WorldWideScience

Sample records for understand water flow

  1. Radionuclides in groundwater flow system understanding

    Science.gov (United States)

    Erőss, Anita; Csondor, Katalin; Horváth, Ákos; Mádl-Szőnyi, Judit; Surbeck, Heinz

    2017-04-01

    Using radionuclides is a novel approach to characterize fluids of groundwater flow systems and understand their mixing. Particularly, in regional discharge areas, where different order flow systems convey waters with different temperature, composition and redox-state to the discharge zone. Radium and uranium are redox-sensitive parameters, which causes fractionation along groundwater flow paths. Discharging waters of regional flow systems are characterized by elevated total dissolved solid content (TDS), temperature and by reducing conditions, and therefore with negligible uranium content, whereas local flow systems have lower TDS and temperature and represent oxidizing environments, and therefore their radium content is low. Due to the short transit time, radon may appear in local systems' discharge, where its source is the soil zone. However, our studies revealed the importance of FeOOH precipitates as local radon sources throughout the adsorption of radium transported by the thermal waters of regional flow systems. These precipitates can form either by direct oxidizing of thermal waters at discharge, or by mixing of waters with different redox state. Therefore elevated radon content often occurs in regional discharge areas as well. This study compares the results of geochemical studies in three thermal karst areas in Hungary, focusing on radionuclides as natural tracers. In the Buda Thermal Karst, the waters of the distinct discharge areas are characterized by different temperature and chemical composition. In the central discharge area both lukewarm (20-35°C, 770-980 mg/l TDS) and thermal waters (40-65°C, 800-1350 mg/l TDS), in the South only thermal water discharge (33-43°C, 1450-1700 mg/l TDS) occur. Radionuclides helped to identify mixing of fluids and to infer the temperature and chemical composition of the end members for the central discharge area. For the southern discharge zone mixing components could not be identified, which suggests different cave

  2. Understanding the Impacts of Land Use, Climate, and Population Change on Blue-Green Water Flows in the Olifants Watershed, South Africa

    Science.gov (United States)

    Zeff, H. B.; Wagener, T.; van Werkhoven, K.

    2008-12-01

    Both green and blue water flows are of vital importance to the ability of a watershed to sustain the natural environment and to promote sustainable industrial and agricultural development. Green water flow refers to evapotranspirative fluxes, while blue water refers to water available in rivers, groundwater etc. for human use. This poster investigates how population growth, land use change and climate change alter the ability of the Olifants catchment in southern Africa to provide adequate green and blue water flows to support the developing population and the surrounding ecosystem. We compare a control period (1961-2000) with two future periods (2045-2065 and 2081-2100).

  3. Water Flow Experiments

    Indian Academy of Sciences (India)

    This is a simple exercise in elementary fluid dynamics for the undergraduate and the secondary school level. Here, we explore the flow of water through an orifice at the bottom of a cylindri- cal bottle/tank, first through a tube attached to the bottom of the bottle/tank and then without the tube. The experiment is easy to perform.

  4. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    International Nuclear Information System (INIS)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M.

    1996-01-01

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data

  5. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    Energy Technology Data Exchange (ETDEWEB)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M. [and others

    1996-12-31

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

  6. Stochastic water demand modelling for a better understanding of hydraulics in water distribution networks

    NARCIS (Netherlands)

    Blokker, E.J.M.

    2010-01-01

    In the water distribution network water quality process take place influenced by de flow velocity and residence time of the water in the network. In order to understand how the water quality changes in the water distribution network, a good understanding of hydraulics is required. Specifically in

  7. Understanding the holographic principle via RG flow

    CERN Document Server

    Mukhopadhyay, Ayan

    2016-01-01

    This is a review of some recent works which demonstrate how the classical equations of gravity in AdS themselves hold the key to understanding their holographic origin in the form of a strongly coupled large $N$ QFT whose algebra of local operators can be generated by a few (single-trace) elements. I discuss how this can be realised by reformulating Einstein's equations in AdS in the form of a non-perturbative RG flow that further leads to a new approach towards constructing strongly interacting QFTs. In particular, the RG flow can self-determine the UV data that are otherwise obtained by solving classical gravity equations and demanding that the solutions do not have naked singularities. For a concrete demonstration, I focus on the hydrodynamic limit in which case this RG flow connects the AdS/CFT correspondence with the membrane paradigm, and also reproduces the known values of the dual QFT transport coefficients.

  8. Three Principles of Water Flow in Soils

    Science.gov (United States)

    Guo, L.; Lin, H.

    2016-12-01

    Knowledge of water flow in soils is crucial to understanding terrestrial hydrological cycle, surface energy balance, biogeochemical dynamics, ecosystem services, contaminant transport, and many other Critical Zone processes. However, due to the complex and dynamic nature of non-uniform flow, reconstruction and prediction of water flow in natural soils remain challenging. This study synthesizes three principles of water flow in soils that can improve modeling water flow in soils of various complexity. The first principle, known as the Darcy's law, came to light in the 19th century and suggested a linear relationship between water flux density and hydraulic gradient, which was modified by Buckingham for unsaturated soils. Combining mass balance and the Buckingham-Darcy's law, L.A. Richards quantitatively described soil water change with space and time, i.e., Richards equation. The second principle was proposed by L.A. Richards in the 20th century, which described the minimum pressure potential needed to overcome surface tension of fluid and initiate water flow through soil-air interface. This study extends this principle to encompass soil hydrologic phenomena related to varied interfaces and microscopic features and provides a more cohesive explanation of hysteresis, hydrophobicity, and threshold behavior when water moves through layered soils. The third principle is emerging in the 21st century, which highlights the complex and evolving flow networks embedded in heterogeneous soils. This principle is summarized as: Water moves non-uniformly in natural soils with a dual-flow regime, i.e., it follows the least-resistant or preferred paths when "pushed" (e.g., by storms) or "attracted" (e.g., by plants) or "restricted" (e.g., by bedrock), but moves diffusively into the matrix when "relaxed" (e.g., at rest) or "touched" (e.g., adsorption). The first principle is a macroscopic view of steady-state water flow, the second principle is a microscopic view of interface

  9. Isotope Hydrology: Understanding and Managing Water Resources

    International Nuclear Information System (INIS)

    Madsen, Michael

    2013-01-01

    Development is intricately linked to water whether concerning issues of health, food and agriculture, sanitation, the environment, industry, or energy. The IAEA, through its Water Resources Programme provides its Member States with science-based information and technical skills to improve understanding and management of their water resources

  10. Flow enhancement of water flow through silica slit pores with graphene-coated walls

    DEFF Research Database (Denmark)

    Zambrano, Harvey; Wagemann, Enrique; Oyarzua, Elton

    coatings to induce flow enhancement in silica channels. We conduct molecular dynamics simulations of pressurized water flow inside silica channels with and without graphene layers covering the walls. In particular, we compute density and velocity profiles, flow enhancement and slip lengths to understand...

  11. The metabolic regimes of flowing waters

    Science.gov (United States)

    Bernhardt, Emily S.; Heffernan, Jim B.; Grimm, Nancy B.; Stanley, Emily H.; Harvey, Judson; Arroita, M.; Appling, Alison; Cohen, M.J.; McDowell, William H.; Hall, R.O.; Read, Jordan S.; Roberts, B.J.; Stets, Edward; Yackulic, Charles B.

    2018-01-01

    The processes and biomass that characterize any ecosystem are fundamentally constrained by the total amount of energy that is either fixed within or delivered across its boundaries. Ultimately, ecosystems may be understood and classified by their rates of total and net productivity and by the seasonal patterns of photosynthesis and respiration. Such understanding is well developed for terrestrial and lentic ecosystems but our understanding of ecosystem phenology has lagged well behind for rivers. The proliferation of reliable and inexpensive sensors for monitoring dissolved oxygen and carbon dioxide is underpinning a revolution in our understanding of the ecosystem energetics of rivers. Here, we synthesize our current understanding of the drivers and constraints on river metabolism, and set out a research agenda aimed at characterizing, classifying and modeling the current and future metabolic regimes of flowing waters.

  12. Understanding the transport and fate of multiple pollutants: development and testing of a coupled surface-groundwater flow and water quality model

    Science.gov (United States)

    Sinha, Sumit; Wade, Andrew

    2017-04-01

    The problem of river pollutant diversity, especially in the south-east of UK, is typically associated with sediment, nutrients and micro-organic chemicals such as pesticides. The pollution problem is further exacerbated by climate change and population growth. Given this policy makers and environmental regulators need catchment scale water quantity and quality model that could be potentially used to assess multiple pollutants in catchments with a large groundwater contribution. The research presented here details development of a spatially explicit, coupled surface- groundwater model and its application in an exemplar lowland catchment in the south-east of UK with extensive surface and groundwater datasets available. More specifically, the fully distributed mesoscale hydrological model (mHM) is coupled with MODFLOW in the Enborne catchment (150 km2). Simulations are conducted on daily time step with spatial resolution of 1 km2 grid cell between 1970 and 2010. The spatially explicit nature of the modelling framework is being used to explore aquifer recharge and water and solute residence times to ultimately explore the lags between changes to pollutant loadings, the introduction of small-scale pollution control measures and the within stream response.

  13. Coupled equations for transient water flow, heat flow, and ...

    Indian Academy of Sciences (India)

    Hydrogeological systems are earth systems influenced by water. Their behaviors are governed by interacting processes, including flow of fluids, deformation of porous materials, chemical reactions, and transport of matter and energy. Here, coupling among three of these processes is considered: flow of water, heat, and ...

  14. Simulation of gas compressible flow by free surface water flow

    International Nuclear Information System (INIS)

    Altafini, C.R.; Silva Ferreira, R.T. da

    1981-01-01

    The analogy between the water flow with a free surface and the compressible fluid flow, commonly called hydraulic analogy, is analyzed and its limitations are identified. The water table is the equipment used for this simulation, which allows the quatitative analysis of subsonic and supersonic flow with a low cost apparatus. The hydraulic analogy is applied to subsonic flow around circular cylinders and supersonic flow around cones. The results are compared with available theoretical and experimental data and a good agreement is achieved. (Author) [pt

  15. Water resources: Future Nile river flows

    Science.gov (United States)

    Conway, Declan

    2017-04-01

    Climate change is projected to increase annual Nile river flow; importantly, year-to-year variability is also expected to increase markedly. More variable flows could present a challenge for consistent water resource provision in this region.

  16. Viscosity of Water Interfaces with Hydrophobic Nanopores: Application to Water Flow in Carbon Nanotubes.

    Science.gov (United States)

    Shaat, M

    2017-11-07

    The nanoconfinement of water results in changes in water properties and nontraditional water flow behaviors. The determination of the interfacial interactions between water and hydrophobic surfaces helps in understanding many of the nontraditional behaviors of nanoconfined water. In this study, an approach for the identification of the viscosity of water interfaces with hydrophobic nanopores as a function of the nanopore diameter and water-solid (nanopore) interactions is proposed. In this approach, water in a hydrophobic nanopore is represented as a double-phase water with two distinct viscosities: water interface and water core. First, the slip velocity to pressure gradient ratio of water flow in hydrophobic nanopores is obtained via molecular dynamics (MD) simulations. Then the water interface viscosity is determined via a pressure gradient-based bilayer water flow model. Moreover, the core viscosity and the effective viscosity of water flow in hydrophobic nanopores are derived as functions of the nanopore diameter and water-solid interactions. This approach is utilized to report the interface viscosity, core viscosity, and effective viscosity of water flow in carbon nanotubes (CNTs) as functions of the CNT diameter. Moreover, using the proposed approach, the transition from MD to continuum mechanics is revealed where the bulk water properties are recovered for large CNTs.

  17. Pressurized water reactor flow skirt apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kielb, John F.; Schwirian, Richard E.; Lee, Naugab E.; Forsyth, David R.

    2016-04-05

    A pressurized water reactor vessel having a flow skirt formed from a perforated cylinder structure supported in the lower reactor vessel head at the outlet of the downcomer annulus, that channels the coolant flow through flow holes in the wall of the cylinder structure. The flow skirt is supported at a plurality of circumferentially spaced locations on the lower reactor vessel head that are not equally spaced or vertically aligned with the core barrel attachment points, and the flow skirt employs a unique arrangement of hole patterns that assure a substantially balanced pressure and flow of the coolant over the entire underside of the lower core support plate.

  18. Measurement Of Multiphase Flow Water Fraction And Water-cut

    Science.gov (United States)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  19. Understanding of the Interaction between Clearance Leakage Flow and Main Passage Flow in a VGT Turbine

    Directory of Open Access Journals (Sweden)

    Ben Zhao

    2015-02-01

    Full Text Available The clearance flow between the nozzle and endwall in a variable geometry turbine (VGT has been numerically investigated to understand the clearance effect on the VGT performance and internal flow. It was found that the flow rate through turbine increases but the turbine efficiency decreases with height of clearance. Detailed flow field analyses indicated that most of the efficiency loss resulting from the leakage flow occurs at the upstream of the rotor area, that is, in the nozzle endwall clearance and between the nozzle vanes. There are two main mechanisms associated with this efficiency loss. One is due to the formation of the local vortex flow structure between the clearance flow and the main flow. The other is due to the impact of the clearance flow on the main flow after the nozzle throat. This impact reduces the span of shockwave with increased shockwave magnitude by changing the trajectory of the main flow.

  20. Understanding "Understanding" Flow for Network-Centric Warfare: Military Knowledge-Flow Mechanics

    National Research Council Canada - National Science Library

    Nissen, Mark

    2002-01-01

    Network-centric warfare (NCW) emphasizes information superiority for battlespace efficacy, but it is clear that the mechanics of how knowledge flows are just as important as those pertaining to the networks and communication...

  1. Toward an Improved Understanding of the Global Fresh Water Budget

    Science.gov (United States)

    Hildebrand, Peter H.

    2005-01-01

    The major components of the global fresh water cycle include the evaporation from the land and ocean surfaces, precipitation onto the Ocean and land surfaces, the net atmospheric transport of water from oceanic areas over land, and the return flow of water from the land back into the ocean. The additional components of oceanic water transport are few, principally, the mixing of fresh water through the oceanic boundary layer, transport by ocean currents, and sea ice processes. On land the situation is considerably more complex, and includes the deposition of rain and snow on land; water flow in runoff; infiltration of water into the soil and groundwater; storage of water in soil, lakes and streams, and groundwater; polar and glacial ice; and use of water in vegetation and human activities. Knowledge of the key terms in the fresh water flux budget is poor. Some components of the budget, e.g. precipitation, runoff, storage, are measured with variable accuracy across the globe. We are just now obtaining precise measurements of the major components of global fresh water storage in global ice and ground water. The easily accessible fresh water sources in rivers, lakes and snow runoff are only adequately measured in the more affluent portions of the world. presents proposals are suggesting methods of making global measurements of these quantities from space. At the same time, knowledge of the global fresh water resources under the effects of climate change is of increasing importance and the human population grows. This paper provides an overview of the state of knowledge of the global fresh water budget, evaluating the accuracy of various global water budget measuring and modeling techniques. We review the measurement capabilities of satellite instruments as compared with field validation studies and modeling approaches. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest

  2. Environmental water incentive policy and return flows

    Science.gov (United States)

    Qureshi, M. E.; Schwabe, K.; Connor, J.; Kirby, M.

    2010-04-01

    With increasing urban, industrial, and agricultural water demand and projected reduced supply under climate change, allocations to the environment are critically low in many arid and semiarid basins. Consequently, many governments are striving to augment environmental flows, often through market-oriented mechanisms that involve compensating irrigated agriculture, the largest water user in most basins, for reducing diversions. A widely documented challenge with policies to recover water for the environment arises because part of the water diversion reduction can form the basis for downstream consumptive water rights or environmental flows. This article gives an empirical comparison of two incentive policies to acquire water for environmental flows for a part of the Murray-Darling Basin (MDB), Australia. One policy consists of paying irrigators and water delivery firms to make capital and management investments that improve on-farm irrigation and water-conveyance; the other policy consists of having the government buy water from irrigators on the active MDB water market. The results show that the first option results in relatively larger return flow reduction, while the second option tends to induce significant irrigated land retirement with relatively large reductions in consumptive use and small reductions in return flow. In cases where irrigation losses result in little useful return flow (e.g., evaporative loss reduction or during drought in some instances), efficiency-improving investments may provide some cost-effective opportunities. Where a large portion of loss forms valuable return flow, it is difficult to make a case for the cost-effectiveness of policies involving payments for investments in irrigation and conveyance system upgrades.

  3. A simple flow-concentration modelling method for integrating water ...

    African Journals Online (AJOL)

    National Water Act, 1998), flow requirements are assessed for maintenance low flow, drought low flow and flood conditions. Since water quantity and water quality are often closely linked, it is necessary to ensure that in setting the recommended ...

  4. Electricity vs Ecosystems – understanding and predicting hydropower impact on Swedish river flow

    Directory of Open Access Journals (Sweden)

    B. Arheimer

    2014-09-01

    Full Text Available The most radical anthropogenic impact on water systems in Sweden originates from the years 1900–1970, when the electricity network was developed in the country and almost all rivers were regulated. The construction of dams and changes in water flow caused problems for ecosystems. Therefore, when implementing the EU Water Framework Directive (WFD hydro-morphological indicators and targets were developed for rivers and lakes to achieve good ecological potential. The hydrological regime is one such indicator. To understand the change in flow regime we quantified the hydropower impact on river flow across Sweden by using the S-HYPE model and observations. The results show that the average redistribution of water during a year due to regulation is 19 % for the total discharge from Sweden. A distinct impact was found in seasonal flow patterns and flow duration curves. Moreover, we quantified the model skills in predicting hydropower impact on flow. The median NSE for simulating change in flow regime was 0.71 for eight dams studied. Results from the spatially distributed model are available for 37 000 sub-basins across the country, and will be used by the Swedish water authorities for reporting hydro-morphological indicators to the EU and for guiding the allocation of river restoration measures.

  5. Numerical modelling of groundwater flow to understand the impacts ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 2. Numerical modelling of groundwater flow to understand the impacts of pumping on arsenic migration in the aquifer of North Bengal Plain. P K Sikdar Surajit Chakraborty. Volume 126 Issue 2 March 2017 Article ID 29 ...

  6. Numerical modelling of groundwater flow to understand the impacts ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. DOI 10.1007/s12040-017-0799-x. Numerical modelling of groundwater flow to understand the impacts of pumping on arsenic migration in the aquifer of North Bengal Plain. P K Sikdar∗ and Surajit Chakraborty. Department of Environment Management, Indian Institute of Social Welfare and.

  7. Flow of quasi-two dimensional water in graphene channels

    Science.gov (United States)

    Fang, Chao; Wu, Xihui; Yang, Fengchang; Qiao, Rui

    2018-02-01

    When liquids confined in slit channels approach a monolayer, they become two-dimensional (2D) fluids. Using molecular dynamics simulations, we study the flow of quasi-2D water confined in slit channels featuring pristine graphene walls and graphene walls with hydroxyl groups. We focus on to what extent the flow of quasi-2D water can be described using classical hydrodynamics and what are the effective transport properties of the water and the channel. First, the in-plane shearing of quasi-2D water confined between pristine graphene can be described using the classical hydrodynamic equation, and the viscosity of the water is ˜50% higher than that of the bulk water in the channel studied here. Second, the flow of quasi-2D water around a single hydroxyl group is perturbed at a position of tens of cluster radius from its center, as expected for low Reynolds number flows. Even though water is not pinned at the edge of the hydroxyl group, the hydroxyl group screens the flow greatly, with a single, isolated hydroxyl group rendering drag similar to ˜90 nm2 pristine graphene walls. Finally, the flow of quasi-2D water through graphene channels featuring randomly distributed hydroxyl groups resembles the fluid flow through porous media. The effective friction factor of the channel increases linearly with the hydroxyl groups' area density up to 0.5 nm-2 but increases nonlinearly at higher densities. The effective friction factor of the channel can be fitted to a modified Carman equation at least up to a hydroxyl area density of 2.0 nm-2. These findings help understand the liquid transport in 2D material-based nanochannels for applications including desalination.

  8. Development of microcontroller based water flow measurement

    Science.gov (United States)

    Munir, Muhammad Miftahul; Surachman, Arif; Fathonah, Indra Wahyudin; Billah, Muhammad Aziz; Khairurrijal, Mahfudz, Hernawan; Rimawan, Ririn; Lestari, Slamet

    2015-04-01

    A digital instrument for measuring water flow was developed using an AT89S52 microcontroller, DS1302 real time clock (RTC), and EEPROM for an external memory. The sensor used for probing the current was a propeller that will rotate if immersed in a water flow. After rotating one rotation, the sensor sends one pulse and the number of pulses are counted for a certain time of counting. The measurement data, i.e. the number of pulses per unit time, are converted into water flow velocity (m/s) through a mathematical formula. The microcontroller counts the pulse sent by the sensor and the number of counted pulses are stored into the EEPROM memory. The time interval for counting is provided by the RTC and can be set by the operator. The instrument was tested under various time intervals ranging from 10 to 40 seconds and several standard propellers owned by Experimental Station for Hydraulic Structure and Geotechnics (BHGK), Research Institute for Water Resources (Pusair). Using the same propellers and water flows, it was shown that water flow velocities obtained from the developed digital instrument and those found by the provided analog one are almost similar.

  9. A review of concentrated flow erosion processes on rangelands: Fundamental understanding and knowledge gaps

    Directory of Open Access Journals (Sweden)

    Sayjro K. Nouwakpo

    2016-06-01

    Full Text Available Concentrated flow erosion processes are distinguished from splash and sheetflow processes in their enhanced ability to mobilize and transport large amounts of soil, water and dissolved elements. On rangelands, soil, nutrients and water are scarce and only narrow margins of resource losses are tolerable before crossing the sustainability threshold. In these ecosystems, concentrated flow processes are perceived as indicators of degradation and often warrant the implementation of mitigation strategies. Nevertheless, this negative perception of concentrated flow processes may conflict with the need to improve understanding of the role of these transport vessels in redistributing water, soil and nutrients along the rangeland hillslope. Vegetation influences the development and erosion of concentrated flowpaths and has been the primary factor used to control and mitigate erosion on rangelands. At the ecohydrologic level, vegetation and concentrated flow pathways are engaged in a feedback relationship, the understanding of which might help improve rangeland management and restoration strategies. In this paper, we review published literature on experimental and conceptual research pertaining to concentrated flow processes on rangelands to: (1 present the fundamental science underpinning concentrated flow erosion modeling in these landscapes, (2 discuss the influence of vegetation on these erosion processes, (3 evaluate the contribution of concentrated flow erosion to overall sediment budget and (4 identify knowledge gaps.

  10. Water flow at all scales

    DEFF Research Database (Denmark)

    Sand-Jensen, K.

    2006-01-01

    , and its physical impact, depends on whether the main focus is on the entire stream system, the adjacent fi elds, the individual reaches or the habitats of different species. It is important to learn how to manage fl ow at all scales, in order to understand the ecology of streams and the biology...

  11. Seeking simplicity for the understanding of multiphase flows

    Science.gov (United States)

    Stone, Howard A.

    2017-10-01

    Fluid mechanics is a discipline with rich phenomena, with motions occurring over an enormous range of length scales, and spanning a wide range of laminar and turbulent flows, instabilities, and applications in industry, nature, biology, and medicine. The subfield of complex fluids typically refers to those flows where the complexity is introduced, for example, by the presence of suspended particles, multiple phases, soft boundaries, and electrokinetic effects; several distinct multiphase flows of Newtonian fluids make up the examples in this article. Interfaces play a significant role and modify the flow with feedback that further changes the shapes of the interfaces. I will provide examples of our work highlighting (i) new features of classical instabilities triggered by changes in geometry, (ii) multiphase flows relevant to the design of liquid-infused substrates exhibiting effective slip while retaining the trapped liquid, and (iii) unexpected dynamics in flow at a T-junction. The interplay of experiments and mathematical models and/or simulations is critical to the new understanding developed.

  12. Atlantic water flow through the Faroese Channels

    Directory of Open Access Journals (Sweden)

    B. Hansen

    2017-11-01

    Full Text Available Through the Faroese Channels – the collective name for a system of channels linking the Faroe–Shetland Channel, Wyville Thomson Basin, and Faroe Bank Channel – there is a deep flow of cold waters from Arctic regions that exit the system as overflow through the Faroe Bank Channel and across the Wyville Thomson Ridge. The upper layers, in contrast, are dominated by warm, saline water masses from the southwest, termed Atlantic water. In spite of intensive research over more than a century, there are still open questions on the passage of these waters through the system with conflicting views in recent literature. Of special note is the suggestion that there is a flow of Atlantic water from the Faroe–Shetland Channel through the Faroe Bank Channel, which circles the Faroes over the slope region in a clockwise direction. Here, we combine the observational evidence from ship-borne hydrography, moored current measurements, surface drifter tracks, and satellite altimetry to address these questions and propose a general scheme for the Atlantic water flow through this channel system. We find no evidence for a continuous flow of Atlantic water from the Faroe–Shetland Channel to the Faroe Bank Channel over the Faroese slope. Rather, the southwestward-flowing water over the Faroese slope of the Faroe–Shetland Channel is totally recirculated within the combined area of the Faroe–Shetland Channel and Wyville Thomson Basin, except possibly for a small release in the form of eddies. This does not exclude a possible westward flow over the southern tip of the Faroe Shelf, but even including that, we estimate that the average volume transport of a Circum-Faroe Current does not exceed 0.5 Sv (1 Sv  =  106 m3 s−1. Also, there seems to be a persistent flow of Atlantic water from the western part of the Faroe Bank Channel into the Faroe–Shetland Channel that joins the Slope Current over the Scottish slope. These conclusions will affect

  13. Atlantic water flow through the Faroese Channels

    Science.gov (United States)

    Hansen, Bogi; Poulsen, Turið; Margretha Húsgarð Larsen, Karin; Hátún, Hjálmar; Østerhus, Svein; Darelius, Elin; Berx, Barbara; Quadfasel, Detlef; Jochumsen, Kerstin

    2017-11-01

    Through the Faroese Channels - the collective name for a system of channels linking the Faroe-Shetland Channel, Wyville Thomson Basin, and Faroe Bank Channel - there is a deep flow of cold waters from Arctic regions that exit the system as overflow through the Faroe Bank Channel and across the Wyville Thomson Ridge. The upper layers, in contrast, are dominated by warm, saline water masses from the southwest, termed Atlantic water. In spite of intensive research over more than a century, there are still open questions on the passage of these waters through the system with conflicting views in recent literature. Of special note is the suggestion that there is a flow of Atlantic water from the Faroe-Shetland Channel through the Faroe Bank Channel, which circles the Faroes over the slope region in a clockwise direction. Here, we combine the observational evidence from ship-borne hydrography, moored current measurements, surface drifter tracks, and satellite altimetry to address these questions and propose a general scheme for the Atlantic water flow through this channel system. We find no evidence for a continuous flow of Atlantic water from the Faroe-Shetland Channel to the Faroe Bank Channel over the Faroese slope. Rather, the southwestward-flowing water over the Faroese slope of the Faroe-Shetland Channel is totally recirculated within the combined area of the Faroe-Shetland Channel and Wyville Thomson Basin, except possibly for a small release in the form of eddies. This does not exclude a possible westward flow over the southern tip of the Faroe Shelf, but even including that, we estimate that the average volume transport of a Circum-Faroe Current does not exceed 0.5 Sv (1 Sv = 106 m3 s-1). Also, there seems to be a persistent flow of Atlantic water from the western part of the Faroe Bank Channel into the Faroe-Shetland Channel that joins the Slope Current over the Scottish slope. These conclusions will affect potential impacts from offshore activities in the

  14. Remote sensing of surface water for environmental flows

    Science.gov (United States)

    Tulbure, M. G.; Kingsford, R.; Lucas, R.; Keith, D.

    2013-12-01

    Environmental flows represent water management activities that release flushes of water stored in dams on regulated rivers during dry periods. These flows aim to mimic natural flow and inundation regimes to maintain ecological health and function of rivers and wetlands. Assessment and understanding of the effectiveness of environmental flows requires quantification of temporal and spatial pattern of surface water and inundation dynamic in a synoptic yet detailed way and understanding dynamics of vegetation response to flooding. Here we focused on the on the entire Murray-Darling Basin (MDB) of Australia as a case study. The MDB is a large semi-arid region with scarce water resources, high hydroclimatic variability and competing water demands, impacted by climate change, altered flow regimes and land use changes. The basin covers 14% of the Australian continent and contains the nation's largest river system, important groundwater systems, and represents the most important agricultural area in the country. We used Landsat TM and ETM+ data time series to synoptically map the dynamic of surface water extent with an internally consistent algorithm over decades. Within the basin-wide study area we carried out a detailed investigation of the largest river red gum forest in the world, a key site for environmental flow and conservation management. Here we tracked the response of vegetation community condition to flooding across space and time. Results show high interannual variability in number and size of flooded areas. Vegetation community response to flooding varied in space and time and with vegetation types, densities and location relative to areas frequently inundated by environmental water release. Knowledge of the spatial and temporal dynamic of flooding and the response of vegetation communities to flooding is important for management of floodplain wetlands and vegetation communities and for investigating effectiveness of environmental flows and flow regimes in the

  15. The physics of confined flow and its application to water leaks, water permeation and water nanoflows: a review

    Science.gov (United States)

    Lei, Wenwen; Rigozzi, Michelle K.; McKenzie, David R.

    2016-02-01

    This review assesses the current state of understanding of the calculation of the rate of flow of gases, vapours and liquids confined in channels, in porous media and in permeable materials with an emphasis on the flow of water and its vapour. One motivation is to investigate the relation between the permeation rate of moisture and that of a noncondensable test gas such as helium, another is to assist in unifying theory and experiment across disparate fields. Available theories of single component ideal gas flows in channels of defined geometry (cylindrical, rectangular and elliptical) are described and their predictions compared with measurement over a wide range of conditions defined by the Knudsen number. Theory for two phase flows is assembled in order to understand the behaviour of four standard water leak configurations: vapour, slug, Washburn and liquid flow, distinguished by the number and location of phase boundaries (menisci). Air may or may not be present as a background gas. Slip length is an important parameter that greatly affects leak rates. Measurements of water vapour flows confirm that water vapour shows ideal gas behaviour. Results on carbon nanotubes show that smooth walls may lead to anomalously high slip lengths arising from the properties of ‘confined’ water. In porous media, behaviour can be matched to the four standard leaks. Traditional membrane permeation models consider that the permeant dissolves, diffuses and evaporates at the outlet side, ideas we align with those from channel flow. Recent results on graphite oxide membranes show examples where helium which does not permeate while at the same time moisture is almost unimpeded, again a result of confined water. We conclude that while there is no a priori relation between a noncondensable gas flow and a moisture flow, measurements using helium will give results within two orders of magnitude of the moisture flow rate, except in the case where there is anomalous slip or confined

  16. Anthropogenic Water Uses and River Flow Regime Alterations by Dams

    Science.gov (United States)

    Ferrazzi, M.; Botter, G.

    2017-12-01

    Dams and impoundments have been designed to reconcile the systematic conflict between patterns of anthropogenic water uses and the temporal variability of river flows. Over the past seven decades, population growth and economic development led to a marked increase in the number of these water infrastructures, so that unregulated free-flowing rivers are now rare in developed countries and alterations of the hydrologic cycle at global scale have to be properly considered and characterized. Therefore, improving our understanding of the influence of dams and reservoirs on hydrologic regimes is going to play a key role in water planning and management. In this study, a physically based analytic approach is combined to extensive hydrologic data to investigate natural flow regime alterations downstream of dams in the Central-Eastern United States. These representative case studies span a wide range of different uses, including flood control, water supply and hydropower production. Our analysis reveals that the most evident effects of flood control through dams is a decrease in the intra-seasonal variability of flows, whose extent is controlled by the ratio between the storage capacity for flood control and the average incoming streamflow. Conversely, reservoirs used for water supply lead to an increase of daily streamflow variability and an enhanced inter-catchment heterogeneity. Over the last decades, the supply of fresh water required to sustain human populations has become a major concern at global scale. Accordingly, the number of reservoirs devoted to water supply increased by 50% in the US. This pattern foreshadows a possible shift in the cumulative effect of dams on river flow regimes in terms of inter-catchment homogenization and intra-annual flow variability.

  17. Understanding the dynamics of citrus water use

    CSIR Research Space (South Africa)

    Taylor

    2012-12-01

    Full Text Available The quantification of water use of citrus orchards is important in order to prevent stress developing in the orchard and to avoid wasting precious water resources. Measurement of citrus orchard water use is not possible under all environ...

  18. Responses of prawn to water flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Vascotto, G.L.; Nilas, P.U.

    1987-05-28

    An aquarium study to determine the responses of postlarval macrobrachium rosenbergii to varying water changes was carried out. Six week old postlarvae were raised in glass aquaria receiving 0, 1.15, 7.2 and 14.4 water changes per day over a 12 week period. The treatments had significant influences on survival, biomass, and average size of the animals. Maximum survival and highest biomass were found in the 1.15 water turnover treatment; however, this treatment also produced the smallest average size animals. Early high mortalities were attributed to poor growing conditions in the high and low flow treatments, while later mortality appeared to be biomass dependent.

  19. Understanding turbulent free-surface vortex flows using a Taylor-Couette flow analogy.

    Science.gov (United States)

    Mulligan, Sean; De Cesare, Giovanni; Casserly, John; Sherlock, Richard

    2018-01-16

    Free-surface vortices have long been studied to develop an understanding of similar rotating flow phenomena observed in nature and technology. However, a complete description of its turbulent three-dimensional flow field still remains elusive. In contrast, the related Taylor-Couette flow system has been well explicated which classically exhibits successive instability phases manifested in so-called Taylor vortices. In this study, observations made on the turbulent free-surface vortex revealed distinguishable, time-dependent "Taylor-like" vortices in the secondary flow field similar to the Taylor-Couette flow system. The observations were enabled by an original application of 2D ultrasonic Doppler velocity profiling complemented with laser induced fluorescence dye observations. Additional confirmation was provided by three-dimensional numerical simulations. Using Rayleigh's stability criterion, we analytically show that a wall bounded free-surface vortex can indeed become unstable due to a centrifugal driving force in a similar manner to the Taylor-Couette flow. Consequently, it is proposed that the free-surface vortex can be treated analogously to the Taylor-Couette flow permitting advanced conclusions to be drawn on its flow structure and the various states of free-surface vortex flow stability.

  20. The use of air flow through water for water evaporation

    International Nuclear Information System (INIS)

    Lashin, A.A.

    1996-01-01

    In water desalination system the productivity rate is improved by increasing the rate of eater evaporation either by heating the water or by forcing air to carry more vapor before condensation. This paper describe an experimental investigation into the effect of forcing the air to flow through a hot water contained in a closed tank through a perforated end of inlet tube. When the air bubbles pass through the water, it increases the rate of vaporization. The effect of some operating parameters are investigated and the results are presented and discussed. 6 figs

  1. Worse than imagined: Unidentified virtual water flows in China.

    Science.gov (United States)

    Cai, Beiming; Wang, Chencheng; Zhang, Bing

    2017-07-01

    The impact of virtual water flows on regional water scarcity in China had been deeply discussed in previous research. However, these studies only focused on water quantity, the impact of virtual water flows on water quality has been largely neglected. In this study, we incorporate the blue water footprint related with water quantity and grey water footprint related with water quality into virtual water flow analysis based on the multiregional input-output model of 2007. The results find that the interprovincial virtual flows accounts for 23.4% of China's water footprint. The virtual grey water flows are 8.65 times greater than the virtual blue water flows; the virtual blue water and grey water flows are 91.8 and 794.6 Gm 3 /y, respectively. The use of the indicators related with water quantity to represent virtual water flows in previous studies will underestimate their impact on water resources. In addition, the virtual water flows are mainly derived from agriculture, chemical industry and petroleum processing and the coking industry, which account for 66.8%, 7.1% and 6.2% of the total virtual water flows, respectively. Virtual water flows have intensified both quantity- and quality-induced water scarcity of export regions, where low-value-added but water-intensive and high-pollution goods are produced. Our study on virtual water flows can inform effective water use policy for both water resources and water pollution in China. Our methodology about virtual water flows also can be used in global scale or other countries if data available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Measuring and understanding soil water repellency through novel interdisciplinary approaches

    Science.gov (United States)

    Balshaw, Helen; Douglas, Peter; Doerr, Stefan; Davies, Matthew

    2017-04-01

    Food security and production is one of the key global issues faced by society. It has become evermore essential to work the land efficiently, through better soil management and agronomy whilst protecting the environment from air and water pollution. The failure of soil to absorb water - soil water repellency - can lead to major environmental problems such as increased overland flow and soil erosion, poor uptake of agricultural chemicals and increased risk of groundwater pollution due to the rapid transfer of contaminants and nutrient leaching through uneven wetting and preferential flow pathways. Understanding the causes of soil hydrophobicity is essential for the development of effective methods for its amelioration, supporting environmental stability and food security. Organic compounds deposited on soil mineral or aggregate surfaces have long been recognised as a major factor in causing soil water repellency. It is widely accepted that the main groups of compounds responsible are long-chain acids, alkanes and other organic compounds with hydrophobic properties. However, when reapplied to sands and soils, the degree of water repellency induced by these compounds and mixtures varied widely with compound type, amount and mixture, in a seemingly unpredictable way. Our research to date involves two new approaches for studying soil wetting. 1) We challenge the theoretical basis of current ideas on the measured water/soil contact angle measurements. Much past and current discussion involves Wenzel and Cassie-Baxter models to explain anomalously high contact angles for organics on soils, however here we propose that these anomalously high measured contact angles are a consequence of the measurement of a water drop on an irregular non-planar surface rather than the thermodynamic factors of the Cassie-Baxter and Wenzel models. In our analysis we have successfully used a much simpler geometric approach for non-flat surfaces such as soil. 2) Fluorescent and phosphorescent

  3. Understanding water's anomalies with locally favored structures

    OpenAIRE

    Russo, John; Tanaka, Hajime

    2013-01-01

    Water is a complex structured liquid of hydrogen-bonded molecules that displays a surprising array of unusual properties, also known as water anomalies, the most famous being the density maximum at about $4^\\circ$C. The origin of these anomalies is still a matter of debate, and so far a quantitative description of water's phase behavior starting from the molecular arrangements is still missing. Here we provide a simple physical description from microscopic data obtained through computer simul...

  4. The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake

    Science.gov (United States)

    Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu

    2015-04-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudate and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. Ultimately, this model will enhance our understanding on the impact of processes occurring in the rhizosphere on water flow and root water uptake. To achieve this objective, we coupled R-SWMS, a detailed 3D model for water flow in soil and root system (Javaux et al 2008), with the rhizosphere model developed by Kroener et al (2014). In the new Rhizo-RSWMS model the rhizosphere hydraulic properties differ from those of the bulk soil, and non-equilibrium dynamics between the rhizosphere water content and pressure head is also considered. We simulated a wetting scenario. The soil was initially dry and it was wetted from the top at a constant flow rate. The model predicts that, after infiltration the water content in the rhizosphere remained lower than in the bulk soil (non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. These results are in qualitative agreement with the available experimental data on water dynamics in the rhizosphere. Additionally, the results show that rhizosphere processes

  5. Better understanding flow-restricted environments from hideout return analyses

    International Nuclear Information System (INIS)

    Ollar, Ph.; Viricel-Honorez, L.

    1998-01-01

    Understanding and controlling the chemical phenomena in flow-restricted areas of the secondary side of steam generators (SG) is a key point in fighting against corrosion (IGA) in these areas. Hence, more than 150 hideout returns from French plants are used to assess the chemical environment in flow-restricted areas. The influence of several parameters such as tube support plates design, SG blowdown flowrate and temperature at the end of hideout returns, on returned weights and on flow-restricted environments predicted by modelling are examined. A correlation between different operating and returned chemistry indexes (molar ratios), and IGA is sought: no link is found between IGA and Na/Cl molar ratio at the beginning of hideout returns. However, as IGA extends, the returned weights of sodium and chloride seem to decrease, suggesting a greater hideout and a lower hideout return efficiency, perhaps due to SG fouling, and/or a smaller hideout/hideout return thanks to an improved operating chemistry. Using the pH computed from hideout return data as an index for the presence of IGA is also studied: no correlation is found between the two. Improving plants chemistry is finally proposed, based on an optimization of hideout returns. (authors)

  6. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  7. Case study on ground water flow (8)

    International Nuclear Information System (INIS)

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as 14 C, 36 Cl and 4 He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  8. Understanding water's anomalies with locally favoured structures.

    Science.gov (United States)

    Russo, John; Tanaka, Hajime

    2014-04-02

    Water is a complex liquid that displays a surprising array of unusual properties, the most famous being the density maximum at about 4 °C. The origin of these anomalies is still a matter of debate, and so far a quantitative description of water's phase behaviour starting from the molecular arrangements is still missing. Here we report a study of the microscopic structural features of water as obtained from computer simulations. We identify locally favoured structures having a high degree of translational order in the second shell, and a two-state model is used to describe the behaviour of liquid water over a wide region of the phase diagram. Furthermore, we show that locally favoured structures not only have translational order in the second shell but also contain five-membered rings of hydrogen-bonded molecules. This suggests their mixed character: the former helps crystallization, whereas the latter causes frustration against crystallization.

  9. Water Breaking: Understand This Sign of Labor

    Science.gov (United States)

    Healthy Lifestyle Labor and delivery, postpartum care Water breaking worries? Prepare yourself for childbirth by getting the facts about this important sign of labor. By Mayo Clinic Staff If you're ...

  10. Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks

    CERN Document Server

    Gao, Zhong-Ke; Wang, Wen-Xu

    2014-01-01

    Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent ...

  11. What maintains the waters flowing in our rivers?

    Science.gov (United States)

    Vasconcelos, Vitor Vieira

    2017-07-01

    This article discusses how new contributions from hydrogeological science in the 20th and 21st centuries have allowed for a better understanding of the processes that affect the maintenance of river flows. Moreover, the way in which this knowledge has been conveyed beyond academia and has been gradually incorporated into public policy for natural resource management is also discussed. This article explains the development of several approaches used to understand the relationships among the management of aquifers, vegetation and river flows, including water balance, aquifer recharge, the piston effect, seasonal effects, and safe and sustainable yields. Additionally, the current challenges regarding the modeling of hydrological processes that integrate groundwater and surface waters are discussed. Examples of studies applied in Brazil that demonstrate these processes and stimulate thought regarding water management strategies are presented. In light of the case studies, it is possible to propose different strategies, each adapted for specific hydrogeological context to maximize aquifer recharge or base flow maintenance. Based on these strategies, the role of infiltration ponds and other artificial recharge techniques is re-evaluated in the context of the mitigation of environmental impacts on the maintenance of river flows. Proposals for the improvement of public policies regarding the payment of related environmental services to stimulate investment in aquifer recharge and the maintenance of base flow, for which the goal is to attain win-win-win situations for the environment, farmers and water users, while preventing land speculation, are discussed. Lastly, a conceptual model for the dissemination of hydrogeological knowledge in public policies is provided, and its challenges and possibilities are discussed.

  12. Augmentation of forced flow boiling heat transfer by introducing air flow into subcooled water flow

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ohtake, H.; Yuasa, T.; Matsushita, N.

    2001-01-01

    The effect of air injection into a subcooled water flow on boiling heat transfer and a critical heat flux (CHF) was examined experimentally. Experiments were conducted in the range of subcooling of 50 K, a superficial velocity of water and air Ul = 0.17 ∼ 3.4 and Ug = 0 ∼ 15 m/s, respectively. A test heat transfer surface was a 5 mm wide, 40 mm long and 0.5 mm thick stainless steel sheet embedded on the bottom wall of a 10 mm high and 20 mm wide rectangular flow channel. Nine times enhancement of the heat transfer coefficient in the non-boiling region was attained at the most by introducing an air flow into a water single-phase flow. The heat transfer improvement was prominent when the water flow rate was low and the air introduction was large. The present results of the non-boiling heat transfer were well correlated with the Lockhart-Martinelli parameter X tt ; h TP /h L0 = 5.0(1/ X tt ) 0.5 . The air introduction has some effect on the augmentation of heat transfer in the boiling region, however, the two-phase flow effect was little and the boiling was dominant in the fully developed boiling region. The CHF was improved a little by the air introduction in the high water flow region. However, that was rather greatly reduced in the low flow region. Even so, the general trend by the air introduction was that qCHF increased as the air introduction was increased. The heat transfer augmentation in the non-boiling region was attained by less power increase than that in the case that only the water flow rate was increased. From the aspect of the power consumption and the heat transfer enhancement, the small air introduction in the low water flow rate region seemed more profitable, although the air introduction in the high water flow rate region and also the large air introduction were still effective in the augmentation of the heat transfer in the non-boiling region. (author)

  13. Groundwater flow cycling between a submarine spring and an inland fresh water spring.

    Science.gov (United States)

    Davis, J Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  14. Scotland's Water Map: Understanding water sector links to support decision making for the Hydro Nation Agenda

    Science.gov (United States)

    Falconer, Ruth E.; Gilmour, Daniel; Duffy, Alison; Isaacs, John; Stojanovic, Vladeta; O'Keeffe, Juliette; Blackwood, David

    2015-04-01

    The value of Scotland's water and sewerage market is projected to grow to £1.24bn by 2016/17. Developing future opportunities must take place alongside maintaining current service provision; however the demand on water and waste water services is constantly evolving. An integrated approach to water management requires an understanding of complex interactions that exist between key actors in the sector to allow water management strategies to exploit inter-sectorial links. Successful integrated analysis of the water sector in Scotland will support management activities key to responding to the Hydro Nation themes of 1) Governance and international development 2) Environmental protection 3) Economic opportunities 4) Research development. In order to deliver on these objectives an approach is required to capture and communicate the scope and scale of the water sector and its interconnectedness. The methodology required to determine scope, scale and interconnectedness of water sector involved the identification and application of an appropriate range of techniques from the Information and Knowledge Management disciplines combined with the Information Visualisation field. Scope and scale of the water sector was identified by a desk based study and this data was visualized using a geographic map. Sector interconnectedness was determined by interviewing key actors. The interviews identified the stakeholders associated with information flows, and the purpose of the information transfer through Reporting/Managing (R/M), Influence and Information sharing (I) or Control (C) activities. Primary information flows were also scored with respect to importance against the 4 key Hydro Nation agenda themes. Many organisations were identified who interact within Scotland's water sector including the Scottish Government and Ministers, the Regulators (WICS, DWQR, SEPA), Scottish Water (core and non-core functions), plus many other stakeholders ranging from research institutions to

  15. Two-phase unsaturated flow at Yucca Mountain, Nevada - A Report on Current Understanding

    International Nuclear Information System (INIS)

    Pruess, K.

