three different levels and in a precise order, where the moving spermatozoon penetrates (a the outer vestments of the oocyte, known as the cumulus cell layer; (b the zona pellucida (ZP; where exocytosis of the acrosome contents take place and (c direct interaction of the spermatozoon with the plasma membrane of the oocyte, which involves a firm adhesion of the head of the spermatozoon with the oocyte plasma membrane that culminates with the fusion of both sperm and oocyte membranes (Part I. After the above interactions, a cascade of molecular signal transductions is initiated which results in oocyte activation. Soon after the entry of the first spermatozoon into the oocyte and oocyte activation, the oocyte’s coat (the ZP and the oocyte’s plasma membrane seem to change quickly in order to initiate a fast block to a second spermatozoon (Part II. Sometimes, two spermatozoa fuse with one oocyte, an incidence of 1%–2%, resulting in polyploid fetuses that account for up to 10%–20% of spontaneously aborted human conceptuses. The present review aims to focus on the first part of the human sperm and oocyte interactions, emphasizing the latest molecular and cellular mechanisms controlling this process.

  3. Biomaterial design for specific cellular interactions: Role of surface functionalization and geometric features

    Science.gov (United States)

    Kolhar, Poornima

    The areas of drug delivery and tissue engineering have experienced extraordinary growth in recent years with the application of engineering principles and their potential to support and improve the field of medicine. The tremendous progress in nanotechnology and biotechnology has lead to this explosion of research and development in biomedical applications. Biomaterials can now be engineered at a nanoscale and their specific interactions with the biological tissues can be modulated. Various design parameters are being established and researched for design of drug-delivery carriers and scaffolds to be implanted into humans. Nanoparticles made from versatile biomaterial can deliver both small-molecule drugs and various classes of bio-macromolecules, such as proteins and oligonucleotides. Similarly in the field of tissue engineering, current approaches emphasize nanoscale control of cell behavior by mimicking the natural extracellular matrix (ECM) unlike, traditional scaffolds. Drug delivery and tissue engineering are closely connected fields and both of these applications require materials with exceptional physical, chemical, biological, and biomechanical properties to provide superior therapy. In the current study the surface functionalization and the geometric features of the biomaterials has been explored. In particular, a synthetic surface for culture of human embryonic stem cells has been developed, demonstrating the importance of surface functionalization in maintaining the pluripotency of hESCs. In the second study, the geometric features of the drug delivery carriers are investigated and the polymeric nanoneedles mediated cellular permeabilization and direct cytoplasmic delivery is reported. In the third study, the combined effect of surface functionalization and geometric modification of carriers for vascular targeting is enunciated. These studies illustrate how the biomaterials can be designed to achieve various cellular behaviors and control the

  4. The Aging Cardiovascular System: Understanding It at the Cellular and Clinical Levels.

    Science.gov (United States)

    Paneni, Francesco; Diaz Cañestro, Candela; Libby, Peter; Lüscher, Thomas F; Camici, Giovanni G

    2017-04-18

    Cardiovascular disease (CVD) presents a great burden for elderly patients, their caregivers, and health systems. Structural and functional alterations of vessels accumulate throughout life, culminating in increased risk of developing CVD. The growing elderly population worldwide highlights the need to understand how aging promotes CVD in order to develop new strategies to confront this challenge. This review provides examples of some major unresolved clinical problems encountered in daily cardiovascular practice as we care for elderly patients. Next, the authors summarize the current understanding of the mechanisms implicated in cardiovascular aging, and the potential for targeting novel pathways implicated in endothelial dysfunction, mitochondrial oxidative stress, chromatin remodeling, and genomic instability. Lastly, the authors consider critical aspects of vascular repair, including autologous transplantation of bone marrow-derived stem cells in elderly patients. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets

    Science.gov (United States)

    Coque, Emmanuelle; Raoul, Cédric; Bowerman, Mélissa

    2014-01-01

    Spinal muscular atrophy (SMA) is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the Survival Motor Neuron 1 (SMN1) gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK), which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myoblasts, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice. PMID:25221469

  6. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets

    Directory of Open Access Journals (Sweden)

    Emmanuelle eCoque

    2014-08-01

    Full Text Available Spinal muscular atrophy (SMA is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the surviving motor neuron 1 (SMN1 gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK, which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myocytes, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice.

  7. Study of toxicity and uptake of nanoparticles towards understanding biotic-abiotic interactions

    Science.gov (United States)

    Kosaraju, Karshak

    With the rapid growth in nanotechnology and tremendous applications the engineered nanomaterials (ENs) offer, there is increase in usage of ENs which increases their likelihood of coming in contact with biological systems which include complex beings like humans and other relatively simpler organism like bacteria and other microorganisms. The interaction between the nanomaterials (NMs) and biological systems includes the formation of protein coronas, particle wrapping, intracellular uptake and bio catalytic processes which could have biocompatible or bio adverse outcomes. Understanding these interactions allows the development of predictive relationships between structure and activity that are mainly determined by NM properties such as size, shape, surface chemistry, aggregation, and surface functionality among many others. This understanding will also provide insight towards the design and development of benign nanomaterials. The overarching goal of this dissertation is to understand the influence of the physicochemical characteristics of the NMs and their influence on their uptake and toxicity when they interact with the biological systems (cells and organs). For this purpose, thoroughly characterized NMs will be exposed to a cellular model, A549 cells (alveolar lung epithelial cells), and a mice model (CD-1 mice) through inhalational administration. The effects of NMs on the in vitro and in vivo models will be evaluated by bio- and immuno-chemical methods to understand toxicity, and a combination of analytical spectroscopic and microscopic tools to study uptake. In vivo toxicity assessment will also be performed by using electrocardiogram (ECG) measurements as a tool to study the effects of inhalation of NMs on cardiac response in mice. Through in vivo studies, a novel non-invasive method, Reserve of Refractoriness (RoR), will be introduced as a tool to study cardiotoxicity.

  8. Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments

    International Nuclear Information System (INIS)

    Alizadeh, E.; Sanche, L.

    2014-01-01

    A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N 2 , O 2 , H 2 O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N 2 had little effect on the yields of LEE-induced single and double strand breaks, both O 2 and H 2 O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O 2 and H 2 O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitization of these agents in chemo-radiation cancer therapy. (authors)

  9. Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments

    Science.gov (United States)

    Alizadeh, Elahe; Sanche, Léon

    2014-04-01

    A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N2, O2, H2O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N2 had little effect on the yields of LEE-induced single and double strand breaks, both O2 and H2O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O2 and H2O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitisation of these agents in chemoradiation cancer therapy.

  10. The cytotoxicity of polycationic iron oxide nanoparticles: Common endpoint assays and alternative approaches for improved understanding of cellular response mechanism

    Directory of Open Access Journals (Sweden)

    Hoskins Clare

    2012-04-01

    Full Text Available Abstract Background Iron oxide magnetic nanoparticles (MNP's have an increasing number of biomedical applications. As such in vitro characterisation is essential to ensure the bio-safety of these particles. Little is known on the cellular interaction or effect on membrane integrity upon exposure to these MNPs. Here we synthesised Fe3O4 and surface coated with poly(ethylenimine (PEI and poly(ethylene glycol (PEG to achieve particles of varying surface positive charges and used them as model MNP's to evaluate the relative utility and limitations of cellular assays commonly applied for nanotoxicity assessment. An alternative approach, atomic force microscopy (AFM, was explored for the analysis of membrane structure and cell morphology upon interacting with the MNPs. The particles were tested in vitro on human SH-SY5Y, MCF-7 and U937 cell lines for reactive oxygen species (ROS production and lipid peroxidation (LPO, LDH leakage and their overall cytotoxic effect. These results were compared with AFM topography imaging carried out on fixed cell lines. Results Successful particle synthesis and coating were characterised using FTIR, PCS, TEM and ICP. The particle size from TEM was 30 nm (−16.9 mV which increased to 40 nm (+55.6 mV upon coating with PEI and subsequently 50 nm (+31.2 mV with PEG coating. Both particles showed excellent stability not only at neutral pH but also in acidic environment of pH 4.6 in the presence of sodium citrate. The higher surface charge MNP-PEI resulted in increased cytotoxic effect and ROS production on all cell lines compared with the MNP-PEI-PEG. In general the effect on the cell membrane integrity was observed only in SH-SY5Y and MCF-7 cells by MNP-PEI determined by LDH leakage and LPO production. AFM topography images showed consistently that both the highly charged MNP-PEI and the less charged MNP-PEI-PEG caused cell morphology changes possibly due to membrane disruption and cytoskeleton remodelling. Conclusions

  11. Current understanding of interactions between nanoparticles and the immune system

    International Nuclear Information System (INIS)

    Dobrovolskaia, Marina A.; Shurin, Michael; Shvedova, Anna A.

    2016-01-01

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure–activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle–immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15 years of research on the immunotoxicity of engineered nanomaterials. - Graphical abstract: API — active pharmaceutical ingredient; NP — nanoparticles; PCP — physicochemical properties, CARPA — complement activation-related pseudoallergy, ICH — International Conference on Harmonization. Display Omitted - Highlights: • Achievements, disappointments and lessons learned over past decade are reviewed. • Areas in focus include characterization, immunotoxicity and utility in drug delivery. • Future direction focusing on mechanistic immunotoxicity studies is proposed.

  12. Mechanistic understanding of protein-silicone oil interactions.

    Science.gov (United States)

    Li, Jinjiang; Pinnamaneni, Swathi; Quan, Yong; Jaiswal, Archana; Andersson, Fredrik I; Zhang, Xiaochun

    2012-06-01

    To investigate interactions between protein and silicone oil so that we can provide some mechanistic understanding of protein aggregation in silicone oil lubricated syringes and its prevention by formulation additives such as Polysorbate 80 and Poloxamer 188. Interfacial tension values of silicone oil/water interface of abatacept solutions with and without formulation additives were obtained under equilibrium conditions using Attension Theta optical tensiometer. Their adsorption and desorption profiles were measured using Quartz Crystal Microbalancing with Dissipation monitoring (QCM-D). The degree of aggregation of abatacept was assessed based on size exclusion measurement. Adsorption of abatacept at the oil/water interface was shown. Polysorbat 80 was more effective than Poloxamer 188 in preventing abatacept adsorption. Moreover, it was noted that some of the adsorbed abatacept molecules were not desorbed readily upon buffer rinse. Finally, no homogeneous aggregation was observed at room temperature and a slight increase of aggregation was only observed for samples measured at 40°C which can be prevented using Polysorbate 80. Interfacial adsorption of proteins is the key step and maybe responsible for the phenomenon of soluble-protein loss when contacting silicone oil and the irreversible adsorption of protein may be associated with protein denaturation/aggregation.

  13. From fat to FAT (CD36/SR-B2): Understanding the regulation of cellular fatty acid uptake.

    Science.gov (United States)

    Glatz, Jan F C; Luiken, Joost J F P

    2017-05-01

    The molecular mechanisms underlying the cellular uptake of long-chain fatty acids and the regulation of this process have been elucidated in appreciable detail in the last decades. Two main players in this field, each discovered in the early 1990s, are (i) a membrane-associated protein first identified in adipose ('fat') tissue and referred to as putative fatty acid translocase (FAT)/CD36 (now officially designated as SR-B2) which facilitates the transport of fatty acids across the plasma membrane, and (ii) the family of transcription factors designated peroxisome proliferator-activated receptors (PPARα, PPARγ, and PPARβ/δ) for which fatty acids and fatty acid metabolites are the preferred ligand. CD36/SR-B2 is the predominant membrane protein involved in fatty acid uptake into intestinal enterocytes, adipocytes and cardiac and skeletal myocytes. The rate of cellular fatty acid uptake is regulated by the subcellular vesicular recycling of CD36/SR-B2 from endosomes to the plasma membrane. Fatty acid-induced activation of PPARs results in the upregulation of the expression of genes encoding various proteins and enzymes involved in cellular fatty acid utilization. Both CD36/SR-B2 and the PPARs have been implicated in the derangements in fatty acid and lipid metabolism occurring with the development of pathophysiological conditions, such as high fat diet-induced insulin resistance and diabetic cardiomyopathy, and have been suggested as targets for metabolic intervention. In this brief review we discuss the discovery and current understanding of both CD36/SR-B2 and the PPARs in metabolic homeostasis. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Live cell visualization of the interactions between HIV-1 Gag and the cellular RNA-binding protein Staufen1

    Directory of Open Access Journals (Sweden)

    Mouland Andrew J

    2010-05-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 uses cellular proteins and machinery to ensure transmission to uninfected cells. Although the host proteins involved in the transport of viral components toward the plasma membrane have been investigated, the dynamics of this process remain incompletely described. Previously we showed that the double-stranded (dsRNA-binding protein, Staufen1 is found in the HIV-1 ribonucleoprotein (RNP that contains the HIV-1 genomic RNA (vRNA, Gag and other host RNA-binding proteins in HIV-1-producing cells. Staufen1 interacts with the nucleocapsid domain (NC domain of Gag and regulates Gag multimerization on membranes thereby modulating HIV-1 assembly. The formation of the HIV-1 RNP is dynamic and likely central to the fate of the vRNA during the late phase of the HIV-1 replication cycle. Results Detailed molecular imaging of both the intracellular trafficking of virus components and of virus-host protein complexes is critical to enhance our understanding of factors that contribute to HIV-1 pathogenesis. In this work, we visualized the interactions between Gag and host proteins using bimolecular and trimolecular fluorescence complementation (BiFC and TriFC analyses. These methods allow for the direct visualization of the localization of protein-protein and protein-protein-RNA interactions in live cells. We identified where the virus-host interactions between Gag and Staufen1 and Gag and IMP1 (also known as VICKZ1, IGF2BP1 and ZBP1 occur in cells. These virus-host interactions were not only detected in the cytoplasm, but were also found at cholesterol-enriched GM1-containing lipid raft plasma membrane domains. Importantly, Gag specifically recruited Staufen1 to the detergent insoluble membranes supporting a key function for this host factor during virus assembly. Notably, the TriFC experiments showed that Gag and Staufen1 actively recruited protein partners when tethered to mRNA. Conclusions The

  15. The essential interactions between understanding climate variability and climate change

    Science.gov (United States)

    Neelin, J. D.

    2017-12-01

    Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.

  16. Understanding Molecular Interactions within Chemically Selective Layered Polymer Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Gary J. Blanchard

    2009-06-30

    This work focuses on two broad issues. These are (1) the molecular origin of the chemical selectivity achieved with ultrathin polymer multilayers, and (2) how the viscoelastic properties of the polymer layers are affected by exposure to solvent and analytes. These issues are inter-related, and to understand them we need to design experiments that probe both the energetic and kinetic aspects of interfacial adsorption processes. This project focuses on controling the chemical structure, thickness, morphology and sequential ordering of polymer layers bound to interfaces using maleimide-vinyl ether and closely related alternating copolymerization chemistry and efficient covalent cross-linking reactions that allow for layer-by-layer polymer deposition. This chemistry has been developed during the funding cycle of this Grant. We have measure the equilibrium constants for interactions between specific layers within the polymer interfaces and size-controlled, surface-functionalized gold nanoparticles. The ability to control both size and functionality of gold nanoparticle model analytes allows us to evaluate the average “pore size” that characterizes our polymer films. We have measured the “bulk” viscosity and shear modulus of the ultrathin polymer films as a function of solvent overlayer identity using quartz crystal microbalance complex impedance measurements. We have measured microscopic viscosity at specific locations within the layered polymer interfaces with time-resolved fluorescence lifetime and depolarization techniques. We combine polymer, cross-linking and nanoparticle synthetic expertise with a host of characterization techniques, including QCM gravimetry and complex impedance analysis, steady state and time-resolved spectroscopies.

  17. CELLULAR BASIS FOR ROD-CONE INTERACTIONS IN THE OUTER RETINA

    Directory of Open Access Journals (Sweden)

    David Križaj

    2002-12-01

    Full Text Available Background. At least twice daily our retinas move between a light adapted, cone-dominated (photopic state and a dark-adapted, color-blind and highly light-sensitive roddominated (scotopic state. In between is a rather ill-defined transitional state called the mesopic state in which retinal circuits express both rod and cone signals. Consequently, in the mesopic state the retinal output to the brain contained in the firing patterns of the ganglion cells consists of information derived from both rod and cone signals. Morphology, physiology and psychophysics all contributed to an understanding that the two systems are not independent but interact extensively via both pooling and mutual inhibition. This review lays down a rationale for such rod-cone interactions in the vertebrate retinas. It suggests that the important functional roles of rod-cone interactions is in that they shorten the duration of the mesopic state. As a result, the retina is maintained in either in the (rod-dominated high sensitivity photon counting mode or in the second mode which emphasizes temporal transients and spatial resolution (the cone-dominated photopic state.Conclusions. Experimental evidence for pre- and postsynaptic mixing of rod and cone signals in the retina is shown together with the preeminent neuromodulatory role of both light and dopamine in controling inter-actions between rod and cone signals. Dopamine is shown to be both necessary and sufficient to mediate light adaptation in the retina.

  18. Drug permeation and cellular interaction of amino acid-coated drug combination powders for pulmonary delivery.

    Science.gov (United States)

    Vartiainen, Ville; Bimbo, Luis M; Hirvonen, Jouni; Kauppinen, Esko I; Raula, Janne

    2016-05-17

    The effect of three amino acid coatings (L-leucine, L-valine and L-phenylalanine) on particle integrity, aerosolization properties, cellular interaction, cytocompatibility, and drug permeation properties of drug combination powder particles (beclomethasone dipropionate and salbutamol sulphate) for dry powder inhalation (DPI) was investigated. Particles with crystalline L-leucine coating resulted in intact separated particles, with crystalline L-valine coating in slightly sintered particles and with amorphous L-phenylalanine coating in strongly fused particles. The permeation of beclomethasone dipropionate across a Calu-3 differentiated cell monolayer was increased when compared with its physical mixture. Drug crystal formation was also observed on the Calu-3 cell monolayer. The L-leucine coated particles were further investigated for cytocompatibility in three human pulmonary (Calu-3, A549 and BEAS-2B) and one human macrophage (THP-1) cell lines, where they showed excellent tolerability. The l-leucine coated particles were also examined for their ability to elicit reactive oxygen species in pulmonary BEAS-2B and macrophage THP-1 cell lines. The study showed the influence of the amino acid coatings for particle formation and performance and their feasibility for combination therapy for pulmonary delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Multivalent ligand-receptor-mediated interaction of small filled vesicles with a cellular membrane

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2017-07-01

    The ligand-receptor-mediated contacts of small sub-100-nm-sized lipid vesicles (or nanoparticles) with the cellular membrane are of interest in the contexts of cell-to-cell communication, endocytosis of membrane-coated virions, and drug (RNA) delivery. In all these cases, the interior of vesicles is filled by biologically relevant content. Despite the diversity of such systems, the corresponding ligand-receptor interaction possesses universal features. One of them is that the vesicle-membrane contacts can be accompanied by the redistribution of ligands and receptors between the contact and contact-free regions. In particular, the concentrations of ligands and receptors may become appreciably higher in the contact regions and their composition may there be different compared to that in the suspended state in the solution. A statistical model presented herein describes the corresponding distribution of various ligands and receptors and allows one to calculate the related change of the free energy with variation of the vesicle-engulfment extent. The results obtained are used to clarify the necessary conditions for the vesicle-assisted pathway of drug delivery.

  20. Understanding substituent effects in noncovalent interactions involving aromatic rings.

    Science.gov (United States)

    Wheeler, Steven E

    2013-04-16

    Noncovalent interactions involving aromatic rings such as π-stacking, cation/π, and anion/π interactions are central to many areas of modern chemistry. Decades of experimental studies have provided key insights into the impact of substituents on these interactions, leading to the development of simple intuitive models. However, gas-phase computational studies have raised some doubts about the physical underpinnings of these widespread models. In this Account we review our recent efforts to unravel the origin of substituent effects in π-stacking and ion/π interactions through computational studies of model noncovalent dimers. First, however, we dispel the notion that so-called aromatic interactions depend on the aromaticity of the interacting rings by studying model π-stacked dimers in which the aromaticity of one of the monomers can be "switched off". Somewhat surprisingly, the results show that not only is aromaticity unnecessary for π-stacking interactions, but it actually hinders these interactions to some extent. Consequently, when thinking about π-stacking interactions, researchers should consider broader classes of planar molecules, not just aromatic systems. Conventional models maintain that substituent effects in π-stacking interactions result from changes in the aryl π-system. This view suggests that π-stacking interactions are maximized when one ring is substituted with electron-withdrawing groups and the other with electron donors. In contrast to these prevailing models, we have shown that substituent effects in π-stacking interactions can be described in terms of direct, local interactions between the substituents and the nearby vertex of the other arene. As a result, in polysubstituted π-stacked dimers the substituents operate independently unless they are in each other's local environment. This means that in π-stacked dimers in which one arene is substituted with electron donors and the other with electron acceptors the interactions will

  1. Experimental and computational analysis of cellular interactions with nylon-3-bearing substrates.

    Science.gov (United States)

    Liu, Runhui; Vang, Kang Z; Kreeger, Pamela K; Gellman, Samuel H; Masters, Kristyn S

    2012-10-01

    The ability to design biomaterials that interact with biological environments in a predictable manner necessitates an improved understanding of how surface chemistry influences events such as protein adsorption and cell adhesion. In this work, we examined mechanisms governing the interactions between 3T3 fibroblasts and nylon-3 polymers, which have a protein-like polyamide backbone and are highly amenable to tuning of chemical and physical properties. Protein adsorption and cell adhesion to a library of nylon-3 polymers were characterized and analyzed by partial least squares regression. This analysis revealed that specific chemical features of the nylon-3 polymers correlated with the extent of protein adsorption, which, in turn, correlated with cell adhesion in a serum-containing environment. In contrast, in a serum-free environment, cell adhesion could be predicted solely from chemical properties. Enzymatic treatments of 3T3 cells before plating indicated that proteins bound to the cell surface mediated cell-nylon-3 polymer interactions under serum-free conditions, with additional analysis suggesting that cell-associated fibronectin played a dominant role in adhesion in the absence of serum. The mechanistic insight gained from these studies can be used to inform the design of new polymer structures in addition to providing a basis for continued development of nylon-3 copolymers for tissue engineering applications. Copyright © 2012 Wiley Periodicals, Inc.

  2. A Coevolutionary Arms Race: Understanding Plant-Herbivore Interactions

    Science.gov (United States)

    Becklin, Katie M.

    2008-01-01

    Plants and insects share a long evolutionary history characterized by relationships that affect individual, population, and community dynamics. Plant-herbivore interactions are a prominent feature of this evolutionary history; it is by plant-herbivore interactions that energy is transferred from primary producers to the rest of the food web. Not…

  3. Is the in situ inflammatory reaction an important tool to understand the cellular immune response in American tegumentary leishmaniasis?

    Science.gov (United States)

    Morgado, F N; Schubach, A; Rosalino, C M V; Quintella, L P; Santos, G; Salgueiro, M; Conceição-Silva, F

    2008-01-01

    The study of American tegumentary leishmaniasis (ATL) lesions might contribute to the understanding of the dynamics of the infection. To examine the cellular infiltrate of cutaneous ATL lesions and to compare these results with the detection of the parasites and clinical data. Lesions of 19 patients with ATL were evaluated through immunohistochemical analysis. The lesions presented an inflammatory reaction mainly consisting of T cells and macrophages. Analysis of the expression of nitric oxide synthase type 2 (NOS2) showed that its intensity was directly correlated with the number of CD3+ T cells. We also observed an association between high NOS2 expression and low quantity of parasites, highlighting the importance of NOS2 in the elimination of parasites. The present results suggest that (i) the inflammatory process is intense in cutaneous ATL lesions and maintains a similar activity for several months; (ii) the dynamics of cell infiltration change during this period, with a gradual decrease in CD8+ T cells, probably correlated with a reduction in the parasite number; (iii) neutrophils may participate in the inflammatory process even during later stages of infection; (iv) the relative increase in the number of CD4+ T cells associated with the onset of fibrosis may suggest a participation of these cells in the control of the inflammatory process; and (v) late lesions with tendency for healing usually show focal inflammation. The study of healing lesions might contribute to the understanding of the late steps of the control of the inflammatory process in ATL lesions.

  4. Understanding Metallic Bonding: Structure, Process and Interaction by Rasch Analysis

    Science.gov (United States)

    Cheng, Maurice M. W.; Oon, Pey-Tee

    2016-01-01

    This paper reports the results of a survey of 3006 Year 10-12 students on their understandings of metallic bonding. The instrument was developed based on Chi's ontological categories of scientific concepts and students' understanding of metallic bonding as reported in the literature. The instrument has two parts. Part one probed into students'…

  5. Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions in enteric diseases

    Directory of Open Access Journals (Sweden)

    Reis Roberta

    2010-07-01

    Full Text Available Abstract A successful infection of the human intestine by enteropathogenic bacteria depends on the ability of bacteria to attach and colonize the intestinal epithelium and, in some cases, to invade the host cell, survive intracellularly and disseminate from cell to cell. To accomplish these processes bacteria have evolved an arsenal of molecules that are mostly secreted by dedicated type III secretion systems, and that interact with the host, subverting normal cellular functions. Here we overview the most important molecular strategies developed by enteropathogenic Escherichia coli, Salmonella enterica, Shigella flexneri, and Yersinia enterocolitica to cause enteric infections. Despite having evolved different effectors, these four microorganisms share common host cellular targets.

  6. Understanding Micro-Ramp Control for Shock Boundary Layer Interactions

    National Research Council Canada - National Science Library

    Loth, Eric; Lee, Sang

    2008-01-01

    .... Of several candidate micro-VGs, micro-ramps have been found to significantly impact shock boundary layer interaction flows, while being cost-effective, physically robust, and requiring no power sources...

  7. Understanding positivity within dynamic team interactions: A statistical discourse analysis

    OpenAIRE

    Lehmann-Willenbrock, N.K.; Chiu, M.M.; Lei, Z.; Kauffeld, S.

    2017-01-01

    Positivity has been heralded for its individual benefits. However, how positivity dynamically unfolds within the temporal flow of team interactions remains unclear. This is an important oversight, as positivity can be key to team problem solving and performance. In this study, we examine how team micro-processes affect the likelihood of positivity occurring within dynamic team interactions. In doing so, we build on and expand previous work on individual positivity and integrate theory on temp...

  8. Social understanding through direct perception? Yes, by interacting.

    Science.gov (United States)

    De Jaegher, Hanne

    2009-06-01

    This paper comments on Gallagher's recently published direct perception proposal about social cognition [Gallagher, S. (2008a). Direct perception in the intersubjective context. Consciousness and Cognition, 17(2), 535-543]. I show that direct perception is in danger of being appropriated by the very cognitivist accounts criticised by Gallagher (theory theory and simulation theory). Then I argue that the experiential directness of perception in social situations can be understood only in the context of the role of the interaction process in social cognition. I elaborate on the role of social interaction with a discussion of participatory sense-making to show that direct perception, rather than being a perception enriched by mainly individual capacities, can be best understood as an interactional phenomenon.

  9. Understanding Peptide Dendrimer Interactions with Model Cell Membrane Mimics

    DEFF Research Database (Denmark)

    Lind, Tania Kjellerup

    few new drugs have been marketed over the last decades, making it impossible to keep pace with the disturbing levels of multi-drug resistant bacteria. Research in the area of novel drugs, which are less prone to induce resistance, and in-depth knowledge on their uptake mechanisms is thus of paramount...... and neutron reection. The application of several complementary surface-sensitive techniques allowed for systematically addressing the interface-related processes and gain insights into different aspects of the interaction. BALY was found to interact via a uidity-dependent mechanism. It inserted into the outer...

  10. Optically polarized atoms understanding light-atom interactions

    CERN Document Server

    Auzinsh, Marcis; Rochester, Simon M

    2010-01-01

    This book is addressed at upper-level undergraduate and graduate students involved in research in atomic, molecular, and optical Physics. It will also be useful to researchers practising in this field. It gives an intuitive, yet sufficiently detailed and rigorous introduction to light-atom interactions with a particular emphasis on the symmetry aspects of the interaction, especially those associated with the angular momentum of atoms and light. The book will enable readers to carryout practical calculations on their own, and is richly illustrated with examples drawn from current research topic

  11. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier

    2013-01-01

    of this classification suggests that the balance between favoring and disfavoring structural features determines if a pair of proteins interacts or not. Our results are in agreement with previous works and support the funnel-like intermolecular energy landscape theory that explains PPIs. We have used these features...

  12. Understanding positivity within dynamic team interactions: A statistical discourse analysis

    NARCIS (Netherlands)

    Lehmann-Willenbrock, N.K.; Chiu, M.M.; Lei, Z.; Kauffeld, S.

    2017-01-01

    Positivity has been heralded for its individual benefits. However, how positivity dynamically unfolds within the temporal flow of team interactions remains unclear. This is an important oversight, as positivity can be key to team problem solving and performance. In this study, we examine how team

  13. Connecting traces : Understanding client-server interactions in Ajax applications

    NARCIS (Netherlands)

    Matthijssen, N.; Zaidman, A.; Storey, M.; Bull, I.; Van Deursen, A.

    2010-01-01

    Ajax-enabled web applications are a new breed of highly interactive, highly dynamic web applications. Although Ajax allows developers to create rich web applications, Ajax applications can be difficult to comprehend and thus to maintain. For this reason, we have created FireDetective, a tool that

  14. Gnotobiotic mouse model's contribution to understanding host-pathogen interactions

    Czech Academy of Sciences Publication Activity Database

    Kubelková, K.; Benuchová, M.; Kozáková, Hana; Šinkora, Marek; Kročová, Z.; Pejchal, J.; Macela, A.

    2016-01-01

    Roč. 73, č. 20 (2016), s. 3961-3969 ISSN 1420-682X R&D Projects: GA ČR GA15-02274S Institutional support: RVO:61388971 Keywords : Germ-free model * Gnotobiology * Host-pathogen interaction Subject RIV: EC - Immunology Impact factor: 5.788, year: 2016

  15. Understanding and Creating Accessible Touch Screen Interactions for Blind People

    Science.gov (United States)

    Kane, Shaun K.

    2011-01-01

    Using touch screens presents a number of usability and accessibility challenges for blind people. Most touch screen-based user interfaces are optimized for visual interaction, and are therefore difficult or impossible to use without vision. This dissertation presents an approach to redesigning gesture-based user interfaces to enable blind people…

  16. Understanding Positivity Within Dynamic Team Interactions : A statistical discourse analysis

    NARCIS (Netherlands)

    Lehmann-Willenbrock, N.; Chiu, Ming Ming; Lei, Zhike; Kauffeld, Simone

    2017-01-01

    Positivity has been heralded for its individual benefits. However, how positivity dynamically unfolds within the temporal flow of team interactions remains unclear. This is an important oversight, as positivity can be key to team problem solving and performance. In this study, we examine how team

  17. Specific Human and Candida Cellular Interactions Lead to Controlled or Persistent Infection Outcomes during Granuloma-Like Formation

    OpenAIRE

    Misme-Aucouturier, Barbara; Albassier, Marjorie; Alvarez-Rueda, Nidia; Le Pape, Patrice

    2016-01-01

    ABSTRACT A delayed type of multicellular process could be crucial during chronic candidiasis in determining the course of infection. This reaction, consisting of organized immune cells surrounding the pathogen, initiates an inflammatory response to avoid fungal dissemination. The goal of the present study was to examine, at an in vitro cellular scale, Candida and human immune cell interaction dynamics during a long-term period. By challenging human peripheral blood immune cells from 10 health...

  18. Understanding and Managing Process Interaction in IS Development Projects

    DEFF Research Database (Denmark)

    Bygstad, Bendik; Nielsen, Peter Axel

    2012-01-01

    Software-based information systems must be developed and implemented as a part of business change. This is a major challenge, since business change and the development of software-based information systems usually are performed in separate processes. Thus, there is a need to understand and manage...... critical events in the case, what led to the events, and what the consequences are. We discuss the implications for information systems research and in particular we discuss the contribution to project management of iterative and incremental software development.......Software-based information systems must be developed and implemented as a part of business change. This is a major challenge, since business change and the development of software-based information systems usually are performed in separate processes. Thus, there is a need to understand and manage...

  19. Understanding WIMP-baryon interactions with direct detection: a roadmap

    International Nuclear Information System (INIS)

    Gluscevic, Vera; Peter, Annika H.G.

    2014-01-01

    We study prospects of dark-matter direct-detection searches for probing non-relativistic effective theory for WIMP-baryon scattering. We simulate a large set of noisy recoil-energy spectra for different scattering scenarios (beyond the standard momentum-independent contact interaction), for Generation 2 and futuristic experiments. We analyze these simulations and quantify the probability of successfully identifying the operator governing the scattering, if a WIMP signal is observed. We find that the success rate depends on a combination of factors: the WIMP mass, the mediator mass, the type of interaction, and the experimental energy window. For example, for a 20 GeV WIMP, Generation 2 is only likely to identify the right operator if the interaction is Coulomb-like, and is unlikely to do so in any other case. For a WIMP with a mass of 200 GeV or higher, success is almost guaranteed. We also find that, regardless of the scattering model and the WIMP parameters, a single Generation 2 experiment is unlikely to successfully discern the momentum dependence of the underlying operator on its own, but prospects improve drastically when experiments with different target materials and energy windows are analyzed jointly. Furthermore, we examine the quality of parameter estimation and degeneracies in the multi-dimensional parameter space of the effective theory. We find in particular that the resulting WIMP mass estimates can be severely biased if data are analyzed assuming the standard (momentum-independent) operator while the actual operator has momentum-dependence. Finally, we evaluate the ultimate reach of direct detection, finding that the prospects for successful operator selection prior to reaching the irreducible backgrounds are excellent, if the signal is just below the current limits, but slim if Generation 2 does not report WIMP detection

  20. Pasteurella multocida Toxin Interaction with Host Cells: Entry and Cellular Effects

    Science.gov (United States)

    Ho, Mengfei

    2015-01-01

    The mitogenic dermonecrotic toxin from Pasteurella multocida (PMT) is a 1285-residue multipartite protein that belongs to the A-B family of bacterial protein toxins. Through its G-protein-deamidating activity on the α subunits of heterotrimeric Gq-, Gi- and G12/13-proteins, PMT potently stimulates downstream mitogenic, calcium, and cytoskeletal signaling pathways. These activities lead to pleiotropic effects in different cell types, which ultimately result in cellular proliferation, while inhibiting cellular differentiation, and account for the myriad of physiological outcomes observed during infection with toxinogenic strains of P. multocida. PMID:22552700

  1. Understanding grapevine-microbiome interactions: implications for viticulture industry

    Directory of Open Access Journals (Sweden)

    Iratxe Zarraonaindia

    2015-05-01

    Full Text Available Until recently, the analysis of complex communities such as that of the grapevine-microbe holobiont has been limited by the fact that most microbes are notculturable under laboratory conditions (less than 1%. However, metagenomics, the study of the genetic material recovered directly from environmental samples without the need for enrichment or of culturing, has led to open an unprecedented era in the field of microbiology. Importantly, this technological advance has now become so pervasive that it is being regularly applied to explore soils and plants of agricultural interest. Interestingly, many large companies are taking notice, with significant financial investment being used to exploring ways to manipulate the productivity, disease resistance and stress tolerance for crops by influencing the microbiome. To understand which microbes one needs to manipulate to influence this valuable characteristics, we need to sequence the microbiome and capture the genetic and hence functional metabolic information contained therein. For viticulture and other agricultural fields where the crop is also associated to particular flavor properties that may also be manipulated, understanding how the bacteria, fungi and viruses influence the development and hence chemical makeup of the crop is essential.

  2. Cellular interactions of a lipid-based nanocarrier model with human keratinocytes: Unravelling transport mechanisms.

    Science.gov (United States)

    Silva, Elisabete; Barreiros, Luísa; Segundo, Marcela A; Costa Lima, Sofia A; Reis, Salette

    2017-04-15

    Knowledge of delivery system transport through epidermal cell monolayer is vital to improve skin permeation and bioavailability. Recently, nanostructured lipid carriers (NLCs) have gained great attention for transdermal delivery due to their biocompatibility, high drug payload, occlusive properties and skin hydration effect. However, the nanocarriers transport related mechanisms in epidermal epithelial cells are not yet understood. In this research, the internalization and transport pathways of the NLCs across the epidermal epithelial cell monolayer (HaCaT cells) were investigated. The 250nm sized witepsol/miglyol NLCs, prepared by hot homogenization had reduced cytotoxicity and no effect on the integrity of cell membrane in human HaCaT keratinocytes. The internalization was time-, concentration- and energy-dependent, and the uptake of NLCs was a vesicle-mediated process by macropinocytosis and clathrin-mediated pathways. 3% of NLCs were found at the apical membrane side of the HaCaT monolayer through exocytosis mechanism. Additionally, the endoplasmic reticulum, Golgi apparatus and microtubules played crucial roles in the transport of NLCs out of HaCaT cells. NLCs were transported intact across the human keratinocytes monolayer, without disturbing the tight junction's structure. From the transcytosis data only approximately 12% of the internalized NLCs were passed from the apical to the basolateral side. The transcytosis of NLCs throughout the HaCaT cell monolayer towards the basolateral membrane side requires the involvement of the endoplasmic reticulum, Golgi apparatus and microtubules. Our findings may contribute to a systematic understanding of NLCs transport across epidermal epithelial cell monolayers and their optimization for clinical transdermal application. Transdermal drug delivery is a challenging and growing area of clinical application. Lipid nanoparticles such as nanostructured lipid carriers (NLCs) have gained wide interest for transdermal drug

  3. Stochastic models of cellular circadian rhythms in plants help to understand the impact of noise on robustness and clock structure

    Directory of Open Access Journals (Sweden)

    Maria Luisa eGuerriero

    2014-10-01

    Full Text Available Rhythmic behavior is essential for plants; for example, daily (circadian rhythms control photosynthesis and seasonal rhythms regulate their life cycle. The core of the circadian clock is a genetic network that coordinates the expression of specific clock genes in a circadian rhythm reflecting the 24-hour day/night cycle.Circadian clocks exhibit stochastic noise due to the low copy numbers of clock genes and the consequent cell-to-cell variation: this intrinsic noise plays a major role in circadian clocks by inducing more robust oscillatory behavior. Another source of noise is the environment, which causes variation in temperature and light intensity: this extrinsic noise is part of the requirement for the structural complexity of clock networks.Advances in experimental techniques now permit single-cell measurements and the development of single-cell models. Here we present some modeling studies showing the importance of considering both types of noise in understanding how plants adapt to regular and irregular light variations. Stochastic models have proven useful for understanding the effect of regular variations. By contrast, the impact of irregular variations and the interaction of different noise sources are less studied.

  4. Stochastic models of cellular circadian rhythms in plants help to understand the impact of noise on robustness and clock structure

    Science.gov (United States)

    Guerriero, Maria L.; Akman, Ozgur E.; van Ooijen, Gerben

    2014-01-01

    Rhythmic behavior is essential for plants; for example, daily (circadian) rhythms control photosynthesis and seasonal rhythms regulate their life cycle. The core of the circadian clock is a genetic network that coordinates the expression of specific clock genes in a circadian rhythm reflecting the 24-h day/night cycle. Circadian clocks exhibit stochastic noise due to the low copy numbers of clock genes and the consequent cell-to-cell variation: this intrinsic noise plays a major role in circadian clocks by inducing more robust oscillatory behavior. Another source of noise is the environment, which causes variation in temperature and light intensity: this extrinsic noise is part of the requirement for the structural complexity of clock networks. Advances in experimental techniques now permit single-cell measurements and the development of single-cell models. Here we present some modeling studies showing the importance of considering both types of noise in understanding how plants adapt to regular and irregular light variations. Stochastic models have proven useful for understanding the effect of regular variations. By contrast, the impact of irregular variations and the interaction of different noise sources are less well studied. PMID:25374576

  5. Cellular interaction influenced by surface modification strategies of gelatin-based nanoparticles.

    Science.gov (United States)

    Tse, Wai Hei; Gyenis, Laszlo; Litchfield, David W; Zhang, Jin

    2017-02-01

    Theranostic applications of gelatin nanospheres require two major components, a method of detection and good biocompatibility. We characterized the response of UTA-6 human osteosarcoma cells to the introduction of functionalized 90 bloom-based gelatin nanospheres (158 ± 49 nm) modified with three elements in different order: (a) hybridization with cadmium-based quantum dots for optical detection, (b) bioconjugation with anti-human IgG FAB (anti-IgG) for cell targeting, with/without (c) capping with polyethylene glycol on the surface for enhanced biocompatibility. A one-pot process is developed for incorporating quantum dots and antibody with gelatin nanospheres. Path A of modifying gelatin nanospheres with quantum dots first followed by anti-IgG resulted in a significantly greater cellular viability than Path B with anti-IgG first followed by quantum dots. Capping with polyethylene glycol as the final step in modification yielded significantly opposing results with decreases in Path A and increases in Path B. Three-dimensional z-stacking fluorescent images of hybrid gelatin nanospheres with anti-IgG is observed to have an increase in cellular association. The observed results suggest the modification order for building hybrid nanospheres may have an impact on cellular response.

  6. Comparing the epidermal growth factor interaction with four different cell lines: intriguing effects imply strong dependency of cellular context.

    Directory of Open Access Journals (Sweden)

    Hanna Björkelund

    Full Text Available The interaction of the epidermal growth factor (EGF with its receptor (EGFR is known to be complex, and the common over-expression of EGF receptor family members in a multitude of tumors makes it important to decipher this interaction and the following signaling pathways. We have investigated the affinity and kinetics of (125I-EGF binding to EGFR in four human tumor cell lines, each using four culturing conditions, in real time by use of LigandTracer®.Highly repeatable and precise measurements show that the overall apparent affinity of the (125I-EGF - EGFR interaction is greatly dependent on cell line at normal culturing conditions, ranging from K(D ≈ 200 pM on SKBR3 cells to K(D≈8 nM on A431 cells. The (125I-EGF - EGFR binding curves (irrespective of cell line have strong signs of multiple simultaneous interactions. Furthermore, for the cell lines A431 and SKOV3, gefitinib treatment increases the (125I-EGF - EGFR affinity, in particular when the cells are starved. The (125I-EGF - EGFR interaction on cell line U343 is sensitive to starvation while as on SKBR3 it is insensitive to gefitinib and starvation.The intriguing pattern of the binding characteristics proves that the cellular context is important when deciphering how EGF interacts with EGFR. From a general perspective, care is advisable when generalizing ligand-receptor interaction results across multiple cell-lines.

  7. Studies of interactions between the receptor for immunoglobulin E and other cellular components during signal transduction

    International Nuclear Information System (INIS)

    Estes, K.A.S.

    1988-01-01

    The high affinity receptor for immunoglobulin E (IgE) on rat basophilic leukemia (RBL) cells mediates antigen-triggered cellular degranulation. As a first step in developing a reconstitution system to test the structural requirements of receptors for triggering cellular degranulation, polyethylene glycol-induced membrane fusion methods were used to introduce exogenous IgE receptors into living RBL cells. In cell-cell fusion experiments, RBL cells with rat IgE bound to receptors and containing [5-1,2- 3 H(N)]hydroxytryptamine binoxalate ([ 3 H]5HT) in their secretory granules were fused to cells with receptors occupied by anti-dinitrophenyl (DNP) mouse IgE. [ 3 H]5HT release could be triggered specifically by multivalent DNP antigen. In vesicle-cell fusion experiments, plasma membrane vesicles with receptors occupied by anti-DNP mouse IgE were fused with RBL cells, and DNP antigen was found to trigger [ 3 H]5HT release. Receptors for IgE in reformed vesicles, prepared by solubilizing vesicles and removing the detergent, could also be fused into cells and mediate the stimulation of [ 3 H]5HT release

  8. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles.

    Science.gov (United States)

    Jindal, Anil B

    2017-10-30

    Encapsulation of therapeutic agents in nanoparticles offers several benefits including improved bioavailability, site specific delivery, reduced toxicity and in vivo stability of proteins and nucleotides over conventional delivery options. These benefits are consequence of distinct in vivo pharmacokinetic and biodistribution profile of nanoparticles, which is dictated by the complex interplay of size, surface charge and surface hydrophobicity. Recently, particle shape has been identified as a new physical parameter which has exerted tremendous impact on cellular uptake and biodistribution, thereby in vivo performance of nanoparticles. Improved therapeutic efficacy of anticancer agents using non-spherical particles is the recent development in the field. Additionally, immunological response of nanoparticles was also altered when antigens were loaded in non-spherical nanovehicles. The apparent impact of particle shape inspired the new research in the field of drug delivery. The present review therefore details the research in this field. The review focuses on methods of fabrication of particles of non-spherical geometries and impact of particle shape on cellular uptake, biodistribution, tumor targeting and production of immunological responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cellular interactions via conditioned media induce in vivo nephron generation from tubular epithelial cells or mesenchymal stem cells

    International Nuclear Information System (INIS)

    Machiguchi, Toshihiko; Nakamura, Tatsuo

    2013-01-01

    Highlights: •We have attempted in vivo nephron generation using conditioned media. •Vascular and tubular cells do cross-talks on cell proliferation and tubular changes. •Tubular cells suppress these changes in mesenchymal stem cells. •Tubular cells differentiate mesenchymal stem cells into tubular cells. •Nephrons can be created from implanted tubular cells or mesenchymal stem cells. -- Abstract: There are some successful reports of kidney generation by utilizing the natural course of kidney development, namely, the use of an artificially treated metanephros, blastocyst or ureteric bud. Under a novel concept of cellular interactions via conditioned media (CMs), we have attempted in vivo nephron generation from tubular epithelial cells (TECs) or mesenchymal stem cells (MSCs). Here we used 10× CMs of vascular endothelial cells (VECs) and TECs, which is the first to introduce a CM into the field of organ regeneration. We first present stimulative cross-talks induced by these CMs between VECs and TECs on cell proliferation and morphological changes. In MSCs, TEC-CM suppressed these changes, however, induced cytokeratin expression, indicating the differentiation of MSCs into TECs. As a result, glomerular and tubular structures were created following the implantation of TECs or MSCs with both CMs. Our findings suggest that the cellular interactions via CMs might induce in vivo nephron generation from TECs or MSCs. As a promoting factor, CMs could also be applied to the regeneration of other organs and tissues

  10. Molecular and cellular aspects of the bidirectional interaction between probiotic bacteria and the host

    NARCIS (Netherlands)

    van Bergenhenegouwen, B.J.

    2015-01-01

    Accumulating evidence suggests that intestinal microbial imbalance, or dysbiosis, and the associated changes in microbe-host interactions might contribute to the prevalence of disease. Dysbiosis is associated with a loss of beneficial bacteria and has triggered research into the potential preventive

  11. CALCIFICATION OF SUBCUTANEOUSLY IMPLANTED COLLAGENS IN RELATION TO CYTOTOXICITY, CELLULAR INTERACTIONS AND CROSS-LINKING

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; DIJKSTRA, PJ; DAMINK, LHHO; FEIJEN, J

    In general, calcification of biomaterials occurs through an interaction of host and implanted material factors, but up to now the real origin of pathologic calcification is unknown. In this study we aimed to investigate incidence of calcification of (crosslinked) dermal sheep collagens (DSCs) with

  12. Calcification of subcutaneously implanted collagens in relation to cytotoxicity, cellular interactions and crosslinking

    NARCIS (Netherlands)

    van Luyn, M.J.A.; van Wachem, P.B.; Dijkstra, Pieter J.; Olde damink, L.H.H.; Olde Damink, L.H.H.; Feijen, Jan

    1995-01-01

    In general, calcification of biomaterials occurs through an interaction of host and implanted material factors, but up to now the real origin of pathologic calcification is unknown. In this study we aimed to investigate incidence of calcification of (crosslinked) dermal sheep collagens (DSCs) with

  13. Understanding and preventing drug–drug and drug–gene interactions

    Science.gov (United States)

    Tannenbaum, Cara; Sheehan, Nancy L

    2014-01-01

    Concomitant administration of multiple drugs can lead to unanticipated drug interactions and resultant adverse drug events with their associated costs. A more thorough understanding of the different cytochrome P450 isoenzymes and drug transporters has led to new methods to try to predict and prevent clinically relevant drug interactions. There is also an increased recognition of the need to identify the impact of pharmacogenetic polymorphisms on drug interactions. More stringent regulatory requirements have evolved for industry to classify cytochrome inhibitors and inducers, test the effect of drug interactions in the presence of polymorphic enzymes, and evaluate multiple potentially interacting drugs simultaneously. In clinical practice, drug alert software programs have been developed. This review discusses drug interaction mechanisms and strategies for screening and minimizing exposure to drug interactions. We also provide future perspectives for reducing the risk of clinically significant drug interactions. PMID:24745854

  14. Lethal and mutagenic interactions between γ-rays, cisplatin and etoposide at the cellular and molecular levels.

    Science.gov (United States)

    Lillo, Olga; Bracesco, Nelson; Nunes, Elia

    2011-02-01

    We analysed the lethal and mutagenic interactions between γ-rays, cisplatin (Pt) and etoposide (E), three agents used in tumour chemoradiotherapy. Corresponding results at cellular and molecular levels could provide additional elements on involved mechanisms and, on antitumour activity and toxicity in combined cancer treatments. The yeast Saccharomyces cerevisiae SC7K(lys2-3) (auxotrophic for lysine) was used as eukaryotic model. Exponential growing cells were exposed to the mentioned agents, as single and combined treatments. Lethal and mutation interaction equations were determined as a function of doses according to quantitative models. DNA double-strand breaks were evaluated immediately after treatments, through pulsed-field electrophoresis and laser densitometry. All three agents induced significant mutant frequency. The γ +Pt + E combination determined maximal lethal and mutagenic synergism, followed by γ + Pt and γ + E combinations. Meanwhile, Pt + E combination showed lethal additivity and very low mutagenic synergism. Pt + E double combination determined moderate DNA degradation. DNA degradation after γ-exposure, was similar to that of γ + Pt, γ + E and γ + Pt + E combinations. Synergistic lethal and mutagenic interactions indicate crosstalk between non-homologous end joining, homologous recombination and postreplicative repair pathways. Pt + E additivity indicate independence of involved repair pathways. Furthermore, the quantification of interactive events may be an additional suitable tool in tumour therapy planning.

  15. Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction

    Science.gov (United States)

    Lu, Yi-Ching; Luo, Pei-Chun; Huang, Chun-Wan; Leu, Yann-Lii; Wang, Tzu-Hao; Wei, Kuo-Chen; Wang, Hsin-Ell; Ma, Yunn-Hwa

    2014-08-01

    Nanoparticles may serve as carriers in targeted therapeutics; interaction of the nanoparticles with a biological system may determine their targeting effects and therapeutic efficacy. Epigallocatechin-3-gallate (EGCG), a major component of tea catechins, has been conjugated with nanoparticles and tested as an anticancer agent. We investigated whether EGCG may enhance nanoparticle uptake by tumor cells. Cellular uptake of a dextran-coated magnetic nanoparticle (MNP) was determined by confocal microscopy, flow cytometry or a potassium thiocyanate colorimetric method. We demonstrated that EGCG greatly enhanced interaction and/or internalization of MNPs (with or without polyethylene glycol) by glioma cells, but not vascular endothelial cells. The enhancing effects are both time- and concentration-dependent. Such effects may be induced by a simple mix of MNPs with EGCG at a concentration as low as 1-3 μM, which increased MNP uptake 2- to 7-fold. In addition, application of magnetic force further potentiated MNP uptake, suggesting a synergetic effect of EGCG and magnetic force. Because the effects of EGCG were preserved at 4 °C, but not when EGCG was removed from the culture medium prior to addition of MNPs, a direct interaction of EGCG and MNPs was implicated. Use of an MNP-EGCG composite produced by adsorption of EGCG and magnetic separation also led to an enhanced uptake. The results reveal a novel interaction of a food component and nanocarrier system, which may be potentially amenable to magnetofection, cell labeling/tracing, and targeted therapeutics.

  16. iGPCR-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking.

    Directory of Open Access Journals (Sweden)

    Xuan Xiao

    Full Text Available Involved in many diseases such as cancer, diabetes, neurodegenerative, inflammatory and respiratory disorders, G-protein-coupled receptors (GPCRs are among the most frequent targets of therapeutic drugs. It is time-consuming and expensive to determine whether a drug and a GPCR are to interact with each other in a cellular network purely by means of experimental techniques. Although some computational methods were developed in this regard based on the knowledge of the 3D (dimensional structure of protein, unfortunately their usage is quite limited because the 3D structures for most GPCRs are still unknown. To overcome the situation, a sequence-based classifier, called "iGPCR-drug", was developed to predict the interactions between GPCRs and drugs in cellular networking. In the predictor, the drug compound is formulated by a 2D (dimensional fingerprint via a 256D vector, GPCR by the PseAAC (pseudo amino acid composition generated with the grey model theory, and the prediction engine is operated by the fuzzy K-nearest neighbour algorithm. Moreover, a user-friendly web-server for iGPCR-drug was established at http://www.jci-bioinfo.cn/iGPCR-Drug/. For the convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated math equations presented in this paper just for its integrity. The overall success rate achieved by iGPCR-drug via the jackknife test was 85.5%, which is remarkably higher than the rate by the existing peer method developed in 2010 although no web server was ever established for it. It is anticipated that iGPCR-Drug may become a useful high throughput tool for both basic research and drug development, and that the approach presented here can also be extended to study other drug - target interaction networks.