    1998-01-01

    The U.S. civilian nuclear waste program is unique in its focus on disposal of high-level wastes in the unsaturated zone (UZ), above the water table. The potential repository site currently under investigation is located in a semi-arid region of the southwestern U.S. at Yucca Mountain, Nevada. The geology of the site consists of layered sequences of faulted, fractured, and bedded tuffs. The groundwater table is approximately 600 m beneath the land surface, while the proposed repository horizon is at a nominal depth of approximately 375 m. In this kind of environment, two-phase flow is not just a localized perturbation to natural conditions, as in the saturated zone, but is the predominant mode of water and gas flow. The purpose of this report is to review the current understanding of gas and water flow, and mass transport, in the unique hydrogeologic environment of Yucca Mountain. Characteristics of the Yucca Mountain site are examined, and concepts and mathematical modeling approaches are described for variably saturated flow in thick unsaturated zones of fractured rock. The paper includes a brief summary of the disposal concept and repository design, as developed by a team of engineering contractors to the U.S. Department of Energy (DOE), with strong participation from the DOE National Laboratories

  16. Investigation on flow stability of supercritical water cooled systems

    International Nuclear Information System (INIS)

    Cheng, X.; Kuang, B.

    2006-01-01

    Research activities are ongoing worldwide to develop nuclear power plants with supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, the strong variation of the thermal-physical properties of water in the vicinity of the pseudo-critical line results in challenging tasks in various fields, e.g. thermal-hydraulic design of a SCWR. One of the challenging tasks is to understand and to predict the dynamic behavior of supercritical water cooled systems. Although many thermal-hydraulic research activities were carried out worldwide in the past as well as in the near present, studies on dynamic behavior and flow stability of SC water cooled systems are scare. Due to the strong density variation, flow stability is expected to be one of the key items which need to be taken into account in the design of a SCWR. In the present work, the dynamic behavior and flow stability of SC water cooled systems are investigated using both numerical and theoretical approaches. For this purpose a new computer code SASC was developed, which can be applied to analysis the dynamic behavior of systems cooled by supercritical fluids. In addition, based on the assumptions of a simplified system, a theoretical model was derived for the prediction of the onset of flow instability. A comparison was made between the results obtained using the theoretical model and those from the SASC code. A good agreement was achieved. This gives the first evidence of the reliability of both the SASC code and the theoretical model

  17. Malignant human cell transformation of Marcellus shale gas drilling flow back water

    OpenAIRE

    Yao, Yixin; Chen, Tingting; Shen, Steven S.; Niu, Yingmei; DesMarais, Thomas L; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max

    2015-01-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation is known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these waste waters, flow back water from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of t...

  18. Mechanistic understanding of monosaccharide-air flow battery electrochemistry

    Science.gov (United States)

    Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann

    Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.

  19. Overview of radiotracer experiments for better understanding of wastewater and water treatment plants in Lima (Peru))

    International Nuclear Information System (INIS)

    Calvo, C.S.; Maghella, G.; Mamani, E.; Berne, P.; Brisset, P.; Leclerc, J.-P.

    2004-01-01

    The objectives of this paper are to present an overview of possible applications of the radiotracers for better understanding of water and waste water treatment plants. Numerous experiments have been carried out in different plants located in Lima. Four processes have been investigated: desanders, floculators, clarifiers and digesters. Depending on the studied process, the experimental results have been interpreted at different levels of complexity: from simple troubleshooting to the modelling of the flow behaviour inside the process. (author)

  20. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  1. A water flow calorimeter calibration system

    International Nuclear Information System (INIS)

    Ullrich, F.T.

    1983-01-01

    Neutral beam systems are instrumented by several water flow calorimeter systems, and some means is needed to verify the accuracy of such systems and diagnose their failures. This report describes a calibration system for these calorimeters. The calibrator consists of two 24 kilowatt circulation water heaters, with associated controls and instrumentation. The unit can supply power from 0 to 48 kW in five coarse steps and one fine range. Energy is controlled by varying the power and the time of operation of the heaters. The power is measured by means of precision power transducers, and the energy is measured by integrating the power with respect to time. The accuracy of the energy measurement is better than 0.5% when the power supplied is near full scale, and the energy resolution is better than 1 kilojoule. The maximum energy delivered is approximately 50 megajoules. The calorimetry loop to be calibrated is opened, and the calibrator is put in series with the calorimeter heat source. The calorimeter is then operated in its normal fashion, with the calibrator used as the heat source. The calibrator can also be used in a stand alone mode to calibrate calorimeter sensors removed from systems

  2. Research on the flow field of undershot cross-flow water turbines using experiments and numerical analysis

    International Nuclear Information System (INIS)

    Nishi, Y; Inagaki, T; Li, Y; Omiya, R; Hatano, K

    2014-01-01

    The purpose of this research is to develop a water turbine appropriate for low-head open channels in order to effectively utilize the unused hydropower energy of rivers and agricultural waterways. The application of the cross-flow runner to open channels as an undershot water turbine has come under consideration and, to this end, a significant simplification was attained by removing the casings. However, the flow field of undershot cross-flow water turbines possesses free surfaces. This means that with the variation in the rotational speed, the water depth around the runner will change and flow field itself is significantly altered. Thus it is necessary to clearly understand the flow fields with free surfaces in order to improve the performance of this turbine. In this research, the performance of this turbine and the flow field were studied through experiments and numerical analysis. The experimental results on the performance of this turbine and the flow field were consistent with the numerical analysis. In addition, the inlet and outlet regions at the first and second stages of this water turbine were clarified

  3. Tangible Landscape: Cognitively Grasping the Flow of Water

    Science.gov (United States)

    Harmon, B. A.; Petrasova, A.; Petras, V.; Mitasova, H.; Meentemeyer, R. K.

    2016-06-01

    Complex spatial forms like topography can be challenging to understand, much less intentionally shape, given the heavy cognitive load of visualizing and manipulating 3D form. Spatiotemporal processes like the flow of water over a landscape are even more challenging to understand and intentionally direct as they are dependent upon their context and require the simulation of forces like gravity and momentum. This cognitive work can be offloaded onto computers through 3D geospatial modeling, analysis, and simulation. Interacting with computers, however, can also be challenging, often requiring training and highly abstract thinking. Tangible computing - an emerging paradigm of human-computer interaction in which data is physically manifested so that users can feel it and directly manipulate it - aims to offload this added cognitive work onto the body. We have designed Tangible Landscape, a tangible interface powered by an open source geographic information system (GRASS GIS), so that users can naturally shape topography and interact with simulated processes with their hands in order to make observations, generate and test hypotheses, and make inferences about scientific phenomena in a rapid, iterative process. Conceptually Tangible Landscape couples a malleable physical model with a digital model of a landscape through a continuous cycle of 3D scanning, geospatial modeling, and projection. We ran a flow modeling experiment to test whether tangible interfaces like this can effectively enhance spatial performance by offloading cognitive processes onto computers and our bodies. We used hydrological simulations and statistics to quantitatively assess spatial performance. We found that Tangible Landscape enhanced 3D spatial performance and helped users understand water flow.

  4. Toward Understanding Tip Leakage Flows in Small Compressor Cores Including Stator Leakage Flow

    Science.gov (United States)

    Berdanier, Reid A.; Key, Nicole L.

    2017-01-01

    trajectory of the tip leakage flow through the rotor passage. Further, these data extend previous measurements identifying a modulation of the tip leakage flow due to upstream stator wake propagation. Finally, a novel instrumentation technique has been implemented to measure pressures in the shrouded stator cavities. These data provide boundary conditions relating to the flow across the shrouded stator knife seal teeth. Moreover, the utilization of fast-response pressure sensors provides a new look at the time-resolved pressure field, leading to instantaneous differential pressures across the seal teeth. Ultimately, the data collected for this project represent a unique data set which contributes to build a better understanding of the tip leakage flow field and its associated loss mechanisms. These data will facilitate future engine design goals leading to small blade heights in the rear stages of high pressure compressors and aid in the development of new blade designs which are desensitized to the performance penalties attributed to rotor tip leakage flows.

  5. Understanding the LCA and ISO water footprint: A response to ...

    Science.gov (United States)

    Water footprinting has emerged as an important approach to assess water use related effects from consumption of goods and services. Assessment methods are proposed by two different communities, the Water Footprint Network (WFN) and the Life Cycle Assessment (LCA) community. The proposed methods are broadly similar and encompass both the computation of water use and its impacts, but differ in communication of a water footprint result. In this paper, we explain the role and goal of LCA and ISO-compatible water footprinting and resolve the six issues raised by Hoekstra (2016) in “A critique on the water-scarcity weighted water footprint in LCA”. By clarifying the concerns, we identify both the overlapping goals in the WFN and LCA water footprint assessments and discrepancies between them. The main differing perspective between the WFN and LCA-based approach seems to relate to the fact that LCA aims to account for environmental impacts, while the WFN aims to account for water productivity of global fresh water as a limited resource. We conclude that there is potential to use synergies in research for the two approaches and highlight the need for proper declaration of the methods applied. This paper advances efforts to understand ways to accurately capture use of water in life cycle analysis in other contexts. As the paper indicates, there is a discussion about whether quantities of water should be weighted by some local stress factor. This paper attempts to brid

  6. Understanding heat and fluid flow in linear GTA welds

    Science.gov (United States)

    Zacharia, T.; David, S. A.; Vitek, J. M.

    A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.

  7. Coupled heat and water flow dynamics in dry soils : application to a multilayer waste cover

    OpenAIRE

    Gran Esforzado, Meritxell

    2015-01-01

    Unsaturated flow plays an important role in numerous environmental phenomena. It is complex in arid regions, where liquid water fluxes are small and vapor fluxes become relevant, so that heat, water and solute mass transport are needed to understand evaporation. This thesis aims at gaining insight evaporation and vapor flow mechanisms and the relevance of matric potential, temperature and osmotic gradients. These issues are especially relevant for soil salinization, whose mechanisms are po...

  8. Accounting for environmental flow requirements in global water assessments

    Science.gov (United States)

    Pastor, A. V.; Ludwig, F.; Biemans, H.; Hoff, H.; Kabat, P.

    2014-12-01

    As the water requirement for food production and other human needs grows, quantification of environmental flow requirements (EFRs) is necessary to assess the amount of water needed to sustain freshwater ecosystems. EFRs are the result of the quantification of water necessary to sustain the riverine ecosystem, which is calculated from the mean of an environmental flow (EF) method. In this study, five EF methods for calculating EFRs were compared with 11 case studies of locally assessed EFRs. We used three existing methods (Smakhtin, Tennant, and Tessmann) and two newly developed methods (the variable monthly flow method (VMF) and the Q90_Q50 method). All methods were compared globally and validated at local scales while mimicking the natural flow regime. The VMF and the Tessmann methods use algorithms to classify the flow regime into high, intermediate, and low-flow months and they take into account intra-annual variability by allocating EFRs with a percentage of mean monthly flow (MMF). The Q90_Q50 method allocates annual flow quantiles (Q90 and Q50) depending on the flow season. The results showed that, on average, 37% of annual discharge was required to sustain environmental flow requirement. More water is needed for environmental flows during low-flow periods (46-71% of average low-flows) compared to high-flow periods (17-45% of average high-flows). Environmental flow requirements estimates from the Tennant, Q90_Q50, and Smakhtin methods were higher than the locally calculated EFRs for river systems with relatively stable flows and were lower than the locally calculated EFRs for rivers with variable flows. The VMF and Tessmann methods showed the highest correlation with the locally calculated EFRs (R2=0.91). The main difference between the Tessmann and VMF methods is that the Tessmann method allocates all water to EFRs in low-flow periods while the VMF method allocates 60% of the flow in low-flow periods. Thus, other water sectors such as irrigation can withdraw

  9. Environmental (Saprozoic Pathogens of Engineered Water Systems: Understanding Their Ecology for Risk Assessment and Management

    Directory of Open Access Journals (Sweden)

    Nicholas J. Ashbolt

    2015-06-01

    Full Text Available Major waterborne (enteric pathogens are relatively well understood and treatment controls are effective when well managed. However, water-based, saprozoic pathogens that grow within engineered water systems (primarily within biofilms/sediments cannot be controlled by water treatment alone prior to entry into water distribution and other engineered water systems. Growth within biofilms or as in the case of Legionella pneumophila, primarily within free-living protozoa feeding on biofilms, results from competitive advantage. Meaning, to understand how to manage water-based pathogen diseases (a sub-set of saprozoses we need to understand the microbial ecology of biofilms; with key factors including biofilm bacterial diversity that influence amoebae hosts and members antagonistic to water-based pathogens, along with impacts from biofilm substratum, water temperature, flow conditions and disinfectant residual—all control variables. Major saprozoic pathogens covering viruses, bacteria, fungi and free-living protozoa are listed, yet today most of the recognized health burden from drinking waters is driven by legionellae, non-tuberculous mycobacteria (NTM and, to a lesser extent, Pseudomonas aeruginosa. In developing best management practices for engineered water systems based on hazard analysis critical control point (HACCP or water safety plan (WSP approaches, multi-factor control strategies, based on quantitative microbial risk assessments need to be developed, to reduce disease from largely opportunistic, water-based pathogens.

  10. Complex networks from experimental horizontal oil–water flows: Community structure detection versus flow pattern discrimination

    International Nuclear Information System (INIS)

    Gao, Zhong-Ke; Fang, Peng-Cheng; Ding, Mei-Shuang; Yang, Dan; Jin, Ning-De

    2015-01-01

    We propose a complex network-based method to distinguish complex patterns arising from experimental horizontal oil–water two-phase flow. We first use the adaptive optimal kernel time–frequency representation (AOK TFR) to characterize flow pattern behaviors from the energy and frequency point of view. Then, we infer two-phase flow complex networks from experimental measurements and detect the community structures associated with flow patterns. The results suggest that the community detection in two-phase flow complex network allows objectively discriminating complex horizontal oil–water flow patterns, especially for the segregated and dispersed flow patterns, a task that existing method based on AOK TFR fails to work. - Highlights: • We combine time–frequency analysis and complex network to identify flow patterns. • We explore the transitional flow behaviors in terms of betweenness centrality. • Our analysis provides a novel way for recognizing complex flow patterns. • Broader applicability of our method is demonstrated and articulated

  11. Numerical modelling of groundwater flow to understand the impacts ...

    Indian Academy of Sciences (India)

    @hotmail.com. In this paper, numerical simulations of regional-scale groundwater flow of North Bengal Plain have been carried out with special emphasis on the arsenic (As)-rich alluvium filled gap between the Rajmahal hills on the west and ...

  12. Combining natural and man-made DNA tracers to advance understanding of hydrologic flow pathway evolution

    Science.gov (United States)

    Dahlke, H. E.; Walter, M. T.; Lyon, S. W.; Rosqvist, G. N.

    2014-12-01

    Identifying and characterizing the sources, pathways and residence times of water and associated constituents is critical to developing improved understanding of watershed-stream connections and hydrological/ecological/biogeochemical models. To date the most robust information is obtained from integrated studies that combine natural tracers (e.g. isotopes, geochemical tracers) with controlled chemical tracer (e.g., bromide, dyes) or colloidal tracer (e.g., carboxilated microspheres, tagged clay particles, microorganisms) applications. In the presented study we explore how understanding of sources and flow pathways of water derived from natural tracer studies can be improved and expanded in space and time by simultaneously introducing man-made, synthetic DNA-based microtracers. The microtracer used were composed of polylactic acid (PLA) microspheres into which short strands of synthetic DNA and paramagnetic iron oxide nanoparticles are incorporated. Tracer experiments using both natural tracers and the DNA-based microtracers were conducted in the sub-arctic, glacierized Tarfala (21.7 km2) catchment in northern Sweden. Isotopic hydrograph separations revealed that even though storm runoff was dominated by pre-event water the event water (i.e. rainfall) contributions to streamflow increased throughout the summer season as glacial snow cover decreased. This suggests that glaciers are a major source of the rainwater fraction in streamflow. Simultaneous injections of ten unique DNA-based microtracers confirmed this hypothesis and revealed that the transit time of water traveling from the glacier surface to the stream decreased fourfold over the summer season leading to instantaneous rainwater contributions during storm events. These results highlight that integrating simultaneous tracer injections (injecting tracers at multiple places at one time) with traditional tracer methods (sampling multiple times at one place) rather than using either approach in isolation can

  13. On phonons and water flow enhancement in carbon nanotubes

    DEFF Research Database (Denmark)

    Cruz-Chu, Eduardo R.; Papadopoulou, Ermioni; Walther, Jens Honore

    2017-01-01

    The intriguing physics of water transport through carbon nanotubes (CNTs) has motivated numerous studies, reporting flow rates higher than those estimated by continuum models1. The quantification of water transport in CNTs remains unresolved, however, with flow rates reported by different...

  14. Understanding catchment dynamics through a Space-Society-Water trialectic

    Science.gov (United States)

    Sutherland, Catherine; Jewitt, Graham; Risko, Susan; Hay, Ducan; Stuart-Hill, Sabine; Browne, Michelle

    2017-04-01

    Can healthy catchments be utilized to secure water for the benefit of society? This is a complex question as it requires an understanding of the connections and relations between biophysical, social, political, economic and governance dimensions over space and time in the catchment and must interrogate whether there is 'value' in investing in the catchment natural or ecological infrastructure (EI), how this should be done, where the most valuable EI is located, and whether an investment in EI will generate co-benefits socially, environmentally and economically. Here, we adopt a social ecological relations rather than systems approach to explore these interactions through development of a space-society-water trialectic. Trialectic thinking is challenging as it requires new epistemologies and it challenges conventional modes of thought. It is not ordered or fixed, but rather is constantly evolving, revealing the dynamic relations between the elements under exploration. The construction of knowledge, through detailed scientific research and social learning, which contributes to the understanding and achievement of sustainable water supply, water related resilient economic growth, greater social equity and justice in relation to water and the reduction of environmental risk is illustrated through research in the uMngeni Catchment, South Africa. Using four case studies as a basis, we construct the catchment level society-water-space trialectic as a way of connecting, assembling and comparing the understanding and knowledge that has been produced. The relations in the three elements of the trialectic are constructed through identifying, understanding and analysing the actors, discourses, knowledge, biophysical materialities, issues and spatial connections in the case studies. Together these relations, or multiple trajectories, are assembled to form the society-water-space trialectic, which illuminates the dominant relations in the catchment and hence reveal the leverage

  15. Determinants of virtual water flows in the Mediterranean.

    Science.gov (United States)

    Fracasso, Andrea; Sartori, Martina; Schiavo, Stefano

    2016-02-01

    The aim of the paper is to investigate the main determinants of the bilateral virtual water (water used in the production of a commodity or service) flows associated with international trade in agricultural goods across the Mediterranean basin. We consider the bilateral gross flows of virtual water in the area and study what export-specific and import-specific factors are significantly associated with virtual water flows. We follow a sequential approach. Through a gravity model of trade, we obtain a "refined" version of the variable we aim to explain, one that is free of the amount of flows due to pair-specific factors affecting bilateral trade flows and that fully reflects the impact of country-specific determinants of virtual water trade. A number of country-specific potential explanatory variables, ranging from water endowments to trade barriers, from per capita GDP to irrigation prices, is presented and tested. To identify the variables that help to explain the bilateral flows of virtual water, we adopt a model selection procedure based on model averaging. Our findings confirm one of the main controversial results in the literature: larger water endowments do not necessarily lead to a larger 'export' of virtual water, as one could expect. We also find some evidence that higher water irrigation prices reduce (increase) virtual water 'exports' ('imports'). Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Simulated ground-water flow and water quality of the Mississippi River alluvium near Burlington, Iowa, 1999

    Science.gov (United States)

    Boyd, Robert A.

    2001-01-01

    The City of Burlington, Iowa, obtains some of its public water supply by withdrawing ground water from the Mississippi River alluvium, an alluvial aquifer adjacent to the Mississippi River. The U.S. Geological Survey, in cooperation with the City of Burlington, conducted a hydrologic study of the Mississippi River alluvium near Burlington in 1999 to improve understanding of the flow system, evaluate the effects of hypothetical pumping scenarios on the flow system, and evaluate selected water-quality constituents in parts of the alluvium.

  17. Understanding the dynamics of water availability and use in China

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.P.; Conrad, S.H.; Jeppesen, D.M.; Engi, E.

    1997-07-01

    This report presents the preliminary results of an analysis of China`s water resources, part of an effort undertaken by the National Intelligence Council Medea scientists to improve the understanding of future food production and consumption in the People`s Republic of China. A dynamic water model was developed to simulate the hydrological budgetary processes in five river drainage basins located in northeastern, central, and southern China: the Chang Jiang (Yangtse River), Huanghe (Yellow River), Haihe, Huaihe, and Liaohe. The model was designed to assess the effects of changes in urban, industrial, and agricultural water use requirements on the availability of water in each basin and to develop estimates of the water surpluses and/or deficits in China through the year 2025. The model imposes a sustainable yield constraint, that is, groundwater extraction is not allowed to exceed the sustainable yield; if the available water does not meet the total water use requirements, a deficit results. An agronomic model was also developed to generate projections of the water required to service China`s agricultural sector and compare China`s projected grain production with projected grain consumption requirements to estimate any grain surplus and/or deficit. In future refinements, the agronomic model will interface directly with the water model to provide for the exchange of information on projected water use requirements and available water. The preliminary results indicate that the Chang Jiang basin will have a substantial surplus of water through 2025 and that the Haihe basin is in an ongoing situation. The agricultural water use requirements based on grain production indicate that an agricultural water deficit in the Haihe basin begins before the onset of the modeling period (1980) and steadily worsens through 2025. This assumption is confirmed by reports that groundwater mining is already under way in the most intensely cultivated and populated areas of northern China.

  18. Coupled equations for transient water flow, heat flow, and ...

    Indian Academy of Sciences (India)

    presented on coupled equations from a perspective of energy optimization. 1. Introduction. Given an appropriate time scale, all earth systems are transient. The evolution of the earth's crust ... tem, in combination with transient heat flow and three-dimensional deformation. .... hydraulic capacity by analogy with heat capacity.

  19. Towards an understanding of flows in avalanche transport phenomena

    Science.gov (United States)

    Jin, Suying; Ramadan, Nikolas; van Compernolle, Bart; Poulos, Matt J.; Morales, George J.

    2017-10-01

    Recent heat transport experiments conducted in the Large Plasma Device (LAPD) at UCLA, studying avalanche phenomena at steep cross-magnetic field pressure gradients, suggest that flows play a critical role in the evolution of transport phenomena, motivating further characterization. A ring shaped electron beam source injects sub-ionization energy electrons along the strong background magnetic field within a larger quiescent plasma, creating a hollow, high pressure filament. Two distinct regimes are observed as the density decays; the first characterized by multiple small avalanches producing sudden relaxations of the pressure profile which then recovers under continued heating, and the second signaled by a permanent collapse of the density profile after a global avalanche event, then dominated by drift-Alfven waves. The source is modified from previous experiments to gain active control of the flows by controlling the bias between the emitting ring and surrounding carbon masks. The results of flow measurements obtained using a Mach probe and Langmuir/emissive probe are here presented and compared. An analytical model for the behavior of the electron beam source is also in development. Sponsored by NSF Grant 1619505 and by DOE/NSF at BaPSF.

  20. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...... calibrated. This calibration is done based on data batches stored at each pump cycle, hence makes the approach a self calibrating system. The approach is tested on a pumping station operating in a real waste water network....

  1. Scientific Models Help Students Understand the Water Cycle

    Science.gov (United States)

    Forbes, Cory; Vo, Tina; Zangori, Laura; Schwarz, Christina

    2015-01-01

    The water cycle is a large, complex system that encompasses ideas across the K-12 science curriculum. By the time students leave fifth grade, they should understand "that a system is a group of related parts that make up a whole and can carry out functions its individual parts cannot" and be able to describe both components and processes…

  2. Understanding flow-induced particle migration for improved microfiltration

    NARCIS (Netherlands)

    Dinther, van A.M.C.

    2012-01-01

    Membrane microfiltration processes are used in for example the food, biotechnology, chemical and pharmaceutical industry, and more generally in e.g. wastewater treatment. Microfiltration is mostly used to separate components that are greatly different in size, e.g. micro-organisms from water, but

  3. Understanding flow-induced particle migration for improved microfiltration

    NARCIS (Netherlands)

    Dinther, van A.M.C.

    2012-01-01

    Membrane microfiltration processes are used in for example the food, biotechnology, chemical and pharmaceutical industry, and more generally in e.g. wastewater treatment. Microfiltration is mostly used to separate components that are greatly different in size, e.g. micro-organisms from water,

  4. Understanding the Geometry of Connected Fracture Flow with Multiperiod Oscillatory Hydraulic Tests.

    Science.gov (United States)

    Sayler, Claire; Cardiff, Michael; Fort, Michael D

    2018-03-01

    An understanding of the spatial and hydraulic properties of fast preferential flow pathways in the subsurface is necessary in applications ranging from contaminant fate and transport modeling to design of energy extraction systems. One method for the characterization of fracture properties over interwellbore scales is Multiperiod Oscillatory Hydraulic (MOH) testing, in which the aquifer response to oscillatory pressure stimulations is observed. MOH tests were conducted on isolated intervals of wells in siliciclastic and carbonate aquifers in southern Wisconsin. The goal was to characterize the spatial properties of discrete fractures over interwellbore scales. MOH tests were conducted on two discrete fractured intervals intersecting two boreholes at one field site, and a nest of three piezometers at another field site. Fracture diffusivity estimates were obtained using analytical solutions that relate diffusivity to observed phase lag and amplitude decay. In addition, MOH tests were used to investigate the spatial extent of flow using different conceptual models of fracture geometry. Results indicated that fracture geometry at both field sites can be approximated by permeable two-dimensional fracture planes, oriented near-horizontally at one site, and near-vertically at the other. The technique used on MOH field data to characterize fracture geometry shows promise in revealing fracture network characteristics important to groundwater flow and transport. © 2017, National Ground Water Association.

  5. Science to support the understanding of Ohio's water resources

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  6. Quantitative imaging of water flow in soil and roots using neutron radiography and deuterated water

    International Nuclear Information System (INIS)

    Zarebanadkouki, Mohsen

    2013-01-01

    segments. In lupines most of the water uptake occurred in the lateral roots. The function of the taproot was to collect water from the laterals and transport it to the shoots. This function is ensured by a low radial conductivity and a high axial conductive. We also applied the technique to measure how rhizosphere affects root water uptake. As was recently reported in the literature, in this study was also observed that the soil in the immediate vicinity of the roots, the so called rhizosphere, becomes hydrophobic as the soil dries. For the first time, it was shown that hydrophobicity of the rhizosphere decreased root water uptake after drying and subsequent irrigation. It was concluded that, after drying, the rhizosphere became a significant resistance to the local flow of water into the roots. This may change the pattern of the water uptake zone along the roots. The significance of this study is the development of a new method to locally quantify water flow into roots of living plants. This method makes it possible to quantitatively measure where and how fast roots take up water in soils. This technique will allow understanding the function of roots in different plants, during root maturation and in response to varying external conditions, such as water content, transpiration demand, nutrient supply, and many other factors. The answer to these questions would open wide ranges of agronomy applications aimed at managing irrigation practice.

  7. Robot-Assisted Socio-Hydrologic and Water Quality Understanding in Data Sparse Regions

    Science.gov (United States)

    Peschel, J.; Young, S. N.

    2016-12-01

    This work presents a robot-assisted investigation in the data sparse Arkavathy region near Bangalore, India to understand socio-hydrologic and water quality impacts for agricultural water resources management. In the late 20th century, Arkavathy River flows began declining; consequently, a dependence on the Cauvery River has occurred. Understanding the unknown reasons for this shift is critical for managing local water quantity and quality, specifically for quantifying the socio-hydrologic effects of human intervention through the construction of tanks, or reservoirs that prevent continuous flows. Determining the potential volume of water, and its quality, capable of being stored in these tanks can aid decision-makers to better understand management aspects such as recharge, streamflow, and human health. A case study is presented where small unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) were demonstrated as low-cost and reliable, high-resolution methodologies for surface data gathering at three locations in the Arkavathy basin during a Summer 2015 field campaign. The most significant finding for this work is that a single farmer in the region could lose one out of every five years worth of annual income if viable surface waters are not available for use.

  8. Modeling shallow water flows using the discontinuous Galerkin method

    CERN Document Server

    Khan, Abdul A

    2014-01-01

    Replacing the Traditional Physical Model Approach Computational models offer promise in improving the modeling of shallow water flows. As new techniques are considered, the process continues to change and evolve. Modeling Shallow Water Flows Using the Discontinuous Galerkin Method examines a technique that focuses on hyperbolic conservation laws and includes one-dimensional and two-dimensional shallow water flows and pollutant transports. Combines the Advantages of Finite Volume and Finite Element Methods This book explores the discontinuous Galerkin (DG) method, also known as the discontinuous finite element method, in depth. It introduces the DG method and its application to shallow water flows, as well as background information for implementing and applying this method for natural rivers. It considers dam-break problems, shock wave problems, and flows in different regimes (subcritical, supercritical, and transcritical). Readily Adaptable to the Real World While the DG method has been widely used in the fie...

  9. Modeling shallow water flows using the discontinuous galerkin method

    CERN Document Server

    Khan, Abdul A

    2014-01-01

    Replacing the Traditional Physical Model Approach Computational models offer promise in improving the modeling of shallow water flows. As new techniques are considered, the process continues to change and evolve. Modeling Shallow Water Flows Using the Discontinuous Galerkin Method examines a technique that focuses on hyperbolic conservation laws and includes one-dimensional and two-dimensional shallow water flows and pollutant transports. Combines the Advantages of Finite Volume and Finite Element Methods This book explores the discontinuous Galerkin (DG) method, also known as the discontinuous finite element method, in depth. It introduces the DG method and its application to shallow water flows, as well as background information for implementing and applying this method for natural rivers. It considers dam-break problems, shock wave problems, and flows in different regimes (subcritical, supercritical, and transcritical). Readily Adaptable to the Real World While the DG method has been widely used in the fie...

  10. Flow-induced vibration for light water reactors. Program final report

    International Nuclear Information System (INIS)

    Corr, J.E.

    1983-03-01

    The Flow-Induced Vibrations for Light Water Reactors Program was a five-year effort to develop basic knowledge and understanding needed to improve the flow-induced vibration design of light water reactors. Major tasks included analytical and test investigations of the flow-induced vibration of cylinders in isolation and arrays in smooth and turbulent single-vibration testing of reactor components including reactor inlet plenum components, jet pumps, low-pressure coolant injection coupling, and fuel rods. Cases of self-excited limit cycle response were encountered which required design modifications. The fuel rod tests were made in axially flowing water and steam/water mixtures under adiabatic and boiling conditions

  11. A water budget approach to instream flow maintenance

    International Nuclear Information System (INIS)

    Waddle, T.

    1991-01-01

    Storage reallocation is a current issue at many Federal water storage facilities that have hydroelectric generation. Allocation of storage to support instream flows is one of the changes being considered. In this paper, a portion of storage is dedicated to supplying instream flows. The author defines this storage account as a water budget and operate it to provide instream habitat below the reservoir. The author uses a limiting event model, the effective habitat time series, to determine when water budget releases will produce habitat benefits. The effective habitat time series acts as a surrogate for fish population and reflects the mid to long term influence of water management decisions on the life cycle of a fish species. The author develops an operation rule for the water budget that considers water rights and habitat events. The paper concludes by contrasting the habitat benefits of water budget operation with fixed minimum flow requirements

  12. Radar Based Flow and Water Level Forecasting in Sewer Systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.

    2009-01-01

    radar data and flow/water level model are continuously updated using online rain gauges and online in-sewer measurements, in order to make the best possible predictions. The project show very promising results, and show large potentials, exploiting the existing water infrastructure in future climate......This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Both...

  13. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  14. Globalisation of water resources: International virtual water flows in relation to international crop trade

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert; Hung, P.Q.

    2005-01-01

    The water that is used in the production process of a commodity is called the ‘virtual water’ contained in the commodity. International trade of commodities brings along international flows of virtual water. The objective of this paper is to quantify the volumes of virtual water flows between

  15. Enhanced water vapour flow in silica microchannels and interdiffusive water vapour flow through anodic aluminium oxide (AAO) membranes

    Science.gov (United States)

    Lei, Wenwen; McKenzie, David R.

    2015-12-01

    Enhanced liquid water flows through carbon nanotubes reinvigorated the study of moisture permeation through membranes and micro- and nano-channels. The study of water vapour through micro-and nano-channels has been neglected even though water vapour is as important as liquid water for industry, especially for encapsulation of electronic devices. Here we measure moisture flow rates in silica microchannels and interdiffusive water vapour flows in anodic aluminium oxide (AAO) membrane channels for the first time. We construct theory for the flow rates of the dominant modes of water transport through four previously defined standard configurations and benchmark it against our new measurements. The findings show that measurements of leak behaviour made using other molecules, such as helium, are not reliable. Single phase water vapour flow is overestimated by a helium measurement, while Washburn or capillary flow is underestimated or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid phase flows.

  16. Modeling Surface Water Flow in the Atchafalaya Basin

    Science.gov (United States)

    Liu, K.; Simard, M.

    2017-12-01

    While most of the Mississippi River Delta is sinking due to insufficient sediment supply and subsidence, the stable wetlands and the prograding delta systems in the Atchafalaya Basin provide a unique opportunity to study the constructive interactions between riverine and marine forcings and their impacts upon coastal morphology. To better understand the hydrodynamics in this region, we developed a numerical modeling system for the water flow through the river channel - deltas - wetlands networks in the Atchafalaya Basin. Determining spatially varying model parameters for a large area composed of such diverse land cover types poses a challenge to developing an accurate numerical model. For example, the bottom friction coefficient can not be measured directly and the available elevation maps for the wetlands in the basin are inaccurate. To overcome these obstacles, we developed the modeling system in three steps. Firstly, we modeled river bathymetry based on in situ sonar transects and developed a simplified 1D model for the Wax Lake Outlet using HEC-RAS. Secondly, we used a Bayesian approach to calibrate the model automatically and infer important unknown parameters such as riverbank elevation and bottom friction coefficient through Markov Chain Monte Carlo (MCMC) simulations. We also estimated the wetland elevation based on the distribution of different vegetation species in the basin. Thirdly, with the lessons learnt from the 1D model, we developed a depth-averaged 2D model for the whole Atchafalaya Basin using Delft3D. After calibrations, the model successfully reproduced the water levels measured at five gauges in the Wax Lake Outlet and the modeled water surface profile along the channel agreed reasonably well with our LIDAR measurements. In addition, the model predicted a one-hour delay in tidal phase from the Wax Lake Delta to the upstream gauge. In summary, this project presents a procedure to initialize hydrology model parameters that integrates field

  17. Measurement of organ blood flow using tritiated water. II. Uterine blood flow in conscious pregnant ewes

    International Nuclear Information System (INIS)

    Brown, B.W.; Oddy, V.H.; Jones, A.W.

    1982-01-01

    Total uterine blood flow was measured with a tritiated water (TOH) diffusion method and with radioactive microspheres in six, conscious, pregnant ewes. With continuous infusion of TOH, equilibrium between the TOH concentration in utero-ovarian venous blood and arterial blood was attained within 50 min of the start of the infusion. The concentration of TOH in uterine and foetal tissue and in foetal blood water was the same as that in uterine venous water by 40 min; at this time, the concentration of TOH in the water of amniotic and allantoic fluids was 96% of that in uterine venous blood water. Estimates of total uterine blood flow obtained using TOH were highly correlated with those obtained with microspheres and the corresponding mean flow values obtained with the two techniques did not significantly differ. The percentage of the total uterine blood flow passing through arteriovenous anastomoses ranged from 1.4 to 3.3%

  18. Bridge pressure flow scour for clear water conditions

    Science.gov (United States)

    2009-10-01

    The equilibrium scour at a bridge caused by pressure flow with critical approach velocity in clear-water simulation conditions was studied both analytically and experimentally. The flume experiments revealed that (1) the measured equilibrium scour pr...

  19. Water flow characteristics of rock fractures

    International Nuclear Information System (INIS)

    Joensson, Lennart

    1990-03-01

    This report has been worked out within the project 'Groundwater flow and dispersion processes in fractured rock' supported by the National Board for Spent Nuclear Fuel (SKN) in Sweden, dnr 96/85. This project is attached to the safety problems involved in the final disposal of spent nuclear fuel. The purpose of the report is to give a survey of the knowledge of fracture characteristics and to discuss this knowledge in relation to the modelling of flow and dispersion of radioactive substances in the fractures

  20. Governing urban water flows in China

    NARCIS (Netherlands)

    Zhong, L.

    2007-01-01

    China has been witnessing an unprecedented period of continuous high economic growth during the past three decades. But this has been paralleled by severe environmental challenges, of which water problems are of key importance. This thesis addresses the urban water challenges of contemporary China,

  1. Modelling flow dynamics in water distribution networks using ...

    African Journals Online (AJOL)

    One such approach is the Artificial Neural Networks (ANNs) technique. The advantage of ANNs is that they are robust and can be used to model complex linear and non-linear systems without making implicit assumptions. ANNs can be trained to forecast flow dynamics in a water distribution network. Such flow dynamics ...

  2. Linking flow, water quality and potential effects on aquatic biota ...

    African Journals Online (AJOL)

    Linking the potential effects of altered water quality on aquatic biota, that may result from a change in the flow (discharge) regime, is an essential step in the maintenance of riverine ecological functioning. Determination of the environmental flow requirement of a river (as well as other activities, such as classifying the ...

  3. Adiabatic Steam-Water Annular Flow in an Annular Geometry

    DEFF Research Database (Denmark)

    Andersen, P. S.; Würtz, J.

    1981-01-01

    Experimental results for fully developed steam-water annular flow in annular geometries are presented. Rod and tube film flow rates and axial pressure gradients were measured for mass fluxes between 500 and 2000 kg/m2s, steam qualities between 20 and 60 per cent and pressures ranging from 3 to 9 ...

  4. Segregation-mobility feedback for bidisperse shallow granular flows: Towards understanding segregation in geophysical flows

    Science.gov (United States)

    Thornton, A.; Denissen, I.; Weinhart, T.; Van der Vaart, K.

    2017-12-01

    The flow behaviour of shallow granular chute flows for uniform particles is well-described by the hstop-rheology [1]. Geophysical flows, however, are often composed of highly non-uniform particles that differ in particle (size, shape, composition) or contact (friction, dissipation, cohesion) properties. The flow behaviour of such mixtures can be strongly influenced by particle segregation effects. Here, we study the influence of particle size-segregation on the flow behaviour of bidisperse flows using experiments and the discrete particle method. We use periodic DPM to derive hstop-rheology for the bi-dispersed granular shallow layer equations, and study their dependence on the segregation profile. In the periodic box simulations, size-segregation results in an upward coarsening of the size distribution with the largest grains collecting at the top of the flow. In geophysical flows, the fact the flow velocity is greatest at the top couples with the vertical segregation to preferentially transported large particles to the front. The large grains may be overrun, resegregated towards the surface and recirculated before being shouldered aside into lateral levees. Theoretically it has been suggested this process should lead to a breaking size-segregation (BSS) wave located between a large-particle-rich front and a small-particle-rich tail [2,3]. In the BSS wave large particles that have been overrun rise up again to the free-surface while small particles sink to the bed. We present evidence for the existences of the BSS wave. This is achieved through the study of three-dimensional bidisperse granular flows in a moving-bed channel. Our analysis demonstrates a relation between the concentration of small particles in the flow and the amount of basal slip, in which the structure of the BSS wave plays a key role. This leads to a feedback between the mean bulk flow velocity and the process of size-segregation. Ultimately, these findings shed new light on the recirculation of

  5. Understanding and quantifying focused, indirect groundwater recharge from ephemeral streams using water table fluctuations

    Science.gov (United States)

    Cuthbert, M. O.; Acworth, R. I.; Andersen, M. S.; Larsen, J. R.; McCallum, A. M.; Rau, G. C.; Tellam, J. H.

    2016-02-01

    Understanding and managing groundwater resources in drylands is a challenging task, but one that is globally important. The dominant process for dryland groundwater recharge is thought to be as focused, indirect recharge from ephemeral stream losses. However, there is a global paucity of data for understanding and quantifying this process and transferable techniques for quantifying groundwater recharge in such contexts are lacking. Here we develop a generalized conceptual model for understanding water table and groundwater head fluctuations due to recharge from episodic events within ephemeral streams. By accounting for the recession characteristics of a groundwater hydrograph, we present a simple but powerful new water table fluctuation approach to quantify focused, indirect recharge over both long term and event time scales. The technique is demonstrated using a new, and globally unparalleled, set of groundwater observations from an ephemeral stream catchment located in NSW, Australia. We find that, following episodic streamflow events down a predominantly dry channel system, groundwater head fluctuations are controlled by pressure redistribution operating at three time scales from vertical flow (days to weeks), transverse flow perpendicular to the stream (weeks to months), and longitudinal flow parallel to the stream (years to decades). In relative terms, indirect recharge decreases almost linearly away from the mountain front, both in discrete monitored events as well as in the long-term average. In absolute terms, the estimated indirect recharge varies from 80 to 30 mm/a with the main uncertainty in these values stemming from uncertainty in the catchment-scale hydraulic properties.

  6. Integrating the social sciences to understand human-water dynamics

    Science.gov (United States)

    Carr, G.; Kuil, L., Jr.

    2017-12-01

    Many interesting and exciting socio-hydrological models have been developed in recent years. Such models often aim to capture the dynamic interplay between people and water for a variety of hydrological settings. As such, peoples' behaviours and decisions are brought into the models as drivers of and/or respondents to the hydrological system. To develop and run such models over a sufficiently long time duration to observe how the water-human system evolves the human component is often simplified according to one or two key behaviours, characteristics or decisions (e.g. a decision to move away from a drought or flood area; a decision to pump groundwater, or a decision to plant a less water demanding crop). To simplify the social component, socio-hydrological modellers often pull knowledge and understanding from existing social science theories. This requires them to negotiate complex territory, where social theories may be underdeveloped, contested, dynamically evolving, or case specific and difficult to generalise or upscale. A key question is therefore, how can this process be supported so that the resulting socio-hydrological models adequately describe the system and lead to meaningful understanding of how and why it behaves as it does? Collaborative interdisciplinary research teams that bring together social and natural scientists are likely to be critical. Joint development of the model framework requires specific attention to clarification to expose all underlying assumptions, constructive discussion and negotiation to reach agreement on the modelled system and its boundaries. Mutual benefits to social scientists can be highlighted, i.e. socio-hydrological work can provide insights for further exploring and testing social theories. Collaborative work will also help ensure underlying social theory is made explicit, and may identify ways to include and compare multiple theories. As socio-hydrology progresses towards supporting policy development, approaches that

  7. Uphill Water Flow - An Example of the Crucial Role of Students' Prior Knowledge in Geoscience Education

    Science.gov (United States)

    Chen, A. P.; Kirkby, K. C.; Morin, P. J.

    2006-12-01

    responses arose, such as equating `south' with `into the earth', asserting a hemispherical dependence of water flow on earth, equating water flow on familiar spherical objects with water flow on the Earth's surface, an inability to explain east-west river flow, and errors in predicting changes in river flow direction due to hypothetical changes in the Earth's rotation. In addition, our interview results suggest a large percentage of students have problems with small to large scale transfer and that students' confusion regarding water flow exists on multiple conceptual layers. Some of these ideas were so deeply held that students, even when confronted, were willing to believe that water would flow uphill to match their understanding of how it should behave. While it is still unclear how these basic misconceptions impair students' ability to grasp other concepts in an introductory geology course, our interview results serve to demonstrate that assuming students and instructors share common base level knowledge is surprisingly risky.

  8. An Experimental Study of Oil / Water Flow in Horizontal Pipes

    Energy Technology Data Exchange (ETDEWEB)

    Elseth, Geir

    2001-07-01

    The purpose of this thesis is to study the behaviour of the simultaneous flow of oil and water in horizontal pipes. In this connection, two test facilities are used. Both facilities have horizontal test sections with inner pipe diameters equal to 2 inches. The largest facility, called the model oil facility, has reservoirs of 1 m{sub 3} of each medium enabling flow rates as high as 30 m{sub 3}/h, which corresponds to mixture velocities as high as 3.35 m/s. The flow rates of oil and water can be varied individually producing different flow patterns according to variations in mixture velocity and input water cut. Two main classes of flows are seen, stratified and dispersed. In this facility, the main focus has been on stratified flows. Pressure drops and local phase fractions are measured for a large number of flow conditions. Among the instruments used are differential pressure transmitters and a traversing gamma densitometer, respectively. The flow patterns that appear are classified in flow pattern maps as functions of either mixture velocity and water cut or superficial velocities. From these experiments a smaller number of stratified flows are selected for studies of velocity and turbulence. A laser Doppler anemometer (LDA) is applied for these measurements in a transparent part of the test section. To be able to produce accurate measurements a partial refractive index matching procedure is used. The other facility, called the matched refractive index facility, has a 0.2 m{sub 3} reservoir enabling mainly dispersed flows. Mixture velocities range from 0.75 m/s to 3 m/s. The fluids in this facility are carefully selected to match the refractive index of the transparent part of the test section. A full refractive index matching procedure is carried out producing excellent optical conditions for velocity and turbulence studies by LDA. In addition, pressure drops and local phase fractions are measured. (author)

  9. Applying isotope methods in flowing surface waters

    International Nuclear Information System (INIS)

    Mook, W.G.

    1976-01-01

    The most frequent application of natural or environmental isotopes to investigate surface water is as tracer. Especially the natural variations in the 18 O/ 16 O ratio in rainfall are traced in streams and rivers. The isotopes deuterium, 13 C and 14 C enable refined applications such as the investigation of geochemical processes in waters. 18 O analyses are fairly fast (20 samples per day can be carried out) and require little water (1 to 10 ml). Therefore, the natural variations in the 18 O/ 16 O ratio of water are treated. There is a certain connection between the 18 O/ 16 O and D/H ratios in rainfall waters. 18 O analyses are somewhat easier to perform so that this technique is generally preferred. Additional D analyses are of great use in detecting geochemical processes, e.g. evaporation. Although tritium is still an important agent in hydrological studies, the concentration variations in nature are now lower than for 18 O compared to the usual experimental error. Furthermore, they are not so important geochemically. Accurate tritium measurements require relatively much time (1 or 2 analyses per day), are expensive (50 DM to 150 DM) and require more material (10 to 500 ml water), depending on the desired accuracy. The stable and radioactive carbon isotopes are mainly used in special cases to study certain geochemical processes. (orig./HK) [de

  10. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry.

    Science.gov (United States)

    Gillespie, Simon; Lipphaus, Patrick; Green, James; Parsons, Simon; Weir, Paul; Juskowiak, Kes; Jefferson, Bruce; Jarvis, Peter; Nocker, Andreas

    2014-11-15

    Flow cytometry (FCM) as a diagnostic tool for enumeration and characterization of microorganisms is rapidly gaining popularity and is increasingly applied in the water industry. In this study we applied the method to obtain a better understanding of total and intact cell concentrations in three different drinking water distribution systems (one using chlorine and two using chloramines as secondary disinfectants). Chloramine tended to result in lower proportions of intact cells than chlorine over a wider residual range, in agreement with existing knowledge that chloramine suppresses regrowth more efficiently. For chlorinated systems, free chlorine concentrations above 0.5 mg L(-1) were found to be associated with relatively low proportions of intact cells, whereas lower disinfectant levels could result in substantially higher percentages of intact cells. The threshold for chlorinated systems is in good agreement with guidelines from the World Health Organization. The fact that the vast majority of samples failing the regulatory coliform standard also showed elevated proportions of intact cells suggests that this parameter might be useful for evaluating risk of failure. Another interesting parameter for judging the microbiological status of water, the biological regrowth potential, greatly varied among different finished waters providing potential help for investment decisions. For its measurement, a simple method was introduced that can easily be performed by water utilities with FCM capability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The role of hand calculations in ground water flow modeling.

    Science.gov (United States)

    Haitjema, Henk

    2006-01-01

    Most ground water modeling courses focus on the use of computer models and pay little or no attention to traditional analytic solutions to ground water flow problems. This shift in education seems logical. Why waste time to learn about the method of images, or why study analytic solutions to one-dimensional or radial flow problems? Computer models solve much more realistic problems and offer sophisticated graphical output, such as contour plots of potentiometric levels and ground water path lines. However, analytic solutions to elementary ground water flow problems do have something to offer over computer models: insight. For instance, an analytic one-dimensional or radial flow solution, in terms of a mathematical expression, may reveal which parameters affect the success of calibrating a computer model and what to expect when changing parameter values. Similarly, solutions for periodic forcing of one-dimensional or radial flow systems have resulted in a simple decision criterion to assess whether or not transient flow modeling is needed. Basic water balance calculations may offer a useful check on computer-generated capture zones for wellhead protection or aquifer remediation. An easily calculated "characteristic leakage length" provides critical insight into surface water and ground water interactions and flow in multi-aquifer systems. The list goes on. Familiarity with elementary analytic solutions and the capability of performing some simple hand calculations can promote appropriate (computer) modeling techniques, avoids unnecessary complexity, improves reliability, and is likely to save time and money. Training in basic hand calculations should be an important part of the curriculum of ground water modeling courses.

  12. TRENDS IN VARIABILITY OF WATER FLOW OF TELEAJEN RIVER

    Directory of Open Access Journals (Sweden)

    N. JIPA

    2012-03-01

    Full Text Available TRENDS IN VARIABILITY OF WATER FLOW OF TELEAJEN RIVER. In the context of climate change at global and regional scale, this study intends to identify the trends in variability of the annual and monthly flow of Teleajen river. The study is based on processing the series of mean, maximum and minimum flows at Cheia and Moara Domnească hydrometric stations (these data were taken from the National Institute of Meteorology and Hydrology. The period of analysis is 1966-1998, statistical methods beeing mostly used, among which the Mann – Kendall test, that identifies the liniar trend and its statistic significance, comes into focus. The trends in the variability of water annual and monthly flows are highlighted. The results obtained show downward trends for the mean and maximum annual flows, and for the minimum water discharge, a downward trend for Cheia station and an upward trend for Moara Domnească station. Knowing the trends in the variability of the rivers’ flow is important empirically in view of taking adequate administration measures of the water resources and managment measures for the risks lead by extreme hidrologic events (floods, low-water, according to the possible identified changes.

  13. Non-Darcy flow of water through woodchip media

    Science.gov (United States)

    A denitrifying bioreactor is a system where a carbon substrate (commonly woodchips) is used to reduce nitrate concentration in water flow. Knowledge of intrinsic permeability of woodchip media in different types of this system is of great importance for design and modeling. For many years, water flo...

  14. Efficient computation of steady water flow with waves

    NARCIS (Netherlands)

    J. Wackers (Jeroen); B. Koren (Barry)

    2008-01-01

    textabstractA surface-capturing model for steady water flow is presented. This volume-of-fluid model without reconstruction consists only of conservation laws, hence, it can be solved very efficiently. The model contains a high-accuracy compressive water surface discretization and turbulence; it is

  15. Water droplet condensation and evaporation in turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.

    We propose a point-particle model for two-way coupling of water droplets dispersed in the turbulent flow of a carrier gas consisting of air and water vapour. We adopt an Euler–Lagrangian formulation based on conservation laws for the mass, momentum and energy of the continuous phase and on empirical

  16. Study on flow pattern and separation performance of air–water swirl-vane separator

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Lu, Mingchao; Wang, Minglu; Gu, Hanyang; Cheng, Xu

    2014-01-01

    Highlights: • A small-scale swirl-vane type steam separator is studied using air–water mixture. • The flow pattern inside the swirl-vane separator is analyzed. • Separation efficiency and pressure drop is experimentally obtained. • Separation efficiency is affected significantly by micro scale water droplets. • The separation efficiency predicted agrees well with the experimental results. - Abstract: Two-phase mixture has a complicated separating process inside a swirl-vane separator which plays an important role in assuring a low wetness of the steam to turbine. To understand the flow pattern inside the swirl-vane separator and analyze the separation performance, a simplified swirl-vane steam separator made of transparent acrylic resin is studied by experiment in which the mixture of air and water is used as the working fluids. Experimental results reveal that the separation efficiency of the separator strongly depends on the flow pattern and the water velocity. The separation efficiency in the annular flow is higher than that of the mist flow and the churn flow. The pressure drop is mainly affected by the air flow rate and the water droplet diameter. Furthermore, a numerical model assuming water as sphere droplets and neglecting its deformation is developed to simulate the separator with Euler two-phase model and RSM turbulence model. It is founded that although the separation efficiency is not sensitive to the size of the big water droplets, it is affected significantly by the micro scale water droplets. By assuming that 94% water droplet equals the Sauter mean diameter and the other 6% is 0.4 times of the Sauter mean diameter, the separation efficiency predicted agrees well with the experimental results for the studied case

  17. Instability of water-ice interface under turbulent flow

    Science.gov (United States)

    Izumi, Norihiro; Naito, Kensuke; Yokokawa, Miwa

    2015-04-01

    It is known that plane water-ice interface becomes unstable to evolve into a train of waves. The underside of ice formed on the water surface of rivers are often observed to be covered with ice ripples. Relatively steep channels which discharge melting water from glaciers are characterized by beds covered with a series of steps. Though the flowing agent inducing instability is not water but gas including water vapor, a similar train of steps have been recently observed on the Polar Ice Caps on Mars (Spiral Troughs). They are expected to be caused by the instability of water-ice interface induced by flowing fluid on ice. There have been some studies on this instability in terms of linear stability analysis. Recently, Caporeale and Ridolfi (2012) have proposed a complete linear stability analysis in the case of laminar flow, and found that plane water-ice interface is unstable in the range of sufficiently large Reynolds numbers, and that the important parameters are the Reynolds number, the slope angle, and the water surface temperature. However, the flow inducing instability on water-ice interface in the field should be in the turbulent regime. Extension of the analysis to the case of fully developed turbulent flow with larger Reynolds numbers is needed. We have performed a linear stability analysis on the instability of water-ice interface under turbulent flow conditions with the use of the Reynolds-averaged Navier-Stokes equations with the mixing length turbulent model, the continuity equation of flow, the diffusion/dispersion equation of heat, and the Stefan equation. In order to reproduce the accurate velocity distribution and the heat transfer in the vicinity of smooth walls with the use of the mixing length model, it is important to take into account of the rapid decrease in the mixing length in the viscous sublayer. We employ the Driest model (1956) to the formulation. In addition, as the thermal boundary condition at the water surface, we describe the

  18. Advances In Understanding Global Water Cycle With Advent of GPM Mission

    Science.gov (United States)

    Smith, Eric A.

    2002-01-01

    During the coming decade, the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space based on an international fleet of satellites operated as a constellation. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the Earth's water cycle from a global measurement perspective and on down to regional scales and below. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper first presents an overview of the GPM Mission and how its overriding scientific objectives for climate, weather, and hydrology flow from the anticipated improvements that are being planned for the constellation-based measuring system. Next, the paper shows how the GPM observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is simply part of the natural

  19. One-Water Hydrologic Flow Model (MODFLOW-OWHM)

    Science.gov (United States)

    Hanson, Randall T.; Boyce, Scott E.; Schmid, Wolfgang; Hughes, Joseph D.; Mehl, Steffen W.; Leake, Stanley A.; Maddock, Thomas; Niswonger, Richard G.

    2014-01-01

    The One-Water Hydrologic Flow Model (MF-OWHM) is a MODFLOW-based integrated hydrologic flow model (IHM) that is the most complete version, to date, of the MODFLOW family of hydrologic simulators needed for the analysis of a broad range of conjunctive-use issues. Conjunctive use is the combined use of groundwater and surface water. MF-OWHM allows the simulation, analysis, and management of nearly all components of human and natural water movement and use in a physically-based supply-and-demand framework. MF-OWHM is based on the Farm Process for MODFLOW-2005 (MF-FMP2) combined with Local Grid Refinement (LGR) for embedded models to allow use of the Farm Process (FMP) and Streamflow Routing (SFR) within embedded grids. MF-OWHM also includes new features such as the Surface-water Routing Process (SWR), Seawater Intrusion (SWI), and Riparian Evapotrasnpiration (RIP-ET), and new solvers such as Newton-Raphson (NWT) and nonlinear preconditioned conjugate gradient (PCGN). This IHM also includes new connectivities to expand the linkages for deformation-, flow-, and head-dependent flows. Deformation-dependent flows are simulated through the optional linkage to simulated land subsidence with a vertically deforming mesh. Flow-dependent flows now include linkages between the new SWR with SFR and FMP, as well as connectivity with embedded models for SFR and FMP through LGR. Head-dependent flows now include a modified Hydrologic Flow Barrier Package (HFB) that allows optional transient HFB capabilities, and the flow between any two layers that are adjacent along a depositional or erosional boundary or displaced along a fault. MF-OWHM represents a complete operational hydrologic model that fully links the movement and use of groundwater, surface water, and imported water for consumption by irrigated agriculture, but also of water used in urban areas and by natural vegetation. Supply and demand components of water use are analyzed under demand-driven and supply

  20. Effect of stone content on water flow velocity over Loess slope: non-frozen soil

    Science.gov (United States)

    Ban, Yunyun; Lei, Tingwu; Gao, Yuan; Qu, Liqin

    2017-06-01

    Stony soils are commonly found worldwide and are considerably studied for their hydrological characteristics and effect on soil erosion. Water flow velocity is an important parameter in understanding the effect of stone content on hydrodynamics and soil erosion. In this study, laboratory experiments were used to measure rill flow velocity by using electrolyte tracer method under different hydraulic conditions: flow rates of 1, 2, 4, and 8 L/min, slope gradients of 5°, 10°, 15°, and 20°, and stone mass contents amounting to 0%, 10%, 20% and 50%. Nine sensors, which were 1 m apart along the 8 m long rill, were used to measure flow velocity by tracing solute transport. Measured flow velocity increased with slope gradient and flow rate. The highest increase in flow velocity was measured from 15° to 20° which were also affected by flow rate. Effects of discharge rate on flow velocity presented the largest difference when flow rate increased from 2 L/min to 8 L/min at slope gradients higher than 5°. The effects of different factors were quantified by a regression model with high accuracy of 0.99. Maximum flow velocity of water was predicted at 15.23% of stone content. Flow velocity increased with 0-15.23% of stone content but decreased at higher values. This study aims at further understanding the hydrodynamics of soil erosion and sediment transport behaviors in hillslopes with different stone contents to obtain information for quantifying soil erosion on stony slopes.

  1. Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface.

    Science.gov (United States)

    Kim, Hun; Lim, Hee-Chang

    2015-06-04

    The objective of this study is to understand the mode pattern of the internal flow in a water droplet placed on a hydrophobic surface that periodically and vertically vibrates. As a result, a water droplet on a vibrating hydrophobic surface has a typical shape that depends on each resonance mode, and, additionally, we observed a diversified lobe size and internal flows in the water droplet. The size of each lobe at the resonance frequency was relatively greater than that at the neighboring frequencies, and the internal flow of the nth order mode was also observed in the flow visualization. In general, large symmetrical flow streams were generated along the vertical axis in each mode, with a large circulating movement from the bottom to the top, and then to the triple contact line along the droplet surface. In contrast, modes 2 and 4 generated a Y-shaped flow pattern, in which the flow moved to the node point in the lower part of the droplet, but modes 6 and 8 had similar patterns, with only a little difference. In addition, as a result of the PIV measurement, while the flow velocity of mode 4 was faster than that of model 2, those of modes 6 and 8 were almost similar.

  2. Development of neutron measurement techniques in reactor diagnostics and determination of water content and water flow

    International Nuclear Information System (INIS)

    Avdic, Senada

    2000-09-01

    only be performed at a reactor. The measurement technique based on a stationary neutron generated has not been exploited yet. The purpose of the present measurements was the investigation of the accuracy of the neutron generator based method. The results of measurement and calculation show the suitability of the method applied for the determination of the volume porosity. Yet another interesting non-intrusive nuclear technique, based on the pulsed neutron activation for the measurement of mass flow of water (the FlowAct method), constitutes the third subject of this thesis. High accuracy of the FlowAct method demands a detailed understanding of the turbulent flow, and the analysis of a FlowAct measurement is a complex problem. In order to obtain high precision measurement of water flow, the effect of different parameters in the experimental set-up has to be understood. The following particular problems were investigated in detail: a) the effect of collimation of a neutron source and detector on the time-resolved detector signals; b) the behaviour of the background time distribution signal to expedite optimum elimination from the measured signals; and, c) the properties of water mixing, by measuring the geometrical asymmetry of the activated volume as a function of distance from the source as well as flow velocity. The current results are promising for the further development of the method towards a high-precision flow rate measurement

  3. Water flow experiments and analyses on the cross-flow type mercury target model with the flow guide plates

    CERN Document Server

    Haga, K; Kaminaga, M; Hino, R

    2001-01-01

    A mercury target is used in the spallation neutron source driven by a high-intensity proton accelerator. In this study, the effectiveness of the cross-flow type mercury target structure was evaluated experimentally and analytically. Prior to the experiment, the mercury flow field and the temperature distribution in the target container were analyzed assuming a proton beam energy and power of 1.5 GeV and 5 MW, respectively, and the feasibility of the cross-flow type target was evaluated. Then the average water flow velocity field in the target mock-up model, which was fabricated from Plexiglass for a water experiment, was measured at room temperature using the PIV technique. Water flow analyses were conducted and the analytical results were compared with the experimental results. The experimental results showed that the cross-flow could be realized in most of the proton beam path area and the analytical result of the water flow velocity field showed good correspondence to the experimental results in the case w...

  4. Compartment in vertical flow reactor for ferruginous mine water

    Science.gov (United States)

    Hur, Won; Cheong, Young-Wook; Yim, Gil-Jae; Ji, Sang-Woo; Hong, Ji-Hye

    2014-05-01

    Mine effluents contain varying concentrations of ferrous ion along with other metal ions. Fe(II) that quickly oxidizes to form precipitates in the presence of oxygen under net alkaline or neutral conditions. Thus, passive treatment methods are designed for the mine water to reside in an open containment area so as to allow simultaneous oxidation and precipitation of Fe(II), such as in a lagoon or an oxidation pond. A vertical flow reactor (VFR) was also suggested to remediate ferruginous mine drainage passing down through an accreting bed of ochre. However, VFR has a limited operation time until the system begins to overflow. It was also demonstrated that two-compartment VFR has a longer operation time than single compartment VFR of same size. In this study, a mathematical model was developed as a part of efforts to explore the operation of VFR, showing dynamic changes in head differences, ochre depth and Fe(II)/Fe(III) concentration in the effluent flow. The analysis shows that Fe(II) oxidation and ochre formation should be balanced with permeability of ochre bed to maximize VFR operation time and minimize residual Fe(II) in the effluent. The model demonstrates that two compartment VFR can have a longer operation time than a single-compartment VFR and that an optimum compartment ratio exists that maximize VFR operation time. Accelerated Fe(II) oxidation significantly affects the optimum ratio of compartment area and reduced residual Fe(II) in the effluent. VFR operation time can be significantly prolonged by increasing the rate of ochre formation not by accelerated Fe(II) oxidation. Taken together, ochre forms largely in the first compartment while overflowed mine water with reduced iron contents is efficiently filtered in the second compartment. These results provide us a better understanding of VFR operation and optimum design criteria for maximum operation time in a two-compartment VFR. Rapid ochre accretion in the first compartment maintains constant hydraulic

  5. 75 FR 45579 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Supplemental Notice...

    Science.gov (United States)

    2010-08-03

    ... Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Supplemental Notice of Data...), proposing numeric nutrient water quality criteria to protect aquatic life in lakes and flowing waters within... that would use the lake criteria themselves as criteria for upstream waters flowing into the lake. EPA...

  6. Understanding Angiography-Based Aneurysm Flow Fields through Comparison with Computational Fluid Dynamics.

    Science.gov (United States)

    Cebral, J R; Mut, F; Chung, B J; Spelle, L; Moret, J; van Nijnatten, F; Ruijters, D

    2017-06-01

    Hemodynamics is thought to be an important factor for aneurysm progression and rupture. Our aim was to evaluate whether flow fields reconstructed from dynamic angiography data can be used to realistically represent the main flow structures in intracranial aneurysms. DSA-based flow reconstructions, obtained during interventional treatment, were compared qualitatively with flow fields obtained from patient-specific computational fluid dynamics models and quantitatively with projections of the computational fluid dynamics fields (by computing a directional similarity of the vector fields) in 15 cerebral aneurysms. The average similarity between the DSA and the projected computational fluid dynamics flow fields was 78% in the parent artery, while it was only 30% in the aneurysm region. Qualitatively, both the DSA and projected computational fluid dynamics flow fields captured the location of the inflow jet, the main vortex structure, the intrasaccular flow split, and the main rotation direction in approximately 60% of the cases. Several factors affect the reconstruction of 2D flow fields from dynamic angiography sequences. The most important factors are the 3-dimensionality of the intrasaccular flow patterns and inflow jets, the alignment of the main vortex structure with the line of sight, the overlapping of surrounding vessels, and possibly frame rate undersampling. Flow visualization with DSA from >1 projection is required for understanding of the 3D intrasaccular flow patterns. Although these DSA-based flow quantification techniques do not capture swirling or secondary flows in the parent artery, they still provide a good representation of the mean axial flow and the corresponding flow rate. © 2017 by American Journal of Neuroradiology.

  7. Nitrogen transformations in wetlands: Effects of water flow patterns

    Energy Technology Data Exchange (ETDEWEB)

    Davidsson, T.

    1997-11-01

    In this thesis, I have studied nitrogen turnover processes in water meadows. A water meadow is a wetland where water infiltrates through the soil of a grassland field. It is hypothesized that infiltration of water through the soil matrix promotes nutrient transformations compared to surface flow of water, by increasing the contact between water, nutrients, soil organic matter and bacteria. I have studied how the balance between nitrogen removal (denitrification, assimilative uptake, adsorption) and release (mineralization, desorption) processes are affected by water flow characteristics. Mass balance studies and direct denitrification measurements at two field sites showed that, although denitrification was high, net nitrogen removal in the water meadows was poor. This was due to release of ammonium and dissolved organic nitrogen (DON) from the soils. In laboratory studies, using {sup 15}N isotope techniques, I have shown that nitrogen turnover is considerably affected by hydrological conditions and by soil type. Infiltration increased virtually all the nitrogen processes, due to deeper penetration of nitrate and oxygen, and extended zones of turnover processes. On the contrary, soils and sediments with surface water flow, diffusion is the main transfer mechanism. The relation between release and removal processes sometimes resulted in shifts towards net nitrogen production. This occurred in infiltration treatments when ammonium efflux was high in relation to denitrification. It was concluded that ammonium and DON was of soil origin and hence not a product of dissimilatory nitrate reduction to ammonium. Both denitrification potential and mineralization rates were higher in peaty than in sandy soil. Vertical or horizontal subsurface flow is substantial in many wetland types, such as riparian zones, tidal salt marshes, fens, root-zone systems and water meadows. Moreover, any environment where aquatic and terrestrial ecosystems meet, and where water level fluctuates

  8. Effect of Water Flows on Ship Traffic in Narrow Water Channels Based on Cellular Automata

    Directory of Open Access Journals (Sweden)

    Hu Hongtao

    2017-11-01

    Full Text Available In narrow water channels, ship traffic may be affected by water flows and ship interactions. Studying their effects can help maritime authorities to establish appropriate management strategies. In this study, a two-lane cellular automation model is proposed. Further, the behavior of ship traffic is analyzed by setting different water flow velocities and considering ship interactions. Numerical experiment results show that the ship traffic density-flux relation is significantly different from the results obtained by classical models. Furthermore, due to ship interactions, the ship lane-change rate is influenced by the water flow to a certain degree.

  9. Calculating the evaporated water flow in a wet cooling tower

    International Nuclear Information System (INIS)

    Grange, J.L.

    1994-04-01

    On a cooling tower, it is necessary to determine the evaporated water flow in order to estimate the water consumption with a good accuracy according to the atmospheric conditions, and in order to know the characteristics of the plume. The evaporated flow is small compared to the circulating flow. A direct measurement is very inaccurate and cannot be used. Only calculation can give a satisfactory valuation. The two usable theories are the Merkel's one in which there are some simplifying assumptions, and the Poppe's one which is more exact. Both theories are used in the numerical code TEFERI which has been developed and is run by Electricite de France. The results obtained by each method are compared and validated by measurements made in the hot air of a cooling tower. The consequences of each hypothesis of Merkel's theory are discussed. This theory does not give the liquid water content in the plume and it under-estimates the evaporated flow all the lower the ambient temperature is. On the other hand, the Poppe's method agrees very closely with the measurements as well for the evaporated flow than for the liquid water concentration. This method is used to establish the specific consumption curves of the great nuclear plants cooling towers as well as to calculate the emission of liquid water drops in the plumes. (author). 11 refs., 9 figs

  10. Effect of stone content on water flow velocity over Loess slope: Frozen soil

    Science.gov (United States)

    Ban, Yunyun; Lei, Tingwu; Feng, Ren; Qian, Dengfeng

    2017-11-01

    Soils in high-altitude or -latitude regions are commonly rich in stone fragments, which are frequently frozen. The hydrodynamics of water flow over frozen, stony slopes must be investigated to understand soil erosion and sediment transportation. The objective of this laboratory experiments was to measure water flow velocity over frozen slopes with different stone contents by using electrolyte trace method. The experiments were performed under slope gradients of 5°, 10°, 15°, and 20°; flow discharge rates of 1, 2, 4, and 8 L/min; and stone contents of 0%, 10%, 20%, and 50% on mass basis. Nine equidistant sensors were used to measure flow velocity along flume from the top of the slope. Results indicated that stone content significantly affected flow velocity under increasing slope gradient. The increase in stone content rapidly reduced the flow velocity. The flow velocities over frozen slopes were 1.21 to 1.30 times of those over non-frozen slopes under different slope gradients and flow rates. When the stone content increased from 0% to 20%, proportions gradually decreased from 52% to 25% and 13%. Additionally, flow velocities over frozen and non-frozen soil slopes became gradually similar with increasing stone content. This study will help elucidate the hydrodynamics, soil erosion, and sediment transport behaviors of frozen or partially unfrozen hillslopes with different stone contents.

  11. Experimental measurements of the cavitating flow after horizontal water entry

    Science.gov (United States)

    Tat Nguyen, Thang; Hai, Duong Ngoc; Quang Thai, Nguyen; Phuong, Truong Thi

    2017-10-01

    Water-entry cavitating flow is of considerable importance in underwater high-speed applications. That is because of the drag-reduction effect that concerns the presence of a cavity around moving objects. Though the study of the flow has long been carried out, little data are documented in literature so far. Besides, currently, in the case of unsteady flow, experimental measurements of some flow parameters such as the cavity pressure still encounter difficulties. Hence continuing research efforts are of important significance. The objective of this study is to investigate experimentally the unsteady cavitating flow after the horizontal water entry of projectiles. An experimental apparatus has been developed. Qualitative and quantitative optical visualizations of the flow have been carried out by using high-speed videography. Digital image processing has been applied to analyzing the recorded flow images. Based on the known correlations between the ellipsoidal super-cavity’s size and the corresponding cavitation number, the cavity pressure has been measured by utilizing the data of image processing. A comparison between the partial- and super-cavitating flow regimes is reported. The received results can be useful for the design of high-speed underwater projectiles.

  12. Can Sap Flow Help Us to Better Understand Transpiration Patterns in Landscapes?

    Science.gov (United States)

    Hassler, S. K.; Weiler, M.; Blume, T.

    2017-12-01

    Transpiration is a key process in the hydrological cycle and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions and for improving the parameterisation of hydrological and soil-vegetation-atmosphere transfer models. At the tree scale, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status, stand-specific characteristics such as basal area or stand density and site-specific characteristics such as geology, slope position or aspect control sap flow of individual trees. However, little is known about the relative importance or the dynamic interplay of these controls. We studied these influences with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites spread over a 290 km²-catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we applied linear models to the daily spatial pattern of sap velocity and determined the importance of the different predictors. By upscaling sap velocities to the tree level with the help of species-dependent empirical estimates for sapwood area we also examined patterns of sap flow as a more direct representation of transpiration. Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in this landscape, namely tree species, tree diameter, geology and aspect. For sap flow, the site-specific predictors provided the largest contribution to the explained variance, however, in contrast to the sap velocity analysis, geology was more important than aspect. Spatial variability of atmospheric demand and soil moisture explained only a small fraction of the variance. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, were

  13. Water Resources System Archetypes: Towards a Holistic Understanding of Persistent Water Resources Problems

    Science.gov (United States)

    Mirchi, A.; Watkins, D. W.; Madani, K.

    2011-12-01

    Water resources modeling, a well-established tool in water resources planning and management practice, facilitates understanding of the physical and socio-economic processes impacting the wellbeing of humans and ecosystems. While watershed models continue to become more holistic, there is a need for appropriate frameworks and tools for integrated conceptualization of problems to provide reliable qualitative and quantitative bases for policy selection. In recent decades, water resources professionals have become increasingly cognizant of important feedback relationships within water resources systems. We contend that a systems thinking paradigm is required to facilitate characterization of the closed-loop nature of these feedbacks. Furthermore, a close look at different water resources issues reveals that, while many water resources problems are essentially very similar in nature, they continuously appear in different geographical locations. In the systems thinking literature, a number of generic system structures known as system archetypes have been identified to describe common patterns of problematic behavior within systems. In this research, we identify some main system archetypes governing water resources systems, demonstrating their benefits for holistic understanding of various classes of persistent water resources problems. Using the eutrophication problem of Lake Allegan, Michigan, as a case study, we illustrate how the diagnostic tools of system dynamics modeling can facilitate identification of problematic feedbacks within water resources systems and provide insights for sustainable development.

  14. Water Flow Forecasting and River Simulation for Flood Risk Analysis

    OpenAIRE

    Merkurjeva, G

    2013-01-01

    The paper presents the state-of-the-art in flood forecasting and simulation applied to a river flood analysis and risk prediction. Different water flow forecasting and river simulation models are analysed. An advanced river flood forecasting and modelling approach developed within the ongoing project INFROM is described. It provides an integrated procedure for river flow forecasting and simulation advanced by integration of different models for improving predictions of th...

  15. Pressure driven water flow through hydrophilic alumina nanomembranes

    Science.gov (United States)

    Beskok, Ali; Koklu, Anil; Sengor, Sevinc

    2017-11-01

    We present an experimental study that focuses on pressure-driven flow of distilled water through alumina membranes with 5, 10 and 20 nm pore radii. The nanopore geometry, pore size and porosity are characterized using scanning electron microscopy images taken pre and post-flow experiments. Comparisons of these images have shown reduction in the pore size, which is attributed to precipitation of hydroxyl groups on alumina surfaces. Measured flowrates compared with the Hagen-Poiseuille flow relations consistently predict 2.2 nm reductions in the pore size for three different membranes. This behavior can be explained by the formation of a thick stick layer of water molecules over hydroxylated alumina surfaces, evidenced by water droplet contact angle measurements that exhibit increased hydrophilicity of alumina surfaces. Other possible effects of the mismatch between theory and experiments such as unaccounted pressure losses in the system or the streaming potential effects were also considered, but shown to be negligible for current experimental conditions.

  16. Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water

    Science.gov (United States)

    Charee, Wisan; Tangwarodomnukun, Viboon

    2018-03-01

    Underwater laser ablation techniques have been developed and employed to synthesis nanoparticles, to texture workpiece surface and to assist the material removal in laser machining process. However, the understanding of laser-material-water interactions, bubble formation and effects of water flow on ablation performance has still been very limited. This paper thus aims at exploring the formation and collapse of bubbles during the laser ablation of silicon in water. The effects of water flow rate on bubble formation and its consequences to the laser disturbance and cut features obtained in silicon were observed by using a high speed camera. A nanosecond pulse laser emitting the laser pulse energy of 0.2-0.5 mJ was employed in the experiment. The results showed that the bubble size was found to increase with the laser pulse energy. The use of high water flow rate can importantly facilitate the ejection of ablated particles from the workpiece surface, hence resulting in less deposition to the work surface and minimizing any disturbance to the laser beam during the ablation in water. Furthermore, a clean micro-groove in silicon wafer can successfully be produced when the process was performed in the high water flow rate condition. The findings of this study could provide an essential guideline for process selection, control and improvement in the laser micro-/submicro-fabrication using the underwater technique.

  17. Gas-Water Flow Behavior in Water-Bearing Tight Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Renyi Cao

    2017-01-01

    Full Text Available Some tight sandstone gas reservoirs contain mobile water, and the mobile water generally has a significant impact on the gas flowing in tight pores. The flow behavior of gas and water in tight pores is different than in conventional formations, yet there is a lack of adequate models to predict the gas production and describe the gas-water flow behaviors in water-bearing tight gas reservoirs. Based on the experimental results, this paper presents mathematical models to describe flow behaviors of gas and water in tight gas formations; the threshold pressure gradient, stress sensitivity, and relative permeability are all considered in our models. A numerical simulator using these models has been developed to improve the flow simulation accuracy for water-bearing tight gas reservoirs. The results show that the effect of stress sensitivity becomes larger as water saturation increases, leading to a fast decline of gas production; in addition, the nonlinear flow of gas phase is aggravated with the increase of water saturation and the decrease of permeability. The gas recovery decreases when the threshold pressure gradient (TPG and stress sensitivity are taken into account. Therefore, a reasonable drawdown pressure should be set to minimize the damage of nonlinear factors to gas recovery.

  18. Parametric study on flow dispersion of water sprinkle

    Science.gov (United States)

    Tan, R. C.; Khafar, M. H. A.; Abdullah, N. I. S.; Chendang, R. N.; Taib, I.; Asmuin, N.; Ramli, Y.; Seri, S. M.; Mohammed, A. N.

    2017-09-01

    Although water sprinkler is used extensively in agriculture, little effort had been made to improve its performance, resulting in many sprinkler head available at market having less optimum design. Thus, this study aims to improve the basic design of water sprinkler head by conducting a parametric study on the effect of model geometry due to different flow characteristics. A common type of water sprinkler is modelled with computer aided design software and various changes such as enlarging nozzle diameter from 4mm to 8mm, changing vane angle from 70 degrees to 45 degrees are made to the original model. The models were simulated with computational fluid dynamics (CFD) software to investigate how the variation in geometry affects the flow of water and the performance of sprinkler head. The performance of water sprinkler is compared to original model in terms of watering distance, area of spray and velocity of water jet in air. The result of this study shows that enlarge the nozzle diameter have a positive effect on the velocity of water jet in air and the area covered by water jet but it drastically decreases the watering distance of sprinkler. Besides that, changing the angle of vane from 70 degrees to 45 degrees decrease the watering distance slightly and it concentrates the water into a fine jet that cover a small area. To reduce the effect, grooves can be added to the vane to increase the divergence of water spray. Reducing the angle of curvature from 10 degrees to 5 degrees improves the watering distance. The angle of curvature can be reduced more to increase the watering distance further.

  19. Enhancing resilience to water flow uncertainty by integrating environmental flows into water management in the Amudarya River, Central Asia

    Science.gov (United States)

    Schlüter, Maja; Khasankhanova, Gulchekhra; Talskikh, Vladislav; Taryannikova, Raisa; Agaltseva, Natalya; Joldasova, Ilya; Ibragimov, Rustam; Abdullaev, Umid

    2013-11-01

    The wetlands of the Amudarya River delta in Uzbekistan provide valuable ecosystem services to the local human population which has suffered severely from the loss of the Aral Sea, desertification and the post-soviet socio-economic transition. The region is also particularly vulnerable to the impacts of climate change as a recent severe drought has shown. In this contribution, we assess the potential and implications of incorporating environmental flows into management of the Amudarya River for improving the provision of wetland ecosystem services and enhancing resilience of the social-ecological system to river runoff uncertainty. Our assessment is based on analyses of 1) the current vulnerability of deltaic wetlands to years of low water availability, 2) expected regional climate change and its impact on water flows to the wetlands, and 3) alternative water use options to enhance environmental flows under a changing climate. The results provide a ranking of these options with respect to their benefits for the provision of environmental flows and implications for agriculture. Their realization, however, poses challenges that cannot be tackled by technical interventions of redistribution and efficiency increase alone but call for institutional changes and moves towards multi-purpose water use. The diversification of impacts and livelihood options would allow enhancing the resilience of the social-ecological system to climate or socio-politically induced changes in water flow.

  20. Sculpting of a dissolvable body by flowing water

    Science.gov (United States)

    Huang, Jinzi Mac; Moore, M. Nicholas J.; Ristroph, Leif

    2014-11-01

    Fluid flows strongly influence the dissolution of materials in geological contexts and in chemical and pharmaceutical applications. We approach flow-driven dissolution as a moving boundary problem and conduct experiments on hard candy bodies immersed within fast flowing water. We discover that different initial shapes are sculpted into a similar final form before ultimately vanishing, suggesting convergence to a stable shape-flow state. A model linking the flow and solute concentration suggests an explanation for this state and offers scaling laws for quantities such as the volume decay rate in time. As a whimsical application, we also show how this model can be used to address the long-standing question, ``How many licks does it take to get to the center of lollipop?''

  1. Flow Accelerated Corrosion: Effect of Water Chemistry and Database Construction

    International Nuclear Information System (INIS)

    Lee, Eun Hee; Kim, Kyung Mo; Lee, Gyeong Geun; Kim, Dong Jin

    2016-01-01

    Flow accelerated corrosion (FAC) of carbon steel piping in pressurized water reactors (PWRs) has been a major issue in nuclear industry. Severe accidents at Surry Unit 2 in 1986 and Mihama Unit 3 in 2004 initiated the world wide interest in this area. FAC is a dissolution process of the protective oxide layer on carbon steel or low-alloy steel when these parts are exposed to flowing water (single-phase) or wet steam (two-phase). In a single-phase flow, a scalloped, wavy, or orange peel and in a two-phase flow, tiger striping is observed, respectively. FAC is affected by many parameters, like material composition, pH, dissolved oxygen (DO), flow velocity, system pressure, and steam quality. This paper describes the water chemistry factors influencing on FAC and the database is then constructed using literature data. In order to minimize FAC in NPPs, the optimal method is to control water chemistry parameters. However, quantitative data about FAC have not been published for proprietary reason even though qualitative behaviors of FAC have been well understood. A database was constructed using experimental data in literature. Accurate statistical analysis will be performed using this database to identify the relationship between the FAC rate and test environment

  2. Sap flow index as an indicator of water storage use

    Directory of Open Access Journals (Sweden)

    Nadezhdina Nadezhda

    2015-06-01

    Full Text Available Symmetrical temperature difference also known as the sap flow index (SFI forms the basis of the Heat Field Deformation sap flow measurement and is simultaneously collected whilst measuring the sap flow. SFI can also be measured by any sap flow method applying internal continuous heating through the additional installation of an axial differential thermocouple equidistantly around a heater. In earlier research on apple trees SFI was found to be an informative parameter for tree physiological studies, namely for assessing the contribution of stem water storage to daily transpiration. The studies presented in this work are based on the comparative monitoring of SFI and diameter in stems of different species (Pseudotsuga menziesii, Picea omorika, Pinus sylvestris and tree sizes. The ability of SFI to follow the patterns of daily stem water storage use was empirically confirmed by our data. Additionally, as the HFD multipointsensors can measure sap flow at several stem sapwood depths, their use allowed to analyze the use of stored water in different xylem layers through SFI records. Radial and circumferential monitoring of SFI on large cork oak trees provided insight into the relative magnitude and timing of the contribution of water stored in different sapwood layers or stem sectors to transpiration.

  3. Flow Accelerated Corrosion: Effect of Water Chemistry and Database Construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Hee; Kim, Kyung Mo; Lee, Gyeong Geun; Kim, Dong Jin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Flow accelerated corrosion (FAC) of carbon steel piping in pressurized water reactors (PWRs) has been a major issue in nuclear industry. Severe accidents at Surry Unit 2 in 1986 and Mihama Unit 3 in 2004 initiated the world wide interest in this area. FAC is a dissolution process of the protective oxide layer on carbon steel or low-alloy steel when these parts are exposed to flowing water (single-phase) or wet steam (two-phase). In a single-phase flow, a scalloped, wavy, or orange peel and in a two-phase flow, tiger striping is observed, respectively. FAC is affected by many parameters, like material composition, pH, dissolved oxygen (DO), flow velocity, system pressure, and steam quality. This paper describes the water chemistry factors influencing on FAC and the database is then constructed using literature data. In order to minimize FAC in NPPs, the optimal method is to control water chemistry parameters. However, quantitative data about FAC have not been published for proprietary reason even though qualitative behaviors of FAC have been well understood. A database was constructed using experimental data in literature. Accurate statistical analysis will be performed using this database to identify the relationship between the FAC rate and test environment.

  4. Water Diplomacy: A Synthesis of Water Information and Understanding to Create Actionable Knowledge

    Science.gov (United States)

    Gao, Y.; Islam, S.

    2010-12-01

    Water issues are complex because they cross multiple boundaries and involve various stakeholders with competing needs. The origin of many water issues is a dynamic consequence of competition and feedback among variables in the natural, societal and political domains. When viewed as a limited resource, water lends itself to destructive conflicts over its division; knowledge of water, however, can transform a finite water quantity into a flexible resource. To generate such a transformative knowledge base for water, we need a framework to synthesize explicit (scientific information) and tacit (contextual understanding) water knowledge. Such a framework must build on scientific objectivity and be cognizant of contextual differences inherent to water issues. An example of such an approach is qualitative reasoning (QR) that was developed by the artificial intelligence community to provide non-numerical descriptions of systems and their qualitative and quantitative behavior while preserving important behavioral properties and qualitative distinctions. Using the Apalachicola-Chattahoochee-Flint River Basin (ACF Basin) as an example we will illustrate the use of QR to model and analyze water conflicts in the context of a coupled Natural and Societal Domain (NSD) framework. Two QR models related to the ACF water dispute will be compared and contrasted. Our results suggest that QR models within a NSD framework can provide ways to resolve complex water problems through negotiated solutions.

  5. Do Estimates of Water Productivity Enhance Understanding of Farm-Level Water Management?

    Directory of Open Access Journals (Sweden)

    Dennis Wichelns

    2014-03-01

    Full Text Available Estimates of water productivity are appearing with increasing frequency in the literature pertaining to agronomy, water management, and water policy. Some authors report such estimates as one of the outcome variables of experiment station studies, while others calculate water productivities when comparing regional crop production information. Many authors suggest or imply that higher values of water productivity are needed to ensure that future food production goals are achieved. Yet maximizing water productivity might not be consistent with farm-level goals or with societal objectives regarding water allocation and management. Farmers in both rainfed and irrigated settings must address a complex set of issues pertaining to risk, uncertainty, prices, and opportunity costs, when selecting activities and determining optimal strategies. It is not clear that farmers in either setting will or should choose to maximize water productivity. Upon examining water productivity, both conceptually and empirically, using published versions of crop production functions, I conclude that estimates of water productivity contain too little information to enhance understanding of farm-level water management.

  6. TRENDS IN VARIABILITY OF WATER FLOW OF TELEAJEN RIVER

    OpenAIRE

    N. JIPA; L. MEHEDINŢEANU

    2012-01-01

    TRENDS IN VARIABILITY OF WATER FLOW OF TELEAJEN RIVER. In the context of climate change at global and regional scale, this study intends to identify the trends in variability of the annual and monthly flow of Teleajen river. The study is based on processing the series of mean, maximum and minimum flows at Cheia and Moara Domnească hydrometric stations (these data were taken from the National Institute of Meteorology and Hydrology). The period of analysis is 1966-1998, statistical methods beei...

  7. Continuum simulations of water flow in carbon nanotube membranes

    DEFF Research Database (Denmark)

    Popadić, A.; Walther, Jens Honore; Koumoutsakos, P-

    2014-01-01

    We propose the use of the Navier–Stokes equations subject to partial-slip boundary conditions to simulate water flows in Carbon NanoTube (CNT) membranes. The finite volume discretizations of the Navier–Stokes equations are combined with slip lengths extracted from molecular dynamics (MD) simulati......We propose the use of the Navier–Stokes equations subject to partial-slip boundary conditions to simulate water flows in Carbon NanoTube (CNT) membranes. The finite volume discretizations of the Navier–Stokes equations are combined with slip lengths extracted from molecular dynamics (MD...

  8. Understanding the behavior of floodplains as human-water systems

    Science.gov (United States)

    Di Baldassarre, G.; Brandimarte, L.

    2012-12-01

    Floodplains are among the most valuable ecosystems for supporting biodiversity and providing services to the environment. Moreover, they are home of approximately one-sixth of the world population as they offer favorable conditions for economic development. As a result, flood disasters currently affect more than 100 million people a year. Sadly, flood losses and fatalities are expected to increase further in many countries because of population growth as well as changes in land use and climate. Given the relevance of floodplain systems, a number of social scientists have examined how the frequency and severity of flooding often determine whether human development in floodplains is desirable or not. Meanwhile, many earth scientists have investigated the impact of human activities (e.g. land-use changes, urbanization, river training) on the frequency and magnitude of floods. In fact, as human activities change the frequency of flooding, the frequency of flooding affects human developments in floodplain areas. Yet, these dynamic interactions between floods and societies and the associated feedback mechanisms remain largely unexplored and poorly understood. As a result, we typically consider humans as external forcing (or boundary condition) without representing the feedback loops and our prediction of future trajectories are therefore extremely limited. This presentation shows a first attempt to understand the behavior of floodplains as coupled human-water systems. In particular, we analyzed a number of long time series of hydrological and population data in the Po River Basin (Italy) to explore the feedback mechanisms, reciprocal effects, surprises, and threshold mechanisms, taking place in floodplain systems. The outcomes of the study enable a better understanding of how the occurrences of floods shape human developments while, at the same time, human activities shape the magnitude and frequency of floods. The presentation also discusses the opportunities offered by

  9. Surface water quality deterioration during low-flow

    Science.gov (United States)

    Hellwig, Jost; Stahl, Kerstin; Lange, Jens

    2017-04-01

    Water quality deterioration during low streamflow has mostly been linked to a lower dilution potential for pollutants. Some studies have also found spatial heterogeneities and a different behavior of different water quality parameters. Even though the general mechanisms that cause water quality changes during low-flow are well understood, only a few efforts have been made to explain the differences in the magnitudes of observed deteriorations. We investigated 72 catchments across the federal state of Baden-Wuerttemberg, Germany, for changes in water quality during low-flow events. Data from the state's water quality monitoring network provided seven water quality parameters (water temperature, electrical conductivity, concentrations of chloride, sodium, sulfate, nitrate and phosphate), which we statistically related to streamflow variability. Water temperatures increased during low flow in summer but decreased during low flow in winter. Nitrate concentrations revealed high spatial heterogeneity with about one third of the stations showing decreasing values during drought. For all other parameters concentrations rose during low-flow with only a few exceptions. Despite consistent trend directions, the magnitudes of changes with streamflow differed markedly across the state. Both multiple linear regression and a multiple analysis of variances were applied to explain these differences with the help of catchment characteristics. Results indicated that for sulfate and conductivity geology of the catchments was the most important control whereas for chloride, sodium and nitrate sewage treatment plants had largest influence. For phosphate no clear control could be identified. Independent from the applied method, land use was a less important control on river water quality during drought than geology or inflow from sewage treatment plants. These results show that the effects of diffuse and point sources, as well as those of natural and anthropogenic sources differ for

  10. Influence of the air phase on water flow in dikes

    Directory of Open Access Journals (Sweden)

    Tisler Witold

    2017-01-01

    Full Text Available Numerical models are often used to describe flow and deformation processes occurring in dikes during flood events. Modeling of such phenomena is a challenging task, due to the complexity of the system, consisting of three material phases: soil skeleton, pore water and pore air. Additional difficulties are transient loading caused by variable in time water levels, heterogeneity of the soil or air trapping. This paper presents a brief review of the influence of the air phase in soil on water flow and pore pressure generation, with focus on applications related to stability of dikes, earth dams and similar structures. Numerical simulations are carried out to investigate the differences between the Richards equation and the two-phase flow model, using an in-house code based on the finite volume method. A variety of boundary problems are considered, including seepage through flood dikes, dike overtopping and water level fluctuations. Special attention is paid to the problem of air trapping, which occurs when water flows over the top of a dike. Such a phenomenon occurred during experiments on model dikes reported in the literature, ultimately leading to development of cracks and damages in dike structure.

  11. Supercritical water natural circulation flow stability experiment research

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongliang; Zhou, Tao; Li, Bing [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; North China Electric Power Univ., Beijing (China). Inst. of Nuclear Thermalhydraulic Safety and Standardization; North China Electric Power Univ., Beijing (China). Beijing Key Lab. of Passive Safety Technology for Nuclear Energy; Huang, Yanping [Nuclear Power Institute of China, Chengdu (China). Science and Technology on Reactor System Design Technology Lab.

    2017-12-15

    The Thermal hydraulic characteristics of supercritical water natural circulation plays an important role in the safety of the Generation-IV supercritical water-cooled reactors. Hence it is crucial to conduct the natural circulation heat transfer experiment of supercritical water. The heat transfer characteristics have been studied under different system pressures in the natural circulation systems. Results show that the fluctuations in the subcritical flow rate (for natural circulation) is relatively small, as compared to the supercritical flow rate. By increasing the heating power, it is observed that the amplitude (and time period) of the fluctuation tends to become larger for the natural circulation of supercritical water. This tends to show the presence of flow instability in the supercritical water. It is possible to observe the flow instability phenomenon when the system pressure is suddenly reduced from the supercritical pressure state to the subcritical state. At the test outlet section, the temperature is prone to increase suddenly, whereas the blocking effect may be observed in the inlet section of the experiment.