  17. A set of descriptors for identifying the protein-drug interaction in cellular networking.

    Science.gov (United States)

    Nanni, Loris; Lumini, Alessandra; Brahnam, Sheryl

    2014-10-21

    The study of protein-drug interactions is a significant issue for drug development. Unfortunately, it is both expensive and time-consuming to perform physical experiments to determine whether a drug and a protein are interacting with each other. Some previous attempts to design an automated system to perform this task were based on the knowledge of the 3D structure of a protein, which is not always available in practice. With the availability of protein sequences generated in the post-genomic age, however, a sequence-based solution to deal with this problem is necessary. Following other works in this area, we propose a new machine learning system based on several protein descriptors extracted from several protein representations, such as, variants of the position specific scoring matrix (PSSM) of proteins, the amino-acid sequence, and a matrix representation of a protein. The prediction engine is operated by an ensemble of support vector machines (SVMs), with each SVM trained on a specific descriptor and the results of each SVM combined by sum rule. The overall success rate achieved by our final ensemble is notably higher than previous results obtained on the same datasets using the same testing protocols reported in the literature. MATLAB code and the datasets used in our experiments are freely available for future comparison at http://www.dei.unipd.it/node/2357. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. iNR-Drug: Predicting the Interaction of Drugs with Nuclear Receptors in Cellular Networking

    Directory of Open Access Journals (Sweden)

    Yue-Nong Fan

    2014-03-01

    Full Text Available Nuclear receptors (NRs are closely associated with various major diseases such as cancer, diabetes, inflammatory disease, and osteoporosis. Therefore, NRs have become a frequent target for drug development. During the process of developing drugs against these diseases by targeting NRs, we are often facing a problem: Given a NR and chemical compound, can we identify whether they are really in interaction with each other in a cell? To address this problem, a predictor called “iNR-Drug” was developed. In the predictor, the drug compound concerned was formulated by a 256-D (dimensional vector derived from its molecular fingerprint, and the NR by a 500-D vector formed by incorporating its sequential evolution information and physicochemical features into the general form of pseudo amino acid composition, and the prediction engine was operated by the SVM (support vector machine algorithm. Compared with the existing prediction methods in this area, iNR-Drug not only can yield a higher success rate, but is also featured by a user-friendly web-server established at http://www.jci-bioinfo.cn/iNR-Drug/, which is particularly useful for most experimental scientists to obtain their desired data in a timely manner. It is anticipated that the iNR-Drug server may become a useful high throughput tool for both basic research and drug development, and that the current approach may be easily extended to study the interactions of drug with other targets as well.

  19. iNR-Drug: predicting the interaction of drugs with nuclear receptors in cellular networking.

    Science.gov (United States)

    Fan, Yue-Nong; Xiao, Xuan; Min, Jian-Liang; Chou, Kuo-Chen

    2014-03-19

    Nuclear receptors (NRs) are closely associated with various major diseases such as cancer, diabetes, inflammatory disease, and osteoporosis. Therefore, NRs have become a frequent target for drug development. During the process of developing drugs against these diseases by targeting NRs, we are often facing a problem: Given a NR and chemical compound, can we identify whether they are really in interaction with each other in a cell? To address this problem, a predictor called "iNR-Drug" was developed. In the predictor, the drug compound concerned was formulated by a 256-D (dimensional) vector derived from its molecular fingerprint, and the NR by a 500-D vector formed by incorporating its sequential evolution information and physicochemical features into the general form of pseudo amino acid composition, and the prediction engine was operated by the SVM (support vector machine) algorithm. Compared with the existing prediction methods in this area, iNR-Drug not only can yield a higher success rate, but is also featured by a user-friendly web-server established at http://www.jci-bioinfo.cn/iNR-Drug/, which is particularly useful for most experimental scientists to obtain their desired data in a timely manner. It is anticipated that the iNR-Drug server may become a useful high throughput tool for both basic research and drug development, and that the current approach may be easily extended to study the interactions of drug with other targets as well.

  20. Cellular and biophysical evidence for interactions between adenosine triphosphate and P-glycoprotein substrates

    DEFF Research Database (Denmark)

    Abraham, E H; Shrivastav, B; Salikhova, A Y

    2001-01-01

    P-glycoprotein is involved with the removal of drugs, most of them cations, from the plasma membrane and cytoplasm. Pgp is also associated with movement of ATP, an anion, from the cytoplasm to the extracellular space. The central question of this study is whether drug and ATP transport associated...... provides a framework for understanding the role of erythrocytes in drug resistance. The erythrocyte consists of a membrane surrounding a millimolar pool of ATP. Mammalian RBCs have no nucleus or DNA drug/toxin targets. From the perspective of drug/ATP complex formation, the RBC serves as an important...

  1. Proteomic, cellular, and network analyses reveal new DUSP3 interactions with nucleolar proteins in HeLa cells.

    Science.gov (United States)

    Panico, Karine; Forti, Fabio Luis

    2013-12-06

    DUSP3 (or Vaccinia virus phosphatase VH1-related; VHR) is a small dual-specificity phosphatase known to dephosphorylate c-Jun N-terminal kinases and extracellular signal-regulated kinases. In human cervical cancer cells, DUSP3 is overexpressed, localizes preferentially to the nucleus, and plays a key role in cellular proliferation and senescence triggering. Other DUSP3 functions are still unknown, as illustrated by recent and unpublished results from our group showing that this enzyme mediates DNA damage response or repair processes. In this study, we sought to identify new interactions between DUSP3 and proteins directly or indirectly involved in or correlated with its biological roles in HeLa cells exposed to gamma or UV radiation. By using GST-DUSP as bait, we pulled down interacting proteins and identified them by LC-MS/MS. Of the 46 proteins obtained, six hits were extensively validated by immune techniques; the proteins Nucleophosmin, HnRNP C1/C2, and Nucleolin were the most promising targets found to directly interact with DUSP3. We then analyzed the DUSP3 interactomes using physical protein-protein interaction networks using our hits as the seed list. The validated hits as well as unvalidated hits fluctuated on the DUSP3 interactomes of HeLa cells, independent of the time post radiation, which confirmed our proteomic and experimental data and clearly showed the proximity of DUSP3 to proteins involved in processes intimately related to DNA repair and senescence, such as Ku70 and Tert, via interactions with nucleolar proteins, which were identified in this study, that regulate DNA/RNA structure and functions.

  2. Interactive cellular proteins related to classical swine fever virus non-structure protein 2 by yeast two-hybrid analysis.

    Science.gov (United States)

    Kang, Kai; Guo, Kangkang; Tang, Qinhai; Zhang, Yanming; Wu, Jiang; Li, Weiwei; Lin, Zhi

    2012-12-01

    Classical swine fever is caused by the classical swine fever virus (CSFV), which has a special affinity to endothelial cells. This fever is characterized by hemorrhage and necrosis of vascular injury. Very little information is available on the interaction between vascular endothelial cells and CSFV. In the current report, the cDNA library of swine umbilical vein endothelial cell (SUVEC) was constructed by the switching mechanism at 5' end of the RNA transcript approach. The yeast two-hybrid (Y2H) system was adopted to screen non-structure 2 protein (NS2) interactive proteins in the SUVEC line. Alignment with the NCBI database revealed 11 interactive proteins: GOPC, HNRNPH1, DNAJA1, ATP6, CSDE1, CNDP2, FANCL, TMED4, DNAJA4, MOAP1, and PNMA1. These proteins were mostly related to apoptosis, stress response and oxidation reduction, or metabolism. In the protein interaction network constructed based on proteins with NS2, the more important proteins were MOAP1, DNAJA1, GOPC, FANCL, TMED4, and CSDE1. The interactions detected by the Y2H should be regarded only as preliminary indications. However, the CSFV NS2 interactive proteins in the SUVEC cDNA library obtained in the current study provides valuable information for gaining a better understanding of the host protein-virus interactions of the CSFV NS2 protein.

  3. Adaptive interaction a utility maximization approach to understanding human interaction with technology

    CERN Document Server

    Payne, Stephen J

    2013-01-01

    This lecture describes a theoretical framework for the behavioural sciences that holds high promise for theory-driven research and design in Human-Computer Interaction. The framework is designed to tackle the adaptive, ecological, and bounded nature of human behaviour. It is designed to help scientists and practitioners reason about why people choose to behave as they do and to explain which strategies people choose in response to utility, ecology, and cognitive information processing mechanisms. A key idea is that people choose strategies so as to maximise utility given constraints. The frame

  4. Cellular Interactions and Formation of an Epithelial “Nanocoating-Like Barrier” with Mesoporous Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xuan Li

    2016-10-01

    Full Text Available Oral mucosa as the front-line barrier in the mouth is constantly exposed to a complex microenvironment with multitudinous microbes. In this study, the interactions of mesoporous silica nanoparticles (MSNs with primary human gingival epithelial cells were analyzed for up to 72 h, and their diffusion capacity in the reconstructed human gingival epithelia (RHGE and porcine ear skin models was further assessed at 24 h. It was found that the synthesized fluorescent mesoporous silica nanoparticles (RITC-NPs with low cytotoxicity could be uptaken, degraded, and/or excreted by the human gingival epithelial cells. Moreover, the RITC-NPs penetrated into the stratum corneum of RHGE in a time-dependent manner, while they were unable to get across the barrier of stratum corneum in the porcine ear skins. Consequently, the penetration and accumulation of RITC-NPs at the corneum layers of epithelia could form a “nanocoating-like barrier”. This preliminary proof-of-concept study suggests the feasibility of developing nanoparticle-based antimicrobial and anti-inflammatory agents through topical application for oral healthcare.

  5. Cellular migration, transition and interaction during regeneration of the sponge Hymeniacidon heliophila.

    Science.gov (United States)

    Coutinho, Cristiano C; Rosa, Ivone de Andrade; Teixeira, John Douglas de Oliveira; Andrade, Leonardo R; Costa, Manoel Luis; Mermelstein, Claudia

    2017-01-01

    Sponges have a high capacity for regeneration and this process improves biomass production in some species, thus contributing to a solution for the biomass supply problem for biotechnological applications. The aim of this work is to characterize the dynamics of cell behavior during the initial stages of sponge regeneration, using bright-field microscopy, confocal microscopy and SEM. We focused on the first 20 h of regeneration, during which blastema formation and epithelium initialization occur. An innovative sponge organotypic culture of the regenerating internal region is described and investigated by confocal microscopy, cell transplantation and vital staining. Cell-cell interaction and cell density are shown to affect events in morphogenesis such as epithelial/mesenchymal and mesenchymal/epithelial transitions as well as distinct cell movements required for regeneration. Extracellular matrix was organized according to the morphogenetic process observed, with evidence for cell-signaling instructions and remodeling. These data and the method of organotypic culture described here provide support for the development of viable sponge biomass production.

  6. Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils

    Science.gov (United States)

    Bakken, Lars R.; Bergaust, Linda; Liu, Binbin; Frostegård, Åsa

    2012-01-01

    Denitrifying prokaryotes use NOx as terminal electron acceptors in response to oxygen depletion. The process emits a mixture of NO, N2O and N2, depending on the relative activity of the enzymes catalysing the stepwise reduction of NO3− to N2O and finally to N2. Cultured denitrifying prokaryotes show characteristic transient accumulation of NO2−, NO and N2O during transition from oxic to anoxic respiration, when tested under standardized conditions, but this character appears unrelated to phylogeny. Thus, although the denitrifying community of soils may differ in their propensity to emit N2O, it may be difficult to predict such characteristics by analysis of the community composition. A common feature of strains tested in our laboratory is that the relative amounts of N2O produced (N2O/(N2+N2O) product ratio) is correlated with acidity, apparently owing to interference with the assembly of the enzyme N2O reductase. The same phenomenon was demonstrated for soils and microbial communities extracted from soils. Liming could be a way to reduce N2O emissions, but needs verification by field experiments. More sophisticated ways to reduce emissions may emerge in the future as we learn more about the regulation of denitrification at the cellular level. PMID:22451108

  7. Looking for a needle in a haystack: Cellular proteins that may interact with the tyrosine-based sorting signal of the TGEV S protein.

    Science.gov (United States)

    Trincone, Anna; Schwegmann-Weßels, Christel

    2015-04-16

    The spike protein S of transmissible gastroenteritis virus, an Alphacoronavirus, contains a tyrosine-based sorting signal that is responsible for ERGIC retention and may be important for a correct viral assembly process. To find out whether the S protein interacts with cellular proteins via this sorting signal, a pulldown assay with GST fusion proteins was performed. Filamin A has been identified as a putative interaction candidate. Immunofluorescence assays confirmed a co-localization between the TGEV S protein and filamin A. Further experiments have to be performed to prove a significant impact of filamin A on TGEV infection. Different approaches of several researchers for the identification of cellular interaction candidates relevant for coronavirus replication are summarized. These results may help in the future to identify the role of cellular proteins during coronavirus assembly at the ER-Golgi intermediate compartment. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Specific Human and Candida Cellular Interactions Lead to Controlled or Persistent Infection Outcomes during Granuloma-Like Formation.

    Science.gov (United States)

    Misme-Aucouturier, Barbara; Albassier, Marjorie; Alvarez-Rueda, Nidia; Le Pape, Patrice

    2017-01-01

    A delayed type of multicellular process could be crucial during chronic candidiasis in determining the course of infection. This reaction, consisting of organized immune cells surrounding the pathogen, initiates an inflammatory response to avoid fungal dissemination. The goal of the present study was to examine, at an in vitro cellular scale, Candida and human immune cell interaction dynamics during a long-term period. By challenging human peripheral blood immune cells from 10 healthy donors with 32 Candida albicans and non-albicans (C. glabrata, C. tropicalis, C. parapsilosis, C. dubliniensis, C. lusitaniae, C. krusei, and C. kefyr) clinical isolates, we showed that Candida spp. induced the formation of granuloma-like structures within 6 days after challenge, but their sizes and the respective fungal burdens differed according to the Candida species. These two parameters are positively correlated. Phenotypic characteristics, such as hypha formation and higher axenic growth rate, seem to contribute to yeast persistence within granuloma-like structures. We showed an interindividual variability of the human response against Candida spp. Higher proportions of neutrophils and elevated CD4 + /CD8 + T cell ratios during the first days after challenge were correlated with early production of gamma interferon (IFN-γ) and associated with controlled infection. In contrast, the persistence of Candida could result from upregulation of proinflammatory cytokines such as interleukin-6 (IL-6), IFN-γ, and tumor necrosis factor alpha (TNF-α) and a poor anti-inflammatory negative feedback (IL-10). Importantly, regulatory subsets of NK cells and CD4 lo CD8 hi doubly positive (DP) lymphocytes at late stage infiltrate granuloma-like structures and could correlate with the IL-10 and TNF-α production. These data offer a base frame to explain cellular events that guide infection control or fungal persistence. Copyright © 2016 Misme-Aucouturier et al.

  9. Molecular Understanding of Fullerene - Electron Donor Interactions in Organic Solar Cells

    KAUST Repository

    Ryno, Sean

    2016-09-13

    Organic solar cells hold promise of providing low-cost, renewable power generation, with current devices providing up to 13% power conversion efficiency. The rational design of more performant systems requires an in-depth understanding of the interactions between the electron donating and electron accepting materials within the active layers of these devices. Here, we explore works that give insight into the intermolecular interactions between electron donors and electron acceptors, and the impact of molecular orientations and environment on these interactions. We highlight, from a theoretical standpoint, the effects of intermolecular interactions on the stability of charge carriers at the donor/acceptor interface and in the bulk and how these interactions influence the nature of the charge transfer states as wells as the charge separation and charge transport processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation.

    Science.gov (United States)

    Hohman, Fred; Hodas, Nathan; Chau, Duen Horng

    2017-05-01

    Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as "black-boxes" due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user's data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.

  11. ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Hohman, Frederick M.; Hodas, Nathan O.; Chau, Duen Horng

    2017-05-30

    Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as “black-boxes” due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user’s data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.

  12. Graphene nanoplatelets spontaneously translocate into the cytosol and physically interact with cellular organelles in the fish cell line PLHC-1

    Energy Technology Data Exchange (ETDEWEB)

    Lammel, Tobias; Navas, José M., E-mail: jmnavas@inia.es

    2014-05-01

    Highlights: • We assessed the cytotoxicity and uptake of graphene nanomaterials in PLHC-1 cells. • GO and CXYG nanoplatelets caused physical injury of the plasma membrane. • GO and CXYG accumulated in the cytosol and interacted with cellular organelles. • PLHC-1 cells exposed to GO/CXYG demonstrated high ROS levels but low cytotoxicity. • ROS formation was related with GO/CXYG-induced structural damage of mitochondria. - Abstract: Graphene and graphene derivatives constitute a novel class of carbon-based nanomaterials being increasingly produced and used in technical and consumer applications. Release of graphene nanoplatelets during the life cycle of these applications may result in human and environmental exposure calling for assessment of their potential to cause harm to humans and wildlife. This study aimed to assess the toxicity of graphene oxide (GO) and carboxyl graphene (CXYG) nanoplatelets to non-mammalian species using the fish cell line PLHC-1 as in vitro model. The cytotoxicity of GO and CXYG was assessed using different assays measuring alterations in plasma membrane integrity, metabolic activity, and lysosomal and mitochondrial function. The induction of oxidative stress was assessed by measuring intracellular reactive oxygen species (ROS) levels. Interaction with the plasma membrane and internalization of nanoplatelets were investigated by electron microscopy. Graphene nanoplatelets spontaneously penetrated through the plasma membrane and accumulated in the cytosol, where they further interacted with mitochondrial and nuclear membranes. PLHC-1 cells demonstrated significantly reduced mitochondrial membrane potential (MMP) and increased ROS levels at 16 μg/ml GO and CXYG (72 h), but barely any decrease in cell viability. The observation of intracellular graphene accumulations not enclosed by membranes suggests that GO and CXYG internalization in fish hepatoma cells occurs through an endocytosis-independent mechanism.

  13. Russian emigration in the Balkans: The problem of understanding and cultural interaction

    Directory of Open Access Journals (Sweden)

    Antanasievič Irina N.

    2014-01-01

    Full Text Available The problem of understanding and cultural interaction on the -example of the Russian emigration, which happened after the revolution in Yugoslavia will be considered in the analysis of behavioral models and analysis of everyday culture, in forms that are fixed on the pages of Russian satirical magazine.

  14. Understanding Manual-Based Behavior Therapy: Some Theoretical Foundations of Parent-Child Interaction Therapy.

    Science.gov (United States)

    Greco, Laurie A.; Sorrell, John T.; McNeil, Cheryl B.

    2001-01-01

    Provides a model of understanding and evaluating manualized treatments by beginning with a review of the theory and data-driven principles upon which one treatment, Parent-Child Interaction Therapy (PCIT), is based. As a point of illustration, several principles of PCIT, such as reinforcement, punishment, and stimulus control, are highlighted, and…

  15. Analysis of Student-Teacher Cognitive Styles Interaction: An Approach to Understanding Learner Performance

    Science.gov (United States)

    Sellah, Lusweti; Jacinta, Kwena; Helen, Mondoh

    2017-01-01

    Cognitive styles are persistent patterns of behavior that determine how an individual acquires and processes information. In the classroom the cognitive styles of the teacher interact with those of the learner resulting in differential understanding. This study which is informed by cognitive styles theories is a descriptive study that examined the…

  16. An Understanding Information Management System for a Real-Time Interactive Distance Education Environment

    Science.gov (United States)

    He, Aiguo

    2009-01-01

    A real-time interactive distance lecture is a joint work that should be accomplished by the effort of the lecturer and his students in remote sites. It is important for the lecturer to get understanding information from the students which cannot be efficiently collected by only using video/audio channels between the lecturer and the students. This…

  17. Understanding consumer motivations for interacting in online food communities – potential for innovation

    DEFF Research Database (Denmark)

    Jacobsen, Lina; Sørensen, Bjarne Taulo; Tudoran, Ana Alina

    This study contributes to the understanding of online user communities as a potential source of innovation. That would require an interest from users in interacting in such communities. In order to establish interaction, users must provide as well as consume information. However, depending...... on the innovation task, one may be more important than the other. It is therefore important to understand, how companies can increase user willingness to engage in these different interaction forms. This study investigates the influence of various motivation factors and user interests on intention to provide...... or consume information in online food communities. A survey was conducted among 1009 respondents followed by analysis based on Structural Equation Modelling. Results revealed the effect of motivation factors to be stronger than basic consumer interests indicating that companies can influence the intended...

  18. Understanding Motivations and User Interests as Antecedents for Different Interaction Forms in Online Communities

    DEFF Research Database (Denmark)

    Jacobsen, Lina; Sørensen, Bjarne Taulo; Tudoran, Ana Alina

    This study contributes to the understanding of online user communities as a potential source of innovation. That would require an interest from users in interacting in such communities. In order to establish interaction, users must provide as well as consume information. However, depending...... on the innovation task, one may be more important than the other. It is therefore important to understand, how companies can increase user willingness to engage in these different interaction forms. This study investigates the influence of various motivation factors and user interests on intention to provide...... or consume information in online food communities. A survey was conducted among 1009 respondents followed by analysis based on Structural Equation Modelling. Results revealed the effect of motivation factors to be stronger than basic consumer interests indicating that companies can influence the intended...

  19. Understanding Situated Social Interactions: A Case Study of Public Places in the City

    DEFF Research Database (Denmark)

    Paay, Jeni; Kjeldskov, Jesper

    2008-01-01

    these and their situated interactions. In response, this paper addresses the challenge of informing design of mobile services for fostering social connections by using the concept of place for studying and understanding peoples’ social activities in a public built environment. We present a case study of social experience...... of a physical place providing an understanding of peoples’ situated social interactions in public places of the city derived through a grounded analysis of small groups of friends socialising out on the town. Informed by this, we describe the design and evaluation of a mobile prototype system facilitating......Ubiquitous and mobile computer technologies are increasingly being appropriated to facilitate people’s social life outside the work domain. Designing such social and collaborative technologies requires an understanding of peoples’ physical and social context, and the interplay between...

  20. From understanding cellular function to novel drug discovery: the role of planar patch-clamp array chip technology

    Directory of Open Access Journals (Sweden)

    Christophe ePy

    2011-10-01

    Full Text Available All excitable cell functions rely upon ion channels that are embedded in their plasma membrane. Perturbations of ion channel structure or function result in pathologies ranging from cardiac dysfunction to neurodegenerative disorders. Consequently, to understand the functions of excitable cells and to remedy their pathophysiology, it is important to understand the ion channel functions under various experimental conditions – including exposure to novel drug targets. Glass pipette patch-clamp is the state of the art technique to monitor the intrinsic and synaptic properties of neurons. However, this technique is labor-intensive and has low data throughput. Planar patch-clamp chips, integrated into automated systems, offer high throughputs but are limited to isolated cells from suspensions, resulting in questionable models of true physiological function, and are unsuitable for studies involving neuronal communication. Multi-electrode arrays (MEA, in contrast, have the ability to monitor network activity by measuring local field potentials from multiple extracellular sites, but specific ion channel activity is challenging to extract from these multiplexed signals. Here we describe a novel planar patch-clamp chip technology that enables the simultaneous high resolution electrophysiological interrogation of individual neurons at multiple sites in synaptically connected neuronal networks, thereby combining the advantages of MEA and patch-clamp techniques. Each neuron can be probed through an aperture that connects to a dedicated subterranean microfluidic channel. Neurons growing in networks are aligned to the apertures by physisorbed or chemisorbed chemical cues. In this review, we describe the design and fabrication process of these chips, the approach to the chemical patterning for cell placement, and present physiological data from cultured neuronal cells.

  1. The interactions between CdTe quantum dots and proteins: understanding nano-bio interface

    Directory of Open Access Journals (Sweden)

    Shreeram S. Joglekar

    2017-01-01

    Full Text Available Despite remarkable developments in the nanoscience, relatively little is known about the physical (electrostatic interactions of nanoparticles with bio macromolecules. These interactions can influence the properties of both nanoparticles and the bio-macromolecules. Understanding this bio-interface is a prerequisite to utilize both nanoparticles and biomolecules for bioengineering. In this study, luminescent, water soluble CdTe quantum dots (QDs capped with mercaptopropionic acid (MPA were synthesized by organometallic method and then interaction between nanoparticles (QDs and three different types of proteins (BSA, Lysozyme and Hemoglobin were investigated by fluorescence spectroscopy at pH= 7.4. Based on fluorescence quenching results, Stern-Volmer quenching constant (Ksv, binding constant (Kq and binding sites (n for proteins were calculated. The results show that protein structure (e.g.,globular, metalloprotein, etc. has a significant role in Protein-Quantum dots interactions and each type of protein influence physicochemical properties of Quantum dots differently.

  2. Macrophage traits in cancer cells are induced by macrophage-cancer cell fusion and cannot be explained by cellular interaction.

    Science.gov (United States)

    Shabo, Ivan; Midtbö, Kristine; Andersson, Henrik; Åkerlund, Emma; Olsson, Hans; Wegman, Pia; Gunnarsson, Cecilia; Lindström, Annelie

    2015-11-20

    Cell fusion is a natural process in normal development and tissue regeneration. Fusion between cancer cells and macrophages generates metastatic hybrids with genetic and phenotypic characteristics from both maternal cells. However, there are no clinical markers for detecting cell fusion in clinical context. Macrophage-specific antigen CD163 expression in tumor cells is reported in breast and colorectal cancers and proposed being caused by macrophages-cancer cell fusion in tumor stroma. The purpose of this study is to examine the cell fusion process as a biological explanation for macrophage phenotype in breast. Monocytes, harvested from male blood donor, were activated to M2 macrophages and co-cultured in ThinCert transwell system with GFP-labeled MCF-7 cancer cells. MCF7/macrophage hybrids were generated by spontaneous cell fusion, isolated by fluorescence-activated cell sorting and confirmed by fluorescence microscopy, short tandem repeats analysis and flow cytometry. CD163 expression was evaluated in breast tumor samples material from 127 women by immunohistochemistry. MCF-7/macrophage hybrids were generated spontaneously at average rate of 2 % and showed phenotypic and genetic traits from both maternal cells. CD163 expression in MCF-7 cells could not be induced by paracrine interaction with M2-activated macrophages. CD163 positive cancer cells in tumor sections grew in clonal collection and a cutoff point >25 % of positive cancer cells was significantly correlated to disease free and overall survival. In conclusion, macrophage traits in breast cancer might be caused by cell fusion rather than explained by paracrine cellular interaction. These data provide new insights into the role of cell fusion in breast cancer and contributes to the development of clinical markers to identify cell fusion.

  3. Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Rongliang, E-mail: eesqrl@mail.sysu.edu.cn [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Thangavel, Palaniswamy; Hu Pengjie; Senthilkumar, Palaninaicker; Ying Rongrong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Tang Yetao [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China)

    2011-02-28

    Potentilla griffithii Hook is a newly found hyperaccumulator plant capable of high tolerance and accumulation of Zn and Cd. We investigated the interactive effects between Cd and Zn on accumulation and vacuolar sequestration in P. griffithii. Stimulatory effect of growth was noted at 0.2 mM Cd and 1.25 and 2.5 mM Zn tested. Accumulation of Zn and Cd in roots, petioles and leaves were increased significantly with addition of these metals individually. However, the Zn supplement decreased root Cd accumulation but increased the concentration of Cd in petioles and leaves. The results from sub-cellular distribution showed that up to 94% and 70% of the total Zn and Cd in the leaves were present in the protoplasts, and more than 90% Cd and Zn in the protoplasts were localized in the vacuoles. Nearly, 88% and 85% of total Cd and Zn were extracted in the cell sap of the leaves suggesting that most of the Cd and Zn in the leaves were available in soluble form. The present results indicate that Zn supplement significantly enhanced the petiole accumulation of Cd and further vacuolar sequestration plays an important role in tolerance, detoxification and hyperaccumulation of these metals in P. griffithii.

  4. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design.

    Science.gov (United States)

    Li, Ruibin; Ji, Zhaoxia; Chang, Chong Hyun; Dunphy, Darren R; Cai, Xiaoming; Meng, Huan; Zhang, Haiyuan; Sun, Bingbing; Wang, Xiang; Dong, Juyao; Lin, Sijie; Wang, Meiying; Liao, Yu-Pei; Brinker, C Jeffrey; Nel, Andre; Xia, Tian

    2014-02-25

    Growing international exploitation of rare earth oxides (REOs) for commercial and biological use has increased the possibility of human exposure and adverse health effects. Occupational exposure to rare earth materials in miners and polishers leads to a severe form of pneumoconiosis, while gadolinium-containing MRI contrast agents cause nephrogenic systemic fibrosis in patients with renal impairment. The mechanisms for inducing these adverse pro-fibrogenic effects are of considerable importance for the safety assessment of REO particles as well as presenting opportunities for safer design. In this study, using a well-prepared REO library, we obtained a mechanistic understanding of how REOs induce cellular and pulmonary damage by a compartmentalized intracellular biotransformation process in lysosomes that results in pro-fibrogenic growth factor production and lung fibrosis. We demonstrate that rare earth oxide ion shedding in acidifying macrophage lysosomes leads to biotic phosphate complexation that results in organelle damage due to stripping of phosphates from the surrounding lipid bilayer. This results in nanoparticle biotransformation into urchin shaped structures and setting in motion a series of events that trigger NLRP3 inflammasome activation, IL-1β release, TGF-β1 and PDGF-AA production. However, pretreatment of REO nanoparticles with phosphate in a neutral pH environment prevents biological transformation and pro-fibrogenic effects. This can be used as a safer design principle for producing rare earth nanoparticles for biological use.

  5. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media

    Science.gov (United States)

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  6. Fuel-coolant interaction (FCI) phenomena in reactor safety. Current understanding and future research needs

    Energy Technology Data Exchange (ETDEWEB)

    Speis, T.P. [Maryland Univ., College Park, MD (United States); Basu, S.

    1998-01-01

    This paper gives an account of the current understanding of fuel-coolant interaction (FCI) phenomena in the context of reactor safety. With increased emphasis on accident management and with emerging in-vessel core melt retention strategies for advanced light water reactor (ALWR) designs, recent interest in FCI has broadened to include an evaluation of potential threats to the integrity of reactor vessel lower head and ex-vessel structural support, as well as the role of FCI in debris quenching and coolability. The current understanding of FCI with regard to these issues is discussed, and future research needs to address the issues from a risk perspective are identified. (author)

  7. Understanding the interactions of oleic acid with basic drugs in solid lipids on different biopharmaceutical levels.

    OpenAIRE

    Zdravka Misic; Dubravka Šišak Jung; Georg Sydow; Martin Kuentz

    2016-01-01

    There has recently been increasing interest in understanding the impact of intestinal supersaturation on the absorption of poorly water-soluble drugs. Focus has been mostly on the effect of excipients on maintaining drug supersaturation. The aim of the this study was to explore the effects of drug-excipient interactions of an anhydrous formulation, when dispersed in simple buffer media and, in particular, focusing on precipitation kinetics. A solid lipid-based formulation comprising of PEG-32...

  8. Fundamental understanding of the interaction of continuous wave laser with aluminium

    OpenAIRE

    Coroado, Júlio; Meco, Sónia; Williams, Stewart; Ganguly, Supriyo; Suder, Wojciech; Quintino, Luísa; Assunção, Eurico

    2017-01-01

    In welding, the depth of penetration, weld profile and the corresponding thermal cycle are the three basic outcomes that a user wishes to control flexibly. In laser welding applications, controlled application of power and energy density is the key to achieve predictable control of these characteristics. Creation of an analytical model is an important step towards understanding the underpinning science of laser metal interaction in controlling the depth, bead geometry and thereby temperature ...

  9. Creating the brain and interacting with the brain: an integrated approach to understanding the brain

    OpenAIRE

    Morimoto, Jun; Kawato, Mitsuo

    2015-01-01

    In the past two decades, brain science and robotics have made gigantic advances in their own fields, and their interactions have generated several interdisciplinary research fields. First, in the ‘understanding the brain by creating the brain’ approach, computational neuroscience models have been applied to many robotics problems. Second, such brain-motivated fields as cognitive robotics and developmental robotics have emerged as interdisciplinary areas among robotics, neuroscience and cognit...

  10. Effect of science magic applied in interactive lecture demonstrations on conceptual understanding

    Science.gov (United States)

    Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny

    2017-08-01

    Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic is higher than students who received lesson with ILD without science magic . Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.

  11. In situ assembly of fibrinogen/hyaluronic acid hydrogel via knob-hole interaction for 3D cellular engineering

    Directory of Open Access Journals (Sweden)

    Shengjie Huang

    2017-12-01

    Full Text Available Hyaluronic acid (HA-based hydrogels have applied widely for biomedical applications due to its biocompatibility and biodegradability. However, the use of initiators or crosslinkers during the hydrogel formation may cause cytotoxicity and thereby impair the biocompatibility. Inspired by the crosslinking mechanism of fibrin gel, a novel HA-based hydrogel was developed via the in situ supramolecular assembly based on knob-hole interactions between fibrinogen and knob-grafted HA (knob-g-HA in this study. The knob-grafted HA was synthesized by coupling knob peptides (GPRPAAC, a mimic peptide of fibrin knob A to HA via Michael addition. Then the translucent fibrinogen/knob-g-HA hydrogels were prepared by simply mixing the solutions of knob-g-HA and fibrinogen at the knob/hole ratio of 1.2. The rheological behaviors of the fibrinogen/knob-g-HA hydrogels with the fibrinogen concentrations of 50, 100 and 200 mg/mL were evaluated, and it was found that the dynamic storage moduli (G′ were higher than the loss moduli (G″ over the whole frequency range for all the groups. The SEM results showed that fibrinogen/knob-g-HA hydrogels presented the heterogeneous mesh-like structures which were different from the honeycomb-like structures of fibrinogen/MA-HA hydrogels. Correspondingly, a higher swelling ratio was obtained in the groups of fibrinogen/knob-g-HA hydrogel. Finally, the cytocompatibility of fibrinogen/knob-g-HA hydrogels was proved by live/dead stainings and MTT assays in the 293T cells encapsulation test. All these results highlight the biological potential of the fibrinogen/knob-g-HA hydrogels for 3D cellular engineering.

  12. Characterization of L1 ORF1p self-interaction and cellular localization using a mammalian two-hybrid system.

    Directory of Open Access Journals (Sweden)

    Mark Sokolowski

    Full Text Available Long INterspersed Element-1 (LINE-1, L1 is an active retrotransposon that mobilizes using a ribonucleoprotein particle (RNP intermediate composed of the full-length bicistronic L1 mRNA and the two proteins (ORF1p and ORF2p encoded by that mRNA. ORF1p and ORF2p demonstrate cis-preference for their encoding mRNA. Previous studies of ORF1p, purified from bacterial and insect cells demonstrated that this protein forms trimers in vitro. While valuable for understanding ORF1p function, these in vitro approaches do not provide any information on ORF1p self-interaction in the context of mammalian cells. We used a mammalian two-hybrid (M2H system in order to study L1 ORF1p self-interaction in human and mouse cells. We demonstrate that the M2H system successfully detects human and mouse ORF1p self-interactions in transiently transfected mammalian cells. We also generated mouse and human ORF1p-specific antibodies to characterize the expression of ORF1p fusion proteins used in the M2H system. Using these antibodies, we demonstrate that ORF1p interaction in trans leads to the formation of heterodimers that are expected to produce a positive signal in the M2H system. Although the role for L1 ORF1p cis-preference in L1 mobilization is established, the impact of ability of ORF1pto interact in trans on the L1 replication cycle is not known. Furthermore, western blot analysis of ORF1p generated by a full-length L1, wild type ORF1, or a codon-optimized ORF1 expression vector is detected in the nucleus. In contrast, the addition of a tag to the N-terminus of the mouse and human ORF1 proteins can significantly alter the subcellular localization in a tag-specific manner. These data support that nuclear localization of ORF1p may contribute to L1 (and potentially the SINE Alu RNP nuclear access in the host cell.

  13. The interaction between radiation and complexes of cis-Pt(II) and Rh(II): studies at the molecular and cellular level

    International Nuclear Information System (INIS)

    Chibber, R.

    1985-01-01

    As a first step in gaining an understanding of the relative cellular effects of the transition metal/nitroimidazole complexes the authors have examined the effect of radiation given to cells in the presence of metal complexes not containing a nitroimidazole ligand. The compounds used in the cellular work are a series of Rh(II) carboxylates, cisplatin and JM8 (CBDCA, cis-diammine-1, 1-cyclobutane dicarboxylate platinum (II)). In radiation chemical experiments, Rh(II) acetate and cisplatin were chosen to represent model systems. Results from these radiation chemical and cellular experiments then allow interpretation of the changes in biological response caused by these agents, which are discussed in terms of the mechanism(s) thought to be operative in radiosensitization. (author)

  14. Understanding the Induction of a Science Teacher: The Interaction of Identity and Context

    Science.gov (United States)

    Saka, Yavuz; Southerland, Sherry A.; Kittleson, Julie; Hutner, Todd

    2013-06-01

    The demanding first years of teaching are a time when many teachers leave the teaching profession or discard the reform-minded practice emphasized in teacher preparation. If we are to lessen teacher attrition and more effectively support teachers during their development, a better understanding of what occurs during their induction into the profession is needed. The question that drove this research was what factors influence how a beginning science teacher negotiates entry into teaching? Specifically, we sought to understand how a beginning science teacher's identities interact with the teaching context; how this interaction shapes his use of reform-minded teaching practice; and how the negotiation of identity, context, and practice influence a novice teacher's employment decisions. The study involved 2 years of data collection; data included classroom and school observations, questionnaires, interviews, and teaching artifacts (such as lesson plans and assessments). The results demonstrate how conflicts in identities, institutional expectations, and personal dispositions of this novice influenced his transition in becoming a member of his school community. Implications of these interactions for teacher preparation and support are provided.

  15. Network Understanding of Herb Medicine via Rapid Identification of Ingredient-Target Interactions

    Science.gov (United States)

    Zhang, Hai-Ping; Pan, Jian-Bo; Zhang, Chi; Ji, Nan; Wang, Hao; Ji, Zhi-Liang

    2014-01-01

    Today, herb medicines have become the major source for discovery of novel agents in countermining diseases. However, many of them are largely under-explored in pharmacology due to the limitation of current experimental approaches. Therefore, we proposed a computational framework in this study for network understanding of herb pharmacology via rapid identification of putative ingredient-target interactions in human structural proteome level. A marketing anti-cancer herb medicine in China, Yadanzi (Brucea javanica), was chosen for mechanistic study. Total 7,119 ingredient-target interactions were identified for thirteen Yadanzi active ingredients. Among them, about 29.5% were estimated to have better binding affinity than their corresponding marketing drug-target interactions. Further Bioinformatics analyses suggest that simultaneous manipulation of multiple proteins in the MAPK signaling pathway and the phosphorylation process of anti-apoptosis may largely answer for Yadanzi against non-small cell lung cancers. In summary, our strategy provides an efficient however economic solution for systematic understanding of herbs' power.

  16. Understanding small biomolecule-biomaterial interactions: a review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces.

    Science.gov (United States)

    Costa, Dominique; Garrain, Pierre-Alain; Baaden, Marc

    2013-04-01

    Interactions between biomolecules and inorganic surfaces play an important role in natural environments and in industry, including a wide variety of conditions: marine environment, ship hulls (fouling), water treatment, heat exchange, membrane separation, soils, mineral particles at the earth's surface, hospitals (hygiene), art and buildings (degradation and biocorrosion), paper industry (fouling) and more. To better control the first steps leading to adsorption of a biomolecule on an inorganic surface, it is mandatory to understand the adsorption mechanisms of biomolecules of several sizes at the atomic scale, that is, the nature of the chemical interaction between the biomolecule and the surface and the resulting biomolecule conformations once adsorbed at the surface. This remains a challenging and unsolved problem. Here, we review the state of art in experimental and theoretical approaches. We focus on metallic biomaterial surfaces such as TiO(2) and stainless steel, mentioning some remarkable results on hydroxyapatite. Experimental techniques include atomic force microscopy, surface plasmon resonance, quartz crystal microbalance, X-ray photoelectron spectroscopy, fluorescence microscopy, polarization modulation infrared reflection absorption spectroscopy, sum frequency generation and time of flight secondary ion mass spectroscopy. Theoretical models range from detailed quantum mechanical representations to classical forcefield-based approaches. Copyright © 2012 Wiley Periodicals, Inc.

  17. Understanding the dynamic interactions driving Zambian health centre performance: a case-based health systems analysis

    Science.gov (United States)

    Topp, Stephanie M; Chipukuma, Julien M; Hanefeld, Johanna

    2015-01-01

    Background Despite being central to achieving improved population health outcomes, primary health centres in low- and middle-income settings continue to underperform. Little research exists to adequately explain how and why this is the case. This study aimed to test the relevance and usefulness of an adapted conceptual framework for improving our understanding of the mechanisms and causal pathways influencing primary health centre performance. Methods A theory-driven, case-study approach was adopted. Four Zambian health centres were purposefully selected with case data including health-care worker interviews (n = 60); patient interviews (n = 180); direct observation of facility operations (2 weeks/centre) and key informant interviews (n = 14). Data were analysed to understand how the performance of each site was influenced by the dynamic interactions between system ‘hardware’ and ‘software’ acting on mechanisms of accountability. Findings Structural constraints including limited resources created challenging service environments in which work overload and stockouts were common. Health workers’ frustration with such conditions interacted with dissatisfaction with salary levels eroding service values and acting as a catalyst for different forms of absenteeism. Such behaviours exacerbated patient–provider ratios and increased the frequency of clinical and administrative shortcuts. Weak health information systems and lack of performance data undermined providers’ answerability to their employer and clients, and a lack of effective sanctions undermined supervisors’ ability to hold providers accountable for these transgressions. Weak answerability and enforceability contributed to a culture of impunity that masked and condoned weak service performance in all four sites. Conclusions Health centre performance is influenced by mechanisms of accountability, which are in turn shaped by dynamic interactions between system hardware and system software. Our

  18. Understanding Consumer Interaction on Instagram: The Role of Satisfaction, Hedonism, and Content Characteristics.

    Science.gov (United States)

    Casaló, Luis V; Flavián, Carlos; Ibáñez-Sánchez, Sergio

    2017-06-01

    The increasing relevance of Instagram and its growing adoption among top brands suggest an effort to better understand consumers' behaviors within this context. The purpose of this study is to examine the role of perceived hedonism and satisfaction in determining consumers' intentions to interact and their actual interaction behaviors (the number of likes, by tapping a heart icon, and comments) in a brand's official Instagram account. Also, we investigate the effect of consumer perceptions about the characteristics of the content generated in the account (perceived originality, quantity, and quality) on their perceived hedonism and satisfaction. Data were collected in two stages from 808 members of a fashion brand's official Instagram account. First, participants answered an online questionnaire to evaluate their perceptions, satisfaction, and interaction intentions. Second, 1 month later, we measure the number of likes and comments done by each participant in the brand's official Instagram account during that month. Using partial least squares to analyze the data, perceived hedonism is found to affect both satisfaction and the intention to interact in Instagram, which in turn influences actual behavior. Besides, perceived originality is the most relevant content characteristic to develop perceived hedonism. These findings offer managers a general vision of consumers' behaviors on Instagram, highlighting the importance of hedonism to create a satisfactory experience.

  19. A Century of Plant Pathology: A Retrospective View on Understanding Host-Parasite Interactions.

    Science.gov (United States)

    Keen, N T

    2000-09-01

    ▪ Abstract  The twentieth century has been productive for the science of plant pathology and the field of host-parasite interactions-both in understanding how pathogens and plant defense work and in developing more effective means of disease control. Early in the twentieth century, plant pathology adopted a philosophy that encouraged basic scientific investigation of pathogens and disease defense. That philosophy led to the strategy of developing disease-resistant plants as a prima facie disease-control measure-and in the process saved billions of dollars and avoided the use of tons of pesticides. Plant pathology rapidly adopted molecular cloning and its spin-off technologies, and these have fueled major advances in our basic understanding of plant diseases. This knowledge and the development of efficient technologies for producing transgenic plants convey optimism that plant diseases will be more efficiently controlled in the twenty-first century.

  20. A Diagrammatic Approach to Understanding Complex Eco-Social Interactions in Kathmandu, Nepal

    Directory of Open Access Journals (Sweden)

    R. Cynthia. Neudoerffer

    2005-12-01

    Full Text Available As part of developing an international network of community-based ecosystem approaches to health, a project was undertaken in a densely populated and socio-economically diverse area of Kathmandu, Nepal. Drawing on hundreds of pages of narrative reports based on surveys, interviews, secondary data, and focus groups by trained Nepalese facilitators, the authors created systemic depictions of relationships between multiple stakeholder groups, ecosystem health, and human health. These were then combined to examine interactions among stakeholders, activities, concerns, perceived needs, and resource states (ecosystem health indicators. These qualitative models have provided useful heuristics for both community members and research scholars to understand the eco-social systems in which they live; many of the strategies developed by the communities and researchers to improve health intuitively drew on this systemic understanding. The diagrams enabled researchers and community participants to explicitly examine relationships and conflicts related to health and environmental issues in their community.

  1. Mathematical modeling applied to understand the host-pathogen interaction of HIV infection in Bangladesh

    Directory of Open Access Journals (Sweden)

    S. K. Sahani

    2017-10-01

    Full Text Available The most urgent public health problem today is to devise effective strategies to minimize the destruction caused by the AIDS epidemic. The understanding of HIV infection through mathematical modeling have made a significant contribution. The interaction of host to pathogen have been determined by fitting mathematical models to experimental data. In Bangladesh, the increasing rate of HIV infection comparing to the other countries of the world is not so high. Among the most at risk population of Bangladesh the HIV prevalent is still considered to be low with prevalence 1 then HIV infection persists.

  2. The Interaction of Procedural Skill, Conceptual Understanding and Working Memory in Early Mathematics Achievement

    Directory of Open Access Journals (Sweden)

    Camilla Gilmore

    2017-12-01

    Full Text Available Large individual differences in children’s mathematics achievement are observed from the start of schooling. Previous research has identified three cognitive skills that are independent predictors of mathematics achievement: procedural skill, conceptual understanding and working memory. However, most studies have only tested independent effects of these factors and failed to consider moderating effects. We explored the procedural skill, conceptual understanding and working memory capacity of 75 children aged 5 to 6 years as well as their overall mathematical achievement. We found that, not only were all three skills independently associated with mathematics achievement, but there was also a significant interaction between them. We found that levels of conceptual understanding and working memory moderated the relationship between procedural skill and mathematics achievement such that there was a greater benefit of good procedural skill when associated with good conceptual understanding and working memory. Cluster analysis also revealed that children with equivalent levels of overall mathematical achievement had differing strengths and weaknesses across these skills. This highlights the importance of considering children’s skill profile, rather than simply their overall achievement.

  3. Volcanoes: effusions and explosions. Interactive exhibits to understand how volcanoes work.

    Science.gov (United States)

    Nostro, C.; Freda, L.; Castellano, C.; Arcoraci, L.; Baroux, E.

    2009-04-01

    The Educational & Outreach Group (EOG) of the Istituto Nazionale di Geofisica & Vulcanologia created a portable museum to provide educational opportunities in volcanology, volcanic risk and Earth science for students and visitors. The EOG developed this project for the "Festival della Scienza", organized in Genoa, Italy, in October - November, 2007, which was a parade of over 200 events, including scientific and technological exhibitions, workshops, meetings, lectures, books and video presentations. In this museum visitors can successively see many posters and movies and play with interactive exhibits. A little 3D-movie shows the Big Bang, the formation of Solar System and, in particular the formation of the Earth. Many interactive exhibits illustrate why, where and when earthquakes and volcanic eruptions occur around the world and allow to introduce the visitor to the plate tectonics theory. A 3D magnetic plate tectonic puzzle can be put down and reconstructed by visitors to understand the Earth's surface configuration. Then two other 3D Earth models show what drives the plates and the inner Earth structure. An interactive program illustrates where and when earthquakes and volcanic eruptions occur in accelerated time on maps of various areas around the world. Playing with a block diagram it is possible to produce an earthquake along a 1 meter long strike slip fault in a destroying all the man-made constructions close to it. A little movie introduces to volcanoes' world. Two small interactive exhibits allow visitors to understand the mechanism for the explosive and the effusive eruptions. Two other exciting interactive exhibits allow visitors to "create" two different eruptions: the explosive and the effusive ones. It is possible to get inside a volcano (a 2 meter high interactive exhibit) to attend an eruption from the magmatic chamber to the Earth surface. A big hall is completed dedicated to Italian volcanoes (Vesuvio, Campi Flegrei, Etna, Stromboli, Vulcano

  4. College Chemistry Students' Understanding of Potential Energy in the Context of Atomic-Molecular Interactions

    Science.gov (United States)

    Becker, Nicole M.; Cooper, Melanie M.

    2014-01-01

    Understanding the energy changes that occur as atoms and molecules interact forms the foundation for understanding the macroscopic energy changes that accompany chemical processes. In order to identify ways to scaffold students' understanding of the connections between atomic-molecular and macroscopic energy perspectives, we conducted a…

  5. A cellular stress response (CSR) that interacts with NADPH-P450 reductase (NPR) is a new regulator of hypoxic response.

    Science.gov (United States)

    Oguro, Ami; Koyama, Chika; Xu, Jing; Imaoka, Susumu

    2014-02-28

    NADPH-P450 reductase (NPR) was previously found to contribute to the hypoxic response of cells, but the mechanism was not clarified. In this study, we identified a cellular stress response (CSR) as a new factor interacting with NPR by a yeast two-hybrid system. Overexpression of CSR enhanced the induction of erythropoietin and hypoxia response element (HRE) activity under hypoxia in human hepatocarcinoma cell lines (Hep3B), while knockdown of CSR suppressed them. This new finding regarding the interaction of NPR with CSR provides insight into the function of NPR in hypoxic response. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The Influence of Receptor-Mediated Interactions on Reaction-Diffusion Mechanisms of Cellular Self-organisation

    KAUST Repository

    Klika, Václav

    2011-11-10

    Understanding the mechanisms governing and regulating self-organisation in the developing embryo is a key challenge that has puzzled and fascinated scientists for decades. Since its conception in 1952 the Turing model has been a paradigm for pattern formation, motivating numerous theoretical and experimental studies, though its verification at the molecular level in biological systems has remained elusive. In this work, we consider the influence of receptor-mediated dynamics within the framework of Turing models, showing how non-diffusing species impact the conditions for the emergence of self-organisation. We illustrate our results within the framework of hair follicle pre-patterning, showing how receptor interaction structures can be constrained by the requirement for patterning, without the need for detailed knowledge of the network dynamics. Finally, in the light of our results, we discuss the ability of such systems to pattern outside the classical limits of the Turing model, and the inherent dangers involved in model reduction. © 2011 Society for Mathematical Biology.

  7. Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil.

    Directory of Open Access Journals (Sweden)

    Ming Nie

    were observed at these stages. The information provided by this study enhances our understanding of the effects of petroleum pollution on plant-microbe interactions and the roles of these interactions in the phytoremediation of petroleum-polluted soil.

  8. Using the tools of the trade to understand plasma interactions at Jupiter and Saturn

    Science.gov (United States)

    Kivelson, Margaret G.

    2017-10-01

    For more than half a century, we have been learning how magnetospheres work. Fluid motions and electromagnetic interactions combine to produce the plasma and field environment of a planet. Kinetic responses often control the dynamics. Initial descriptions of the terrestrial magnetosphere were often theoretical (e.g., Chapman and Ferraro, Dungey) before an explosion of spacecraft data provided an atlas of the system and its temporal variations. The basic structure and dynamics of the terrestrial magnetosphere are now largely understood. A different situation exists for the magnetospheres of Jupiter, Saturn, and their moons. Data acquired from spacecraft flybys or from orbit have characterized many aspects of these systems, but measurements are far more limited than at Earth both in space and in time. Even after Cassini’s mission to Saturn and Juno’s prime mission at Jupiter have ended, large regions in the plasma environments of these planets will remain unexplored. No monitors are available to characterize the upstream solar wind. Theory is challenged by the complexity introduced by dynamical effects of the planets’ rapid rotation and the unfamiliar parameter regimes governing interactions with their large moons. Simulation has come to the rescue, providing computational models designed to incorporate the effects of rotation or to describe moon-magnetosphere interactions. Yet simulations must be viewed with appropriate skepticism as they invariably require some compromise with reality. This talk will describe a symbiotic approach to understanding the dynamics of giant planet magnetospheres and the plasma interactions between magnetospheric plasma and large moons. Data acquired along a spacecraft trajectory are compared with values extracted from a virtual spacecraft moving through the same path in the simulation. If results are similar, we use the simulation to identify the processes responsible for puzzling aspects of the signatures. If results differ

  9. Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil

    Science.gov (United States)

    Nie, Ming; Wang, Yijing; Yu, Jiayi; Xiao, Ming; Jiang, Lifen; Yang, Ji; Fang, Changming; Chen, Jiakuan; Li, Bo

    2011-01-01

    at these stages. The information provided by this study enhances our understanding of the effects of petroleum pollution on plant-microbe interactions and the roles of these interactions in the phytoremediation of petroleum-polluted soil. PMID:21437257

  10. There's a World Going on Underground: Imaging Technologies to Understand Root Growth Dynamics and Rhizosphere Interactions

    Science.gov (United States)

    Topp, C. N.

    2016-12-01

    Our ability to harness the power of plant genomics for basic and applied science depends on how well and how fast we can quantify the phenotypic ramifications of genetic variation. Plants can be considered from many vantage points: at scales from cells to organs, over the course of development or evolution, and from biophysical, physiological, and ecological perspectives. In all of these ways, our understanding of plant form and function is greatly limited by our ability to study subterranean structures and processes. The limitations to accessing this knowledge are well known - soil is opaque, roots are morphologically complex, and root growth can be heavily influenced by a myriad of environmental factors. Nonetheless, recent technological innovations in imaging science have generated a renewed focus on roots and thus new opportunities to understand the plant as a whole. The Topp Lab is interested in crop root system growth dynamics and function in response to environmental stresses such as drought, rhizosphere interactions, and as a consequence of artificial selection for agronomically important traits such as nitrogen uptake and high plant density. Studying roots requires the development of imaging technologies, computational infrastructure, and statistical methods that can capture and analyze morphologically complex networks over time and at high-throughput. The lab uses several imaging tools (optical, X-ray CT, PET, etc.) along with quantitative genetics and molecular biology to understand the dynamics of root growth and physiology. We aim to understand the relationships among root traits that can be effectively measured both in controlled laboratory environments and in the field, and to identify genes and gene networks that control root, and ultimately whole plant architectural features useful for crop improvement.

  11. Understanding Urban Watersheds through Digital Interactive Maps, San Francisco Bay Area, California

    Science.gov (United States)

    Sowers, J. M.; Ticci, M. G.; Mulvey, P.

    2014-12-01

    Dense urbanization has resulted in the "disappearance" of many local creeks in urbanized areas surrounding the San Francisco Bay. Long reaches of creeks now flow in underground pipes. Municipalities and water agencies trying to reduce non-point-source pollution are faced with a public that cannot see and therefore does not understand the interconnected nature of the drainage system or its ultimate discharge to the bay. Since 1993, we have collaborated with the Oakland Museum, the San Francisco Estuary Institute, public agencies, and municipalities to create creek and watershed maps to address the need for public understanding of watershed concepts. Fifteen paper maps are now published (www.museumca.org/creeks), which have become a standard reference for educators and anyone working on local creek-related issues. We now present digital interactive creek and watershed maps in Google Earth. Four maps are completed covering urbanized areas of Santa Clara and Alameda Counties. The maps provide a 3D visualization of the watersheds, with cartography draped over the landscape in transparent colors. Each mapped area includes both Present and Past (circa 1800s) layers which can be clicked on or off by the user. The Present layers include the modern drainage network, watershed boundaries, and reservoirs. The Past layers include the 1800s-era creek systems, tidal marshes, lagoons, and other habitats. All data are developed in ArcGIS software and converted to Google Earth format. To ensure the maps are interesting and engaging, clickable icons pop-up provide information on places to visit, restoration projects, history, plants, and animals. Maps of Santa Clara Valley are available at http://www.valleywater.org/WOW.aspx. Maps of western Alameda County will soon be available at http://acfloodcontrol.org/. Digital interactive maps provide several advantages over paper maps. They are seamless within each map area, and the user can zoom in or out, and tilt, and fly over to explore

  12. Understanding Photon / Free Carrier Interaction in LVP Signals on Ultra-Thin Silicon ICs.

    Energy Technology Data Exchange (ETDEWEB)

    Beutler, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Jr., Edward I. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Norman F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clement, John Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Friedman, Caitlin Anne Rochford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This project investigated a recently patented Sandia technology known as visible light Laser Voltage Probing (LVP). In this effort we carefully prepared well understood and characterized samples for testing. These samples were then operated across a range of configurations to minimize the possibility of superposition of multiple photon carrier interactions as data was taken with conventional and visible light LVP systems. Data consisted of LVP waveforms and Laser Voltage Images (LVI). Visible light (633 nm) LVP data was compared against 1319 nm and 1064 nm conventional LVP data to better understand the similarities and differences in mechanisms for all wavelengths of light investigated. The full text can be obtained by reaching the project manager, Ed Cole or the Cyber IA lead, Justin Ford.

  13. Opportunities for understanding of aerosol cloud interactions in the context of Marine Cloud Brightening Experiments

    Science.gov (United States)

    Rasch, Philip J.; Wood, Robert; Ackerman, Thomas P.

    2017-04-01

    Anthropogenic aerosol impacts on clouds constitute the largest source of uncertainty in radiative forcing of climate, confounding estimates of climate sensitivity to increases in greenhouse gases. Projections of future warming are also thus strongly dependent on estimates of aerosol effects on clouds. I will discuss the opportunities for improving estimates of aerosol effects on clouds from controlled field experiments where aerosol with well understood size, composition, amount, and injection altitude could be introduced to deliberately change cloud properties. This would allow scientific investigation to be performed in a manner much closer to a lab environment, and facilitate the use of models to predict cloud responses ahead of time, testing our understanding of aerosol cloud interactions.

  14. Arabidopsis thaliana - Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids

    Directory of Open Access Journals (Sweden)

    Joe eLouis

    2013-07-01

    Full Text Available The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA, is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed.

  15. Can understanding the packing of side chains improve the design of protein-protein interactions?

    Science.gov (United States)

    Zhou, Alice; O'Hern, Corey; Regan, Lynne

    2011-03-01

    With the long-term goal to improve the design of protein-protein interactions, we have begun extensive computational studies to understand how side-chains of key residues of binding partners geometrically fit together at protein-peptide interfaces, e.g. the tetratrico-peptide repeat protein and its cognate peptide). We describe simple atomic-scale models of hydrophobic dipeptides, which include hard-core repulsion, bond length and angle constraints, and Van der Waals attraction. By completely enumerating all minimal energy structures in these systems, we are able to reproduce important features of the probability distributions of side chain dihedral angles of hydrophic residues in the protein data bank. These results are the crucial first step in developing computational models that can predict the side chain conformations of residues at protein-peptide interfaces. CSO acknowledges support from NSF grant no. CMMT-1006527.

  16. The Paracoccidioides cell wall: past and present layers towards understanding interaction with the host

    Directory of Open Access Journals (Sweden)

    Rosana ePuccia

    2011-12-01

    Full Text Available The cell wall of pathogenic fungi plays import roles in interaction with the host, so that its composition and structure may determine the course of infection. Here we present an overview of the current and past knowledge on the cell wall constituents of Paracoccidioides brasiliensis and P. lutzii. These are temperature-dependent dimorphic fungi that cause paracoccidioidomycosis, a systemic granulomatous and debilitating disease. Focus is given on cell wall carbohydrate and protein contents, their immune-stimulatory features, adhesion properties, drug target characteristics, and morphological phase specificity. We offer a journey towards the future understanding of the dynamic life that takes place in the cell wall and of the changes that it may suffer when living in the human host.

  17. Adsorption of cellular peptides of Microcystis aeruginosa and two herbicides onto activated carbon. Effect of surface charge and interactions

    Czech Academy of Sciences Publication Activity Database

    Hnaťuková, Petra; Kopecká, Ivana; Pivokonský, Martin

    2011-01-01

    Roč. 45, č. 11 (2011), s. 3359-3368 ISSN 0043-1354 R&D Projects: GA AV ČR IAA200600902; GA ČR GPP105/10/P515 Institutional research plan: CEZ:AV0Z20600510 Keywords : cellular organic matter * granular activated carbon * molecular weight distribution * surface charge * cyanobacterial peptides Subject RIV: BK - Fluid Dynamics Impact factor: 4.865, year: 2011

  18. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    Science.gov (United States)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models

  19. Understanding the physical dynamics and ecological interactions in tidal stream energy environments

    Science.gov (United States)

    Fraser, Shaun; Williamson, Benjamin J.; Nikora, Vladimir; Scott, Beth E.

    2017-04-01

    Tidal stream energy devices are intended to operate in energetic physical environments characterised by high flows and extreme turbulence. These environments are often of ecological importance to a range of marine species. Understanding the physical dynamics and ecological interactions at fine scales in such sites is essential for device/array design and to understand environmental impacts. However, investigating fine scale characteristics requires high resolution field measurements which are difficult to attain and interpret, with data often confounded by interference related to turbulence. Consequently, field observations in tidal stream energy environments are limited and require the development of specialised analysis methods and so significant knowledge gaps are still present. The seabed mounted FLOWBEC platform is addressing these knowledge gaps using upward facing instruments to collect information from around marine energy infrastructure. Multifrequency and multibeam echosounder data provide detailed information on the distribution and interactions of biological targets, such as fish and diving seabirds, while simultaneously recording the scales and intensity of turbulence. Novel processing methodologies and instrument integration techniques have been developed which combine different data types and successfully separates signal from noise to reveal new evidence about the behaviour of mobile species and the structure of turbulence at all speeds of the tide and throughout the water column. Multiple platform deployments in the presence and absence of marine energy infrastructure reveal the natural characteristics of high energy sites, and enable the interpretation of the physical and biological impacts of tidal stream devices. These methods and results are relevant to the design and consenting of marine renewable energy technologies, and provide novel information on the use of turbulence for foraging opportunities in high energy sites by mobile species.

  20. Current Understanding of Interactions between Nanoparticles and ABC Transporters in Cancer Cells.

    Science.gov (United States)

    Yin, Jian; Deng, Xudong; Zhang, Jie; Lin, Jun

    2018-03-14

    Adenosine triphosphate-binding cassette (ABC) transporters-mediated multidrug resistance (MDR) remains as a obstacle for effective cancer therapy. Nanoparticles (NPs)-based delivery systems are promising to overcome MDR, but only a few of them have been accepted for clinical treatment, due to characteristics such as insufficient transportation and potential toxicity. In this respect, mounting attention has been attracted towards interactions between NPs and ABC transporters, which hold a key role in the treatment of multidrug-resistant cancer and NP toxicity. In this review article, current knowledge on the involvement of ABC transporters in MDR and their inhibitors is provided. More importantly, recent literatures about the interactions between NPs and ABC transporters are summarized here. Organic and inorganic NPs inhibit the function of ABC transporters based on distinct mechanisms. The effects of organic NPs are caused by several excipients like surfactants, polymers, lipids and cyclodextrin, whereas inorganic NPs act as substrates of ABC transporters and competitively inhibit the efflux of drugs. Based on these interesting phenomena, a more thorough understanding of the specific mechanisms is necessary and essential in the hope to develop more efficient NPs to overcome MDR and decrease environmental toxicity of NPs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Understanding interactions with the food environment: an exploration of supermarket food shopping routines in deprived neighbourhoods.

    Science.gov (United States)

    Thompson, Claire; Cummins, Steven; Brown, Tim; Kyle, Rosemary

    2013-01-01

    Despite a sustained academic interest in the environmental determinants of diet, relatively little is known about the ways in which individuals interact with their neighbourhood food environment and the use of its most important element, the supermarket. This qualitative study explores how residents of deprived neighbourhoods shop for food and how the supermarket environment influences their choices. Go-along interviews were conducted with 26 residents of Sandwell, a uniformly deprived metropolitan borough in the West Midlands, UK. Routine approaches to food shopping are characterised in terms of planning and reliance on the supermarket environment. Four distinct routines are identified: chaotic and reactive; working around the store; item-by-item; and restricted and budgeted. This suggests that residents of deprived neighbourhoods do not have uniform responses to food environments. Responses to supermarket environments appear to be mediated by levels of individual autonomy. A better understanding of how residents of deprived neighbourhoods interact with their food environment may help optimise environmental interventions aimed at improving physical access to food in these places. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Understanding Epistatic Interactions between Genes Targeted by Non-coding Regulatory Elements in Complex Diseases

    Directory of Open Access Journals (Sweden)

    Min Kyung Sung

    2014-12-01

    Full Text Available Genome-wide association studies have proven the highly polygenic architecture of complex diseases or traits; therefore, single-locus-based methods are usually unable to detect all involved loci, especially when individual loci exert small effects. Moreover, the majority of associated single-nucleotide polymorphisms resides in non-coding regions, making it difficult to understand their phenotypic contribution. In this work, we studied epistatic interactions associated with three common diseases using Korea Association Resource (KARE data: type 2 diabetes mellitus (DM, hypertension (HT, and coronary artery disease (CAD. We showed that epistatic single-nucleotide polymorphisms (SNPs were enriched in enhancers, as well as in DNase I footprints (the Encyclopedia of DNA Elements [ENCODE] Project Consortium 2012, which suggested that the disruption of the regulatory regions where transcription factors bind may be involved in the disease mechanism. Accordingly, to identify the genes affected by the SNPs, we employed whole-genome multiple-cell-type enhancer data which discovered using DNase I profiles and Cap Analysis Gene Expression (CAGE. Assigned genes were significantly enriched in known disease associated gene sets, which were explored based on the literature, suggesting that this approach is useful for detecting relevant affected genes. In our knowledge-based epistatic network, the three diseases share many associated genes and are also closely related with each other through many epistatic interactions. These findings elucidate the genetic basis of the close relationship between DM, HT, and CAD.

  3. How does money memorize social interactions? Understanding time-homogeneity in monetary systems

    Science.gov (United States)

    Braun, Dieter; Schmitt, Matthias; Schacker, Andreas

    2013-03-01

    Understanding how money shapes and memorizes our social interactions is central to modern life. There are many schools of thought on as to how monetary systems contribute to crises or boom/bust cycles and how monetary policy can try to avert them. We find that statistical physics gives a refreshing perspective. We analyze how credit mechanisms introduce non-locality and time-heterogeneity to the monetary memory. Motivated by an analogy to particle physics, locality and time-homogeneity can be imposed to monetary systems. As a result, a full reserve banking system is complemented with a bi-currency system of non-bank assets (``money'') and bank assets (``antimoney''). Payment can either be made by passing on money or by receiving antimoney. As a result, a free floating exchange rate between non-bank assets and bank assets is established. Interestingly, this monetary memory allows for credit creation by the simultaneous transfer of money and antimoney at a negotiated exchange rate. We analyze this novel mechanism of liquidity transfer in a model of random social interactions, yielding analytical results for all relevant distributions and the price of liquidity under the conditions of a fully transparent credit market.

  4. Understanding Mind-Body Interaction from the Perspective of East Asian Medicine

    Directory of Open Access Journals (Sweden)

    Ye-Seul Lee

    2017-01-01

    Full Text Available Objective. Attempts to understand the emotion have evolved from the perspective of an independent cognitive system of the mind to that of an interactive response involving the body. This study aimed to quantify and visualize relationships between different emotions and bodily organ systems from the perspective of East Asian medicine. Methods. Term frequency-inverse document frequency (tf-idf method was used to quantify the significance of Five Viscera and the gallbladder relative to seven different emotions through the classical medical text of DongUiBoGam. Bodily organs that corresponded to different emotions were visualized using a body template. Results. The emotions had superior tf-idf values with the following bodily organs: anger with the liver, happiness with the heart, thoughtfulness with the heart and spleen, sadness with the heart and lungs, fear with the kidneys and the heart, surprise with the heart and the gallbladder, and anxiety with the heart and the lungs. Specific patterns between the emotions and corresponding bodily organ systems were identified. Conclusion. The present findings will further the current understanding of the relationship between the mind and body from the perspective of East Asian medicine. Western medicine characterizes emotional disorders using “neural” language while East Asian medicine uses “somatic” language.

  5. Understanding the Hydrology of Soil-Crop Interactions via a Wireless Sensor Network

    Science.gov (United States)

    Dunne, K. M.

    2009-12-01

    For centuries humans have relied upon our observations and perceptions of water content to make agricultural decisions in any given type of agriculture or geographic region. As agriculture has progressed, the area of land managed by each individual has increased exponentially, greatly decreasing a farmer’s ability to adequately address the nuances of any given portion of their property. This study focuses on the research possibilities provided with a wireless sensor network which gives detailed, hour by hour, data on water content, electrical conductivity (EC) and temperature at several depths. The research site is a very well characterized 37 hectare (ha) research farm containing several crop varieties under regular maintenance by Washington State University. A series of sites containing installments of five sensors at regular depths, between 30 and 150 cm, were deployed according to their unique locations. Current technology allows for research to be done which has the potential to revolutionize the way agriculture is managed. By providing a baseline of data, we can better understand water distribution within any given topography, water usage dynamics, water availability and a frame of reference to better understand how to optimally utilize soil based on a variety of weather patterns and interactions of soil type.

  6. Teaching Photosynthesis in a Compulsory School Context. Students’ Reasoning, Understanding and Interactions.

    Directory of Open Access Journals (Sweden)

    Helena Näs

    2011-02-01

    Full Text Available According to previous research, students show difficulties in understanding photosynthesis and respiration, and basic ecological concepts like energy flow in ecosystems. There are successful teaching units accomplished in this area and many of them can be described as inquiry-based teaching. One definition of inquiry-based teaching is that it involves everything from finding problems, investigating them, debating with peers and trying to explain and give solutions. Accordingly students need to be confronted with challenging questions and empirical data to reason about and teachers need to implement student-generated inquiry discussion since students often stay silent and do not express their thoughts during science lessons. This thesis will focus on young peoples’ understanding of the functioning of plants, students’ participation during biology lessons, and how biology teaching is accomplished in primary and secondary school.Two school classroom projects focusing on teaching about plants and ecology are described. Four teachers and their 4th, 5th and 6th grade classes plus two science teachers and their three 8th grade classes collaborated. Photosynthesis and respiration were made concrete by using tasks where plants, plant cells, germs, seeds and the gas exchange were used. The aim was to listen to students’ reasoning in both teaching and interview situations. Learning outcome, as described by students’ reasoning in the classrooms and in individual interviews but also by their test results, is especially focused. Student-student and student-teacher interactions have been analysed with an ethnographic approach in the classroom context.The plant tasks encouraged the students’ in primary school to develop scientific reasoning and the interviews confirmed that the students had learned about photosynthesis. The ecology teaching in secondary school showed a substantial understanding confirmed both by students’ oral and written

  7. Engineering hyaluronic acid hydrogel degradation to control cellular interactions and adult stem cell fate in 3D

    Science.gov (United States)

    Khetan, Sudhir

    The design and implementation of extracellular matrix (ECM)-mimetic hydrogels for tissue engineering (TE) applications requires an intensive understanding of cell-material interactions, including matrix remodeling and stem cell differentiation. However, the influence of microenvironmental cues, e.g., matrix biodegradability, on cell behavior in vitro has not been well studied in the case of direct cell encapsulation within 3-dimensional (3D) hydrogels. To address these issues, a facile sequential crosslinking technique was developed that provides spatial and temporal control of 3D hydrogel degradability to investigate the importance of material design on cell behavior. Specifically, hydrogels were synthesized from hyaluronic acid (HA) macromers in a sequential process: (1) a primary Michael-type addition crosslinking using cell adhesive and matrix metalloprotease (MMP)-degradable oligopeptides to consume a portion of total reactive groups and resulting in "-UV" hydrogels permissive to cell-mediated degradation, followed by (2) a secondary, light initiated free-radical crosslinking to consume remaining reactive groups and "switch" the network to a non-degradable structure ("+UV") via the addition of non-degradable kinetic chains. Using this approach, we demonstrated control of encapsulated hMSC spreading by varying the crosslink type (i.e., the relative hydrogel biodegradability), including with spatial control. Upon incubation with bipotential soluble differentiation factors, these same degradation-mediated spreading cues resulted in an hMSC differentiation fate switch within -UV versus +UV environments. Follow-up studies demonstrated that degradation-mediated traction generation, rather than matrix mechanics or cell morphology, is the critical biophysical signal determining hMSC fate. Sequentially crosslinked HA hydrogels were also studied for the capacity to support remodeling by in vivo and ex vivo tissues, including with spatial control, toward tissue

  8. Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants.

    Science.gov (United States)

    Li, Jing; Xiang, Cong-Ying; Yang, Jian; Chen, Jian-Ping; Zhang, Heng-Mu

    2015-09-11

    Small heat shock proteins (sHSPs) perform a fundamental role in protecting cells against a wide array of stresses but their biological function during viral infection remains unknown. Rice stripe virus (RSV) causes a severe disease of rice in Eastern Asia. OsHSP20 and its homologue (NbHSP20) were used as baits in yeast two-hybrid (YTH) assays to screen an RSV cDNA library and were found to interact with the viral RNA-dependent RNA polymerase (RdRp) of RSV. Interactions were confirmed by pull-down and BiFC assays. Further analysis showed that the N-terminus (residues 1-296) of the RdRp was crucial for the interaction between the HSP20s and viral RdRp and responsible for the alteration of the sub-cellular localization and distribution pattern of HSP20s in protoplasts of rice and epidermal cells of Nicotiana benthamiana. This is the first report that a plant virus or a viral protein alters the expression pattern or sub-cellular distribution of sHSPs.

  9. Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luciana O.; Garcia, Cristiana B.; Matos-Silva, Flavia A. [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Curti, Carlos [Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Leopoldino, Andréia M., E-mail: andreiaml@usp.br [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil)

    2014-02-28

    Highlights: • hnRNPK is a new target of SET. • SET regulates hnRNPK. • SET and hnRNPK accumulation promotes tumorigenesis. • SET accumulation is a potential model to study genes regulated by SET-hnRNPK. - Abstract: SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET–hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.

  10. Studies on cellular accumulation of satraplatin and its major metabolite JM118 and their interactions with glutathione

    Czech Academy of Sciences Publication Activity Database

    Kostrhunová, Hana; Kašpárková, Jana; Gibson, D.; Brabec, Viktor

    2010-01-01

    Roč. 7, č. 6 (2010), s. 2093-2102 ISSN 1543-8384 R&D Projects: GA MŠk(CZ) ME08017; GA MŠk(CZ) ME10066; GA MŠk(CZ) OC08003; GA AV ČR(CZ) IAA400040803; GA ČR(CZ) GAP301/10/0598 Grant - others:GA MŠk(CZ) LC06030; GA AV ČR(CZ) KAN200200651 Program:LC; KA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : JM118 * cellular accumulation * glutathione Subject RIV: BO - Biophysics Impact factor: 5.400, year: 2010

  11. Understanding the interaction between energetic ions and freestanding graphene towards practical 2D perforation

    Science.gov (United States)

    Buchheim, Jakob; Wyss, Roman M.; Shorubalko, Ivan; Park, Hyung Gyu

    2016-04-01

    We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of freestanding graphene with nanometer sized features by focused ion beam technology. A precise control over the He+ and Ga+ irradiation offered by focused ion beam techniques enables investigating the interaction of the energetic particles and graphene suspended with no support and allows determining sputter yields of the 2D lattice. We found a strong dependency of the 2D sputter yield on the species and kinetic energy of the incident ion beams. Freestanding graphene shows material semi-transparency to He+ at high energies (10-30 keV) allowing the passage of >97% He+ particles without creating destructive lattice vacancy. Large Ga+ ions (5-30 keV), in contrast, collide far more often with the graphene lattice to impart a significantly higher sputter yield of ~50%. Binary collision theory applied to monolayer and few-layer graphene can successfully elucidate this collision mechanism, in great agreement with experiments. Raman spectroscopy analysis corroborates the passage of a large fraction of He+ ions across graphene without much damaging the lattice whereas several colliding ions create single vacancy defects. Physical understanding of the interaction between energetic particles and suspended graphene can practically lead to reproducible and efficient pattern generation of unprecedentedly small features on 2D materials by design, manifested by our perforation of sub-5 nm pore arrays. This capability of nanometer-scale precision patterning of freestanding 2D lattices shows the practical applicability of focused ion beam technology to 2D material processing for device fabrication and integration.We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of

  12. Human Immunodeficiency Virus Type 1 Employs the Cellular Dynein Light Chain 1 Protein for Reverse Transcription through Interaction with Its Integrase Protein

    Science.gov (United States)

    Jayappa, Kallesh Danappa; Ao, Zhujun; Wang, Xiaoxia; Mouland, Andrew J.; Shekhar, Sudhanshu; Yang, Xi

    2015-01-01

    ABSTRACT In this study, we examined the requirement for host dynein adapter proteins such as dynein light chain 1 (DYNLL1), dynein light chain Tctex-type 1 (DYNLT1), and p150Glued in early steps of human immunodeficiency virus type 1 (HIV-1) replication. We found that the knockdown (KD) of DYNLL1, but not DYNLT1 or p150Glued, resulted in significantly lower levels of HIV-1 reverse transcription in cells. Following an attempt to determine how DYNLL1 could impact HIV-1 reverse transcription, we detected the DYNLL1 interaction with HIV-1 integrase (IN) but not with capsid (CA), matrix (MA), or reverse transcriptase (RT) protein. Furthermore, by mutational analysis of putative DYNLL1 interaction motifs in IN, we identified the motifs 52GQVD and 250VIQD in IN as essential for DYNLL1 interaction. The DYNLL1 interaction-defective IN mutant HIV-1 (HIV-1INQ53A/Q252A) exhibited impaired reverse transcription. Through further investigations, we have also detected relatively smaller amounts of particulate CA in DYNLL1-KD cells or in infections with HIV-1INQ53A/Q252A mutant virus. Overall, our study demonstrates the novel interaction between HIV-1 IN and cellular DYNLL1 proteins and suggests the requirement of this virus-cell interaction for proper uncoating and efficient reverse transcription of HIV-1. IMPORTANCE Host cellular DYNLL1, DYNLT1, and p150Glued proteins have been implicated in the replication of several viruses. However, their roles in HIV-1 replication have not been investigated. For the first time, we demonstrated that during viral infection, HIV-1 IN interacts with DYNLL1, and their interaction was found to have a role in proper uncoating and efficient reverse transcription of HIV-1. Thus, interaction of IN and DYNLL1 may be a potential target for future anti-HIV therapy. Moreover, while our study has evaluated the involvement of IN in HIV-1 uncoating and reverse transcription, it also predicts a possible mechanism by which IN contributes to these early viral

  13. Multilayered phantoms with tunable optical properties for a better understanding of light/tissue interactions

    Science.gov (United States)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Vignoud, Séverine; Lavaud, Jonathan; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Light/tissue interactions, like diffuse reflectance, endogenous fluorescence and Raman scattering, are a powerful means for providing skin diagnosis. Instrument calibration is an important step. We thus developed multilayered phantoms for calibration of optical systems. These phantoms mimic the optical properties of biological tissues such as skin. Our final objective is to better understand light/tissue interactions especially in the case of confocal Raman spectroscopy. The phantom preparation procedure is described, including the employed method to obtain a stratified object. PDMS was chosen as the bulk material. TiO2 was used as light scattering agent. Dye and ink were adopted to mimic, respectively, oxy-hemoglobin and melanin absorption spectra. By varying the amount of the incorporated components, we created a material with tunable optical properties. Monolayer and multilayered phantoms were designed to allow several characterization methods. Among them, we can name: X-ray tomography for structural information; Diffuse Reflectance Spectroscopy (DRS) with a homemade fibered bundle system for optical characterization; and Raman depth profiling with a commercial confocal Raman microscope for structural information and for our final objective. For each technique, the obtained results are presented and correlated when possible. A few words are said on our final objective. Raman depth profiles of the multilayered phantoms are distorted by elastic scattering. The signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties, obtained here with DRS, is crucial to properly correct Raman depth profiles. Thus, it would be permitted to consider quantitative studies on skin for drug permeation follow-up or hydration assessment, for instance.

  14. How innovative ICT tools can enhance understanding of interactions between societal, hydrological and environmental changes

    Science.gov (United States)

    Foglia, L.; Borsi, I.; Cannata, M.; De Filippis, G.; Criollo, R.; Mehl, S.; Rossetto, R.

    2017-12-01

    The interaction of environmental, physical, and socioeconomic processes alter and are altered by water and by how human can affect water use. For example, a warming climate increases the chance of warm temperatures and lack of precipitation, and when combined with growing population requires understanding of impact on water resources and on all the processes related to the water budget including evapotranspiration. On this foundation, humans add engineered and social systems to control, manage, utilize, and alter our water environment for a variety of uses and through a variety of organizational and individual decisions. Some engineered systems have mixed consequences, for example groundwater helped sustain agriculture during drought periods, but then groundwater levels critically decrease with no chances to recover in some parts of the world. Innovative ICT tools have been demonstrated as a helpful tool for enhancing human understanding of the effect that societal, economical, and policy-based decisions have on the water resources and on the environment in general. Here we apply the new FREEWAT platform to demonstrate the importance of developing ad-hoc database and hydrological models to simulate different scenarios using a participatory approach. Stakeholders have been involved in data collection, database design and model development during the entire project period and discussion between researcher and stakeholders have been fostered during Focus Groups and workshops organized in many countries in Europe and beyond (including case studies in Ukraine and Africa). FREEWAT is an open source and public domain GIS integrated modelling environment for simulation of water quantity and quality in surface water and groundwater with an integrated water management and planning module. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and related Directives. Fourteen case studies have been considered and

  15. Monitoring Cellular Interactions during T Cell Activation at the Single Molecule Level Using Semiconductor Quantum-Dots

    National Research Council Canada - National Science Library

    Weiss, Shimon; Witte, Owen; Bentolila, Laurent; Pinaud, Fabien; Tsay, James; Radu, Caius; Wang, Lili

    2005-01-01

    ...) were developed. Two high-affinity targeting "velcro-pairs" based on avidin-biotin and fluorescine-antibody interactions were demonstrated and used to specifically target single proteins in membranes of live cells...

  16. Cellular and molecular-genetic mechanisms of symbiosis and associative interaction of microorganisms with plants in rhizosphere

    Directory of Open Access Journals (Sweden)

    Lioshina L. G.

    2009-02-01

    Full Text Available The review contains the results of research on symbiotic and associative interaction of microorganisms and plants in rhizosphere. A special attention is given to the process of contact association of microorganisms and plants tissues including the concrete molecular structures and dominant role pertaining to protein-carbohydrate interaction. There are common features and distinctions at formation of arbuscular mycorhiza, rhizobia– legume symbiosis and association of non-leguminous plants with Azospirillum

  17. Cellular and molecular-genetic mechanisms of symbiosis and associative interaction of microorganisms with plants in rhizosphere

    OpenAIRE

    Lioshina L. G.

    2009-01-01

    The review contains the results of research on symbiotic and associative interaction of microorganisms and plants in rhizosphere. A special attention is given to the process of contact association of microorganisms and plants tissues including the concrete molecular structures and dominant role pertaining to protein-carbohydrate interaction. There are common features and distinctions at formation of arbuscular mycorhiza, rhizobia– legume symbiosis and association of non-leguminous plants with...

  18. Creating the brain and interacting with the brain: an integrated approach to understanding the brain

    Science.gov (United States)

    Morimoto, Jun; Kawato, Mitsuo

    2015-01-01

    In the past two decades, brain science and robotics have made gigantic advances in their own fields, and their interactions have generated several interdisciplinary research fields. First, in the ‘understanding the brain by creating the brain’ approach, computational neuroscience models have been applied to many robotics problems. Second, such brain-motivated fields as cognitive robotics and developmental robotics have emerged as interdisciplinary areas among robotics, neuroscience and cognitive science with special emphasis on humanoid robots. Third, in brain–machine interface research, a brain and a robot are mutually connected within a closed loop. In this paper, we review the theoretical backgrounds of these three interdisciplinary fields and their recent progress. Then, we introduce recent efforts to reintegrate these research fields into a coherent perspective and propose a new direction that integrates brain science and robotics where the decoding of information from the brain, robot control based on the decoded information and multimodal feedback to the brain from the robot are carried out in real time and in a closed loop. PMID:25589568

  19. Understanding gene essentiality by finely characterizing hubs in the yeast protein interaction network.

    Science.gov (United States)

    Pang, Kaifang; Sheng, Huanye; Ma, Xiaotu

    2010-10-08

    The centrality-lethality rule, i.e., high-degree proteins or hubs tend to be more essential than low-degree proteins in the yeast protein interaction network, reveals that a protein's central position indicates its important function, but whether and why hubs tend to be more essential have been heavily debated. Here, we integrated gene expression and functional module data to classify hubs into four types: non-co-expressed non-co-cluster hubs, non-co-expressed co-cluster hubs, co-expressed non-co-cluster hubs and co-expressed co-cluster hubs. We found that all the four hub types are more essential than non-hubs, but they also show different enrichments in essential proteins. Non-co-expressed non-co-cluster hubs play key role in organizing different modules formed by the other three hub types, but they are less important to the survival of the yeast cell. Among the four hub types, co-expressed co-cluster hubs, which likely correspond to the core components of stable protein complexes, are the most essential. These results demonstrated that our classification of hubs into four types could better improve the understanding of gene essentiality. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Creating the brain and interacting with the brain: an integrated approach to understanding the brain.

    Science.gov (United States)

    Morimoto, Jun; Kawato, Mitsuo

    2015-03-06

    In the past two decades, brain science and robotics have made gigantic advances in their own fields, and their interactions have generated several interdisciplinary research fields. First, in the 'understanding the brain by creating the brain' approach, computational neuroscience models have been applied to many robotics problems. Second, such brain-motivated fields as cognitive robotics and developmental robotics have emerged as interdisciplinary areas among robotics, neuroscience and cognitive science with special emphasis on humanoid robots. Third, in brain-machine interface research, a brain and a robot are mutually connected within a closed loop. In this paper, we review the theoretical backgrounds of these three interdisciplinary fields and their recent progress. Then, we introduce recent efforts to reintegrate these research fields into a coherent perspective and propose a new direction that integrates brain science and robotics where the decoding of information from the brain, robot control based on the decoded information and multimodal feedback to the brain from the robot are carried out in real time and in a closed loop. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Dynamics of gas-surface interactions atomic-level understanding of scattering processes at surfaces

    CERN Document Server

    Díez Muniño, Ricardo

    2013-01-01

    This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level u...

  2. Yeast as a model to understand the interaction between genotype and the response to calorie restriction.

    Science.gov (United States)

    Schleit, Jennifer; Wasko, Brian M; Kaeberlein, Matt

    2012-08-31

    Calorie restriction is reported to enhance survival and delay the onset of age-related decline in many different species. Several proteins have been proposed to play a role in mediating the response to calorie restriction, including the target of rapamycin kinase, sirtuins, and AMP kinase. An enhanced mechanistic understanding of calorie restriction has popularized the concept of "calorie restriction mimetics", drugs that mimic the beneficial effects of caloire restriction without requiring a reduction in nutrient intake. In theory, such drugs should delay the onset and progression of multiple age-related diseases, similar to calorie restriction in mammals. Despite the potential benefits of such calorie restriction mimetics, however, relatively little is known about the interaction between genetic variation and individual response to calorie restriction. Limited evidence from model systems indicates that genotype plays a large role in determining both the magnitude and direction of effect that calorie restriction has on longevity. Here we present an overview of these data from the perspective of using yeast as a model to study aging and describe an approach we are taking to further characterize the molecular mechanisms underlying genotype-dependent responses to calorie restriction. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. IMPORTANCE OF FULL COULOMB INTERACTIONS FOR UNDERSTANDING THE ELECTRONIC STRUCTURE OF DELTA-Pu

    Energy Technology Data Exchange (ETDEWEB)

    Gorelov, E; Kolorenc, J; Wehling, T; Hafermann, H; Lichtenstein, A I; Shick, A B; Rubtsov, A N; Katsnelson, M I; Landa, A; McMahan, A K

    2010-04-01

    The solid-state properties of most elements are now well understood on the basis of quantum physics - with few exceptions, notably the element number 94, plutonium. Plutonium has six crystalline phases at ambient pressure, some of which are separated by unusual phase transitions with large discontinuities in volume, exhibit negative thermal expansion coefficients, or form exotic low-symmetry structures. The main challenge to explain these anomalous properties is that the characteristic ingredient of actinides, the 5f electronic states, are in the cross-over regime between the localized and delocalized (itinerant) behaviour in Pu. The early part of the actinide series with the 5f states being itinerant, i.e. part of the metallic bond, culminates with Pu; starting with Am (Z = 95), the 5f states are localized, nonbonding, and resemble the 4f states in lanthanides. Both itinerant and localized regimes are well covered by existing theories, but they cannot be simply interpolated due to the importance of dynamical electron-electron correlations. Here we present accurate quantum Monte Carlo calculations achieving previously inaccessible resolution. Obtained results demonstrate that interplay of the full Coulomb interaction vertex with spin-orbital coupling is crucial for understanding the experimentally observed spectral properties of plutonium near the Fermi level.

  4. Long-term experiments to better understand soil-human interactions

    Science.gov (United States)

    Bormann, B. T.; Homann, P. S.

    2011-12-01

    Interactions between soils and people may be transforming global conditions, but the interactions are poorly understood. Changes in soils have proven difficult to quantify, especially in complex ecosystems manifesting large spatiotemporal variability. Long-term ecosystem experiments that evaluate soil change and demonstrate alternative choices are important to understanding changes, discovering new controls and drivers, and influencing decisions. Inspired by agriculture studies, like Rothamsted, the US Forest Service established in 1990 a network of operational-scale experiments across the Pacific Northwest to evaluate long-term effects of different forest management and disturbance regimes. With a strong experimental design, these experiments are now helping to better understand the long-term effects of managing tree harvesting (clearcutting and thinning), woody debris, and tree and understory species composition, and-serendipitously-the effects of fire. Initial results from the Southern Oregon experimental site indicate surprisingly rapid soil changes in some regimes but not others. We've also learned that rapid change presents challenges to repeat sampling. We present our sample-archive and comparable-layer approaches that seek to accommodate changes in surface elevation, aggregation and disaggregation, and mineral-soil exports. Thinning mature forest stands (80-100 yrs old) did not significantly change soil C in 11-yrs. A small upper-layer C increase was observed after thinning, but it was similar to the control. Significant increases in upper-layer soil N were observed with most treatments, but all increases were similar to the control. Leaving woody debris had little effect. The most remarkable change occurred when mature stands were clearcut and Douglas-firs were planted and tended. Associated with rapid growth of Douglas-fir, an average of 8 Mg C ha-1 was lost from weathered soil 4-18 cm deep. This contrasts with clearcuts where early-seral hardwoods and

  5. Irradiations of human melanoma cells by 14 MeV neutrons; survival curves interpretation; physical simulation of neutrons interactions in the cellular medium

    International Nuclear Information System (INIS)

    Bodez, Veronique

    2000-01-01

    14 MeV neutrons are used to irradiate human melanoma cells in order to study survival curves at low dose and low dose rate. We have simulated with the MCNP code, transport of neutrons through the experimental setup to evaluate the contamination of the primary beam by gamma and electrons, for the feasibility of our experiments. We have shown a rapid decrease of the survival curve in the first cGy followed by a plateau for doses up to 30 cGy; after we observed an exponential decrease. This results are observed for the first time, for neutrons at low dose rate (5 cGy/h). In parallel with this experimental point, we have developed a simulation code which permitted the study of neutrons interactions with the cellular medium for individual cells defined as in our experimental conditions. We show that most of the energy is deposited by protons from neutron interactions with external medium, and by heavy ions for interactions into the cell. On the other hand the code gives a good order of magnitude of the dose rate, compared to the experimental values given by silicon diodes. The first results show that we can, using a theory based on induced repair of cells, give an interpretation of the observed experimental plateau. We can give an estimation of the radial distribution of dose for the tracks of charged ions, we show the possibility of calculate interaction cross sections with cellular organelles. Such a work gives interesting perspectives for the future in radiobiology, radiotherapy or radioprotection. (author) [fr

  6. Epstein–Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus

    Energy Technology Data Exchange (ETDEWEB)

    Changotra, Harish; Turk, Susan M. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Artigues, Antonio [Department of Biochemistry, University of Kansas Medical Center, Kansas City, KS (United States); Thakur, Nagendra; Gore, Mindy; Muggeridge, Martin I. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Hutt-Fletcher, Lindsey M., E-mail: lhuttf@lsuhsc.edu [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA (United States)

    2016-02-15

    The Epstein–Barr virus glycoprotein complex gMgN has been implicated in assembly and release of fully enveloped virus, although the precise role that it plays has not been elucidated. We report here that the long predicted cytoplasmic tail of gM is not required for complex formation and that it interacts with the cellular protein p32, which has been reported to be involved in nuclear egress of human cytomegalovirus and herpes simplex virus. Although redistribution of p32 and colocalization with gM was not observed in virus infected cells, knockdown of p32 expression by siRNA or lentivirus-delivered shRNA recapitulated the phenotype of a virus lacking expression of gNgM. A proportion of virus released from cells sedimented with characteristics of virus lacking an intact envelope and there was an increase in virus trapped in nuclear condensed chromatin. The observations suggest the possibility that p32 may also be involved in nuclear egress of Epstein–Barr virus. - Highlights: • The predicted cytoplasmic tail of gM is not required to complex with gN. • Cellular p32 can interact with the predicted cytoplasmic tail of EBV gM. • Knockdown of p32 recapitulates the phenotype of virus lacking the gNgM complex.

  7. Epstein–Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus

    International Nuclear Information System (INIS)

    Changotra, Harish; Turk, Susan M.; Artigues, Antonio; Thakur, Nagendra; Gore, Mindy; Muggeridge, Martin I.; Hutt-Fletcher, Lindsey M.

    2016-01-01

    The Epstein–Barr virus glycoprotein complex gMgN has been implicated in assembly and release of fully enveloped virus, although the precise role that it plays has not been elucidated. We report here that the long predicted cytoplasmic tail of gM is not required for complex formation and that it interacts with the cellular protein p32, which has been reported to be involved in nuclear egress of human cytomegalovirus and herpes simplex virus. Although redistribution of p32 and colocalization with gM was not observed in virus infected cells, knockdown of p32 expression by siRNA or lentivirus-delivered shRNA recapitulated the phenotype of a virus lacking expression of gNgM. A proportion of virus released from cells sedimented with characteristics of virus lacking an intact envelope and there was an increase in virus trapped in nuclear condensed chromatin. The observations suggest the possibility that p32 may also be involved in nuclear egress of Epstein–Barr virus. - Highlights: • The predicted cytoplasmic tail of gM is not required to complex with gN. • Cellular p32 can interact with the predicted cytoplasmic tail of EBV gM. • Knockdown of p32 recapitulates the phenotype of virus lacking the gNgM complex.

  8. Effect of self-interaction on the phase diagram of a Gibbs-like measure derived by a reversible Probabilistic Cellular Automata

    International Nuclear Information System (INIS)

    Cirillo, Emilio N.M.; Louis, Pierre-Yves; Ruszel, Wioletta M.; Spitoni, Cristian

    2014-01-01

    Cellular Automata are discrete-time dynamical systems on a spatially extended discrete space which provide paradigmatic examples of nonlinear phenomena. Their stochastic generalizations, i.e., Probabilistic Cellular Automata (PCA), are discrete time Markov chains on lattice with finite single-cell states whose distinguishing feature is the parallel character of the updating rule. We study the ground states of the Hamiltonian and the low-temperature phase diagram of the related Gibbs measure naturally associated with a class of reversible PCA, called the cross PCA. In such a model the updating rule of a cell depends indeed only on the status of the five cells forming a cross centered at the original cell itself. In particular, it depends on the value of the center spin (self-interaction). The goal of the paper is that of investigating the role played by the self-interaction parameter in connection with the ground states of the Hamiltonian and the low-temperature phase diagram of the Gibbs measure associated with this particular PCA

  9. Interaction of Iron II Complexes with B-DNA. Insights from Molecular Modeling, Spectroscopy and Cellular Biology.

    Directory of Open Access Journals (Sweden)

    Hugo eGattuso

    2015-12-01

    Full Text Available We report the characterization of the interaction between B-DNA and three terpyridin iron II complexes. Relatively long time-scale molecular dynamics is used in order to characterize the stable interaction modes. By means of molecular modeling and UV-vis spectroscopy, we prove that they may lead to stable interactions with the DNA duplex. Furthermore, the presence of larger π-conjugated moieties also leads to the appearance of intercalation binding mode. Non-covalent stabilizing interactions between the iron complexes and the DNA are also characterized and evidenced by the analysis of the gradient of the electronic density. Finally, the structural deformations induced on the DNA in the different binding modes are also evidenced. The synthesis and chemical characterization of the three complexes is reported, as well as their absorption spectra in presence of DNA duplexes to prove the interaction with DNA. Finally, their effects on human cell cultures have also been evidenced to further enlighten their biological effects.

  10. Interaction of Actinide Species with Microorganisms & Microbial Chelators: Cellular Uptake, Toxicity, & Implications for Bioremediation of Soil & Ground Water.

    Energy Technology Data Exchange (ETDEWEB)

    Hakim Boukhalfa

    2006-03-28

    Microorganisms influence the natural cycle of major elements, including C, N, P, S, and transition metals such as Mn and Fe. Bacterial processes can also influence the behavior of actinides in soil and ground water. While radionuclides have no known biological utility, they have the potential to interact with microorganisms and to interfere with processes involving other elements such as Fe and Mn. These interactions can transform radionuclides and affect their fate and transport. Organic acids, extruded by-products of cell metabolism, can solubilize radionuclides and facilitate their transport. The soluble complexes formed can be taken up by the cells and incorporated into biofilm structures. We have examined the interactions of Pu species with bacterial metabolites, studied Pu uptake by microorganisms and examined the toxicity of Pu and other toxic metals to environmentally relevant bacteria. We have also studied the speciation of Pu(IV) in the presence of natural and synthetic chelators.

  11. Mechanisms and Effects on HBV Replication of the Interaction between HBV Core Protein and Cellular Filamin B.

    Science.gov (United States)

    Li, Yilin; Sun, Yishuang; Sun, Fuyun; Hua, Rong; Li, Chenlin; Chen, Lang; Guo, Deyin; Mu, Jingfang

    2018-03-28

    Hepatitis B virus (HBV) infection is one of the major problems that threatens global health. There have been many studies on HBV, but the relationship between HBV and host factors is largely unexplored and more studies are needed to clarify these interactions. Filamin B is an actin-binding protein that acts as a cytoskeleton protein, and it is involved in cell development and several signaling pathways. In this study, we showed that filamin B interacted with HBV core protein, and the interaction promoted HBV replication. The interaction between filamin B and core protein was observed in HEK 293T, Huh7 and HepG2 cell lines by co-immunoprecipitation and co-localization immnofluoresence. Overexpression of filamin B increased the levels of HBV total RNAs and pre-genome RNA (pgRNA), and improved the secretion level of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg). In contrast, filamin B knockdown inhibited HBV replication, decreased the level of HBV total RNAs and pgRNA, and reduced the secretion level of HBsAg and HBeAg. In addition, we found that filamin B and core protein may interact with each other via four blocks of argentine residues at the C-terminus of core protein. In conclusion, we identify filamin B as a novel host factor that can interact with core protein to promote HBV replication in hepatocytes. Our study provides new insights into the relationship between HBV and host factors and may provide new strategies for the treatment of HBV infection.

  12. Semen modulated secretory activity of oviductal epithelial cells is linked to cellular proteostasis network remodeling: Proteomic insights into the early phase of interaction in the oviduct in vivo.

    Science.gov (United States)

    Steinberger, Birgit; Yu, Hans; Brodmann, Theodor; Milovanovic, Daniela; Reichart, Ursula; Besenfelder, Urban; Artemenko, Konstantin; Razzazi-Fazeli, Ebrahim; Brem, Gottfried; Mayrhofer, Corina

    2017-06-23

    The oviductal epithelium is crucial for the integrity of the female organ. Previously we got evidence that the surface proteome of oviductal epithelial cells (Oecs) is promptly altered in response to insemination and thus suggested that this early phase plays a notable regulatory role in maintaining cellular function. This study further aimed to assess the effect of semen on the cellular and molecular mechanisms in rabbit Oecs. A quantitative gel-based proteomic approach was applied to analyze changes at three time points (0h, 1h, 2h) after intrauterine insemination (IUI) compared to time matched controls. Within two hours the abundance of 22 protein species was evidently altered in the intracellular fraction. Functional analysis revealed that the proteins were primarily involved in proteostasis as well as metabolic processes. The analysis of phosphoproteins specified a role of mitogen-activated protein kinase (MAPK) signaling molecules. Concurrently, semen increased oviduct-specific glycoprotein (OVGP1) secretion. A correlation between OVGP1 abundance and microtubule-associated proteins 1A/1B-light chain 3 lipidation was observed. The localization and changes in abundance of selected proteins were corroborated by antibody-based methods. These results clearly show that the early phase of interaction acts as a trigger for cellular adaptation to meet an altered demand in the female organ. The oviductal epithelium and its secreted proteins exert a pivotal role in reproductive processes, including the final maturation of male gametes. Thereby, the regulation and subsequently the functionality of the oviductal epithelial cell layer are important factors for the establishment of the appropriate milieu in the female reproductive tract. Notably, male gametes themselves have been shown to be an extrinsic modulatory factor of the oviductal epithelium. Accordingly a comprehensive knowledge about the underlying cellular and molecular mechanisms in the epithelial cells is of

  13. Social interaction and conceptual understanding in computer-based physics instruction

    Science.gov (United States)

    Hoffman, Beth A.

    1997-08-01

    This investigation of conceptual understanding in computer-based physics instruction found that preconceptions are powerful predictors of performance; pair composition is related to paired, but not individualized performance; and efficient partner resolution strategies lead to improved performance. Seventy-six high school physics students were pretested individually and paired on the basis of similarity or difference in their initial level of conceptions. Pairs performed a series of computer-based exercises, after which students were individually posttested. Students' self-reports and researcher observations measured the nature and frequency of social interaction in which their pair engaged. Students who began with a more sophisticated understanding of force and motion performed significantly better than those with low Pretest scores. Those with initially lower scores improved more after instruction, but their Posttest scores rarely surpassed the scores of those who started out higher. Lower scoring students were dominated by higher scoring partners during paired learning. Pairs' performance measures therefore reflected the conceptions of the higher level student. Conversely, individual performance measures following paired instruction were unrelated to a partner's ability level. Pairing students by ability level did not affect performance except in the context of the pair. Results imply that educators need not pair students by ability level when their goal is to improve the individual's performance. Students with the most efficient resolution strategies performed significantly better than those whose resolution strategies were less sophisticated. Conflicts were constructive or destructive depending on how they were resolved. The ability to effectively negotiate solutions was associated with higher achievement, implying that educators consider training students to hone their resolution skills prior to collaborative instruction. Computer-based instruction is a

  14. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  15. Meeting report - Intercellular interactions in context: towards a mechanistic understanding of cells in organs.

    Science.gov (United States)

    Bryant, David; Johnson, Aaron

    2017-07-01

    The Company of Biologists held the workshop 'Intercellular interactions in context: towards a mechanistic understanding of cells in organs' at historic Wiston House in West Sussex, UK, 5-8 February 2017. The meeting brought together around 30 scientists from disparate backgrounds - yet with a common interest of how tissue morphogenesis occurs and its dysregulation leads to pathologies - to intensively discuss their latest research, the current state of the field, as well as any challenges for the future. This report summarises the concepts and challenges that arose as key questions for the fields of cell, cancer and developmental biology. By design of the organizers - Andrew Ewald (John Hopkins University, MA), John Wallingford (University of Texas at Austin, TX) and Peter Friedl (Radboud University, Nijmegen, The Netherlands) - the attendee makeup was cross-sectional: both in terms of career stage and scientific background. This intermingling was mirrored in the workshop format; all participants - irrespective of career stage - were given equal speaking and question time, and all early-career researchers also chaired a session, which promoted an atmosphere for discussions that were open, egalitarian and supportive. This was particularly evident in the scheduled 'out-of-the-box' sessions, which provided an avenue for participants to raise ideas and concepts or to discuss specific problems they wanted feedback or clarification on. In the following, rather than act as court reporters and convey chronological accounting of presentations, we present the questions that arose from the workshop and should be posed to the field at large, by discussing the presentations as they relate to these concepts. © 2017. Published by The Company of Biologists Ltd.