  12. ESTIMATING FLOW AND FLUX OF GROUND-WATER DISCHARGE USING WATER TEMPERATURE AND VELOCITY. (R827961)

    Science.gov (United States)

    The nature of ground water discharge to a stream has important implications for nearby ground water flow, especially with respect to contaminant transport and well-head protection. Measurements of ground water discharge were accomplished in this study using (1) differences bet...

  13. A study on evaluation and analytical methods for groundwater flow with considering sea/fresh-water boundary. 1

    Energy Technology Data Exchange (ETDEWEB)

    Anezaki, S. [Taisei Corp., Tokyo (Japan)

    1998-03-01

    Sea/fresh-water boundary caused by density and concentration balance of sea-water and fresh-water is an important item for groundwater flow evaluation in deep underground near the coast. Also, in order to evaluate groundwater quality, it is important to understand the characteristics of sea/fresh-water boundary, for example boundary shape, salt distribution. In order to establish the evaluation and analytical methods for groundwater flow with considering sea/fresh-water boundary, we investigated the following items in this study. (1) Literature survey and data collection. (2) Investigation of analytical methods. (3) Planning of further study. (author). 78 refs.

  14. Ecosystem function in waste stabilisation ponds: Improving water quality through a better understanding of biophysical coupling

    Science.gov (United States)

    Ghadouani, Anas; Reichwaldt, Elke S.; Coggins, Liah X.; Ivey, Gregory N.; Ghisalberti, Marco; Zhou, Wenxu; Laurion, Isabelle; Chua, Andrew

    2014-05-01

    Wastewater stabilisation ponds (WSPs) are highly productive systems designed to treat wastewater using only natural biological and chemical processes. Phytoplankton, microbial communities and hydraulics play important roles for ecosystem functionality of these pond systems. Although WSPs have been used for many decades, they are still considered as 'black box' systems as very little is known about the fundamental ecological processes which occur within them. However, a better understanding of how these highly productive ecosystems function is particularly important for hydrological processes, as treated wastewater is commonly discharged into streams, rivers, and oceans, and subject to strict water quality guidelines. WSPs are known to operate at different levels of efficiency, and treatment efficiency of WSPs is dependent on physical (flow characteristics and sludge accumulation and distribution) and biological (microbial and phytoplankton communities) characteristics. Thus, it is important to gain a better understanding of the role and influence of pond hydraulics and vital microbial communities on pond performance and WSP functional stability. The main aim of this study is to investigate the processes leading to differences in treatment performance of WSPs. This study uses a novel and innovative approach to understand these factors by combining flow cytometry and metabolomics to investigate various biochemical characteristics, including the metabolite composition and microbial community within WSPs. The results of these analyses will then be combined with results from the characterisation of pond hydrodynamics and hydraulic performance, which will be performed using advanced hydrodynamic modelling and advanced sludge profiling technology. By understanding how hydrodynamic and biological processes influence each other and ecosystem function and stability in WSPs, we will be able to propose ways to improve the quality of the treatment using natural processes, with

  15. Control algorithm for multiscale flow simulations of water

    DEFF Research Database (Denmark)

    Kotsalis, E. M.; Walther, Jens Honore; Kaxiras, E.

    2009-01-01

    . The use of a mass conserving specular wall results in turn to spurious oscillations in the density profile of the atomistic description of water. These oscillations can be eliminated by using an external boundary force that effectively accounts for the virial component of the pressure. In this Rapid......We present a multiscale algorithm to couple atomistic water models with continuum incompressible flow simulations via a Schwarz domain decomposition approach. The coupling introduces an inhomogeneity in the description of the atomistic domain and prevents the use of periodic boundary conditions...... Communication, we extend a control algorithm, previously introduced for monatomic molecules, to the case of atomistic water and demonstrate the effectiveness of this approach. The proposed computational method is validated for the cases of equilibrium and Couette flow of water....

  16. South Asia river flow projections and their implications for water resources

    Science.gov (United States)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-06-01

    South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a

  17. Flow based vs. demand based energy-water modelling

    Science.gov (United States)

    Rozos, Evangelos; Nikolopoulos, Dionysis; Efstratiadis, Andreas; Koukouvinos, Antonios; Makropoulos, Christos

    2015-04-01

    The water flow in hydro-power generation systems is often used downstream to cover other type of demands like irrigation and water supply. However, the typical case is that the energy demand (operation of hydro-power plant) and the water demand do not coincide. Furthermore, the water inflow into a reservoir is a stochastic process. Things become more complicated if renewable resources (wind-turbines or photovoltaic panels) are included into the system. For this reason, the assessment and optimization of the operation of hydro-power systems are challenging tasks that require computer modelling. This modelling should not only simulate the water budget of the reservoirs and the energy production/consumption (pumped-storage), but should also take into account the constraints imposed by the natural or artificial water network using a flow routing algorithm. HYDRONOMEAS, for example, uses an elegant mathematical approach (digraph) to calculate the flow in a water network based on: the demands (input timeseries), the water availability (simulated) and the capacity of the transmission components (properties of channels, rivers, pipes, etc.). The input timeseries of demand should be estimated by another model and linked to the corresponding network nodes. A model that could be used to estimate these timeseries is UWOT. UWOT is a bottom up urban water cycle model that simulates the generation, aggregation and routing of water demand signals. In this study, we explore the potentials of UWOT in simulating the operation of complex hydrosystems that include energy generation. The evident advantage of this approach is the use of a single model instead of one for estimation of demands and another for the system simulation. An application of UWOT in a large scale system is attempted in mainland Greece in an area extending over 130×170 km². The challenges, the peculiarities and the advantages of this approach are examined and critically discussed.

  18. Liquid velocity in upward and downward air-water flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Paranjape, Sidharth; Kim, Seungjin; Ozar, Basar; Ishii, Mamoru

    2004-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions

  19. Fracture control of ground water flow and water chemistry in a rock aquitard

    Science.gov (United States)

    Eaton, T.T.; Anderson, M.P.; Bradbury, K.R.

    2007-01-01

    There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/Ss) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies. ?? 2007 National Ground Water Association.

  20. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  1. Continuous Flow of Upper Labrador Sea Water around Cape Hatteras.

    Science.gov (United States)

    Andres, Magdalena; Muglia, Mike; Bahr, Frank; Bane, John

    2018-03-14

    Six velocity sections straddling Cape Hatteras show a deep counterflow rounding the Cape wedged beneath the poleward flowing Gulf Stream and the continental slope. This counterflow is likely the upper part of the equatorward-flowing Deep Western Boundary Current (DWBC). Hydrographic data suggest that the equatorward flow sampled by the shipboard 38 kHz ADCP comprises the Upper Labrador Sea Water (ULSW) layer and top of the Classical Labrador Sea Water (CLSW) layer. Continuous DWBC flow around the Cape implied by the closely-spaced velocity sections here is also corroborated by the trajectory of an Argo float. These findings contrast with previous studies based on floats and tracers in which the lightest DWBC constituents did not follow the boundary to cross under the Gulf Stream at Cape Hatteras but were diverted into the interior as the DWBC encountered the Gulf Stream in the crossover region. Additionally, our six quasi-synoptic velocity sections confirm that the Gulf Stream intensified markedly at that time as it approached the separation point and flowed into deeper waters. Downstream increases were observed not only in the poleward transport across the sections but also in the current's maximum speed.

  2. Effect of Flood Water Diffuser on Flow Pattern of Water during Road Crossing

    Directory of Open Access Journals (Sweden)

    Abdul Ghani A.N.

    2014-03-01

    Full Text Available One of the methods to reduce the velocity of flood water flow across roads is to design obstacle objects as diffusers and place them alongside the road shoulder. The velocity reduction of water flow depends on the diffusion pattern of water. The pattern of diffused water depends on the design of the obstacle objects. The main purpose of this study is to investigate the design of obstacle objects and their water diffusing patterns and their capability to reduce the velocity of the flood water flow during road crossing. Variety of designs and orientation of the obstacle objects were tested in the environmental laboratory on a scale of 1:20. The results are classified into three distinguishable patterns of diffusion. Finally, two diffuser shapes and arrangements are recommended for further investigations in full scale or CFD model.

  3. North American water availability under stress and duress: building understanding from simulations, observations and data products

    Science.gov (United States)

    Maxwell, R. M.; Condon, L. E.; Atchley, A. L.; Hector, B.

    2017-12-01

    Quantifying the available freshwater for human use and ecological function depends on fluxes and stores that are hard to observe. Evapotranspiration (ET) is the largest terrestrial flux of water behind precipitation but is observed with low spatial density. Likewise, groundwater is the largest freshwater store, yet is equally uncertain. The ability to upscale observations of these variables is an additional complication; point measurements are made at scales orders of magnitude smaller than remote sensing data products. Integrated hydrologic models that simulate continental extents at fine spatial resolution are now becoming an additional tool to constrain fluxes and address interconnections. For example, recent work has shown connections between water table depth and transpiration partitioning, and demonstrated the ability to reconcile point observations and large-scale inferences. Here we explore the dynamics of large hydrologic systems experiencing change and stress across continental North America using integrated model simulations, observations and data products. Simulations of aquifer depletion due to pervasive groundwater pumping diagnose both stream depletion and changes in ET. Simulations of systematic increases in temperature are used to understand the relationship between snowpack dynamics, surface and groundwater flow, ET and a changing climate. Remotely sensed products including the GRACE estimates of total storage change are downscaled using model simulations to better understand human impacts to the hydrologic cycle. These example applications motivate a path forward to better use simulations to understand water availability.

  4. Climate influences on upper Limpopo River flow | Jury | Water SA

    African Journals Online (AJOL)

    This study demonstrates how the regional climate affects river flow in the upper Limpopo Valley of southern Africa (21–24.5S, 26–30E). The catchment basin receives inflow from the Crocodile, Marico, Mahalapse and Lotsane Rivers, and lies on the eastern fringe of the Kalahari plateau, known for water-deficit conditions.

  5. Two - Dimensional Mathematical Model of Water Flow in Open ...

    African Journals Online (AJOL)

    The irrotational flow condition is used for simplification of the system of the governing shallow water equations and the final nonlinear differential equation is solved for the unknown energy head using the finite element method. A one - dimensional problem was solved with diffusion hydraulic model (DHM), energy diffusion ...

  6. Hydrogel Regulation of Xylem Water Flow: An Alternative Hypothesis

    NARCIS (Netherlands)

    Doorn, van W.G.; Hiemstra, T.; Fanourakis, D.

    2011-01-01

    The concentration of cations in the xylem sap influences the rate of xylem water flow in angiosperm plants. It has been speculated that this is due to the shrinking and swelling of pectins in the pit membranes. However, there is as yet minimal evidence for the presence of pectin in pit membranes of

  7. Water Flow Simulation using Smoothed Particle Hydrodynamics (SPH)

    Science.gov (United States)

    Vu, Bruce; Berg, Jared; Harris, Michael F.

    2014-01-01

    Simulation of water flow from the rainbird nozzles has been accomplished using the Smoothed Particle Hydrodynamics (SPH). The advantage of using SPH is that no meshing is required, thus the grid quality is no longer an issue and accuracy can be improved.

  8. Estimation of preferred water flow parameters for four species of ...

    African Journals Online (AJOL)

    Very little quantitative data exist on hydraulic conditions linked to the blackfly species occurring in South African streams. Stones-in-current biotopes (i.e. fast riffle flows over cobbles) were sampled from four sites in three small clear streams in the Eastern and Western Cape provinces of South Africa. Mean water column ...

  9. Water Flow Experiments: Single and Double Bottle Systems

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 23; Issue 1. Water Flow Experiments: Single and Double Bottle Systems ... Jain International Residential School, Jakkasandra Post, Kanakapura Road, Ramanagara Dist., Karnataka 562 112, India. Room No 425, SH-3 Ashoka University, Near Rai Police ...

  10. Forecasting water flows in Pakistan's Indus River | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-07-15

    Jul 15, 2011 ... A Pakistan-Canada research partnership has led to the launch of a sophisticated forecasting system that promises to help Pakistani authorities accurately estimate how much water flows into the Indus River — the lifeline of one of the largest irrigation networks in the world.

  11. Characterization of horizontal air–water two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Ran; Kim, Seungjin, E-mail: skim@psu.edu

    2017-02-15

    Highlights: • A visualization study is performed to develop flow regime map in horizontal flow. • Database in horizontal bubbly flow is extended using a local conductivity probe. • Frictional pressure drop analysis is performed in horizontal bubbly flow. • Drift flux analysis is performed in horizontal bubbly flow. - Abstract: This paper presents experimental studies performed to characterize horizontal air–water two-phase flow in a round pipe with an inner diameter of 3.81 cm. A detailed flow visualization study is performed using a high-speed video camera in a wide range of two-phase flow conditions to verify previous flow regime maps. Two-phase flows are classified into bubbly, plug, slug, stratified, stratified-wavy, and annular flow regimes. While the transition boundaries identified in the present study compare well with the existing ones (Mandhane et al., 1974) in general, some discrepancies are observed for bubbly-to-plug/slug, and plug-to-slug transition boundaries. Based on the new transition boundaries, three additional test conditions are determined in horizontal bubbly flow to extend the database by Talley et al. (2015a). Various local two-phase flow parameters including void fraction, interfacial area concentration, bubble velocity, and bubble Sauter mean diameter are obtained. The effects of increasing gas flow rate on void fraction, bubble Sauter mean diameter, and bubble velocity are discussed. Bubbles begin to coalesce near the gas–liquid layer instead of in the highly packed region when gas flow rate increases. Using all the current experimental data, two-phase frictional pressure loss analysis is performed using the Lockhart–Martinelli method. It is found that the coefficient C = 24 yields the best agreement with the data with the minimum average difference. Moreover, drift flux analysis is performed to predict void-weighted area-averaged bubble velocity and area-averaged void fraction. Based on the current database, functional

  12. Scaling up ecohydrological processes: role of surface water flow in water-limited landscapes

    CSIR Research Space (South Africa)

    Popp, A

    2009-11-01

    Full Text Available microscale processes like ecohydrological feedback mechanisms and spatial exchange like surface water flow, the authors derive transition probabilities from a fine-scale simulation model. They applied two versions of the landscape model, one that includes...

  13. Measurement of flowing water salinity within or behind wellbore casing

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1981-01-01

    Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)P 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is to be determined. (author)

  14. Experimental study of steam-water choked flow

    International Nuclear Information System (INIS)

    Reocreux, M.L.

    1976-01-01

    Experimental results of choked flow in steam-water mixtures at low pressures (1.5 to 2.0 bar) and at low qualities (less than 0.01) are presented. The loop and the different test sections are described. The procedures for the measurement of temperatures, flow rates, and pressures are given. Emphasis is put on the void fraction measurements by X-ray attenuation. With the glass test section, vizualizations and measurement of radial void fraction profiles by X-ray attenuation have led to the determination of flow patterns. Axial void fraction and pressure profiles measured on the stainless steel test section are presented. Nonequilibrium temperatures have been measured and varied by putting grids into the flow. The importance of nonequilibrium effects like the delay on onset of vaporization, cavitation and the limitations of vaporization have been shown

  15. Behavior of CO2/water flow in porous media for CO2geological storage.

    Science.gov (United States)

    Jiang, Lanlan; Yu, Minghao; Liu, Yu; Yang, Mingjun; Zhang, Yi; Xue, Ziqiu; Suekane, Tetsuya; Song, Yongchen

    2017-04-01

    A clear understanding of two-phase fluid flow properties in porous media is of importance to CO 2 geological storage. The study visually measured the immiscible and miscible displacement of water by CO 2 using MRI (magnetic resonance imaging), and investigated the factor influencing the displacement process in porous media which were filled with quartz glass beads. For immiscible displacement at slow flow rates, the MR signal intensity of images increased because of CO 2 dissolution; before the dissolution phenomenon became inconspicuous at flow rate of 0.8mLmin -1 . For miscible displacement, the MR signal intensity decreased gradually independent of flow rates, because supercritical CO 2 and water became miscible in the beginning of CO 2 injection. CO 2 channeling or fingering phenomena were more obviously observed with lower permeable porous media. Capillary force decreases with increasing particle size, which would increase permeability and allow CO 2 and water to invade into small pore spaces more easily. The study also showed CO 2 flow patterns were dominated by dimensionless capillary number, changing from capillary finger to stable flow. The relative permeability curve was calculated using Brooks-Corey model, while the results showed the relative permeability of CO 2 slightly decreases with the increase of capillary number. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Computational Agents For Flows: Waterballs, Water Paths and Ponds

    Science.gov (United States)

    Servat, D.; Leonard, J.; Perrier, E.

    For the past four years, the RIVAGE project has been an ongoing methodological re- search involving both computer scientists from LIP6 and hydrologists from research unit GEODES at IRD around the question of applying DAI and agent-based simula- tion techniques to environmental water flow modeling. It led us to design an agent- based simulation environment which is intended to model coupled runoff dynamics, infiltration and erosion processes, so as to integrate heterogeneous events occuring at different time and space scales. A main feature of this modeling approach is the ability to account for a structured vision of the hydrological network produced during rainfall, much like that of an on field observer : for instance, when water accumulates in topographic depressions, the simulator creates pond objects, and when stable wa- ter paths emerge, water path objects are created. Beside this vision of water flow, the natural environment itself can be given a structured representation of natural objects (e.g. vegetation, infiltration maps, furrow or ditch networks, macropore patterns, etc.) which belong to various information layers. According to the scale of study, these layers may contain different types of geometrical and geographical data. Given that, our long term objective is to simulate the influence of spatial structurations of the environment on water flow dynamics and vice versa.

  17. Understanding and managing the food-energy-water nexus - opportunities for water resources research

    Science.gov (United States)

    Cai, Ximing; Wallington, Kevin; Shafiee-Jood, Majid; Marston, Landon

    2018-01-01

    Studies on the food, energy, and water (FEW) nexus lay a shared foundation for researchers, policy makers, practitioners, and stakeholders to understand and manage linked production, utilization, and security of FEW systems. The FEW nexus paradigm provides the water community specific channels to move forward in interdisciplinary research where integrated water resources management (IWRM) has fallen short. Here, we help water researchers identify, articulate, utilize, and extend our disciplinary strengths within the broader FEW communities, while informing scientists in the food and energy domains about our unique skillset. This paper explores the relevance of existing and ongoing scholarship within the water community, as well as current research needs, for understanding FEW processes and systems and implementing FEW solutions through innovations in technologies, infrastructures, and policies. Following the historical efforts in IWRM, hydrologists, water resources engineers, economists, and policy analysts are provided opportunities for interdisciplinary studies among themselves and in collaboration with energy and food communities, united by a common path to achieve sustainability development goals.

  18. South Asia river-flow projections and their implications for water resources

    Science.gov (United States)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-12-01

    South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960-2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990-2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow

  19. The Expatriate Flow Model - Towards understanding Internet usage in Kingdom of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Marie Hattingh

    2014-08-01

    Full Text Available Expatriate adjustment research has identified a number of challenges that expatriates experience when adjusting to the host country. These include spousal influence, cultural training/understanding, fluency in the host language and personality or emotional readiness of the expatriate. These challenges are amplified when it is considered in the Kingdom of Saudi Arabia (KSA, which has large cultural distance when compared to an average Western culture and therefore provides a setting for an interesting study. This ongoing study has thus far proposed a theoretical model derived by following Glaser’s Grounded Theory Methodology (GTM. This paper will report on a specific aspect of this proposed model namely the substantive category “degree of flow” which extends the previous discussion of “degree of isolation”. Within the proposed theoretical model, the “degree of flow” experienced by expatriates influences the “degree of isolation” experienced by expatriates. This paper describes how the Flow Theory was operationalized at affective level to aid the understanding of the emotional relationship expatriates in KSA have with the Internet. An expatriate flow model was developed based on the generally accepted three stages of Flow Theory namely: Antecedents to Flow, Experience of Flow and Consequences of Flow.

  20. Gas and water flow in the Callovo-Oxfordian argillite

    International Nuclear Information System (INIS)

    Harrington, J.F.; Noy, D.J.; Talandier, J.

    2010-01-01

    Document available in extended abstract form only. Understanding the impact and fate of this gas phase is of significant importance within performance assessment and for the accurate long-term prediction of repository evolution. This paper describes the initial results from an ongoing experimental study to measure the two-phase flow behaviour of the Callovo-Oxfordian argillite from the Bure underground research laboratory (URL) in France, using the custom-designed BGS permeameter. The primary objectives of the study are to measure: (i) the hydraulic conductivity and intrinsic permeability; (ii) the capillary displacement pressure; (iii) the effective gas permeability and relative permeability to gas for a range of conditions; and (iv) the post-test gas saturation. During testing, the specimen, a cylinder of 54 mm thickness, cut perpendicular to bedding, is subject to an isotropic confining stress, with fluids injected through the base of the specimen. A novel feature of the apparatus is the use of porous annular guard-ring filters around the inflow and outflow filters. The pressures in these two 'guard-rings' can be independently monitored to provide data on the distribution of pressure and anisotropy of the sample. Initial measurements, performed on a specimen orientation perpendicular to the bedding plane, have been divided into three components: re-saturation and consolidation; hydraulic properties; gas behaviour. During the initial period of equilibration, re-saturation of the sample were noted. Net volume change due to re-saturation closely agreed with pre-test geotechnical measurements of water saturation, suggesting the bulk of the gas phase was resident in non-dilatant pores and that the specimen was fully saturated at the onset of testing. A two step consolidation test was then performed with confining pressure raised to 11 MPa for 5 days and then to 12.5 MPa for a further 8 days. Values for drained bulk modulus based on the total volume of fluid

  1. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  2. Understanding the Impact of Arterial Stenosis on Blood Flow through a Tissue

    Science.gov (United States)

    Prakash, Elapulli Sankaranarayanan

    2015-01-01

    This article arises from the author's experience helping medical students apply core biophysical principles toward understanding cardiovascular physiology. The purpose of the article is illustrate how the effect of an arterial stenosis on blood flow to tissue supplied exclusively by the stenosed artery should be assessed. This discussion was…

  3. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  4. Understanding the hydrological functioning of headwater streams using periodic observations of river flow state

    Science.gov (United States)

    Beaufort, Aurélien; Leblois, Etienne; Pella, Hervé; Datry, Thibault; Sauquet, Eric

    2017-04-01

    Due to their upstream position in river networks, many headwater streams (HS) experience recurrent flow cessation and/or drying events. They have many ecological values since they are located at the interface between terrestrial and aquatic ecosystems and contribute to good status of rivers (sediment flux, input of organic matter…). However, the understanding of HS remains limited because gauging stations are preferentially located along perennial rivers and, consequently, the proportion of intermittent rivers (IR) is highly underestimated. In France, the observation network ONDE ("Observatoire National Des Etiages", in French) was designed by ONEMA to complement discharge data from the conventional French River Flow Monitoring network (HYDRO) to better understand HS dynamics. ONDE provides visual observations of flow state at 3300 sites along river channels located throughout France since 2012. One observation is made every month between April and October and the frequency of observations may increase during drought period to 4 visits / month. One of the following flow states is assigned at each observation: "flowing", "no flow" or "dry". The objective of this work is to combine and valorize information from both networks in order to describe the hydrological functioning of headwater streams at a regional scale. A special attention is given to characterize spatial distribution and frequency of flow intermittence and to explore how flow intermittence patterns are related to environmental drivers. A first analyze of the ONDE network indicated that 35% of sites have shown that at least one zero-flow event between 2012 and 2016 against only 8% with the HYDRO database considering gauging stations as intermittent when the mean number of zero flows ≥ 5 days/year. The proportion of zero-flow events for 93 ONDE sites was higher than 50%. Conversely, no drying events were observed for 1680 sites (50 %) during the observation period. These dry events mainly occurs during

  5. Reassessing the stable water isotope record in understanding past climate

    International Nuclear Information System (INIS)

    Noone, D.; Simmonds, I.

    1999-01-01

    Full text: The impact of atmospheric circulation on the stable water isotope record has been examined using an atmospheric general circulation model to reassess the validity of using isotopes to reconstruct Earth's climate history. Global temperature changes are classically estimated from the variations in (polar) isotopic values assuming a simple linear relationship. Such a relationship can be justified from first order theoretical considerations given that the isotopic fractionation at the deposition (ice core) site is temperature dependent. However, it is found that the history of a given air mass is more important that local processes because of the net effect of condensation events active along the transport pathway from the source region. Modulations in the hemispheric flow are seen to be crucial to Antarctic precipitation and the isotopic signal. Similarly, both transient and stationary disturbances influence the pathways of the air masses associated with Antarctic precipitation. During different climate regimes, such as that of the Last Glacial Maximum, the properties of these types of disturbances may not be assumed to be the same. As such, we may not assume that the condensation histories are the same as under different climate conditions. Therefore, the veracity of the linear climate reconstructions becomes questionable. Notwithstanding this result, the types of changes to the circulation regime that are expected generally correspond to changes in the global temperature. This fortunate result does not disallow the use of regressional reconstruction, however, the uncertainties associated with these circulation changes are of the same magnitude as the differences suggested by conventional linear regression in climate reconstruction. This indicates that interpretation of ice core data must be accompanied by detailed examination of the atmospheric processes and quantification of the impacts of their changes. Copyright (1999) Geological Society of Australia

  6. An Eulerian-Eulerian CFD Simulation of Air-Water Flow in a Pipe Separator

    Directory of Open Access Journals (Sweden)

    E.A. Afolabi

    2014-06-01

    Full Text Available This paper presents a three dimensional Computational Fluid Dynamics (CFD of air-water flow using Eulerian –Eulerian multiphase model and RSM mixture turbulence model to investigate its hydrodynamic flow behaviour in a 30 mm pipe separator. The simulated results are then compared with the stereoscopic PIV measurements at different axial positions. The comparison shows that the velocity distribution can be predicted with high accuracy using CFD. The numerical velocity profiles are also found to be in good qualitative agreement with the experimental measurements. However, there were some discrepancies between the CFD results and the SPIV measurements at some axial positions away from the inlet section. Therefore, the CFD model could provide good physical understanding on the hydrodynamics flow behaviour for air-water in a pipe separator.

  7. The Parabolic Variational Inequalities for Variably Saturated Water Flow in Heterogeneous Fracture Networks

    Directory of Open Access Journals (Sweden)

    Zuyang Ye

    2018-01-01

    Full Text Available Fractures are ubiquitous in geological formations and have a substantial influence on water seepage flow in unsaturated fractured rocks. While the matrix permeability is small enough to be ignored during the partially saturated flow process, water seepage in heterogeneous fracture systems may occur in a non-volume-average manner as distinguished from a macroscale continuum model. This paper presents a systematic numerical method which aims to provide a better understanding of the effect of fracture distribution on the water seepage behavior in such media. Based on the partial differential equation (PDE formulations with a Signorini-type complementary condition on the variably saturated water flow in heterogeneous fracture networks, the equivalent parabolic variational inequality (PVI formulations are proposed and the related numerical algorithm in the context of the finite element scheme is established. With the application to the continuum porous media, the results of the numerical simulation for one-dimensional infiltration fracture are compared to the analytical solutions and good agreements are obtained. From the application to intricate fracture systems, it is found that water seepage flow can move rapidly along preferential pathways in a nonuniform fashion and the variably saturated seepage behavior is intimately related to the geometrical characteristics orientation of fractures.

  8. 76 FR 79604 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Science.gov (United States)

    2011-12-22

    ... Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters AGENCY... State of Florida's Lakes and Flowing Waters; Final Rule'' (inland waters rule) for ninety days to June 4, 2012. EPA's inland waters rule included an effective date of March 6, 2012 for the entire regulation...

  9. 77 FR 39949 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Science.gov (United States)

    2012-07-06

    ... Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters AGENCY... Standards for the State of Florida's Lakes and Flowing Waters; Final Rule'' (inland waters rule) for six months to January 6, 2013. EPA's inland waters rule currently includes an effective date of July 6, 2012...

  10. 77 FR 74449 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Proposed Rule; Stay

    Science.gov (United States)

    2012-12-14

    ... Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Proposed Rule; Stay AGENCY... State of Florida's Lakes and Flowing Waters; Final Rule'' (inland waters rule) to November 15, 2013. EPA's inland waters rule currently includes an effective date of January 6, 2013, for the entire...

  11. 77 FR 13496 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Science.gov (United States)

    2012-03-07

    ... Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters AGENCY... Standards for the State of Florida's Lakes and Flowing Waters; Final Rule'' (inland waters rule) for four months to July 6, 2012. EPA's inland waters rule included an effective date of March 6, 2012 for the...

  12. Understanding residential water-use behaviour in urban South Africa

    CSIR Research Space (South Africa)

    Jacobs-Mata, Inga M

    2018-01-01

    Full Text Available South Africa’s water supply is under great pressure as demand continues to rise. Demand mitigation strategies implemented by the Department of Water and Sanitation (DWS), water boards and local authorities, and a few water awareness initiatives...

  13. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  14. Hydroelectric power plant with variable flow on drinking water adduction

    Science.gov (United States)

    Deaconu, S. I.; Babău, R.; Popa, G. N.; Gherman, P. L.

    2018-01-01

    The water feeding system of the urban and rural localities is mainly collected with feed pipes which can have different lengths and different levels. Before using, water must be treated. Since the treatment take place in the tanks, the pressure in the inlet of the station must be diminished. Many times the pressure must be reduced with 5-15 Barr and this is possible using valves, cavils, and so on. The flow capacity of the water consumption is highly fluctuating during one day, depending on the season, etc. This paper presents a method to use the hydroelectric potential of the feed pipes using a hydraulic turbine instead of the classical methods for decreasing the pressure. To avoid the dissipation of water and a good behavior of the power parameters it is used an asynchronous generator (AG) which is coupled at the electrical distribution network through a static frequency converter (SFC). The turbine has a simple structure without the classical devices (used to regulate the turbine blades). The speed of rotation is variable, depending on the necessary flow capacity in the outlet of the treatment station. The most important element of the automation is the static frequency converter (SFC) which allows speeds between 0 and 1.5 of the rated speed of rotation and the flow capacity varies accordingly with it.

  15. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    Science.gov (United States)

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  16. Preferential flow, connectivity and the principle of "minimum time to equilibrium": a new perspective on environmental water flow

    Science.gov (United States)

    Zehe, E.; Blume, T.; Bloeschl, G.

    2008-12-01

    importance, connective preferential pathways do not mean any advantage for an efficient transition to an equilibrium in these systems. In fine grained soils Darcy velocities and therefore redistribution of water is 2-4 orders of magnitude slower. As capillary energy dominates in these soils an effective redistribution of water within the pore space is crucial for a fast transition of system to an equilibrium state. Connective preferential pathways ore even cracks allow a faster redistribution of water and seem therefore necessary for a fast transition into a state of minimum free energy. The suggested principle "of minimum time to equilibrium" may explain the "advantage" of preferential flow as a much more efficient dissipation of energy in fine grained soils and therefore why connective preferential pathways control environmental flow. From a fundamental, long term perspective the principle may help us to understand whether and why soil structures and even cracks evolve in different landscapes and climates and b) to link soil hydrology and (landscape) ecology. Along the lines the proposed study will present model results to test the stated hypothesis.

  17. Water flow pathways and the water balance within a head-water catchment containing a dambo: inferences drawn from hydrochemical investigations

    Directory of Open Access Journals (Sweden)

    M. P. McCartney

    1999-01-01

    Full Text Available Dambos, seasonally saturated wetlands, are widespread in headwater catchments in sub-Saharan Africa. It is widely believed that they play an important role in regional hydrology but, despite research conducted over the last 25 years, their hydrological functions remain poorly understood. To improve conceptualisation of hydrological flow paths and investigate the water balance of a small Zimbabwean catchment containing a single dambo, measurements of alkalinity and chloride in different water types within the catchment have been used as chemical markers. The temporal variation in alkalinity is consistent with the premise that all stream water, including the prolonged dry season recession, is derived predominantly from shallow sources. The proposition that dry season recession flows are maintained by water travelling at depth within the underlying saprolite is not substantiated. There is evidence that a low permeability clay lens, commonly present in many dambos, acts as a barrier for vertical water exchange. However, the highly heterogeneous chemical composition of different waters precludes quantitative hydrograph split-ting using end member mixing analysis. Calculation of the chloride mass-balance confirms that, after rainfall, evaporation is the largest component of the catchment water budget. The study provides improved understanding of the hydrological functioning of dambos. Such understanding is essential for the development and implementation of sustainable management strategies for this landform.

  18. Turbulent flow over an interactive alternating land-water surface

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  19. Flow structure from a horizontal cylinder coincident with a free surface in shallow water flow

    Directory of Open Access Journals (Sweden)

    Kahraman Ali

    2012-01-01

    Full Text Available Vortex formation from a horizontal cylinder coincident with a free surface of a shallow water flow having a depth of 25.4 [mm] was experimentally investigated using the PIV technique. Instantaneous and time-averaged flow patterns in the wake region of the cylinder were examined for three different cylinder diameter values under the fully developed turbulent boundary layer condition. Reynolds numbers were in the range of 1124£ Re£ 3374 and Froude numbers were in the range of 0.41 £ Fr £ 0.71 based on the cylinder diameter. It was found that a jet-like flow giving rise to increasing the flow entrainment between the core and wake regions depending on the cylinder diameter was formed between the lower surface of the cylinder and bottom surface of the channel. Vorticity intensity, Reynolds stress correlations and the primary recirculating bubble lengths were grown to higher values with increasing the cylinder diameter. On the other hand, in the case of the lowest level of the jet-like flow emanating from the beneath of the smallest cylinder, the variation of flow characteristics were attenuated significantly in a shorter distance. The variation of the reattachment location of the separated flow to the free-surface is a strong function of the cylinder diameter and the Froude number.

  20. Estimation of natural historical flows for the Manitowish River near Manitowish Waters, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Reneau, Paul C.; Robertson, Dale M.

    2012-01-01

    2011. Daily natural flows at the dam, as computed by the adjusted drainage-area ratio method and the water-budget method, were used to compute monthly flow-duration values for the period of historical data available for each method. Monthly flow-durations provide a means for evaluating the frequency and range in flows that have been observed for each month over the course of many years. Both methods described the pattern and timing of measured high-flow and low-flow events at the upstream gaging stations. The adjusted drainage-area ratio method generally had smaller residual errors across the full range of observed flows and had smaller monthly biases than the water-budget method. Although it is not possible to evaluate which method may be more "correct" for estimating monthly natural flows at the dam, comparisons between the results of each method indicate that the adjusted drainage-area ratio method may be susceptible to biases at high flows due to isolated storms outside of the Manitowish River watershed. Conversely, it appears that the water-budget method may be susceptible to biases at low flows because of its sensitivity to the accuracy of reported lake stage and outflows, as well as effects of upstream diversions that could not be fully compensated for with this method. Results from both methods are useful for understanding the natural flow patterns at the dam. Flows for both methods have similar patterns, with high median flows in spring and low median flows in late summer. Similarly, the range from monthly high-flow durations to low-flow durations increases during spring, decreases during summer, and increases again during fall. These seasonal patterns illustrate a challenge with interpreting a single value of natural low flow. That is, a natural low flow computed for September is not representative of a natural low flow in April. Moreover, alteration of natural flows caused by storing water in the Chain of Lakes during spring and releasing it in fall causes a

  1. Uncovering regional disparity of China's water footprint and inter-provincial virtual water flows.

    Science.gov (United States)

    Dong, Huijuan; Geng, Yong; Fujita, Tsuyoshi; Fujii, Minoru; Hao, Dong; Yu, Xiaoman

    2014-12-01

    With rapid economic development in China, water crisis is becoming serious and may impede future sustainable development. The uneven distribution of water resources further aggravates such a problem. Under such a circumstance, the concepts of water footprint and virtual water have been proposed in order to respond water scarcity problems. This paper focuses on studying provincial disparity of China's water footprints and inter-provincial virtual water trade flows by adopting inter-regional input-output (IRIO) method. The results show that fast developing areas with larger economic scales such as Guangdong, Jiangsu, Shandong, Zhejiang, Shanghai and Xinjiang had the largest water footprints. The most developed and water scarce areas such as Shanghai, Beijing, Tianjin and Shandong intended to import virtual water, a rational choice for mitigating their water crisis. Xinjiang, Jiangsu, Heilongjiang, Inner Mongolia, Guangxi and Hunan, had the largest per GDP water intensities and were the main water import regions. Another key finding is that agriculture water footprint was the main part in water footprint composition and water export trade. On the basis of these findings, policy implications on agriculture geographical dispersion, consumption behavior changes, trade structure adjustment and water use efficiency improvement are further discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Virtual water flows and Water Balance Impacts of the U.S. Great Lakes Basin

    Science.gov (United States)

    Ruddell, B. L.; Mayer, A. S.; Mubako, S. T.

    2014-12-01

    To assess the impacts of human water use and trade on water balances, we estimate virtual water flows for counties in the U.S. portion of the Great Lakes basin. This is a water-rich region, but one where ecohydrological 'hotspots' are created by water scarcity in certain locations (Mubako et al., 2012). Trade shifts water uses from one location to another, causing water scarcity in some locations but mitigating water scarcity in other locations. A database of water withdrawals was assembled to give point-wise withdrawals by location, source, and use category (commercial, thermoelectric power, industrial, agricultural, mining). Point-wise consumptive use is aggregated to the county level, giving direct, virtual water exports by county. A county-level trade database provides import and export data for the various use categories. We link the annual virtual water exported from a county for a given use category to corresponding annual trade exports. Virtual water balances for each county by use category are calculated, and then compared with the renewable annual freshwater supply. Preliminary findings are that overall virtual water balances (imports - exports) are positive for almost all counties, because urban areas import goods and services that are more water intensive than the exported goods and services. However, for some agriculturally-intensive counties, the overall impact of virtual water trade on the water balance is close to zero, and the balance for agricultural sector virtual water trade is negative, reflecting a net impact of economic trade on the water balance in these locations. We also compare the virtual water balance to available water resources, using annual precipitation less evapotranspiration as a crude estimate of net renewable water availability. In some counties virtual water exports approach 30% of the available water resources, indicating the potential for water scarcity, especially from an aquatic ecosystem standpoint.

  3. A Hydrological Concept including Lateral Water Flow Compatible with the Biogeochemical Model ForSAFE

    Directory of Open Access Journals (Sweden)

    Giuliana Zanchi

    2016-03-01

    Full Text Available The study presents a hydrology concept developed to include lateral water flow in the biogeochemical model ForSAFE. The hydrology concept was evaluated against data collected at Svartberget in the Vindeln Research Forest in Northern Sweden. The results show that the new concept allows simulation of a saturated and an unsaturated zone in the soil as well as water flow that reaches the stream comparable to measurements. The most relevant differences compared to streamflow measurements are that the model simulates a higher base flow in winter and lower flow peaks after snowmelt. These differences are mainly caused by the assumptions made to regulate the percolation at the bottom of the simulated soil columns. The capability for simulating lateral flows and a saturated zone in ForSAFE can greatly improve the simulation of chemical exchange in the soil and export of elements from the soil to watercourses. Such a model can help improve the understanding of how environmental changes in the forest landscape will influence chemical loads to surface waters.

  4. Understanding infiltration and groundwater flow at an artificial recharge facility using time-lapse gravity data

    Science.gov (United States)

    Kennedy, Jeffrey

    valuable for planning the location of pumping wells at a new facility. Gravity data were useful for calibration of a Modflow-NWT groundwater-flow model using the Unsaturated Zone Flow package to simulate recharge; the reduction in the posterior parameter distribution compared to the a priori estimate was substantial and similar to head data. In contrast to model-simulated head data, model-simulated gravity data were less sensitive to more distant model elements and more effective for calibration of a superposition-type model. Observed head data had a strong regional signal reflecting basin-scale conditions with only minor variation associated with individual recharge basins, and were therefore of limited usefulness for model calibration. Together, the methods developed by the study and interpretations they made possible suggest that gravity data are an effective way to better understand large-scale infiltration and groundwater movement.

  5. Analysis of a solar collector field water flow network

    Science.gov (United States)

    Rohde, J. E.; Knoll, R. H.

    1976-01-01

    A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.

  6. How More Data About Direct and Virtual Water Use Could Help People Understand Their Water Footprints and Save More Water

    Science.gov (United States)

    Madel, R.; Olson-Sawyer, K.; Hanlon, P.; Rabin, K.

    2017-12-01

    their water use behaviors rather than a true calculation of how much water they use in a day. More data about water use (especially for food and agriculture since this is overwhelmingly the biggest use) at a consumer scale in the US would be advantageous to create more accurate estimates of personal water use and help people understand how to most effectively conserve water.

  7. Understanding peri-urban water management in India | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    14 juil. 2014 ... Access to water is a major concern in India, where rapid urbanization and the unpredictable effects of a changing climate are aggravating water tensions. In the southern city of Bangalore, one of India's largest urban areas, older water supply reservoirs are almost dry while artificial lakes within the city are ...

  8. Grounding Water: Building Conceptual Understanding through Multimodal Assessment

    Science.gov (United States)

    Schwartz, Kerry L.; Thomas-Hilburn, Holly; Haverland, Arin

    2011-01-01

    The world's population is growing by about 80 million people a year, implying an estimated increased freshwater demand of about 64 billion cubic meters annually (World Water Assessment Programme, 2009, Water in a Changing World: United Nations World Water Development Report 3, Chap. 1, p. 3-21). Groundwater depletion, which reduces the amount of…

  9. Understanding peri-urban water management in India | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2014-07-14

    Jul 14, 2014 ... Access to water is a major concern in India, where rapid urbanization and the unpredictable effects of a changing climate are aggravating water tensions. In the southern city of Bangalore, one of India's largest urban areas, older water supply reservoirs are almost dry while artificial lakes within the city are ...

  10. A seepage meter designed for use in flowing water

    Science.gov (United States)

    Rosenberry, D.O.

    2008-01-01

    Seepage meters provide one of the most direct means to measure exchange of water across the sediment-water interface, but they generally have been unsuitable for use in fluvial settings. Although the seepage bag can be placed inside a rigid container to minimize velocity head concerns, the seepage cylinder installed in the sediment bed projects into and disrupts the flow field, altering both the local-scale fluid exchange as well as measurement of that exchange. A low-profile seepage meter designed for use in moving water was tested in a seepage meter flux tank where both current velocity and seepage velocity could be controlled. The conical seepage cylinder protrudes only slightly above the sediment bed and is connected via tubing to a seepage bag or flowmeter positioned inside a rigid shelter that is located nearby where current velocity is much slower. Laboratory and field tests indicate that the net effect of the small protrusion of the seepage cylinder into the surface water flow field is inconsequentially small for surface water currents up to 65 cm s-1. Current velocity affects the variability of seepage measurements; seepage standard deviation increased from ???2 to ???6 cm d-1 as current velocity increased from 9 to 65 cm s-1. Substantial bias can result if the shelter is not placed to minimize hydraulic gradient between the bag and the seepage cylinder.

  11. Internal flow and evaporation characteristic inside a water droplet on a vertical vibrating hydrophobic surface

    International Nuclear Information System (INIS)

    Kim Hun; Lim, Hee Chang

    2015-01-01

    This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4

  12. Contributions to flow techniques and mass spectrometry in water analysis

    OpenAIRE

    Santos, Inês Carvalho dos

    2015-01-01

    In this thesis, the use of different flow systems was exploited along with the use of different detection techniques for the development of simple, robust, and automated analytical procedures. With the purpose to perform in-line sample handling and pretreatment operations, different separation units were used. The main target for these methods was waters samples. The first procedure was based on a sequential injection analysis (SIA) system for carbon speciation (alkalinity, dis...

  13. Flow instability and turbulence - ONERA water tunnel visualizations

    Science.gov (United States)

    Werle, H.

    The experimental technique used for visualizing laminar-turbulent transition phenomena, developed in previous tests in ONERA's small TH1 water tunnel, has been successfully applied in the new TH2 tunnel. With its very extensive Reynold's number domain (10 to the 4th - 10 to the 6th), this tunnel has shown itself to be well adapted to the study of turbulence and of the flow instabilities related to its appearance.

  14. The Properties of Confined Water and Fluid Flow at the Nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

    2009-03-09

    This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

  15. Water flow simulation and analysis in HMA microstructure

    Directory of Open Access Journals (Sweden)

    Can Chen

    2014-10-01

    Full Text Available This paper introduces a new method for reconstructing virtual two-dimensional (2-D microstructure of hot mix asphalt (HMA. Based on the method, the gradation of coarse aggregates and the film thickness of the asphalt binder can be defined by the user. The HMA microstructure then serves as the input to the computational fluid dynamic (CFD software (ANSYS-FLUENT to investigate the water flow pattern through it. It is found that the realistic flow fields can be simulated in the 2-D micro-structure and the flow patterns in some typical air void structures can be identified. These flow patterns can be used to explain the mechanism that could result in moisture damage in HMA pavement. The one-dimensional numerical permeability values are also derived from the flow fields of the 2-D HMA microstructure and compared with the measured values obtained by the Karol-Warner permeameter. Because the interconnected air voids channels in actual HMA samples cannot be fully represented in a 2-D model, some poor agreements need to be improved.

  16. OPTIMAL ALLOCATION OF FLOWS (WATER) WITHIN THE VOLTA ...

    African Journals Online (AJOL)

    Sir Onassis

    This has attendant immediate benefits to the learners. Who is a functionally literate person? A functionally literate person therefore is a person who is .... policy (e.g. fluoridation of drinking water, nuclear power or contraception). Cultural scientific literacy is concerned with an understanding and appreciation such scientific.

  17. Unidirectional flow in lizard lungs: a paradigm shift in our understanding of lung evolution in Diapsida.

    Science.gov (United States)

    Farmer, Colleen G

    2015-10-01

    Conventional wisdom has held that unidirectional pulmonary airflow is unique to birds and is an adaption enabling high rates of gas exchange, essential for sustaining flight as well as an endothermic metabolism. Recent visualizations and measurements of flow in the lungs of monitor and iguanid lizards show a bird-like pattern of unidirectional flow in these lineages. These findings call for a paradigm shift in our understanding of lung evolution in diapsids. This pattern of flow is not unique to birds. It is much older than previously believed, and it may be advantageous to the low-energy lifestyles typical of ectothermic animals. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Hydrogen/deuterium substitution methods: understanding water structure in solution

    International Nuclear Information System (INIS)

    Soper, A.K.