  16. Towards an Enhanced Understanding of Plant-Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism

    Directory of Open Access Journals (Sweden)

    Sofie eThijs

    2016-03-01

    Full Text Available Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant-microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood. Moreover, current approaches that target the plant host, and environment separately to improve phytoremediation, potentially overlook microbial functions and properties that are part of the multiscale complexity of the plant-environment wherein biodegradation takes place. In contrast, in situ studies of phytoremediation research at the metaorganism level (host and microbiome together are lacking. Here, we discuss a competition-driven model, based on recent evidence from the metagenomics level, and hypotheses generated by microbial community ecology, to explain the establishment of a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground that if the host provides the right level and mix of resources (exudates over which the microbes can compete, then a competitive catabolic and plant-growth promoting (PGP microbiome can be selected for as long as it provides a competitive superiority in the niche. The competition-driven model indicates four strategies to interfere with the microbiome. Specifically, the rhizosphere microbiome community can be shifted using treatments that alter the host, resources, environment, and that take advantage of prioritization in inoculation. Our model and suggestions, considering the metaorganism in its natural context, would allow to gain further knowledge on the plant-microbial functions, and facilitate translation to more effective, and predictable phytotechnologies.

  17. Understanding human - bat interactions in NSW, Australia: improving risk communication for prevention of Australian bat lyssavirus.

    Science.gov (United States)

    Quinn, Emma K; Massey, Peter D; Cox-Witton, Keren; Paterson, Beverley J; Eastwood, Keith; Durrheim, David N

    2014-07-02

    Australian bat lyssavirus (ABLV) infects a number of flying fox and insectivorous bats species in Australia. Human infection with ABLV is inevitably fatal unless prior vaccination and/or post-exposure treatment (PET) is given. Despite ongoing public health messaging about the risks associated with bat contact, surveillance data have revealed a four-fold increase in the number of people receiving PET for bat exposure in NSW between 2007 and 2011. Our study aimed to better understand these human - bat interactions in order to identify additional risk communication messages that could lower the risk of potential ABLV exposure. All people aged 18 years or over whom received PET for non-occupation related potential ABLV exposure in the Hunter New England Local Health District of Australia between July 2011 and July 2013 were considered eligible for the study. Eligible participants were invited to a telephone interview to explore the circumstances of their bat contact. Interviews were then transcribed and thematically analysed by two independent investigators. Of 21 eligible participants that were able to be contacted, 16 consented and participated in a telephone interview. Participants reported bats as being widespread in their environment but reported a general lack of awareness about ABLV, particularly the risk of disease from bat scratches. Participants who attempted to 'rescue' bats did so because of a deep concern for the bat's welfare. Participants reported a change in risk perception after the exposure event and provided suggestions for public health messages that could be used to raise awareness about ABLV. Reframing the current risk messages to account for the genuine concern of people for bat welfare may enhance the communication. The potential risk to the person and possible harm to the bat from an attempted 'rescue' should be promoted, along with contact details for animal rescue groups. The potential risk of ABLV from bat scratches merits greater emphasis.

  18. Cellular Transcription Factor Oct-1 Interacts with the Epstein-Barr Virus BRLF1 Protein To Promote Disruption of Viral Latency▿

    Science.gov (United States)

    Robinson, Amanda R.; Kwek, Swee Sen; Hagemeier, Stacy R.; Wille, Coral K.; Kenney, Shannon C.

    2011-01-01

    The Epstein-Barr virus (EBV) latent-to-lytic switch is an essential part of the viral life cycle, but the cellular factors that promote viral reactivation are not well defined. In this report, we demonstrate that the cellular transcription factor Oct-1 cooperates with the EBV immediate-early protein BRLF1 (R, Rta) to induce lytic viral reactivation. We show that cotransfected Oct-1 enhances the ability of BRLF1 to activate lytic gene expression in 293 cells stably infected with a BRLF1-defective EBV mutant (BRLF1-stop) and that Oct-1 increases BRLF1-mediated activation of lytic EBV promoters in reporter gene assays. We find that Oct-1 interacts directly with BRLF1 in vitro and that a mutant BRLF1 protein (the M140A mutant) attenuated for the ability to interact with Oct-1 in vitro is also resistant to Oct-1-mediated transcriptional enhancement in 293 BRLF1-stop cells. Furthermore, we show that cotransfected Oct-1 augments BRLF1 binding to a variety of lytic EBV promoters in chromatin immunoprecipitation (ChIP) assays (including the BZLF1, BMRF1, and SM promoters) and that BRLF1 tethers Oct-1 to lytic EBV promoters. In addition, we demonstrate that an Oct-1 mutant defective in DNA binding (the S335D mutant) still retains the ability to enhance BRLF1 transcriptional effects. Finally, we show that knockdown of endogenous Oct-1 expression reduces the level of constitutive lytic EBV gene expression in both EBV-positive B-cell and EBV-positive epithelial cell lines. These results suggest that Oct-1 acts as a positive regulator of EBV lytic gene expression and that this effect is at least partially mediated through its interaction with the viral protein BRLF1. PMID:21697476

  19. Herpes Simplex Virus-2 Glycoprotein Interaction with HVEM Influences Virus-Specific Recall Cellular Responses at the Mucosa

    Directory of Open Access Journals (Sweden)

    Sarah J. Kopp

    2012-01-01

    Full Text Available Infection of susceptible cells by herpes simplex virus (HSV requires the interaction of the HSV gD glycoprotein with one of two principal entry receptors, herpes virus entry mediator (HVEM or nectins. HVEM naturally functions in immune signaling, and the gD-HVEM interaction alters innate signaling early after mucosal infection. We investigated whether the gD-HVEM interaction during priming changes lymphocyte recall responses in the murine intravaginal model. Mice were primed with attenuated HSV-2 expressing wild-type gD or mutant gD unable to engage HVEM and challenged 32 days later with virulent HSV-2 expressing wild-type gD. HSV-specific CD8+ T cells were decreased at the genital mucosa during the recall response after priming with virus unable to engage HVEM but did not differ in draining lymph nodes. CD4+ T cells, which are critical for entry of HSV-specific CD8+ T cells into mucosa in acute infection, did not differ between the two groups in either tissue. An inverse association between Foxp3+ CD4+ regulatory T cells and CD8+ infiltration into the mucosa was not statistically significant. CXCR3 surface expression was not significantly different among different lymphocyte subsets. We conclude that engagement of HVEM during the acute phase of HSV infection influences the antiviral CD8+ recall response by an unexplained mechanism.

  20. The modeling of understanding and sense’s generation processes in different architectural environmental situations of socio-cultural interaction

    OpenAIRE

    Марія Юріївна Блінова

    2015-01-01

    The article is an attempt to modeling of understanding and sense’s generation processes in different architectural environmental situations of socio-cultural interaction. Methodologically interpretation of the subject sociocultural interaction offered to make from the standpoint of modern social theories, the entity that is the social role, understood as a model of human behavior objectively given social position of the individual in the system of social relations

  1. A Saccharomyces cerevisiae assay system to investigate ligand/AdipoR1 interactions that lead to cellular signaling.

    Directory of Open Access Journals (Sweden)

    Mustapha Aouida

    Full Text Available Adiponectin is a mammalian hormone that exerts anti-diabetic, anti-cancer and cardioprotective effects through interaction with its major ubiquitously expressed plasma membrane localized receptors, AdipoR1 and AdipoR2. Here, we report a Saccharomyces cerevisiae based method for investigating agonist-AdipoR interactions that is amenable for high-throughput scale-up and can be used to study both AdipoRs separately. Agonist-AdipoR1 interactions are detected using a split firefly luciferase assay based on reconstitution of firefly luciferase (Luc activity due to juxtaposition of its N- and C-terminal fragments, NLuc and CLuc, by ligand induced interaction of the chimeric proteins CLuc-AdipoR1 and APPL1-NLuc (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1-NLuc in a S. cerevisiae strain lacking the yeast homolog of AdipoRs (Izh2p. The assay monitors the earliest known step in the adiponectin-AdipoR anti-diabetic signaling cascade. We demonstrate that reconstituted Luc activity can be detected in colonies or cells using a CCD camera and quantified in cell suspensions using a microplate reader. AdipoR1-APPL1 interaction occurs in absence of ligand but can be stimulated specifically by agonists such as adiponectin and the tobacco protein osmotin that was shown to have AdipoR-dependent adiponectin-like biological activity in mammalian cells. To further validate this assay, we have modeled the three dimensional structures of receptor-ligand complexes of membrane-embedded AdipoR1 with cyclic peptides derived from osmotin or osmotin-like plant proteins. We demonstrate that the calculated AdipoR1-peptide binding energies correlate with the peptides' ability to behave as AdipoR1 agonists in the split luciferase assay. Further, we demonstrate agonist-AdipoR dependent activation of protein kinase A (PKA signaling and AMP activated protein kinase (AMPK phosphorylation in S. cerevisiae, which are

  2. A Saccharomyces cerevisiae Assay System to Investigate Ligand/AdipoR1 Interactions That Lead to Cellular Signaling

    KAUST Repository

    Aouida, Mustapha

    2013-06-07

    Adiponectin is a mammalian hormone that exerts anti-diabetic, anti-cancer and cardioprotective effects through interaction with its major ubiquitously expressed plasma membrane localized receptors, AdipoR1 and AdipoR2. Here, we report a Saccharomyces cerevisiae based method for investigating agonist-AdipoR interactions that is amenable for high-throughput scale-up and can be used to study both AdipoRs separately. Agonist-AdipoR1 interactions are detected using a split firefly luciferase assay based on reconstitution of firefly luciferase (Luc) activity due to juxtaposition of its N- and C-terminal fragments, NLuc and CLuc, by ligand induced interaction of the chimeric proteins CLuc-AdipoR1 and APPL1-NLuc (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif 1-NLuc) in a S. cerevisiae strain lacking the yeast homolog of AdipoRs (Izh2p). The assay monitors the earliest known step in the adiponectin-AdipoR anti-diabetic signaling cascade. We demonstrate that reconstituted Luc activity can be detected in colonies or cells using a CCD camera and quantified in cell suspensions using a microplate reader. AdipoR1-APPL1 interaction occurs in absence of ligand but can be stimulated specifically by agonists such as adiponectin and the tobacco protein osmotin that was shown to have AdipoR-dependent adiponectin-like biological activity in mammalian cells. To further validate this assay, we have modeled the three dimensional structures of receptor-ligand complexes of membrane-embedded AdipoR1 with cyclic peptides derived from osmotin or osmotin-like plant proteins. We demonstrate that the calculated AdipoR1-peptide binding energies correlate with the peptides\\' ability to behave as AdipoR1 agonists in the split luciferase assay. Further, we demonstrate agonist-AdipoR dependent activation of protein kinase A (PKA) signaling and AMP activated protein kinase (AMPK) phosphorylation in S. cerevisiae, which are homologous to

  3. Sulforaphane inhibits damage-induced poly (ADP-ribosyl)ation via direct interaction of its cellular metabolites with PARP-1.

    Science.gov (United States)

    Piberger, Ann Liza; Keil, Claudia; Platz, Stefanie; Rohn, Sascha; Hartwig, Andrea

    2015-11-01

    The isothiocyanate sulforaphane, a major breakdown product of the broccoli glucosinolate glucoraphanin, has frequently been proposed to exert anticarcinogenic properties. Potential underlying mechanisms include a zinc release from Kelch-like ECH-associated protein 1 followed by the induction of detoxifying enzymes. This suggests that sulforaphane may also interfere with other zinc-binding proteins, e.g. those essential for DNA repair. Therefore, we explored the impact of sulforaphane on poly (ADP-ribose)polymerase-1 (PARP-1), poly (ADP-ribosyl)ation (PARylation), and DNA single-strand break repair (SSBR) in cell culture. Immunofluorescence analyses showed that sulforaphane diminished H2 O2 -induced PARylation in HeLa S3 cells starting from 15 μM despite increased lesion induction under these conditions. Subcellular experiments quantifying the damage-induced incorporation of (32) P-ADP-ribose by PARP-1 displayed no direct impact of sulforaphane itself, but cellular metabolites, namely the glutathione conjugates of sulforaphane and its interconversion product erucin, reduced PARP-1 activity concentration dependently. Interestingly, this sulforaphane metabolite-induced PARP-1 inhibition was prevented by thiol compounds. PARP-1 is a stimulating factor for DNA SSBR-rate and we further demonstrated that 25 μM sulforaphane also delayed the rejoining of H2 O2 -induced DNA strand breaks, although this might be partly due to increased lesion frequencies. Sulforaphane interferes with damage-induced PARylation and SSBR, which implies a sulforaphane-dependent impairment of genomic stability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. From Trust in Automation to Decision Neuroscience: Applying Cognitive Neuroscience Methods to Understand and Improve Interaction Decisions Involved in Human Automation Interaction.

    Science.gov (United States)

    Drnec, Kim; Marathe, Amar R; Lukos, Jamie R; Metcalfe, Jason S

    2016-01-01

    Human automation interaction (HAI) systems have thus far failed to live up to expectations mainly because human users do not always interact with the automation appropriately. Trust in automation (TiA) has been considered a central influence on the way a human user interacts with an automation; if TiA is too high there will be overuse, if TiA is too low there will be disuse. However, even though extensive research into TiA has identified specific HAI behaviors, or trust outcomes, a unique mapping between trust states and trust outcomes has yet to be clearly identified. Interaction behaviors have been intensely studied in the domain of HAI and TiA and this has led to a reframing of the issues of problems with HAI in terms of reliance and compliance. We find the behaviorally defined terms reliance and compliance to be useful in their functionality for application in real-world situations. However, we note that once an inappropriate interaction behavior has occurred it is too late to mitigate it. We therefore take a step back and look at the interaction decision that precedes the behavior. We note that the decision neuroscience community has revealed that decisions are fairly stereotyped processes accompanied by measurable psychophysiological correlates. Two literatures were therefore reviewed. TiA literature was extensively reviewed in order to understand the relationship between TiA and trust outcomes, as well as to identify gaps in current knowledge. We note that an interaction decision precedes an interaction behavior and believe that we can leverage knowledge of the psychophysiological correlates of decisions to improve joint system performance. As we believe that understanding the interaction decision will be critical to the eventual mitigation of inappropriate interaction behavior, we reviewed the decision making literature and provide a synopsis of the state of the art understanding of the decision process from a decision neuroscience perspective. We forward

  5. From Trust in Automation to Decision Neuroscience: Applying Cognitive Neuroscience Methods to Understand and Improve Interaction Decisions Involved in Human Automation Interaction

    Science.gov (United States)

    Drnec, Kim; Marathe, Amar R.; Lukos, Jamie R.; Metcalfe, Jason S.

    2016-01-01

    Human automation interaction (HAI) systems have thus far failed to live up to expectations mainly because human users do not always interact with the automation appropriately. Trust in automation (TiA) has been considered a central influence on the way a human user interacts with an automation; if TiA is too high there will be overuse, if TiA is too low there will be disuse. However, even though extensive research into TiA has identified specific HAI behaviors, or trust outcomes, a unique mapping between trust states and trust outcomes has yet to be clearly identified. Interaction behaviors have been intensely studied in the domain of HAI and TiA and this has led to a reframing of the issues of problems with HAI in terms of reliance and compliance. We find the behaviorally defined terms reliance and compliance to be useful in their functionality for application in real-world situations. However, we note that once an inappropriate interaction behavior has occurred it is too late to mitigate it. We therefore take a step back and look at the interaction decision that precedes the behavior. We note that the decision neuroscience community has revealed that decisions are fairly stereotyped processes accompanied by measurable psychophysiological correlates. Two literatures were therefore reviewed. TiA literature was extensively reviewed in order to understand the relationship between TiA and trust outcomes, as well as to identify gaps in current knowledge. We note that an interaction decision precedes an interaction behavior and believe that we can leverage knowledge of the psychophysiological correlates of decisions to improve joint system performance. As we believe that understanding the interaction decision will be critical to the eventual mitigation of inappropriate interaction behavior, we reviewed the decision making literature and provide a synopsis of the state of the art understanding of the decision process from a decision neuroscience perspective. We forward

  6. Interference with the PTEN-MAST2 interaction by a viral protein leads to cellular relocalization of PTEN.

    Science.gov (United States)

    Terrien, Elouan; Chaffotte, Alain; Lafage, Mireille; Khan, Zakir; Préhaud, Christophe; Cordier, Florence; Simenel, Catherine; Delepierre, Muriel; Buc, Henri; Lafon, Monique; Wolff, Nicolas

    2012-08-14

    PTEN (phosphatase and tensin homolog deleted on chromosome 10) and MAST2 (microtubule-associated serine and threonine kinase 2) interact with each other through the PDZ domain of MAST2 (MAST2-PDZ) and the carboxyl-terminal (C-terminal) PDZ domain-binding site (PDZ-BS) of PTEN. These two proteins function as negative regulators of cell survival pathways, and silencing of either one promotes neuronal survival. In human neuroblastoma cells infected with rabies virus (RABV), the C-terminal PDZ domain of the viral glycoprotein (G protein) can target MAST2-PDZ, and RABV infection triggers neuronal survival in a PDZ-BS-dependent fashion. These findings suggest that the PTEN-MAST2 complex inhibits neuronal survival and that viral G protein disrupts this complex through competition with PTEN for binding to MAST2-PDZ. We showed that the C-terminal sequences of PTEN and the viral G protein bound to MAST2-PDZ with similar affinities. Nuclear magnetic resonance structures of these complexes exhibited similar large interaction surfaces, providing a structural basis for their binding specificities. Additionally, the viral G protein promoted the nuclear exclusion of PTEN in infected neuroblastoma cells in a PDZ-BS-dependent manner without altering total PTEN abundance. These findings suggest that formation of the PTEN-MAST2 complex is specifically affected by the viral G protein and emphasize how disruption of a critical protein-protein interaction regulates intracellular PTEN trafficking. In turn, the data show how the viral protein might be used to decipher the underlying molecular mechanisms and to clarify how the subcellular localization of PTEN regulates neuronal survival.

  7. Geo-Sandbox: An Interactive Geoscience Training Tool with Analytics to Better Understand Student Problem Solving Approaches

    Science.gov (United States)

    Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.

    2015-12-01

    The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.

  8. A Case Study Using Visualization Interaction Logs and Insight Metrics to Understand How Analysts Arrive at Insights.

    Science.gov (United States)

    Guo, Hua; Gomez, Steven R; Ziemkiewicz, Caroline; Laidlaw, David H

    2016-01-01

    We present results from an experiment aimed at using logs of interactions with a visual analytics application to better understand how interactions lead to insight generation. We performed an insight-based user study of a visual analytics application and ran post hoc quantitative analyses of participants' measured insight metrics and interaction logs. The quantitative analyses identified features of interaction that were correlated with insight characteristics, and we confirmed these findings using a qualitative analysis of video captured during the user study. Results of the experiment include design guidelines for the visual analytics application aimed at supporting insight generation. Furthermore, we demonstrated an analysis method using interaction logs that identified which interaction patterns led to insights, going beyond insight-based evaluations that only quantify insight characteristics. We also discuss choices and pitfalls encountered when applying this analysis method, such as the benefits and costs of applying an abstraction framework to application-specific actions before further analysis. Our method can be applied to evaluations of other visualization tools to inform the design of insight-promoting interactions and to better understand analyst behaviors.

  9. Understanding plant-to-plant interactions for soil resources in multilayered Iberian dehesas

    Science.gov (United States)

    Moreno, G.; Rolo, V.; Cubera, E.; López-Díaz, L.

    2009-04-01

    Iberian dehesa is usually defined as two-layered silvopastoral system, where native grasses cohabit with a scattered widely-space tree layer. In the last two decades, an intense debate has been developed on the sustainability of this simplified type of dehesa. While some authors argue that that the forest cycle has been disrupted in most dehesas, where the lack of regeneration is an inherent problem to their exploitation, other authors have showed that dehesa degradation is easily reversible if certain abandonment is periodically exerted. The coexistence of two-layered plots with multilayered plots (encroached open woodlands) and mono-layered plots (either closed forest or mono-pasture/monocrops) has been a common feature of dehesas, as result of a systematic combination of agricultural, pastoral, and forestry uses. Different structures of vegetation depend on land use, giving a mosaic at both estate and landscape scales. These mosaic-type systems allow finding several scenarios of plant-to-plant interactions, mostly at belowground level. A key issue for sustainable management of oak woodland is to understand the complexity of the plant-to-plant relationships and their consequences in the ecosystem functioning in terms of productivity and stability. The competitive abilities of component systems are modified by the environment conditions. Dehesas, as most savanna systems, exhibit a low rainfall with high variability within and between years as well as a high evaporative demand during the summer. Indeed, water availability is one of the major ecological factors influencing either natural savannas or man-made open woodlands. Although most of the available studies have focused different aspects of the mature tree-grass interactions, we also present here some recent results on tree-tree, tree-shrub, shrub-seedling and seedling-grass interactions, explained mostly in terms of competition for soil water and nutrients. Trees can modify the soil and microclimate

  10. D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75

    International Nuclear Information System (INIS)

    Du Li; Zhao Yaxue; Chen, Jing; Yang Liumeng; Zheng Yongtang; Tang Yun; Shen Xu; Jiang Hualiang

    2008-01-01

    Integration of viral-DNA into host chromosome mediated by the viral protein HIV-1 integrase (IN) is an essential step in the HIV-1 life cycle. In this process, Lens epithelium-derived growth factor (LEDGF/p75) is discovered to function as a cellular co-factor for integration. Since LEDGF/p75 plays an important role in HIV integration, disruption of the LEDGF/p75 interaction with IN has provided a special interest for anti-HIV agent discovery. In this work, we reported that a benzoic acid derivative, 4-[(5-bromo-4-{[2,4-dioxo-3-(2-oxo-2-phenylethyl) -1,3-thiazolidin-5-ylidene]methyl}-2-ethoxyphenoxy)methyl]benzoic acid (D77) could potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution thus exhibiting antiretroviral activity. Molecular docking with site-directed mutagenesis analysis and surface plasmon resonance (SPR) binding assays has clarified possible binding mode of D77 against HIV-1 integrase. As the firstly discovered small molecular compound targeting HIV-1 integrase interaction with LEDGF/p75, D77 might supply useful structural information for further anti-HIV agent discovery

  11. Syndecan-1 Acts as an Important Regulator of CXCL1 Expression and Cellular Interaction of Human Endometrial Stromal and Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Dunja Maria Baston-Buest

    2017-01-01

    Full Text Available Successful implantation of the embryo into the human receptive endometrium is substantial for the establishment of a healthy pregnancy. This study focusses on the role of Syndecan-1 at the embryo-maternal interface, the multitasking coreceptor influencing ligand concentration, release and receptor presentation, and cellular morphology. CXC motif ligand 1, being involved in chemotaxis and angiogenesis during implantation, is of special interest as a ligand of Syndecan-1. Human endometrial stromal cells with and without Syndecan-1 knock-down were decidualized and treated with specific inhibitors to evaluate signaling pathways regulating CXC ligand 1 expression. Western blot analyses of MAPK and Wnt members were performed, followed by analysis of spheroid interactions between human endometrial cells and extravillous trophoblast cells. By mimicking embryo contact using IL-1β, we showed less ERK and c-Jun activation by depletion of Syndecan-1 and less Frizzled 4 production as part of the canonical Wnt pathway. Additionally, more beta-catenin was phosphorylated and therefore degraded after depletion of Syndecan-1. Secretion of CXC motif ligand 1 depends on MEK-1 with respect to Syndecan-1. Regarding the interaction of endometrial and trophoblast cells, the spheroid center-to-center distances were smaller after depletion of Syndecan-1. Therefore, Syndecan-1 seems to affect signaling processes relevant to signaling and intercellular interaction at the trophoblast-decidual interface.

  12. Parent-Adolescent Collaboration: An Interpersonal Model for Understanding Optimal Interactions

    Science.gov (United States)

    Beveridge, Ryan M.; Berg, Cynthia A.

    2007-01-01

    Current parent-adolescent behavioral interaction research highlights the importance of three elements of behavior in defining adaptive interactions: autonomy, control, and warmth vs. hostility. However, this research has largely addressed the developmental needs and psychosocial outcomes of adolescents, as opposed to parents, with a focus on how…

  13. Understanding the Symbolic Capital of Intercultural Interactions: A Case Study of International Students in Australia

    Science.gov (United States)

    Pham, Lien; Tran, Ly

    2015-01-01

    Intercultural interaction plays an important role in contributing to international students' learning and wellbeing in the host country. While research on international students' intercultural interactions reveals multifaceted aspects of personal and social factors, there is a tendency to consider language barrier and cultural differences as…

  14. Understanding the influence of social interactions on individual's behavior pattern in a work environment

    NARCIS (Netherlands)

    Chen, Chih-Wei; Aztiria, Asier; Ben Allouch, Soumaya; Aghajan, Hamid; Salah, Albert Ali; Lepri, Bruno

    2011-01-01

    In this work, we study social interactions in a work environment and investigate how the presence of other people changes personal behavior patterns. We design the visual processing algorithms to track multiple people in the environment and detect dyadic interactions using a discriminative

  15. Extending Face-to-Face Interactions: Understanding and Developing an Online Teacher and Family Community

    Science.gov (United States)

    Zhang, Chun; Du, Jianxia; Sun, Li; Ding, Yi

    2018-01-01

    Technology has been quickly changing human interactions, traditional practices, and almost every aspect of our lives. It is important to maintain effective face-to-face communication and interactions between teachers and families. Nonetheless, technology and its tools can also extend and enhance family-teacher relationships and partnerships. This…

  16. Understanding the Role of Interaction from Linguistic, Affective, and Social Perspectives

    Science.gov (United States)

    Xu, Guang

    2010-01-01

    This study was conducted to broaden the scope of studies on interaction. It examined the role of interaction in terms of linguistic, affective, and social aspects. A questionnaire was administered and intensive interviews conducted to reveal the reality of communication between Chinese ESL students and Canadian native English speakers and how…

  17. Students' Understanding on Newton's Third Law in Identifying the Reaction Force in Gravity Interactions

    Science.gov (United States)

    Zhou, Shaona; Zhang, Chunbin; Xiao, Hua

    2015-01-01

    In the past three decades, previous researches showed that students had various misconceptions of Newton's Third Law. The present study focused on students' difficulties in identifying the third-law force pair in gravity interaction situations. An instrument involving contexts with gravity and non-gravity associated interactions was designed and…

  18. Using Concept Maps as Instructional Materials to Foster the Understanding of the Atomic Model and Matter-Energy Interaction

    Science.gov (United States)

    Aguiar, Joana G.; Correia, Paulo R. M.

    2016-01-01

    In this paper, we explore the use of concept maps (Cmaps) as instructional materials prepared by teachers, to foster the understanding of chemistry. We choose fireworks as a macroscopic event to teach basic chemical principles related to the Bohr atomic model and matter-energy interaction. During teachers' Cmap navigation, students can experience…

  19. Multifaceted interplay between lipophilicity, protein interaction and luminescence parameters of non-intercalative ruthenium(II) polypyridyl complexes controlling cellular imaging and cytotoxic properties.

    Science.gov (United States)

    Mazuryk, Olga; Magiera, Katarzyna; Rys, Barbara; Suzenet, Franck; Kieda, Claudine; Brindell, Małgorzata

    2014-12-01

    Here, we examine the photophysical properties of five ruthenium(II) complexes comprising two 4,7-diphenyl-1,10-phenanthroline (dip) ligands and functionalized bipyridine (R₁bpy-R₂, where R₁= H or CH3, R₂= H, CH₃, COO⁻,4-[3-(2-nitro-1H-imidazol-1-yl)propyl] or 1,3-dicyclohexyl-1-carbonyl-urea) towards development of luminescence probes for cellular imaging. These complexes have been shown to interact with albumin and the formed adducts exhibited up to eightfold increase in the luminescence quantum yield as well as the average lifetime of emission. It was demonstrated that they cannot bind to DNA through the intercalation mode and its luminescence in the presence of DNA is quenching. Cell viability experiments indicated that all complexes possess significant dose-dependent cytotoxicity (with IC₅₀ 5-19 μM) on 4T1 breast cancer cell line and their anti-proliferative activity correlates very well with their lipophilicity. Cellular uptake was studied by measuring the ruthenium content in cells using ICP-MS technique. As expected, the better uptake is directly related to higher lipophilicity of doubly charged ruthenium complexes while uptake of monocationic one is much lower in spite of the highest lipophilicity. Additionally staining properties were assessed using flow cytometry and fluorescence microscopy. These experiments showed that complex with 1,3-dicyclohexyl-1-carbonyl-urea substituent exhibits the best staining properties in spite of the lowest luminescence quantum yield in buffered solution (pH 7.4). Our results point out that both the imaging and cytotoxic properties of the studied ruthenium complexes are strongly influence by the level of internalization and protein interaction.

  20. Towards a molecular level understanding of the sulfanilamide-soil organic matter-interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ashour A., E-mail: ashour.ahmed@uni-rostock.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23-24, D-18059 Rostock (Germany); Steinbeis GmbH & Co. KG für Technologietransfer, 70174 Stuttgart (Germany); University of Cairo, Faculty of Science, Department of Chemistry, 12613 Giza (Egypt); Thiele-Bruhn, Sören, E-mail: thiele@uni-trier.de [University of Trier, Soil Science, D-54286 Trier (Germany); Leinweber, Peter, E-mail: peter.leinweber@uni-rostock.de [Steinbeis GmbH & Co. KG für Technologietransfer, 70174 Stuttgart (Germany); University of Rostock, Soil Science, D-18051 Rostock (Germany); Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23-24, D-18059 Rostock (Germany)

    2016-07-15

    Sorption experiments of sulfanilamide (SAA) on well-characterized samples of soil size-fractions were combined with the modeling of SAA-soil-interaction via quantum chemical calculations. Freundlich unit capacities were determined in batch experiments and it was found that they increase with the soil organic matter (SOM) content according to the order fine silt > medium silt > clay > whole soil > coarse silt > sand. The calculated binding energies for mass-spectrometrically quantified sorption sites followed the order ionic species > peptides > carbohydrates > phenols and lignin monomers > lignin dimers > heterocyclic compounds > fatty acids > sterols > aromatic compounds > lipids, alkanes, and alkenes. SAA forms H-bonds through its polar centers with the polar SOM sorption sites. In contrast dispersion and π-π-interactions predominate the interaction of the SAA aromatic ring with the non-polar moieties of SOM. Moreover, the dipole moment, partial atomic charges, and molecular volume of the SOM sorption sites are the main physical properties controlling the SAA-SOM-interaction. Further, reasonable estimates of the Freundlich unit capacities from the calculated binding energies have been established. Consequently, we suggest using this approach in forthcoming studies to disclose the interactions of a wide range of organic pollutants with SOM. - Highlights: • Experiment and theory showed that SAA obeys a site-specific sorption on soil surfaces. • SAA-SOM-interaction increases by increasing polarity of SOM sorption site. • H-bonds, dispersion, and π-π-interactions were observed for SAA-SOM-interaction. • Dipole moment and atomic charges of SOM sorption sites control SAA-SOM-interaction. • The Freundlich unit capacities were estimated from the calculated binding energies. • The current SOM model is flexible to describe interactions of SOM with other pollutants.

  1. Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level.

    Science.gov (United States)

    Pasternak, Taras; Potters, Geert; Caubergs, Roland; Jansen, Marcel A K

    2005-08-01

    Plant stress responses are a key factor in steering the development of cells, tissues, and organs. However, the stress-induced signal transduction cascades that control localized growth and cell size/differentiation are not well understood. It is reported here that oxidative stress, exerted by paraquat or alloxan, induced localized cell proliferation in intact seedlings, in isolated root segments, and at the single cell level. Analysis of the stress-induced mitotic activity revealed that oxidative stress enhances auxin-dependent growth cycle reactivation. Based on the similarities between responses at plant, tissue, or single cell level, it is hypothesized that a common mechanism of reactive oxygen species enhanced auxin-responsiveness underlies the stress-induced re-orientation of growth, and that stress-induced effects on the protoplast growth cycle are directly relevant in terms of understanding whole plant behaviour.

  2. Understanding the Nature of Local-Global Interactions in Istanbul’s Retail Property Market

    Directory of Open Access Journals (Sweden)

    Fatih Eren

    2014-07-01

    Full Text Available Today, capital, people and information flows have increased more than ever before among different regions in the world. Every flow creates a different local-global interaction in its own social environment. One of social environments in which this kind of interactions occurs is property markets. There are some theories to explain the nature of local and global interactions in social sciences literature. However, the success of these theories in explaining the nature of local-global interactions in a property market became subject to a research very few. This research aims to make a contribution to this area. The study also intends to find general answers to some important questions emerge in the internationalization process of property markets. The study focuses on the three well-accepted interaction theories of social sciences, which are imperialism, globalisation and glocalisation. The validity of the assumptions of these theories in the case of Istanbul’s retail property market is questioned in this research. The emergence of social structures and the specific behaviours of these structures in local property markets may be understood better when true point of view is found out about interactions. A qualitative methodology is followed; interview and document analysis methods are used in the study. Findings show that the nature of local-global interactions experienced in Istanbul’s retail property market is very unique so it is not possible to explain this unique nature using the perspective of only one settled theory.

  3. The molecular understanding of interfacial interactions of functionalized graphene and chitosan

    International Nuclear Information System (INIS)

    Zhang, Hong-ping; Luo, Xue-gang; Lin, Xiao-yan; Lu, Xiong; Tang, Youhong

    2016-01-01

    Graphical abstract: The type of the functional groups can be used to modulating interactions between graphene sheet and chitosan. - Highlights: • Investigate interfacial interactions between chitosan and functionalized graphene by DFT. • Observe covalent linkages between COOH-modified graphene and chitosan units. • Multi-functionalized graphene regulates the interfacial interactions with chitosan. • It is useful for guiding the preparation of graphene/chitosan composites. - Abstract: Graphene-reinforced chitosan scaffolds have been extensively studied for several years as promising hard tissue replacements. However, the interfacial interactions between graphene and chitosan are strongly related to the solubility, processability, and mechanical properties of graphene-reinforced chitosan (G–C) composites. The functionalization of graphene is regarded as the most effective way to improve the abovementioned properties of the G–C composite. In this study, the interfacial interactions between chitosan and functionalized graphene sheets with carboxylization (COOH-), amination (NH 2 -), and hydroxylation (OH-) groups were systematically studied at the electronic level using the method of ab initio simulations based on quantum mechanics theory and the observations were compared with reported experimental results. The covalent linkages between COOH-modified graphene and the chitosan units were demonstrated and the combination of multi-functionalization on graphene could regulate the interfacial interactions between graphene and the chitosan. The interfacial interactions between chitosan and properly functionalized graphene are critical for the preparation of G–C-based composites for tissue engineering scaffolds and other applications.

  4. Mapping of immunogenic and protein-interacting regions at the surface of the seven-bladed β-propeller domain of the HIV-1 cellular interactor EED

    Directory of Open Access Journals (Sweden)

    Gouet Patrice

    2008-02-01

    Full Text Available Abstract Background The human EED protein, a member of the superfamily of Polycomb group proteins, is involved in multiple cellular protein complexes. Its C-terminal domain, which is common to the four EED isoforms, contains seven repeats of a canonical WD-40 motif. EED is an interactor of three HIV-1 proteins, matrix (MA, integrase (IN and Nef. An antiviral activity has been found to be associated with isoforms EED3 and EED4 at the late stage of HIV-1 replication, due to a negative effect on virus assembly and genomic RNA packaging. The aim of the present study was to determine the regions of the EED C-terminal core domain which were accessible and available to protein interactions, using three-dimensional (3D protein homology modelling with a WD-40 protein of known structure, and epitope mapping of anti-EED antibodies. Results Our data suggested that the C-terminal domain of EED was folded as a seven-bladed β-propeller protein. During the completion of our work, crystallographic data of EED became available from co-crystals of the EED C-terminal core with the N-terminal domain of its cellular partner EZH2. Our 3D-model was in good congruence with the refined structural model determined from crystallographic data, except for a unique α-helix in the fourth β-blade. More importantly, the position of flexible loops and accessible β-strands on the β-propeller was consistent with our mapping of immunogenic epitopes and sites of interaction with HIV-1 MA and IN. Certain immunoreactive regions were found to overlap with the EZH2, MA and IN binding sites, confirming their accessibility and reactivity at the surface of EED. Crystal structure of EED showed that the two discrete regions of interaction with MA and IN did not overlap with each other, nor with the EZH2 binding pocket, but were contiguous, and formed a continuous binding groove running along the lateral face of the β-propeller. Conclusion Identification of antibody-, MA-, IN- and EZH2

  5. Towards a better understanding of the specificity of protein-protein interaction

    Czech Academy of Sciences Publication Activity Database

    Kysilka, Jiří; Vondrášek, Jiří

    2012-01-01

    Roč. 25, č. 11 (2012), s. 604-615 ISSN 0952-3499 R&D Projects: GA ČR GAP208/10/0725; GA ČR GAP302/10/0427; GA MŠk(CZ) LH11020 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520701 Keywords : protein-protein interaction * molecular recognition * x-ray structure analysis * empirical potentials * side chain-side chain interaction * interaction energy * bioinformatics Subject RIV: CE - Biochemistry Impact factor: 3.006, year: 2012

  6. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants.

    Science.gov (United States)

    Korkaric, Muris; Behra, Renata; Fischer, Beat B; Junghans, Marion; Eggen, Rik I L

    2015-05-01

    The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Soil-structure interaction studies for understanding the behavior of integral abutment bridges.

    Science.gov (United States)

    2012-03-01

    Integral Abutment Bridges (IAB) are bridges without any joints within the bridge deck or between the : superstructure and the abutments. An IAB provides many advantages during construction and maintenance of : a bridge. Soil-structure interactions at...

  8. TRAP1 and the proteasome regulatory particle TBP7/Rpt3 interact in the endoplasmic reticulum and control cellular ubiquitination of specific mitochondrial proteins.

    Science.gov (United States)

    Amoroso, M R; Matassa, D S; Laudiero, G; Egorova, A V; Polishchuk, R S; Maddalena, F; Piscazzi, A; Paladino, S; Sarnataro, D; Garbi, C; Landriscina, M; Esposito, F

    2012-04-01

    Tumor necrosis factor receptor-associated protein-1 (TRAP1) is a mitochondrial (MITO) antiapoptotic heat-shock protein. The information available on the TRAP1 pathway describes just a few well-characterized functions of this protein in mitochondria. However, our group's use of mass-spectrometric analysis identified TBP7, an AAA-ATPase of the 19S proteasomal subunit, as a putative TRAP1-interacting protein. Surprisingly, TRAP1 and TBP7 colocalize in the endoplasmic reticulum (ER), as demonstrated by biochemical and confocal/electron microscopic analyses, and interact directly, as confirmed by fluorescence resonance energy transfer analysis. This is the first demonstration of TRAP1's presence in this cellular compartment. TRAP1 silencing by short-hairpin RNAs, in cells exposed to thapsigargin-induced ER stress, correlates with upregulation of BiP/Grp78, thus suggesting a role of TRAP1 in the refolding of damaged proteins and in ER stress protection. Consistently, TRAP1 and/or TBP7 interference enhanced stress-induced cell death and increased intracellular protein ubiquitination. These experiments led us to hypothesize an involvement of TRAP1 in protein quality control for mistargeted/misfolded mitochondria-destined proteins, through interaction with the regulatory proteasome protein TBP7. Remarkably, expression of specific MITO proteins decreased upon TRAP1 interference as a consequence of increased ubiquitination. The proposed TRAP1 network has an impact in vivo, as it is conserved in human colorectal cancers, is controlled by ER-localized TRAP1 interacting with TBP7 and provides a novel model of the ER-mitochondria crosstalk.

  9. Innovative Approaches to Understanding Transportation/Societal Interactions. Volume 2 : Study Design Reports

    Science.gov (United States)

    1981-10-01

    In 1979, the Transportation Systems Center (TSC), under sponsorship of the Urban Mass Transportation Administration (UMTA), began a program of research directed toward improving the understanding of the role of transportation in society, in particula...

  10. Alpha5beta1 integrin-fibronectin interactions specify liquid to solid phase transition of 3D cellular aggregates.

    Directory of Open Access Journals (Sweden)

    Carlos E Caicedo-Carvajal

    2010-07-01

    Full Text Available Tissue organization during embryonic development and wound healing depends on the ability of cells on the one hand to exchange adhesive bonds during active rearrangement and on the other to become fixed in place as tissue homeostasis is reached. Cells achieve these contradictory tasks by regulating either cell-cell adhesive bonds, mediated by cadherins, or cell-extracellular matrix (ECM connections, regulated by integrins. Integrin alpha5beta1 and soluble fibronectin (sFN are key players in cell-ECM force generation and in ECM polymerization. Here, we explore the interplay between integrin alpha5beta1 and sFN and its influence on tissue mechanical properties and cell sorting behavior.We generated a series of cell lines varying in alpha5beta1 receptor density. We then systematically explored the effects of different sFN concentrations on aggregate biomechanical properties using tissue surface tensiometry. We found previously unreported complex behaviors including the observation that interactions between fibronectin and integrin alpha5beta1 generates biphasic tissue cohesion profiles. Specifically, we show that at constant sFn concentration, aggregate cohesion increases linearly as alpha5beta1 receptor density is increased from low to moderate levels, producing a transition from viscoelastic-liquid to pseudo viscoelastic-solid behavior. However, further increase in receptor density causes an abrupt drop in tissue cohesion and a transition back to viscoelastic-liquid properties. We propose that this may be due to depletion of sFn below a critical value in the aggregate microenvironment at high alpha5beta1 levels. We also show that differential expression of alpha5beta1 integrin can promote phase-separation between cells.The interplay between alpha5-integrin and sFn contributes significantly to tissue cohesion and, depending on their level of expression, can mediate a shift from liquid to elastic behavior. This interplay represents a tunable level

  11. Cellular uptake of nanoparticles: journey inside the cell.

    Science.gov (United States)

    Behzadi, Shahed; Serpooshan, Vahid; Tao, Wei; Hamaly, Majd A; Alkawareek, Mahmoud Y; Dreaden, Erik C; Brown, Dennis; Alkilany, Alaaldin M; Farokhzad, Omid C; Mahmoudi, Morteza

    2017-07-17

    Nanoscale materials are increasingly found in consumer goods, electronics, and pharmaceuticals. While these particles interact with the body in myriad ways, their beneficial and/or deleterious effects ultimately arise from interactions at the cellular and subcellular level. Nanoparticles (NPs) can modulate cell fate, induce or prevent mutations, initiate cell-cell communication, and modulate cell structure in a manner dictated largely by phenomena at the nano-bio interface. Recent advances in chemical synthesis have yielded new nanoscale materials with precisely defined biochemical features, and emerging analytical techniques have shed light on nuanced and context-dependent nano-bio interactions within cells. In this review, we provide an objective and comprehensive account of our current understanding of the cellular uptake of NPs and the underlying parameters controlling the nano-cellular interactions, along with the available analytical techniques to follow and track these processes.

  12. Cellular Prion Protein and Caveolin-1 Interaction in a Neuronal Cell Line Precedes Fyn/Erk 1/2 Signal Transduction

    Directory of Open Access Journals (Sweden)

    Mattia Toni

    2006-01-01

    Full Text Available It has been reported that cellular prion protein (PrPc is enriched in caveolae or caveolae-like domains with caveolin-1 (Cav-1 participating to signal transduction events by Fyn kinase recruitment. By using the Glutathione-S-transferase (GST-fusion proteins assay, we observed that PrPc strongly interacts in vitro with Cav-1. Thus, we ascertained the PrPc caveolar localization in a hypothalamic neuronal cell line (GN11, by confocal microscopy analysis, flotation on density gradient, and coimmunoprecipitation experiments. Following the anti-PrPc antibody-mediated stimulation of live GN11 cells, we observed that PrPc clustered on plasma membrane domains rich in Cav-1 in which Fyn kinase converged to be activated. After these events, a signaling cascade through p42/44 MAP kinase (Erk 1/2 was triggered, suggesting that following translocations from rafts to caveolae or caveolae-like domains PrPc could interact with Cav-1 and induce signal transduction events.

  13. Switching between individual and collective motility in B lymphocytes is controlled by cell-matrix adhesion and inter-cellular interactions.

    Science.gov (United States)

    Rey-Barroso, Javier; Calovi, Daniel S; Combe, Maud; German, Yolla; Moreau, Mathieu; Canivet, Astrid; Wang, Xiaobo; Sire, Clément; Theraulaz, Guy; Dupré, Loïc

    2018-04-11

    Lymphocytes alternate between phases of individual migration across tissues and phases of clustering during activation and function. The range of lymphocyte motility behaviors and the identity of the factors that govern them remain elusive. To explore this point, we here collected unprecedented statistics pertaining to cell displacements, cell:matrix and cell:cell interactions using a model B cell line as well as primary human B lymphocytes. At low cell density, individual B lymphocytes displayed a high heterogeneity in their speed and diffusivity. Beyond this intrinsic variability, B lymphocytes adapted their motility to the composition of extra-cellular matrix, adopting slow persistent walks over collagen IV and quick Brownian walks over fibronectin. At high cell density, collagen IV favored the self-assembly of B lymphocytes into clusters endowed with collective coordination, while fibronectin stimulated individual motility. We show that this behavioral plasticity is controlled by acto-myosin dependent adhesive and Arp2/3-dependent protrusive actin pools, respectively. Our study reveals the adaptive nature of B lymphocyte motility and group dynamics, which are shaped by an interplay between and cell:matrix and cell:cell interactions.

  14. Identification of cellular proteins that interact with Newcastle Disease Virus and human Respiratory Syncytial Virus by a two-dimensional virus overlay protein binding assay (VOPBA).

    Science.gov (United States)

    Holguera, Javier; Villar, Enrique; Muñoz-Barroso, Isabel

    2014-10-13

    Although it is well documented that the initial attachment receptors for Newcastle Disease Virus (NDV) and Respiratory Syncytial Virus (RSV) are sialic acid-containing molecules and glycosaminoglycans respectively, the exact nature of the receptors for both viruses remains to be deciphered. Moreover, additional molecules at the host cell surface might be involved in the entry mechanism. With the aim of identifying the cellular proteins that interact with NDV and RSV at the cell surface, we performed a virus overlay protein binding assay (VOPBA). Cell membrane lysates were separated by two dimensional (2D) gel electrophoresis and electrotransferred to PVDF membranes, after which they were probed with high viral concentrations. NDV interacted with a Protein Disulfide Isomerase from chicken fibroblasts. In the case of RSV, we detected 15 reactive spots, which were identified as six different proteins, of which nucleolin was outstanding. We discuss the possible role of PDI and nucleolin in NDV and RSV entry, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Towards a molecular level understanding of the sulfanilamide-soil organic matter-interaction.

    Science.gov (United States)

    Ahmed, Ashour A; Thiele-Bruhn, Sören; Leinweber, Peter; Kühn, Oliver

    2016-07-15

    Sorption experiments of sulfanilamide (SAA) on well-characterized samples of soil size-fractions were combined with the modeling of SAA-soil-interaction via quantum chemical calculations. Freundlich unit capacities were determined in batch experiments and it was found that they increase with the soil organic matter (SOM) content according to the order fine silt > medium silt > clay > whole soil > coarse silt > sand. The calculated binding energies for mass-spectrometrically quantified sorption sites followed the order ionic species > peptides > carbohydrates > phenols and lignin monomers > lignin dimers > heterocyclic compounds > fatty acids > sterols > aromatic compounds > lipids, alkanes, and alkenes. SAA forms H-bonds through its polar centers with the polar SOM sorption sites. In contrast dispersion and π-π-interactions predominate the interaction of the SAA aromatic ring with the non-polar moieties of SOM. Moreover, the dipole moment, partial atomic charges, and molecular volume of the SOM sorption sites are the main physical properties controlling the SAA-SOM-interaction. Further, reasonable estimates of the Freundlich unit capacities from the calculated binding energies have been established. Consequently, we suggest using this approach in forthcoming studies to disclose the interactions of a wide range of organic pollutants with SOM. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Teaching Interaction Design and Children: Understanding the Relevance of Theory for Design

    Directory of Open Access Journals (Sweden)

    Tilde Bekker

    2014-08-01

    Full Text Available In this paper we address the challenge of teaching interaction design for children’s products especially pertaining to bridging the gap between child development theories and interaction design issues. We describe our experiences from developing a one-week course on interaction design and children, that is part of a competency based Masters program in design. We conclude that key elements in this course, to support learning how to incorporate theoretical knowledge in design, are a providing design tool that covers a child developmental model of four domains (cognitive, social, emotional and physical , such as the Developmentally Situated Design cards for creating child personas and design concepts b using a design exercise c giving students the possibility to work on several iterations d giving students more than one age-group to work with in the project, and e providing the students with an evaluation protocol.

  17. The Merapi Interactive Project: Offering a Fancy Cross-Disciplinary Scientific Understanding of Merapi Volcano to a Wide Audience.

    Science.gov (United States)

    Morin, J.; Kerlow, I.

    2015-12-01

    The Merapi volcano is of great interest to a wide audience as it is one of the most dangerous volcanoes worldwide and a beautiful touristic spot. The scientific literature available on that volcano both in Earth and Social sciences is rich but mostly inaccessible to the public because of the scientific jargon and the restricted database access. Merapi Interactive aims at developing clear information and attractive content about Merapi for a wide audience. The project is being produced by the Art and Media Group at the Earth Observatory of Singapore, and it takes the shape of an e-book. It offers a consistent, comprehensive, and jargon-filtered synthesis of the main volcanic-risk related topics about Merapi: volcanic mechanisms, eruptive history, associated hazards and risks, the way inhabitants and scientists deal with it, and what daily life at Merapi looks like. The project provides a background to better understand volcanoes, and it points out some interactions between scientists and society. We propose two levels of interpretation: one that is understandable by 10-year old kids and above and an expert level with deeper presentations of specific topics. Thus, the Merapi Interactive project intends to provide an engaging and comprehensive interactive book that should interest kids, adults, as well as Earth Sciences undergraduates and academics. Merapi Interactive is scheduled for delivery in mid-2016.

  18. Baculovirus Inhibitor-of-Apoptosis Op-IAP3 Blocks Apoptosis by Interaction with and Stabilization of a Host Insect Cellular IAP

    Science.gov (United States)

    Byers, Nathaniel M.; Vandergaast, Rianna L.

    2015-01-01

    ABSTRACT Baculovirus-encoded inhibitor of apoptosis (IAP) proteins likely evolved from their host cell IAP homologs, which function as critical regulators of cell death. Despite their striking relatedness to cellular IAPs, including the conservation of two baculovirus IAP repeat (BIR) domains and a C-terminal RING, viral IAPs use an unresolved mechanism to suppress apoptosis in insects. To define this mechanism, we investigated Op-IAP3, the prototypical IAP from baculovirus OpMNPV. We found that Op-IAP3 forms a stable complex with SfIAP, the native, short-lived IAP of host insect Spodoptera frugiperda. Long-lived Op-IAP3 prevented virus-induced SfIAP degradation, which normally causes caspase activation and apoptosis. In uninfected cells, Op-IAP3 also increased SfIAP steady-state levels and extended SfIAP's half-life. Conversely, SfIAP stabilization was lost or reversed in the presence of mutated Op-IAP3 that was engineered for reduced stability. Thus, Op-IAP3 stabilizes SfIAP and preserves its antiapoptotic function. In contrast to SfIAP, Op-IAP3 failed to bind or inhibit native Spodoptera caspases. Furthermore, BIR mutations that abrogate binding of well-conserved IAP antagonists did not affect Op-IAP3's capacity to prevent virus-induced apoptosis. Remarkably, Op-IAP3 also failed to prevent apoptosis when endogenous SfIAP was ablated by RNA silencing. Thus, Op-IAP3 requires SfIAP as a cofactor. Our findings suggest a new model wherein Op-IAP3 interacts directly with SfIAP to maintain its intracellular level, thereby suppressing virus-induced apoptosis indirectly. Consistent with this model, Op-IAP3 has evolved an intrinsic stability that may serve to repress signal-induced turnover and autoubiquitination when bound to its targeted cellular IAP. IMPORTANCE The IAPs were first discovered in baculoviruses because of their potency for preventing apoptosis. However, the antiapoptotic mechanism of viral IAPs in host insects has been elusive. We show here that the

  19. Baculovirus Inhibitor-of-Apoptosis Op-IAP3 Blocks Apoptosis by Interaction with and Stabilization of a Host Insect Cellular IAP.