    1993-01-01

    The hydrogen/deuterium substitution method has been used for different applications, such as the short range order between water molecules in a number of different environments (aqueous solutions of organic molecules), or to study the partial structure factors of water at high pressure and temperature. The absolute accuracy that can be obtained remains uncertain, but important qualitative information can be obtained on the local organization of water in aqueous solution. Some recent results with pure water, methanol and dimethyl sulphoxide (DMSO) solutions are presented. It is shown that the short range water structure is not greatly affected by most solutes except at high concentrations and when the solute species has its own distinctive interaction with water (such as a dissolved small ion). 3 figs., 14 refs

  19. Examples of the Potential of DNS for the Understanding of Reactive Multiphase Flows

    Directory of Open Access Journals (Sweden)

    J. Reveillon

    2011-03-01

    Full Text Available The objective of this article is to point out the ability of the multiphase flow DNS (Direct Numerical Simulation to help to understand basic physics and to interpret some experimental observations. To illustrate the DNS' potential to give access to key phenomena involved in reactive multiphase flows, several recent results obtained by the authors are summed up with a bridge to experimental results. It includes droplet dispersion, laminar spray flame instability, spray combustion regimes or acoustic modulation effect on a two-phase flow Bunsen burner. As a perspective, two-phase flow DNS auto-ignition is considered thanks to a skeletal mechanism for the n-heptane chemistry involving 29 species and 52 reactions. Results highlight evaporating droplet effects on the auto-ignition process that is generally dramatically modified by spray distribution resulting from the turbulent fluid motion. This paper shows that DNS is a powerful tool to understand the intricate coupling between the evaporating spray, the turbulent fluid motion and the detailed chemistry, inseparable in the experimental context.

  20. Understanding the topological characteristics and flow complexity of urban traffic congestion

    Science.gov (United States)

    Wen, Tzai-Hung; Chin, Wei-Chien-Benny; Lai, Pei-Chun

    2017-05-01

    For a growing number of developing cities, the capacities of streets cannot meet the rapidly growing demand of cars, causing traffic congestion. Understanding the spatial-temporal process of traffic flow and detecting traffic congestion are important issues associated with developing sustainable urban policies to resolve congestion. Therefore, the objective of this study is to propose a flow-based ranking algorithm for investigating traffic demands in terms of the attractiveness of street segments and flow complexity of the street network based on turning probability. Our results show that, by analyzing the topological characteristics of streets and volume data for a small fraction of street segments in Taipei City, the most congested segments of the city were identified successfully. The identified congested segments are significantly close to the potential congestion zones, including the officially announced most congested streets, the segments with slow moving speeds at rush hours, and the areas near significant landmarks. The identified congested segments also captured congestion-prone areas concentrated in the business districts and industrial areas of the city. Identifying the topological characteristics and flow complexity of traffic congestion provides network topological insights for sustainable urban planning, and these characteristics can be used to further understand congestion propagation.

  1. Effects of rainfall on water quality in six sequentially disposed fishponds with continuous water flow

    Directory of Open Access Journals (Sweden)

    LH. Sipaúba-Tavares

    Full Text Available An investigation was carried out during the rainy period in six semi-intensive production fish ponds in which water flowed from one pond to another without undergoing any treatment. Eight sampling sites were assigned at pond outlets during the rainy period (December-February. Lowest and highest physical and chemical parameters of water occurred in pond P1 (a site near the springs and in pond P4 (a critical site that received allochthonous material from the other ponds and also from frog culture ponds, respectively. Pond sequential layout caused concentration of nutrients, chlorophyll-a and conductivity. Seasonal rains increased the water flow in the ponds and, consequently, silted more particles and other dissolved material from one fish pond to another. Silting increased limnological variables from P3 to P6. Although results suggest that during the period under analysis, rainfall affected positively the ponds' water quality and since the analyzed systems have been aligned in a sequential layout with constant water flow from fish ponds and parallel tanks without any previous treatment, care has to be taken so that an increase in rain-induced water flow does not have a contrary effect in the fish ponds investigated.

  2. Numerical study of saturation steam/water mixture flow and flashing initial sub-cooled water flow inside throttling devices

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In this work, a Computational Fluid-Dynamics (CFD) approach to model this phenomenon inside throttling devices is proposed. To validate CFD results, different nozzle geometries are analyzed, comparing numerical results with experimental data. Two cases are studied: Case 1: saturation steam/water mixture flow inside 2D convergent-divergent nozzle (inlet, outlet and throat diameter of nozzle are 0.1213m, 0.0452m and 0.0191m respectively). In this benchmark, a range of total inle...

  3. Water challenges of the future; how scientific understanding can help

    Science.gov (United States)

    Young, G.

    2012-04-01

    Demands for water resources are diverse and are increasing as human populations grow and become more concentrated in urban areas and as economies develop. Water is essential for many uses including the basic human needs of food and the maintenance of good health, for many industries and the creation of electrical energy and as vital for the sustenance of the natural ecosystems on which all life is dependent. At the same time threats from water - floods, droughts - are increasing with these extreme events becoming more common and more intense in many regions of the world and as more people locate in flood- and drought-prone regions. In general, the challenges for water managers are thus becoming greater; managers not only are having to make increasingly difficult decisions regarding allocation of water resources between competing uses as demand outstrips supply, but they also have to take measures to protect societies from the ravages of extreme events. The intensity of the challenges facing water managers is not uniform throughout the world - many nations in the less developed world experiencing far greater problems than most highly developed nations - but the trend towards greater challenges is clear. Decision-makers, whether at the international, national, provincial or local level benefit from reliable information on water resources. They need information on the availability in quantity and quality of water from a variety of sources - surface waters, aquifers or from artificial sources such as re-cycling of wastewater and desalination techniques. Managers also need reliable predictions on water availability for the various uses to which water is put - such predictions are needed on time scales from weeks to decades to inform decision-making. Predictions are also needed on the probabilities of occurrence of extreme events. Thus hydrological scientists developing predictive models and working within a fast-changing world have much to contribute to the needs of

  4. Water flow exchange characteristics in coarse granular filter media

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Pugliese, Lorenzo; Poulsen, Tjalfe

    2013-01-01

    in this study are performed at a concurrent airflow of 0.3 m s−1, water irrigation rates of 1–21 cm h−1 in materials with particle diameters ranging from 2 to 14 mm to represent media and operation conditions relevant for low flow biotrickling filter design. Specific surface area related elution velocity...... constitutes a scientific gap. This study investigates the impact of particle size distribution (considering materials with multiple particle sizes) and irrigation rate on the overall specific surface area related elution velocity distribution in porous granular media. The elution measurements performed...... distribution was closely related to the filter water content, water irrigation rate, media specific surface area and particle size distribution. A predictive model linking the specific surface area related elution velocity distribution to irrigation rate, specific surface area and particle size distribution...

  5. Investigations into the water flow and water conduction in spruce trees

    International Nuclear Information System (INIS)

    Strack, S.; Unger, H.

    1988-02-01

    The water-flow systems in the xylem of healthy and ailing spruce trees, based on the distribution patterns of tritiated water (HTO), were compared. In case of the ailing tree a severely altered water-flow system was observed. Whereas in the healthy tree the injected HTO spread in the apex in a distinctly differentiated manner following the spiral pattern of the ligneous fibers, no comparable spreading pattern was detected in the ailing tree. Also the labeled water molecules distributed twice as fast in the ailing as in the healthy tree. We conclude that the water conducting cross section of the diseased tree is reduced. Indeed, heartwood formation was about 60% in the ailing as compared to 5-20% in healthy trees. The methods of determining water content in the annual rings are described. The tissue water of needles from the healthy tree showed a distinct gradation of tritium concentrations according to age. This finding suggests that there is an age specific stomatal regulation in the healthy but not in the diseased needles. Water potential measurements at various times during the vegetation period provided evidence of a tighter water budget in diseased trees; however, a chronically enhanced water stress was not evident. The role of pathological heartwood formation during the disease is discussed. (orig.) With 27 figs., 38 refs [de

  6. Lateral and subsurface flows impact arctic coastal plain lake water budgets

    Science.gov (United States)

    Koch, Joshua C.

    2016-01-01

    Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post-snowmelt water budgets. A water budget focused only on post-snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid-summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra-permafrost subsurface inflows from basin-edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic.

  7. Multi-reflection photometric flow cell for use in flow injection analysis of estuarine waters

    International Nuclear Information System (INIS)

    Ellis, Peter S.; Lyddy-Meaney, Amanda J.; Worsfold, Paul J.; McKelvie, Ian D.

    2003-01-01

    A multi-reflection flow cell suitable for flow analysis is described. Light from an LED is directed through an optical fibre into a silver coated capillary through a sidewall aperture, and emerges through a similar aperture 10 mm along the capillary after undergoing an estimated 19 reflections. This process provides a sensitivity enhancement of approximately 2.5 compared with a conventional z-cell of the same nominal path length. This enhancement is due to both the increased optical path length achieved by multiple reflection of the light beam through the sample, and minimization of physical dispersion by the use of a short, small internal diameter capillary as the flow cell. The optical design of this flow cell also minimizes the Schlieren effect. Optical and hydrodynamic characteristics of this multi-reflection cell have been evaluated using a series of bromothymol blue dye studies. Application of the flow cell to the determination of reactive phosphorus in estuarine waters with wide variation in salinity and refractive index is also described

  8. Synthesis and model of formation-water flow, Alberta Basin, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bachu, S. [Alberta Geological Survey (Canada)

    1995-08-01

    Based on a large amount of publicly available data, several studies have previously examined the flow of formation waters in different parts of the Alberta basin, offering various interpretations as to the causes of the observed pressure regime and flow pattern; however, there has been no synthesis of these diverse studies on a basin-wide basis. Accordingly, these studies are critically reviewed in this paper and synthesized in a new basin-scale model of the flow of formation waters in the Alberta basin. The proposed regional-scale model has significant implications for understanding hydrocarbon migration pathways, ore genesis, the geothermal regime, and deep waste disposal in the Alberta basin. Several flow systems, each one driven by a different mechanism, are identified, together with the main processes leading to the nonhydrostatic pressures observed in the basin. Two megahydrostratigraphic successions and associated flow systems are recognized. The first succession corresponds to the pre-Cretaceous passive-margin stage of basin development, and consists of thick, carbonate-dominated aquifer systems separated by shaly aquitards and evaporitic aquicludes. A northeastward basin-scale flow system is driven by basin topography, with recharge in Montana and discharge in northeastern Alberta. Southwest-to-northeast regional-scale flow adjacent to the fold and thrust belt is probably the result of past tectonic processes. As a result of salinity variations, flow-retarding buoyancy effects can be important. The second megahydrostratigraphic succession corresponds to the post-Jurassic foreland stage of basin evolution, and consists of thick, shaly aquitard systems and relatively thin sandstone aquifers.

  9. Evidence for sites of methylmercury formation in a flowing water system: impact of anthropogenic barriers and water management.

    Science.gov (United States)

    Pizarro-Barraza, Claudia; Gustin, Mae Sexauer; Peacock, Mary; Miller, Matthieu

    2014-04-15

    The Truckee River, California-Nevada, USA is impacted by mercury (Hg) contamination associated with legacy gold mining. In this work, we investigated the potential for hot-spots of methylmercury (MeHg) formation in the river. Mercury concentrations in multiple media were also used to assess the impacts of anthropogenic barriers, restoration, and water management in this flowing water ecosystem. Water samples were collected on a seasonal time step over 3 years, and analyzed for total Hg (THg) and MeHg concentrations, along with a variety of other water quality parameters. In addition, we measured THg and MeHg in sediments, THg in macroinvertebrates, and THg and δ(15)N and δ(13)C concentrations in fish. Differences in stable isotopes and Hg concentrations in fish were applied to understand the mobility of fish in the river. Mercury concentrations of specific macroinvertebrate species were used to identify sites of MeHg production. In general, loads of Hg and nutrients in the river reach above the Reno-Sparks metropolitan area were similar to that reported for pristine systems, while within and below the city, water quality impacts were observed. Fish isotope data showed that in the city reach food resources were different than those upriver and downriver. Based on Hg and isotope data, mobility of the fish in the river is impacted by anthropogenic obstructions and water manipulation. Below the city, particle bound Hg, derived from the legacy mining, continues to be input to the Truckee River. This Hg is deposited in riparian habitats and areas of river restoration, where it is methylated and becomes available to biota. During spring, when flows were highest, MeHg produced and stored in the sediments is mobilized and transported downriver. Fish and macroinvertebrate concentrations increased downriver indicating passive uptake from water. The information presented here could be useful for those doing river restoration and water manipulation in mercury contaminated

  10. Sustainable urban water management: understanding and fostering champions of change.

    Science.gov (United States)

    Taylor, A C

    2009-01-01

    This paper highlights and discusses ten characteristic attributes of emergent leaders (also known as 'champions') who worked as influential change agents within publicly managed, Australian water agencies to encourage more sustainable forms of urban water management. These attributes relate to: the 'openness to experience' personality characteristic; career mobility and work history demographics; personal and position power; strategic social networks; the culture of their organisations; and five distinguishing leadership behaviours (e.g. persisting under adversity). Guided by the findings of an international literature review, the author conducted a multiple case study involving six water agencies. This research identified attributes of these leaders that were typically strong and/or distinguishing compared to relevant control groups, as well as influential contextual factors. While it is widely acknowledged that these leaders play a critical role in the delivery of sustainable urban water management, there has been a paucity of context-sensitive research involving them. The research project highlighted in this paper is a response to this situation and has led to the development of a suite of 39 practical, evidence-based strategies to build leadership capacity throughout water agencies. Such capacity is one of the elements needed to drive the transition to more 'water sensitive cities'.

  11. Vortex Stability In Two -layer Rotating Shallow-water Flows

    Science.gov (United States)

    Carton, Xavier; Baey, Jean-Michel

    The stability of circular vortices subject to an initial normal-mode perturbation is studied in a two-layer shallow-water fluid with rigid lid, flat bottom and constant background rotation. Considerable similarity with quasi-geostrophic dynamics is found for linear (barotropic or baroclinic) instability, except in the frontal and nonlinear barotropic limits. This discrepancy is explained by asymptotic models. In many cases, the elliptical mode of deformation is the most unstable one. The ability of these perturbed circular vortices to stabilize nonlinearly as long-lived multipoles is then investigated. For elliptical perturbations, steady tripoles form from moderately unstable vortices as in the quasi-geostrophic limit. These tripoles, which exhibit various 3D structures, are robust when perturbed by non coherent disturbances. More unstable circular vortices break as two dipoles, propagating in opposite directions. Triangular perturbations can also lead to stationary quadrupoles or to dipolar breaking. The similarity with quasi-geostrophic dynamics, which ext ends to these nonlinear regimes, is related to the weakness of the divergent circulation, as shown by the analysis of the Lighthill equation. J.M. Baey &X. Carton, 2001: "Piecewise-constant vortices in a two-layer shallow - water flow". Advances in mathematical modelling of atmosphere and ocean dynamics, Kluwer Acad. Publ., 61, p.87-92. J.M. Baey &X. Carton, 2002: "Vortex multipoles in two-layer rotating shallow -water flows". To appear in J. Fluid Mech.

  12. Novel concepts for the containment of oil in flowing water

    International Nuclear Information System (INIS)

    Brown, H.M.; Nicholson, P.; Goodman, R.H.; Berry, B.A.; Hughes, B.R.

    1993-01-01

    Both a laboratory study of the hydrodynamic properties of variously shaped objects and a meso-scale flume study of several containment concepts have been undertaken to determine whether these can be used to contain oil in fast flowing water. The laboratory study showed that stable vortices are difficult to generate and that spilled oil is not easily trapped by them. Only two of the structures studied showed some promise of trapping oil in fast moving water: a partially submerged barrier with fins placed at an angle across the flume and a horizontal hydrofoil placed across the channel near the surface. Several filter materials were tested in an outdoor flowing channel with both floating and neutrally buoyant oil. Although some of these materials trapped and held heavy oil, they were not a significant improvement over nylon fishing nets which had been tested previously. The filter materials would not hold a medium gravity oil. A hydrofoil device which generated a horizontal eddy successfully trapped and held surface oil at water speeds up to 0.35 m/s. Neutrally buoyant oil was often caught by the eddy but was never held for more than 1-2 minutes. 9 refs., 5 figs., 3 tabs

  13. Immersed Boundary Method for Shallow-Water Flow Solvers

    Science.gov (United States)

    Zhang, Ning

    2017-11-01

    The immersed boundary method (IBM) has been widely applied with Navier-Stoke equation solvers for flows over moving objects or objects with complex shapes. However, the IBM has not been often used with shallow-water flow solvers for estuary modeling applications. In regional scale hydrodynamic simulations, man-made or natural land structures such as levees, floodgates and small rivers/streams often have smaller scales than the grid resolutions in the simulations. Therefore, IBM could be a good candidate to realize the small shapes/forms of those structures on coarser simulation grids. In this study, IBM formulations have been developed to realize the floodgates and small rivers for several 2D depth-averaged shallow-water equation solvers. The research targets coastal areas in southwest Louisiana, particularly, the Calcasieu Lake and the surrounding coastal wetlands. The wetlands are protected by levees to avoid direct floods through the lake shore. The wetland water comes from the frequent floods through many small streams connecting the wetlands with the lake. It is very expensive to have grid resolutions smaller than the sizes of the streams. It is thus a good candidate for an IBM approach.

  14. Explore the Impacts of River Flow and Water Quality on Fish Communities

    Science.gov (United States)

    Tsai, W. P.; Chang, F. J.; Lin, C. Y.; Hu, J. H.; Yu, C. J.; Chu, T. J.

    2015-12-01

    Owing to the limitation of geographical environment in Taiwan, the uneven temporal and spatial distribution of rainfall would cause significant impacts on river ecosystems. To pursue sustainable water resources development, integrity and rationality is important to water management planning. The water quality and the flow regimes of rivers are closely related to each other and affect river ecosystems simultaneously. Therefore, this study collects long-term observational heterogeneity data, which includes water quality parameters, stream flow and fish species in the Danshui River of norther Taiwan, and aims to explore the complex impacts of water quality and flow regime on fish communities in order to comprehend the situations of the eco-hydrological system in this river basin. First, this study improves the understanding of the relationship between water quality parameters, flow regime and fish species by using artificial neural networks (ANNs). The Self-organizing feature map (SOM) is an unsupervised learning process used to cluster, analyze and visualize a large number of data. The results of SOM show that nine clusters (3x3) forms the optimum map size based on the local minimum values of both quantization error (QE) and topographic error (TE). Second, the fish diversity indexes are estimated by using the Adapted network-based fuzzy inference system (ANFIS) based on key input factors determined by the Gamma Test (GT), which is a useful tool for reducing model dimension and the structure complexity of ANNs. The result reveals that the constructed models can effectively estimate fish diversity indexes and produce good estimation performance based on the 9 clusters identified by the SOM, in which RMSE is 0.18 and CE is 0.84 for the training data set while RMSE is 0.20 and CE is 0.80 for the testing data set.

  15. Water flow and solute transport in floating fen root mats

    Science.gov (United States)

    Stofberg, Sija F.; EATM van der Zee, Sjoerd

    2015-04-01

    be very similar and likely functionally related. Our experimental field data were used for modelling water flow and solute transport in floating fens, using HYDRUS 2D. Fluctuations of surface water and root mat, as well as geometry and unsaturated zone parameters can have a major influence on groundwater fluctuations and the exchange between rain and surface water and the water in the root mats. In combination with the duration of salt pulses in surface water, and sensitivity of fen plants to salinity (Stofberg et al. 2014, submitted), risks for rare plants can be anticipated.

  16. A modeling study of water flow in the vadose zone beneath the Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Baca, R.G.; Magnuson, S.O.; Nguyen, H.D.; Martian, P.

    1992-01-01

    A modeling study was conducted for the purpose of gaining insight into the nature of water flow in the vadose zone beneath the Radioactive Waste Management Complex (RWMC). The modeling study focused on three specific hydrologic aspects: (1) relationship between meteorologic conditions and net infiltration, (2) water movement associated with past flooding events, and (3) estimation of water travel-times through the vadose zone. This information is necessary for understanding how contaminants may be transported through the vadose zone. Evaluations of net infiltration at the RWMC were performed by modeling the processes of precipitation, evaporation, infiltration and soil-moisture redistribution. Water flow simulations were performed for two distinct time periods, namely 1955--1964 and 1984--1990. The patterns of infiltration were calculated for both the undisturbed (or natural sediments) and the pit/trench cover materials. Detailed simulations of the 1969 flooding of Pit 10 were performed to estimate the rate and extent of water movement through the vadose zone. Water travel-times through the vadose zone were estimated using a Monte Carlo simulation approach. The simulations accounted for variability of soil and rock hydraulic properties as well as variations in the infiltration rate

  17. Coarse particles-water mixtures flow in pipes

    Directory of Open Access Journals (Sweden)

    П. Власак

    2017-06-01

    Full Text Available The present paper is focused on evaluation of the effect of average mixture velocity and overall concentration on the pressure drop versus the slurry average velocity relationship, on slurry flow behaviour and local concentration distribution. The experimental investigation was carried out on the pipe loop of inner diameter D =100 mm, which consists of smooth stainless steel pipes and horizontal, inclinable and vertical pipe sections. The frictional pressure drop in the horizontal pipe section were significantly higher than that in the vertical pipe due to the fact, that for stratified flow the contact load produced significant energy losses. The frictional pressure drop of coarse particles mixtures in vertical pipe increased with the increasing mixture concentration and velocity, what confirmed effect of inner friction, inter-particles collision, and the drag due to particle-liquid slip. It was found that for stratified coarse particles-water mixture the frictional pressure drop was not significantly influenced by the pipe inclination, especially for low concentration values. The effect of pipe inclination decreased with increasing mixture velocity in ascending pipe section; the maximum value was reached for inclination between 20 and 40 degrees. Inclination of pressure drop maximum increased with decreasing mixture velocity. In descending pipe section the frictional pressure drop gradually decreased with increasing pipe inclination. The effect of inclination on frictional pressure drops could be practically neglected, especially for low mixture concentration and higher flow velocities. The study revealed that the coarse particle-water mixtures in the horizontal and inclined pipe sections were significantly stratified. The particles moved principally in a layer close to the pipe invert. However, for higher and moderate flow velocities the particles moved also in the central part of the pipe cross-section, and particle saltation [1] was found to

  18. A New Understanding of Particles by G-Flow Interpretation of Differential Equation

    Directory of Open Access Journals (Sweden)

    Mao L.

    2015-07-01

    Full Text Available Applying mathematics to the understanding of particles classically with an assumption that if the variables t and x 1 , x 2 , x 3 hold with a system of dynamical equations (1.4, then they are a point ( t , x 1 , x 2 , x 3 in R 4 . However, if we put off this assumption, how can we interpret the solution space of equations? And are the se resultants important for understanding the world? Recently, the author extended Ban ach and Hilbert spaces on a topological graph to introduce −→ G -flows and showed that all such flows on a topological graph −→ G also form a Banach or Hilbert space, which enables one to find t he multiverse solution of these equations on −→ G . Applying this result, this paper discusses the −→ G -flow solutions on Schrödinger equation, Klein-Gordon equation and Dirac equation, i.e., the field equations of particles, bosons or fermions, answers previous questions by ”yes“, and establishes the many world interpretation of quantum mechanics of H. Everett by purely mathematics in logic, i.e., mathematical combinatorics.

  19. Compounding Effects of Agricultural Land Use and Water Use in Free-Flowing Rivers: Confounding Issues for Environmental Flows.

    Science.gov (United States)

    Hardie, Scott A; Bobbi, Chris J

    2018-03-01

    Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.

  20. Compounding Effects of Agricultural Land Use and Water Use in Free-Flowing Rivers: Confounding Issues for Environmental Flows

    Science.gov (United States)

    Hardie, Scott A.; Bobbi, Chris J.

    2018-03-01

    Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.

  1. Observation and characterization of flow in critical sections of a horizontal pressurized gating system using water models

    Directory of Open Access Journals (Sweden)

    Jaiganesh Venkataramani

    2013-07-01

    Full Text Available This work is concerned with the hydraulics and flow characterization in a pressurized, horizontal gating system with multiple ingates attached to a plate mold, using transparent water models. Runners with two different aspect ratios (w/h = 0.5 and 2 and four different types of ingates (rectangular, convergent, divergent and venturi were examined for their influence on flow behavior. Flow behavior was visualized using a high speed camera capable of capturing images up to 10,000 frames per second. Real time experimentation with a few runner – ingate combinations were carried out to validate the usefulness of water models in predicting the filling behavior. Comparison of the approaches provided useful insights into the filling behavior in critical sections of the flow passages as well as the utility of water models towards understanding of the filling behavior during real time casting.

  2. A better understanding of long-range temporal dependence of traffic flow time series

    Science.gov (United States)

    Feng, Shuo; Wang, Xingmin; Sun, Haowei; Zhang, Yi; Li, Li

    2018-02-01

    Long-range temporal dependence is an important research perspective for modelling of traffic flow time series. Various methods have been proposed to depict the long-range temporal dependence, including autocorrelation function analysis, spectral analysis and fractal analysis. However, few researches have studied the daily temporal dependence (i.e. the similarity between different daily traffic flow time series), which can help us better understand the long-range temporal dependence, such as the origin of crossover phenomenon. Moreover, considering both types of dependence contributes to establishing more accurate model and depicting the properties of traffic flow time series. In this paper, we study the properties of daily temporal dependence by simple average method and Principal Component Analysis (PCA) based method. Meanwhile, we also study the long-range temporal dependence by Detrended Fluctuation Analysis (DFA) and Multifractal Detrended Fluctuation Analysis (MFDFA). The results show that both the daily and long-range temporal dependence exert considerable influence on the traffic flow series. The DFA results reveal that the daily temporal dependence creates crossover phenomenon when estimating the Hurst exponent which depicts the long-range temporal dependence. Furthermore, through the comparison of the DFA test, PCA-based method turns out to be a better method to extract the daily temporal dependence especially when the difference between days is significant.

  3. Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin

    International Nuclear Information System (INIS)

    Wei Gu; Garcia, A.E.; Schoenborn, B.P.

    1994-01-01

    Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies

  4. Solute transport modelling in a coupled water and heat flow system applied to cold regions hydrogeology

    Science.gov (United States)

    Frampton, Andrew; Destouni, Georgia

    2016-04-01

    In cold regions, flow in the unsaturated zone is highly dynamic with seasonal variability and changes in temperature, moisture, and heat and water fluxes, all of which affect ground freeze-thaw processes and influence transport of inert and reactive waterborne substances. In arctic permafrost environments, near-surface groundwater flow is further restricted to a relatively shallow and seasonally variable active layer, confined by perennially frozen ground below. The active layer is typically partially saturated with ice, liquid water and air, and is strongly dependent on seasonal temperature fluctuations, thermal forcing and infiltration patterns. Here there is a need for improved understanding of the mechanisms controlling subsurface solute transport in the partially saturated active layer zone. Studying solute transport in cold regions is relevant to improve the understanding of how natural and anthropogenic pollution may change as activities in arctic and sub-arctic regions increase. It is also particularly relevant for understanding how dissolved carbon is transported in coupled surface and subsurface hydrological systems under climate change, in order to better understand the permafrost-hydrological-carbon climate feedback. In this contribution subsurface solute transport under surface warming and degrading permafrost conditions is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport

  5. Numerical simulation of water and sand blowouts when penetrating through shallow water flow formations in deep water drilling

    Science.gov (United States)

    Ren, Shaoran; Liu, Yanmin; Gong, Zhiwu; Yuan, Yujie; Yu, Lu; Wang, Yanyong; Xu, Yan; Deng, Junyu

    2018-02-01

    In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow (SWF) formations during deepwater drilling. We define `sand' as a pseudo-component with high density and viscosity, which can begin to flow with water when a critical pressure difference is attained. We calculated the water and sand blowout rates and analyzed the influencing factors from them, including overpressure of the SWF formation, as well as its zone size, porosity and permeability, and drilling speed (penetration rate). The obtained data can be used for the quantitative assessment of the potential severity of SWF hazards. The results indicate that overpressure of the SWF formation and its zone size have significant effects on SWF blowout. A 10% increase in the SWF formation overpressure can result in a more than 90% increase in the cumulative water blowout and a 150% increase in the sand blowout when a typical SWF sediment is drilled. Along with the conventional methods of well flow and pressure control, chemical plugging, and the application of multi-layer casing, water and sand blowouts can be effectively reduced by increasing the penetration rate. As such, increasing the penetration rate can be a useful measure for controlling SWF hazards during deepwater drilling.

  6. Understanding of changes in river flow using recently collected field and observational data from Russian Arctic

    Science.gov (United States)

    Shiklomanov, A. I.; Tokarev, I. V.; Davydov, S. P.; Davydova, A.; Streletskiy, D. A.

    2017-12-01

    There is substantial evidence supporting increasing river runoff in the Eurasian pan-Arctic, but the causes of these changes are not well understood. To determine the contributions of various water sources to river runoff generation in small streams and large rivers located in the continuous permafrost zone, an extensive field campaign was carried out near the town of Cherskii, Russia. Measurements of hydrometeorological characteristics, as well as stable isotope composition and hydrochemistry of precipitation, river flow and ground ice, were obtained during the 2013-2016 period. When combined with older data (2005-2009), the isotopic composition of atmospheric precipitation showed a general trend towards heavier winter precipitation, attributed mainly to observed increases in winter air temperature. Samples of water and ground ice from several boreholes showed that isotopic compositions of water from the active layer, transient layer and permafrost are significantly different. Thus, stable isotopes can be used to assess contributions of different soil layers to stream flow generation. Increases in streamflow of small test watersheds were observed during dry periods in August-September. These increases were associated with considerable stable isotope depletion in streamflow samples, which is likely caused by thawing of the transient- and possibly upper permafrost layers. The absence of correlation between water and air temperature during these periods (R2 = 0.22 in August-September and R2 = 0.8 in June-July) also suggests an increasing contribution of thawing ground ice to the streamflow. To quantitatively assess the contribution of various water sources to the river runoff of Kolyma River, we used stable isotope data along with a physically based hydrological model developed at the University of New Hampshire. Preliminary results suggest that thawing permafrost increased August-September discharge in Kolyma near Cherskii by 8% in 2013, 11% in 2014 and 4% in 2015

  7. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the U.S. Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts supported through the U.S. Department of Energy program will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Test-generated contaminants have been introduced over large areas and at variable depths above and below the water table throughout NTS. Evaluating the risks associated with these byproducts of underground testing presupposes a knowledge of the source, transport, and potential receptors of these contaminants. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. Any assessment of the risk must rely in part on the current understanding of ground-water flow, and the assessment will be only as good as the understanding

  8. Integrated modeling of groundwater-surface water interactions in a tile-drained agricultural field: The importance of directly measured flow route contributions

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, Y. van der; McLaren, R.G.; Geer, F.C. van; Broers, H.P.; Bierkens, M.F.P.

    2010-01-01

    Understanding the dynamics of groundwater-surface water interaction is needed to evaluate and simulate water and solute transport in catchments. However, direct measurements of the contributions of different flow routes from specific surfaces within a catchment toward the surface water are rarely

  9. Estimation of water flow velocity in small plants using cold neutron imaging with D 2O tracer

    Science.gov (United States)

    Matsushima, U.; Herppich, W. B.; Kardjilov, N.; Graf, W.; Hilger, A.; Manke, I.

    2009-06-01

    Water flow imaging may help to better understand various problems related to water stress of plants. It may help to fully understand the water relations of plants. The objective of this research was to estimate the velocity of water flow in plant samples. Cut roses ( Rosa hybrida, var. 'Milva') were used as samples. Cold neutron radiography (CNR) was conducted at CONRAD, Helmholtz Center Berlin for Materials and Energy, Berlin, Germany. D 2O and H 2O were interchangeably injected into the water feeding system of the sample. After the uptake of D 2O, the neutron transmission increased due to the smaller attenuation coefficient of D 2O compared to H 2O. Replacement of D 2O in the rose peduncle was clearly observed. Three different optical flow algorithms, Block Matching, Horn-Schunck and Lucas-Kanade, were used to calculate the vector of D 2O tracer flow. The quality of sequential images providing sufficient spatial and temporal resolution allowed to estimate flow vector.

  10. Numerical Approach of a Water Flow in an Unsaturated Porous Medium by Coupling Between the Navier-Stokes and Darcy-Forchheimer Equations

    Science.gov (United States)

    Hami, K.; Zeroual, I.

    2017-12-01

    In the present research, simulations have been conducted to determine numerically the dynamic behaviour of the flow of underground water fed by a river. The basic equations governing the problem studied are those of Navier-Stokes equations of conservation of momentum (flows between pores), coupled by the Darcy-Forchheimer equations (flows within these pores). To understand the phenomena involved, we first study the impact of flow rate on the pressure and the filtration velocity in the underground medium, the second part is devoted to the calculation of the elevation effect of the river water on the flow behaviour in the saturated and unsaturated zone of the aquifer.

  11. Understanding the liquid-liquid (water-hexane) interface

    Science.gov (United States)

    Murad, Sohail; Puri, Ishwar K.

    2017-10-01

    Nonequilibrium molecular dynamics simulations are employed to investigate the interfacial thermal resistance of nanoscale hexane-water interfaces subject to an applied heat flux. Our studies show that these liquid-liquid interfaces exhibit behavior significantly dissimilar to that of solid-liquid and solid-vapor interfaces. Notably, the thermal resistance of a hexane-water interface is contingent on the interfacial temperature gradient alone with negligible dependence on the mean interfacial temperature, while the solid-liquid dependent strongly on the interfacial temperature. Application of a heat flux also increases the interface thickness significantly as compared to an equilibrium isothermal interface. Since liquid-liquid interfaces have been proposed for diverse applications, e.g., sensors for wastewater treatment and for extraction of toxic ions from water, they can be designed to be wider by applying a heat flux. This may allow the interface to be used for other applications not possible currently because of the very limited thickness of the interface in isothermal systems.

  12. Scaling relationship for surface water transport in stream networks and sub-surface flow interaction

    Science.gov (United States)

    Worman, A.

    2005-12-01

    Ground surface topography is known to control the circulation pattern of groundwater and also reflects the surface hydrological pathways through the landscape. This means that similar geometrical distributions typical to the landscape can be related physically-mathematically to the overall circulation of water and solute elements on land. Such understanding is needed in the management of water resources, especially on the watershed scale or larger. This paper outlines a theory by which we represent landscape topography in terms of its Fourier spectrum of a typical wave-function, formally relate this spectrum to the sub-surface flow of water and solute elements. Further, the stream network characteristics is analysed both in terms of the fractal distribution of individual stream lengths and the distribution of total transport distances in the watershed. Empirical relationships between the three types of distributions are established for two example watersheds in the middle and southern Sweden. Because the flow of water and solute elements in the stream network can also be described by convoluting unit solutions over the stream network, this paper describes an approach that relate lanscape topography to hydrological and geochemical circulation. The study shows that surface topography, stream network characteristics and thickness of quaternary deposits controls the circulation pattern of the deep groundwater. The water exchange is controlled by topography on both the continental scale as well as regional scale. The residence of deep groundwater in the stream network - before entering the coastal zone - is, therefore also controlled by the landscape topography.

  13. Countercurrent air/water and steam/water flow above a perforated plate. Report for October 1978-October 1979

    International Nuclear Information System (INIS)

    Hsieh, C.; Bankoff, S.G.; Tankin, R.S.; Yuen, M.C.

    1980-11-01

    The perforated plate weeping phenomena have been studied in both air/water and steam/cold water systems. The air/water experiment is designed to investigate the effect of geometric factors of the perforated plate on the rate of weeping. A new dimensionless flow rate in the form of H star is suggested. The data obtained are successfully correlated by this H star scaling in the conventional flooding equation. The steam/cold water experiment is concentrated on locating the boundary between weeping and no weeping. The effects of water subcooling, water inlet flow rate, and position of water spray are investigated. Depending on the combination of these factors, several types of weeping were observed. The data obtained at high water spray position can be related to the air/water flooding correlation by replacing the stream flow rate to an effective stream flow rate, which is determined by the mixing efficiency above the plate

  14. Applicability of 87Sr/86Sr in examining return flow of irrigation water in highly agricultural watersheds in Japan

    Science.gov (United States)

    Yoshida, T.; Nakano, T.; Shin, K. C.; Tsuchihara, T.; Miyazu, S.; Kubota, T.

    2017-12-01

    -irrigated period were lower in Sr ratios and higher in Sr concentrations, suggesting an increase in contributions of the water from the shallow aquifers. Understanding the return flow of irrigation water in highly agricultural watersheds is vital for measuring any temporal changes in flow to the lower parts of the watershed, and allows for improved water management.

  15. Assessment of three turbulence model performances in predicting water jet flow plunging into a liquid pool

    Directory of Open Access Journals (Sweden)

    Zidouni Kendil Faiza

    2010-01-01

    Full Text Available The main purpose of the current study is to numerically investigate, through computational fluid dynamics modeling, a water jet injected vertically downward through a straight circular pipe into a water bath. The study also aims to obtain a better understanding of jet behavior, air entrainment and the dispersion of bubbles in the developing flow region. For these purposes, three dimensional air and water flows were modeled using the volume of fluid technique. The equations in question were formulated using the density and viscosity of a 'gas-liquid mixture', described in terms of the phase volume fraction. Three turbulence models with a high Reynolds number have been considered i. e. the standard k-e model, realizable k-e model, and Reynolds stress model. The predicted flow patterns for the realizable k-e model match well with experimental measurements found in available literature. Nevertheless, some discrepancies regarding velocity relaxation and turbulent momentum distribution in the pool are still observed for both the standard k-e and the Reynolds stress model.

  16. Understanding urban water performance at the city-region scale using an urban water metabolism evaluation framework.

    Science.gov (United States)

    Renouf, Marguerite A; Kenway, Steven J; Lam, Ka Leung; Weber, Tony; Roux, Estelle; Serrao-Neumann, Silvia; Choy, Darryl Low; Morgan, Edward A

    2018-06-15

    Water sensitive interventions are being promoted to reduce the adverse impacts of urban development on natural water cycles. However it is currently difficult to know the best strategy for their implementation because current and desired urban water performance is not well quantified. This is particularly at the city-region scale, which is important for strategic urban planning. This work aimed to fill this gap by quantifying the water performance of urban systems within city-regions using 'urban water metabolism' evaluation, to inform decisions about water sensitive interventions. To do this we adapted an existing evaluation framework with new methods. In particular, we used land use data for defining system boundaries, and for estimating natural hydrological flows. The criteria for gauging the water performance were water efficiency (in terms of water extracted externally) and hydrological performance (how much natural hydrological flows have changed relative to a nominated pre-urbanised state). We compared these performance criteria for urban systems within three Australian city-regions (South East Queensland, Melbourne and Perth metropolitan areas), under current conditions, and after implementation of example water sensitive interventions (demand management, rainwater/stormwater harvesting, wastewater recycling and increasing perviousness). The respective water efficiencies were found to be 79, 90 and 133 kL/capita/yr. In relation to hydrological performance, stormwater runoff relative to pre-urbanised flows was of most note, estimated to be 2-, 6- and 3- fold, respectively. The estimated performance benefits from water sensitive interventions suggested different priorities for each region, and that combined implementation of a range of interventions may be necessary to make substantive gains in performance. We concluded that the framework is suited to initial screening of the type and scale of water sensitive interventions needed to achieve desired water

  17. Water intake flow efficiency study for micro-hydro power plant

    Science.gov (United States)

    Pop, Radu; Vaida, Liviu; Bot, Adrian

    2017-12-01

    The water intake from the micro-hydro power plants captures water in two ways, namely, in summer through a surface grill and in winter by "winter intake", by water immersion below freezing level. The water flow captured for energy production is influenced by the river flow and fish ladder flow, respectively. The fish ladder flow should ensure a minimum servitude flow, downstream for fish migration. The paper presents a study concerning optimization of water flow capture for micro-hydro power plants in order to increase the energy production. This optimization should be made by keeping a constant flow through the fish ladder. The increase on the efficiency as a function of the river flow is presented.

  18. Slip divergence of water flow in graphene nanochannels: the role of chirality

    DEFF Research Database (Denmark)

    Wagemann, Enrique; Oyarzua, Elton; Walther, Jens Honore

    2017-01-01

    Graphene has attracted considerable attention due to its characteristics as a 2D material and its fascinating properties, providing a potential building block for nanofabrication. In nanochannels the solid-liquid interface plays a non-negligible role in determining the fluid dynamics. Therefore......, for an optimal design of nanofluidic devices, a comprehensive understanding of the slippage in a water flow confined between graphene walls is important. In nanoconfinement, experimental and computational studies have found the slip length to increase nonlinearly when the shear rate is larger than a critical...

  19. Complex network analysis of phase dynamics underlying oil-water two-phase flows

    Science.gov (United States)

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-01-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows. PMID:27306101

  20. The effect of surfactants on upward air-water pipe flow at various inclinations

    NARCIS (Netherlands)

    van Nimwegen, A.T.; Portela, L.; Henkes, R.A.W.M.

    2016-01-01

    In this work, we extend our previous efforts on the effect of surfactants on air-water flow in a vertical pipe by also considering pipe inclinations between 20° (with respect to horizontal) and vertical. For air-water flow, independent of the inclination, there is a regular annular flow at large

  1. A Potential Approach for Low Flow Selection in Water Resource Supply and Management

    Science.gov (United States)

    Ying Ouyang

    2012-01-01

    Low flow selections are essential to water resource management, water supply planning, and watershed ecosystem restoration. In this study, a new approach, namely the frequent-low (FL) approach (or frequent-low index), was developed based on the minimum frequent-low flow or level used in minimum flows and/or levels program in northeast Florida, USA. This FL approach was...

  2. Instream water use in the United States: water laws and methods for determining flow requirements

    Science.gov (United States)

    Lamb, Berton L.; Doerksen, Harvey R.

    1987-01-01

    Water use generally is divided into two primary classes - offstream use and instream use. In offstream use, sometimes called out-of-stream or diversionary use, water is withdrawn (diverted) from a stream or aquifer and transported to the place of use. Examples are irrigated agriculture, municipal water supply, and industrial use. Each of these offstream uses, which decreases the volume of water available downstream from the point of diversion, is discussed in previous articles in this volume. Instream use, which generally does not diminish the flow downstream from its point of use, and its importance are described in this article. One of the earliest instream uses of water in the United States was to turn the water wheels that powered much of the Nation's industry in the 18th and 19th centuries. Although a small volume of water might have been diverted to a mill near streamside, that water usually was returned to the stream near the point of diversion and, thus, the flow was not diminished downstream from the mill. Over time, the generation of hydroelectric power replaced mill wheels as a means of converting water flow into energy. Since the 1920's, the generation of hydroelectric power increasingly has become a major instream use of water. By 1985, more than 3 billion acre-feet of water (3,050,000 million gallons per day) was used annually for hydropower generation (Solley and others, 1988, p. 45)-enough water to cover the State of Colorado to a depth of 51 feet. Navigation is another instream use with a long history. The Lewis and Clark expedition journals and many of Mark Twain's novels illustrate the extent to which the Nation originally depended on adequate streamfiows for basic transportation. Navigation in the 1980's is still considered to be an instream use; however, it often is based upon a stream system that has been modified greatly through channelization, diking, and construction of dams and locks. The present (1987) inland water navigation system in

  3. Monitoring water distribution systems: understanding and managing sensor networks

    Directory of Open Access Journals (Sweden)

    D. D. Ediriweera

    2010-09-01

    Full Text Available Sensor networks are currently being trialed by the water distribution industry for monitoring complex distribution infrastructure. The paper presents an investigation in to the architecture and performance of a sensor system deployed for monitoring such a distribution network. The study reveals lapses in systems design and management, resulting in a fifth of the data being either missing or erroneous. Findings identify the importance of undertaking in-depth consideration of all aspects of a large sensor system with access to either expertise on every detail, or to reference manuals capable of transferring the knowledge to non-specialists. First steps towards defining a set of such guidelines are presented here, with supporting evidence.

  4. Water flows, energy demand, and market analysis of the informal water sector in Kisumu, Kenya

    Science.gov (United States)

    Sima, Laura C.; Kelner-Levine, Evan; Eckelman, Matthew J.; McCarty, Kathleen M.; Elimelech, Menachem

    2013-01-01

    In rapidly growing urban areas of developing countries, infrastructure has not been able to cope with population growth. Informal water businesses fulfill unmet water supply needs, yet little is understood about this sector. This paper presents data gathered from quantitative interviews with informal water business operators (n=260) in Kisumu, Kenya, collected during the dry season. Sales volume, location, resource use, and cost were analyzed by using material flow accounting and spatial analysis tools. Estimates show that over 76% of the city's water is consumed by less than 10% of the population who have water piped into their dwellings. The remainder of the population relies on a combination of water sources, including water purchased directly from kiosks (1.5 million m3 per day) and delivered by hand-drawn water-carts (0.75 million m3 per day). Energy audits were performed to compare energy use among various water sources in the city. Water delivery by truck is the highest per cubic meter energy demand (35 MJ/m3), while the city's tap water has the highest energy use overall (21,000 MJ/day). We group kiosks by neighborhood and compare sales volume and cost with neighborhood-level population data. Contrary to popular belief, we do not find evidence of price gouging; the lowest prices are charged in the highest-demand low-income area. We also see that the informal sector is sensitive to demand, as the number of private boreholes that serve as community water collection points are much larger where demand is greatest. PMID:23543887

  5. Root for rain : Towards understanding land-use change impacts on the water cycle

    NARCIS (Netherlands)

    Wang-Erlandsson, L.

    2017-01-01

    We live today on a human-dominated planet under unprecedented pressure on both land and water. The water cycle is intrinsically linked to vegetation and land use, and anticipating the consequences of simultaneous changes in land and water systems requires a thorough understanding of their

  6. Evaluation of water cooled supersonic temperature and pressure probes for application to 2000 F flows

    Science.gov (United States)

    Lagen, Nicholas T.; Seiner, John M.

    1990-01-01

    The development of water cooled supersonic probes used to study high temperature jet plumes is addressed. These probes are: total pressure, static pressure, and total temperature. The motivation for these experiments is the determination of high temperature supersonic jet mean flow properties. A 3.54 inch exit diameter water cooled nozzle was used in the tests. It is designed for exit Mach 2 at 2000 F exit total temperature. Tests were conducted using water cooled probes capable of operating in Mach 2 flow, up to 2000 F total temperature. Of the two designs tested, an annular cooling method was chosen as superior. Data at the jet exit planes, and along the jet centerline, were obtained for total temperatures of 900 F, 1500 F, and 2000 F, for each of the probes. The data obtained from the total and static pressure probes are consistent with prior low temperature results. However, the data obtained from the total temperature probe was affected by the water coolant. The total temperature probe was tested up to 2000 F with, and without, the cooling system turned on to better understand the heat transfer process at the thermocouple bead. The rate of heat transfer across the thermocouple bead was greater when the coolant was turned on than when the coolant was turned off. This accounted for the lower temperature measurement by the cooled probe. The velocity and Mach number at the exit plane and centerline locations were determined from the Rayleigh-Pitot tube formula.

  7. FEWA: a Finite Element model of Water flow through Aquifers

    International Nuclear Information System (INIS)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables

  8. High-Resolution Modeling of Flow Partitioning: Tracer Comparison Between Water Stable Isotopes and Electrical Conductivity

    Science.gov (United States)

    Segura, C.; Mosquera, G.; Crespo, P.

    2017-12-01

    The identification of water sources contributing to runoff is critical to understand the relation between water and biogeochemical cycles. During rainstorm events runoff can be composed of fractions of event and pre-event water. Tracers in two-component end member mixing analysis are commonly used to investigate these relative contributions to total runoff. However, tracer data are often only available at low temporal resolution, leading to high uncertainties in the estimation of flow components. Here, we present TraSPAN a new numerical tracer based streamflow-partitioning model that simulates both the tracer mass balance and the water flux response at the event scale. TraSPAN has four different structures representing different internal catchment hydrologic characteristics. We used high-resolution (0.25-5 hours) hydrometric and tracer (water stable isotopes (WSI) and electrical conductivity (EC)) data to simulate flow partitioning and compare the results between tracers for a storm in a forest headwater catchment at the western Oregon Cascades. Our results show that flow partitioning and transit time functions (TTFs) of event and pre-event water are well defined using either EC or WSI. The same model structure provided the best fit in both cases (Nash Sutcliffe Efficiency > 0.9). This structure includes 2 reservoirs in parallel to route the event and pre-event water fractions following independent TTFs and allows a time-variant fraction of precipitation routed as event water over the course of the storm. The level of agreement between the results attained with EC and WSI is remarkable in terms of parameter values and TTFs. Given the high cost and effort associated to the collection and analysis of WSI at high temporal resolution, our results provide great promise for the use of EC as a tracer in high-resolution flow partitioning modeling. The use of such an inexpensive tracer could allow for detailed investigation of the relative importance of internal (e

  9. Microcomputer-controlled flow meter used on a water loop

    International Nuclear Information System (INIS)

    Haniger, L.

    1982-01-01

    The report describes a microcomputer-controlled instrument intended for operational measurement on an experimental water loop. On the basis of pressure and temperature input signals the instrument calculates the specific weight, and for ten operator-selectable measuring channels it calculates the mass flow G(kp/s), or the voluminal flow Q(m 3 /h). On pressing the appropriate push-buttons the built-in display indicates the values of pressure (p) and temperature (t), as well as the values of specific weight γ calculated therefrom. For ten individually selectable channels the instrument displays either the values of the pressure differences of the measuring throttling elements (√Δpsub(i)), or the values of Gsub(i) or Qsub(i) as obtained by calculation. In addition, on pressing the Σ-push-button it summarizes the values of Gsub(i) and Qsub(i) for the selected channels. The device is controlled by an 8085 microprocessor, the analog unit MP 6812 being used as the A/D convertor. The instrument algorithm indicates some possible errors which may concern faults of input signals or mistakes in calculation. (author)

  10. NRC experiences in hydrocoin: An international project for studying ground-water flow modeling strategies

    International Nuclear Information System (INIS)

    Nicholson, T.J.; McCartin, T.J.; Davis, P.A.; Beyeler, W.

    1987-01-01

    The ''Hydrologic Code Intercomparison Study'' (HYDROCOIN) is an international study designed to investigate various ground-water modeling strategies used to analyze the performance of high-level waste disposal sites. The various ground-water models considered are to be used for safety assessments of low- and high-level radioactive waste facilities. The work completed to date has been simulations of test cases developed to verify and validate the numerical codes chosen by the individual project teams. Twenty-five computer codes were tested during the verification phase of the HYDROCOIN effort. To test the codes, seven cases, which include both saturated and unsaturated conditions in both fractured and porous media, were simulated. Simulation results from the 22 international project teams were then intercompared as well as compared to analytical solutions wherever possible. Current work deals with validation of ground-water flow models. After an exhaustive background study, it was determined that validation of complex ground-water flow models based upon a comprehensive data base is presently not possible. Therefore, the test cases accepted for the validation phase are for relatively simple ground-water flow systems where comparison of the simulation results are with limited field or laboratory data. Additionally, work dealing with uncertainty and sensitivity analyses has recently begun. This work explores appropriate ways of using hydrogeologic models in performance assessment by examining uncertainties in the conceptual models and the hydrogeologic parameters. Valuable lessons have been learned from the HYDROCOIN experiences in understanding limitations of the models, available data sets, and modeling strategies

  11. Patterns of a slow air-water flow in a semispherical container

    DEFF Research Database (Denmark)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.

    2016-01-01

    This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis-bottom int...

  12. Estimates of the impacts of invasive alien plants on water flows in ...

    African Journals Online (AJOL)

    The adverse impacts of alien plant invasions on water flows have been a prime motivation for South Africa's Working for Water Programme. The approach used in this study builds on a previous national assessment in 1998 by incorporating factors that limit plant water-use, information from recent research and improved flow ...

  13. An analytical study on nested flow systems in a Tóthian basin with a periodically changing water table

    Science.gov (United States)

    Zhao, Ke-Yu; Jiang, Xiao-Wei; Wang, Xu-Sheng; Wan, Li; Wang, Jun-Zhi; Wang, Heng; Li, Hailong

    2018-01-01

    Classical understanding on basin-scale groundwater flow patterns is based on Tóth's findings of a single flow system in a unit basin (Tóth, 1962) and nested flow systems in a complex basin (Tóth, 1963), both of which were based on steady state models. Vandenberg (1980) extended Tóth (1962) by deriving a transient solution under a periodically changing water table in a unit basin and examined the flow field distortion under different dimensionless response time, τ∗. Following Vandenberg's (1980) approach, we extended Tóth (1963) by deriving the transient solution under a periodically changing water table in a complex basin and examined the transient behavior of nested flow systems. Due to the effect of specific storage, the flow field is asymmetric with respect to the midline, and the trajectory of internal stagnation points constitutes a non-enclosed loop, whose width decreases when τ∗ decreases. The distribution of the relative magnitude of hydraulic head fluctuation, Δh∗ , is dependent on the horizontal distance away from a divide and the depth below the land surface. In the shallow part, Δh∗ decreases from 1 at the divide to 0 at its neighboring valley under all τ∗, while in the deep part, Δh∗ reaches a threshold, whose value decreases when τ∗ increases. The zones with flowing wells are also found to change periodically. As water table falls, there is a general trend of shrinkage in the area of zones with flowing wells, which has a lag to the declining water table under a large τ∗. Although fluxes have not been assigned in our model, the recharge/discharge flux across the top boundary can be obtained. This study is critical to understand a series of periodically changing hydrogeological phenomena in large-scale basins.

  14. An Experimental investigation of critical flow rates of subcooled water through short pipes with small diameters

    International Nuclear Information System (INIS)

    Park, Choon Kyung

    1997-02-01

    The primary objective of this study is to improve our understanding on critical flow phenomena in a small size leak and to develop a model which can be used to estimate the critical mass flow rates through reactor vessel or primary coolant pipe wall. For this purpose, critical two-phase flow phenomena of subcooled water through short pipes (100 ≤ L ≤ 400 mm) with small diameters (3.4 ≤ D ≤ 7.15 mm) have been experimentally investigated for wide ranges of subcooling (0∼199 .deg. C) and pressure (0.5∼2.0MPa). To examine the effects of various parameters (i.e., the location of flashing inception, the degree of subcooling, the stagnation temperature and pressure, and the pipe size) on the critical two-phase flow rates of subcooled water, a total of 135 runs were made for various combinations of test parameters using four different L/D test sections. Experimental results that show effects of various parameters on subcooled critical two-phase flow rates are presented. The measured static pressure profiles along the discharge pipe show that the critical flow rate can be strongly influenced by the flashing location. The locations of saturation pressure for different values of the stagnation subcooling have been consistently determined from the pressure profiles. Based upon the test results, two important parameters have been identified. These are cold state discharge coefficient and dimensionless subcooling, which are found to efficiently take into account the test section geometry and the stagnation conditions, respectively. A semi-empirical model has been developed to predict subcooled two-phase flow rates through small size openings. This model provides a simple and direct calculation of the critical mass flow rates with information on the initial condition and on the test section geometry. Comparisons between the mass fluxes calculated by present model and a total of 755 selected experimental data from 9 different investigators show that the agreement is

  15. Two-phase air-water stratified flow measurement using ultrasonic techniques

    International Nuclear Information System (INIS)

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-01-01

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable

  16. The Landlab OverlandFlow component: a Python library for computing shallow-water flow across watersheds

    OpenAIRE

    Adams, Jordan M.; Gasparini, Nicole M.; Hobley, Daniel E. J.; Tucker, Gregory E.; Hutton, Eric W. H.; Nudurupati, Sai S.; Istanbulluoglu, Erkan

    2016-01-01

    Hydrologic models and modeling components are used in a wide range of applications. Rainfall-runoff models are used to investigate the evolution of hydrologic variables, such as soil moisture and surface water discharge, throughout one or more rainfall events. Longer-term landscape evolution models also include aspects of hydrology, albeit in a highly simplified manner, in order to approximate how flowing water shapes landscapes. Here we illustrate how the OverlandFlow hydrologic component co...

  17. Experimental investigation of droplet separation in a horizontal counter-current air/water stratified flow

    International Nuclear Information System (INIS)

    Gabriel, Stephan Gerhard

    2015-01-01

    A stratified counter-current two-phase gas/liquid flow can occur in various technical systems. In the past investigations have mainly been motivated by the possible occurrence of these flows in accident scenarios of nuclear light water-reactors and in numerous applications in process engineering. However, the precise forecast of flow parameters, is still challenging, for instance due to their strong dependency on the geometric boundary conditions. A new approach which uses CFD methods (Computational Fluid Dynamics) promises a better understanding of the flow phenomena and simultaneously a higher scalability of the findings. RANS methods (Reynolds Averaged Navier Stokes) are preferred in order to compute industrial processes and geometries. A very deep understanding of the flow behavior and equation systems based on real physics are necessary preconditions to develop the equation system for a reliable RANS approach with predictive power. Therefore, local highly resolved, experimental data is needed in order to provide and validate the required turbulence and phase interaction models. The central objective of this work is to provide the data needed for the code development for these unsteady, turbulent and three-dimensional flows. Experiments were carried out at the WENKA facility (Water Entrainment Channel Karlsruhe) at the Karlsruhe Institute of Technology (KIT). The work consists of a detailed description of the test-facility including a new bended channel, the measurement techniques and the experimental results. The characterization of the new channel was done by flow maps. A high-speed imaging study gives an impression of the occurring flow regimes, and different flow phenomena like droplet separation. The velocity distributions as well as various turbulence values were investigated by particle image velocimetry (PIV). In the liquid phase fluorescent tracer-particles were used to suppress optical reflections from the phase surface (fluorescent PIV, FPIV

  18. Analytical Model of Water Flow in Coal with Active Matrix

    Science.gov (United States)

    Siemek, Jakub; Stopa, Jerzy

    2014-12-01

    This paper presents new analytical model of gas-water flow in coal seams in one dimension with emphasis on interactions between water flowing in cleats and coal matrix. Coal as a flowing system, can be viewed as a solid organic material consisting of two flow subsystems: a microporous matrix and a system of interconnected macropores and fractures. Most of gas is accumulated in the microporous matrix, where the primary flow mechanism is diffusion. Fractures and cleats existing in coal play an important role as a transportation system for macro scale flow of water and gas governed by Darcy's law. The coal matrix can imbibe water under capillary forces leading to exchange of mass between fractures and coal matrix. In this paper new partial differential equation for water saturation in fractures has been formulated, respecting mass exchange between coal matrix and fractures. Exact analytical solution has been obtained using the method of characteristics. The final solution has very simple form that may be useful for practical engineering calculations. It was observed that the rate of exchange of mass between the fractures and the coal matrix is governed by an expression which is analogous to the Newton cooling law known from theory of heat exchange, but in present case the mass transfer coefficient depends not only on coal and fluid properties but also on time and position. The constant term of mass transfer coefficient depends on relation between micro porosity and macro porosity of coal, capillary forces, and microporous structure of coal matrix. This term can be expressed theoretically or obtained experimentally. W artykule zaprezentowano nowy model matematyczny przepływu wody i gazu w jednowymiarowej warstwie węglowej z uwzględnieniem wymiany masy między systemem szczelin i matrycą węglową. Węgiel jako system przepływowy traktowany jest jako układ o podwójnej porowatości i przepuszczalności, składający się z mikroporowatej matrycy węglowej oraz z

  19. Assessment of interstate virtual water flows embedded in agriculture to mitigate water scarcity in India (1996-2014)

    Science.gov (United States)

    Katyaini, Suparana; Barua, Anamika

    2017-08-01

    India is the largest global freshwater user despite being highly water scarce. Agriculture is largest consumer of water and is most affected by water scarcity. Water scarcity is a persistent challenge in India, due to a gap in science and policy spheres. Virtual Water (VW) flows concept to mitigate water scarcity is at the science-policy interface. The paper aims to address the gap in VW research in India by first analyzing the interstate VW-flows embedded in food grains, and then linking these VW-flows with the water scarcity situation in the states, and elements of state and national water policies for the postreforms, and recovery periods of India's agriculture. There were net water savings (WS) of 207.5 PL during 1996-2014, indicating sustainable flows at the national level. WS increased from 11.2 TL/yr (1996-2005) to 25931.7 TL/yr (2005-2014), with the increase in interstate movement of food grains, and yield. However, unsustainable flows are seen at subnational scale, as VW-flows are from highly water-scarce states in North to highly water-scarce states in West and South. These flows are causing a concentration of water scarcity in water-scarce zones/states. Net VW imports were found to be driven by larger population and net VW exports by arable land. Further, the absence of state water policy cripples water management. Therefore, the paper argues that there is a need to rethink policy decisions on agriculture at the national and state level by internalizing water as a factor of production, through VW research.

  20. Patterns of a slow air-water flow in a semispherical container

    DEFF Research Database (Denmark)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.

    2016-01-01

    This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis-bottom int......This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis...... on the air flow. In contrast to flows in cylindrical and conical containers, there is no interaction with Moffatt corner vortices here....

  1. Water temperature in irrigation return flow from the Upper Snake Rock watershed

    Science.gov (United States)

    Water returning to a river from an irrigated watershed could increase the water temperature in the river. The objective of this study was to compare the temperature of irrigation return flow water with the temperature of the diverted irrigation water. Water temperature was measured weekly in the mai...

  2. Simulation of Ground-Water Flow in the Irwin Basin Aquifer System, Fort Irwin National Training Center, California

    Science.gov (United States)

    Densmore, Jill N.

    2003-01-01

    Ground-water pumping in the Irwin Basin at Fort Irwin National Training Center, California resulted in water-level declines of about 30 feet from 1941 to 1996. Since 1992, artificial recharge from wastewater-effluent infiltration and irrigation-return flow has stabilized water levels, but there is concern that future water demands associated with expansion of the base may cause a resumption of water-level declines. To address these concerns, a ground-water flow model of the Irwin Basin was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Historical data show that ground-water-level declines in the Irwin Basin between 1941 and 1996, caused the formation of a pumping depression near the pumped wells, and that recharge from the wastewater-treatment facility and disposal area caused the formation of a recharge mound. There have been two periods of water-level recovery in the Irwin Basin since the development of ground water in this basin; these periods coincide with a period of decreased pumpage from the basin and a period of increased recharge of water imported from the Bicycle Basin beginning in 1967 and from the Langford Basin beginning in 1992. Since 1992, artificial recharge has exceeded pumpage in the Irwin Basin and has stabilized water-level declines. A two-layer ground-water flow model was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Boundary conditions, hydraulic conductivity, altitude of the bottom of the layers, vertical conductance, storage coefficient, recharge, and discharge were determined using existing geohydrologic data. Rates and distribution of recharge and discharge were determined from

  3. Foodsheds in Virtual Water Flow Networks: A Spectral Graph Theory Approach

    Directory of Open Access Journals (Sweden)

    Nina Kshetry

    2017-06-01

    Full Text Available A foodshed is a geographic area from which a population derives its food supply, but a method to determine boundaries of foodsheds has not been formalized. Drawing on the food–water–energy nexus, we propose a formal network science definition of foodsheds by using data from virtual water flows, i.e., water that is virtually embedded in food. In particular, we use spectral graph partitioning for directed graphs. If foodsheds turn out to be geographically compact, it suggests the food system is local and therefore reduces energy and externality costs of food transport. Using our proposed method we compute foodshed boundaries at the global-scale, and at the national-scale in the case of two of the largest agricultural countries: India and the United States. Based on our determination of foodshed boundaries, we are able to better understand commodity flows and whether foodsheds are contiguous and compact, and other factors that impact environmental sustainability. The formal method we propose may be used more broadly to study commodity flows and their impact on environmental sustainability.

  4. Improved hydrological-model design by integrating nutrient and water flow

    Science.gov (United States)

    Arheimer, B.; Lindstrom, G.

    2013-12-01

    The potential of integrating hydrologic and nutrient concentration data to better understand patterns of catchment response and to better design hydrological modeling was explored using a national multi-basin model system for Sweden, called ';S-HYPE'. The model system covers more than 450 000 km2 and produce daily values of nutrient concentration and water discharge in 37 000 catchments from 1961 and onwards. It is based on the processed-based and semi-distributed HYdrological Predictions for the Environment (HYPE) code. The model is used operationally for assessments of water status or climate change impacts and for forecasts by the national warning service of floods, droughts and fire. The first model was launched in 2008, but S-HYPE is continuously improved and released in new versions every second year. Observations are available in 400 sites for daily water discharge and some 900 sites for monthly grab samples of nutrient concentrations. The latest version (2012) has an average NSE for water discharge of 0.7 and an average relative error of 5%, including both regulated and unregulated rivers with catchments from ten to several thousands of km2 and various landuse. The daily relative errors of nutrient concentrations are on average 20% for total Nitrogen and 35% for total Phosphorus. This presentation will give practical examples of how the nutrient data has been used to trace errors or inadequate parameter values in the hydrological model. Since 2008 several parts of the model structure has been reconsidered both in the source code, parameter values and input data of catchment characteristics. In this process water quality has been guiding much of the overall model design of catchment hydrological functions and routing along the river network. The model structure has thus been developed iteratively when evaluating results and checking time-series. Examples of water quality driven improvements will be given for estimation of vertical flow paths, such as

  5. Surface Water Connectivity, Flow Pathways and Water Level Fluctuation in a Cold Region Deltaic Ecosystem

    Science.gov (United States)

    Peters, D. L.; Niemann, O.; Skelly, R.; Monk, W. A.; Baird, D. J.

    2017-12-01

    The Peace-Athabasca Delta (PAD) is a 6000 km2 deltaic floodplain ecosystem of international importance (Wood Buffalo National Park, Ramsar Convention, UNESCO World Heritage, and SWOT satellite water level calibration/validation site). The low-relief floodplain formed at the confluence of the Peace, Athabasca and Birch rivers with Lake Athabasca. More than 1000 wetland and lake basins have varying degrees of connectivity to the main flow system. Hydroperiod and water storage is influenced by ice-jam and open-water inundations and prevailing semi-arid climate that control water drawdown. Prior studies have identified pathways of river-to-wetland floodwater connection and historical water level fluctuation/trends as a key knowledge gaps, limiting our knowledge of deltaic ecosystem status and potential hydroecological responses to climate change and upstream water alterations to flow contributions. To address this knowledge gap, surface elevation mapping of the PAD has been conducted since 2012 using aerial remote sensing Light Detection and Ranging (LiDAR), plus thousands of ground based surface and bathymetric survey points tied to Global Positioning System (GPS) were obtained. The elevation information was used to develop a high resolution digital terrain model to simulate and investigate surface water connectivity. Importantly, the surveyed areas contain a set of wetland monitoring sites where ground-based surface water connectivity, water level/depth, water quality, and aquatic ecology (eg, vegetation, macroinvertebrate and muskrat) have been examined. The goal of this presentation is to present an assessment of: i) surface water fluctuation and connectivity for PAD wetland sites; ii) 40+ year inter-annual hydroperiod reconstruction for a perched basin using a combination of field measurements, remote sensing estimates, and historical documents; and iii) outline an approach to integrate newly available hydro-bio-geophysical information into a novel, multi

  6. Mechanistic understanding of cellular level of water in plant-based food material

    Science.gov (United States)

    Khan, Md. Imran H.; Kumar, C.; Karim, M. A.

    2017-06-01

    Understanding of water distribution in plant-based food material is crucial for developing an accurate heat and mass transfer drying model. Generally, in plant-based food tissue, water is distributed in three different spaces namely, intercellular water, intracellular water, and cell wall water. For hygroscopic material, these three types of water transport should be considered for actual understanding of heat and mass transfer during drying. However, there is limited study dedicated to the investigation of the moisture distribution in a different cellular environment in the plant-based food material. Therefore, the aim of the present study was to investigate the proportion of intercellular water, intracellular water, and cell wall water inside the plant-based food material. During this study, experiments were performed for two different plant-based food tissues namely, eggplant and potato tissue using 1H-NMR-T2 relaxometry. Various types of water component were calculated by using multicomponent fits of the T2 relaxation curves. The experimental result showed that in potato tissue 80-82% water exist in intracellular space; 10-13% water in intercellular space and only 4-6% water exist in the cell wall space. In eggplant tissue, 90-93% water in intracellular space, 4-6% water exists in intercellular space and the remaining percentage of water is recognized as cell wall water. The investigated results quantify different types of water in plant-based food tissue. The highest proportion of water exists in intracellular spaces. Therefore, it is necessary to include different transport mechanism for intracellular, intercellular and cell wall water during modelling of heat and mass transfer during drying.

  7. Siphons, Water Clocks, Cooling Coffee, and Leaking Capacitors: Classroom Activities and a Few Equations to Help Students Understand Radioactive Decay and Other Exponential Processes

    Science.gov (United States)

    Brady, John B.

    2009-01-01

    Although an understanding of radiometric dating is central to the preparation of every geologist, many students struggle with the concepts and mathematics of radioactive decay. Physical demonstrations and hands-on experiments can be used to good effect in addressing this teaching conundrum. Water, heat, and electrons all move or flow in response…

  8. A study of water hammer phenomena in a one-component two-phase bubbly flow

    International Nuclear Information System (INIS)

    Fujii, Terushige; Akagawa, Koji

    2000-01-01

    Water hammer phenomena caused by a rapid valve closure, that is, shock phenomena in two-phase flows, are an important problem for the safety assessment of a hypothetical LOCA. This paper presents the results of experimental and analytical studies of the water hammer phenomena in a one-component tow-phase bubbly flow. In order to clarify the characteristics of water hammer phenomena, experiments for a one-component two-phase flow of Freon R-113 were conducted and a numerical simulation of pressure transients was developed. An overall picture of the water hammer phenomena in a one-component two-phase flow is presented an discussed. (author)

  9. Low-flow-storage solar system for domestic hot water; Low-flow Speicherkonzept fuer die solare Trinkwassererwaermung

    Energy Technology Data Exchange (ETDEWEB)

    Leibfried, U. [CONSOLAR Energiespeicher- und Regelungssysteme GmbH, Frankfurt am Main (Germany)

    2004-09-01

    Solar domestic hot water treatment relies on effective and insulated reservoirs to maximize solar efficiency. The article describes a newly developed low flow stratification tank. Key feature of this system is the spiral flow of the coolant in countermovement to the drinking water being heated. (orig.) [German] Bei der Solaren Trinkwassererwaermung ist der Einsatz effektiver Speichersysteme notwendig, um den solaren Ertrag zu maximieren. Im Bericht wird ein low-flow Speicherkonzept vorgestellt. Bei diesem System stroemt der vom Solarkollektor kommende Waermetraeger spiralfoermig von oben nach unten im Gegenstrom zu sich erwaermenden Trinkwasser. (orig.)

  10. Does water content or flow rate control colloid transport in unsaturated porous media?

    Science.gov (United States)

    Knappenberger, Thorsten; Flury, Markus; Mattson, Earl D; Harsh, James B

    2014-04-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (θ - θr)/(θs - θr)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  11. Panta Rhei-Everything flows: Global Hotspots of Human-Water Interactions

    Science.gov (United States)

    Di Baldassarre, G.; Srinivasan, V.; Tian, F.; Mohamed, Y.; Krueger, T.; Kreibich, H.; Liu, J.; Troy, T. J.; AghaKouchak, A.

    2017-12-01

    Panta Rhei-Everything Flows is the scientific decade (2013-2022) of the International Association of Hydrological Sciences (IAHS). This initiative aims to reach an improved interpretation of the processes governing the water cycle by focusing on their changing dynamics in connection with rapidly changing human systems (Montanari et al., 2013; McMillan et al., 2016). More than 400 water scientists have been involved in Panta Rhei so far, and several working groups have produced significant outcomes. In this presentation, we first summarize some key achievements of this initiative by showing how they have advanced our understanding of the way in which humans impact on, and respond to, hydrological change. Then, we suggest simple indicators to characterize interactions between water and human systems. These indicators aim to capture the relevance of human-water interactions and their potential to generate negative effects, such as water crises or unintended consequences. Finally, we show an application of these indicators to global hotspots, i.e. contrasting case studies from around the world. Our goal is to facilitate a community-wide effort in collecting and sharing essential data to map the role of human-water interactions across social and hydrological conditions. ReferencesMontanari et al. (2013) Panta Rhei—Everything Flows: Change in hydrology and society—The IAHS Scientific Decade 2013-2022, Hydrological Sciences Journal, 58(6), 1256-1275. McMillan et al. (2016) Panta Rhei 2013-2015: Global perspectives on hydrology, society and change. Hydrological sciences journal 61(7), 1174-1191.

  12. Evidence for sites of methylmercury formation in a flowing water system: Impact of anthropogenic barriers and water management

    International Nuclear Information System (INIS)

    Pizarro-Barraza, Claudia; Gustin, Mae Sexauer; Peacock, Mary; Miller, Matthieu

    2014-01-01

    The Truckee River, California-Nevada, USA is impacted by mercury (Hg) contamination associated with legacy gold mining. In this work, we investigated the potential for hot-spots of methylmercury (MeHg) formation in the river. Mercury concentrations in multiple media were also used to assess the impacts of anthropogenic barriers, restoration, and water management in this flowing water ecosystem. Water samples were collected on a seasonal time step over 3 years, and analyzed for total Hg (THg) and MeHg concentrations, along with a variety of other water quality parameters. In addition, we measured THg and MeHg in sediments, THg in macroinvertebrates, and THg and δ 15 N and δ 13 C concentrations in fish. Differences in stable isotopes and Hg concentrations in fish were applied to understand the mobility of fish in the river. Mercury concentrations of specific macroinvertebrate species were used to identify sites of MeHg production. In general, loads of Hg and nutrients in the river reach above the Reno–Sparks metropolitan area were similar to that reported for pristine systems, while within and below the city, water quality impacts were observed. Fish isotope data showed that in the city reach food resources were different than those upriver and downriver. Based on Hg and isotope data, mobility of the fish in the river is impacted by anthropogenic obstructions and water manipulation. Below the city, particle bound Hg, derived from the legacy mining, continues to be input to the Truckee River. This Hg is deposited in riparian habitats and areas of river restoration, where it is methylated and becomes available to biota. During spring, when flows were highest, MeHg produced and stored in the sediments is mobilized and transported downriver. Fish and macroinvertebrate concentrations increased downriver indicating passive uptake from water. The information presented here could be useful for those doing river restoration and water manipulation in mercury contaminated

  13. Evidence for sites of methylmercury formation in a flowing water system: Impact of anthropogenic barriers and water management

    Energy Technology Data Exchange (ETDEWEB)

    Pizarro-Barraza, Claudia [Department of Natural Resources and Environmental Sciences, University of Nevada-Reno, Reno, NV 89557 (United States); Gustin, Mae Sexauer, E-mail: mgustin@cabnr.unr.edu [Department of Natural Resources and Environmental Sciences, University of Nevada-Reno, Reno, NV 89557 (United States); Peacock, Mary [Department of Biology, University of Nevada-Reno, Reno, NV 89557 (United States); Miller, Matthieu [Department of Natural Resources and Environmental Sciences, University of Nevada-Reno, Reno, NV 89557 (United States)

    2014-04-01

    The Truckee River, California-Nevada, USA is impacted by mercury (Hg) contamination associated with legacy gold mining. In this work, we investigated the potential for hot-spots of methylmercury (MeHg) formation in the river. Mercury concentrations in multiple media were also used to assess the impacts of anthropogenic barriers, restoration, and water management in this flowing water ecosystem. Water samples were collected on a seasonal time step over 3 years, and analyzed for total Hg (THg) and MeHg concentrations, along with a variety of other water quality parameters. In addition, we measured THg and MeHg in sediments, THg in macroinvertebrates, and THg and δ{sup 15}N and δ{sup 13}C concentrations in fish. Differences in stable isotopes and Hg concentrations in fish were applied to understand the mobility of fish in the river. Mercury concentrations of specific macroinvertebrate species were used to identify sites of MeHg production. In general, loads of Hg and nutrients in the river reach above the Reno–Sparks metropolitan area were similar to that reported for pristine systems, while within and below the city, water quality impacts were observed. Fish isotope data showed that in the city reach food resources were different than those upriver and downriver. Based on Hg and isotope data, mobility of the fish in the river is impacted by anthropogenic obstructions and water manipulation. Below the city, particle bound Hg, derived from the legacy mining, continues to be input to the Truckee River. This Hg is deposited in riparian habitats and areas of river restoration, where it is methylated and becomes available to biota. During spring, when flows were highest, MeHg produced and stored in the sediments is mobilized and transported downriver. Fish and macroinvertebrate concentrations increased downriver indicating passive uptake from water. The information presented here could be useful for those doing river restoration and water manipulation in mercury

  14. Information flow on social networks: from empirical data to situation understanding

    Science.gov (United States)

    Roy, Heather; Abdelzaher, Tarek; Bowman, Elizabeth K.; Al Amin, Md. Tanvir

    2017-05-01

    This paper describes characteristics of information flow on social channels, as a function of content type and relations among individual sources, distilled from analysis of Twitter data as well as human subject survey results. The working hypothesis is that individuals who propagate content on social media act (e.g., decide whether to relay information or not) in accordance with their understanding of the content, as well as their own beliefs and trust relations. Hence, the resulting aggregate content propagation pattern encodes the collective content interpretation of the underlying group, as well as their relations. Analysis algorithms are described to recover such relations from the observed propagation patterns as well as improve our understanding of the content itself in a language agnostic manner simply from its propagation characteristics. An example is to measure the degree of community polarization around contentious topics, identify the factions involved, and recognize their individual views on issues. The analysis is independent of the language of discourse itself, making it valuable for multilingual media, where the number of languages used may render language-specific analysis less scalable.

  15. Simulation of water flows in multiple columns with small outlets

    International Nuclear Information System (INIS)

    Suh, Yong Kweon; Li, Zi Lu; Jeong, Jong Hyun; Lee, Jun Hee

    2006-01-01

    High-pressure die casting such as thixocasting and rheocasting is an effective process in the manufacturing automotive parts. Following the recent trend in the automotive manufacturing technologies, the product design subject to the die casting becomes more and more complex. Simultaneously the injection speed is also designed to be very high to establish a short cycle-time. Thus, the requirement of the die design becomes more demanding than ever before. In some cases the product's shape can have multiple slender manifolds. In such cases, design of the inlet and outlet parts of the die is very important in the whole manufacturing process. The main issues required for the qualified products are to attain gentle and uniform flow of the molten liquid within the passages of the die. To satisfy such issues, the inlet cylinder ('bed cylinder' in this paper) must be as large as possible and simultaneously the outlet opening at the end of each passage must be as small as possible. However these in turn obviously bring additional manufacturing costs caused by re-melting of the bed cylinder and increased power due to the small outlet-openings. The purpose of this paper is to develop effective simulation methods of calculation for fluid flows in multiple columns, which mimic the actual complex design, and to get some useful information which can give some contributions to the die-casting industry. We have used a commercial code CFX in the numerical simulation. The primary parameter involved is the size of the bed cylinder. We will show how the very small opening of the outlet can be treated with the aid of the porous model provided in the code. To check the validity of the numerical results we have also conducted a simple experiment by using water

  16. 33 CFR 2.34 - Waters subject to tidal influence; waters subject to the ebb and flow of the tide; mean high water.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Waters subject to tidal influence; waters subject to the ebb and flow of the tide; mean high water. 2.34 Section 2.34 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL JURISDICTION Jurisdictional Terms § 2...

  17. Improving National Water Modeling: An Intercomparison of two High-Resolution, Continental Scale Models, CONUS-ParFlow and the National Water Model

    Science.gov (United States)

    Tijerina, D.; Gochis, D.; Condon, L. E.; Maxwell, R. M.

    2017-12-01

    Development of integrated hydrology modeling systems that couple atmospheric, land surface, and subsurface flow is growing trend in hydrologic modeling. Using an integrated modeling framework, subsurface hydrologic processes, such as lateral flow and soil moisture redistribution, are represented in a single cohesive framework with surface processes like overland flow and evapotranspiration. There is a need for these more intricate models in comprehensive hydrologic forecasting and water management over large spatial areas, specifically the Continental US (CONUS). Currently, two high-resolution, coupled hydrologic modeling applications have been developed for this domain: CONUS-ParFlow built using the integrated hydrologic model ParFlow and the National Water Model that uses the NCAR Weather Research and Forecasting hydrological extension package (WRF-Hydro). Both ParFlow and WRF-Hydro include land surface models, overland flow, and take advantage of parallelization and high-performance computing (HPC) capabilities; however, they have different approaches to overland subsurface flow and groundwater-surface water interactions. Accurately representing large domains remains a challenge considering the difficult task of representing complex hydrologic processes, computational expense, and extensive data needs; both models have accomplished this, but have differences in approach and continue to be difficult to validate. A further exploration of effective methodology to accurately represent large-scale hydrology with integrated models is needed to advance this growing field. Here we compare the outputs of CONUS-ParFlow and the National Water Model to each other and with observations to study the performance of hyper-resolution models over large domains. Models were compared over a range of scales for major watersheds within the CONUS with a specific focus on the Mississippi, Ohio, and Colorado River basins. We use a novel set of approaches and analysis for this comparison

  18. Multivariate recurrence network analysis for characterizing horizontal oil-water two-phase flow.

    Science.gov (United States)

    Gao, Zhong-Ke; Zhang, Xin-Wang; Jin, Ning-De; Marwan, Norbert; Kurths, Jürgen

    2013-09-01

    Characterizing complex patterns arising from horizontal oil-water two-phase flows is a contemporary and challenging problem of paramount importance. We design a new multisector conductance sensor and systematically carry out horizontal oil-water two-phase flow experiments for measuring multivariate signals of different flow patterns. We then infer multivariate recurrence networks from these experimental data and investigate local cross-network properties for each constructed network. Our results demonstrate that a cross-clustering coefficient from a multivariate recurrence network is very sensitive to transitions among different flow patterns and recovers quantitative insights into the flow behavior underlying horizontal oil-water flows. These properties render multivariate recurrence networks particularly powerful for investigating a horizontal oil-water two-phase flow system and its complex interacting components from a network perspective.

  19. Water insecurity in a syndemic context: Understanding the psycho-emotional stress of water insecurity in Lesotho, Africa.

    Science.gov (United States)

    Workman, Cassandra L; Ureksoy, Heather

    2017-04-01

    Syndemics occur when populations experience synergistic and multiplicative effects of co-occurring epidemics. Proponents of syndemic theory highlight the importance of understanding the social context in which diseases spread and cogently argue that there are biocultural effects of external stresses such as food insecurity and water insecurity. Thus, a holistic understanding of disease or social vulnerability must incorporate an examination of the emotional and social effects of these phenomena. This paper is a response to the call for a renewed focus on measuring the psycho-emotional and psychosocial effects of food insecurity and water insecurity. Using a mixed-method approach of qualitative interviews and quantitative assessment, including a household demographic, illness, and water insecurity scale, the Household Food Insecurity Access Scale, and the Hopkins Symptoms Checklist-25, this research explored the psycho-emotional effects of water insecurity, food insecurity, and household illness on women and men residing in three low-land districts in Lesotho (n = 75). Conducted between February and November of 2011, this exploratory study first examined the complicated interaction of water insecurity, food insecurity and illness to understand and quantify the relationship between these co-occurring stresses in the context of HIV/AIDS. Second, it sought to separate the role of water insecurity in predicting psycho-emotional stress from other factors, such as food insecurity and household illness. When asked directly about water, qualitative research revealed water availability, access, usage amount, and perceived water cleanliness as important dimensions of water insecurity, creating stress in respondents' daily lives. Qualitative and quantitative data show that water insecurity, food insecurity and changing household demographics, likely resulting from the HIV/AIDS epidemic, are all associated with increased anxiety and depression, and support the conclusion that

  20. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes

    International Nuclear Information System (INIS)

    Tan, Hongbing; Zhang, Yanfei; Zhang, Wenjie; Kong, Na; Zhang, Qing; Huang, Jingzhong

    2014-01-01

    Highlights: • Unique geothermal resources in Tibetan Plateau were discussed. • Isotopes were used to trace circulation of geothermal water. • Magmatic water mixing dominates geothermal water evolution. - Abstract: With the uplift of the Tibetan Plateau, many of the world’s rarest and most unique geothermal fields have been developed. This study aims to systematically analyze the characteristics of the hydrogen and oxygen isotopic data of geothermal, river, and lake waters to understand the circulation of groundwater and to uncover the mechanism of geothermal formation in the Tibetan Plateau. Field observations and isotopic data show that geothermal water has higher temperatures and hydraulic pressures, as well as more depleted D and 18 O isotopic compositions than river and lake waters. Thus, neither lakes nor those larger river waters are the recharge source of geothermal water. Snow-melt water in high mountains can vertically infiltrate and deeply circulate along some stretching tensile active tectonic belts or sutures and recharge geothermal water. After deep circulation, cold surface water evolves into high-temperature thermal water and is then discharged as springs at the surface again in a low area, under high water-head difference and cold–hot water density difference. Therefore, the large-scale, high-temperature, high-hydraulic-pressure geothermal systems in the Tibetan Plateau are developed and maintained by rapid groundwater circulation and the heat source of upwelled residual magmatic water. Inevitably, the amount of geothermal water will increase if global warming accelerates the melting of glaciers in high mountains

  1. Discrepancies between two measurements and two model approaches for liquid water flow in snow

    Science.gov (United States)

    Wever, N.; Schmid, L.; Heilig, A.; Fierz, C. G.; Lehning, M.

    2014-12-01

    understanding and modeling liquid water flow in snow, but suggests that existing model approaches satisfactorily predict the onset of snowpack runoff in the melt season.

  2. A study of flow field of feeder outlet pipe at CANDU for understanding flow accelerated(assistant) corrosion phenomena

    International Nuclear Information System (INIS)

    Kweon, H.; Seo, D. W.; Park, K. C.; Jeong, H. S.

    2002-01-01

    The FAC(Flow Accelerated Corrosion) on feeder outlet pipe is an important phenomena for surveying an integrity of CANDU plant. There are correlated a corrosion effect in electrochemistry and a flow field effect in hydrodynamics. A mass transfer rate is main governing parameter in macroscopic analysis of FAC phenomena. Therefore, first of all, at the hydrodynamic aspect the analysis of FAC is carried out. CFX 4.3 code calculates the flow field of feeder outlet pipe with complex geometry and the calculated results are estimated with an experimental data. On the basis of power plant data base, the worst location about wall thinning is compared with calculated and experimental location

  3. A multiphase flow meter for the on-line determination of the flow rates of oil, water and gas

    International Nuclear Information System (INIS)

    Roach, G.J.; Watt, J.S.

    1997-01-01

    Multiphase mixtures of crude oil, formation water and gas are carried in pipelines from oil wells to production facilities. Multiphase flow meters (MFMs) are being developed to determine the flow rates of each component of the heterogeneous mixture in the pipeline. CSIRO Minerals has developed and field tested a gamma-ray MFM for the on-line determination of the flow rates of heterogeneous mixtures of oil, water and gas in pipelines. It consists of two specialised gamma-ray transmission gauges, and pressure and temperature sensors, mounted on the pipeline carrying the full flow of the production stream. The MFM separately measures liquids and gas flow rates, and the volume ratio of water and liquids (water cut). The MFM has been trialled at three offshore production facilities in Australia. In each, the MFM was mounted on the pipeline between the test manifold and the test separator. The multiphase streams from the various wells feeding to the platform were sequentially routed past the MFM. The MFM and test separator outputs were compared using regression analysis. The flow rates of oil, water and gas were each determined to relative errors in the range of 5-10% . The MFM has been in routine use on the West Kingfish platform in the Bass Strait since November 1994. The MFM was recently tested over a wide range of flow conditions at a Texaco flow facility near Houston. Water cut, based on pre-trial calibration, was determined to 2% rms over the range 0-100% water cut. The liquids and gas flow results were interpreted based on slip correlations obtained from comparison of the MFM and Texaco flows. Using these, the relative errors were respectively 6.6% for liquid flow, 6.2% for gas, 8% for oil and 8% for water. The MFM is licensed to Kvaerner FSSL of Aberdeen. Kvaerner will supply the gamma-ray MFM for both platform and subsea use. Technology transfer commenced in December 1996, and Kvaerner completed the manufacture of the first MFM in August 1997

  4. A multiphase flow meter for the on-line determination of the flow rates of oil, water and gas

    Energy Technology Data Exchange (ETDEWEB)

    Roach, G.J.; Watt, J.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Menai, NSW (Australia). Divsion of Minerals

    1997-10-01

    Multiphase mixtures of crude oil, formation water and gas are carried in pipelines from oil wells to production facilities. Multiphase flow meters (MFMs) are being developed to determine the flow rates of each component of the heterogeneous mixture in the pipeline. CSIRO Minerals has developed and field tested a gamma-ray MFM for the on-line determination of the flow rates of heterogeneous mixtures of oil, water and gas in pipelines. It consists of two specialised gamma-ray transmission gauges, and pressure and temperature sensors, mounted on the pipeline carrying the full flow of the production stream. The MFM separately measures liquids and gas flow rates, and the volume ratio of water and liquids (water cut). The MFM has been trialled at three offshore production facilities in Australia. In each, the MFM was mounted on the pipeline between the test manifold and the test separator. The multiphase streams from the various wells feeding to the platform were sequentially routed past the MFM. The MFM and test separator outputs were compared using regression analysis. The flow rates of oil, water and gas were each determined to relative errors in the range of 5-10% . The MFM has been in routine use on the West Kingfish platform in the Bass Strait since November 1994. The MFM was recently tested over a wide range of flow conditions at a Texaco flow facility near Houston. Water cut, based on pre-trial calibration, was determined to 2% rms over the range 0-100% water cut. The liquids and gas flow results were interpreted based on slip correlations obtained from comparison of the MFM and Texaco flows. Using these, the relative errors were respectively 6.6% for liquid flow, 6.2% for gas, 8% for oil and 8% for water. The MFM is licensed to Kvaerner FSSL of Aberdeen. Kvaerner will supply the gamma-ray MFM for both platform and subsea use. Technology transfer commenced in December 1996, and Kvaerner completed the manufacture of the first MFM in August 1997 4 refs., 7 figs.

  5. Construction of estimated flow- and load-duration curves for Kentucky using the Water Availability Tool for Environmental Resources (WATER)

    Science.gov (United States)

    Unthank, Michael D.; Newson, Jeremy K.; Williamson, Tanja N.; Nelson, Hugh L.

    2012-01-01

    Flow- and load-duration curves were constructed from the model outputs of the U.S. Geological Survey's Water Availability Tool for Environmental Resources (WATER) application for streams in Kentucky. The WATER application was designed to access multiple geospatial datasets to generate more than 60 years of statistically based streamflow data for Kentucky. The WATER application enables a user to graphically select a site on a stream and generate an estimated hydrograph and flow-duration curve for the watershed upstream of that point. The flow-duration curves are constructed by calculating the exceedance probability of the modeled daily streamflows. User-defined water-quality criteria and (or) sampling results can be loaded into the WATER application to construct load-duration curves that are based on the modeled streamflow results. Estimates of flow and streamflow statistics were derived from TOPographically Based Hydrological MODEL (TOPMODEL) simulations in the WATER application. A modified TOPMODEL code, SDP-TOPMODEL (Sinkhole Drainage Process-TOPMODEL) was used to simulate daily mean discharges over the period of record for 5 karst and 5 non-karst watersheds in Kentucky in order to verify the calibrated model. A statistical evaluation of the model's verification simulations show that calibration criteria, established by previous WATER application reports, were met thus insuring the model's ability to provide acceptably accurate estimates of discharge at gaged and ungaged sites throughout Kentucky. Flow-duration curves are constructed in the WATER application by calculating the exceedence probability of the modeled daily flow values. The flow-duration intervals are expressed as a percentage, with zero corresponding to the highest stream discharge in the streamflow record. Load-duration curves are constructed by applying the loading equation (Load = Flow*Water-quality criterion) at each flow interval.

  6. Effect of Water Cut on Pressure Drop of Oil (D130) -Water Flow in 4″Horizontal Pipe

    Science.gov (United States)

    Basha, Mehaboob; Shaahid, S. M.; Al-Hems, Luai M.

    2018-03-01

    The oil-water flow in pipes is a challenging subject that is rich in physics and practical applications. It is often encountered in many oil and chemical industries. The pressure gradient of two phase flow is still subject of immense research. The present study reports pressure measurements of oil (D130)-water flow in a horizontal 4″ diameter stainless steel pipe at different flow conditions. Experiments were carried out for different water cuts (WC); 0-100%. Inlet oil-water flow rates were varied from 4000 to 8000 barrels-per-day in steps of 2000. It has been found that the frictional pressure drop decreases for WC = 0 - 40 %. With further increase in WC, friction pressure drop increases, this could be due to phase inversion.

  7. Managing Water Sustainability: Virtual Water Flows and Economic Water Productivity Assessment of the Wine Trade between Italy and the Balkans

    Directory of Open Access Journals (Sweden)

    Pier Paolo Miglietta

    2018-02-01

    Full Text Available The management of natural resources in economic activities has become a fundamental issue when considering the perspective of sustainable development. It is necessary to rethink every process in order to reach efficiency from different points of view, not only environmentally but also economically. Water scarcity is growing because of economic and population growth, climate change, and the increasing water demand. Currently, agri-food represents the most water consumptive sector, and the increasing importance of international trade in this industry puts freshwater issues in a global context that should be analyzed and regulated by sustainable policies. This analysis is focused on virtual water flows and economic water productivity related to the wine trade, and aims to evaluate water loss/savings achieved through bilateral trade relations. The choice fell on Italy, the first wine producer in the world, and the Balkan countries. The latter are new markets for wine production/consumption, in which Italian wines are strongly positioned for different reasons. The results show that, from a national point of view and considering wine trade, Italy exports water in virtual form to the Balkan countries, more than it imports, so that in effect it partially uses its own water resources for the wine supply of the Balkans. The latter, on the other hand, being a net importer of wine, partially depends on Italian water resources and exerts less pressure on their own water basins in the supporting wine supply. We also observed that the wine trade between Italy and the Balkans implies global water savings.