    Science.gov (United States)

    Byers, Nathaniel M; Vandergaast, Rianna L; Friesen, Paul D

    2016-01-01

    Baculovirus-encoded inhibitor of apoptosis (IAP) proteins likely evolved from their host cell IAP homologs, which function as critical regulators of cell death. Despite their striking relatedness to cellular IAPs, including the conservation of two baculovirus IAP repeat (BIR) domains and a C-terminal RING, viral IAPs use an unresolved mechanism to suppress apoptosis in insects. To define this mechanism, we investigated Op-IAP3, the prototypical IAP from baculovirus OpMNPV. We found that Op-IAP3 forms a stable complex with SfIAP, the native, short-lived IAP of host insect Spodoptera frugiperda. Long-lived Op-IAP3 prevented virus-induced SfIAP degradation, which normally causes caspase activation and apoptosis. In uninfected cells, Op-IAP3 also increased SfIAP steady-state levels and extended SfIAP's half-life. Conversely, SfIAP stabilization was lost or reversed in the presence of mutated Op-IAP3 that was engineered for reduced stability. Thus, Op-IAP3 stabilizes SfIAP and preserves its antiapoptotic function. In contrast to SfIAP, Op-IAP3 failed to bind or inhibit native Spodoptera caspases. Furthermore, BIR mutations that abrogate binding of well-conserved IAP antagonists did not affect Op-IAP3's capacity to prevent virus-induced apoptosis. Remarkably, Op-IAP3 also failed to prevent apoptosis when endogenous SfIAP was ablated by RNA silencing. Thus, Op-IAP3 requires SfIAP as a cofactor. Our findings suggest a new model wherein Op-IAP3 interacts directly with SfIAP to maintain its intracellular level, thereby suppressing virus-induced apoptosis indirectly. Consistent with this model, Op-IAP3 has evolved an intrinsic stability that may serve to repress signal-induced turnover and autoubiquitination when bound to its targeted cellular IAP. The IAPs were first discovered in baculoviruses because of their potency for preventing apoptosis. However, the antiapoptotic mechanism of viral IAPs in host insects has been elusive. We show here that the prototypical viral IAP

  20. Understanding interactions in virtual HIV communities: a social network analysis approach.

    Science.gov (United States)

    Shi, Jingyuan; Wang, Xiaohui; Peng, Tai-Quan; Chen, Liang

    2017-02-01

    This study investigated the driving mechanism of building interaction ties among the people living with HIV/AIDS in one of the largest virtual HIV communities in China using social network analysis. Specifically, we explained the probability of forming interaction ties with homophily and popularity characteristics. The exponential random graph modeling results showed that members in this community tend to form homophilous ties in terms of shared location and interests. Moreover, we found a tendency away from popularity effect. This suggests that in this community, resources and information were not disproportionally received by a few of members, which could be beneficial to the overall community.

  1. Full-length cellular β-secretase has a trimeric subunit stoichiometry, and its sulfur-rich transmembrane interaction site modulates cytosolic copper compartmentalization.

    Science.gov (United States)

    Liebsch, Filip; Aurousseau, Mark R P; Bethge, Tobias; McGuire, Hugo; Scolari, Silvia; Herrmann, Andreas; Blunck, Rikard; Bowie, Derek; Multhaup, Gerd

    2017-08-11

    The β-secretase (BACE1) initiates processing of the amyloid precursor protein (APP) into Aβ peptides, which have been implicated as central players in the pathology of Alzheimer disease. BACE1 has been described as a copper-binding protein and its oligomeric state as being monomeric, dimeric, and/or multimeric, but the native cellular stoichiometry has remained elusive. Here, by using single-molecule fluorescence and in vitro cross-linking experiments with photo-activatable unnatural amino acids, we show that full-length BACE1, independently of its subcellular localization, exists as trimers in human cells. We found that trimerization requires the BACE1 transmembrane sequences (TMSs) and cytoplasmic domains, with residues Ala 463 and Cys 466 buried within the trimer interface of the sulfur-rich core of the TMSs. Our 3D model predicts that the sulfur-rich core of the trimeric BACE1 TMS is accessible to metal ions, but copper ions did not trigger trimerization. The results of functional assays of endogenous BACE1 suggest that it has a role in intracellular copper compartmentalization by transferring cytosolic copper to intracellular compartments, while leaving the overall cellular copper concentration unaltered. Adding to existing physiological models, our results provide novel insight into the atypical interactions between copper and BACE1 and into its non-enzymatic activities. In conclusion, therapeutic Alzheimer disease prevention strategies aimed at decreasing BACE1 protein levels should be regarded with caution, because adverse effects in copper homeostasis may occur. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Understanding the Work-Life Interaction from a Working Time Perspective

    DEFF Research Database (Denmark)

    Pedersen, Vivi Bach

    In recent years, integrating work and social life have become more salient due to a growth of dualearner couples and increasing challenges of global competition for organizations. Studies illustrate the importance of the work-life phenomenon for understanding individual wellbeing as well...... as organizational effectiveness and competitiveness. In the work-life literature, it is evident that the dominating conflict perspective and the competing work-life balance approach are difficult to integrate, which creates a complexity in understanding the work-life phenomenon. The result is an overwhelming amount...... & Ryan, 2002). Through theoretical analyses it is shown that a participatory influence approach reveals new perspectives in understanding the complexity of the work-life phenomenon and help counteracting the undesirable split-up between the existing conflict versus balance approaches. Participants from...

  3. Human-Computer Interaction (HCI) in Educational Environments: Implications of Understanding Computers as Media.

    Science.gov (United States)

    Berg, Gary A.

    2000-01-01

    Reviews literature in the field of human-computer interaction (HCI) as it applies to educational environments. Topics include the origin of HCI; human factors; usability; computer interface design; goals, operations, methods, and selection (GOMS) models; command language versus direct manipulation; hypertext; visual perception; interface…

  4. Towards understanding the trajectory and interactions of the gut microbiome in healthy older humans

    DEFF Research Database (Denmark)

    Castro Mejia, Josue Leonardo

    composition, physiological decline and frailty in older individuals (e.g. +65 years). Identifying lifestyle factors and their interactions with GM and host would be of great societal value in relation to preventing frailty and improving the life quality of the individuals, as well as for economical reasons...

  5. Land use and land cover dynamics in the Brazilian Amazon: understanding human-environmental interactions

    NARCIS (Netherlands)

    Souza Soler, de L.

    2014-01-01

    Land use and land cover dynamics are a result of the interactions between human activities and the environment. The objective of this thesis is to analyze Amazonian land use and land cover pattern dynamics in order to identify the underlying system dynamics. By combining empirical statistical

  6. Interactive tool that empowers structural understanding and enables FEM analysis in a parametric design environment

    DEFF Research Database (Denmark)

    Christensen, Jesper Thøger; Parigi, Dario; Kirkegaard, Poul Henning

    2014-01-01

    This paper introduces an interactive tool developed to integrate structural analysis in the architectural design environment from the early conceptual design stage. The tool improves exchange of data between the design environment of Rhino Grasshopper and the FEM analysis of Autodesk Robot...

  7. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    Science.gov (United States)

    Taber, Keith S.

    2013-01-01

    Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…

  8. Understanding soaring bird migration through interactions and decisions at the individual level

    NARCIS (Netherlands)

    van Loon, E.E.; Shamoun-Baranes, J.; Bouten, W.; Davis, S.L.

    2011-01-01

    Many soaring bird species migrate southwards in autumn from their breeding grounds in Europe and Central Asia towards their wintering grounds. Our knowledge about interactions between migrating birds, thermal selection during migration and mechanisms that lead to flocking or convergent travel

  9. Towards Understanding the Two Way Interaction Effects of Extraversion and Openness to Experience on Career Commitment

    Science.gov (United States)

    Arora, Ridhi; Rangnekar, Santosh

    2016-01-01

    In this study, we examined potential two-way interaction effects of the Big Five personality traits extraversion and openness to experience on career commitment measured in terms of three components of career identity, career resilience, and career planning. Participants included 450 managers from public and private sector organizations in North…

  10. Extending Spatial Interaction Models with Agents for Understanding Relationships in a Dynamic Retail Market

    Directory of Open Access Journals (Sweden)

    Mark Birkin

    2011-01-01

    Full Text Available For many years, effective model-based representations of the dynamics and evolution of urban spatial structure have proved elusive. While some progress has been made through the deployment of spatial interaction models, these approaches have been limited by the difficulty of representing behavioural mechanisms and processes. In this paper, it is demonstrated that evolutionary models grounded in the principles of spatial interaction are compatible with the more novel approaches of agent-based modelling. The incorporation of agents provides a much more flexible means for the representation of behavioural mechanisms. The paper illustrates the way in which three more complicated situations can be handled through the fusion of spatial interaction and agent modelling perspectives. These situations comprise discontinuous evolution (in which structural adjustment takes place in discrete steps, and not as a continuously smooth process; nonequilibrium dynamics (in which the underlying system parameters continue to evolve through time; the incorporation of new decision variables (which we illustrate through the addition of land rents into the model. The conclusion of the paper is that the combination of spatial interaction and agent-based modelling methods provides encouraging prospects for the social simulation of real urban systems.

  11. Shared Realities: Adolescent Couples' Subjective Understanding of Their Interaction and Its Relationship to Their Mental Health.

    Science.gov (United States)

    Welsh, Deborah P.; Vickerman, Renee; Rostosky, Sherry S.; Kawaguchi, Myra C.

    Researchers have largely neglected adolescents' romantic relationships. To help fill this research gap, some of the discrepancies between adolescent couples' and observers' perceptions of couples' conversations are examined here. Two approaches to interaction analysis were used: the divergent realities paradigm, which explores divergences in…

  12. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata; Fischer, Beat B. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); Junghans, Marion [Swiss Center for Applied Ecotoxicology Eawag-EPFL, 8600, Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-05-15

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  13. Multiple stressor effects in Chlamydomonas reinhardtii – Toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants

    International Nuclear Information System (INIS)

    Korkaric, Muris; Behra, Renata; Fischer, Beat B.; Junghans, Marion; Eggen, Rik I.L.

    2015-01-01

    Highlights: • Systematic study of multiple stressor effects of UVR and chemicals in C. reinhardtii. • UVR and chemicals did not act independently on algal photosynthesis and reproduction. • Multiple stressor effects of UVR and chemicals depended on chemical MOA. • Synergistic effect interactions not limited to oxidative stress inducing chemicals. • Multiple MOAs of UVR may limit applicability of current prediction models. - Abstract: The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are

  14. Recent advances in the understanding of the interaction of antidepressant drugs with serotonin and norepinephrine transporters

    DEFF Research Database (Denmark)

    Andersen, Jacob; Kristensen, Anders Skov; Bang-Andersen, Benny

    2009-01-01

    and amphetamine. Seminal advances in the understanding of the structure and function of this transporter family have recently been accomplished by structural studies of a bacterial transporter, as well as medicinal chemistry and pharmacological studies of mammalian transporters. This feature article focuses...

  15. Embedded Formative Assessment and Classroom Process Quality: How Do They Interact in Promoting Science Understanding?

    Science.gov (United States)

    Decristan, Jasmin; Klieme, Eckhard; Kunter, Mareike; Hochweber, Jan; Büttner, Gerhard; Fauth, Benjamin; Hondrich, A. Lena; Rieser, Svenja; Hertel, Silke; Hardy, Ilonca

    2015-01-01

    In this study we examine the interplay between curriculum-embedded formative assessment--a well-known teaching practice--and general features of classroom process quality (i.e., cognitive activation, supportive climate, classroom management) and their combined effect on elementary school students' understanding of the scientific concepts of…

  16. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    Science.gov (United States)

    Varma, Keisha; Linn, Marcia C.

    2012-01-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  17. A First Step toward the Automatic Understanding of Social Touch for Naturalistic Human–Robot Interaction

    NARCIS (Netherlands)

    Jung, Merel Madeleine; Poel, Mannes; Reidsma, Dennis; Heylen, Dirk K.J.

    2017-01-01

    Social robots should be able to automatically understand and respond to human touch. The meaning of touch does not only depend on the form of touch but also on the context in which the touch takes place. To gain more insight into the factors that are relevant to interpret the meaning of touch within

  18. Understanding “Baby Boomers” and “Millennials” motivations to interact with brands on Social Media

    OpenAIRE

    Oliveira, Rute Sofia Matos de

    2017-01-01

    The emergence and importance of social media and, in particular, social networking sites (SNS), has made it possible for an accessible integration between consumers and brands, by providing unlimited reasons for users to express, share and create content. The aim of this dissertation is to explore what motivates consumers to interact with brands on social media and to understand the relevance of those variables in explaining consumers’ loyalty toward a brand. Members of two distinct genera...

  19. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions.

    Science.gov (United States)

    Li, Yupeng; Kim, Hyung-ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-09-14

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.

  20. Context and comprehension: a neurolinguistic and interactional approach to the understanding of semantic-pragmatic disorder.

    Science.gov (United States)

    Sahlén, B; Nettelbladt, U

    1993-01-01

    In the present study we provide thorough descriptions of two children with a semantic-pragmatic disorder, a subgroup within the group of specific and severe developmental language disorders, from a neurolinguistic and interactional perspective. We argue that the pragmatic problems, at least in these two girls, are most probably secondary to their semantic/conceptual deficit. If sufficient contextual cues are provided comprehension is improved and, as a consequence, the pragmatic problems are reduced.

  1. Understanding the Femtosecond Laser-Solid Interaction Near and Beyond the Material Damage Threshold

    Science.gov (United States)

    2016-05-23

    insulator ), band gap, and surface morphology (nano/micro-structured surface), and the PIs team has worked synergistically in designing and performing...ambience (air/vacuum/other), polarization and angle of incidence, target solid material conductivity (metal/semiconductor/ insulator ), band gap, and...microscopy technique has been developed in our lab to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a

  2. Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy.

    Science.gov (United States)

    Pacakova, B; Mantlikova, A; Niznansky, D; Kubickova, S; Vejpravova, J

    2016-05-25

    Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly-crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy ([Formula: see text]) scaled with each other and increased with increasing [Formula: see text], where d XRD was the NP diameter and r was the interparticle distance. Our results are in excellent agreement with Monte-Carlo simulations of the particle growth. Moreover, we demonstrated that the contribution of [Formula: see text] acting as an additional energetic barrier to the superspin reversal or as an average static field did not sufficiently explain how the concentrated NP systems responded to an external magnetic field. Alternations in the blocking temperature and coercivity of our NP systems accounted for reformed relaxations of the NP superspins and modified effective anisotropy energy of the interacting NPs. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of the energy barrier influenced by interparticle interactions.

  3. Understanding the plant-pathogen interactions in the context of proteomics-generated apoplastic proteins inventory

    OpenAIRE

    Gupta, R.; Lee, S.; Agrawal, G.; Rakwal, R.; Park, S.; Wang, Y.; Kim, S.

    2015-01-01

    The extracellular space between cell wall and plasma membrane acts as the first battle field between plants and pathogens. Bacteria, fungi, and oomycetes that colonize the living plant tissues are encased in this narrow region in the initial step of infection. Therefore, the apoplastic region is believed to be an interface which mediates the first crosstalk between host and pathogen. The secreted proteins and other metabolites, derived from both host and pathogen, interact in this apoplastic ...

  4. Enactive cinema paves way for understanding complex real-time social interaction in neuroimaging experiments

    OpenAIRE

    Tikka, Pia; Vaeljamaee, Aleksander; de Borst, Aline W.; Pugliese, Roberto; Ravaja, Niklas; Kaipainen, Mauri; Takala, Tapio

    2012-01-01

    We outline general theoretical and practical implications of what we promote as enactive cinema for the neuroscientific study of online socio-emotional interaction. In a real-time functional magnetic resonance imaging (rt-fMRI) setting, participants are immersed in cinematic experiences that simulate social situations. While viewing, their physiological reactions—including brain responses—are tracked, representing implicit and unconscious experiences of the on-going social situations. These r...

  5. Understanding soaring bird migration through interactions and decisions at the individual level.

    Science.gov (United States)

    van Loon, E E; Shamoun-Baranes, J; Bouten, W; Davis, S L

    2011-02-07

    Many soaring bird species migrate southwards in autumn from their breeding grounds in Europe and Central Asia towards their wintering grounds. Our knowledge about interactions between migrating birds, thermal selection during migration and mechanisms that lead to flocking or convergent travel networks is still very limited. To start investigating these aspects we developed an individual-based simulation model that describes the local interactions between birds and their environment during their migratory flight, leading to emergent patterns at larger scales. The aim of our model is to identify likely decision rules with respect to thermal selection and navigation. After explaining the model, it is applied to analyse the migration of white storks (Ciconia ciconia) over part of its migration domain. A model base-run is accompanied by a sensitivity analysis. It appears that social interactions lead to the use of fewer thermals and slight increases in distance travelled. Possibilities for different model extensions and further model application are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Pathways of understanding: The interactions of humanity and global environmental change

    International Nuclear Information System (INIS)

    Jacobson, H.K.; Katzenberger, J.; Lousma, J.; Mooney, H.A.; Moss, R.H.; Kuhn, W.; Luterbacher, U.; Wiegandt, E.

    1992-01-01

    How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram

  7. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system.

    Science.gov (United States)

    Seinfeld, John H; Bretherton, Christopher; Carslaw, Kenneth S; Coe, Hugh; DeMott, Paul J; Dunlea, Edward J; Feingold, Graham; Ghan, Steven; Guenther, Alex B; Kahn, Ralph; Kraucunas, Ian; Kreidenweis, Sonia M; Molina, Mario J; Nenes, Athanasios; Penner, Joyce E; Prather, Kimberly A; Ramanathan, V; Ramaswamy, Venkatachalam; Rasch, Philip J; Ravishankara, A R; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-05-24

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  8. Improving Our Fundamental Understanding of the Role of Aerosol Cloud Interactions in the Climate System

    Science.gov (United States)

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kahn, Ralph; hide

    2016-01-01

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  9. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system

    Science.gov (United States)

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kraucunas, Ian; Molina, Mario J.; Nenes, Athanasios; Penner, Joyce E.; Prather, Kimberly A.; Ramanathan, V.; Ramaswamy, Venkatachalam; Rasch, Philip J.; Ravishankara, A. R.; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-01-01

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol−cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol−cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty. PMID:27222566

  10. LEARNING IN FRIENDSHIP GROUPS: DEVELOPING STUDENTS’ CONCEPTUAL UNDERSTANDING THROUGH SOCIAL INTERACTION

    Directory of Open Access Journals (Sweden)

    Carl eSenior

    2014-09-01

    Full Text Available The role that student friendship groups play in learning was investigated here. Employing a critical realist design, two focus groups on undergraduates were conducted to explore their experience of studying. Data from the ‘case-by-case’ analysis suggested student-to-student friendships produced social contexts which facilitated conceptual understanding through discussion, explanation and application to ‘real life’ contemporary issues. However, the students did not conceive this as a learning experience or suggest the function of their friendships involved learning. These data therefore challenge the perspective that student groups in higher education are formed and regulated for the primary function of learning. Given these findings, further research is needed to assess the role student friendships play in developing disciplinary conceptual understanding.

  11. Embedded formative assessment and classroom process quality. How do they interact in promoting students' science understanding

    OpenAIRE

    Decristan, Jasmin; Klieme, Eckhard; Kunter, Mareike; Hochweber, Jan; Büttner, Gerhard; Fauth, Benjamin; Hondrich, Anna Lena; Rieser, Svenja; Hertel, Silke; Hardy, Ilonca

    2015-01-01

    In this study we examine the interplay between curriculum-embedded formative assessment-a well-known teaching practice-and general features of classroom process quality (i.e., cognitive activation, supportive climate, classroom management) and their combined effect on elementary school students' understanding of the scientific concepts of floating and sinking. We used data from a cluster-randomized controlled trial and compared curriculum-embedded formative assessment (17 classes) with a cont...

  12. Using Interactive Case Studies to Support Students Understandings of Local Environmental Problems

    Directory of Open Access Journals (Sweden)

    Z. Kostova

    2012-12-01

    Full Text Available The article presents designed and refined an interactive-enhanced curriculum module for 9th grade secondary school students in Bulgaria, based on environmental case studies. In the module activities students from two schools studied the local environments, performed observations and experiments, collected and analyzed data, prepared and presented posters and role plays, made connections between scientific processes and socio-scientific issues and drew conclusions about the global effects of locally created environmental problems. The students’ critical observations of the quality of their surroundings helped them to make a list of local environmental problems, to apply interactive strategies in studying them and to propose rational scientifically based solutions. In the study the attention was directed to the advantages and disadvantages of poster presentations and role playing and to the specific learning difficulties that students had to overcome. Students’ achievements from the two experimental schools were assessed independently in order to give us insights into the details of learning using different interactive strategies and into the acquired performance skills, dependant on students’ interests and personal abilities. The three versions of the module (traditional, dominated by teacher presentation; poster preparation and presentation in which students imitate scientific team research; and role playing in which students not only study the local environmental problems but assume social roles to cope with them demonstrate three levels of students learning independence. Specific assessment tests and check lists were developed for analyzing, evaluating and comparing students’ achievements in each version of the module and in each school. Ecological knowledge assessment tests were based on Bloom’s taxonomy of educational objectives. Poster and role playing preparations and presentations were assessed by specific criteria, shown in the

  13. Understanding and improving the efficiency of full configuration interaction quantum Monte Carlo.

    Science.gov (United States)

    Vigor, W A; Spencer, J S; Bearpark, M J; Thom, A J W

    2016-03-07

    Within full configuration interaction quantum Monte Carlo, we investigate how the statistical error behaves as a function of the parameters which control the stochastic sampling. We define the inefficiency as a measure of the statistical error per particle sampling the space and per time step and show there is a sizeable parameter regime where this is minimised. We find that this inefficiency increases sublinearly with Hilbert space size and can be reduced by localising the canonical Hartree-Fock molecular orbitals, suggesting that the choice of basis impacts the method beyond that of the sign problem.

  14. Understanding and improving the efficiency of full configuration interaction quantum Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Vigor, W. A.; Bearpark, M. J. [Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Spencer, J. S. [Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Thom, A. J. W. [Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2016-03-07

    Within full configuration interaction quantum Monte Carlo, we investigate how the statistical error behaves as a function of the parameters which control the stochastic sampling. We define the inefficiency as a measure of the statistical error per particle sampling the space and per time step and show there is a sizeable parameter regime where this is minimised. We find that this inefficiency increases sublinearly with Hilbert space size and can be reduced by localising the canonical Hartree–Fock molecular orbitals, suggesting that the choice of basis impacts the method beyond that of the sign problem.

  15. Introduction to the Special Issue: Ungulates and invasive species: quantifying impacts and understanding interactions.

    Science.gov (United States)

    Blossey, Bernd; Gorchov, David L

    2017-11-01

    White-tailed deer are emblematic ungulates that, due to anthropogenic modification of landscapes, currently occur at elevated densities. Elevated deer densities often co-occur with non-native plants, but it is not known if plant invasions are a consequence of deer impacts or occur independent of deer impacts on ecosystems, or whether these two stressors are synergistic. A colloquium on 'Interactions of white-tailed deer and invasive plants in forests of eastern North America' explored these topics at the 2016 annual meeting of the Botanical Society of America. Nine of those presentations are published in this special issue of AoB PLANTS .

  16. Understanding trophic interactions in host-parasite associations using stable isotopes of carbon and nitrogen.

    Science.gov (United States)

    Nachev, Milen; Jochmann, Maik A; Walter, Friederike; Wolbert, J Benjamin; Schulte, S Marcel; Schmidt, Torsten C; Sures, Bernd

    2017-02-17

    Stable isotope analysis of carbon and nitrogen can deliver insights into trophic interactions between organisms. While many studies on free-living organisms are available, the number of those focusing on trophic interactions between hosts and their associated parasites still remains scarce. In some cases information about taxa (e.g. acanthocephalans) is completely missing. Additionally, available data revealed different and occasionally contrasting patterns, depending on the parasite's taxonomic position and its degree of development, which is most probably determined by its feeding strategy (absorption of nutrients through the tegument versus active feeding) and its localization in the host. Using stable isotope analysis of carbon and nitrogen we provided first data on the trophic position of an acanthocephalan species with respect to its fish host. Barbels (Barbus barbus) infected only with adult acanthocephalans Pomphorhynchus laevis as well as fish co-infected with the larval (L4) nematodes Eustrongylides sp. from host body cavity were investigated in order to determine the factors shaping host-parasite trophic interactions. Fish were collected in different seasons, to study also potential isotopic shifts over time, whereas barbels with single infection were obtained in summer and co-infected ones in autumn. Acanthocephalans as absorptive feeders showed lower isotope discrimination values of δ 15 N than the fish host. Results obtained for the acanthocephalans were in line with other parasitic taxa (e.g. cestodes), which exhibit a similar feeding strategy. We assumed that they feed mainly on metabolites, which were reprocessed by the host and are therefore isotopically lighter. In contrast, the nematodes were enriched in the heavier isotope δ 15 N with respect to their host and the acanthocephalans, respectively. As active feeders they feed on tissues and blood in the body cavity of the host and thus showed isotope discrimination patterns resembling those of

  17. Understanding the interactions of neptunium and plutonium ions with graphene oxide: scalar-relativistic DFT investigations.

    Science.gov (United States)

    Wu, Qun-Yan; Lan, Jian-Hui; Wang, Cong-Zhi; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun

    2014-11-06

    Due to the vast application potential of graphene oxide (GO)-based materials in nuclear waste processing, it is of pivotal importance to investigate the interaction mechanisms between actinide cations such as Np(V) and Pu(IV, VI) ions and GO. In this work, we have considered four types of GOs modified by hydroxyl, carboxyl, and carbonyl groups at the edge and epoxy group on the surface, respectively. The structures, bonding nature, and binding energies of Np(V) and Pu(IV, VI) complexes with GOs have been investigated systematically using scalar-relativistic density functional theory (DFT). Geometries and harmonic frequencies suggest that Pu(IV) ions coordinate more easily with GOs compared to Np(V) and Pu(VI) ions. NBO and electron density analyses reveal that the coordination bond between Pu(IV) ions and GO possesses more covalency, whereas for Np(V) and Pu(VI) ions electrostatic interaction dominates the An-OG bond. The binding energies in aqueous solution reveal that the adsorption abilities of all GOs for actinide ions follow the order of Pu(IV) > Pu(VI) > Np(V), which is in excellent agreement with experimental observations. It is expected that this study can provide useful information for developing more efficient GO-based materials for radioactive wastewater treatment.

  18. From idea to blah! understanding mobile services development as interactive innovation

    Directory of Open Access Journals (Sweden)

    Eduardo Fontana

    2005-08-01

    Full Text Available Mobile communications are permeating virtually every aspect of our lives. The market is experiencing rapid improvements in technologies, while mobile operators are trying to figure out new ways their infrastructures can provide services to the customers. Furthermore, user-innovation with new ways of using these technologies generates powerful feedback loops back into the innovation processes. In this turbulent environment it is difficult to capture and conceptualize how newness comes about and what the main characteristics of innovation are. The aim of this paper is to illustrate how the concept of interactive innovation can be applied to explain the development of mobile services. This study adopts the perspective of the developer rather than the user. Moreover, through the social construction of technology lens, the concepts of sense-making and bricolage are applied to explain the innovation appropriation process during the mobile data value chain improvement process. One of the conclusions drawn is that in the rapidly changing and complex context of mobile services development, the traditional notion of ‘interactive innovation’ cannot fully explain this phenomenon that takes place.

  19. A new analytical approach to understanding nanoscale lead-iron interactions in drinking water distribution systems.

    Science.gov (United States)

    Trueman, Benjamin F; Gagnon, Graham A

    2016-07-05

    High levels of iron in distributed drinking water often accompany elevated lead release from lead service lines and other plumbing. Lead-iron interactions in drinking water distribution systems are hypothesized to be the result of adsorption and transport of lead by iron oxide particles. This mechanism was explored using point-of-use drinking water samples characterized by size exclusion chromatography with UV and multi-element (ICP-MS) detection. In separations on two different stationary phases, high apparent molecular weight (>669 kDa) elution profiles for (56)Fe and (208)Pb were strongly correlated (average R(2)=0.96, N=73 samples representing 23 single-unit residences). Moreover, (56)Fe and (208)Pb peak areas exhibited an apparent linear dependence (R(2)=0.82), consistent with mobilization of lead via adsorption to colloidal particles rich in iron. A UV254 absorbance peak, coincident with high molecular weight (56)Fe and (208)Pb, implied that natural organic matter was interacting with the hypothesized colloidal species. High molecular weight UV254 peak areas were correlated with both (56)Fe and (208)Pb peak areas (R(2)=0.87 and 0.58, respectively). On average, 45% (std. dev. 10%) of total lead occurred in the size range 0.05-0.45 μm. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Understanding AuNP interaction with low-generation PAMAM dendrimers: a CIELab and deconvolution study

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Ruiz, A., E-mail: ailjimrui@alum.us.es; Carnerero, J. M.; Castillo, P. M.; Prado-Gotor, R., E-mail: pradogotor@us.es [University of Seville, The Department of Physical Chemistry (Spain)

    2017-01-15

    Low-generation polyamidoamine (PAMAM) dendrimers are known to adsorb on the surface of gold nanoparticles (AuNPs) causing aggregation and color changes. In this paper, a thorough study of this affinity using absorption spectroscopy, colorimetric, and emission methods has been carried out. Results show that, for citrate-capped gold nanoparticles, interaction with the dendrimer is not only of an electrostatic character but instead occurs, at least in part, through the dendrimer’s uncharged internal amino groups. The possibilities of the CIELab chromaticity system parameters’ evolution have also been explored in order to quantify dendrimer interaction with the red-colored nanoparticles. By measuring and quantifying 17 nm citrate-capped AuNP color changes, which are strongly dependant on their aggregation state, binding free energies are obtained for the first time for these systems. Results are confirmed via an alternate fitting method which makes use of deconvolution parameters from absorbance spectra. Binding free energies obtained through the use of both means are in good agreement with each other.

  1. Interactive simulations for promoting transdisciplinary understanding: a case study of the Western Cape fisheries, South Africa

    Directory of Open Access Journals (Sweden)

    Cecile Proches

    2012-07-01

    Full Text Available Simulations have proven beneficial in enabling participants from various backgrounds to meaningfully engage in learning from experience. The aim of this paper is to investigate how interactive simulations can play a role in navigating the changes faced in a multi- stakeholder setting, characterised by users dependent on marine resources and an authorising institution. Relevant literature in the areas of simulation and gaming, change management, systems thinking, and complexity theory was examined. A qualitative research approach and purposive sampling were employed. Interviews were first conducted with diverse stakeholders in the Western Cape fisheries of South Africa to determine the issues. A simulation was thereafter designed. The main findings from this study indicate that simulation use illustrates how the various stakeholders in a system interact, and how their actions and decisions influence each other. The simulation may be used in other areas of natural resource management, as well as in other kinds of multi- stakeholder scenarios. Keywords: Simulation and gaming, Change management, Fisheries, Multi-stakeholder scenarios, Systems thinking, Complexity theory Disciplines: Conflict Resolution, Leadership Studies, Management Studies, Natural Resource Management

  2. Evaluating role of interactive visualization tool in improving students' conceptual understanding of chemical equilibrium

    Science.gov (United States)

    Sampath Kumar, Bharath

    The purpose of this study is to examine the role of partnering visualization tool such as simulation towards development of student's concrete conceptual understanding of chemical equilibrium. Students find chemistry concepts abstract, especially at the microscopic level. Chemical equilibrium is one such topic. While research studies have explored effectiveness of low tech instructional strategies such as analogies, jigsaw, cooperative learning, and using modeling blocks, fewer studies have explored the use of visualization tool such as simulations in the context of dynamic chemical equilibrium. Research studies have identified key reasons behind misconceptions such as lack of systematic understanding of foundational chemistry concepts, failure to recognize the system is dynamic, solving numerical problems on chemical equilibrium in an algorithmic fashion, erroneous application Le Chatelier's principle (LCP) etc. Kress et al. (2001) suggested that external representation in the form of visualization is more than a tool for learning, because it enables learners to make meanings or express their ideas which cannot be readily done so through a verbal representation alone. Mixed method study design was used towards data collection. The qualitative portion of the study is aimed towards understanding the change in student's mental model before and after the intervention. A quantitative instrument was developed based on common areas of misconceptions identified by research studies. A pilot study was conducted prior to the actual study to obtain feedback from students on the quantitative instrument and the simulation. Participants for the pilot study were sampled from a single general chemistry class. Following the pilot study, the research study was conducted with a total of 27 students (N=15 in experimental group and N=12 in control group). Prior to participating in the study, students have completed their midterm test on the topic of chemical equilibrium. Qualitative

  3. Mathematical analysis of complex cellular activity

    CERN Document Server

    Bertram, Richard; Teka, Wondimu; Vo, Theodore; Wechselberger, Martin; Kirk, Vivien; Sneyd, James

    2015-01-01

    This book contains two review articles on mathematical physiology that deal with closely related topics but were written and can be read independently. The first article reviews the basic theory of calcium oscillations (common to almost all cell types), including spatio-temporal behaviors such as waves. The second article uses, and expands on, much of this basic theory to show how the interaction of cytosolic calcium oscillators with membrane ion channels can result in highly complex patterns of electrical spiking. Through these examples one can see clearly how multiple oscillatory processes interact within a cell, and how mathematical methods can be used to understand such interactions better. The two reviews provide excellent examples of how mathematics and physiology can learn from each other, and work jointly towards a better understanding of complex cellular processes. Review 1: Richard Bertram, Joel Tabak, Wondimu Teka, Theodore Vo, Martin Wechselberger: Geometric Singular Perturbation Analysis of Burst...

  4. Understanding the effect of secondary structure on molecular interactions of poly-L-lysine with different substrates by SFA.

    Science.gov (United States)

    Binazadeh, Mojtaba; Faghihnejad, Ali; Unsworth, Larry D; Zeng, Hongbo

    2013-10-14

    Nonspecific adsorption of proteins on biomaterial surfaces challenges the widespread application of engineered materials, and understanding the impact of secondary structure of proteins and peptides on their adsorption process is of both fundamental and practical importance in bioengineering. In this work, poly-L-lysine (PLL)-based α-helices and β-sheets were chosen as a model system to investigate the effect of secondary structure on peptide interactions with substrates of various surface chemistries. Circular dichroism (CD) was used to confirm the presence of both α-helix and β-sheet structured PLL in aqueous solutions and upon adsorption to quartz, where these secondary structures seemed to be preserved. Atomic force microscopy (AFM) imaging showed different surface patterns for adsorbed α-helix and β-sheet PLL. Interactions between PLL of different secondary structures and various substrates (i.e., PLL, Au, mica, and poly(ethylene glycol) (PEG)) were directly measured using a surface forces apparatus (SFA). It was found that β-sheet PLL films showed higher adsorbed layer thicknesses in general. Adhesion energies of β-sheet versus Au and β-sheet versus β-sheet were considerably higher than that of α-helix versus Au and α-helix versus α-helix systems, respectively. Au and β-sheet PLL interactions seemed to be more dependent on the salt concentration than that of α-helix, while the presence of a grafted PEG layer greatly diminished any attraction with either PLL structure. The molecular interaction mechanism of peptide in different secondary structures is discussed in terms of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, Alexander-de Gennes (AdG) steric model and hydrogen bonding, which provides important insight into the fundamental understanding of the interaction mechanism between proteins and biomaterials.

  5. The repository ecology: an approach to understanding repository and service interactions

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    An increasing number of university institutions and other organisations are deciding to deploy repositories and a growing number of formal and informal distributed services are supporting or capitalising on the information these repositories provide. Despite reasonably well understood technical architectures, early majority adopters may struggle to articulate their place within the actualities of a wider information environment. The idea of a repository ecology provides developers and administrators with a useful way of articulating and analysing their place in the information environment, and the technical and organisational interactions they have, or are developing, with other parts of such an environment. This presentation will provide an overview of the concept of a repository ecology and examine some examples from the domains of scholarly communications and elearning. View John Robertson's biography

  6. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions.

    Science.gov (United States)

    Burdon, J J; Thrall, P H; Ericson, L

    2013-08-01

    Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Towards understanding the influence of electron-gas interactions on imaging in an environmental TEM

    DEFF Research Database (Denmark)

    Wagner, Jakob Birkedal; Boothroyd, Chris; Beleggia, Marco

    2011-01-01

    improved the point resolution to the sub-Ångström level [1] and reduced image delocalization, allowing images of surface and interface structures to be interpreted more directly [2]. However, when gas is present in the microscope the path of electrons along the column is modified due to gas......-electron scattering [3]. In general there are two approaches for performing TEM experiments in the presence of gases. These approaches are based on a differential pumping scheme and the closed cell TEM holder approach and each has its advantages and disadvantages. In the closed cell approach, gas molecules...... are confined to a thin (typically 50-200 μm thick) slab around the sample, but the electrons interact with the window material (e.g. C, SiN) as well as with the gas and the sample. In addition, the field of view is typically smaller than in a conventional TEM and a limited range of sample geometries can...

  8. Interactive Whiteboard Integration in Classrooms: Active Teachers Understanding about Their Training Process

    Science.gov (United States)

    Pujol, Meritxell Cortada; Quintana, Maria Graciela Badilla; Romaní, Jordi Riera

    With the incorporation in education of Information and Communication Technologies (ICT), especially the Interactive Whiteboard (IWB), emerges the need for a proper teacher training process due to adequate the integration and the didactic use of this tool in the classroom. This article discusses the teachers' perception on the training process for ICT integration. Its main aim is to contribute to the unification of minimum criteria for effective ICT implementation in any training process for active teachers. This case study begins from the development of a training model called Eduticom which was putted into practice in 4 schools in Catalonia, Spain. Findings indicated different teachers' needs such as an appropriate infrastructure, a proper management and a flexible training model which essentially addresses methodological and didactic aspects of IWB uses in the classroom.

  9. Understanding the Photoluminescence Mechanism of Nitrogen-Doped Carbon Dots by Selective Interaction with Copper Ions.

    Science.gov (United States)

    Ganiga, Manjunatha; Cyriac, Jobin

    2016-08-04

    Doped fluorescent carbon dots (CDs) have drawn widespread attention because of their diverse applications and attractive properties. The present report focusses on the origin of photoluminescence in nitrogen-doped CDs (NCDs), which is unraveled by the interaction with Cu(2+) ions. Detailed spectroscopic and microscopic studies reveal that the broad steady-state photoluminescence emission of the NCDs originates from the direct recombination of excitons (high energy) and the involvement of defect states (low energy). In addition, highly selective detection of Cu(2+) is achieved, with a detection limit of 10 μm and a dynamic range of 10 μm-0.4 mm. The feasibility of the present sensor for the detection of Cu(2+) in real water samples is also presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Understanding cellulose dissolution: energetics of interactions of ionic liquids and cellobiose revealed by solution microcalorimetry.

    Science.gov (United States)

    de Oliveira, Heitor Fernando Nunes; Rinaldi, Roberto

    2015-05-11

    In this report, the interactions between fifteen selected ionic liquids (ILs) and cellobiose (CB) are examined by high-precision solution microcalorimetry. The heat of mixing (Δmix H) of CB and ILs, or CB and IL/molecular solvent (MS) solutions, provides the first ever-published measure of the affinity of CB with ILs. Most importantly, we found that there is a very good correlation between the nature of the results found for Δmix H(CB) and the solubility behavior of cellulose. This correlation suggests that Δmix H(CB) offers a good estimate of the enthalpy of dissolution of cellulose even in solvents in which cellulose is insoluble. Therefore, the current findings open up new horizons for unravelling the intricacies of the thermodynamic factors accounting for the spontaneity of cellulose dissolution in ILs or IL/MS solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops.

    Science.gov (United States)

    Farrar, Kerrie; Bryant, David; Cope-Selby, Naomi

    2014-12-01

    Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant-microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant-microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant-microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Understanding the structural drivers governing glass-water interactions in borosilicate based model bioactive glasses.

    Science.gov (United States)

    Stone-Weiss, Nicholas; Pierce, Eric M; Youngman, Randall E; Gulbiten, Ozgur; Smith, Nicholas J; Du, Jincheng; Goel, Ashutosh

    2018-01-01

    The past decade has witnessed a significant upsurge in the development of borate and borosilicate based resorbable bioactive glasses owing to their faster degradation rate in comparison to their silicate counterparts. However, due to our lack of understanding about the fundamental science governing the aqueous corrosion of these glasses, most of the borate/borosilicate based bioactive glasses reported in the literature have been designed by "trial-and-error" approach. With an ever-increasing demand for their application in treating a broad spectrum of non-skeletal health problems, it is becoming increasingly difficult to design advanced glass formulations using the same conventional approach. Therefore, a paradigm shift from the "trial-and-error" approach to "materials-by-design" approach is required to develop new-generations of bioactive glasses with controlled release of functional ions tailored for specific patients and disease states, whereby material functions and properties can be predicted from first principles. Realizing this goal, however, requires a thorough understanding of the complex sequence of reactions that control the dissolution kinetics of bioactive glasses and the structural drivers that govern them. While there is a considerable amount of literature published on chemical dissolution behavior and apatite-forming ability of potentially bioactive glasses, the majority of this literature has been produced on silicate glass chemistries using different experimental and measurement protocols. It follows that inter-comparison of different datasets reveals inconsistencies between experimental groups. There are also some major experimental challenges or choices that need to be carefully navigated to unearth the mechanisms governing the chemical degradation behavior and kinetics of boron-containing bioactive glasses, and to accurately determine the composition-structure-property relationships. In order to address these challenges, a simplified

  13. Understanding of the Interaction between Clearance Leakage Flow and Main Passage Flow in a VGT Turbine

    Directory of Open Access Journals (Sweden)

    Ben Zhao

    2015-02-01

    Full Text Available The clearance flow between the nozzle and endwall in a variable geometry turbine (VGT has been numerically investigated to understand the clearance effect on the VGT performance and internal flow. It was found that the flow rate through turbine increases but the turbine efficiency decreases with height of clearance. Detailed flow field analyses indicated that most of the efficiency loss resulting from the leakage flow occurs at the upstream of the rotor area, that is, in the nozzle endwall clearance and between the nozzle vanes. There are two main mechanisms associated with this efficiency loss. One is due to the formation of the local vortex flow structure between the clearance flow and the main flow. The other is due to the impact of the clearance flow on the main flow after the nozzle throat. This impact reduces the span of shockwave with increased shockwave magnitude by changing the trajectory of the main flow.

  14. Understanding molecular interactions between scavenger receptor A and its natural product inhibitors through molecular modeling studies.

    Science.gov (United States)

    Pagare, Piyusha P; Zaidi, Saheem A; Zhang, Xiaomei; Li, Xia; Yu, Xiaofei; Wang, Xiang-Yang; Zhang, Yan

    2017-10-01

    Scavenger receptor A (SRA), as an immune regulator, has been shown to play important roles in lipid metabolism, cardiovascular diseases, and pathogen recognition. Several natural product inhibitors of SRA have been studied for their potential application in modulating SRA functions. To understand the binding mode of these inhibitors on SRA, we conducted systematic molecular modeling studies in order to identify putative binding domain(s) that may be responsible for their recognition to the receptor as well as their inhibitory activity. Treatment of SRA with one of the natural product inhibitors, rhein, led to significant dissociation of SRA oligomers to its trimer and dimer forms, which further supported our hypothesis on their putative mechanism of action. Such information is believed to shed light on design of more potent inhibitors for the receptor in order to develop potential therapeutics through immune system modulation. Published by Elsevier Inc.

  15. Transdisciplinary science: a path to understanding the interactions among ocean acidification, ecosystems, and society

    Science.gov (United States)

    Yates, Kimberly K.; Turley, Carol; Hopkinson, Brian M.; Todgham, Anne E.; Cross, Jessica N.; Greening, Holly; Williamson, Phillip; Van Hooidonk, Ruben; Deheyn, Dimitri D.; Johnson, Zachary

    2015-01-01

    The global nature of ocean acidification (OA) transcends habitats, ecosystems, regions, and science disciplines. The scientific community recognizes that the biggest challenge in improving understanding of how changing OA conditions affect ecosystems, and associated consequences for human society, requires integration of experimental, observational, and modeling approaches from many disciplines over a wide range of temporal and spatial scales. Such transdisciplinary science is the next step in providing relevant, meaningful results and optimal guidance to policymakers and coastal managers. We discuss the challenges associated with integrating ocean acidification science across funding agencies, institutions, disciplines, topical areas, and regions, and the value of unifying science objectives and activities to deliver insights into local, regional, and global scale impacts. We identify guiding principles and strategies for developing transdisciplinary research in the ocean acidification science community.

  16. Health Care Professionals’ Understandings of Cross-Cultural Interaction in End-of-Life Care: A Focus Group Study

    Science.gov (United States)

    Torres, Sandra; Ågård, Pernilla

    2016-01-01

    Objective The academic debate on cross-cultural interaction within the context of end-of-life care takes for granted that this interaction is challenging. However, few empirical studies have actually focused on what health care professionals think about this interaction. This study aimed to explore health care professionals’ understandings of cross-cultural interaction during end-of-life care. Methods Sixty end-of-life care professionals were recruited from eleven care units in Sweden to take part in focus group interviews. These interviews were analyzed using qualitative content analysis. Results The health care professionals interviewed talked about cross-cultural interaction in end-of-life care as interaction that brings about uncertainty, stress and frustration even though they had limited experience of this type of interaction. The focus group discussions brought attention to four specific challenges that they expected to meet when they care for patients with migrant backgrounds since they took for granted that they would have an ethno-cultural background that is different to their own. These challenges had to do with communication barriers, ‘unusual’ emotional and pain expressions, the expectation that these patients’ families would be ‘different’ and the anticipation that these patients and their families lack knowledge. At the core of the challenges in question is the idea that cross-cultural interaction means meeting “the unknown”. In addition, the end-of-life care professionals interviewed talked about patients whose backgrounds they did not share in homogenizing terms. It is against this backdrop that they worried about their ability to provide end-of-life care that is individualized enough to meet the needs of these patients. Conclusions The study suggests that end-of-life care professionals who regard cross-cultural interaction in this manner could face actual challenges when caring for patients whose backgrounds they regard as

  17. Health Care Professionals' Understandings of Cross-Cultural Interaction in End-of-Life Care: A Focus Group Study.

    Science.gov (United States)

    Milberg, Anna; Torres, Sandra; Ågård, Pernilla

    2016-01-01

    The academic debate on cross-cultural interaction within the context of end-of-life care takes for granted that this interaction is challenging. However, few empirical studies have actually focused on what health care professionals think about this interaction. This study aimed to explore health care professionals' understandings of cross-cultural interaction during end-of-life care. Sixty end-of-life care professionals were recruited from eleven care units in Sweden to take part in focus group interviews. These interviews were analyzed using qualitative content analysis. The health care professionals interviewed talked about cross-cultural interaction in end-of-life care as interaction that brings about uncertainty, stress and frustration even though they had limited experience of this type of interaction. The focus group discussions brought attention to four specific challenges that they expected to meet when they care for patients with migrant backgrounds since they took for granted that they would have an ethno-cultural background that is different to their own. These challenges had to do with communication barriers, 'unusual' emotional and pain expressions, the expectation that these patients' families would be 'different' and the anticipation that these patients and their families lack knowledge. At the core of the challenges in question is the idea that cross-cultural interaction means meeting "the unknown". In addition, the end-of-life care professionals interviewed talked about patients whose backgrounds they did not share in homogenizing terms. It is against this backdrop that they worried about their ability to provide end-of-life care that is individualized enough to meet the needs of these patients. The study suggests that end-of-life care professionals who regard cross-cultural interaction in this manner could face actual challenges when caring for patients whose backgrounds they regard as "the unknown" since they anticipate a variety of challenges

  18. Sticking to cellulose: exploiting Arabidopsis seed coat mucilage to understand cellulose biosynthesis and cell wall polysaccharide interactions.

    Science.gov (United States)

    Griffiths, Jonathan S; North, Helen M

    2017-05-01

    The cell wall defines the shape of cells and ultimately plant architecture. It provides mechanical resistance to osmotic pressure while still being malleable and allowing cells to grow and divide. These properties are determined by the different components of the wall and the interactions between them. The major components of the cell wall are the polysaccharides cellulose, hemicellulose and pectin. Cellulose biosynthesis has been extensively studied in Arabidopsis hypocotyls, and more recently in the mucilage-producing epidermal cells of the seed coat. The latter has emerged as an excellent system to study cellulose biosynthesis and the interactions between cellulose and other cell wall polymers. Here we review some of the major advances in our understanding of cellulose biosynthesis in the seed coat, and how mucilage has aided our understanding of the interactions between cellulose and other cell wall components required for wall cohesion. Recently, 10 genes involved in cellulose or hemicellulose biosynthesis in mucilage have been identified. These discoveries have helped to demonstrate that xylan side-chains on rhamnogalacturonan I act to link this pectin directly to cellulose. We also examine other factors that, either directly or indirectly, influence cellulose organization or crystallization in mucilage. © 2017 INRA. New Phytologist © 2017 New Phytologist Trust.

  19. A multi-omics and imaging approach to understand soil organic matter composition and its interaction with microbes.

    Science.gov (United States)

    Tfaily, M. M.; Walker, L. R.; Kyle, J. E.; Chu, R. K.; Dohnalkova, A.; Tolic, N.; Orton, D.; Robinson, E. R.; Paša-Tolić, L.; Hess, N. J.

    2015-12-01

    The focus on soil C dynamics is currently relevant as researchers and policymakers strive to understand the feedbacks between ecosystem stress and climate change. Successful development of molecular profiles that link soil microbiology with soil carbon (C) dynamics to ascertain soil vulnerability and resilience to climate change would have great impact on assessments of soil ecosystems in response to climate change. Additionally, a better understanding of the soil C dynamics would improve climate modeling, and fate and transport of carbon across terrestrial, subsurface and atmospheric interfaces. Unravelling the wide range of possible interactions between and within the microbial communities, with minerals and organic compounds in the terrestrial ecosystem requires a multimodal, molecular approach. Here we report on the use of a combination of several molecular 'omics' approaches: metabolomics, metallomics, lipidomics, and proteomics coupled with a suite of high resolution imaging, and X-ray diffraction crystallographic techniques, as a novel methodology to understand SOM composition, and its interaction with microbial communities in different ecosystems, including C associated with mineral surfaces. The findings of these studies provide insights into the SOM persistence and microbial stabilization of carbon in ecosystems and reveal the powerful coupling of a multi-scale of techniques. Examples of this approach will be presented from field studies of simulated climate change, and laboratory column-grown Pinus resinosa mesocosms.

  20. Celebrity Climate Contrarians: Understanding a keystone species in contemporary climate science-policy-public interactions

    Science.gov (United States)

    Boykoff, M. T.

    2012-12-01

    Since the 1980s, a keystone species called 'climate contrarians' has emerged and thrived. Through resistance to dominant interpretations of scientific evidence, and often outlier views on optimal responses to climate threats, contrarians have raised many meta-level questions: for instance, questions involve to what extent have their varied interventions been effective in terms of sparking a new and wise Copernican revolution; or do their amplified voices instead service entrenched carbon-based industry interests while they blend debates over 'climate change' with other culture wars? While the value of their influence has generated numerous debates, there is no doubt that climate contrarians have had significant influence on climate science, policy and public communities in ways that are larger than would be expected from their relative abundance in society. As such, a number of these actors have achieved 'celebrity status' in science-policy circles, and, at times, larger public spaces. This presentation focuses on how - particularly through amplified mass media attention to their movements - various outlier interventions have demonstrated themselves to be (often deliberately) detrimental to efforts that seek to enlarge rather than constrict the spectrum of possibility for mobilizing appropriate responses to ongoing climate challenges. Also, this work analyses the growth pathways of these charismatic megafauna through interview data and participant observations completed by the author at the 2011 Heartland Institute's Sixth International Conference on Climate Change. This provides detail on how outlier perspectives characterized as climate contrarians do work in these spaces under the guise of public intellectualism to achieve intended goals and objectives. The research undertaken and related in the presentation here seeks to better understand motivations that prop up these contrarian stances, such as possible ideological or evidentiary disagreement to the orthodox

  1. Teachers' Beliefs about the Role of Interaction in Teaching Newtonian Mechanics and Its Influence on Students' Conceptual Understanding of Newton's Third Law

    Science.gov (United States)

    Jauhiainen, Johanna; Koponen, Ismo T.; Lavonen, Jari

    2006-01-01

    Students' conceptual understanding of Newton's third law has been the subject of numerous studies. These studies have often pointed out the importance of addressing the concept of interaction in teaching Newtonian mechanics. In this study, teachers were interviewed in order to examine how they understand interaction and use it in their…

  2. Understanding the Flow Physics of Shock Boundary-Layer Interactions Using CFD and Numerical Analyses

    Science.gov (United States)

    Friedlander, David J.

    2013-01-01

    Computational fluid dynamic (CFD) analyses of the University of Michigan (UM) Shock/Boundary-Layer Interaction (SBLI) experiments were performed as an extension of the CFD SBLI Workshop held at the 48th AIAA Aerospace Sciences Meeting in 2010. In particular, the UM Mach 2.75 Glass Tunnel with a semi-spanning 7.75deg wedge was analyzed in attempts to explore key physics pertinent to SBLI's, including thermodynamic and viscous boundary conditions as well as turbulence modeling. Most of the analyses were 3D CFD simulations using the OVERFLOW flow solver, with additional quasi-1D simulations performed with an in house MATLAB code interfacing with the NIST REFPROP code to explore perfect verses non-ideal air. A fundamental exploration pertaining to the effects of particle image velocimetry (PIV) on post-processing data is also shown. Results from the CFD simulations showed an improvement in agreement with experimental data with key contributions including adding a laminar zone upstream of the wedge and the necessity of mimicking PIV particle lag for comparisons. Results from the quasi-1D simulation showed that there was little difference between perfect and non-ideal air for the configuration presented.

  3. Toward understanding the influence of intermolecular interactions and molecular orientation on the chemical enhancement of SERS.

    Science.gov (United States)

    Cabalo, Jerry; Guicheteau, Jason A; Christesen, Steven

    2013-09-19

    Implementation of SERS as an analytical technique is limited because the factors that govern the enhancement of individual vibrational modes are not well understood. Although the chemical effect only accounts for up to two orders of magnitude enhancement, it can still have a significant impact on the consistency of chemical spectral signatures. We report on a combined theoretical and experimental study on the benzenethiol on silver and 4-mercaptophenol on silver systems. The primary and unique finding was that for the benzenethiol on silver system the inclusion of interaction between multiple benzenethiol analyte molecules was essential to account for the relative enhancements observed experimentally. An examination of the molecular orbitals showed sharing of electron density across the entire model of multiple benzenethiol molecules mediated by the metal atoms. The addition of multiple 4-mercaptophenol molecules to the theoretical model had little effect on the predicted spectra, and we attribute this to the fact that a much larger model is necessary to replicate the networks of hydrogen bonds. Molecular orientation was also found to affect the predicted spectra, and it was found that an upright position improved agreement between theoretical and experimental spectra. An analysis of the vibrational frequency shifts between the normal Raman spectrum of the neat compound and the SERS spectrum also suggests that both benzenethiol and 4-mercaptophenol are in an upright position.

  4. Understanding physical rock properties and their relation to fluid-rock interactions under supercritical conditions

    Science.gov (United States)

    Kummerow, Juliane; Raab, Siegfried; Meyer, Romain

    2017-04-01

    The electrical conductivity of rocks is, in addition to lithological factors (mineralogy, porosity) and physical parameters (temperature, pressure) sensitive to the nature of pore fluids (phase, salinity), and thus may be an indicative measure for fluid-rock interactions. Especially near the critical point, which is at 374.21° C and 22.12 MPa for pure water, the physico-chemical properties of aqueous fluids change dramatically and mass transfer and diffusion-controlled chemical reactivity are enhanced, which in turn leads to the formation of element depletion/ enrichment patterns or cause mineral dissolution. At the same time, the reduction of the dielectric constant of water promotes ion association and consequently mineral precipitation. All this cause changes in the electrical conductivity of geothermal fluids and may have considerable effects on the porosity and hydraulic properties of the rocks with which they are in contact. In order to study the impact of fluid-rock interactions on the physical properties of fluids and rocks in near- and supercritical geological settings in more detail, in the framework of the EU-funded project "IMAGE" (Integrated Methods for Advanced Geothermal Exploration) hydraulic and electrical properties of rock cores from different active and exhumed geothermal areas on Iceland were measured up to supercritical conditions (Tmax = 380° C, pfluid = 23 MPa) during long-term (2-3 weeks) flow-through experiments in an internally heated gas pressure vessel at a maximum confining pressure of 42 MPa. In a second flow-through facility both the intrinsic T-dependent electrical fluid properties as well as the effect of mineral dissolution/ precipitation on the fluid conductivity were measured for increasing temperatures in a range of 24 - 422° C at a constant fluid pressure of 31 MPa. Petro- and fluid physical measurements were supplemented by a number of additional tests, comprising microstructural investigations as well as the chemical

  5. Expanded applications, shifting paradigms and an improved understanding of host-biomaterial interactions.

    Science.gov (United States)

    Brown, Bryan N; Badylak, Stephen F

    2013-02-01

    The conventional approach to biomaterial design and development typically focuses upon the mechanical and material properties with long-term objectives that include an inert host immune response and long-lasting mechanical and structural support. The emergence of and interest in tissue engineering and regenerative medicine have driven the development of novel cell-friendly biomaterials, materials with tailored degradation rates, materials with highly specific architectures and surfaces, and vehicles for delivery of bioactive molecules, among numerous other advancements. Each of these biomaterial developments supports specific strategies for tissue repair and reconstruction. These advancements in biomaterial form and function, combined with new knowledge of innate and acquired immune system biology, provide an impetus for re-examination of host-biomaterial interactions, including host-biomaterial interface events, spatial and temporal patterns of in vivo biomaterial remodeling, and related downstream functional outcomes. An examination of such issues is provided herein with a particular focus on macrophage polarization and its implications in tissue engineering and regenerative medicine. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Enactive cinema paves way for understanding complex real-time social interaction in neuroimaging experiments.

    Science.gov (United States)

    Tikka, Pia; Väljamäe, Aleksander; de Borst, Aline W; Pugliese, Roberto; Ravaja, Niklas; Kaipainen, Mauri; Takala, Tapio

    2012-01-01

    We outline general theoretical and practical implications of what we promote as enactive cinema for the neuroscientific study of online socio-emotional interaction. In a real-time functional magnetic resonance imaging (rt-fMRI) setting, participants are immersed in cinematic experiences that simulate social situations. While viewing, their physiological reactions-including brain responses-are tracked, representing implicit and unconscious experiences of the on-going social situations. These reactions, in turn, are analyzed in real-time and fed back to modify the cinematic sequences they are viewing while being scanned. Due to the engaging cinematic content, the proposed setting focuses on living-by in terms of shared psycho-physiological epiphenomena of experience rather than active coping in terms of goal-oriented motor actions. It constitutes a means to parametrically modify stimuli that depict social situations and their broader environmental contexts. As an alternative to studying the variation of brain responses as a function of a priori fixed stimuli, this method can be applied to survey the range of stimuli that evoke similar responses across participants at particular brain regions of interest.

  7. First clues to understand red blood cell interactions: numerical studies of vesicle suspensions

    Science.gov (United States)

    Thiébaud, Marine; Misbah, Chaouqi; Dyfcom Team

    2014-03-01

    The scientific community started raising questions on blood flow for nearly two centuries, a period traced back to the pioneering work of Poiseuille. This topic has known a considerable upsurge of interest during the past decade. Vesicles capture several essential features shared with red blood cells. A single vesicle is now fairly understood, whereas study of suspensions is still unclear. We conduct bidimensionnal numerical studies by mean of the boundary integral method. Confinement plays a major role in that it introduces an interaction cut-off length. I will present results on the behavior of relative viscosity as function of the viscosity contrast between the fluid encapsulated by vesicles and the ambient fluid. This viscosity contrast is a key parameter: it triggers transition from tank-treading to tumbling regimes. Historical characterization of blood have led to the discovery of the Fahraeus-Lindqvist effect. I will introduce some results on this effect with a rheological study as function of concentration and confinement. I will report on non-standard behavior induced by a subtle spatio-temporal organization of the suspension. We would like to thank CNES for financial support.

  8. Understanding trophic interactions of Orius spp. (Hemiptera: Anthocoridae) in lettuce crops by molecular methods.

    Science.gov (United States)

    Gomez-Polo, Priscila; Alomar, Oscar; Castañé, Cristina; Aznar-Fernández, Thaïs; Lundgren, Jonathan G; Piñol, Josep; Agustí, Nuria

    2016-02-01

    The aphid Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) and the thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) are common pests in Mediterranean lettuce crops, where Orius spp. are common generalist predators. Predation by Orius spp. was studied in a lettuce plot by conventional polymerase chain reaction (PCR) and real-time PCR analyses using specific primers of both main pests. Also, high-throughput sequencing was used to have a wider approach of the diet of these predators in natural field conditions. Molecular analyses indicated a higher predation on N. ribisnigri in spring and on F. occidentalis in summer. Predation on alternative prey, like Collembola, was also found in both seasons. Real-time PCR was more sensitive than conventional PCR in showing the target trophic links, whereas high-throughput sequencing revealed predation on other natural enemies - intraguild predation (IGP), showing other trophic interactions of Orius majusculus within the studied ecosystem. This study gives important information about the trophic relationships present in Mediterranean lettuce crops in different periods of the year. The detected predation by Orius spp. on alternative prey, as well as on other natural enemies, should be further investigated to clarify whether it adds or detracts to the biological control of N. ribisnigri and F. occidentalis. © 2015 Society of Chemical Industry.

  9. [Understanding social interaction in children with autism spectrum disorders: does whole-body motion mean anything to them?].

    Science.gov (United States)

    Centelles, L; Assaiante, C; Etchegoyhen, K; Bouvard, M; Schmitz, C

    2012-06-01

    Autism spectrum disorders (ASD) are characterized by difficulties in social interaction and verbal and non verbal reciprocal communication. Face and gaze direction, which participate in non verbal communication, are described as atypical in ASD. Also body movements carry multiple social cues. Under certain circumstances, for instance when seeing two persons from far, they constitute the only support that allows the grasping of a social content. Here, we investigated the contribution of whole-body motion processing in social understanding. The aim of the study was to evaluate whether children with ASD make use of information carried by body motion to categorize dynamic visual scenes that portrayed social interactions. In 1973, Johansson devised a technique for studying the perception of biological motion that minimizes static form information from the stimulus, but retains motion information. In these point-light displays, the movement figure, such as a body, is represented by a small number of illuminated dots positioned to highlight the motion of the body parts. We used Johansson's model to explore the ability of children with ASD to understand social interactions based on human movement analysis. Three-second silent point-light displays were created by videotaping two actors. The two actors were either interacting together or moving side by side without interacting. A large range of social interaction displays were used to cover social scenes depicting social norms (conventional gestures and courteous attitudes), emotional situations (carrying positive or negative valences) and scenes from games (sports, dance, etc.). Children were asked to carefully watch the stimuli and to classify them according to the question "Are the two persons communicating or not?". Four sessions of 3 minutes were performed by each child. Children with ASD were compared with typically developing control children matched with either non verbal mental age or chronological age. Response and

  10. Targeting Cells With MR Imaging Probes: Cellular Interaction And Intracellular Magnetic Iron Oxide Nanoparticles Uptake In Brain Capillary Endothelial and Choroidal Plexus Epithelial Cells

    Science.gov (United States)

    Cambianica, I.; Bossi, M.; Gasco, P.; Gonzalez, W.; Idee, J. M.; Miserocchi, G.; Rigolio, R.; Chanana, M.; Morjan, I.; Wang, D.; Sancini, G.

    2010-10-01

    Magnetic iron oxide nanoparticles (NPs) are considered for various diagnostic and therapeutic applications in brain including their use as contrast agent for magnetic resonance imaging. In delivery application, the critical step is the transport across cell layers and the internalization of NPs into specific cells, a process often limited by poor targeting specificity and low internalization efficiency. The development of the models of brain endothelial cells and choroidal plexus epithelial cells in culture has allowed us to investigate into these mechanisms. Our strategy is aimed at exploring different routes to the entrapment of iron oxide NPs in these brain related cells. Here we demonstrated that not only cells endowed with a good phagocytic activity like activated macrophages but also endothelial brain capillary and choroidal plexus epithelial cells do internalize iron oxide NPs. Our study of the intracellular trafficking of NPs by TEM, and confocal microscopy revealed that NPs are mainly internalized by the endocytic pathway. Iron oxide NPs were dispersed in water and coated with 3,4-dihydroxyl-L-phenylalanine (L-DOPA) using standard procedures. Magnetic lipid NPs were prepared by NANOVECTOR: water in oil in water (W/O/W) microemulsion process has been applied to directly coat different iron based NPs by lipid layer or to encapsulate them into Solid Lipid Nanoparticles (SLNs). By these coating/loading the colloidal stability was improved without strong alteration of the particle size distribution. Magnetic lipid NPs could be reconstituted after freeze drying without appreciable changes in stability. L-DOPA coated NPs are stable in PBS and in MEM (Modified Eagle Medium) medium. The magnetic properties of these NPs were not altered by the coating processes. We investigated the cellular uptake, cytotoxicity, and interaction of these NPs with rat brain capillary endothelial (REB4) and choroidal plexus epithelial (Z310) cells. By means of widefield, confocal

  11. Understanding the interaction between wild fire and vegetation distribution within the NCAR CESM framework

    Science.gov (United States)

    Seo, H.; Kim, Y.; Kim, H. J.

    2017-12-01

    Every year wild fire brings about 400Mha of land burned therefore 2Pg of carbon emissions from the surface occur. In this way fire not only affects the carbon circulation but also has an effect on the terrestrial ecosystems. This study aims to understand role of fire on the geographic vegetation distribution and the terrestrial carbon balances within the NCAR CESM framework, specifically with the CLM-BGC and CLM-BGC-DV. Global climate data from Climate Research Unit (CRU)-National Centers for Environmental Prediction (NCEP) data ranging from 1901 to 2010 are used to drive the land models. First, by comparing fire-on and fire-off simulations with the CLM-BGC-DV, the fire impacts in dynamic vegetation are quantified by the fractional land areas of the different plant functional types. In addition, we examine how changes in vegetation distribution affect the total sum of the burned areas and the carbon balances. This study would provide the limits of and suggestions for the fire and dynamic vegetation modules of the CLM-BGC. AcknowledgementsThis work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800) and by the Korea Meteorological Administration R&D Program under Grant KMIPA 2015-6180. This work was also supported by the Yonsei University Future-leading Research Initiative of 2015(2016-22-0061).

  12. Narratives with Robots: The Impact of Interaction Context and Individual Differences on Story Recall and Emotional Understanding

    Directory of Open Access Journals (Sweden)

    Iolanda Leite

    2017-07-01

    Full Text Available Role-play scenarios have been considered a successful learning space for children to develop their social and emotional abilities. In this paper, we investigate whether socially assistive robots in role-playing settings are as effective with small groups of children as they are with a single child and whether individual factors such as gender, grade level (first vs. second, perception of the robots (peer vs. adult, and empathy level (low vs. high play a role in these two interaction contexts. We conducted a three-week repeated exposure experiment where 40 children interacted with socially assistive robotic characters that acted out interactive stories around words that contribute to expanding children’s emotional vocabulary. Our results showed that although participants who interacted alone with the robots recalled the stories better than participants in the group condition, no significant differences were found in children’s emotional interpretation of the narratives. With regard to individual differences, we found that a single child setting appeared more appropriate to first graders than a group setting, empathy level is an important predictor for emotional understanding of the narratives, and children’s performance varies depending on their perception of the robots (peer vs. adult in the two conditions.

  13. Interaction between G Protein-Coupled Receptor 143 and Tyrosinase: Implications for Understanding Ocular Albinism Type 1.

    Science.gov (United States)

    De Filippo, Elisabetta; Schiedel, Anke C; Manga, Prashiela

    2017-02-01

    Developmental eye defects in X-linked ocular albinism type 1 are caused by G-protein coupled receptor 143 (GPR143) mutations. Mutations result in dysfunctional melanosome biogenesis and macromelanosome formation in pigment cells, including melanocytes and retinal pigment epithelium. GPR143, primarily expressed in pigment cells, localizes exclusively to endolysosomal and melanosomal membranes unlike most G protein-coupled receptors, which localize to the plasma membrane. There is some debate regarding GPR143 function and elucidating the role of this receptor may be instrumental for understanding neurogenesis during eye development and for devising therapies for ocular albinism type I. Many G protein-coupled receptors require association with other proteins to function. These G protein-coupled receptor-interacting proteins also facilitate fine-tuning of receptor activity and tissue specificity. We therefore investigated potential GPR143 interaction partners, with a focus on the melanogenic enzyme tyrosinase. GPR143 coimmunoprecipitated with tyrosinase, while confocal microscopy demonstrated colocalization of the proteins. Furthermore, tyrosinase localized to the plasma membrane when coexpressed with a GPR143 trafficking mutant. The physical interaction between the proteins was confirmed using fluorescence resonance energy transfer. This interaction may be required in order for GPR143 to function as a monitor of melanosome maturation. Identifying tyrosinase as a potential GPR143 binding protein opens new avenues for investigating the mechanisms that regulate pigmentation and neurogenesis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. An interactive modelling tool for understanding hydrological processes in lowland catchments

    Science.gov (United States)

    Brauer, Claudia; Torfs, Paul; Uijlenhoet, Remko

    2016-04-01

    Recently, we developed the Wageningen Lowland Runoff Simulator (WALRUS), a rainfall-runoff model for catchments with shallow groundwater (Brauer et al., 2014ab). WALRUS explicitly simulates processes which are important in lowland catchments, such as feedbacks between saturated and unsaturated zone and between groundwater and surface water. WALRUS has a simple model structure and few parameters with physical connotations. Some default functions (which can be changed easily for research purposes) are implemented to facilitate application by practitioners and students. The effect of water management on hydrological variables can be simulated explicitly. The model description and applications are published in open access journals (Brauer et al, 2014). The open source code (provided as R package) and manual can be downloaded freely (www.github.com/ClaudiaBrauer/WALRUS). We organised a short course for Dutch water managers and consultants to become acquainted with WALRUS. We are now adapting this course as a stand-alone tutorial suitable for a varied, international audience. In addition, simple models can aid teachers to explain hydrological principles effectively. We used WALRUS to generate examples for simple interactive tools, which we will present at the EGU General Assembly. C.C. Brauer, A.J. Teuling, P.J.J.F. Torfs, R. Uijlenhoet (2014a): The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater, Geosci. Model Dev., 7, 2313-2332. C.C. Brauer, P.J.J.F. Torfs, A.J. Teuling, R. Uijlenhoet (2014b): The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrol. Earth Syst. Sci., 18, 4007-4028.

  15. Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions.

    Directory of Open Access Journals (Sweden)

    Chieh-Chun Chen

    Full Text Available Despite explosive growth in genomic datasets, the methods for studying epigenomic mechanisms of gene regulation remain primitive. Here we present a model-based approach to systematically analyze the epigenomic functions in modulating transcription factor-DNA binding. Based on the first principles of statistical mechanics, this model considers the interactions between epigenomic modifications and a cis-regulatory module, which contains multiple binding sites arranged in any configurations. We compiled a comprehensive epigenomic dataset in mouse embryonic stem (mES cells, including DNA methylation (MeDIP-seq and MRE-seq, DNA hydroxymethylation (5-hmC-seq, and histone modifications (ChIP-seq. We discovered correlations of transcription factors (TFs for specific combinations of epigenomic modifications, which we term epigenomic motifs. Epigenomic motifs explained why some TFs appeared to have different DNA binding motifs derived from in vivo (ChIP-seq and in vitro experiments. Theoretical analyses suggested that the epigenome can modulate transcriptional noise and boost the cooperativity of weak TF binding sites. ChIP-seq data suggested that epigenomic boost of binding affinities in weak TF binding sites can function in mES cells. We showed in theory that the epigenome should suppress the TF binding differences on SNP-containing binding sites in two people. Using personal data, we identified strong associations between H3K4me2/H3K9ac and the degree of personal differences in NFκB binding in SNP-containing binding sites, which may explain why some SNPs introduce much smaller personal variations on TF binding than other SNPs. In summary, this model presents a powerful approach to analyze the functions of epigenomic modifications. This model was implemented into an open source program APEG (Affinity Prediction by Epigenome and Genome, http://systemsbio.ucsd.edu/apeg.

  16. Toward a systems-level understanding of gene regulatory, protein interaction, and metabolic networks in cyanobacteria.

    Science.gov (United States)

    Hernández-Prieto, Miguel A; Semeniuk, Trudi A; Futschik, Matthias E

    2014-01-01

    Cyanobacteria are essential primary producers in marine ecosystems, playing an important role in both carbon and nitrogen cycles. In the last decade, various genome sequencing and metagenomic projects have generated large amounts of genetic data for cyanobacteria. This wealth of data provides researchers with a new basis for the study of molecular adaptation, ecology and evolution of cyanobacteria, as well as for developing biotechnological applications. It also facilitates the use of multiplex techniques, i.e., expression profiling by high-throughput technologies such as microarrays, RNA-seq, and proteomics. However, exploration and analysis of these data is challenging, and often requires advanced computational methods. Also, they need to be integrated into our existing framework of knowledge to use them to draw reliable biological conclusions. Here, systems biology provides important tools. Especially, the construction and analysis of molecular networks has emerged as a powerful systems-level framework, with which to integrate such data, and to better understand biological relevant processes in these organisms. In this review, we provide an overview of the advances and experimental approaches undertaken using multiplex data from genomic, transcriptomic, proteomic, and metabolomic studies in cyanobacteria. Furthermore, we summarize currently available web-based tools dedicated to cyanobacteria, i.e., CyanoBase, CyanoEXpress, ProPortal, Cyanorak, CyanoBIKE, and CINPER. Finally, we present a case study for the freshwater model cyanobacteria, Synechocystis sp. PCC6803, to show the power of meta-analysis, and the potential to extrapolate acquired knowledge to the ecologically important marine cyanobacteria genus, Prochlorococcus.

  17. Unveiling the osmophores of Philodendron adamantinum (Araceae) as a means to understanding interactions with pollinators

    Science.gov (United States)

    Gonçalves-Souza, Patrícia; Schlindwein, Clemens; Dötterl, Stefan

    2017-01-01

    Abstract Background and Aims Araceae species pollinated by nocturnal Cyclocephalini beetles attract their pollinators by inflorescence scents. In Philodendron, despite the intense odour, the osmophores exhibit no definite morphological identity, making them difficult to locate. This may explain why structural studies of the scent-releasing tissue are not available so far. Methods Several approaches were employed for locating and understanding the osmophores of Philodendron adamantinum. A sensory test allowed other analyses to be restricted to fertile and sterile stamens as odour production sites. Stamens were studied under light and electron microscopy. Dynamic headspace and gas chromatography–mass spectrometry were used to collect and analyse scents from different zones of the inflorescence. Key Results The epidermal cells of the distal portion of fertile stamens and staminodes are papillose and, similar to the parenchyma cells of this region, have dense cytoplasm and large nuclei. In these cells, the composition of organelles is compatible with secretory activity, especially the great number of mitochondria and plastids. In this portion, lipid droplets that are consumed concomitantly with the release of odour were observed. Quantitative scent analyses revealed that the scent, with a predominance of dihydro-β-ionone, is mainly emitted by the fertile and sterile staminate zones of the spadix. An amorphous substance in the stomata pores indicates that the components are secreted and volatilized outside of the osmophore under thermogenic heat. Conclusions Despite the difficulty in locating osmophores in the absence of morphological identity and inefficiency of neutral red staining, the osmophores of P. adamantinum have some features expected for these structures. The results indicate a functional link between thermogenesis and volatilization of osmophore secretions to produce olfactory signals for attracting specialized beetle pollinators. These first experimental

  18. Contribution of MS-based proteomics to the understanding of Herpes Simplex Virus type 1 interaction with host cells

    Directory of Open Access Journals (Sweden)

    Enrique eSantamaría

    2012-03-01

    Full Text Available Like other DNA viruses, Herpes Simplex Virus type 1 (HSV-1 replicates and proliferates in host cells continuously modulating the host molecular environment. Following a sophisticated temporal expression pattern, HSV-1 encodes at least 89 multifunctional proteins that interplay with and modify the host cell proteome. During the last decade, advances in mass spectrometry applications coupled to the development of proteomic separation methods have allowed to partially monitor the impact of HSV-1 infection in human cells. In this review, we discuss the current use of different proteome fractionation strategies to define HSV-1 targets on two major application areas: i viral protein interactomics to decipher viral protein interactions in host cells and ii differential quantitative proteomics to analyse the virally induced changes in the cellular proteome. Moreover, we will also discuss the potential application of high throughput proteomic approaches to study global proteome dynamics and also post-translational modifications in HSV-1-infected cells, what will greatly improved our molecular knowledge of HSV-1 infection.

  19. Furthering our Understanding of Land Surface Interactions using SVAT modelling: Results from SimSphere's Validation

    Science.gov (United States)

    North, Matt; Petropoulos, George; Ireland, Gareth; Rendal, Daisy; Carlson, Toby

    2015-04-01

    With current predicted climate change, there is an increased requirement to gain knowledge on the terrestrial biosphere, for numerous agricultural, hydrological and meteorological applications. To this end, Soil Vegetation Atmospheric Transfer (SVAT) models are quickly becoming the preferred scientific tool to monitor, at fine temporal and spatial resolutions, detailed information on numerous parameters associated with Earth system interactions. Validation of any model is critical to assess its accuracy, generality and realism to distinctive ecosystems and subsequently acts as important step before its operational distribution. In this study, the SimSphere SVAT model has been validated to fifteen different sites of the FLUXNET network, where model performance was statistically evaluated by directly comparing the model predictions vs in situ data, for cloud free days with a high energy balance closure. Specific focus is given to the models ability to simulate parameters associated with the energy balance, namely Shortwave Incoming Solar Radiation (Rg), Net Radiation (Rnet), Latent Heat (LE), Sensible Heat (H), Air Temperature at 1.3m (Tair 1.3m) and Air temperature at 50m (Tair 50m). Comparisons were performed for a number distinctive ecosystem types and for 150 days in total using in-situ data from ground observational networks acquired from the year 2011 alone. Evaluation of the models' coherence to reality was evaluated on the basis of a series of statistical parameters including RMSD, R2, Scatter, Bias, MAE , NASH index, Slope and Intercept. Results showed good to very good agreement between predicted and observed datasets, particularly so for LE, H, Tair 1.3m and Tair 50m where mean error distribution values indicated excellent model performance. Due to the systematic underestimation, poorer simulation accuracies were exhibited for Rg and Rnet, yet all values reported are still analogous to other validatory studies of its kind. In overall, the model

  20. Hydrophilic interaction liquid chromatography-tandem mass spectrometry quantitative method for the cellular analysis of varying structures of gemini surfactants designed as nanomaterial drug carriers.

    Science.gov (United States)

    Donkuru, McDonald; Michel, Deborah; Awad, Hanan; Katselis, George; El-Aneed, Anas

    2016-05-13

    Diquaternary gemini surfactants have successfully been used to form lipid-based nanoparticles that are able to compact, protect, and deliver genetic materials into cells. However, what happens to the gemini surfactants after they have released their therapeutic cargo is unknown. Such knowledge is critical to assess the quality, safety, and efficacy of gemini surfactant nanoparticles. We have developed a simple and rapid liquid chromatography electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the quantitative determination of various structures of gemini surfactants in cells. Hydrophilic interaction liquid chromatography (HILIC) was employed allowing for a short simple isocratic run of only 4min. The lower limit of detection (LLOD) was 3ng/mL. The method was valid to 18 structures of gemini surfactants belonging to two different structural families. A full method validation was performed for two lead compounds according to USFDA guidelines. The HILIC-MS/MS method was compatible with the physicochemical properties of gemini surfactants that bear a permanent positive charge with both hydrophilic and hydrophobic elements within their molecular structure. In addition, an effective liquid-liquid extraction method (98% recovery) was employed surpassing previously used extraction methods. The analysis of nanoparticle-treated cells showed an initial rise in the analyte intracellular concentration followed by a maximum and a somewhat more gradual decrease of the intracellular concentration. The observed intracellular depletion of the gemini surfactants may be attributable to their bio-transformation into metabolites and exocytosis from the host cells. Obtained cellular data showed a pattern that grants additional investigations, evaluating metabolite formation and assessing the subcellular distribution of tested compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Understanding hydrological and nitrogen interactions by sensitivity analysis of a catchment-scale nitrogen model

    Science.gov (United States)

    Medici, Chiara; Wade, Andrew; Frances, Felix

    2010-05-01

    Nitrogen is present in both terrestrial and aquatic ecosystems and research is needed to understand its storage, transportation and transformations in river catchments world-wide because of its importance in controlling plant growth and freshwater trophic status (Vitousek et al. 2009; Chu et al. 2008; Schlesinger et al 2006; Ocampo et al. 2006; Green et al., 2004; Arheimer et al., 1996). Numerous mathematical models have been developed to describe the nitrogen dynamics, but there is a substantial gap between the outputs now expected from these models and what modellers are able to provide with scientific justification (McIntyre et al., 2005). In fact, models will always necessarily be simplification of reality; hence simplifying assumptions are sources of uncertainty that must be well understood for an accurate model results interpretation. Therefore, estimating prediction uncertainties in water quality modelling is becoming increasingly appreciated (Dean et al., 2009, Kruger et al., 2007, Rode et al., 2007). In this work the lumped LU4-N model (Medici et al., 2008; Medici et al., EGU2009-7497) is subjected to an extensive regionalised sensitivity analysis (GSA, based on Monte Carlo simulations) in application to the Fuirosos catchment, Catalonia. The main results are: 1) the hydrological model is greatly affected by the maximum static storage water content (Hu_max), which defines the amount of water held in soil that can leave the catchment only by evapotranspiration. Thus, it defines also the amount of water not retained that is free to move and supplies the other model tanks; 2) the use of several objective functions in order to take into account different hydrograph characteristic helped to constrain parameter values; 3) concerning nitrogen, to obtain a sufficient level of behavioural parameter sets for the statistical analysis, not very severe criteria could be adopted; 4) stream water concentrations are sensitive to the shallow aquifer parameters, especially

  2. Scaffold composition affects cytoskeleton organization, cell-matrix interaction and the cellular fate of human mesenchymal stem cells upon chondrogenic differentiation.

    Science.gov (United States)

    Li, Yuk Yin; Choy, Tze Hang; Ho, Fu Chak; Chan, Pui Barbara

    2015-06-01

    The stem cell niche, or microenvironment, consists of soluble, matrix, cell and mechanical factors that together determine the cellular fates and/or differentiation patterns of stem cells. Collagen and glycosaminoglycans (GAGs) are important scaffolding materials that can mimic the natural matrix niche. Here, we hypothesize that imposing changes in the scaffold composition or, more specifically, incorporating GAGs into the collagen meshwork, will affect the morphology, cytoskeletal organization and integrin expression profiles, and hence the fate of human mesenchymal stem cells (MSCs) upon the induction of differentiation. Using chondrogenesis as an example, we microencapsulated MSCs in three scaffold systems that had varying matrix compositions: collagen alone (C), aminated collagen (AC) and aminated collagen with GAGs (ACG). We then induced the MSCs to differentiate toward a chondrogenic lineage, after which, we characterized the cell viability and morphology, as well as the level of cytoskeletal organization and the integrin expression profile. We also studied the fate of the MSCs by evaluating the major chondrogenic markers at both the gene and protein level. In C, MSC chondrogenesis was successfully induced and MSCs that spread in the scaffolds had a clear actin cytoskeleton; they expressed integrin α2β1, α5 and αv; promoted sox9 nuclear localization transcription activation; and upregulated the expression of chondrogenic matrix markers. In AC, MSC chondrogenesis was completely inhibited but the scaffold still supported cell survival. The MSCs did not spread and they had no actin cytoskeleton; did not express integrin α2 or αv; they failed to differentiate into chondrogenic lineage cells even on chemical induction; and there was little colocalization or functional interaction between integrin α5 and fibronectin. In ACG, although the MSCs did not express integrin α2, they did express integrin αv and there was strong co-localization and hence functional

  3. Understanding response patterns in dyadic conflict: An interactive approach combining self-construal and opponent's dominance-submissiveness.

    Science.gov (United States)

    Au, Al K C; Lam, Shui-Fong

    2017-04-01

    Previous works on the effect of self-construal in interpersonal behaviours tend to adopt a main effect approach. The present research proposes an interactive approach in understanding two response patterns in dyadic conflict by combining self-construal and the stance of the opponent. Independent self-construal was hypothesised to be associated with a self-centred pattern of conflict response, which is characterised by taking contending responses regardless of whether the stance of the opponent is dominant or submissive. Relational self-construal was hypothesised to be associated with a tuning-in pattern of conflict response, which is characterised by showing contending responses when the opponent is submissive but yielding responses when the opponent is dominant. With trait self-construal measured and opponent's stance manipulated, Study 1 provided initial support for the hypotheses. Study 2 showed a three-way interaction effect between trait self-construal, manipulated self-construal and the opponent's stance on actual conflict responses during discussion of a scenario. The effect of self-construal manipulation was only observed among people who were low in trait independent self-construal and average in trait relational self-construal. The results pinpoint the importance of considering personal and opponent factors simultaneously in understanding the dynamics of dyadic conflict processes. © 2015 International Union of Psychological Science.

  4. Gödel, Escher, and degree of handedness: differences in interhemispheric interaction predict differences in understanding self-reference.

    Science.gov (United States)

    Niebauer, Christopher Lee; Garvey, Kilian

    2004-01-01

    Ramachandran (1995) theorised that the left hemisphere (LH) is specialised for making a single and consistent interpretation of the self and the world, whereas the right hemisphere (RH) is responsible for monitoring anomalies in reference to these interpretations. If the anomalous information reaches a threshold, it interacts with the LH to update these interpretations or beliefs. Because mixed handers may have greater degrees of interhemispheric interaction compared to strong handers, they may have a lower threshold for updating beliefs. Two previous studies found this to be the case (Niebauer, Aselage, & Schutte, 2002a; Niebauer, Christman, & Reid, 2002b). Because monitoring one's beliefs may involve metacognitive processes, i.e., cognitions about cognitions, this model was extended to help explain individual differences in understanding self-referential concepts. In the first two studies, mixed-handed participants displayed a greater understanding of self-reference using a conceptual description of Gödel's Incompleteness Theorem. In a third study, mixed-handed participants displayed greater appreciation for self-referential works of M. C. Escher. Implications for a neuropsychological model of metacognition are discussed.

  5. INTERACT

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... including puppetry and dance. However, the aesthetics of these traditions vary across cultures and carry different associative and interpretive meanings. Puppetry offers a useful frame for understanding the relationship between abstract and imitative gestures and behavior, and instantiates the complex...... interaction between a human operator and an artificial actor or agent. We can apply insights from puppetry to develop culturally-aware robots. Here we describe the development of a robotic marionette theatre wherein robotic controllers assume the role of human puppeteers. The system has been built, tested...

  6. INTERACT

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... including puppetry and dance. However, the aesthetics of these traditions vary across cultures and carry different associative and interpretive meanings. Puppetry offers a useful frame for understanding the relationship between abstract and imitative gestures and behavior, and instantiates the complex...

  7. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Directory of Open Access Journals (Sweden)

    Ryan Sayer

    2017-05-01

    Full Text Available Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students’ prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a “wave” in part of the experiment and as a “particle” in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  8. Quantum interactive learning tutorial on the double-slit experiment to improve student understanding of quantum mechanics

    Science.gov (United States)

    Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha

    2017-06-01

    Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in various situations that appear to be counterintuitive and contradict classical notions of particles and waves. For example, if we send single electrons through the slits, they may behave as a "wave" in part of the experiment and as a "particle" in another part of the same experiment. Here we discuss the development and evaluation of a research-validated Quantum Interactive Learning Tutorial (QuILT) which makes use of an interactive simulation to improve student understanding of the double-slit experiment and strives to help students develop a good grasp of foundational issues in quantum mechanics. We discuss common student difficulties identified during the development and evaluation of the QuILT and analyze the data from the pretest and post test administered to the upper-level undergraduate and first-year physics graduate students before and after they worked on the QuILT to assess its effectiveness. These data suggest that on average, the QuILT was effective in helping students develop a more robust understanding of foundational concepts in quantum mechanics that defy classical intuition using the context of the double-slit experiment. Moreover, upper-level undergraduates outperformed physics graduate students on the post test. One possible reason for this difference in performance may be the level of student engagement with the QuILT due to the grade incentive. In the undergraduate course, the post test was graded for correctness while in the graduate course, it was only graded for completeness.

  9. AMPK-sensitive cellular transport.

    Science.gov (United States)

    Dërmaku-Sopjani, Miribane; Abazi, Sokol; Faggio, Caterina; Kolgeci, Jehona; Sopjani, Mentor

    2014-03-01

    The energy sensing AMP-activated protein kinase (AMPK) regulates cellular and whole-body energy balance through stimulating catabolic ATP-generating and suppressing anabolic ATP-consuming pathways thereby helping cells survive during energy depletion. The kinase has previously been reported to be either directly or indirectly involved in the regulation of several carriers, channels and pumps of high significance in cellular physiology. Thus AMPK provides a necessary link between cellular energy metabolism and cellular transport activity. Better understanding of the AMPK role in cellular transport offers a potential for improved therapies in various human diseases and disorders. In this review, we discuss recent advances in understanding the role and function of AMPK in transport regulation under physiological and pathological states.

  10. Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Saito, Hiroyuki

    2018-01-01

    Arginine-rich cell penetrating peptides (CPPs) are very promising drug carriers to deliver membrane-impermeable pharmaceuticals, such as siRNA, bioactive peptides and proteins. CPPs directly penetrate into cells across cell membranes via a spontaneous energy-independent process, in which CPPs appear to interact with acidic lipids in the outer leaflet of the cell membrane. However, acidic lipids represent only 10 to 20% of the total membrane lipid content and in mammalian cell membranes they are predominantly located in the inner leaflet. Alternatively, CPPs favorably bind in a charge density- dependent manner to negatively charged, sulfated glycosaminoglycans (GAGs), such as heparan sulfate and chondroitin sulfate, which are abundant on the cell surface and are involved in many biological functions. We have recently demonstrated that the interaction of CPPs with sulfated GAGs plays a critical role in their direct cell membrane penetration: the favorable enthalpy contribution drives the high-affinity binding of arginine-rich CPPs to sulfated GAGs, initiating an efficient cell membrane penetration. The favorable enthalpy gain is presumably mainly derived from a unique property of the guanidino group of arginine residues forming multidentate hydrogen bonding with sulfate and carboxylate groups in GAGs. Such interactions can be accompanied with charge neutralization of arginine-rich CPPs, promoting their partition into cell membranes. This review summarizes the current understanding of the physicochemical mechanism for lipid membrane penetration of CPPs, and discusses the role of the GAG interactions on the cell membrane penetration of CPPs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Cellular Targets of Dietary Polyphenol Resveratrol

    National Research Council Canada - National Science Library

    Wu, Joseph M

    2006-01-01

    To test the hypothesis that resveratrol, a grape derived polyphenol, exerts its chemopreventive properties against prostate cancer by interacting with specific cellular targets, denoted resveratrol targeting proteins (RTPs...

  12. Cellular Mechanisms of Somatic Stem Cell Aging

    Science.gov (United States)

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  13. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    International Nuclear Information System (INIS)

    Eldawud, Reem; Dinu, Cerasela Zoica; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. (paper)

  14. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate.

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-02-26

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  15. Arabidopsis thaliana-Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids.

    Science.gov (United States)

    Louis, Joe; Shah, Jyoti

    2013-01-01

    The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA), is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed.

  16. Living with ASD: how do children and their parents assess their difficulties with social interaction and understanding?

    Science.gov (United States)

    Knott, Fiona; Dunlop, Aline-Wendy; Mackay, Tommy

    2006-11-01

    Social interaction and understanding in autistic spectrum disorder (ASD) are key areas of concern to practitioners and researchers alike. However, there is a relative lack of information about the skills and competencies of children and young people with ASD who access ordinary community facilities including mainstream education. In particular, contributions by parents and their children have been under-utilized. Using two structured questionnaires, 19 children with ASD reported difficulties with social skills including social engagement and temper management and also reported difficulties with social competence, affecting both friendships and peer relationships. Parents rated the children's social skill and competence as significantly worse than did the children themselves, but there was considerable agreement about the areas that were problematic. Using an informal measure to highlight their children's difficulties, parents raised issues relating to conversation skills, social emotional reciprocity and peer relationships. The implications for assessment and intervention are discussed.

  17. Towards a New Understanding of the e-Business Strategic Process: The Rise of a Dynamic Interaction-Based Approach

    DEFF Research Database (Denmark)

    Ivang, Reimer

    2013-01-01

    to explain how companies could strategize in the field of ICT and e-business. Strategic information systems planning (SISP) is an example of this application of strategic planning in the field of e-business. The prominence of SISP within the corporate IS strategy literature has been dramatic, but today...... there exist other different understandings of how strategies are emerging. However, e-business strategic literature is still dominated by the planning e-business approaches. The question therefore remains: Is it still optimal to build a static, programmed analytical information plan, or must the e-business...... strategic process adapt to changes in the planning environment and internal changes within the organization? E-business strategy, because of increased uncertainty and environmental complexity, must encourage interaction between key stakeholders that implement and use the e-business technology...

  18. Interventions and Interactions: Understanding Coupled Human-Water Dynamics for Improved Water Resources Management in the Himalayas

    Science.gov (United States)

    Crootof, A.

    2017-12-01

    Understanding coupled human-water dynamics offers valuable insights to address fundamental water resources challenges posed by environmental change. With hydropower reshaping human-water interactions in mountain river basins, there is a need for a socio-hydrology framework—which examines two-way feedback loops between human and water systems—to more effectively manage water resources. This paper explores the cross-scalar interactions and feedback loops between human and water systems in river basins affected by run-of-the-river hydropower and highlights the utility of a socio-hydrology perspectives to enhance water management in the face of environmental change. In the Himalayas, the rapid expansion of run-of-the-river hydropower—which diverts streamflow for energy generation—is reconfiguring the availability, location, and timing of water resources. This technological intervention in the river basin not only alters hydrologic dyanmics but also shapes social outcomes. Using hydropower development in the highlands of Uttarakhand, India as a case study, I first illustrate how run-of-the-river projects transform human-water dynamics by reshaping the social and physical landscape of a river basin. Second, I emphasize how examining cross-scalar feedbacks among structural dynamics, social outcomes, and values and norms in this coupled human-water system can inform water management. Third, I present hydrological and social literature, raised separately, to indicate collaborative research needs and knowledge gaps for coupled human-water systems affected by run-of-the-river hydropower. The results underscore the need to understand coupled human-water dynamics to improve water resources management in the face of environmental change.

  19. Determination of LFER descriptors of 30 cations of ionic liquids--progress in understanding their molecular interaction potentials.

    Science.gov (United States)

    Cho, Chul-Woong; Jungnickel, Christian; Stolte, Stefan; Preiss, Ulrich; Arning, Jürgen; Ranke, Johannes; Krossing, Ingo; Thöming, Jorg

    2012-02-01

    In order to understand molecular interaction potentials of 30 cations of ionic liquids (ILs), the well-known linear free energy relationship concept (LFER) was applied. The LFER descriptors for the excess molar refractivity and the molar volume were calculated in silico and for hydrogen-bonding acidity and basicity, and the polarizability/dipolarity of IL cations were experimentally determined through high performance liquid chromatography (HPLC) measurements. For the study, three different columns (RP-select B, Cyan, and Diol) and buffered mobile phases, based on two organic solvents acetonitrile (ACN) and methanol (MeOH), were selectively combined to the HPLC separation systems RP-select B-ACN, RP-select B-MeOH, Cyan-MeOH, Diol-ACN, and Diol-MeOH. By measuring the retention factors of 45 neutral calibration compounds and calculating LFER descriptors of three cations in the HPLC systems, the system parameters, including an ionic z coefficient, were determined. Conversely, the LFER descriptors of 30 ionic liquid cations were determined, based on the parameters of five systems and their retention factors in the HPLC systems. The results showed that the type of head group, alkyl chain length and further substituents of the cation have a significant influence on the dipolarity/polarizability and the hydrogen-bonding acidity, and functionalized groups (hydroxyl, ether, and dimethylamino) lead to hydrogen-bonding basicity of the cation. The characterization of cationic LFER descriptors opens up the chance for a more quantitative understanding of molecular interaction potentials and physicochemical properties of ILs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies.

    Science.gov (United States)

    Nunes, Cristiano C; Dean, Ralph A

    2012-06-01

    Recent discoveries regarding small RNAs and the mechanisms of gene silencing are providing new opportunities to explore fungal pathogen-host interactions and potential strategies for novel disease control. Plant pathogenic fungi are a constant and major threat to global food security; they represent the largest group of disease-causing agents on crop plants on the planet. An initial understanding of RNA silencing mechanisms and small RNAs was derived from model fungi. Now, new knowledge with practical implications for RNA silencing is beginning to emerge from the study of plant-fungus interactions. Recent studies have shown that the expression of silencing constructs in plants designed on fungal genes can specifically silence their targets in invading pathogenic fungi, such as Fusarium verticillioides, Blumeria graminis and Puccinia striiformis f.sp. tritici. Here, we highlight the important general aspects of RNA silencing mechanisms and emphasize recent findings from plant pathogenic fungi. Strategies to employ RNA silencing to investigate the basis of fungal pathogenesis are discussed. Finally, we address important aspects for the development of fungal-derived resistance through the expression of silencing constructs in host plants as a powerful strategy to control fungal disease. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.

  1. Retrospective use of PBPK modelling to understand a clinical drug-drug interaction between dextromethorphan and GSK1034702.

    Science.gov (United States)

    Hobbs, Michael J; Bloomer, Jackie; Dear, Gordon

    2017-08-01

    1. In a clinical trial, a strong drug-drug interaction (DDI) was observed between dextromethorphan (DM, the object or victim drug) and GSK1034702 (the precipitant or perpetrator drug), following single and repeat doses. This study determined the inhibition parameters of GSK1034702 in vitro and applied PBPK modelling approaches to simulate the clinical observations and provide mechanistic hypotheses to understand the DDI. 2. In vitro assays were conducted to determine the inhibition parameters of human CYP2D6 by GSK1034702. PBPK models were populated with the in vitro parameters and DDI simulations conducted and compared to the observed data from a clinical study with DM and GSK1034702. 3. GSK1034702 was a potent direct and metabolism-dependent inhibitor of human CYP2D6, with inhibition parameters of: IC 50  =   1.6 μM, K inact  = 3.7 h -1 and K I  = 0.8 μM. Incorporating these data into PBPK models predicted a DDI after repeat, but not single, 5 mg doses of GSK1034702. 4. The DDI observed with repeat administration of GSK1034702 (5 mg) can be attributed to metabolism-dependent inhibition of CYP2D6. Further, in vitro data were generated and several potential mechanisms proposed to explain the interaction observed following a single dose of GSK1034702.

  2. Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host, Meloidogyne spp.

    Science.gov (United States)

    Davies, Keith G

    2009-01-01

    Pasteuria penetrans is an endospore-forming bacterium, which is a hyperparasite of root-knot nematodes Meloidogyne spp. that are economically important pests of a wide range of crops. The life cycle of the bacterium and nematode are described with emphasis on the bacterium's potential as a biocontrol agent. Two aspects that currently prohibit the commercial development of the bacterium as a biocontrol agent are the inability to culture it outside its host and its host specificity. Vegetative growth of the bacterium is possible in vitro; however, getting the vegetative stages of the bacterium to enter sporogenesis has been problematic. Insights from genomic survey sequences regarding the role of cation concentration and the phosphorylation of Spo0F have proved useful in inducing vegetative bacteria to sporulate. Similarly, genomic data have also proved useful in understanding the attachment of endospores to the cuticle of infective nematode juveniles, and a Velcro-like model of spore attachment is proposed that involves collagen-like fibres on the surface of the endospore interacting with mucins on the nematode cuticle. Ecological studies of the interactions between Daphnia and Pasteuria ramosa are examined and similarities are drawn between the co-evolution of virulence in the Daphnia system and that of plant-parasitic nematodes.

  3. A co-culture device with a tunable stiffness to understand combinatorial cell-cell and cell-matrix interactions.

    Science.gov (United States)

    Rao, Nikhil; Grover, Gregory N; Vincent, Ludovic G; Evans, Samantha C; Choi, Yu Suk; Spencer, Katrina H; Hui, Elliot E; Engler, Adam J; Christman, Karen L

    2013-11-01

    Cell behavior on 2-D in vitro cultures is continually being improved to better mimic in vivo physiological conditions by combining niche cues including multiple cell types and substrate stiffness, which are well known to impact cell phenotype. However, no system exists in which a user can systematically examine cell behavior on a substrate with a specific stiffness (elastic modulus) in culture with a different cell type, while maintaining distinct cell populations. We demonstrate the modification of a silicon reconfigurable co-culture system with a covalently linked hydrogel of user-defined stiffness. This device allows the user to control whether two separate cell populations are in contact with each other or only experience paracrine interactions on substrates of controllable stiffness. To illustrate the utility of this device, we examined the role of substrate stiffness combined with myoblast co-culture on adipose derived stem cell (ASC) differentiation and found that the presence of myoblasts and a 10 kPa substrate stiffness increased ASC myogenesis versus co-culture on stiff substrates. As this example highlights, this technology better controls the in vitro microenvironment, allowing the user to develop a more thorough understanding of the combined effects of cell-cell and cell-matrix interactions.

  4. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions.

    Science.gov (United States)

    Khayet, Mohamed; Fernández, Victoria

    2012-11-14

    Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

  5. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    Science.gov (United States)

    2012-01-01

    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions. PMID:23151272

  6. Protein accounting in the cellular economy.

    Science.gov (United States)

    Vázquez-Laslop, Nora; Mankin, Alexander S

    2014-04-24

    Knowing the copy number of cellular proteins is critical for understanding cell physiology. By being able to measure the absolute synthesis rates of the majority of cellular proteins, Li et al. gain insights into key aspects of translation regulation and fundamental principles of cellular strategies to adjust protein synthesis according to the functional needs. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Using the Biodatamation(TM) strategy to learn introductory college biology: Value-added effects on selected students' conceptual understanding and conceptual integration of the processes of photosynthesis and cellular respiration

    Science.gov (United States)

    Reuter, Jewel Jurovich

    The purpose of this exploratory research was to study how students learn photosynthesis and cellular respiration and to determine the value added to the student's learning by each of the three technology-scaffolded learning strategy components (animated concept presentations and WebQuest-style activities, data collection, and student-constructed animations) of the BioDatamation(TM) (BDM) Program. BDM learning strategies utilized the Theory of Interacting Visual Fields(TM) (TIVF) (Reuter & Wandersee, 2002a, 2002b; 2003a, 2003b) which holds that meaningful knowledge is hierarchically constructed using the past, present, and future visual fields, with visual metacognitive components that are derived from the principles of Visual Behavior (Jones, 1995), Human Constructivist Theory (Mintzes & Wandersee, 1998a), and Visual Information Design Theory (Tufte, 1990, 1997, 2001). Student alternative conceptions of photosynthesis and cellular respiration were determined by the item analysis of 263,267 Biology Advanced Placement Examinations and were used to develop the BDM instructional strategy and interview questions. The subjects were 24 undergraduate students of high and low biology prior knowledge enrolled in an introductory-level General Biology course at a major research university in the Deep South. Fifteen participants received BDM instruction which included original and innovative learning materials and laboratories in 6 phases; 8 of the 15 participants were the subject of in depth, extended individual analysis. The other 9 participants received traditional, non-BDM instruction. Interviews which included participants' creation of concept maps and visual field diagrams were conducted after each phase. Various content analyses, including Chi's Verbal Analysis and quantitizing/qualitizing were used for data analysis. The total value added to integrative knowledge during BDM instruction with the three visual fields was an average increase of 56% for cellular respiration

  8. Nested cellular automata

    International Nuclear Information System (INIS)

    Quasthoff, U.

    1985-07-01

    Cellular automata by definition consist of a finite or infinite number of cells, say of unit length, with each cell having the same transition function. These cells are usually considered as the smallest elements and so the space filled with these cells becomes discrete. Nevertheless, large pictures created by such cellular automata look very fractal. So we try to replace each cell by a couple of smaller cells, which have the same transition functions as the large ones. There are automata where this replacement does not destroy the macroscopic structure. In these cases this nesting process can be iterated. The paper contains large classes of automata with the above properties. In the case of one dimensional automata with two states and next neighbour interaction and a nesting function of the same type a complete classification is given. (author)

  9. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  10. Cellular automata analysis and applications

    CERN Document Server

    Hadeler, Karl-Peter

    2017-01-01

    This book focuses on a coherent representation of the main approaches to analyze the dynamics of cellular automata. Cellular automata are an inevitable tool in mathematical modeling. In contrast to classical modeling approaches as partial differential equations, cellular automata are straightforward to simulate but hard to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction of cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of different topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kůrka classification). These classifications suggest to cluster cel...

  11. Cellular dosimetry

    International Nuclear Information System (INIS)

    Humm, J.L.; Chin, L.M.