  8. Interventions and Interactions: Understanding Coupled Human-Water Dynamics for Improved Water Resources Management in the Himalayas

    Science.gov (United States)

    Crootof, A.

    2017-12-01

    Understanding coupled human-water dynamics offers valuable insights to address fundamental water resources challenges posed by environmental change. With hydropower reshaping human-water interactions in mountain river basins, there is a need for a socio-hydrology framework—which examines two-way feedback loops between human and water systems—to more effectively manage water resources. This paper explores the cross-scalar interactions and feedback loops between human and water systems in river basins affected by run-of-the-river hydropower and highlights the utility of a socio-hydrology perspectives to enhance water management in the face of environmental change. In the Himalayas, the rapid expansion of run-of-the-river hydropower—which diverts streamflow for energy generation—is reconfiguring the availability, location, and timing of water resources. This technological intervention in the river basin not only alters hydrologic dyanmics but also shapes social outcomes. Using hydropower development in the highlands of Uttarakhand, India as a case study, I first illustrate how run-of-the-river projects transform human-water dynamics by reshaping the social and physical landscape of a river basin. Second, I emphasize how examining cross-scalar feedbacks among structural dynamics, social outcomes, and values and norms in this coupled human-water system can inform water management. Third, I present hydrological and social literature, raised separately, to indicate collaborative research needs and knowledge gaps for coupled human-water systems affected by run-of-the-river hydropower. The results underscore the need to understand coupled human-water dynamics to improve water resources management in the face of environmental change.

  9. Understanding the effectiveness of vegetated streamside management zones for protecting water quality (Chapter 5)

    Science.gov (United States)

    Philip Smethurst; Kevin Petrone; Daniel Neary

    2012-01-01

    We set out to improve understanding of the effectiveness of streamside management zones (SMZs) for protecting water quality in landscapes dominated by agriculture. We conducted a paired-catchment experiment that included water quality monitoring before and after the establishment of a forest plantation as an SMZ on cleared farmland that was used for extensive grazing....

  10. The effect of water temperature and synoptic winds on the development of surface flows over narrow, elongated water bodies

    Science.gov (United States)

    Segal, M.; Pielke, R. A.

    1985-01-01

    Simulations of the thermally induced breeze involved with a relatively narrow, elongated water body is presented in conjunction with evaluations of sensible heat fluxes in a stable marine atmospheric surface layer. The effect of the water surface temperature and of the large-scale synoptic winds on the development of surface flows over the water is examined. As implied by the sensible heat flux patterns, the simulation results reveal the following trends: (1) when the synoptic flow is absent or light, the induced surface breeze is not affected noticeably by a reduction of the water surface temperature; and (2) for stronger synoptic flow, the resultant surface flow may be significantly affected by the water surface temperature.

  11. Meeting Indigenous peoples' objectives in environmental flow assessments: Case studies from an Australian multi-jurisdictional water sharing initiative

    Science.gov (United States)

    Jackson, Sue; Pollino, Carmel; Maclean, Kirsten; Bark, Rosalind; Moggridge, Bradley

    2015-03-01

    The multi-dimensional relationships that Indigenous peoples have with water are only recently gaining recognition in water policy and management activities. Although Australian water policy stipulates that the native title interests of Indigenous peoples and their social, cultural and spiritual objectives be included in water plans, improved rates of Indigenous access to water have been slow to eventuate, particularly in those regions where the water resource is fully developed or allocated. Experimentation in techniques and approaches to both identify and determine Indigenous water requirements will be needed if environmental assessment processes and water sharing plans are to explicitly account for Indigenous water values. Drawing on two multidisciplinary case studies conducted in Australia's Murray-Darling Basin, we engage Indigenous communities to (i) understand their values and explore the application of methods to derive water requirements to meet those values; (ii) assess the impact of alternative water planning scenarios designed to address over-allocation to irrigation; and (iii) define additional volumes of water and potential works needed to meet identified Indigenous requirements. We provide a framework where Indigenous values can be identified and certain water needs quantified and advance a methodology to integrate Indigenous social, cultural and environmental objectives into environmental flow assessments.

  12. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    Science.gov (United States)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  13. Freshwater Ecosystem Service Flow Model To Evaluate Regional Water Security: A Case Study In Beijing-Tianjin-Hebei Region, China

    Science.gov (United States)

    Li, D.; Li, S.

    2016-12-01

    Freshwater service, as the most important support ecosystem service, is essential to human survival and development. Many studies have evidenced the spatial differences in the supply and demand of ecosystem services and raised the concept of ecosystem service flow. However, rather few studies quantitatively characterize the freshwater service flow. This paper aims to quantify the effect of freshwater ecosystem service flow on downstream areas in Beijing-Tianjin-Hebei (BTH) region, China over 2000, 2005 and 2010. We computed the freshwater ecosystem service provision with InVEST model. We calculated freshwater ecosystem service consumption with water quota method. We simulated the freshwater ecosystem service flow using our simplified flow model and assessed the regional water security with the improved freshwater security index. The freshwater provision service mainly depends on climatic factors that cannot be influenced by management, while the freshwater consumption service is constrained by human activities. Furthermore, the decrease of water quota for agricultural, domestic and industrial water counteracts the impact of increasing freshwater demand. The analysis of freshwater ecosystem service flow reveals that the majority area of the BTH (69.2%) is affected by upstream freshwater. If freshwater ecosystem service flow is considered, the water safety areas of the whole BTH account for 66.9%, 66.1%, 71.3%, which increase 6.4%, 6.8% and 5.7% in 2000, 2005 and 2010, respectively. These results highlight the need to understand the teleconnections between distant freshwater ecosystem service provision and local freshwater ecosystem service use. This approach therefore helps managers choose specific management and investment strategies for critical upstream freshwater provisions across different regions.

  14. Virtual water flows related to land use in an intensive agriculture in the Fergana Valley, Uzbekistan

    Science.gov (United States)

    Klipstein, A.; Schneider, K.; Breuer, L.; Frede, H. G.

    2009-04-01

    Due to low annual precipitation, agricultural production in Uzbekistan is depending on irrigation from the Syrdarya and Amudarya rivers to a great deal. One of the most important cash crops of the country is cotton. Current irrigation management leads to elevated groundwater levels, salinization of soils and to a degradation of soil and water resources. Through export of cotton and other crops, the problems related to water consumption and water management are transported beyond the producing country. The amount of water transported through production and export is referred to as virtual water. To distinguish between productive and unproductive partitioning of water flows, the terms green and blue water have been introduced. Information on virtual water flows due to crop production usually only exist on country level. To reduce uncertainties related to generalization, the effect of land management and environmental factors on the partitioning of water flows needs to be studied on smaller scales. The presented study analyzes water fluxes in an intensively used agricultural area in the Fergana Valley, Uzbekistan. The study aims to a) quantify crop specific water consumption in agricultural production under current management and b) analyze water use efficiency as subject to land use and irrigation management. Based on crop production, irrigation management and environmental conditions in the study area, virtual water flows will be calculated on the level of agricultural collectives (Water Users Associations). In a further step, the partitioning of green and blue water fluxes will be quantified. Alternative scenarios for improved water management will be analyzed in a model study.

  15. Improving mixing efficiency in a closed circuit water flow rig for ...

    African Journals Online (AJOL)

    Investigations were conducted on a laboratory scale water flow rig to determine the flow characteristics for improving mixing efficiency in the tanks for radiotracer ... The modified rig with scaled-up mixing techniques could serve as platform for training in evaluating mixing vessels and flow meters in industrial process plants.

  16. Griswold Tempered Water Flow Regulator Valves Used as Anti-Siphon Valves

    International Nuclear Information System (INIS)

    MISKA, C.

    2000-01-01

    FCV-1*22 and 1*23 are Griswold constant flow regulators used as anti-siphon valves in the tempered water system, they fail closed but valve cartridge orifice allows minimum flow to prevent loss of water from the MCO/CASK annulus

  17. Basal interstitial water pressure in laboratory debris flows over a rigid bed in an open channel

    Directory of Open Access Journals (Sweden)

    N. Hotta

    2012-08-01

    Full Text Available Measuring the interstitial water pressure of debris flows under various conditions gives essential information on the flow stress structure. This study measured the basal interstitial water pressure during debris flow routing experiments in a laboratory flume. Because a sensitive pressure gauge is required to measure the interstitial water pressure in shallow laboratory debris flows, a differential gas pressure gauge with an attached diaphragm was used. Although this system required calibration before and after each experiment, it showed a linear behavior and a sufficiently high temporal resolution for measuring the interstitial water pressure of debris flows. The values of the interstitial water pressure were low. However, an excess of pressure beyond the hydrostatic pressure was observed with increasing sediment particle size. The measured excess pressure corresponded to the theoretical excess interstitial water pressure, derived as a Reynolds stress in the interstitial water of boulder debris flows. Turbulence was thought to induce a strong shear in the interstitial space of sediment particles. The interstitial water pressure in boulder debris flows should be affected by the fine sediment concentration and the phase transition from laminar to turbulent debris flow; this should be the subject of future studies.

  18. Bifurcations of a creeping air–water flow in a conical container

    DEFF Research Database (Denmark)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.

    2016-01-01

    This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air–water flow, driven by a rotating top disk in a vertical conical container. As water height (Formula presented.) and cone half-angle (Formula presented.) vary, numerous flow metamorphoses occur...

  19. ENVIRONMENTAL RESEARCH BRIEF : ANALYTIC ELEMENT MODELING OF GROUND-WATER FLOW AND HIGH PERFORMANCE COMPUTING

    Science.gov (United States)

    Several advances in the analytic element method have been made to enhance its performance and facilitate three-dimensional ground-water flow modeling in a regional aquifer setting. First, a new public domain modular code (ModAEM) has been developed for modeling ground-water flow ...

  20. Impacts of impervious cover, water withdrawals, and climate change on river flows in the conterminous US

    Science.gov (United States)

    P. V. Caldwell; G. Sun; S. G. McNulty; E. C. Cohen; J. A. Moore Myers

    2012-01-01

    Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land-use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of...

  1. Recurrence network analysis of experimental signals from bubbly oil-in-water flows

    International Nuclear Information System (INIS)

    Gao, Zhong-Ke; Zhang, Xin-Wang; Du, Meng; Jin, Ning-De

    2013-01-01

    Based on the signals from oil–water two-phase flow experiment, we construct and analyze recurrence networks to characterize the dynamic behavior of different flow patterns. We first take a chaotic time series as an example to demonstrate that the local property of recurrence network allows characterizing chaotic dynamics. Then we construct recurrence networks for different oil-in-water flow patterns and investigate the local property of each constructed network, respectively. The results indicate that the local topological statistic of recurrence network is very sensitive to the transitions of flow patterns and allows uncovering the dynamic flow behavior associated with chaotic unstable periodic orbits.

  2. Air-water two-phase flow through a pipe junction

    International Nuclear Information System (INIS)

    Suu, Tetsuo

    1991-01-01

    The distribution of the local void fraction across the section of the conduit was studied experimentally in air-water two-phase flow flowing through a pipe junction with the branching angle of 90deg and the area ratio of unity. As in the previous report, the main conduit of the junction was set up vertically and upward air-water bubbly and slug flows were arranged in the main upstream section. If the flow regime, the quality and the ratio of lateral mass flow discharge of water to total mass flow discharge of water are the same, the larger the Reynolds number is, the more violent the variety of the local void fraction distribution adjacent to the branching part in the lateral conduit is. However, the variety in the main downstream section is scarcely influenced by the Reynolds number. (author)

  3. Modeling water flow in a tile drainage network in glacial clayey tills in an agricultural catchment

    Science.gov (United States)

    De Schepper, G.; Therrien, R.; Refsgaard, J.

    2013-12-01

    Tile drainage is a widespread water management practice applied to poorly drained production fields to increase crop productivity and reduce flooding risks. A challenge associated with water resources management in agricultural catchments is to properly understand and quantify the role of tile drainage for the catchment water balance. Only a few studies have been presented where different numerical modeling approaches were tested to simulate tile drainage at the field or catchment scale. These studies suggest that challenges still remainto represent correctly subsurface drainage networks in numerical models while accounting for their influence on water flow and transport. To investigate the impact of tile drains, a variably-saturated flow model has been applied to the Lillebaek agricultural catchment, Denmark. The Lillebaek catchment covers 5 ha and is underlain by about 30 m of Quaternary deposits that consist of a local sandy aquifer with upper and lower clayey till units. A tile drainage network is located in the upper clay till. Water table elevations are recorded daily in a network of piezometers within the catchment, as well as drainage and stream discharge. The control volume finite element HydroGeoSphere model is used to simulate 3D variably-saturated flow in the catchment, coupled with 1D open-channel flow in tile drains and 2D overland flow. That approach requires that the tile drainage network be represented explicitly in the model with 1D elements. The 3D field-scale hydrogeological model was first generated from a national-scale geological model for Denmark combined with available local borehole data. A reference model was then generated for 3D variably-saturated subsurface flow coupled with 2D overland flow. That reference model also incorporates discrete 1D elements to represent the entire drainage network, with a critical depth boundary condition applied to the outlet of the drainage networks. A series of simulation were performed to test the

  4. Investigation results on water quality and volume of flowing-in water to the Yotsugi slag heap site. 2

    International Nuclear Information System (INIS)

    Naganuma, Masaki; Taki, Tomihiro; Takimoto, Sadao; Makita, A.

    2000-05-01

    Mining water flowing into the Yotsugi slag heap site at the Ningyo-toge Environment Technical Center is exhausted to a common river after carrying out the treatment of uranium and radium in the mining water at the previously settled mining water treatment facility and confirming it to be less than management target value on the river water within the site boundary regulated by the agreement on environmental conservation with Okayama prefecture and Kami-saihara mura. In order to elucidate some required treatment on every water system flowing-in the heap site as a part of reduction of flowing volume on taking action of the heap site, an investigation on its water quality and volume was carried out. As a result, it was confirmed on water quality that uranium values of every river were all less than their target values but radium values of them were all over their target values which necessitated conventional water treatment. And, on water volume, it was confirmed that flowing water volume from the exposed excavation site was reduced about 40% in comparison with same rain-fall before removing from rain water. (G.K.)

  5. Effects of water flow on submerged macrophyte-biofilm systems in constructed wetlands.

    Science.gov (United States)

    Han, Bing; Zhang, Songhe; Wang, Peifang; Wang, Chao

    2018-02-08

    The effects of water flow on the leaf-biofilm interface of Vallisneria natans and Hydrilla verticillata were investigated using artificial plants as the control. Water flow inhibited the growth of two species of submerged macrophytes, reduced oxygen concentrations in plant leaves and changed oxygen profiles at the leaf-biofilm interface. The results from confocal laser scanning microscopy and multifractal analysis showed that water flow reduced biofilm thickness, changed biofilm topographic characterization and increased the percentages of single colony-like biofilm patches. A cluster analysis revealed that the bacterial compositions in biofilms were determined mainly by substrate types and were different from those in sediments. However, water flow increased the bacterial diversity in biofilms in terms of operational taxonomic unit numbers and Shannon Indices. Our results indicated that water flow can be used to regulate the biomass, distribution and bacterial diversities of epiphytic biofilms in constructed wetlands dominated by submerged macrophytes.

  6. Scaling-Laws of Flow Entropy with Topological Metrics of Water Distribution Networks

    OpenAIRE

    Giovanni Francesco Santonastaso; Armando Di Nardo; Michele Di Natale; Carlo Giudicianni; Roberto Greco

    2018-01-01

    Robustness of water distribution networks is related to their connectivity and topological structure, which also affect their reliability. Flow entropy, based on Shannon’s informational entropy, has been proposed as a measure of network redundancy and adopted as a proxy of reliability in optimal network design procedures. In this paper, the scaling properties of flow entropy of water distribution networks with their size and other topological metrics are studied. To such aim, flow entropy, ma...

  7. Hardware Development of Ultrasonic Tomography for Composition Determination of Water and Oil Flow

    Directory of Open Access Journals (Sweden)

    Ruzairi Abdul Rahim

    2007-01-01

    Full Text Available A monitoring system for water and oil flow using ultrasonic Tomography is implemented. Information such as the type of flow, the composition of the water and oil can be obtained from the system. The composition of the flow is determined based on the propagation time of the ultrasonic waves. The ultrasonic Tomography system includes the sensors fixture design, signal conditioning circuits and image reconstruction software. The image reconstruction algorithm that used is the Linear Back Projection (LBP algorithm.

  8. Understanding the SOL flow in L-mode plasma on divertor tokamaks, and its influence on the plasma transport

    International Nuclear Information System (INIS)

    Asakura, Nobuyuki

    2007-01-01

    Significant progress has been made in understanding the driving mechanisms in SOL mass transport along the magnetic field lines (SOL flow). SOL flow measurements by Mach probes and impurity plume have been performed in L-mode plasma at various poloidal locations in divertor tokamaks. All results showed common SOL flow patterns: subsonic flow with parallel Mach number (M parallel ) of 0.2-1 was generated from the Low-Field-Side (LFS) SOL to the High-Field-Side (HFS) divertor for the ion ∇B drift towards the divertor. The SOL flow pattern was formed mainly by LFS-enhanced asymmetry in diffusion and by classical drifts. In addition, divertor detachment and/or intense puffing-and-pump enhanced the HFS SOL flow. Most codes have incorporated drift effects, and asymmetric diffusion was modelled to simulate the fast SOL flow. Influences of the fast SOL flow on the impurity flow in the SOL, shielding from core plasma, and deposition profile, were directly observed in experiments

  9. Wading through Perceptions: Understanding Human Perceptions of Water Quality in Coastal Waters

    Science.gov (United States)

    Water quality perceptions influence people’s preferences for visiting coastal areas and willingness to participate in activities on or near the water. They also influence people’s social values for a waterbody, sense of place, support for protection of a waterbody, an...

  10. CFD Study of Fluid Flow in an All-glass Evacuated Tube Solar Water Heater

    DEFF Research Database (Denmark)

    Ai, Ning; Fan, Jianhua; Li, Yumin

    2008-01-01

    , which decreases efficiency of the heat exchange process. A baffle in the tube can prevent the flow instability and secure the flow circulation in the tube. The results of the investigation provide a helpful guidance for further investigation of the mechanism of heat transfer processes and a reference......Abstract: The all-glass evacuated tube solar water heater is one of the most widely used solar thermal technologies. The aim of the paper is to investigate fluid flow in the solar water heater by means of computational fluid dynamics (CFD). The investigation was carried out with a focus...... on the convective heat transfer in the tube. The buoyancy induced flow circulation in different parts of the tube was analyzed. It is shown that fluid flow becomes stochastic and turbulent if fluid temperature is high enough. The flow instability leads to mixing of the warm uprising flow and the cold downward flow...

  11. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    International Nuclear Information System (INIS)

    Wu, Hao; Dong, Feng

    2014-01-01

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model

  12. Hydrology and Water Quality of the Rio Chama River, Northern New Mexico: Establishing a Base Line to Manage Flows

    Science.gov (United States)

    Salvato, L.; Crossey, L. J.

    2013-12-01

    The Rio Chama is the largest stream tributary to the Rio Grande in northern New Mexico. The river's geographic location in a semiarid region results in high rates of evapotranspiration and highly variable streamflow. The Rio Chama is part of the San Juan-Chama Drinking Water Project, in which water from the San Juan River, southern Colorado, is diverted across the continental divide to the Rio Chama. Surface water moves through Abiquiu, El Vado and Heron Reservoirs to the Rio Grande to supply Albuquerque with potable drinking water. The results of these anthropogenic influences are a modified flow regime, less variability, greater base-flows, and smaller peak flows. We examined selected locations throughout the Rio Chama system to provide base-line water quality data for ongoing studies. This information will contribute to the development of the best plan to optimize flow releases and maximize benefits of the stakeholders and especially the riparian and stream ecosystems. We report results of two sampling trips representing extremes of the hydrograph in summer 2012 and fall 2012. We collected field parameters, processed water samples, and analyzed them for major anions and cations. The geochemistry enables us to better understand the impact of monthly releases of San Juan river water. We captured two points of the river's streamflow range, 54 cubic feet per second in October 2012 and 1,000 cubic feet per second in August 2012 and looked for variability within the results. We found that the reservoirs exhibit varying anion concentrations from samples taken at different depths. We compared stream waters and selected well samples at a stream transect. These samples allowed us to compare shallow ground water with the stream, and they indicated that the changes in ground water are attributed to sulfate reduction. The anion and cation inputs were most likely derived from gypsum, calcite, and salts, as there are many creeks discharging into the Rio Chama whose drainage

  13. Complex network analysis in inclined oil–water two-phase flow

    International Nuclear Information System (INIS)

    Zhong-Ke, Gao; Ning-De, Jin

    2009-01-01

    Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil–water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil–water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil–water flow patterns. To investigate the dynamic characteristics of the inclined oil–water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil–water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil–water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice. (general)

  14. Application of FTLOADDS to Simulate Flow, Salinity, and Surface-Water Stage in the Southern Everglades, Florida

    Science.gov (United States)

    Wang, John D.; Swain, Eric D.; Wolfert, Melinda A.; Langevin, Christian D.; James, Dawn E.; Telis, Pamela A.

    2007-01-01

    The Comprehensive Everglades Restoration Plan requires numerical modeling to achieve a sufficient understanding of coastal freshwater flows, nutrient sources, and the evaluation of management alternatives to restore the ecosystem of southern Florida. Numerical models include a regional water-management model to represent restoration changes to the hydrology of southern Florida and a hydrodynamic model to represent the southern and western offshore waters. The coastal interface between these two systems, however, has complex surface-water/ground-water and freshwater/saltwater interactions and requires a specialized modeling effort. The Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) code was developed to represent connected surface- and ground-water systems with variable-density flow. The first use of FTLOADDS is the Southern Inland and Coastal Systems (SICS) application to the southeastern part of the Everglades/Florida Bay coastal region. The need to (1) expand the domain of the numerical modeling into most of Everglades National Park and the western coastal area, and (2) better represent the effect of water-delivery control structures, led to the application of the FTLOADDS code to the Tides and Inflows in the Mangroves of the Everglades (TIME) domain. This application allows the model to address a broader range of hydrologic issues and incorporate new code modifications. The surface-water hydrology is of primary interest to water managers, and is the main focus of this study. The coupling to ground water, however, was necessary to accurately represent leakage exchange between the surface water and ground water, which transfers substantial volumes of water and salt. Initial calibration and analysis of the TIME application produced simulated results that compare well statistically with field-measured values. A comparison of TIME simulation results to previous SICS results shows improved capabilities, particularly in the

  15. Water Influx, and Its Effect on Oil Recovery: Part 1. Aquifer Flow, SUPRI TR-103

    Energy Technology Data Exchange (ETDEWEB)

    Brigham, William E.

    1999-08-09

    Natural water encroachment is commonly seen in many oil and gas reservoirs. In fact, overall, there is more water than oil produced from oil reservoirs worldwide. Thus it is clear that an understanding of reservoir/aquifer interaction can be an important aspect of reservoir management to optimize recovery of hydrocarbons. Although the mathematics of these processes are difficult, they are often amenable to analytical solution and diagnosis. Thus this will be the ultimate goal of a series of reports on this subject. This first report deals only with aquifer behavior, so it does not address these important reservoir/aquifer issues. However, it is an important prelude to them, for the insight gained gives important clues on how to address reservoir/aquifer problems. In general when looking at aquifer flow, there are two convenient inner boundary conditions that can be considered; constant pressure or constant flow rate. There are three outer boundary conditions that are convenient to consider; infinite, closed and constant pressure. And there are three geometries that can be solved reasonably easily; linear, radial and spherical. Thus there are a total of eighteen different solutions that can be analyzed.

  16. Low-flow water-quality characterization of the Gore Creek watershed, upper Colorado River basin, Colorado, August 1996

    Science.gov (United States)

    Wynn, Kirby H.; Spahr, Norman E.

    1998-01-01

    sampling is needed to determine the distribution and sources of water-quality constituents at one point in time. In August 1996, a low-flow synoptic sampling for analyses of water-quality properties and constituents at sites in the Gore Creek watershed was done by the U.S. Geological Survey, in cooperation with the Town of Vail, Eagle River Water and Sanitation District, Upper Eagle River Water Authority, and Northwest Colorado Council of Governments, to evaluate the water quality of Gore Creek. The August low-flow period can be important from water-quality and stream ecology perspectives. There is less water available to dilute any contaminants entering the streams, and stream temperatures are highest during August. Physical habitat for aquatic plants and animals is smaller than during most other times of the year. To address these more extreme water-quality and ecological conditions, the synoptic sampling was conducted during the summer low-flow period. Specific objectives of this sampling included: 1. Establish a current data set representing the spatial characteristics of low-flow water-quality conditions in the Gore Creek watershed, and 2. Develop some understanding of land-use and water-quality relations in the watershed. This fact sheet presents hydrologic background information and an analysis of general water-quality properties and constituents, trace elements, and nutrients collected in water samples during low-flow synoptic sampling of the Gore Creek watershed. The U.S. Geological Survey also is conducting a study of the algae and macroinvertebrate communities and physical habitat of streams in the Gore Creek watershed during low flow. This study is designed to provide information about land-use and stream ecology relations in the watershed.

  17. Early Regimes of Water Capillary Flow in Slit Silica Nanochannels

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Walther, Jens Honore; Mejia, Andres

    2015-01-01

    on the dynamics of capillaryfilling. The results indicate that the nanoscale imbibition process is divided into three main flow regimes:an initial regime where the capillary force is balanced only by the inertial drag and characterized by aconstant velocity and a plug flow profile. In this regime, the meniscus...... velocity profiles identify the passage froman inviscid flow to a developing Poiseuille flow. Gas density profiles ahead of the capillary front indicatea transient accumulation of air on the advancing meniscus. Furthermore, slower capillary filling ratescomputed for higher air pressures reveal a significant...... retarding effect of the gas displaced by the advancing meniscus....

  18. Characteristics of soil under variations in clay, water saturation, and water flow rates, and the implications upon soil remediation

    International Nuclear Information System (INIS)

    Aikman, M.; Mirotchnik, K.; Kantzas, A.

    1997-01-01

    A potential remediation method for hydrocarbon contaminated soils was discussed. The new method was based on the use of proven and economic petroleum reservoir engineering methods for soil remediation. The methods that were applied included water and gas displacement methods together with horizontal boreholes as the flow inlet and outlets. This system could be used in the case of spills that seep beneath a plant or other immovable infrastructure which requires in-situ treatment schemes to decontaminate the soil. A study was conducted to characterize native soils and water samples from industrial plants in central Alberta and Sarnia, Ontario and to determine the variables that impact upon the flow conditions of synthetic test materials. The methods used to characterize the soils included X-Ray computed tomographic analysis, grain size and density measurements, and X-Ray diffraction. Clay content, initial water saturation, and water and gas flow rate were the variables that impacted on the flow conditions

  19. Diverting the flow : gender equity and water in South Asia

    NARCIS (Netherlands)

    Zwarteveen, M.Z.; Ahmed, S.; Gautam, S.R.

    2012-01-01

    Across the South Asian region, water determines livelihoods and in some cases even survival. However, water also creates exclusions. Access to water, and its social organization, are intimately tied up with power relations. This book provides an overview of gender, equity and water issues relevant

  20. Analysis of drought characteristics for improved understanding of a water resource system

    Directory of Open Access Journals (Sweden)

    A. T. Lennard

    2014-09-01

    Full Text Available Droughts are a reoccurring feature of the UK climate; recent drought events (2004–2006 and 2010–2012 have highlighted the UK’s continued vulnerability to this hazard. There is a need for further understanding of extreme events, particularly from a water resource perspective. A number of drought indices are available, which can help to improve our understanding of drought characteristics such as frequency, severity and duration. However, at present little of this is applied to water resource management in the water supply sector. Improved understanding of drought characteristics using indices can inform water resource management plans and enhance future drought resilience. This study applies the standardised precipitation index (SPI to a series of rainfall records (1962–2012 across the water supply region of a single utility provider. Key droughts within this period are analysed to develop an understanding of the meteorological characteristics that lead to, exist during and terminate drought events. The results of this analysis highlight how drought severity and duration can vary across a small-scale water supply region, indicating that the spatial coherence of drought events cannot be assumed.

  1. Estimation of preferred water flow parameters for four species of ...

    African Journals Online (AJOL)

    Blackfly larvae typically occur in fast-flowing riffle sections of rivers, with different blackfly species showing preferences for different hydraulic conditions. Very little quantitative data exist on hydraulic conditions linked to the blackfly species occurring in South African streams. Stones-in-current biotopes (i.e. fast riffle flows over ...

  2. Impacts of invading alien plant species on water flows at stand and catchment scales

    Science.gov (United States)

    Le Maitre, D. C.; Gush, M. B.; Dzikiti, S.

    2015-01-01

    There have been many studies of the diverse impacts of invasions by alien plants but few have assessed impacts on water resources. We reviewed the information on the impacts of invasions on surface runoff and groundwater resources at stand to catchment scales and covering a full annual cycle. Most of the research is South African so the emphasis is on South Africa's major invaders with data from commercial forest plantations where relevant. Catchment studies worldwide have shown that changes in vegetation structure and the physiology of the dominant plant species result in changes in surface runoff and groundwater discharge, whether they involve native or alien plant species. Where there is little change in vegetation structure [e.g. leaf area (index), height, rooting depth and seasonality] the effects of invasions generally are small or undetectable. In South Africa, the most important woody invaders typically are taller and deeper rooted than the native species. The impacts of changes in evaporation (and thus runoff) in dryland settings are constrained by water availability to the plants and, thus, by rainfall. Where the dryland invaders are evergreen and the native vegetation (grass) is seasonal, the increases can reach 300–400 mm/year. Where the native vegetation is evergreen (shrublands) the increases are ∼200–300 mm/year. Where water availability is greater (riparian settings or shallow water tables), invading tree water-use can reach 1.5–2.0 times that of the same species in a dryland setting. So, riparian invasions have a much greater impact per unit area invaded than dryland invasions. The available data are scattered and incomplete, and there are many gaps and issues that must be addressed before a thorough understanding of the impacts at the site scale can be gained and used in extrapolating to watershed scales, and in converting changes in flows to water supply system yields. PMID:25935861

  3. Numerical study of the air-flow in an oscillating water column wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Paixao Conde, J.M. [Department of Mechanical and Industrial Engineering, Faculty of Sciences and Technology, New University of Lisbon, Monte de Caparica, 2829-516 Caparica (Portugal); IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal); Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal)

    2008-12-15

    The paper presents a numerical study of the air-flow in a typical pneumatic chamber geometry of an oscillating water column (OWC)-type wave energy converter (WEC), equipped with two vertical-axis air turbines, asymmetrically placed on the top of the chamber. Outwards and inwards, steady and periodic, air-flow calculations were performed to investigate the flow distribution at the turbines' inlet sections, as well as the properties of the air-jet impinging on the water free-surface. The original design of the OWC chamber is likely to be harmful for the operation of the turbines due to the possible air-jet-produced water-spray at the water free-surface subsequently ingested by the turbine. A geometry modification of the air chamber, using a horizontal baffle-plate to deflect the air from the turbines, is proposed and proved to be very effective in reducing the risk of water-spray production from the inwards flow. The flow distribution at the turbines' inlet sections for the outwards flow was found to be fairly uniform for the geometries considered, providing good inlet flow conditions for the turbines. Steady flow was found to be an acceptable model to study the air-flow inside the pneumatic chamber of an OWC-WEC. (author)

  4. Virtual water flows in the EU27: A consumption-based approach

    OpenAIRE

    Serrano, Ana; Guan, Dabo; Duarte, Rosa; Paavola, Jouni

    2016-01-01

    The use of water resources has traditionally been studied by accounting for the volume of water removed from sources for specific uses. This approach focuses on surface and groundwater only and it ignores that international trade of products with substantial amounts of embodied water can have an impact on domestic water resources. Using current economic and environmental data, we conduct a consumption-based assessment of virtual water flows in the European Union (EU27). We find that the total...

  5. High performance in low-flow solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, M.

    1997-12-31

    Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the conventional flow. Low-flow systems are of interest because the reduced flow rate allows smaller diameter tubing, which is less costly to install. Further, low-flow systems result in increased tank stratification. Lower collector inlet temperatures are achieved through stratification and the useful energy produced by the collector is increased. The disadvantage of low-flow systems is the collector heat removal factor decreases with decreasing flow rate. Many solar domestic hot water systems require an auxiliary electric source to operate a pump in order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to replace the standard electrical pump. PV driven pumps provide an ideal means of controlling the flow rate, as pumps will only circulate fluid when there is sufficient radiation. Peak performance was always found to occur when the heat exchanger tank-side flow rate was approximately equal to the average load flow rate. For low collector-side flow rates, a small deviation from the optimum flow rate will dramatically effect system performance.

  6. A preliminary assessment of water inflow into proposed excavations in the Cohassett flow interior

    International Nuclear Information System (INIS)

    Baker, S.M.

    1985-05-01

    To support safety and feasibility evaluations of the proposed repository construction and operation, an assessment is necessary of the potential for inflow of groundwater to the repository excavations from the surrounding saturated rock. This report provides preliminary estimates of groundwater inflow based on simple models appropriate to the current understanding of available data, and shows sensitivities in determining water inflow to uncertain parameters. Steady state inflow to the repository is estimated to be on the order of 100 gpm. An accident case of intersecting a 6 meter diameter drift with a flow top of high hydraulic conductivity (10 -5 m/s) shows an initial inflow of about 3,400 gpm, decreasing to less than 2,000 gpm after one hour. Based on available data, this is considered to be a bounding analysis. The calculated inflow is a value which is routinely dealt with in underground excavations. 7 figs

  7. Magnitude and sign correlations in conductance fluctuations of horizontal oil water two-phase flow

    Science.gov (United States)

    Zhu, L.; Jin, N. D.; Gao, Z. K.; Zong, Y. B.; Zhai, L. S.; Wang, Z. Y.

    2012-05-01

    In experiment we firstly define five typical horizontal oil-water flow patterns. Then we introduce an approach for analyzing signals by decomposing the original signals increment into magnitude and sign series and exploring their scaling properties. We characterize the nonlinear and linear properties of horizontal oil-water two-phase flow, which relate to magnitude and sign series respectively. We find that the joint distribution of different scaling exponents can effectively identify flow patterns, and the detrended fluctuation analysis (DFA) on magnitude and sign series can represent typical horizontal oil-water two-phase flow dynamics characteristics. The results indicate that the magnitude and sign decomposition method can be a helpful tool for characterizing complex dynamics of horizontal oil-water two-phase flow.

  8. Estimation of suitable flow needs for maintaining fish habitat conditions using water quantity and quality simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu-Ho [Korea Institute of Construction Technology, Koyang (Korea); Cho, Won-cheol [Yonsei University, Seoul (Korea); Jun, Byong-Ho [Korea Military Academy, Seoul (Korea)

    2000-02-29

    The primary objective of this study is to estimate the suitable flow in need for conservation and restoration of the fish habitat in running water ecosystem, which has very important status in the instream flow for stream environment. Year, monthly low flows are estimated to properly maintain the fish habitat. Water depth and velocity are simulated, and also water temperature and Dissolved Oxygen(DO) are predicted at gradually varied flow using estimated low flows. These simulated conditions for each low flow are graphically compared with the requirements to maintain fish habitat at each life stage. These processes were applied to 3 riffle transect located at Dalcheon(Dal stream) in the South Han river. Pirami (Zacco platypus) was selected as a representative fish species in Dalcheon. It was shown that the suitable flow for maintaining the representative fish habitat at each life stage depends on hydraulic conditions rather than water quality conditions, and the flow ranges from the 10-year minimum low flow to consecutive 7-day 2.33-year low flow. (author). 17 refs., 6 tabs., 4 figs.

  9. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    International Nuclear Information System (INIS)

    Tucci, P.

    2001-01-01

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M and O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment

  10. Effect of water chemistry improvement on flow accelerated corrosion in light-water nuclear reactor

    International Nuclear Information System (INIS)

    Sugino, Wataru; Ohira, Taku; Nagata, Nobuaki; Abe, Ayumi; Takiguchi, Hideki

    2009-01-01

    Flow Accelerated Corrosion (FAC) of Carbon Steel (CS) piping has been one of main issues in Light-Water Nuclear Reactor (LWRs). Wall thinning of CS piping due to FAC increases potential risk of pipe rupture and cost for inspection and replacement of damaged pipes. In particular, corrosion products generated by FAC of CS piping brought steam generator (SG) tube corrosion and degradation of thermal performance, when it intruded and accumulated in secondary side of PWR. To preserve SG integrity by suppressing the corrosion of CS, High-AVT chemistry (Feedwater pH9.8±0.2) has been adopted to Tsuruga-2 (1160 MWe PWR, commercial operation in 1987) in July 2005 instead of conventional Low-AVT chemistry (Feedwater pH 9.3). By the High-AVT adoption, the accumulation rate of iron in SG was reduced to one-quarter of that under conventional Low-AVT. As a result, a tendency to degradation of the SG thermal efficiency was improved. On the other hand, it was clarified that High-AVT is ineffective against Flow Accelerated Corrosion (FAC) at the region where the flow turbulence is much larger. By contrast, wall thinning of CS feed water pipes due to FAC has been successfully controlled by oxygen treatment (OT) for long time in BWRs. Because Magnetite film formed on CS surface under AVT chemistry has higher solubility and porosity in comparison with Hematite film, which is formed under OT. In this paper, behavior of the FAC under various pH and dissolved oxygen concentration are discussed based on the actual wall thinning rate of BWR and PWR plant and experimental results by FAC test-loop. And, it is clarified that the FAC is suppressed even under extremely low DO concentration such as 2ppb under AVT condition in PWR. Based on this result, we propose the oxygenated water chemistry (OWC) for PWR secondary system which can mitigate the FAC of CS piping without any adverse effect for the SG integrity. Furthermore, the applicability and effectiveness of this concept developed for FAC

  11. Understanding controls on flow permanence in intermittent rivers to aid ecological research: integrating meteorology, geology and land cover

    Science.gov (United States)

    Intermittent rivers, those channels that periodically cease to flow, constitute over half of the total discharge of the global river network and will likely increase in their extent due to climatic shifts and/or water resources development. Burgeoning research on intermittent riv...

  12. Investigation of the fluid flow dynamic parameters for Newtonian and non-Newtonian materials: an approach to understanding the fluid flow-like structures within fault zones

    Science.gov (United States)

    Tanaka, H.; Shiomi, Y.; Ma, K.-F.

    2017-11-01

    To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.

  13. A review of experimental understanding of forced convection heat transfer by supercritical helium 4 flowing in ducts

    International Nuclear Information System (INIS)

    Kasao, D.; Ito, T.

    1991-01-01

    In this paper a survey of experimental understandings of steady forced convection heat transfer by supercritical helium 4 flowing in ducts is given, and the deterioration of heat transfer, the influences of buoyancy force and correlations of heat transfer are to be discussed as well

  14. Lithospheric Dynamics of Mars: Water, Flow, and Failure

    Science.gov (United States)

    Grimm, Robert E.; Harrison, Keith

    2004-01-01

    Some of the largest Martian erosive features were influenced by groundwater, and include valley networks, outflow channels, and possibly landslides. We argue that hydrothermal systems attending crustal formation processes were able to drive sufficient groundwater to the surface to form the Noachian southern highlands valley networks, which show a spatial correlation to crustal magnetic anomalies, also results of crustal formation. Hydrothermal activity is quantified through numerical simulations of convection in a porous medium due to the presence of a hot intruded magma chamber. The parameter space includes magma chamber depth, volume, aspect ratio, and host rock permeability and porosity. For permeabilities as low as l0(exp -17) sq m and intrusion volumes as low as 50 km , the total discharge due to intrusions building that part of the southern highlands crust associated with magnetic anomalies spans a comparable range as the inferred discharge from the overlying valley networks. The Hesperian circum-Chryse outflow channels are further manifestations of groundwater discharge and Clifford and Parker (2001) suggest that the large volumes of water required for their formation flows beneath a confining cryosphere from the South Pole where meltwater beneath an ice cap recharges a global aquifer. We argue that recharge occurs instead over the nearby Tharsis aquifer at high obliquity, assisted by cryosphere melting due to volcanic activity. Numerical simulations quantify the strength and duration of outflow discharge given either South Polar or Tharsis recharge. The contribution of South Pole recharge given Clifford and Parker aquifer properties is negligible compared to that of the initial Tharsis inventory. Tharsis recharge, despite the restrictions of improved aquifer properties, makes a significant contribution and, unlike South Pole recharge under the same conditions, fulfills discharge requirements. Groundwater may have influenced long run-out landslide formation

  15. Core Flow Distribution from Coupled Supercritical Water Reactor Analysis

    Directory of Open Access Journals (Sweden)

    Po Hu

    2014-01-01

    Full Text Available This paper introduces an extended code package PARCS/RELAP5 to analyze steady state of SCWR US reference design. An 8 × 8 quarter core model in PARCS and a reactor core model in RELAP5 are used to study the core flow distribution under various steady state conditions. The possibility of moderator flow reversal is found in some hot moderator channels. Different moderator flow orifice strategies, both uniform across the core and nonuniform based on the power distribution, are explored with the goal of preventing the reversal.

  16. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water

    Science.gov (United States)

    Dundas, Colin M.; McEwen, Alfred S.; Chojnacki, Matthew; Milazzo, Moses P.; Byrne, Shane; McElwaine, Jim N.; Urso, Anna

    2017-12-01

    Recent liquid water flow on Mars has been proposed based on geomorphological features, such as gullies. Recurring slope lineae — seasonal flows that are darker than their surroundings — are candidate locations for seeping liquid water on Mars today, but their formation mechanism remains unclear. Topographical analysis shows that the terminal slopes of recurring slope lineae match the stopping angle for granular flows of cohesionless sand in active Martian aeolian dunes. In Eos Chasma, linea lengths vary widely and are longer where there are more extensive angle-of-repose slopes, inconsistent with models for water sources. These observations suggest that recurring slope lineae are granular flows. The preference for warm seasons and the detection of hydrated salts are consistent with some role for water in their initiation. However, liquid water volumes may be small or zero, alleviating planetary protection concerns about habitable environments.

  17. Water-powder mixtures at the onset of flowing

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.; Al-Mattarneh, H.; Mustapha, K.N.; Nuruddin, M.F.

    2008-01-01

    The knowledge of water demands of the manifold concrete ingredients is of vital interest for the design of concrete mixes. Physical properties like workability or strength and durability in hardened state are controlled by the total water content. Water demand is defined as the volumetric ratio of

  18. Modelling of flow and settling in storm water sedimentation tanks

    NARCIS (Netherlands)

    Kluck, J.

    1994-01-01

    In the near future in the Netherlands many reservoirs will have to be built to abate the pollution of the surface water by overflowing storm water from combined sewer systems [Kluck, 1992-a]. These reservoirs, called storm water sedimentation tanks, reduce the pollution in two ways. The most

  19. Understanding the sub-critical transition to turbulence in wall flows

    Indian Academy of Sciences (India)

    In contrast with free shear flows presenting velocity profiles with injection points which cascade to turbulence in a relatively mild way, wall bounded flows are deprived of (inertial) instability modes at low Reynolds numbers and become turbulent in a much wilder way, most often marked by the coexistence of laminar and ...

  20. Understanding the sub-critical transition to turbulence in wall flows

    Indian Academy of Sciences (India)

    Abstract. In contrast with free shear flows presenting velocity profiles with inflection points which cascade to turbulence in a relatively mild way, wall bounded flows are de- prived of (inertial) instability modes at low Reynolds numbers and become turbulent in a much wilder way, most often marked by the coexistence of ...

  1. Implications of Upstream Flow Availability for Watershed Surface Water Supply Across the Conterminous United States

    Science.gov (United States)

    Kai Duan; Ge Sun; Peter V. Caldwell; Steven G. McNulty; Yang Zhang

    2018-01-01

    Although it is well established that the availability of upstream flow (AUF) affects downstream water supply, its significance has not been rigorously categorized and quantified at fine resolutions. This study aims to fill this gap by providing a nationwide inventory of AUF and local water resource, and assessing their roles in securing water supply across the 2,099 8-...

  2. A flow balance approach to scenarios for water reclamation by Ania ...

    African Journals Online (AJOL)

    drinie

    ISSN 0378-4738 = Water SA Vol. 27 No. 1 January 2001 115. Available on website http://www.wrc.org.za. Comments on: A flow balance approach to scenarios for water reclamation by Ania MW Grobicki and B Cohen. I would like to offer a brief comment on the above paper, which appeared in Water SA 25 (4), October ...

  3. Surface capturing and multigrid for steady free-surface water flows

    NARCIS (Netherlands)

    Wackers, J.

    2007-01-01

    Surface capturing is a technique for modelling the water surface in numerical computations of water flow: the computational grid is not deformed, a separate surface model gives the location of the water surface in the grid. Surface capturing is generally applicable and can handle complicated ship

  4. Fire flow water consumption in sprinklered and unsprinklered buildings an assessment of community impacts

    CERN Document Server

    Code Consultants, Inc.

    2012-01-01

    Fire Flow Water Consumption in Sprinklered and Unsprinklered Buildings offers a detailed analysis for calculating the fire water demand required in buildings with existing and non-existant sprinkler systems. The installation of automatic sprinkler systems can significantly reduce the amount of water needed during a fire, but it requires water for commissioning, inspection, testing, and maintenance (CITM). This book provides an estimate of fire water used under both fire conditions, including CITM, to allow communities to develop fire water fees for both sprinklered and unsprinklered buildings that are proportional to the anticipated fire water usage. The types of buildings analyzed include residential (family dwellings as well as those up to four stories in height), business, assembly, institutional, mercantile, and storage facilities. Water volume was studied using guidelines from the International Code Council, the National Fire Protection Association, and the Insurance Services Office. Fire Flow Water Cons...

  5. Miniaturized Water Flow and Level Monitoring System for Flood Disaster Early Warning

    Science.gov (United States)

    Ifedapo Abdullahi, Salami; Hadi Habaebi, Mohamed; Surya Gunawan, Teddy; Rafiqul Islam, MD

    2017-11-01

    This study presents the performance of a prototype miniaturised water flow and water level monitoring sensor designed towards supporting flood disaster early warning systems. The design involved selection of sensors, coding to control the system mechanism, and automatic data logging and storage. During the design phase, the apparatus was constructed where all the components were assembled using locally sourced items. Subsequently, under controlled laboratory environment, the system was tested by running water through the inlet during which the flow rate and rising water levels are automatically recorded and stored in a database via Microsoft Excel using Coolterm software. The system is simulated such that the water level readings measured in centimeters is output in meters using a multiplicative of 10. A total number of 80 readings were analyzed to evaluate the performance of the system. The result shows that the system is sensitive to water level rise and yielded accurate measurement of water level. But, the flow rate fluctuates due to the manual water supply that produced inconsistent flow. It was also observed that the flow sensor has a duty cycle of 50% of operating time under normal condition which implies that the performance of the flow sensor is optimal.