    1989-01-01

    Radiation dose is a useful predictive parameter for describing radiation toxicity in conventional radiotherapy. Traditionally, in vitro radiation biology dose-effect relations are expressed in the form of cell survival curves, a semilog plot of cell survival versus dose. However, the characteristic linear or linear quadratic survival curve shape, for high- and low-LET radiations respectively, is only strictly valid when the radiation dose is uniform across the entire target population. With an external beam of 60 Co gamma rays or x-rays, a uniform field may be readily achievable. When radionuclides are incorporated into a cell milieu, several new problems emerge which can result in a departure from uniformity in energy deposition throughout a cell population. This nonuniformity can have very important consequences for the shape of the survival curve. Cases in which perturbations of source uniformity may arise include: 1. Elemental sources may equilibrate in the cell medium with partition coefficients between the extracellular, cytosol, and nuclear compartments. The effect of preferential cell internalization or binding to cell membrane of some radionuclides can increase or decrease the slope of the survival curve. 2. Radionuclides bound to antibodies, hormones, metabolite precursors, etc., may result in a source localization pattern characteristic of the carrier agent, i.e., the sources may bind to cell surface receptors or antigens, be internalized, bind to secreted antigen concentrated around a fraction of the cell population, or become directly incorporated into the cell DNA. We propose to relate the distribution of energy deposition in cell nuclei to biological correlates of cellular inactivation. The probability of each cell's survival is weighted by its individual radiation burden, and the summation of these probabilities for the cell population can be used to predict the number or fraction of cell survivors

  12. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  13. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria

    Energy Technology Data Exchange (ETDEWEB)

    Götze, Sandra [Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven (Germany); Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Matoo, Omera B. [Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Beniash, Elia [Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA (United States); Saborowski, Reinhard [Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven (Germany); Sokolova, Inna M., E-mail: isokolov@uncc.edu [Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States)

    2014-04-01

    Highlights: • Elevated PCO₂ enhanced accumulation of Cu and Cd in the gills of mollusks. • The proteasome activities were affected by metals but robust to elevated PCO₂. • Exposure to Cd and Cu had opposite effects on the proteasome activity. • Combined exposure to Cu and elevated PCO₂ negatively affected energy status. - Abstract: Increased anthropogenic emission of CO₂ changes the carbonate chemistry and decreases the pH of the ocean. This can affect the speciation and the bioavailability of metals in polluted habitats such as estuaries. However, the effects of acidification on metal accumulation and stress response in estuarine organisms including bivalves are poorly understood. We studied the interactive effects of CO₂ and two common metal pollutants, copper (Cu) and cadmium (Cd), on metal accumulation, intracellular ATP/ubiquitin-dependent protein degradation, stress response and energy metabolism in two common estuarine bivalves—Crassostrea virginica (eastern oyster) and Mercenaria mercenaria (hard shell clam). Bivalves were exposed for 4–5 weeks to clean seawater (control) and to either 50 μg L⁻¹ Cu or 50 μg L⁻¹ Cd at one of three partial pressures of CO₂ PCO₂ ~395, ~800 and ~1500 μatm) representative of the present-day conditions and projections of the Intergovernmental Panel for Climate Change (IPCC) for the years 2100 and 2250, respectively. Clams accumulated lower metal burdens than oysters, and elevated PCO₂ enhanced the Cd and Cu accumulation in mantle tissues in both species. Higher Cd and Cu burdens were associated with elevated mRNA expression of metal binding proteins metallothionein and ferritin. In the absence of added metals, proteasome activities of clams and oysters were robust to elevated PCO₂, but PCO₂ modulated the proteasome response to metals. Cd exposure stimulated the chymotrypsin-like activity of the oyster proteasome

  14. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria.

    Science.gov (United States)

    Götze, Sandra; Matoo, Omera B; Beniash, Elia; Saborowski, Reinhard; Sokolova, Inna M

    2014-04-01

    Increased anthropogenic emission of CO2 changes the carbonate chemistry and decreases the pH of the ocean. This can affect the speciation and the bioavailability of metals in polluted habitats such as estuaries. However, the effects of acidification on metal accumulation and stress response in estuarine organisms including bivalves are poorly understood. We studied the interactive effects of CO2 and two common metal pollutants, copper (Cu) and cadmium (Cd), on metal accumulation, intracellular ATP/ubiquitin-dependent protein degradation, stress response and energy metabolism in two common estuarine bivalves-Crassostrea virginica (eastern oyster) and Mercenaria mercenaria (hard shell clam). Bivalves were exposed for 4-5 weeks to clean seawater (control) and to either 50 μg L(-1) Cu or 50 μg L(-1) Cd at one of three partial pressures of CO2 ( [Formula: see text] ∼ 395, ∼ 800 and ∼ 1500 μatm) representative of the present-day conditions and projections of the Intergovernmental Panel for Climate Change (IPCC) for the years 2100 and 2250, respectively. Clams accumulated lower metal burdens than oysters, and elevated [Formula: see text] enhanced the Cd and Cu accumulation in mantle tissues in both species. Higher Cd and Cu burdens were associated with elevated mRNA expression of metal binding proteins metallothionein and ferritin. In the absence of added metals, proteasome activities of clams and oysters were robust to elevated [Formula: see text] , but [Formula: see text] modulated the proteasome response to metals. Cd exposure stimulated the chymotrypsin-like activity of the oyster proteasome at all CO2 levels. In contrast, trypsin- and caspase-like activities of the oyster proteasome were slightly inhibited by Cd exposure in normocapnia but this inhibition was reversed at elevated [Formula: see text] . Cu exposure inhibited the chymotrypsin-like activity of the oyster proteasome regardless of the exposure [Formula: see text] . The effects of metal exposure on

  15. Review of cellular mechanotransduction

    Science.gov (United States)

    Wang, Ning

    2017-06-01

    Living cells and tissues experience physical forces and chemical stimuli in the human body. The process of converting mechanical forces into biochemical activities and gene expression is mechanochemical transduction or mechanotransduction. Significant advances have been made in understanding mechanotransduction at the cellular and molecular levels over the last two decades. However, major challenges remain in elucidating how a living cell integrates signals from mechanotransduction with chemical signals to regulate gene expression and to generate coherent biological responses in living tissues in physiological conditions and diseases.

  16. Particles and Patterns in Cellular Automata

    International Nuclear Information System (INIS)

    Jen, E.; Das, R.; Beasley, C.E.

    1999-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Our objective has been to develop tools for studying particle interactions in a class of dynamical systems characterized by discreteness, determinism, local interaction, and an inherently parallel form of evolution. These systems can be described by cellular automata (CA) and the behavior we studied has improved our understanding of the nature of patterns generated by CAs, their ability to perform global computations, and their relationship to continuous dynamical systems. We have also developed a rule-table mathematics that enables one to custom-design CA rule tables to generate patterns of specified types, or to perform specified computational tasks

  17. Understanding the tissue interaction of new treatment modalities in laparoscopic surgery in view of safe and effective application (Conference Presentation)

    Science.gov (United States)

    Grimbergen, Matthijs C. M.; Klaessens, John H.; van der Veen, Albert J.; Verdaasdonk, Rudolf M.

    2016-03-01

    During laparoscopic surgery, devices are require to either cut, ablate or coagulate tissue and veins with high precision and controlled lateral damage preferably in an one-for-all modality. The tissue interactions of 3 new treatment modalities were studied using special imaging techniques to obtain a better understanding the working mechanism in view of effective and safe application. The Plasmajet produces a high temperature ionized gas 'flame' directed to the tissue surface at the tip of a 4 mm diameter rigid hand piece. The Lumenis DUO CO2 laser enables endoscopic laser energy delivery through a 1 mm outer diameter flexible hollow waveguide. The 2 µm 'Thulium' laser is delivered by (standard) 400 µm diameter optical fiber. Thermal imaging and Schlieren techniques were used to assess the superficial ablative and coagulation effects these surgical instruments scanning at preset velocities and distances from the surface of biological tissues and phantoms . The CO2 was very effective in tissue ablation even at a distance up to 10 mm due to a very small diverging beam from the hollow waveguide. In contrast, the Thulium laser showed less ablation and increasing coagulation at larger distance to the tissue. The gas 'flame' of the Plasmajet spread the thermal energy over the surface for effective superficial ablation and coagulation. However, the pressure of the gas flow is substantial on the tissue surface creating turbulence and even indirect cooling. The specific ablation and coagulation effects of the three treatment modalities have to be appreciate and the effective and safe application will depend on the preference and skills of the surgeon

  18. The interactional management of ‘language difficulties’ at work – L2 strategies for responding to explicit inquiries about understanding

    DEFF Research Database (Denmark)

    Tranekjær, Louise

    2017-01-01

    ) of how employers in internship interviews orient to internship candidates as members of the category ‘second language speaker’, this paper examines the strategies employed by second languages speakers for refuting suspected language difficulties. Inspired by the training method CARM (Stokoe, 2011; 2013...... communication by illuminating not only the interactional trajectories of inquiries about understanding but also the interactional resources available to second language speakers of effectively ensuring intersubjectivity....

  19. Novel Materials for Cellular Nanosensors

    DEFF Research Database (Denmark)

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics...... by providing platforms that offer biocompatible surfaces for the cell culturing in lab-on-chip devices integrated with optimized nanosensors with high specificities and sensitivities towards cellular analytes. In this project, novel materials were investigated with a focus on providing suitable surface...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...

  20. Studying of cellular interaction of hairpin-like peptide EcAMP1 from barnyard grass (Echinochloa crusgalli L.) seeds with plant pathogenic fungus Fusarium solani using microscopy techniques.

    Science.gov (United States)

    Vasilchenko, Alexey S; Yuryev, Mikhail; Ryazantsev, Dmitry Yu; Zavriev, Sergey K; Feofanov, Alexey V; Grishin, Eugene V; Rogozhin, Eugene A

    2016-11-01

    An interaction of recombinant hairpin-like cationic peptide EcAMP1 with conidia of plant pathogenic fungus Fusarium solani at the cellular level was studied by a combination of microscopic methods. EcAMP1 is from barnyard grass (Echinochloa crusgalli L.), and obtained by heterologous expression in Escherichia coli system. As a result, a direct relationship between hyphal growth inhibition and increasing active peptide concentration, time of incubation and fungal physiological condition has been determined. Dynamics of accumulation and redistribution of the peptide studied on fungal cellular cover and inside the conidia cells has been shown. The dynamics are dependent on time of coupling, as well as, a dissimilarity of EcAMP1 binding with cover of fungal conidia and its stepwise accumulation and diffuse localization in the cytoplasm. Correlation between structural disruption of fungal conidia and the presence of morphological changes has also been found. The correlation was found under the influence of peptide high concentrations at concentrations above 32 μM. The results indicate the presence of a binding of EcAMP1 with the surface of fungal conidia, thus, demonstrating a main specificity for its antifungal action at the cellular level. These results, however, cannot exclude the existence of attendant EcAMP1 action based on its intracellular localization on some specific targets. SCANNING 38:591-598, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  1. Cellular automata with voting rule

    International Nuclear Information System (INIS)

    Makowiec, D.

    1996-01-01

    The chosen local interaction - the voting (majority) rule applied to the square lattice is known to cause the non ergodic cellular automata behaviour. Presented computer simulation results verify two cases of non ergodicity. The first one is implicated by the noise introduced to the local interactions and the second one follows properties of the initial lattice configuration selected at random. For the simplified voting rule - non symmetric voting, the critical behaviour has been explained rigorously. (author)

  2. A Cognitive Model of How Interactive Multimedia Authoring Facilitates Conceptual Understanding of Object-Oriented Programming in Novices

    Science.gov (United States)

    Yuen, Timothy; Liu, Min

    2011-01-01

    This paper presents a cognitive model of how interactive multimedia authoring (IMA) affect novices' cognition in object-oriented programming. This model was generated through an empirical study of first year computer science students at the university level being engaged in interactive multimedia authoring of a role-playing game. Clinical…

  3. Discrete dynamic modeling of cellular signaling networks.

    Science.gov (United States)

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  4. Cellular: Toward personal communications

    Science.gov (United States)

    Heffernan, Stuart

    1991-09-01

    The cellular industry is one of the fastest growing segment of the telecommunications industry. With an estimated penetration rate of 20 percent in the near future, cellular is becoming an ubiquitous telecommunications service in the U.S. In this paper we will examine the major advancements in the cellular industry: customer equipment, cellular networks, engineering tools, customer support, and nationwide seamless service.

  5. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Nørskov, Jens Kehlet

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced...... and the effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small...... influence on the position of the top of the volcano, that is, on which metal is the best catalyst....

  6. Inverse-power-law behavior of cellular motility reveals stromal-epithelial cell interactions in 3D co-culture by OCT fluctuation spectroscopy.

    Science.gov (United States)

    Oldenburg, Amy L; Yu, Xiao; Gilliss, Thomas; Alabi, Oluwafemi; Taylor, Russell M; Troester, Melissa A

    2015-10-20

    The progression of breast cancer is known to be affected by stromal cells within the local microenvironment. Here we study the effect of stromal fibroblasts on the in-place motions (motility) of mammary epithelial cells within organoids in 3D co-culture, inferred from the speckle fluctuation spectrum using optical coherence tomography (OCT). In contrast to Brownian motion, mammary cell motions exhibit an inverse power-law fluctuation spectrum. We introduce two complementary metrics for quantifying fluctuation spectra: the power-law exponent and a novel definition of the motility amplitude, both of which are signal- and position-independent. We find that the power-law exponent and motility amplitude are positively ( p <0.001) and negatively ( p <0.01) correlated with the density of stromal cells in 3D co-culture, respectively. We also show how the hyperspectral data can be visualized using these metrics to observe heterogeneity within organoids. This constitutes a simple and powerful tool for detecting and imaging cellular functional changes with OCT.

  7. Inverse-power-law behavior of cellular motility reveals stromal–epithelial cell interactions in 3D co-culture by OCT fluctuation spectroscopy

    Science.gov (United States)

    Oldenburg, Amy L.; Yu, Xiao; Gilliss, Thomas; Alabi, Oluwafemi; Taylor, Russell M.; Troester, Melissa A.

    2015-01-01

    The progression of breast cancer is known to be affected by stromal cells within the local microenvironment. Here we study the effect of stromal fibroblasts on the in-place motions (motility) of mammary epithelial cells within organoids in 3D co-culture, inferred from the speckle fluctuation spectrum using optical coherence tomography (OCT). In contrast to Brownian motion, mammary cell motions exhibit an inverse power-law fluctuation spectrum. We introduce two complementary metrics for quantifying fluctuation spectra: the power-law exponent and a novel definition of the motility amplitude, both of which are signal- and position-independent. We find that the power-law exponent and motility amplitude are positively (p<0.001) and negatively (p<0.01) correlated with the density of stromal cells in 3D co-culture, respectively. We also show how the hyperspectral data can be visualized using these metrics to observe heterogeneity within organoids. This constitutes a simple and powerful tool for detecting and imaging cellular functional changes with OCT. PMID:26973862

  8. Critical determinants of the interactions of capsule-expressing Neisseria meningitidis with host cells: the role of receptor density in increased cellular targeting via the outer membrane Opa proteins.

    Science.gov (United States)

    Bradley, Christopher J; Griffiths, Natalie J; Rowe, Helen A; Heyderman, Robert S; Virji, Mumtaz

    2005-10-01

    Neisseria meningitidis capsule is an important virulence determinant required for survival in the blood but is reportedly involved in inhibiting cellular interactions mediated by meningococcal outer membrane adhesins. However, evidence from our previous studies suggested that target receptor density on host cells may determine whether or not capsulate bacteria can adhere via outer membrane proteins such as Opa. To confirm this and evaluate the impact of capsulation on bacterial interactions, we used Opa(+) and Opa(-) derivatives of capsulate and acapsulate meningococcal isolates and transfected cell lines expressing CEACAM1, a receptor targeted by Opa proteins. To assess the extent and rate of cell association, subpopulations of stably transfected Chinese hamster ovary cells with different receptor levels were derived. A quantitative correlation of CEACAM1 levels and Opa-dependent binding of both capsulate and acapsulate bacteria was demonstrated, which was accelerated at high receptor densities. However, it appears that invasion by Opa(+) capsulate bacteria only occurs when a threshold level of CEACAM density has been reached. Target cells expressing high levels of CEACAM1 (MFI c. 400) bound threefold more, but internalized 20-fold more Opa(+) capsulate bacteria than those with intermediate expression (MFI c. 100). No overall selection of acapsulate phenotype was observed in the internalized population. These observations confirm that capsule may not be an adequate barrier for cellular interactions and demonstrate the role of a host factor that may determine capsulate bacterial invasion potential. Upregulation of CEACAMs, which can occur in response to inflammatory cytokines, could lead to translocation of a small number of fully capsulate bacteria across mucosal epithelium into the bloodstream sufficient to cause a rapid onset of disseminated disease. Thus the data also suggest a novel rationale for the epidemiological observations that individuals with prior

  9. Development of an In Vitro Model for the Multi-Parametric Quantification of the Cellular Interactions between Candida Yeasts and Phagocytes

    OpenAIRE

    Dementhon, Karine; El-Kirat-Chatel, Sofiane; Noël, Thierry

    2012-01-01

    We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to...

  10. Development of an in vitro model for the multi-parametric quantification of the cellular interactions between Candida yeasts and phagocytes.

    Science.gov (United States)

    Dementhon, Karine; El-Kirat-Chatel, Sofiane; Noël, Thierry

    2012-01-01

    We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans) and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae), or by the avoidance of phagocytosis (C. lusitaniae). We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes.

  11. Development of an in vitro model for the multi-parametric quantification of the cellular interactions between Candida yeasts and phagocytes.

    Directory of Open Access Journals (Sweden)

    Karine Dementhon

    Full Text Available We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae, or by the avoidance of phagocytosis (C. lusitaniae. We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes.

  12. Microbial dissolution of hematite and associated cellular fossilization by reduced iron phases: a study of ancient microbe-mineral surface interactions.

    Science.gov (United States)

    Kolo, Kamal; Konhauser, Kurt; Krumbein, Wolfgang Elisabeth; Ingelgem, Yves Van; Hubin, Annick; Claeys, Philippe

    2009-10-01

    We report here on magnetite- and wustite-encrusted and geometrically oriented microbial-like structures (MLS) attached to the surfaces of hematite (alpha-Fe(2)O(3)) crystals in a banded iron formation. Field emission scanning electron microscope (FE-SEM) and scanning electron microscope (SEM) imaging showed a 3-D network of MLS arranged in 1 microm x approximately 20 microm coccoidal-like chains (CLC) of various geometrical shapes: dichotomous and budding-like protrusions, parallel, intersecting, triangular, or sinusoidal. Individual spheroidal forms ( approximately 1 mum in diameter), some displaying what appears to be division, were also abundant. In addition to their size, morphology, and preferred orientations, a microbial origin of these chains and single spheroidal forms is inferred by the presence of material that resembles extracellular polymeric substances (EPS) extending from the base of the chains along the mineral surface: the attachment sites show circular dissolution pits of about 100 nm diameter. Other thin structures protruding from the CLC are reminiscent of bacterial "nanowires." We were, however, unable to find any extant cells, organic carbon, or even recover DNA from the MLS, which suggests that they, if microbial, are possibly mineralogically replaced casts or mineral encrustations of cells. It is further speculated that, given the nature of the substrate upon which the forms are attached and their preferential orientations, it seems plausible that the "original cells" may have been Fe(III)-reducing bacteria that exploited structural imperfections in the crystal lattice. Importantly, the preservation of the ancient microbial shapes in mineral casts of magnetite, wustite, or both may be an overlooked means by which cellular features in the rock record are retained.

  13. Copper and Zinc Interactions with Cellular Prion Proteins Change Solubility of Full-Length Glycosylated Isoforms and Induce the Occurrence of Heterogeneous Phenotypes.

    Directory of Open Access Journals (Sweden)

    Svetlana Brim

    Full Text Available Prion diseases are characterized biochemically by protein aggregation of infectious prion isoforms (PrPSc, which result from the conformational conversion of physiological prion proteins (PrPC. PrPC are variable post-translationally modified glycoproteins, which exist as full length and as aminoterminally truncated glycosylated proteins and which exhibit differential detergent solubility. This implicates the presence of heterogeneous phenotypes, which overlap as protein complexes at the same molecular masses. Although the biological function of PrPC is still enigmatic, evidence reveals that PrPC exhibits metal-binding properties, which result in structural changes and decreased solubility. In this study, we analyzed the yield of PrPC metal binding affiliated with low solubility and changes in protein banding patterns. By implementing a high-speed centrifugation step, the interaction of zinc ions with PrPC was shown to generate large quantities of proteins with low solubility, consisting mainly of full-length glycosylated PrPC; whereas unglycosylated PrPC remained in the supernatants as well as truncated glycosylated proteins which lack of octarepeat sequence necessary for metal binding. This effect was considerably lower when PrPC interacted with copper ions; the presence of other metals tested exhibited no effect under these conditions. The binding of zinc and copper to PrPC demonstrated differentially soluble protein yields within distinct PrPC subtypes. PrPC-Zn2+-interaction may provide a means to differentiate glycosylated and unglycosylated subtypes and offers detailed analysis of metal-bound and metal-free protein conversion assays.

  14. Copper and Zinc Interactions with Cellular Prion Proteins Change Solubility of Full-Length Glycosylated Isoforms and Induce the Occurrence of Heterogeneous Phenotypes

    Science.gov (United States)

    Brim, Svetlana; Groschup, Martin H.; Kuczius, Thorsten

    2016-01-01

    Prion diseases are characterized biochemically by protein aggregation of infectious prion isoforms (PrPSc), which result from the conformational conversion of physiological prion proteins (PrPC). PrPC are variable post-translationally modified glycoproteins, which exist as full length and as aminoterminally truncated glycosylated proteins and which exhibit differential detergent solubility. This implicates the presence of heterogeneous phenotypes, which overlap as protein complexes at the same molecular masses. Although the biological function of PrPC is still enigmatic, evidence reveals that PrPC exhibits metal-binding properties, which result in structural changes and decreased solubility. In this study, we analyzed the yield of PrPC metal binding affiliated with low solubility and changes in protein banding patterns. By implementing a high-speed centrifugation step, the interaction of zinc ions with PrPC was shown to generate large quantities of proteins with low solubility, consisting mainly of full-length glycosylated PrPC; whereas unglycosylated PrPC remained in the supernatants as well as truncated glycosylated proteins which lack of octarepeat sequence necessary for metal binding. This effect was considerably lower when PrPC interacted with copper ions; the presence of other metals tested exhibited no effect under these conditions. The binding of zinc and copper to PrPC demonstrated differentially soluble protein yields within distinct PrPC subtypes. PrPC–Zn2+-interaction may provide a means to differentiate glycosylated and unglycosylated subtypes and offers detailed analysis of metal-bound and metal-free protein conversion assays. PMID:27093554

  15. Understanding the Effect of Response Rate and Class Size Interaction on Students Evaluation of Teaching in a Higher Education

    Science.gov (United States)

    Al Kuwaiti, Ahmed; AlQuraan, Mahmoud; Subbarayalu, Arun Vijay

    2016-01-01

    Objective: This study aims to investigate the interaction between response rate and class size and its effects on students' evaluation of instructors and the courses offered at a higher education Institution in Saudi Arabia. Study Design: A retrospective study design was chosen. Methods: One thousand four hundred and forty four different courses…

  16. Toward understanding social cues and signals in human–robot interaction: effects of robot gaze and proxemic behavior

    Science.gov (United States)

    Fiore, Stephen M.; Wiltshire, Travis J.; Lobato, Emilio J. C.; Jentsch, Florian G.; Huang, Wesley H.; Axelrod, Benjamin

    2013-01-01

    As robots are increasingly deployed in settings requiring social interaction, research is needed to examine the social signals perceived by humans when robots display certain social cues. In this paper, we report a study designed to examine how humans interpret social cues exhibited by robots. We first provide a brief overview of perspectives from social cognition in humans and how these processes are applicable to human–robot interaction (HRI). We then discuss the need to examine the relationship between social cues and signals as a function of the degree to which a robot is perceived as a socially present agent. We describe an experiment in which social cues were manipulated on an iRobot AvaTM mobile robotics platform in a hallway navigation scenario. Cues associated with the robot’s proxemic behavior were found to significantly affect participant perceptions of the robot’s social presence and emotional state while cues associated with the robot’s gaze behavior were not found to be significant. Further, regardless of the proxemic behavior, participants attributed more social presence and emotional states to the robot over repeated interactions than when they first interacted with it. Generally, these results indicate the importance for HRI research to consider how social cues expressed by a robot can differentially affect perceptions of the robot’s mental states and intentions. The discussion focuses on implications for the design of robotic systems and future directions for research on the relationship between social cues and signals. PMID:24348434

  17. Understanding plant cell-wall remodelling during the symbiotic interaction between Tuber melanosporum and Corylus avellana using a carbohydrate microarray.

    Science.gov (United States)

    Sillo, Fabiano; Fangel, Jonatan U; Henrissat, Bernard; Faccio, Antonella; Bonfante, Paola; Martin, Francis; Willats, William G T; Balestrini, Raffaella

    2016-08-01

    A combined approach, using a carbohydrate microarray as a support for genomic data, has revealed subtle plant cell-wall remodelling during Tuber melanosporum and Corylus avellana interaction. Cell walls are involved, to a great extent, in mediating plant-microbe interactions. An important feature of these interactions concerns changes in the cell-wall composition during interaction with other organisms. In ectomycorrhizae, plant and fungal cell walls come into direct contact, and represent the interface between the two partners. However, very little information is available on the re-arrangement that could occur within the plant and fungal cell walls during ectomycorrhizal symbiosis. Taking advantage of the Comprehensive Microarray Polymer Profiling (CoMPP) technology, the current study has had the aim of monitoring the changes that take place in the plant cell wall in Corylus avellana roots during colonization by the ascomycetous ectomycorrhizal fungus T. melanosporum. Additionally, genes encoding putative plant cell-wall degrading enzymes (PCWDEs) have been identified in the T. melanosporum genome, and RT-qPCRs have been performed to verify the expression of selected genes in fully developed C. avellana/T. melanosporum ectomycorrhizae. A localized degradation of pectin seems to occur during fungal colonization, in agreement with the growth of the ectomycorrhizal fungus through the middle lamella and with the fungal gene expression of genes acting on these polysaccharides.

  18. Quantum Interactive Learning Tutorial on the Double-Slit Experiment to Improve Student Understanding of Quantum Mechanics

    Science.gov (United States)

    Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha

    2017-01-01

    Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in…

  19. The role of actin networks in cellular mechanosensing

    Science.gov (United States)

    Azatov, Mikheil

    Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant

  20. Understanding the importance of "symbolic interaction stigma": How expectations about the reactions of others adds to the burden of mental illness stigma.

    Science.gov (United States)

    Link, Bruce G; Wells, Jennifer; Phelan, Jo C; Yang, Lawrence

    2015-06-01

    Important components of stigma include imagining what others might think of a stigmatized status, anticipating what might transpire in an interaction with others, and rehearsing what one might do if something untoward occurs. These imagined relations are here called symbolic interaction stigma and can have an impact even if the internalization of negative stereotypes fails to occur. Concepts and measures that capture symbolic interaction stigma are introduced, and a preliminary assessment of their impact is provided. Four self-report measures of symbolic interaction stigma (perceived devaluation discrimination, anticipation of rejection, stigma consciousness, and concern with staying in) were developed or adapted and administered to a sample of individuals who have experienced mental illness (N = 65). Regression analyses examined whether forms of symbolic interaction stigma were associated with withdrawal, self-esteem, and isolation from relatives independent of measures of internalization of stigma and rejection experiences. As evidenced by scores on 4 distinct measures, symbolic interaction stigma was relatively common in the sample, somewhat more common than the internalization of stigma. In addition, measures of symbolic interaction stigma were significantly associated with withdrawal, self-esteem, and isolation from relatives even when a measure of the internalization of stigma was statistically controlled. The study suggests the potential importance of considering symbolic interaction forms of stigma in understanding and addressing stigma and its consequences. Being aware of symbolic interaction stigma could be useful in enhancing rehabilitation goals if an approach to counteracting the negative effects of these aspects of stigma can be developed. (c) 2015 APA, all rights reserved).

  1. Understanding the Importance of “Symbolic Interaction Stigma:” How Expectations about the Reactions of Others Adds to the Burden of Mental illness Stigma

    Science.gov (United States)

    Link, Bruce G.; Wells, Jennifer; Phelan, Jo C.; Yang, Lawrence

    2017-01-01

    Objective Important components of stigma include imagining what others might think of a stigmatized status, anticipating what might transpire in an interaction with others, and rehearsing what one might do if something untoward occurs. These imagined relations are here called “symbolic interaction stigma” and can be impactful even if the internalization of negative stereotypes fails to occur. Concepts and measures that capture symbolic interaction stigma are introduced and a preliminary assessment of their impact provided. Methods Four self-report measures of symbolic interaction stigma (perceived devaluation discrimination, anticipation of rejection, stigma consciousness and concern with staying in) were developed or adapted and administered to a sample of individuals who have experienced mental illness (N=65). Regression analyses examined whether forms of symbolic interaction stigma were associated with withdrawal, self-esteem and isolation from relatives independent of measures of internalization of stigma and rejection experiences. Results As evidenced by scores on four distinct measures symbolic interaction stigma was relatively common in the sample, somewhat more common than the internalization of stigma. Additionally, measures of symbolic interaction stigma were significantly associated with withdrawal, self-esteem and isolation from relatives even when a measure of the internalization of stigma was statistically controlled. Conclusions and Implications for Practice The study suggests the potential importance of considering symbolic interaction forms of stigma in understanding and addressing stigma and its consequences. Being aware of symbolic interaction stigma could be useful in enhancing rehabilitation goals if an approach to counteracting the negative effects of these aspects of stigma can be developed. PMID:26075528

  2. Towards an understanding of the molecular regulation of carbon allocation in diatoms: the interaction of energy and carbon allocation.

    Science.gov (United States)

    Wagner, Heiko; Jakob, Torsten; Fanesi, Andrea; Wilhelm, Christian

    2017-09-05

    In microalgae, the photosynthesis-driven CO 2 assimilation delivers cell building blocks that are used in different biosynthetic pathways. Little is known about how the cell regulates the subsequent carbon allocation to, for example, cell growth or for storage. However, knowledge about these regulatory mechanisms is of high biotechnological and ecological importance. In diatoms, the situation becomes even more complex because, as a consequence of their secondary endosymbiotic origin, the compartmentation of the pathways for the primary metabolic routes is different from green algae. Therefore, the mechanisms to manipulate the carbon allocation pattern cannot be adopted from the green lineage. This review describes the general pathways of cellular energy distribution from light absorption towards the final allocation of carbon into macromolecules and summarizes the current knowledge of diatom-specific allocation patterns. We further describe the (limited) knowledge of regulatory mechanisms of carbon partitioning between lipids, carbohydrates and proteins in diatoms. We present solutions to overcome the problems that hinder the identification of regulatory elements of carbon metabolism.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  3. Impact of Interactive Multimedia Module with Pedagogical Agents on Students' Understanding and Motivation in the Learning of Electrochemistry

    Science.gov (United States)

    Osman, Kamisah; Lee, Tien Tien

    2014-01-01

    The Electrochemistry topic is found to be difficult to learn due to its abstract concepts involving macroscopic, microscopic, and symbolic representation levels. Studies have shown that animation and simulation using information and communication technology (ICT) can help students to visualize and hence enhance their understanding in learning…

  4. Cellular evidence for nano-scale exosome secretion and interactions with spermatozoa in the epididymis of the Chinese soft-shelled turtle, Pelodiscus sinensis

    Science.gov (United States)

    Chen, Hong; Yang, Ping; Chu, Xiaoya; Huang, Yufei; Liu, Tengfei; Zhang, Qian; Li, Quanfu; Hu, Lisi; Waqas, Yasir; Ahmed, Nisar; Chen, Qiusheng

    2016-01-01

    The epididymis is the location of sperm maturation and sperm storage. Recent studies have shown that nano-scale exosomes play a vital role during these complicated processes. Our aim was to analyze the secretory properties of epididymal exosomes and their ultrastructural interaction with maturing spermatozoa in the Chinese soft-shelled turtle. The exosome marker CD63 was primarily localized to the apices of principal cells throughout the epididymal epithelium. Identification of nano-scale exosomes and their secretory processes were further investigated via transmission electron microscopy. The epithelium secreted epididymal exosomes (50~300 nm in diameter) through apocrine secretion and the multivesicular body (MVB) pathway. Spermatozoa absorbed epididymal exosomes through endocytosis or membrane fusion pathways. This study shows, for the first time, that nano-scale exosomes use two secretion and two absorption pathways in the reptile, which may be contribute to long-term sperm storage. PMID:26992236

  5. Cellular evidence for nano-scale exosome secretion and interactions with spermatozoa in the epididymis of the Chinese soft-shelled turtle, Pelodiscus sinensis.

    Science.gov (United States)

    Chen, Hong; Yang, Ping; Chu, Xiaoya; Huang, Yufei; Liu, Tengfei; Zhang, Qian; Li, Quanfu; Hu, Lisi; Waqas, Yasir; Ahmed, Nisar; Chen, Qiusheng

    2016-04-12

    The epididymis is the location of sperm maturation and sperm storage. Recent studies have shown that nano-scale exosomes play a vital role during these complicated processes. Our aim was to analyze the secretory properties of epididymal exosomes and their ultrastructural interaction with maturing spermatozoa in the Chinese soft-shelled turtle. The exosome marker CD63 was primarily localized to the apices of principal cells throughout the epididymal epithelium. Identification of nano-scale exosomes and their secretory processes were further investigated via transmission electron microscopy. The epithelium secreted epididymal exosomes (50~300 nm in diameter) through apocrine secretion and the multivesicular body (MVB) pathway. Spermatozoa absorbed epididymal exosomes through endocytosis or membrane fusion pathways. This study shows, for the first time, that nano-scale exosomes use two secretion and two absorption pathways in the reptile, which may be contribute to long-term sperm storage.

  6. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    Science.gov (United States)

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2018-01-20

    The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.

  7. Flat Cellular (UMTS) Networks

    NARCIS (Netherlands)

    Bosch, H.G.P.; Samuel, L.G.; Mullender, Sape J.; Polakos, P.; Rittenhouse, G.

    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective

  8. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    OpenAIRE

    Khayet, Mohamed; Fernandez Fernandez, Victoria

    2012-01-01

    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we int...

  9. The architecture of visual narrative comprehension: the interaction of narrative structure and page layout in understanding comics

    OpenAIRE

    Cohn, Neil

    2014-01-01

    How do people make sense of the sequential images in visual narratives like comics? A growing literature of recent research has suggested that this comprehension involves the interaction of multiple systems: The creation of meaning across sequential images relies on a narrative grammar that packages conceptual information into categorical roles organized in hierarchic constituents. These images units are encapsulated into panels arranged in the layout of a physical page. Finally, how panels f...

  10. Water absorption in PEEK and PEI matrices. Contribution to the understanding of water-polar group interactions

    Science.gov (United States)

    Courvoisier, E.; Bicaba, Y.; Colin, X.

    2016-05-01

    The water absorption in two aromatic linear polymers (PEEK and PEI) was studied between 10% and 90% RH at 30, 50 and 70°C. It was found that these polymers display classical Henry and Fick's behaviors. Moreover, they have very close values of equilibrium water concentration C∞ and water diffusivity D presumably because their respective polar groups establish molecular interactions of the same nature with water. This assumption was checked from a literature compilation of values of C∞ and D for a large variety of linear and tridimensional polymers containing a single type of polar group. It was then evidenced that almost all types of carbonyl group (in particular, those belonging to imides, amides and ketones) have the same molar contribution to water absorption, except those belonging to esters which are much less hydrophilic. Furthermore, hydroxyl and sulfone groups are much more hydrophilic than carbonyl groups so that their molar contribution is located on another master curve. On this basis, semi-empirical structure/water transport property relationships were proposed. It was found that C∞ increases exponentially with the concentration of polar groups (presumably because water is doubly bonded), but also with the intensity of their molecular interactions with water. In contrast, D is inversely proportional to C∞, which means that polar group-water interactions slow down the rate of water diffusion.

  11. Bipartite networks improve understanding of effects of waterbody size and angling method on angler–fish interactions

    Science.gov (United States)

    Chizinski, Christopher J.; Martin, Dustin R.; Shizuka, Daizaburo; Pope, Kevin L.

    2018-01-01

    Networks used to study interactions could provide insights to fisheries. We compiled data from 27 297 interviews of anglers across waterbodies that ranged in size from 1 to 12 113 ha. Catch rates of fish species among anglers grouped by species targeted generally differed between angling methods (bank or boat). We constructed angler–catch bipartite networks (angling method specific) between anglers and fish and measured several network metrics. There was considerable variation in networks among waterbodies, with multiple metrics influenced by waterbody size. Number of species-targeting angler groups and number of fish species caught increased with increasing waterbody size. Mean number of links for species-targeting angler groups and fish species caught also increased with waterbody size. Connectance (realized proportion of possible links) of angler–catch interaction networks decreased slower for boat anglers than for bank anglers with increasing waterbody size. Network specialization (deviation of number of interactions from expected) was not significantly related to waterbody size or angling methods. Application of bipartite networks in fishery science requires careful interpretation of outputs, especially considering the numerous confounding factors prevalent in recreational fisheries.

  12. Proceedings of the 19. IAHR international symposium on ice : using new technology to understand water-ice interaction

    International Nuclear Information System (INIS)

    Jasek, M.; Andrishak, R.; Siddiqui, A.

    2008-01-01

    This conference provided a venue for scientists, engineers and researchers an opportunity to expand their knowledge of water-ice interactions with reference to water resources, river and coastal hydraulics, risk analysis, energy and the environment. The the theme of new technology falls into 3 basic groups, notably measurement and instrumentation; remote sensing; and numerical simulation. The thermal regime of rivers was discussed along with ice mechanics, ice hydraulics, ice structures and modelling ice phenomena. The titles of the sessions were: river ice, glaciers and climate change; freeze-up processes on rivers and oceans; river ice-structure interactions; numerical simulations in ice engineering; river-ice break-up and ice jam formation; ice measurement; Grasse River ice evaluation; evaluation of structural ice control alternatives; remote sensing; hydropower and dam decommissioning; mechanical behaviour of river ice, ice covered flow and thermal modelling; mathematical and computer model formulations for ice friction and sea ice; ice bergs and ice navigation; ice crushing processes; sea ice and shore/structure interactions; ice properties, testing and physical modelling; ice actions on compliant structures; oil spills in ice; desalination, ice thickness and climate change; and, sea ice ridges. The conference featured 123 presentations, of which 20 have been catalogued separately for inclusion in this database. refs., tabs., figs

  13. Synthesis, characterization, cellular uptake and interaction with native DNA of a bis(pyridyl)-1,2,4-oxadiazole copper(II) complex.

    Science.gov (United States)

    Terenzi, Alessio; Barone, Giampaolo; Piccionello, Antonio Palumbo; Giorgi, Gianluca; Guarcello, Annalisa; Portanova, Patrizia; Calvaruso, Giuseppe; Buscemi, Silvestre; Vivona, Nicolò; Pace, Andrea

    2010-10-14

    The copper(II) complex of 3,5-bis(2'-pyridyl)-1,2,4-oxadiazole was synthesized and characterized. X-Ray crystallography revealed that the complex consists of a discrete [Cu(3,5-bis(2'-pyridyl)-1,2,4-oxadiazole)(2)(H(2)O)(2)](2+) cation and two ClO(4)(-) anions. The Cu(II) coordination sphere has a distorted octahedral geometry and each ligand chelates the copper ion through the N(4) nitrogen of the oxadiazole ring and the nitrogen of one pyridine moiety. The coordinated water molecules are in cis position and each of them is H-bonded to the 5-pyridyl nitrogen of the oxadiazole ligand and to an oxygen of the perchlorate anion. Biological assays showed that, despite the free ligand not being effective, [Cu(3,5-bis(2'-pyridyl)-1,2,4-oxadiazole)(2)(H(2)O)(2)](2+) reduced the vitality of human hepatoblastoma HepG2 and colorectal carcinoma HT29 cells in a dose- and time-dependent manner. The interaction of the cationic copper complex with native DNA was investigated by variable-temperature UV-vis spectroscopy, circular dichroism, viscosity and gel electrophoresis, indicating that it is a groove binder with binding constant K(b) = 2.2 × 10(4) M(-1).

  14. Epstein–Barr virus nuclear antigen 3C interact with p73: Interplay between a viral oncoprotein and cellular tumor suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Sushil Kumar; Mohanty, Suchitra; Kumar, Amit [Division of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023 (India); Kundu, Chanakya N. [School of Biotechnology, KIIT University, Bhubaneswar (India); Verma, Subhash C. [Department of Microbiology and Immunology, University of Nevada, School of Medicine, Reno, NV 89557 (United States); Choudhuri, Tathagata, E-mail: tatha@ils.res.in [Division of Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023 (India); Department of Biotechnology, Siksha Bhavana, Visva Bharati, Santiniketan, Bolpur (India)

    2014-01-05

    The p73 protein has structural and functional homology with the tumor suppressor p53, which plays an important role in cell cycle regulation, apoptosis, and DNA repair. The p73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). p73 May play a significant role in p53-deficient lymphomas infected with Epstein–Barr virus (EBV). EBV produces an asymptomatic infection in the majority of the global population, but it is associated with several human B-cell malignancies. The EBV-encoded Epstein–Barr virus nuclear antigen 3C (EBNA3C) is thought to disrupt the cell cycle checkpoint by interacting directly with p53 family proteins. Doxorubicin, a commonly used chemotherapeutic agent, induces apoptosis through p53 and p73 signaling such that the lowΔNp73 level promotes the p73-mediated intrinsic pathway of apoptosis. In this report, we investigated the mechanism by which EBV infection counters p73α-induced apoptosis through EBNA3C. - Highlights: • EBV-encoded EBNA3C suppresses doxorubicin-induced apoptosis in B-cell lymphomas. • EBNA3C binds to p73 to suppress its apoptotic effect. • EBNA3C maintains latency by regulating downstream mitochondrial pathways.

  15. Plant viral nanoparticles-based HER2 vaccine: Immune response influenced by differential transport, localization and cellular interactions of particulate carriers.

    Science.gov (United States)

    Shukla, Sourabh; Myers, Jay T; Woods, Sarah E; Gong, Xingjian; Czapar, Anna E; Commandeur, Ulrich; Huang, Alex Y; Levine, Alan D; Steinmetz, Nicole F

    2017-03-01

    Cancer vaccines are designed to elicit an endogenous adaptive immune response that can successfully recognize and eliminate residual or recurring tumors. Such approaches can potentially overcome shortcomings of passive immunotherapies by generating long-lived therapeutic effects and immune memory while limiting systemic toxicities. A critical determinant of vaccine efficacy is efficient transport and delivery of tumor-associated antigens to professional antigen presenting cells (APCs). Plant viral nanoparticles (VNPs) with natural tropism for APCs and a high payload carrying capacity may be particularly effective vaccine carriers. The applicability of VNP platform technologies is governed by stringent structure-function relationships. We compare two distinct VNP platforms: icosahedral cowpea mosaic virus (CPMV) and filamentous potato virus X (PVX). Specifically, we evaluate in vivo capabilities of engineered VNPs delivering human epidermal growth factor receptor 2 (HER2) epitopes for therapy and prophylaxis of HER2 + malignancies. Our results corroborate the structure-function relationship where icosahedral CPMV particles showed significantly enhanced lymph node transport and retention, and greater uptake by/activation of APCs compared to filamentous PVX particles. These enhanced immune cell interactions and transport properties resulted in elevated HER2-specific antibody titers raised by CPMV- vs. PVX-based peptide vaccine. The 'synthetic virology' field is rapidly expanding with numerous platforms undergoing development and preclinical testing; our studies highlight the need for systematic studies to define rules guiding the design and rational choice of platform, in the context of peptide-vaccine display technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Information theory based approaches to cellular signaling.

    Science.gov (United States)

    Waltermann, Christian; Klipp, Edda

    2011-10-01

    Cells interact with their environment and they have to react adequately to internal and external changes such changes in nutrient composition, physical properties like temperature or osmolarity and other stresses. More specifically, they must be able to evaluate whether the external change is significant or just in the range of noise. Based on multiple external parameters they have to compute an optimal response. Cellular signaling pathways are considered as the major means of information perception and transmission in cells. Here, we review different attempts to quantify information processing on the level of individual cells. We refer to Shannon entropy, mutual information, and informal measures of signaling pathway cross-talk and specificity. Information theory in systems biology has been successfully applied to identification of optimal pathway structures, mutual information and entropy as system response in sensitivity analysis, and quantification of input and output information. While the study of information transmission within the framework of information theory in technical systems is an advanced field with high impact in engineering and telecommunication, its application to biological objects and processes is still restricted to specific fields such as neuroscience, structural and molecular biology. However, in systems biology dealing with a holistic understanding of biochemical systems and cellular signaling only recently a number of examples for the application of information theory have emerged. This article is part of a Special Issue entitled Systems Biology of Microorganisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. The architecture of visual narrative comprehension: the interaction of narrative structure and page layout in understanding comics.

    Science.gov (United States)

    Cohn, Neil

    2014-01-01

    How do people make sense of the sequential images in visual narratives like comics? A growing literature of recent research has suggested that this comprehension involves the interaction of multiple systems: The creation of meaning across sequential images relies on a "narrative grammar" that packages conceptual information into categorical roles organized in hierarchic constituents. These images are encapsulated into panels arranged in the layout of a physical page. Finally, how panels frame information can impact both the narrative structure and page layout. Altogether, these systems operate in parallel to construct the Gestalt whole of comprehension of this visual language found in comics.

  18. The architecture of visual narrative comprehension: The interaction of narrative structure and page layout in understanding comics

    Directory of Open Access Journals (Sweden)

    Neil eCohn

    2014-07-01

    Full Text Available How do people make sense of the sequential images in visual narratives like comics? A growing literature of recent research has suggested that this comprehension involves the interaction of multiple systems: The creation of meaning across sequential images relies on a narrative grammar that packages conceptual information into categorical roles organized in hierarchic constituents. These images units are encapsulated into panels arranged in the layout of a physical page. Finally, how panels frame information can impact both the narrative structure and page layout. Altogether, these systems operate in parallel to construct the gestalt whole of comprehension of this visual language found in comics.

  19. Overview of molecular, cellular, and genetic neurotoxicology.

    Science.gov (United States)

    Wallace, David R

    2005-05-01

    /toxin combinations is they can be detected and measured shortly following exposure and before overt neuroanatomic damage or lesions. Intervention at this point, shortly following exposure, may prevent or at least attenuate further damage to the individual. The use of peripheral biomarkers to assess toxin damage in the CNS has numerous advantages: time-course analysis may be performed, ethical concerns with the use of human subjects can partially be avoided, procedures to acquire samples are less invasive, and in general, peripheral studies are easier to perform. Genetic neurotoxicology comprises two focuses--toxin-induced alterations in genetic expression and genetic alterations that affect toxin metabolism, distribution, and clearance. These differences can be beneficial or toxic. Polymorphisms have been shown to result in altered metabolism of certain toxins (paraoxonase and paraoxon). Conversely, it is possible that some polymorphisms may be beneficial and help prevent the formation of a toxic by-product of an exogenous agent (resistance to ozone-induced lung inflammation). It has also become clear that interactions of potential toxins are not straightforward as interactions with DNA, causing mutations. There are numerous agents that cause epigenetic responses (cellular alterations that are not mutagenic or cytotoxic). This finding suggests that many agents that may originally have been thought of as nontoxic should be re-examined for potential "indirect" toxicity. With the advancement of the human genome project and the development of a human genome map, the effects of potential toxins on single or multiple genes can be identified. Although collectively, the field of neurotoxicology has recently come a long way, it still has a long way to go reach its full potential. As technology and methodology advances continue and cooperation with other disciplines such as neuroscience, biochemistry, neurophysiology, and molecular biology is improved, the mechanisms of toxin action will be

  20. Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD.

    Directory of Open Access Journals (Sweden)

    Wenxin Ma

    2009-11-01

    Full Text Available Age-related macular degeneration (AMD is a leading cause of legal blindness in the elderly in the industrialized word. While the immune system in the retina is likely to be important in AMD pathogenesis, the cell biology underlying the disease is incompletely understood. Clinical and basic science studies have implicated alterations in the retinal pigment epithelium (RPE layer as a locus of early change. Also, retinal microglia, the resident immune cells of the retina, have been observed to translocate from their normal position in the inner retina to accumulate in the subretinal space close to the RPE layer in AMD eyes and in animal models of AMD.In this study, we examined the effects of retinal microglia on RPE cells using 1 an in vitro model where activated retinal microglia are co-cultured with primary RPE cells, and 2 an in vivo mouse model where retinal microglia are transplanted into the subretinal space. We found that retinal microglia induced in RPE cells 1 changes in RPE structure and distribution, 2 increased expression and secretion of pro-inflammatory, chemotactic, and pro-angiogenic molecules, and 3 increased extent of in vivo choroidal neovascularization in the subretinal space.These findings share similarities with important pathological features found in AMD and suggest the relevance of microglia-RPE interactions in AMD pathogenesis. We speculate that the migration of retinal microglia into the subretinal space in early stages of the disease induces significant changes in RPE cells that perpetuate further microglial accumulation, increase inflammation in the outer retina, and fosters an environment conducive for the formation of neovascular changes responsible for much of vision loss in advanced AMD.

  1. Toward Understanding Phage:Host Interactions in the Rumen; Complete Genome Sequences of Lytic Phages Infecting Rumen Bacteria

    Directory of Open Access Journals (Sweden)

    Rosalind A. Gilbert

    2017-12-01

    Full Text Available The rumen is known to harbor dense populations of bacteriophages (phages predicted to be capable of infecting a diverse range of rumen bacteria. While bacterial genome sequencing projects are revealing the presence of phages which can integrate their DNA into the genome of their host to form stable, lysogenic associations, little is known of the genetics of phages which utilize lytic replication. These phages infect and replicate within the host, culminating in host lysis, and the release of progeny phage particles. While lytic phages for rumen bacteria have been previously isolated, their genomes have remained largely uncharacterized. Here we report the first complete genome sequences of lytic phage isolates specifically infecting three genera of rumen bacteria: Bacteroides, Ruminococcus, and Streptococcus. All phages were classified within the viral order Caudovirales and include two phage morphotypes, representative of the Siphoviridae and Podoviridae families. The phage genomes displayed modular organization and conserved viral genes were identified which enabled further classification and determination of closest phage relatives. Co-examination of bacterial host genomes led to the identification of several genes responsible for modulating phage:host interactions, including CRISPR/Cas elements and restriction-modification phage defense systems. These findings provide new genetic information and insights into how lytic phages may interact with bacteria of the rumen microbiome.

  2. Understanding spatial and temporal patterning of astrocyte calcium transients via interactions between network transport and extracellular diffusion

    Science.gov (United States)

    Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.

    2017-02-01

    Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.

  3. Toward a better understanding of the interaction between TGF-β family members and their ALK receptors

    KAUST Repository

    Romano, Valentina

    2012-02-22

    Transforming growth factor-beta (TGF-β) proteins are a family of structurally related extracellular proteins that trigger their signaling functions through interaction with the extracellular domains of their cognate serine/threonine kinase receptors. The specificity of TGF-β/receptor binding is complex and gives rise to multiple functional roles. Additionally, it is not completely understood at the atomic level. Here, we use the most reliable computational methods currently available to study systems involving activin-like kinase (ALK) receptors ALK4 and ALK7 and their multiple TGF-β ligands. We built models for all these proteins and their complexes for which experimental structures are not available. By analyzing the surfaces of interaction in six different TGF-β/ALK complexes we could infer which are the structural distinctive features of the ligand-receptor binding mode. Furthermore, this study allowed us to rationalize why binding of the growth factors GDF3 and Nodal to the ALK4 receptor requires the Cripto co-factor, whilst binding to the ALK7 receptor does not. © Springer-Verlag 2012.

  4. Probing cellular behaviors through nanopatterned chitosan membranes

    International Nuclear Information System (INIS)

    Yang, Chung-Yao; Sung, Chun-Yen; Shuai, Hung-Hsun; Cheng, Chao-Min; Yeh, J Andrew

    2013-01-01

    This paper describes a high-throughput method for developing physically modified chitosan membranes to probe the cellular behavior of MDCK epithelial cells and HIG-82 fibroblasts adhered onto these modified membranes. To prepare chitosan membranes with micro/nanoscaled features, we have demonstrated an easy-to-handle, facile approach that could be easily integrated with IC-based manufacturing processes with mass production potential. These physically modified chitosan membranes were observed by scanning electron microscopy to gain a better understanding of chitosan membrane surface morphology. After MDCK cells and HIG-82 fibroblasts were cultured on these modified chitosan membranes for various culture durations (i.e. 1, 2, 4, 12 and 24 h), they were investigated to decipher cellular behavior. We found that both cells preferred to adhere onto a flat surface rather than on a nanopatterned surface. However, most (> 80%) of the MDCK cells showed rounded morphology and would suspend in the cultured medium instead of adhering onto the planar surface of negatively nanopatterned chitosan membranes. This means different cell types (e.g. fibroblasts versus epithelia) showed distinct capabilities/preferences of adherence for materials of varying surface roughness. We also showed that chitosan membranes could be re-used at least nine times without significant contamination and would provide us consistency for probing cell–material interactions by permitting reuse of the same substrate. We believe these results would provide us better insight into cellular behavior, specifically, microscopic properties and characteristics of cells grown under unique, nanopatterned cell-interface conditions. (paper)

  5. Interactions

    DEFF Research Database (Denmark)

    The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists such as ......The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists...... such as Lorentz and Einstein as well as mathematicians such as Poincare, Minkowski, Hilbert and Weyl contributed to this development. They created the new physical theories and the mathematical disciplines that play such paramount roles in their mathematical formulations. These physicists and mathematicians were...... also key figures in the philosophical discussions of nature and science - from philosophical tendencies like logical empiricism via critical rationalism to various neo-Kantian trends....

  6. Collaborative Research: Atmospheric Pressure Plasma-Biomaterial Surface Interactions - Bridging Understanding of APP Sources to Rational Modification of Biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Graves, David Barry [Univ. of California, Berkeley, CA (United States)

    2017-11-24

    The overriding objective of this work is to bridge the gap between understanding of atmospheric pressure plasma (APP) sources and predictive chemical modifications of biomolecules. A key aspect of this problem is to understand what oxidizing species are created in water adjacent to APP jets that would ultimately affect aqueous biomolecules. We report the production of highly oxidative species in solutions exposed to a self-pulsed corona discharge in air. We examine how the properties of the target solution (pH, conductivity) and the discharge power affect the discharge stability and the production of H2O2. Indigo carmine, a common organic dye, is used as an indicator of oxidative strength and in particular, hydroxyl radical (OH•) production. The observed rate of indigo oxidation in contact with the discharge far exceeds that predicted from reactions based on concentrations of species measured in the bulk solution. The generation of H2O2 and the oxidation of indigo carmine indicate a high concentration of highly oxidizing species such as OH• at the plasma-liquid interface. These results indicate that reactions at the air plasma-liquid interface play a dominant role in species oxidation during direct non-equilibrium atmospheric pressure plasma (NE-APP) treatment.

  7. A model for understanding diagnostic imaging referrals and complex interaction processes within the bigger picture of a healthcare system

    International Nuclear Information System (INIS)

    Makanjee, Chandra R.; Bergh, Anne-Marie; Hoffmann, Willem A.

    2014-01-01

    Using experiences from the South African public healthcare system with limited resources, this review proposes a model that captures a holistic perspective of diagnostic imaging services embedded in a network of negotiated decision-making processes. Professional interdependency and interprofessional collaboration, cooperation and coordination are built around the central notion of integration in order to achieve a seamless transition through the continuum of various types of services needed to come to a diagnosis. Health-system role players interact with patients who enter the system from the perspective of their life-world. The distribution of diagnostic imaging services – within one setting or at multiple levels of care – demonstrates how fragments of information are filtered, interpreted and transformed at each point of care. The proposed model could contribute to alignment towards a common goal: services providing holistic quality of care within and beyond a complex healthcare system

  8. Conceptual shifts needed to understand the dynamic interactions of genes, environment, epigenetics, social processes, and behavioral choices.

    Science.gov (United States)

    Jackson, Fatimah L C; Niculescu, Mihai D; Jackson, Robert T

    2013-10-01

    Social and behavioral research in public health is often intimately tied to profound, but frequently neglected, biological influences from underlying genetic, environmental, and epigenetic events. The dynamic interplay between the life, social, and behavioral sciences often remains underappreciated and underutilized in addressing complex diseases and disorders and in developing effective remediation strategies. Using a case-study format, we present examples as to how the inclusion of genetic, environmental, and epigenetic data can augment social and behavioral health research by expanding the parameters of such studies, adding specificity to phenotypic assessments, and providing additional internal control in comparative studies. We highlight the important roles of gene-environment interactions and epigenetics as sources of phenotypic change and as a bridge between the life and social and behavioral sciences in the development of robust interdisciplinary analyses.

  9. Symbolic interactionism: a perspective for understanding parent-nurse interactions following the birth of a child with Down syndrome.

    Science.gov (United States)

    van Riper, M; Pridham, K; Ryff, C

    1992-01-01

    The birth of a child with Down syndrome is a challenge to parental and societal expectations. Feelings of shock, sadness, confusion, denial, fear, anger, guilt, and helplessness may be evoked. In this paper, the impact of stigma on individuals with Down syndrome and their families will be reviewed to clarify why interactions between parents and others need to be explored. Next, the central concepts important to the symbolic interactionist perspective will be reviewed. Then, qualitative data from an ongoing study of 90 parents of children with Down syndrome (ages 3 months to 18 years) will be presented to illustrate how symbolic interactionism can be applied to the to care of children with Down syndrome and their families. Finally, implications for nurses working with families that include a child with Down syndrome will be addressed.

  10. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  11. A dynamic ecosystem process model for understanding interactions between permafrost thawing and vegetation responses in the arctic

    Science.gov (United States)

    Xu, C.; Travis, B. J.; Fisher, R. A.; Wilson, C. J.; McDowell, N.

    2010-12-01

    The arctic is expected to play an important role in the Earth’s future climate due to the large carbon stocks that are stored in permafrost and peatlands, a substantial proportion of which may be released to the atmosphere due to permafrost thawing. There may be positive feedbacks of permafrost thawing on plant growth by releasing stored nitrogen and increasing rooting depth; however, vegetation response to other changing variables such as CO2 and temperature can also modify soil hydrology and energy fluxes, leading to either positive or negative feedbacks on permafrost thawing. Disentangling the interactions between permafrost thawing and vegetation growth is critical for assessing the potential role of arctic regions on current and future global carbon cycling. We have developed a mechanistic, regional, and spatially explicit dynamic ecosystem process model through the integration of a 3-D soil hydrology and biogeochemistry model (Arctic Hydrology, ARCHY) and a dynamic vegetation model (Ecosystem Demography, ED), to quantify the importance of plant-permafrost interactions to soil and plant carbon storage. This model integrates important processes including photosynthesis, transpiration, respiration, 3-D competition for light, 3-D soil hydrology, energy fluxes (ice melting in the soil and solar radiation interception by canopy), nitrogen cycles (microbial decomposition, nitrogen transportation in soil, passive and active nitrogen uptake by plants), species migration, and drought-related mortality. A sensitivity analysis has been implemented to assess the importance of the hydrological cycle, the nitrogen cycle and energy fluxes in regulating the above and below-ground carbon cycles in arctic regions. Our model can fill an important gap between field and global land surface models for assessing plot and regional level hypotheses in the context of global climate.

  12. Understanding the specificity of human Galectin-8C domain interactions with its glycan ligands based on molecular dynamics simulations.

    Science.gov (United States)

    Kumar, Sonu; Frank, Martin; Schwartz-Albiez, Reinhard

    2013-01-01

    Human Galectin-8 (Gal-8) is a member of the galectin family which shares an affinity for β-galactosides. The tandem-repeat Gal-8 consists of a N- and a C-terminal carbohydrate recognition domain (N- and C-CRD) joined by a linker peptide of various length. Despite their structural similarity both CRDs recognize different oligosaccharides. While the molecular requirements of the N-CRD for high binding affinity to sulfated and sialylated glycans have recently been elucidated by crystallographic studies of complexes with several oligosaccharides, the binding specificities of the C-CRD for a different set of oligosaccharides, as derived from experimental data, has only been explained in terms of the three-dimensional structure for the complex C-CRD with lactose. In this study we performed molecular dynamics (MD) simulations using the recently released crystal structure of the Gal-8C-CRD to analyse the three-dimensional conditions for its specific binding to a variety of oligosaccharides as previously defined by glycan-microarray analysis. The terminal β-galactose of disaccharides (LacNAc, lacto-N-biose and lactose) and the internal β-galactose moiety of blood group antigens A and B (BGA, BGB) as well as of longer linear oligosaccharide chains (di-LacNAc and lacto-N-neotetraose) are interacting favorably with conserved amino acids (H53, R57, N66, W73, E76). Lacto-N-neotetraose and di-LacNAc as well as BGA and BGB are well accommodated. BGA and BGB showed higher affinity than LacNAc and lactose due to generally stronger hydrogen bond interactions and water mediated hydrogen bonds with α1-2 fucose respectively. Our results derived from molecular dynamics simulations are able to explain the glycan binding specificities of the Gal-8C-CRD in comparison to those of the Gal-8N -CRD.

  13. Understanding the specificity of human Galectin-8C domain interactions with its glycan ligands based on molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Sonu Kumar

    Full Text Available Human Galectin-8 (Gal-8 is a member of the galectin family which shares an affinity for β-galactosides. The tandem-repeat Gal-8 consists of a N- and a C-terminal carbohydrate recognition domain (N- and C-CRD joined by a linker peptide of various length. Despite their structural similarity both CRDs recognize different oligosaccharides. While the molecular requirements of the N-CRD for high binding affinity to sulfated and sialylated glycans have recently been elucidated by crystallographic studies of complexes with several oligosaccharides, the binding specificities of the C-CRD for a different set of oligosaccharides, as derived from experimental data, has only been explained in terms of the three-dimensional structure for the complex C-CRD with lactose. In this study we performed molecular dynamics (MD simulations using the recently released crystal structure of the Gal-8C-CRD to analyse the three-dimensional conditions for its specific binding to a variety of oligosaccharides as previously defined by glycan-microarray analysis. The terminal β-galactose of disaccharides (LacNAc, lacto-N-biose and lactose and the internal β-galactose moiety of blood group antigens A and B (BGA, BGB as well as of longer linear oligosaccharide chains (di-LacNAc and lacto-N-neotetraose are interacting favorably with conserved amino acids (H53, R57, N66, W73, E76. Lacto-N-neotetraose and di-LacNAc as well as BGA and BGB are well accommodated. BGA and BGB showed higher affinity than LacNAc and lactose due to generally stronger hydrogen bond interactions and water mediated hydrogen bonds with α1-2 fucose respectively. Our results derived from molecular dynamics simulations are able to explain the glycan binding specificities of the Gal-8C-CRD in comparison to those of the Gal-8N -CRD.

  14. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides.

    Science.gov (United States)

    Hematian, Shabnam; Garcia-Bosch, Isaac; Karlin, Kenneth D

    2015-08-18

    Our long-time niche in synthetic biological inorganic chemistry has been to design ligands and generate coordination complexes of copper or iron ions or both, those reacting with dioxygen (O2) or nitrogen oxides (e.g., nitric oxide (NO(g)) and nitrite (NO2(-))) or both. As inspiration for this work, we turn to mitochondrial cytochrome c oxidase, which is responsible for dioxygen consumption and is also the predominant target for NO(g) and nitrite within mitochondria. In this Account, we highlight recent advances in studying synthetic heme/Cu complexes in two respects. First, there is the design, synthesis, and characterization of new O2 adducts whose further study will add insights into O2 reductive cleavage chemistry. Second, we describe how related heme/Cu constructs reduce nitrite ion to NO(g) or the reverse, oxidize NO(g) to nitrite. The reactions of nitrogen oxides occur as part of CcO's function, which is intimately tied to cellular O2 balance. We had first discovered that reduced heme/Cu compounds react with O2 giving μ-oxo heme-Fe(III)-O-Cu(II)(L) products; their properties are discussed. The O-atom is derived from dioxygen, and interrogations of these systems led to the construction and characterization of three distinctive classes of heme-peroxo complexes, two high-spin and one low-spin species. Recent investigations include a new approach to the synthesis of low-spin heme-peroxo-Cu complexes, employing a "naked" synthon, where the copper ligand denticity and geometric types can be varied. The result is a collection of such complexes; spectroscopic and structural features (by DFT calculations) are described. Some of these compounds are reactive toward reductants/protons effecting subsequent O-O cleavage. This points to how subtle improvements in ligand environment lead to a desired local structure and resulting optimized reactivity, as known to occur at enzyme active sites. The other sector of research is focused on heme/Cu assemblies mediating the redox

  15. Sensor-Augmented Virtual Labs: Using Physical Interactions with Science Simulations to Promote Understanding of Gas Behavior

    Science.gov (United States)

    Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.

    2016-02-01

    Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected physical and virtual experiences has the potential to promote connections among ideas. This paper explores the effect of augmenting a virtual lab with physical controls on high school chemistry students' understanding of gas laws. We compared students using the augmented virtual lab to students using a similar sensor-based physical lab with teacher-led discussions. Results demonstrate that students in the augmented virtual lab condition made significant gains from pretest and posttest and outperformed traditional students on some but not all concepts. Results provide insight into incorporating mixed-reality technologies into authentic classroom settings.

  16. Interplay of drug metabolizing enzymes with cellular transporters.

    Science.gov (United States)

    Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter

    2014-11-01

    Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.

  17. Embodied understanding.

    Science.gov (United States)

    Johnson, Mark

    2015-01-01

    Western culture has inherited a view of understanding as an intellectual cognitive operation of grasping of concepts and their relations. However, cognitive science research has shown that this received intellectualist conception is substantially out of touch with how humans actually make and experience meaning. The view emerging from the mind sciences recognizes that understanding is profoundly embodied, insofar as our conceptualization and reasoning recruit sensory, motor, and affective patterns and processes to structure our understanding of, and engagement with, our world. A psychologically realistic account of understanding must begin with the patterns of ongoing interaction between an organism and its physical and cultural environments and must include both our emotional responses to changes in our body and environment, and also the actions by which we continuously transform our experience. Consequently, embodied understanding is not merely a conceptual/propositional activity of thought, but rather constitutes our most basic way of being in, and engaging with, our surroundings in a deep visceral manner.

  18. Long-term functionality of rural water services in developing countries: a system dynamics approach to understanding the dynamic interaction of factors.

    Science.gov (United States)

    Walters, Jeffrey P; Javernick-Will, Amy N

    2015-04-21

    Research has shown that sustainability of rural water infrastructure in developing countries is largely affected by the dynamic and systemic interactions of technical, social, financial, institutional, and environmental factors that can lead to premature water system failure. This research employs system dynamics modeling, which uses feedback mechanisms to understand how these factors interact dynamically to influence long-term rural water system functionality. To do this, the research first identified and aggregated key factors from the literature, then asked water sector experts to indicate the polarity and strength between factors through Delphi and cross impact survey questionnaires, and finally used system dynamics modeling to identify and prioritize feedback mechanisms. The resulting model identified 101 feedback mechanisms that were dominated primarily by three- and four-factor mechanisms that contained some combination of the factors: Water System Functionality, Community, Financial, Government, Management, and Technology, implying these factors were the most influential on long-term functionality. These feedback mechanisms were then scored and prioritized, with the most dominant feedback mechanism identified as Water System Functionality-Community-Finance-Management. This study showcases a way for practitioners to better understand the complexities inherent in rural water development using expert opinion and indicates the need for future research in rural water service sustainability that investigates the dynamic interaction of factors in different contexts.

  19. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches.

    Directory of Open Access Journals (Sweden)

    Alba Martínez

    Full Text Available Phosphorylation of the eukaryotic translation initiation factor eIF4E is associated with malignant progression and poor cancer prognosis. Accordingly, here we have analyzed the association between eIF4E phosphorylation and cellular resistance to oxidative stress, starvation, and DNA-damaging agents in vitro. Using immortalized and cancer cell lines, retroviral expression of a phosphomimetic (S209D form of eIF4E, but not phospho-dead (S209A eIF4E or GFP control, significantly increased cellular resistance to stress induced by DNA-damaging agents (cisplatin, starvation (glucose+glutamine withdrawal, and oxidative stress (arsenite. De novo accumulation of eIF4E-containing cytoplasmic bodies colocalizing with the eIF4E-binding protein 4E-T was observed after expression of phosphomimetic S209D, but not S209A or wild-type eIF4E. Increased resistance to cellular stress induced by eIF4E-S209D was lost upon knockdown of endogenous 4E-T or use of an eIF4E-W73A-S209D mutant unable to bind 4E-T. Cancer cells treated with the Mnk1/2 inhibitor CGP57380 to prevent eIF4E phosphorylation and mouse embryonic fibroblasts derived from Mnk1/2 knockout mice were also more sensitive to arsenite and cisplatin treatment. Polysome analysis revealed an 80S peak 2 hours after arsenite treatment in cells overexpressing phosphomimetic eIF4E, indicating translational stalling. Nonetheless, a selective increase was observed in the synthesis of some proteins (cyclin D1, HuR, and Mcl-1. We conclude that phosphorylation of eIF4E confers resistance to various cell stressors and that a direct interaction or regulation of 4E-T by eIF4E is required. Further delineation of this process may identify novel therapeutic avenues for cancer treatment, and these results support the use of modern Mnk1/2 inhibitors in conjunction with standard therapy.

  20. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches

    Science.gov (United States)

    Martínez, Alba; Sesé, Marta; Losa, Javier Hernandez; Robichaud, Nathaniel; Sonenberg, Nahum; Aasen, Trond; Ramón y Cajal, Santiago

    2015-01-01

    Phosphorylation of the eukaryotic translation initiation factor eIF4E is associated with malignant progression and poor cancer prognosis. Accordingly, here we have analyzed the association between eIF4E phosphorylation and cellular resistance to oxidative stress, starvation, and DNA-damaging agents in vitro. Using immortalized and cancer cell lines, retroviral expression of a phosphomimetic (S209D) form of eIF4E, but not phospho-dead (S209A) eIF4E or GFP control, significantly increased cellular resistance to stress induced by DNA-damaging agents (cisplatin), starvation (glucose+glutamine withdrawal), and oxidative stress (arsenite). De novo accumulation of eIF4E-containing cytoplasmic bodies colocalizing with the eIF4E-binding protein 4E-T was observed after expression of phosphomimetic S209D, but not S209A or wild-type eIF4E. Increased resistance to cellular stress induced by eIF4E-S209D was lost upon knockdown of endogenous 4E-T or use of an eIF4E-W73A-S209D mutant unable to bind 4E-T. Cancer cells treated with the Mnk1/2 inhibitor CGP57380 to prevent eIF4E phosphorylation and mouse embryonic fibroblasts derived from Mnk1/2 knockout mice were also more sensitive to arsenite and cisplatin treatment. Polysome analysis revealed an 80S peak 2 hours after arsenite treatment in cells overexpressing phosphomimetic eIF4E, indicating translational stalling. Nonetheless, a selective increase was observed in the synthesis of some proteins (cyclin D1, HuR, and Mcl-1). We conclude that phosphorylation of eIF4E confers resistance to various cell stressors and that a direct interaction or regulation of 4E-T by eIF4E is required. Further delineation of this process may identify novel therapeutic avenues for cancer treatment, and these results support the use of modern Mnk1/2 inhibitors in conjunction with standard therapy. PMID:25923732

  1. Cellular responses of BRCA1-defective and triple-negative breast cancer cells and in vitro BRCA1 interactions induced by metallo-intercalator ruthenium(II) complexes containing chloro-substituted phenylazopyridine

    Science.gov (United States)

    2014-01-01

    Background Triple-negative breast cancer (TNBC) is defined by the absence of expression of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. Breast cancers with a BRCA1 mutation are also frequently triple-negative. Currently, there is a lack of effective therapies and known specific molecular targets for this aggressive breast cancer subtype. To address this concern, we have explored the cellular responses of BRCA1-defective and triple-negative breast cancer cells, and in vitro BRCA1 interactions induced by the ruthenium(II) complexes containing the bidentate ligand, 5-chloro-2-(phenylazo)pyridine. Methods Triple-negative MDA-MB-231, BRCA1-defective HCC1937 and BRCA1-competent MCF-7 breast cancer cell lines were treated with ruthenium(II) complexes. The cytoxoxicity of ruthenium-induced breast cancer cells was evaluated by a real time cellular analyzer (RTCA). Cellular uptake of ruthenium complexes was determined by ICP-MS. Cell cycle progression and apoptosis were assessed using propidium iodide and Annexin V flow cytometry. The N-terminal BRCA1 RING protein was used for conformational and functional studies using circular dichroism and in vitro ubiquitination. Results HCC1937 cells were significantly more sensitive to the ruthenium complexes than the MDA-MB-231 and MCF-7 cells. Treatment demonstrated a higher degree of cytotoxicity than cisplatin against all three cell lines. Most ruthenium atoms were retained in the nuclear compartment, particularly in HCC1937 cells, after 24 h of incubation, and produced a significant block at the G2/M phase. An increased induction of apoptotic cells as well as an upregulation of p53 mRNA was observed in all tested breast cancer cells. It was of interest that BRCA1 mRNA and replication of BRCA1-defective cells were downregulated. Changes in the conformation and binding constants of ruthenium-BRCA1 adducts were observed, causing inactivation of the RING heterodimer BRCA1/BARD1-mediated E3

  2. Deciphering cellular morphology and biocompatibility using polymer microarrays

    International Nuclear Information System (INIS)

    Pernagallo, Salvatore; Unciti-Broceta, Asier; DIaz-Mochon, Juan Jose; Bradley, Mark

    2008-01-01

    A quantitative and qualitative analysis of cellular adhesion, morphology and viability is essential in understanding and designing biomaterials such as those involved in implant surfaces or as tissue-engineering scaffolds. As a means to simultaneously perform these studies in a high-throughput (HT) manner, we report a normalized protocol which allows the rapid analysis of a large number of potential cell binding substrates using polymer microarrays and high-content fluorescence microscopy. The method was successfully applied to the discovery of optimal polymer substrates from a 214-member polyurethane library with mouse fibroblast cells (L929), as well as simultaneous evaluation of cell viability and cellular morphology. Analysis demonstrated high biocompatibility of the binding polymers and permitted the identification of several different cellular morphologies, showing that specific polymer interactions may provoke changes in cell shape. In addition, SAR studies showed a clear correspondence between cellular adhesion and polymer structure. The approach can be utilized to perform multiple experiments (up to 1024 single experiments per slide) in a highly reproducible manner, leading to the generation of vast amounts of data in a short time period (48-72 h) while reducing dramatically the quantities of polymers, reagents and cells used

  3. Application of Cosmic-ray Soil Moisture Sensing to Understand Land-atmosphere Interactions in Three North American Monsoon Ecosystems

    Science.gov (United States)

    Schreiner-McGraw, A.; Vivoni, E. R.; Franz, T. E.; Anderson, C.

    2013-12-01

    Human impacts on desert ecosystems have wide ranging effects on the hydrologic cycle which, in turn, influence interactions between the critical zone and the atmosphere. In this contribution, we utilize cosmic-ray soil moisture sensors at three human-modified semiarid ecosystems in the North American monsoon region: a buffelgrass pasture in Sonora, Mexico, a woody-plant encroached savanna ecosystem in Arizona, and a woody-plant encroached shrubland ecosystem in New Mexico. In each case, landscape heterogeneity in the form of bare soil and vegetation patches of different types leads to a complex mosaic of soil moisture and land-atmosphere interactions. Historically, the measurement of spatially-averaged soil moisture at the ecosystem scale (on the order of several hundred square meters) has been problematic. Thus, new advances in measuring cosmogenically-produced neutrons present an opportunity for observational and modeling studies in these ecosystems. We discuss the calibration of the cosmic-ray soil moisture sensors at each site, present comparisons to a distributed network of in-situ measurements, and verify the spatially-aggregated observations using the watershed water balance method at two sites. We focus our efforts on the summer season 2013 and its rainfall period during the North American monsoon. To compare neutron counts to the ground sensors, we utilized an aspect-elevation weighting algorithm to compute an appropriate spatial average for the in-situ measurements. Similarly, the water balance approach utilizes precipitation, runoff, and evapotranspiration measurements in the footprint of the cosmic-ray sensors to estimate a spatially-averaged soil moisture field. Based on these complementary approaches, we empirically determined a relationship between cosmogenically-produced neutrons and the spatially-aggregated soil moisture. This approach may improve upon existing methods used to calculate soil moisture from neutron counts that typically suffer from

  4. The Nature of Child-Adult Interaction. From Turn-Taking to Understanding Pointing and Use of Pointing Gestures

    Directory of Open Access Journals (Sweden)

    Białek Arkadiusz

    2014-08-01

    Full Text Available Analyses of interactions between an adult and a one-year-old child are often connected with studying early communicative competences, e.g. the child’s participation in turn-taking sequences, in joint attention, and use of pointing gestures. Infants’ communicative behaviors were studied using a structured observational measure - the Early Social Communication Scales (Mundy et al., 2003 in a study of 358 12-month-old children. An exploratory factor analysis revealed: (i a distinction between the categories of initiation and response among the behaviors displayed, (ii simple and complex behavior categories occurring; (iii the presence within one factor of behaviors fulfilling various functions (e.g. requesting and sharing interest. An analysis of the results showed that communicative competences can be classified according to their level and ignoring their function, and made it possible to suggest modifications to the way in which behaviors are coded on the ESCS and to complement the procedure of studying early communicative competences.

  5. Close But Not Stuck: Understanding Social Distance in Human-Robot Interaction Through a Computer Mediation Approach

    Directory of Open Access Journals (Sweden)

    Daniel Haplem

    2013-01-01

    Full Text Available We draw on the social information processing (SIP model to argue that users’ earlier experiences with online social environments tend to attribute human-like characteristics to robots. Specifically, when users engage in socially-charged electronic environments to interact and communicate electronically with others, they find ways to overcome the relative lack of cues to adapt to the medium; this includes in terms of reacting to emotional relationships (Walther, 1997. We hypothesize that individuals who have a high sense of online community, engage with avatars and have higher levels of competence communicating with information and communication technologies (ICT, are more likely to recognize humanlike cues in robots. This in turn leads them to accept robots as part of their social and physical environments. A “robotic” social distance scale was developed to measure willingness to accept robots, and the results based on this scale, from an empirical study of college students (N = 874 are explored. The findings show that whereas avatar engagement and sense of online community have a strong effect on robots acceptance, recognition of human-like characteristics partially mediates the association between these concepts; this is even after accounting for predictors expected to affect attitudes toward robots such as religion, gender, age and robots’ appearance. The article ends by exploring the implications of this research for greater social acceptability of robots in various human domains.

  6. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    Directory of Open Access Journals (Sweden)

    Yang Zamin K

    2010-05-01

    Full Text Available Abstract Background Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. Results qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. Conclusions The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network.

  7. Unraveling the in vitro secretome of the phytopathogen Botrytis cinerea to understand the interaction with its hosts

    Directory of Open Access Journals (Sweden)

    Raquel eGonzález-Fernández

    2015-10-01

    Full Text Available Botrytis cinerea is a necrotrophic fungus with high adaptability to different environments and hosts. It secretes a large number of extracellular proteins, which favor plant tissue penetration and colonization, thus contributing to virulence. Secretomics is a proteomics sub-discipline which study the secreted proteins and their secretion mechanisms, so-called secretome. By using proteomics as experimental approach, many secreted proteins by B. cinerea have been identified from in vitro experiments, and belonging to different functional categories: i cell wall-degrading enzymes such as pectinesterases, and endo-polygalacturonases; ii proteases involved in host protein degradation such as an aspartic protease; iii proteins related to the oxidative burst such as glyoxal oxidase; iv proteins which may induce the plant hypersensitive response such as a cerato-platanin domain-containing protein; and v proteins related to production and secretion of toxins such as malate dehydrogenase. In this mini-review, we made an overview of the proteomics contribution to the study and knowledge of the B. cinerea extracellular secreted proteins based on our current work carried out from in vitro experiments, and recent published papers both in vitro and in planta studies on this fungi. We hypothesize on the putative functions of these secreted proteins, and their connection to the biology of the B. cinerea interaction with its hosts.

  8. Understanding the interactions between Social Capital, climate change, and community resilience in Gulf of Mexico coastal counties

    Science.gov (United States)

    Young, C.; Blomberg, B.; Kolker, A.; Nguyen, U.; Page, C. M.; Sherchan, S. P.; Tobias, V. D.; Wu, H.

    2017-12-01

    Coastal communities in the Gulf of Mexico are facing new and complex challenges as their physical environment is altered by climate warming and sea level rise. To effectively prepare for environmental changes, coastal communities must build resilience in both physical structures and social structures. One measure of social structure resilience is how much social capital a community possesses. Social capital is defined as the connections among individuals which result in networks with shared norms, values and understandings that facilitate cooperation within or among groups. Social capital exists in three levels; bonding, bridging and linking. Bonding social capital is a measure of the strength of relationships amongst members of a network who are similar in some form. Bridging social capital is a measure of relationships amongst people who are dissimilar in some way, such as age, education, or race/ethnicity. Finally Linking social capital measures the extent to which individuals build relationships with institutions and individuals who have relative power over them (e.g local government, educational institutions). Using census and American Community Survey data, we calculated a Social Capital index value for bonding, bridging and linking for 60 Gulf of Mexico coastal counties for the years 2000, and 2010 to 2015. To investigate the impact of social capital on community resilience we coupled social capital index values with physical datasets of land-use/land cover, sea level change, climate, elevation and surface water quality for each coastal county in each year. Preliminary results indicate that in Gulf of Mexico coastal counties, increased bonding social capital results in decreased population change. In addition, we observed a multi-year time lag in the effect of increased bridging social capital on population stability, potentially suggesting key linkages between the physical and social environment in this complex coupled-natural human system. This

  9. Ferenczi's concept of identification with the aggressor: understanding dissociative structure with interacting victim and abuser self-states.

    Science.gov (United States)

    Howell, Elizabeth F

    2014-03-01

    No one has described more passionately than Ferenczi the traumatic induction of dissociative trance with its resulting fragmentation of the personality. Ferenczi introduced the concept and term, identification with the aggressor in his seminal "Confusion of Tongues" paper, in which he described how the abused child becomes transfixed and robbed of his senses. Having been traumatically overwhelmed, the child becomes hypnotically transfixed by the aggressor's wishes and behavior, automatically identifying by mimicry rather than by a purposeful identification with the aggressor's role. To expand upon Ferenczi's observations, identification with the aggressor can be understood as a two-stage process. The first stage is automatic and initiated by trauma, but the second stage is defensive and purposeful. While identification with the aggressor begins as an automatic organismic process, with repeated activation and use, gradually it becomes a defensive process. Broadly, as a dissociative defense, it has two enacted relational parts, the part of the victim and the part of the aggressor. This paper describes the intrapersonal aspects (how aggressor and victim self-states interrelate in the internal world), as well as the interpersonal aspects (how these become enacted in the external). This formulation has relevance to understanding the broad spectrum of the dissociative structure of mind, borderline personality disorder, and dissociative identity disorder.

  10. Interactive highly realistic virtual reality as a tool for understanding the genesis and treatment of psychotic symptoms.

    Science.gov (United States)

    Zányi, Eva; Selmanovic, Elmedin; Broome, Matthew; Czanner, Silvester; Birchwood, Max; Chalmers, Alan; Singh, Swaran

    2009-01-01

    Schizophrenia can be a devastating lifelong psychotic disorder with a poor prognosis. National guidelines in the UK recommend the provision of cognitive behavioral therapy (CBT) to all those suffering with psychotic disorders, but there is a lack of trained therapists in the UK able to provide such a treatment. Developing high quality automated technologies that can serve as an adjunct to conventional CBT should enhance the provision of this therapy, and increase the efficiency of the therapists in practice. The latter will occur by enabling alternate professionals to aid in the delivery of therapy, to enable behavioral experiments to be conducted in the clinic, and for sessions to be recorded and re-played such that the patient can deliver therapy to him or herself. As such the system will enable patients to become experts in, and providers of, their own treatment and decrease the number of sessions needed to be led by a trained CBT therapist. A key feature of any such system is the level of realism required to ensure a compelling session in which the user is not adversely affected by the system itself. This paper presents a high-fidelity virtual environment to help better understand the environmental triggers for psychosis.

  11. Visual analytics for epidemiologists: understanding the interactions between age, time, and disease with multi-panel graphs.

    Directory of Open Access Journals (Sweden)

    Kenneth K H Chui

    2011-02-01

    Full Text Available Visual analytics, a technique aiding data analysis and decision making, is a novel tool that allows for a better understanding of the context of complex systems. Public health professionals can greatly benefit from this technique since context is integral in disease monitoring and biosurveillance. We propose a graphical tool that can reveal the distribution of an outcome by time and age simultaneously.We introduce and demonstrate multi-panel (MP graphs applied in four different settings: U.S. national influenza-associated and salmonellosis-associated hospitalizations among the older adult population (≥65 years old, 1991-2004; confirmed salmonellosis cases reported to the Massachusetts Department of Public Health for the general population, 2004-2005; and asthma-associated hospital visits for children aged 0-18 at Milwaukee Children's Hospital of Wisconsin, 1997-2006. We illustrate trends and anomalies that otherwise would be obscured by traditional visualization techniques such as case pyramids and time-series plots.MP graphs can weave together two vital dynamics--temporality and demographics--that play important roles in the distribution and spread of diseases, making these graphs a powerful tool for public health and disease biosurveillance efforts.

  12. Auxin and Cellular Elongation1

    Science.gov (United States)

    Velasquez, Silvia Melina; Barbez, Elke

    2016-01-01

    Auxin is a crucial growth regulator in plants. However, a comprehensive understanding of how auxin induces cell expansion is perplexing, because auxin acts in a concentration- and cell type-dependent manner. Consequently, it is desirable to focus on certain cell types to exemplify the underlying growth mechanisms. On the other hand, plant tissues display supracellular growth (beyond the level of single cells); hence, other cell types might compromise the growth of a certain tissue. Tip-growing cells do not display neighbor-induced growth constraints and, therefore, are a valuable source of information for growth-controlling mechanisms. Here, we focus on auxin-induced cellular elongation in root hairs, exposing a mechanistic view of plant growth regulation. We highlight a complex interplay between auxin metabolism and transport, steering root hair development in response to internal and external triggers. Auxin signaling modules and downstream cascades of transcription factors define a developmental program that appears rate limiting for cellular growth. With this knowledge in mind, the root hair cell is a very suitable model system in which to dissect cellular effectors required for cellular expansion. PMID:26787325

  13. Paternal Aging Affects Behavior in Pax6 Mutant Mice: A Gene/Environment Interaction in Understanding Neurodevelopmental Disorders.

    Directory of Open Access Journals (Sweden)

    Kaichi Yoshizaki

    Full Text Available Neurodevelopmental disorders such as autism spectrum disorder (ASD and attention deficit and hyperactivity disorder (ADHD have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies.

  14. Hippocampal Temporal-Parietal Junction Interaction in the Production of Psychotic Symptoms: A Framework for Understanding the Schizophrenic Syndrome

    Directory of Open Access Journals (Sweden)

    Cynthia Gayle Wible

    2012-06-01

    Full Text Available A framework is described for understanding the schizophrenic syndrome at the brain systems level. It is hypothesized that over-activation of dynamic gesture and social perceptual processes in the temporal-parietal occipital junction (TPJ, posterior superior temporal sulcus (PSTS and surrounding regions produce the syndrome (including positive and negative symptoms, their prevalence, prodromal signs and cognitive deficits. Hippocampal system hyper-activity and atrophy have been consistently found in schizophrenia. Hippocampal activity is highly related to activity in the TPJ and may be a source of over-excitation of the TPJ and surrounding regions. Strong evidence for this comes from in-vivo recordings in humans during psychotic episodes. The TPJ and PSTS play a key role in the perception (and production of dynamic social, emotional and attentional gestures for the self and others (e.g., body/face/eye gestures, audiovisual speech, prosody. The single cell representation of dynamic gestures is multimodal (auditory, visual, tactile, matching the predominant hallucinatory categories in schizophrenia. Inherent in the single cell perceptual signal of dynamic gesture representations is a computation of intention, agency, and anticipation or expectancy (for the self and others. The neurons are also tuned or biased to detect threat related emotions. Abnormal over-activation in this system could produce the conscious hallucination of a voice (audiovisual speech, person or a touch. Over-activation could interfere with attentional/emotional gesture perception and production (negative symptoms. It could produce the unconscious feeling of being watched, followed or of a social situation unfolding along with accompanying perception of intent and agency inherent in those representations (delusions. Cognitive disturbances in attention, predictive social processing, agency, working memory, and a bias toward the perception of threat would also be predicted.

  15. Cellular Scale Anisotropic Topography Guides Schwann Cell Motility

    Science.gov (United States)

    Mitchel, Jennifer A.; Hoffman-Kim, Diane

    2011-01-01

    Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility. PMID:21949703

  16. The direct way may not be the best way: Children with ADHD and their understanding of self-presentation in social interactions

    Science.gov (United States)

    Kloo, Daniela; Kain, Winfried

    2016-01-01

    Knowledge and use of self-presentational tactics is an important social skill. We examined understanding of the function of three different self-presentational tactics (self-promotion, ingratiation and blasting) in 11 8–12-year-old boys with attention-deficit/hyperactivity disorder (ADHD) and 11 matched comparison children. Children were given six different self-presentation stories, two for each one of the three different tactics. After each story, they were asked to evaluate the effects of the self-presentational tactic used. Children with ADHD rated self-promotion and blasting as more positive and more effective—and ingratiation as less positive and less effective—than children in the control group. This implicates that children with ADHD prefer simple and direct self-presentational strategies (like self-promotion), and, therefore, may not as easily understand more subtle strategies (like ingratiation). They also seem to be more inclined to use negatively connoted strategies (like blasting). We suggest that this limited understanding of self-presentational strategies in children with ADHD may explain some of their problems in social interactions. Therefore, social skill interventions in children with ADHD should incorporate elements focusing on use and understanding of different self-presentational strategies. PMID:27081391

  17. The direct way may not be the best way: Children with ADHD and their understanding of self-presentation in social interactions.

    Science.gov (United States)

    Kloo, Daniela; Kain, Winfried

    2016-01-02

    Knowledge and use of self-presentational tactics is an important social skill. We examined understanding of the function of three different self-presentational tactics (self-promotion, ingratiation and blasting) in 11 8-12-year-old boys with attention-deficit/hyperactivity disorder (ADHD) and 11 matched comparison children. Children were given six different self-presentation stories, two for each one of the three different tactics. After each story, they were asked to evaluate the effects of the self-presentational tactic used. Children with ADHD rated self-promotion and blasting as more positive and more effective-and ingratiation as less positive and less effective-than children in the control group. This implicates that children with ADHD prefer simple and direct self-presentational strategies (like self-promotion), and, therefore, may not as easily understand more subtle strategies (like ingratiation). They also seem to be more inclined to use negatively connoted strategies (like blasting). We suggest that this limited understanding of self-presentational strategies in children with ADHD may explain some of their problems in social interactions. Therefore, social skill interventions in children with ADHD should incorporate elements focusing on use and understanding of different self-presentational strategies.

  18. Formation of complexes between hematite nanoparticles and a non-conventional galactomannan gum. Toward a better understanding on interaction processes.

    Science.gov (United States)

    Busch, Verónica M; Loosli, Fréderic; Santagapita, Patricio R; Buera, M Pilar; Stoll, Serge

    2015-11-01

    The physicochemical characteristics of hematite nanoparticles related to their size, surface area and reactivity make them useful for many applications, as well as suitable models to study aggregation kinetics. For several applications (such as remediation of contaminated groundwater) it is crucial to maintain the stability of hematite nanoparticle suspensions in order to assure their arrival to the target place. The use of biopolymers has been proposed as a suitable environmentally friendly option to avoid nanoparticle aggregation and assure their stability. The aim of the present work was to investigate the formation of complexes between hematite nanoparticles and a non-conventional galactomannan (vinal gum--VG) obtained from Prosopis ruscifolia in order to promote hematite nanoparticle coating with a green biopolymer. Zeta potential and size of hematite nanoparticles, VG dispersions and the stability of their mixtures were investigated, as well as the influence of the biopolymer concentration and preparation method. DLS and nanoparticle tracking analysis techniques were used for determining the size and the zeta-potential of the suspensions. VG showed a polydispersed size distribution (300-475 nm Z-average diameter, 0.65 Pdi) and a negative zeta potential (between -1 and -12 mV for pH2 and 12, respectively). The aggregation of hematite nanoparticles (3.3 mg/L) was induced by the addition of VG at lower concentrations than 2mg/L (pH5.5). On the other hand, hematite nanoparticles were stabilized at concentrations of VG higher than 2 mg/L. Several phenomena between hematite nanoparticles and VG were involved: steric effects, electrostatic interactions, charge neutralization, charge inversion and polymer bridging. The process of complexation between hematite nanoparticles and the biopolymer was strongly influenced by the preparation protocols. It was concluded that the aggregation, dispersion, and stability of hematite nanoparticles depended on biopolymer

  19. Interactions of Rodent Coronaviruses with Cellular Receptors

    Science.gov (United States)

    2016-05-08

    bluecomb disease). b. Other diseases caused by corooaviruses inc lude infectious peritonitis, r!¥lting, nephritis , pancreatitis , parotitis, and...homology with the MEV receptor, perhaps a different member of the CEA family such as the rat pregnancy specific glycoprotein could serve as a receptor

  20. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.

    Energy Technology Data Exchange (ETDEWEB)

    HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.

    2001-08-01

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5 (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).

  1. Linearizable cellular automata

    International Nuclear Information System (INIS)

    Nobe, Atsushi; Yura, Fumitaka

    2007-01-01

    The initial value problem for a class of reversible elementary cellular automata with periodic boundaries is reduced to an initial-boundary value problem for a class of linear systems on a finite commutative ring Z 2 . Moreover, a family of such linearizable cellular automata is given

  2. Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Peng Chen, Koki Kanehira and Akiyoshi Taniguchi

    2013-01-01

    Full Text Available Innate immune response is believed to be among the earliest provisional cellular responses, and mediates the interactions between microbes and cells. Toll-like receptors (TLRs are critical to these interactions. We hypothesize that TLRs also play an important role in interactions between nanoparticles (NPs and cells, although little information has been reported concerning such an interaction. In this study, we investigated the role of TLR3, TLR4 and TLR7 in cellular uptake of titanium dioxide NP (TiO2 NP agglomerates and the resulting inflammatory responses to these NPs. Our data indicate that TLR4 is involved in the uptake of TiO2 NPs and promotes the associated inflammatory responses. The data also suggest that TLR3, which has a subcellular location distinct from that of TLR4, inhibits the denaturation of cellular protein caused by TiO2 NPs. In contrast, the unique cellular localization of TLR7 has middle-ground functional roles in cellular response after TiO2 NP exposure. These findings are important for understanding the molecular interaction mechanisms between NPs and cells.

  3. Teaching Teaching & Understanding Understanding

    DEFF Research Database (Denmark)

    2006-01-01

    "Teaching Teaching & Understanding Understanding" is a 19-minute award-winning short-film about teaching at university and higher-level educational institutions. It is based on the "Constructive Alignment" theory developed by Prof. John Biggs. The film delivers a foundation for understanding what...

  4. A cellular automata model of traffic flow with variable probability of randomization

    International Nuclear Information System (INIS)

    Zheng Wei-Fan; Zhang Ji-Ye

    2015-01-01

    Research on the stochastic behavior of traffic flow is important to understand the intrinsic evolution rules of a traffic system. By introducing an interactional potential of vehicles into the randomization step, an improved cellular automata traffic flow model with variable probability of randomization is proposed in this paper. In the proposed model, the driver is affected by the interactional potential of vehicles before him, and his decision-making process is related to the interactional potential. Compared with the traditional cellular automata model, the modeling is more suitable for the driver’s random decision-making process based on the vehicle and traffic situations in front of him in actual traffic. From the improved model, the fundamental diagram (flow–density relationship) is obtained, and the detailed high-density traffic phenomenon is reproduced through numerical simulation. (paper)

  5. Plasmonic Nanostructured Cellular Automata

    Science.gov (United States)

    Alkhazraji, Emad; Ghalib, A.; Manzoor, K.; Alsunaidi, M. A.

    2017-03-01

    In this work, we have investigated the scattering plasmonic resonance characteristics of silver nanospheres with a geometrical distribution that is modelled by Cellular Automata using time-domain numerical analysis. Cellular Automata are discrete mathematical structures that model different natural phenomena. Two binary one-dimensional Cellular Automata rules are considered to model the nanostructure, namely rule 30 and rule 33. The analysis produces three-dimensional scattering profiles of the entire plasmonic nanostructure. For the Cellular Automaton rule 33, the introduction of more Cellular Automata generations resulted only in slight red and blue shifts in the plasmonic modes with respect to the first generation. On the other hand, while rule 30 introduced significant red shifts in the resonance peaks at early generations, at later generations however, a peculiar effect is witnessed in the scattering profile as new peaks emerge as a feature of the overall Cellular Automata structure rather than the sum of the smaller parts that compose it. We strongly believe that these features that emerge as a result adopting the different 256 Cellular Automata rules as configuration models of nanostructures in different applications and systems might possess a great potential in enhancing their capability, sensitivity, efficiency, and power utilization.

  6. Understanding unemployment

    OpenAIRE

    Guillaume Rocheteau

    2006-01-01

    Modern economists have built models of the labor market, which isolate the market’s key drivers and describe the way these interact to produce particular levels of unemployment. One of the most popular models used by macroeconomists today is the search-matching model of equilibrium unemployment. We explain this model, and show how it can be applied to understand the way various policies, such as unemployment benefits, taxes, or technological changes, can affect the unemployment rate.

  7. Toward understanding solute-solvent interaction in room-temperature mono- and dicationic ionic liquids: a combined fluorescence spectroscopy and mass spectrometry analysis.

    Science.gov (United States)

    Sahu, Prabhat Kumar; Das, Sudhir Kumar; Sarkar, Moloy

    2014-02-20

    Rotational relaxation dynamics of nonpolar perylene, dipolar coumarin 153, and a negatively charged probe, sodium 8-methoxypyrene-1,3,6-sulfonate (MPTS), have been investigated in a dicationic ionic liquid, 1,6-bis-(3-methylimidazolium-1-yl)hexane bis-(trifluoromethylsulfonyl)amide ([C6(MIm)2][NTf2]2), and a structurally similar monocationic ionic liquid, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C6MIm][NTf2]), to have a comprehensive and a quantitative understanding on the solute-solvent interaction in these media. Analysis of the rotational relaxation dynamics data by Stokes-Einstein-Debye (SED) hydrodynamic theory reveals that perylene rotation is found to be the fastest compared to the other two probes and shows slip to sub-slip behavior, coumarin 153 rotation lies between the stick and slip boundary, and MPTS shows a superstick behavior in [C6MIm][NTf2]. Interestingly, MPTS exhibits a normal SED hydrodynamics in dicationic [C6(MIm)2][NTf2]2, in spite of the fact that dicationic ionic liquid contains two cationic sites bearing acidic hydrogen (C2-H) which may be available to form stronger interaction with the negatively charged MPTS. The difference in the rotational diffusion behavior of these three probes is a reflection of their location in different distinct environments of these ILs. Superstick behavior of MPTS in monocationic IL has been attributed to its specific hydrogen bonding interaction with the corresponding imidazolium cation. The relatively faster rotational behavior of MPTS in dicationic IL has been explained by resorting to mass spectrometry. Mass spectral analysis demonstrates that positively charged (imidazolium) sites in dicationic IL are strongly associated with negatively charged bis-(trifluoromethylsulfonyl)amide anion (NTf2(-)), which in turn makes it difficult for imidazolim cation to have stronger hydrogen bonding interaction with bulkier negatively charged molecule MPTS.

  8. Minimal metabolic pathway structure is consistent with associated biomolecular interactions

    DEFF Research Database (Denmark)

    Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E.

    2014-01-01

    Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we...... suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors...

  9. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  10. Cell biology of the future: Nanometer-scale cellular cartography.

    Science.gov (United States)

    Taraska, Justin W

    2015-10-26

    Understanding cellular structure is key to understanding cellular regulation. New developments in super-resolution fluorescence imaging, electron microscopy, and quantitative image analysis methods are now providing some of the first three-dimensional dynamic maps of biomolecules at the nanometer scale. These new maps--comprehensive nanometer-scale cellular cartographies--will reveal how the molecular organization of cells influences their diverse and changeable activities. Copyright © 2015 Taraska.

  11. Ticks, Ixodes scapularis, Feed Repeatedly on White-Footed Mice despite Strong Inflammatory Response: An Expanding Paradigm for Understanding Tick–Host Interactions

    Directory of Open Access Journals (Sweden)

    Jennifer M. Anderson

    2017-12-01

    Full Text Available Ticks transmit infectious agents including bacteria, viruses and protozoa. However, their transmission may be compromised by host resistance to repeated tick feeding. Increasing host resistance to repeated tick bites is well known in laboratory animals, including intense inflammation at the bite sites. However, it is not known whether this also occurs in wild rodents such as white-footed mice, Peromyscus leucopus, and other wildlife, or if it occurs at all. According to the “host immune incompetence” hypothesis, if these mice do not have a strong inflammatory response, they would not reject repeated tick bites by Ixodes scapularis. To test this hypothesis, histopathological studies were done comparing dermal inflammation in P. leucopus versus guinea pigs, Cavia porcellus, repeatedly infested with I. scapularis. In P. leucopus, the immune cell composition was like that seen in laboratory mouse models, with some differences. However, there was a broad sessile lesion with intact dermal architecture, likely enabling the ticks to continue feeding unimpeded. In contrast, in C. porcellus, there was a relatively similar mixed cellular profile, but there also was a large, leukocyte-filled cavitary lesion and scab-like hyperkeratotic changes to the epidermal layer, along with itching and apparent pain. Ticks attached to sensitized C. porcellus fed poorly or were dislodged, presumably due to the weakened anchoring of the tick’s mouthparts cemented in the heavily inflamed and disintegrating dermal tissues. This is the first time that the architecture of the skin lesions has been recognized as a major factor in understanding tick–host tolerance versus tick bite rejection. These findings broadly strengthen previous work done on lab animal models but also help explain why I. scapularis can repeatedly parasitize white-footed mice, supporting the “immune evasion theory” but cannot repeatedly parasitize other, non-permissive hosts such as guinea pigs.

  12. Modeling cellular systems

    CERN Document Server

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  13. Cellular MR Imaging

    OpenAIRE

    Michel Modo; Mathias Hoehn; Jeff W.M. Bulte

    2005-01-01

    Cellular MR imaging is a young field that aims to visualize targeted cells in living organisms. In order to provide a different signal intensity of the targeted cell, they are either labeled with MR contrast agents in vivo or prelabeled in vitro. Either (ultrasmall) superparamagnetic iron oxide [(U)SPIO] particles or (polymeric) paramagnetic chelates can be used for this purpose. For in vivo cellular labeling, Gd3+- and Mn2+- chelates have mainly been used for targeted hepatobiliary imaging, ...

  14. Magnetohydrodynamic cellular automata

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu

    1990-01-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)

  15. Concepts of dose to soft tissue at the cellular level

    International Nuclear Information System (INIS)

    Fisher, D.R.

    1983-05-01

    Radiation effects begin at the cellular level of biological organization. Radiation dosimetry at the cellular level is particularly important for internally deposited alpha and beta particle emitters. Microdosimetry is a mechanism for studying the dose imparted to microscopic sites, for determining hit probabilities, and for determining the probability that sites are missed. Internal microdosimetry calculations are complex, but can be easily executed using computer programs. The investigator must specify the target and its size, determine the radionuclide activity per unit mass for each region in which targets are located, describe the activity per radioactive particulate, understand the geometrical relationship between the activity and the targets, and account for the biological retention of the activity in the region as a function of time. Internal microdosimetry has many potential applications in radiological protection. Microdosimetry is a special research area designed to provide a better understanding of the importance of microscopic patterns of radiation interaction with cells within the broader framework of biochemistry and radiation biology. Its objective is to provide a methodology that is both consistent and precise for correlating biological response to varying levels and distributions of internal emitters. Microdosimetry may contribute to a more complete understanding of the mechanisms of cancer induction by radiation. The correlation between specific energy density and various biological effects might best be treated statistically, since the effects occur in response of stochastic processes. If applied correctly, these concepts should provide a reliable tool for learning more about the effects of radiation and for setting radiation protection standards

  16. Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field.

    Science.gov (United States)

    Hamdous, Yasmina; Chebbi, Imène; Mandawala, Chalani; Le Fèvre, Raphael; Guyot, François; Seksek, Olivier; Alphandéry, Edouard

    2017-10-17

    Biologics magnetics nanoparticles, magnetosomes, attract attention because of their magnetic characteristics and potential applications. The aim of the present study was to develop and characterize novel magnetosomes, which were extracted from magnetotactic bacteria, purified to produce apyrogen magnetosome minerals, and then coated with Chitosan, Neridronate, or Polyethyleneimine. It yielded stable magnetosomes designated as M-Chi, M-Neri, and M-PEI, respectively. Nanoparticle biocompatibility was evaluated on mouse fibroblast cells (3T3), mouse glioblastoma cells (GL-261) and rat glioblastoma cells (RG-2). We also tested these nanoparticles for magnetic hyperthermia treatment of tumor in vitro on two tumor cell lines GL-261 and RG-2 under the applica