  6. The Role of Model Fidelity in Understanding the Food-Energy-Water Nexus at the Asset Level

    Science.gov (United States)

    Tidwell, V. C.; Lowry, T. S.; Behery, S.; Macknick, J.; Yang, Y. C. E.

    2017-12-01

    An improved understanding of the food-energy-water nexus at the asset level (e.g., power plant, irrigation ditch, water utility) is necessary for the efficient management and operations of connected infrastructure systems. Interdependencies potentially influencing the operations of a particular asset can be numerous. For example, operations of energy and agricultural assets depend on the delivery of water, which in turn depend on the physical hydrology, river/reservoir operations, water rights, the networked water infrastructure and other factors. A critical challenge becomes identification of those linkages central to the analysis of the system. Toward this need, a case study was conducted centered on the San Juan River basin, a major tributary to the Colorado River. A unique opportunity was afforded by the availability of two sets of coupled models built on the same simulation platform but formulated at distinctly different fidelities. Comparative analysis was driven by statistically downscaled climate data from three global climate models (emission scenario RCP 8.5) and planned growth in regional water demand. Precipitation was partitioned between evaporation, runoff and recharge using the Variable Infiltration Capacity (VIC) hydrologic model. Priority administration of small-scale water use of upland tributary flows was simulated using Colorado's StateMod model. Mainstem operations of the San Juan River, including releases from Navajo Reservoir, were subsequently modeled using RiverWare to estimate impacts on water deliveries, environmental flows and interbasin transfers out to the year 2100. Models differ in the spatial resolution, disaggregation of water use, infrastructure operations and representation of system dynamics. Comparisons drawn between this suite of coupled models provides insight into the value of model fidelity relative to assessing asset vulnerability to a range of uncertain growth and climate futures. Sandia National Laboratories is a

  7. Modeling water quality, temperature, and flow in Link River, south-central Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.

    2016-09-09

    The 2.1-km (1.3-mi) Link River connects Upper Klamath Lake to the Klamath River in south-central Oregon. A CE-QUAL-W2 flow and water-quality model of Link River was developed to provide a connection between an existing model of the upper Klamath River and any existing or future models of Upper Klamath Lake. Water-quality sampling at six locations in Link River was done during 2013–15 to support model development and to provide a better understanding of instream biogeochemical processes. The short reach and high velocities in Link River resulted in fast travel times and limited water-quality transformations, except for dissolved oxygen. Reaeration through the reach, especially at the falls in Link River, was particularly important in moderating dissolved oxygen concentrations that at times entered the reach at Link River Dam with marked supersaturation or subsaturation. This reaeration resulted in concentrations closer to saturation downstream at the mouth of Link River.

  8. Submerged flow bridge scour under clear water conditions

    Science.gov (United States)

    2012-09-01

    Prediction of pressure flow (vertical contraction) scour underneath a partially or fully submerged bridge superstructure : in an extreme flood event is crucial for bridge safety. An experimentally and numerically calibrated formulation is : developed...

  9. Comparisons of the hydraulics of water flows in Martian outflow channels with flows of similar scale on earth

    Science.gov (United States)

    Komar, P. D.

    1979-01-01

    The hydraulics of channelized water flows on Mars and the resulting sediment transport rates are calculated, and similar computations are performed for such terrestrial analogs as the Mississippi River and the catastrophic Lake Missoula floods that formed the Channeled Scabland in eastern Washington State. The morphologies of deep-sea channels formed by catastrophic turbidity currents are compared with the Martian channels, many similarities are pointed out, and the hydraulics of the various flows are compared. The results indicate that the velocities, discharges, bottom shear stresses, and sediment-transport capacity of water flows along the Martian channels would be comparable to those of the oceanic turbidity currents and the Lake Missoula floods. It is suggested that the submarine canyons from which turbidity currents originate are the terrestrial counterparts to the chaotic-terrain areas or craters that serve as sources for many of the Martian channels.

  10. Computational Flow Dynamic Simulation of Micro Flow Field Characteristics Drainage Device Used in the Process of Oil-Water Separation

    Directory of Open Access Journals (Sweden)

    Guangya Jin

    2017-01-01

    Full Text Available Aqueous crude oil often contains large amounts of produced water and heavy sediment, which seriously threats the safety of crude oil storage and transportation. Therefore, the proper design of crude oil tank drainage device is prerequisite for efficient purification of aqueous crude oil. In this work, the composition and physicochemical properties of crude oil samples were tested under the actual conditions encountered. Based on these data, an appropriate crude oil tank drainage device was developed using the principle of floating ball and multiphase flow. In addition, the flow field characteristics in the device were simulated and the contours and streamtraces of velocity magnitude at different nine moments were obtained. Meanwhile, the improvement of flow field characteristics after the addition of grids in crude oil tank drainage device was validated. These findings provide insights into the development of effective selection methods and serve as important references for oil-water separation process.

  11. Flow cytometry total cell counts : A field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems

    NARCIS (Netherlands)

    Liu, G.; Van der Mark, E.J.; Verberk, J.Q.; Van Dijk, J.C.

    2013-01-01

    e objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A

  12. Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Mohammad H.

    2014-03-30

    Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development

  13. Understanding local water conflict and cooperation: The case of Namwala District, Zambia

    Science.gov (United States)

    Funder, Mikkel; Mweemba, Carol; Nyambe, Imasiku; van Koppen, Barbara; Ravnborg, Helle Munk

    Understanding the nature of water conflict and cooperation is a crucial element in water governance within Integrated Water Resources Management (IWRM). Much of the recent attention to the issue has however focused on transboundary aspects, while we know rather less about the nature and dynamics of local water conflict and cooperation. Drawing on the work of the collaborative Competing for Water Research Programme, this article presents selected findings from a quantitative and qualitative mapping and exploration of water conflict and cooperation events in Namwala District of Zambia. It is found that local water competition situations often involve both conflictive and cooperative events in a dynamic succession of each other, but also that the majority of events are conflictive, and that they primarily take place between different types of water uses, and less frequently among the same types of uses. There is a distinct tendency for both conflictive and cooperative events to originate in the dry season, and many events are associated with water infrastructure development, particularly boreholes. The study found that most conflictive and cooperative events took place within individual communities, and only to a lesser extent between two or more communities or between districts. While third parties are involved in some events, these are primarily local village institutions such as Headmen. The article concludes by discussing the implications of these findings for local water governance, including the need to ensure that the very localized nature of such conflict and cooperation events is taken into consideration in the institutional development of IWRM.

  14. Pattern transitions of oil-water two-phase flow with low water content in rectangular horizontal pipes probed by terahertz spectrum.

    Science.gov (United States)

    Feng, Xin; Wu, Shi-Xiang; Zhao, Kun; Wang, Wei; Zhan, Hong-Lei; Jiang, Chen; Xiao, Li-Zhi; Chen, Shao-Hua

    2015-11-30

    The flow-pattern transition has been a challenging problem in two-phase flow system. We propose the terahertz time-domain spectroscopy (THz-TDS) to investigate the behavior underlying oil-water flow in rectangular horizontal pipes. The low water content (0.03-2.3%) in oil-water flow can be measured accurately and reliably from the relationship between THz peak amplitude and water volume fraction. In addition, we obtain the flow pattern transition boundaries in terms of flow rates. The critical flow rate Qc of the flow pattern transitions decreases from 0.32 m3 h to 0.18 m3 h when the corresponding water content increases from 0.03% to 2.3%. These properties render THz-TDS particularly powerful technology for investigating a horizontal oil-water two-phase flow system.

  15. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  16. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-07-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs.

  17. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs

  18. Simulation of groundwater and surface-water flow in the upper Deschutes Basin, Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.; Risley, John C.; Pischel, Esther M.; La Marche, Jonathan L.

    2017-10-20

    This report describes a hydrologic model for the upper Deschutes Basin in central Oregon developed using the U.S. Geological Survey (USGS) integrated Groundwater and Surface-Water Flow model (GSFLOW). The upper Deschutes Basin, which drains much of the eastern side of the Cascade Range in Oregon, is underlain by large areas of permeable volcanic rock. That permeability, in combination with the large annual precipitation at high elevations, results in a substantial regional aquifer system and a stream system that is heavily groundwater dominated.The upper Deschutes Basin is also an area of expanding population and increasing water demand for public supply and agriculture. Surface water was largely developed for agricultural use by the mid-20th century, and is closed to additional appropriations. Consequently, water users look to groundwater to satisfy the growing demand. The well‑documented connection between groundwater and the stream system, and the institutional and legal restrictions on streamflow depletion by wells, resulted in the Oregon Water Resources Department (OWRD) instituting a process whereby additional groundwater pumping can be permitted only if the effects to streams are mitigated, for example, by reducing permitted surface-water diversions. Implementing such a program requires understanding of the spatial and temporal distribution of effects to streams from groundwater pumping. A groundwater model developed in the early 2000s by the USGS and OWRD has been used to provide insights into the distribution of streamflow depletion by wells, but lacks spatial resolution in sensitive headwaters and spring areas.The integrated model developed for this project, based largely on the earlier model, has a much finer grid spacing allowing resolution of sensitive headwater streams and important spring areas, and simulates a more complete set of surface processes as well as runoff and groundwater flow. In addition, the integrated model includes improved

  19. Scaling-Laws of Flow Entropy with Topological Metrics of Water Distribution Networks

    Directory of Open Access Journals (Sweden)

    Giovanni Francesco Santonastaso

    2018-01-01

    Full Text Available Robustness of water distribution networks is related to their connectivity and topological structure, which also affect their reliability. Flow entropy, based on Shannon’s informational entropy, has been proposed as a measure of network redundancy and adopted as a proxy of reliability in optimal network design procedures. In this paper, the scaling properties of flow entropy of water distribution networks with their size and other topological metrics are studied. To such aim, flow entropy, maximum flow entropy, link density and average path length have been evaluated for a set of 22 networks, both real and synthetic, with different size and topology. The obtained results led to identify suitable scaling laws of flow entropy and maximum flow entropy with water distribution network size, in the form of power–laws. The obtained relationships allow comparing the flow entropy of water distribution networks with different size, and provide an easy tool to define the maximum achievable entropy of a specific water distribution network. An example of application of the obtained relationships to the design of a water distribution network is provided, showing how, with a constrained multi-objective optimization procedure, a tradeoff between network cost and robustness is easily identified.

  20. Simulating root-induced rhizosphere deformation and its effect on water flow

    Science.gov (United States)

    Aravena, J. E.; Ruiz, S.; Mandava, A.; Regentova, E. E.; Ghezzehei, T.; Berli, M.; Tyler, S. W.

    2011-12-01

    Soil structure in the rhizosphere is influenced by root activities, such as mucilage production, microbial activity and root growth. Root growth alters soil structure by moving and deforming soil aggregates, affecting water and nutrient flow from the bulk soil to the root surface. In this study, we utilized synchrotron X-ray micro-tomography (XMT) and finite element analysis to quantify the effect of root-induced compaction on water flow through the rhizosphere to the root surface. In a first step, finite element meshes of structured soil around the root were created by processing rhizosphere XMT images. Then, soil deformation by root expansion was simulated using COMSOL Multiphysics° (Version 4.2) considering the soil an elasto-plastic porous material. Finally, fluid flow simulations were carried out on the deformed mesh to quantify the effect of root-induced compaction on water flow to the root surface. We found a 31% increase in water flow from the bulk soil to the root due to a 56% increase in root diameter. Simulations also show that the increase of root-soil contact area was the dominating factor with respect to the calculated increase in water flow. Increase of inter-aggregate contacts in size and number were observed within a couple of root diameters away from the root surface. But their influence on water flow was, in this case, rather limited compared to the immediate soil-root contact.

  1. Strong Flows of Bottom Water in Abyssal Channels of the Atlantic

    Science.gov (United States)

    Morozov, E. G.

    Analysis of bottom water transport through the abyssal channels of the Atlantic Ocean is presented. The study is based on recent observations in the Russian expeditions and historical data. A strong flow of Antarctic Bottom Water from the Argentine Basin to the Brazil Basin through the Vema Channel is observed on the basis of lowered profilers and anchored buoys with current meters. The further flow of bottom water in the Brazil Basin splits in the northern part of the basin. Part of the bottom water flows to the East Atlantic through the Romanche and Chain fracture zones. The other part follows the bottom topography and flows to the northwester into the North American Basin. Part of the northwesterly flow propagates through the Vema Fracture Zone into the Northeastern Atlantic. This flow generally fills the bottom layer in the Northeastern Atlantic basins. The flows of bottom waters through the Romanche and Chain fracture zones do not spread to the Northeast Atlantic due to strong mixing in the equatorial zone and enhanced transformation of bottom water properties.

  2. Non-Darcy interfacial dynamics of air-water two-phase flow in rough fractures under drainage conditions.

    Science.gov (United States)

    Chang, Chun; Ju, Yang; Xie, Heping; Zhou, Quanlin; Gao, Feng

    2017-07-04

    Two-phase flow interfacial dynamics in rough fractures is fundamental to understanding fluid transport in fractured media. The Haines jump of non-Darcy flow in porous media has been investigated at pore scales, but its fundamental processes in rough fractures remain unclear. In this study, the micron-scale Haines jump of the air-water interface in rough fractures was investigated under drainage conditions, with the air-water interface tracked using dyed water and an imaging system. The results indicate that the interfacial velocities represent significant Haines jumps when the meniscus passes from a narrow "throat" to a wide "body", with jump velocities as high as five times the bulk drainage velocity. Locally, each velocity jump corresponds to a fracture aperture variation; statistically, the velocity variations follow an exponential function of the aperture variations at a length scale of ~100 µm to ~100 mm. This spatial-scale-invariant correlation may indicate that the high-speed local velocities during the Haines jump would not average out spatially for a bulk system. The results may help in understanding the origin of interface instabilities and the resulting non-uniform phase distribution, as well as the micron-scale essence of the spatial and temporal instability of two-phase flow in fractured media at the macroscopic scale.

  3. Experts’ understandings of drinking water risk management in a climate change scenario

    Directory of Open Access Journals (Sweden)

    Åsa Boholm

    2017-01-01

    Full Text Available The challenges for society presented by climate change are complex and demanding. This paper focuses on one particular resource of utmost necessity and vulnerability to climate change: namely, the provisioning of safe drinking water. From a critical perspective on the role of expertise in risk debates, this paper looks at how Swedish experts understand risk to drinking water in a climate change scenario and how they reason about challenges to risk management and adaptation strategies. The empirical material derives from ten in-depth semi-structured interviews with experts, employed both at government agencies and at universities, and with disciplinary backgrounds in a variety of fields (water engineering, planning, geology and environmental chemistry. The experts understand risk factors affecting both drinking water quality and availability as complex and systemically interrelated. A lack of political saliency of drinking water as a public service is identified as an obstacle to the development of robust adaptation strategies. Another area of concern relates to the geographical, organizational and institutional boundaries (regulatory, political and epistemological between the plethora of public actors with partly overlapping and sometimes unclear responsibilities for the provisioning of safe drinking water. The study concludes that climate change adaptation regarding drinking water provisioning will require a new integration of the knowledge of systemic risk relations, in combination with more efficient agency collaboration based on a clear demarcation of responsibility between actors.

  4. Investigation of interactive effects on water flow and solute transport in sandy loam soil using time domain reflectometry.

    Science.gov (United States)

    Merdun, Hasan

    2012-01-01

    Surface-applied chemicals move through the unsaturated zone with complex flow and transport processes due to soil heterogeneity and reach the saturated zone, resulting in groundwater contamination. Such complex processes need to be studied by advanced measurement and modeling techniques to protect soil and water resources from contamination. In this study, the interactive effects of factors like soil structure, initial soil water content (SWC), and application rate on preferential flow and transport were studied in a sandy loam field soil using measurement (by time domain reflectometry (TDR)) and modeling (by MACRO and VS2DTI) techniques. In addition, statistical analyses were performed to compare the means of the measured and modeled SWC and EC, and solute transport parameters (pore water velocity and dispersion coefficient) in 12 treatments. Research results showed that even though the effects of soil structural conditions on water and solute transport were not so clear, the applied solution moved lower depths in the profiles of wet versus dry initial SWC and high application rate versus low application rates. The effects of soil structure and initial SWC on water and solute movement could be differentiated under the interactive conditions, but the effects of the application rates were difficult to differentiate under different soil structural and initial SWC conditions. Modeling results showed that MACRO had somewhat better performance than VS2DTI in the estimation of SWC and EC with space and time, but overall both models had relatively low performances. The means of SWC, EC, and solute transport parameters of the 12 treatments were divided into some groups based on the statistical analyses, indicating different flow and transport characteristics or a certain degree nonuniform or preferential flow and transport in the soil. Conducting field experiments with more interactive factors and applying the models with different approaches may allow better understanding

  5. Velocity measurements and identification of the flow pattern of vertical air-water flows with light-beam detectors

    International Nuclear Information System (INIS)

    Luebbesmeyer, D.; Leoni, B.

    1980-07-01

    A new detector for measuring fluid velocities in two-phase flows by means of Noise-Analysis (especially Transient-Cross-Correlation-technique) has been developed. The detector utilizes a light-beam which is modulated by changes in the transparency of the two-phase flow. The results of nine measurements for different flow-regimes of vertical air/water-flows are shown. A main topic of these investigations was to answer the question if it is possible to identify the flow-pattern by looking at the shape of different 'Noise-Analytical-functions' (like APSD, CPSD, CCF etc.). The results prove that light-beam sensors are good detectors for fluid-velocity measurements in different flow regimes and in a wide range of fluid velocities starting with values of about 0.08 m/s up to values of 40 m/s. With respect to flow-pattern identification only the time-signals and the shape of the cross-power-density-function (CPSD) seem to be useful. (Auth.)

  6. Contribution to Surface Water Contamination Understanding by Pesticides and Pharmaceuticals, at a Watershed Scale

    Directory of Open Access Journals (Sweden)

    Stéphanie Piel

    2012-12-01

    Full Text Available This study aims at understanding the presence of regulated and emerging micropollutants, particularly pesticides and pharmaceuticals, in surface water, regarding spatial and temporal influences at a watershed scale. The study of relations between micropollutants and other water quality and hydroclimatic parameters was carried out from a statistical analysis on historical and experimental data of different sampling sites from the main watershed of Brittany, western France. The outcomes point out the influence of urban and rural areas of the watershed as well as the impact of seasons on contamination variations. This work contributes to health risk assessment related to surface water contamination by micropollutants. This approach is particularly interesting in the case of agricultural watersheds such as the one studied, where more than 80% of surface water is used to produce drinking water.

  7. Quantifying green water flows for improved Integrated Land and Water Resource Management under the National Water Act of South Africa: A review on hydrological research in South Africa.

    Science.gov (United States)

    Jarmain, C.; Everson, C. S.; Gush, M. B.; Clulow, A. D.

    2009-09-01

    The contribution of hydrological research in South Africa in quantifying green water flows for improved Integrated Land and Water Resources Management is reviewed. Green water refers to water losses from land surfaces through transpiration (seen as a productive use) and evaporation from bare soil (seen as a non-productive use). In contrast, blue water flows refer to streamflow (surface water) and groundwater / aquifer recharge. Over the past 20 years, a number of methods have been used to quantify the green water and blue water flows. These include micrometeorological techniques (e.g. Bowen ratio energy balance, eddy covariance, surface renewal, scintillometry, lysimetry), field scale models (e.g. SWB, SWAP), catchment scale hydrological models (e.g. ACRU, SWAT) and more recently remote sensing based models (e.g. SEBAL, SEBS). The National Water Act of South Africa of 1998 requires that water resources are managed, protected and used (developed, conserved and controlled) in an equitable way which is beneficial to the public. The quantification of green water flows in catchments under different land uses has been pivotal in (a) regulating streamflow reduction activities (e.g. forestry) and the management of alien invasive plants, (b) protecting riparian and wetland areas through the provision of an ecological reserve, (c) assessing and improving the water use efficiency of irrigated pastures, fruit tree orchards and vineyards, (d) quantifying the potential impact of future land uses like bio-fuels (e.g. Jatropha) on water resources, (e) quantifying water losses from open water bodies, and (f) investigating "biological” mitigation measures to reduce the impact of polluted water resources as a result of various industries (e.g. mining). This paper therefore captures the evolution of measurement techniques applied across South Africa, the impact these results have had on water use and water use efficiency and the extent to which it supported the National Water Act of

  8. Linking Flow Regime and Water Quality in Rivers: a Challenge to Adaptive Catchment Management

    Directory of Open Access Journals (Sweden)

    Christer Nilsson

    2008-12-01

    Full Text Available Water quality describes the physicochemical characteristics of the water body. These vary naturally with the weather and with the spatiotemporal variation of the water flow, i.e., the flow regime. Worldwide, biota have adapted to the variation in these variables. River channels and their riparian zones contain a rich selection of adapted species and have been able to offer goods and services for sustaining human civilizations. Many human impacts on natural riverine environments have been destructive and present opportunities for rehabilitation. It is a big challenge to satisfy the needs of both humans and nature, without sacrificing one or the other. New ways of thinking, new policies, and institutional commitment are needed to make improvements, both in the ways water flow is modified in rivers by dam operations and direct extractions, and in the ways runoff from adjacent land is affected by land-use practices. Originally, prescribed flows were relatively static, but precepts have been developed to encompass variation, specifically on how water could be shared over the year to become most useful to ecosystems and humans. A key aspect is how allocations of water interact with physicochemical variation of water. An important applied question is how waste releases and discharge can be managed to reduce ecological and sanitary problems that might arise from inappropriate combinations of flow variation and physicochemical characteristics of water. We review knowledge in this field, provide examples on how the flow regime and the water quality can impact ecosystem processes, and conclude that most problems are associated with low-flow conditions. Given that reduced flows represent an escalating problem in an increasing number of rivers worldwide, managers are facing enormous challenges.

  9. Extracting Hydrologic Understanding from the Unique Space-time Sampling of the Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Nickles, C.; Zhao, Y.; Beighley, E.; Durand, M. T.; David, C. H.; Lee, H.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) satellite mission is jointly developed by NASA, the French space agency (CNES), with participation from the Canadian and UK space agencies to serve both the hydrology and oceanography communities. The SWOT mission will sample global surface water extents and elevations (lakes/reservoirs, rivers, estuaries, oceans, sea and land ice) at a finer spatial resolution than is currently possible enabling hydrologic discovery, model advancements and new applications that are not currently possible or likely even conceivable. Although the mission will provide global cover, analysis and interpolation of the data generated from the irregular space/time sampling represents a significant challenge. In this study, we explore the applicability of the unique space/time sampling for understanding river discharge dynamics throughout the Ohio River Basin. River network topology, SWOT sampling (i.e., orbit and identified SWOT river reaches) and spatial interpolation concepts are used to quantify the fraction of effective sampling of river reaches each day of the three-year mission. Streamflow statistics for SWOT generated river discharge time series are compared to continuous daily river discharge series. Relationships are presented to transform SWOT generated streamflow statistics to equivalent continuous daily discharge time series statistics intended to support hydrologic applications using low-flow and annual flow duration statistics.

  10. Computer programs for the numerical modelling of water flow in rock masses

    International Nuclear Information System (INIS)

    Croney, P.; Richards, L.R.

    1985-08-01

    Water flow in rock joints provides a very important possible route for the migration of radio-nuclides from radio-active waste within a repository back to the biosphere. Two computer programs DAPHNE and FPM have been developed to model two dimensional fluid flow in jointed rock masses. They have been developed to run on microcomputer systems suitable for field locations. The fluid flows in a number of jointed rock systems have been examined and certain controlling functions identified. A methodology has been developed for assessing the anisotropic permeability of jointed rock. A number of examples of unconfined flow into surface and underground openings have been analysed and ground water lowering, pore water pressures and flow quantities predicted. (author)

  11. The principle of 'maximum energy dissipation': a novel thermodynamic perspective on rapid water flow in connected soil structures.

    Science.gov (United States)

    Zehe, Erwin; Blume, Theresa; Blöschl, Günter

    2010-05-12

    Preferential flow in biological soil structures is of key importance for infiltration and soil water flow at a range of scales. In the present study, we treat soil water flow as a dissipative process in an open non-equilibrium thermodynamic system, to better understand this key process. We define the chemical potential and Helmholtz free energy based on soil physical quantities, parametrize a physically based hydrological model based on field data and simulate the evolution of Helmholtz free energy in a cohesive soil with different populations of worm burrows for a range of rainfall scenarios. The simulations suggest that flow in connected worm burrows allows a more efficient redistribution of water within the soil, which implies a more efficient dissipation of free energy/higher production of entropy. There is additional evidence that the spatial pattern of worm burrow density at the hillslope scale is a major control of energy dissipation. The pattern typically found in the study is more efficient in dissipating energy/producing entropy than other patterns. This is because upslope run-off accumulates and infiltrates via the worm burrows into the dry soil in the lower part of the hillslope, which results in an overall more efficient dissipation of free energy.

  12. Mistletoe infection alters the transpiration flow path and suppresses water regulation of host trees during extreme events

    Science.gov (United States)

    Griebel, A.; Maier, C.; Barton, C. V.; Metzen, D.; Renchon, A.; Boer, M. M.; Pendall, E.

    2017-12-01

    Mistletoe is a globally distributed group of parasitic plants that infiltrates the vascular tissue of its host trees to acquire water, carbon and nutrients, making it a leading agent of biotic disturbance. Many mistletoes occur in water-limited ecosystems, thus mistletoe infection in combination with increased climatic stress may exacerbate water stress and potentially accelerate mortality rates of infected trees during extreme events. This is an emerging problem in Australia, as mistletoe distribution is increasing and clear links between mistletoe infection and mortality have been established. However, direct observations about how mistletoes alter host physiological processes during extreme events are rare, which impedes our understanding of mechanisms underlying increased tree mortality rates. We addressed this gap by continuously monitoring stem and branch sap flow and a range of leaf traits of infected and uninfected trees of two co-occurring eucalypt species during a severe heatwave in south-eastern Australia. We demonstrate that mistletoes' leaf water potentials were maintained 30% lower than hosts' to redirect the trees' transpiration flow path towards mistletoe leaves. Eucalypt leaves reduced water loss through stomatal regulation when atmospheric dryness exceeded 2 kPa, but the magnitude of stomatal regulation in non-infected eucalypts differed by species (between 40-80%). Remarkably, when infected, sap flow rates of stems and branches of both eucalypt species remained unregulated even under extreme atmospheric dryness (>8 kPa). Our observations indicate that excessive water use of mistletoes likely increases xylem cavitation rates in hosts during prolonged droughts and supports that hydraulic failure contributes to increased mortality of infected trees. Hence, in order to accurately model the contribution of biotic disturbances to tree mortality under a changing climate, it will be crucial to increase our process-based understanding of the interaction

  13. Wavelet analysis of hemispheroid flow separation toward understanding human vocal fold pathologies

    Science.gov (United States)

    Plesniak, Daniel H.; Carr, Ian A.; Bulusu, Kartik V.; Plesniak, Michael W.

    2014-11-01

    Physiological flows observed in human vocal fold pathologies, such as polyps and nodules, can be modeled by flow over a wall-mounted protuberance. The experimental investigation of flow separation over a surface-mounted hemispheroid was performed using particle image velocimetry (PIV) and measurements of surface pressure in a low-speed wind tunnel. This study builds on the hypothesis that the signatures of vortical structures associated with flow separation are imprinted on the surface pressure distributions. Wavelet decomposition methods in one- and two-dimensions were utilized to elucidate the flow behavior. First, a complex Gaussian wavelet was used for the reconstruction of surface pressure time series from static pressure measurements acquired from ports upstream, downstream, and on the surface of the hemispheroid. This was followed by the application of a novel continuous wavelet transform algorithm (PIVlet 1.2) using a 2D-Ricker wavelet for coherent structure detection on instantaneous PIV-data. The goal of this study is to correlate phase shifts in surface pressure with Strouhal numbers associated with the vortex shedding. Ultimately, the wavelet-based analytical framework will be aimed at addressing pulsatile flows. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  14. Understanding characteristics in multivariate traffic flow time series from complex network structure

    Science.gov (United States)

    Yan, Ying; Zhang, Shen; Tang, Jinjun; Wang, Xiaofei

    2017-07-01

    Discovering dynamic characteristics in traffic flow is the significant step to design effective traffic managing and controlling strategy for relieving traffic congestion in urban cities. A new method based on complex network theory is proposed to study multivariate traffic flow time series. The data were collected from loop detectors on freeway during a year. In order to construct complex network from original traffic flow, a weighted Froenius norm is adopt to estimate similarity between multivariate time series, and Principal Component Analysis is implemented to determine the weights. We discuss how to select optimal critical threshold for networks at different hour in term of cumulative probability distribution of degree. Furthermore, two statistical properties of networks: normalized network structure entropy and cumulative probability of degree, are utilized to explore hourly variation in traffic flow. The results demonstrate these two statistical quantities express similar pattern to traffic flow parameters with morning and evening peak hours. Accordingly, we detect three traffic states: trough, peak and transitional hours, according to the correlation between two aforementioned properties. The classifying results of states can actually represent hourly fluctuation in traffic flow by analyzing annual average hourly values of traffic volume, occupancy and speed in corresponding hours.

  15. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  16. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-01-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within ±8%

  17. Water flow and solute transport through fractured rock

    International Nuclear Information System (INIS)

    Bolt, J.E.; Bourke, P.J.; Pascoe, D.M.; Watkins, V.M.B.; Kingdon, R.D.

    1990-09-01

    In densely fractured slate at the Nirex research site in Cornwall, the positions, orientations and hydraulic conductivities of the 380 fractures intersecting a drill hole between 9 and 50 m depth have been individually measured. These data have been used: to determine the dimensions of statistically representative volumes of the network of fractures and to predict, using discrete flow path modelling and the NAPSAC code, the total flows into the fractures when large numbers are simultaneously pressurised along various lengths of the hole. Corresponding measurements, which validated the NAPSAC code to factor of two accuracy for the Cornish site, are reported. Possibilities accounting for this factor are noted for experimental investigation, and continuing, more extensive, inter hole flow and transport measurements are outlined. The application of this experimental and theoretical approach for calculating radionuclide transport in less densely fractured rock suitable for waste disposal is discussed. (Author)

  18. Toward a conceptual model relating chemical reaction fronts to water flow paths in hills

    Science.gov (United States)

    Brantley, Susan L.; Lebedeva, Marina I.; Balashov, Victor N.; Singha, Kamini; Sullivan, Pamela L.; Stinchcomb, Gary

    2017-01-01

    Both vertical and lateral flows of rock and water occur within eroding hills. Specifically, when considered over geological timeframes, rock advects vertically upward under hilltops in landscapes experiencing uplift and erosion. Once rock particles reach the land surface, they move laterally and down the hillslope because of erosion. At much shorter timescales, meteoric water moves vertically downward until it reaches the regional water table and then moves laterally as groundwater flow. Water can also flow laterally in the shallow subsurface as interflow in zones of permeability contrast. Interflow can be perched or can occur during periods of a high regional water table. The depths of these deep and shallow water tables in hills fluctuate over time. The fluctuations drive biogeochemical reactions between water, CO2, O2, and minerals and these in turn drive fracturing. The depth intervals of water table fluctuation for interflow and groundwater flow are thus reaction fronts characterized by changes in composition, fracture density, porosity, and permeability. The shallow and deep reaction zones can separate over meters in felsic rocks. The zones act like valves that reorient downward unsaturated water flow into lateral saturated flow. The valves also reorient the upward advection of rock into lateral flow through solubilization. In particular, groundwater removes highly soluble, and interflow removes moderately soluble minerals. As rock and water moves through the system, hills may evolve toward a condition where the weathering advance rate, W, approaches the erosion rate, E. If W = E, the slopes of the deep and shallow reaction zones and the hillsides must allow removal of the most soluble, moderately soluble, and least soluble minerals respectively. A permeability architecture thus emerges to partition each evolving hill into dissolved and particulate material fluxes as it approaches steady state.

  19. Water flow experiment using the PIV technique and the thermal hydraulic analysis on the cross-flow type mercury target model with the blade flow distributors

    International Nuclear Information System (INIS)

    Haga, Katsuhiro; Terada, Atsuhiko; Kaminaga, Masanori; Hino, Ryutaro

    2000-01-01

    The flow patterns in the mock-up model of the cross-flow type mercury target were measured using the PIV (particle image velocimetry) technique under water flow conditions at room temperature. The experimental results were compared with the analytical results conducted with the thermal hydraulic analysis code, STAR-CD. As a result, it was confirmed experimentally that the cross-flow could be realized in most of the proton beam path area, where the removal of the high density heat is important, with the proper flow rate distribution along the proton beam path. The analytical result showed the good correspondence to the experimental result. Then the mercury flow field and the temperature distribution were analyzed taking the volumetric heat generation by the spallation reaction into consideration. The volumetric heat generation calculated for the proton beam energy and power of 1.5 GeV and 5 MW were assumed in the analysis. The mercury flow analysis showed that the maximum mercury temperature less than the design criteria of 300degC can be attained with the inlet mercury velocity of more than 1.1 m/s and that the recirculation flow seen in the rear of the proton beam path is considered to cause no excessive temperature rise. (author)

  20. Core2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    International Nuclear Information System (INIS)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L.

    2000-01-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  1. Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L. [Universidad de A Coruna (Spain)

    2000-07-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  2. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee

    Science.gov (United States)

    Haugh, C.J.; Mahoney, E.N.

    1994-01-01

    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  3. A Fast Algorithm to Simulate Droplet Motions in Oil/Water Two Phase Flow

    KAUST Repository

    Zhang, Tao

    2017-06-09

    To improve the research methods in petroleum industry, we develop a fast algorithm to simulate droplet motions in oil and water two phase flow, using phase field model to describe the phase distribution in the flow process. An efficient partial difference equation solver—Shift-Matrix method is applied here, to speed up the calculation coding in high-level language, i.e. Matlab and R. An analytical solution of order parameter is derived, to define the initial condition of phase distribution. The upwind scheme is applied in our algorithm, to make it energy decay stable, which results in the fast speed of calculation. To make it more clear and understandable, we provide the specific code for forming the coefficient matrix used in Shift-Matrix Method. Our algorithm is compared with other methods in different scales, including Front Tracking and VOSET method in macroscopic and LBM method using RK model in mesoscopic scale. In addition, we compare the result of droplet motion under gravity using our algorithm with the empirical formula common used in industry. The result proves the high efficiency and robustness of our algorithm and it’s then used to simulate the motions of multiple droplets under gravity and cross-direction forces, which is more practical in industry and can be extended to wider application.

  4. Simulation of groundwater flow and interaction of groundwater and surface water on the Lac du Flambeau Reservation, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Fienen, Michael N.; Hunt, Randall J.

    2014-01-01

    The Lac du Flambeau Band of Lake Superior Chippewa and Indian Health Service are interested in improving the understanding of groundwater flow and groundwater/surface-water interaction on the Lac du Flambeau Reservation (Reservation) in southwest Vilas County and southeast Iron County, Wisconsin, with particular interest in an understanding of the potential for contamination of groundwater supply wells and the fate of wastewater that is infiltrated from treatment lagoons on the Reservation. This report describes the construction, calibration, and application of a regional groundwater flow model used to simulate the shallow groundwater flow system of the Reservation and water-quality results for groundwater and surface-water samples collected near a system of waste-water-treatment lagoons. Groundwater flows through a permeable glacial aquifer that ranges in thickness from 60 to more than 200 feet (ft). Seepage and drainage lakes are common in the area and influence groundwater flow patterns on the Reservation. A two-dimensional, steady-state analytic element groundwater flow model was constructed using the program GFLOW. The model was calibrated by matching target water levels and stream base flows through the use of the parameter-estimation program, PEST. Simulated results illustrate that groundwater flow within most of the Reservation is toward the Bear River and the chain of lakes that feed the Bear River. Results of analyses of groundwater and surface-water samples collected downgradient from the wastewater infiltration lagoons show elevated levels of ammonia and dissolved phosphorus. In addition, wastewater indicator chemicals detected in three downgradient wells and a small downgradient stream indicate that infiltrated wastewater is moving southwest of the lagoons toward Moss Lake. Potential effects of extended wet and dry periods (within historical ranges) were evaluated by adjusting precipitation and groundwater recharge in the model and comparing the

  5. Science to support the understanding of Ohio's water resources, 2016-17

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie P.; Shaffer, Kimberly; Kula, Stephanie P.

    2016-12-19

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. Although rainfall in normal years can support these activities and needs, occasional floods and droughts can disrupt streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie; it has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all of the rural population obtains drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policy makers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of the use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2016) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  6. Late Glacial and Holocene Flow Dynamics of the Denmark Strait Overflow Water

    Science.gov (United States)

    Williams, M.; Schmidt, D. N.; Andersen, M. B.; Barker, S.; McCave, I. N. N.

    2014-12-01

    The overflow of dense water from the Nordic Seas to the North Atlantic across the Greenland-Scotland Ridge forms a major component of the deep branch of the Atlantic Meridional Overturning Circulation and influences the climate system in Northwest Europe. Research has focused on deep convection of the Iceland Scotland Overflow Water (ISOW) and its links to climate variability in the North Atlantic. Our understanding of the history of the Denmark Strait Overflow Water (DSOW) is significantly less constrained and yet it accounts for half of the total overflow production today. We focus on the Eirik Drift south of Greenland in the vicinity of the DSOW. Down-core 230Thxs derived sediment focusing factors (Ψ) and measurements of the mean size of sortable silt reveal winnowed sediments during the Last Glacial Maximum and Heinrich 1 suggesting an influx of vigorous southern sourced waters and restricted DSOW production. Reduced overflow may be due to glacial isostatic processes which shoaled the Denmark Strait sill combined with a southward shift of deep convection sites in response to enhanced ice cover in the Nordic Seas. Intensification of the DSOW is evident between 9 and 13ka BP indicating initial deepening of the Denmark Strait sill and northward migration of the locus of deep water production. Ψ values for the Holocene suggest an active DSOW with a shift in the flow regime at 6.8 ka BP indicated by a reduction and subsequent stabilization of mean size sortable silt during the mid-late Holocene. This is corroborated by other studies showing a reorganization of the deep water after 7ka. An establishment of the Labrador Sea Water at intermediate depths altered the density structure of the deep western boundary current and weakened the ISOW. Changes in deep water circulation occur as North Atlantic climate entered Neoglacial cooling determined by Mg/Ca derived sea surface temperatures and abundances of the polar planktic foraminifera species N. pachyderma. They

  7. A double parameters measurement of steam-water two-phase flow with single orifice

    International Nuclear Information System (INIS)

    Zhong Shuoping; Tong Yunxian; Yu Meiying

    1992-08-01

    A double parameters measurement of steam-water two-phase flow with single orifice is described. An on-line measurement device based on micro-computer has been developed. The measured r.m.s error of steam quality is less than 6.5% and the measured relative r.m.s. error of mass flow rate is less than 9%

  8. One-dimensional model for heat transfer to a supercritical water flow in a tube

    NARCIS (Netherlands)

    Sallevelt, J.L.H.P.; Withag, J.A.M.; Bramer, Eduard A.; Brilman, Derk Willem Frederik; Brem, Gerrit

    2012-01-01

    Heat transfer in water at supercritical pressures has been investigated numerically using a one-dimensional modeling approach. A 1D plug flow model has been developed in order to make fast predictions of the bulk-fluid temperature in a tubular flow. The chosen geometry is a vertical tube with an

  9. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an

  10. Identifying the appropriate scales to model nitrogen flows from land to water

    NARCIS (Netherlands)

    Dumont, E.L.

    2007-01-01

    Human activities cause flow of nitrogen (N) from terrestrial to aquatic systems. This has many serious consequences that need to be alleviated. Understanding and anticipation of N flow to aquatic systems can be achieved by modeling. Several models have been developed but one of their major

  11. Understanding water uptake in bioaerosols using laboratory measurements, field tests, and modeling

    Science.gov (United States)

    Chaudhry, Zahra; Ratnesar-Shumate, Shanna A.; Buckley, Thomas J.; Kalter, Jeffrey M.; Gilberry, Jerome U.; Eshbaugh, Jonathan P.; Corson, Elizabeth C.; Santarpia, Joshua L.; Carter, Christopher C.

    2013-05-01

    Uptake of water by biological aerosols can impact their physical and chemical characteristics. The water content in a bioaerosol can affect the backscatter cross-section as measured by LIDAR systems. Better understanding of the water content in controlled-release clouds of bioaerosols can aid in the development of improved standoff detection systems. This study includes three methods to improve understanding of how bioaerosols take up water. The laboratory method measures hygroscopic growth of biological material after it is aerosolized and dried. Hygroscopicity curves are created as the humidity is increased in small increments to observe the deliquescence point, then the humidity is decreased to observe the efflorescence point. The field component of the study measures particle size distributions of biological material disseminated into a large humidified chamber. Measurements are made with a Twin-Aerodynamic Particle Sizer (APS, TSI, Inc), -Relative Humidity apparatus where two APS units measure the same aerosol cloud side-by-side. The first operated under dry conditions by sampling downstream of desiccant dryers, the second operated under ambient conditions. Relative humidity was measured within the sampling systems to determine the difference in the aerosol water content between the two sampling trains. The water content of the bioaerosols was calculated from the twin APS units following Khlystov et al. 2005 [1]. Biological material is measured dried and wet and compared to laboratory curves of the same material. Lastly, theoretical curves are constructed from literature values for components of the bioaerosol material.

  12. Low-Flow Water Study for the Missouri River.

    Science.gov (United States)

    2008-08-01

    The (MoDOT) retained TranSystems to identify and review low-flow industry : trends, equipment and strategies used in inland navigation settings throughout the United States and worldwide which : may be transferable to the Missouri River and which cou...

  13. Relating Water and Air Flow Characteristics in Coarse Granular Materials

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Canga, Eriona; Kjærgaard, Charlotte

    2013-01-01

    from air flow data. The objective of this study was, therefore, to investigate if this approach is valid 8 also for coarse granular biofilter media which usually consists of much larger particles than soils. In 9 this paper the connection between the pressure drop – velocity relationships for air...

  14. Heterogeneity of water flow in grassland soil during irrigation experiment

    Czech Academy of Sciences Publication Activity Database

    Lichner, Ľ.; Dušek, J.; Tesař, Miroslav; Czachor, H.; Mészároš, I.

    2014-01-01

    Roč. 69, č. 11 (2014), s. 1555-1561 ISSN 0006-3088 R&D Projects: GA TA ČR(CZ) TA0201451 Grant - others:ERDF ITMS26240120004 Institutional support: RVO:67985874 Keywords : degree of preferential flow * effective cross section * infiltration experiment * radioactive tracer technique * sandy soil Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.827, year: 2014

  15. Detailed structure of pipe flow with water hammer oscillations | Kioni ...

    African Journals Online (AJOL)

    Herein, the evolution and detailed structure of velocity and pressure fields of an oscillating axi-symmetric pipe flow arising from a rapid closure of a valve has been determined through the solution, by the Finite Volume technique, of the full Navier Stokes equations. The method correctly predicts the distortion of the pressure ...

  16. Regional Heat Flow Map and the Continental Thermal Isostasy Understanding of México

    Science.gov (United States)

    Espinoza-Ojeda, O. M.; Harris, R. N.

    2014-12-01

    The first heat flow values made in Mexico were reported by Von Herzen [Science, 1963] for the marine environment and Smith [EPSL, 1974] for the continent. Since that time the number of measurements has increased greatly but are mostly from oil and gas exploration and in and around geothermal areas. We have compiled published values of conductive heat flow for Mexico and the Gulf of California to generate a new regional heat flow map consisting of 261 values. In addition to those original values, published heat flow sources include, Lee and Henyey [JGR, 1975], Lawver and Williams [JGR, 1979] Smith et al. [JGR, 1979], Lachenbruch et al. [JGR, 1985], and Ziagos et al. [JGR, 1985]. Although the geographic distribution is uneven, heat flow data are present in each of the eight main tectonic provinces. Our new compilation indicates relatively high regional heat flow averages in the Gulf Extensional Province (n=114, 92±22 mW/m2) and Mexican Basin and Range (n=21, 82±20 mW/m2) and are consistent with geologic estimates of extension. Lower regional averages are found in the Baja California Microplate (n=91, 75±19 mW/m2), the Sierra Madre Occidental (n=9, 75±12 mW/m2), the Sierra Madre Oriental (n=4, 68±15 mW/m2) and Mesa Central (n=X 77±23 mW/m2). In contrast low and variable heat flow value characterize the forearc region of the Middle America Trench (n=6, 35±16 mW/m2). A higher mean heat flow is associated with the Trans-Mexican Volcanic Belt (n=6, 78±26 mW/m2). Continental elevation results from a combination of buoyancy (i.e. compositional and thermal) and geodynamic forces. We combine these regional heat flow values with estimates of crustal thickness and density for each tectonic province and compute the thermal and compositional buoyancy following the approach of Hasterok and Chapman [JGR, 2007a,b]. We find that within uncertainties most provinces lie near the theoretical isostatic relationship with the exception of the Mesa Central and Sierra Madre del Sur

  17. Oil–water two-phase flow measurement with combined ultrasonic transducer and electrical sensors

    International Nuclear Information System (INIS)

    Tan, Chao; Yuan, Ye; Dong, Xiaoxiao; Dong, Feng

    2016-01-01

    A combination of ultrasonic transducers operated in continuous mode and a conductance/capacitance sensor (UTCC) is proposed to estimate the individual flow velocities in oil–water two-phase flows. Based on the Doppler effect, the transducers measure the flow velocity and the conductance/capacitance sensor estimates the phase fraction. A set of theoretical correlations based on the boundary layer models of the oil–water two-phase flow was proposed to describe the velocity profile. The models were separately established for the dispersion flow and the separate flow. The superficial flow velocity of each phase is calculated with the velocity measured in the sampling volume of the ultrasonic transducer with the phase fraction through the velocity profile models. The measuring system of the UTCC was designed and experimentally verified on a multiphase flow loop. The results indicate that the proposed system and correlations estimate the overall flow velocity at an uncertainty of U J   =  0.038 m s −1 , and the water superficial velocity at U Jw   =  0.026 m s −1 , and oil superficial velocity at U Jo   =  0.034 m s −1 . The influencing factors of uncertainty were analyzed. (paper)

  18. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities

    Directory of Open Access Journals (Sweden)

    Josep M. Gasol

    2000-06-01

    Full Text Available Flow cytometry is rapidly becoming a routine methodology in aquatic microbial ecology. The combination of simple to use bench-top flow cytometers and highly fluorescent nucleic acid stains allows fast and easy determination of microbe abundance in the plankton of lakes and oceans. The different dyes and protocols used to stain and count planktonic bacteria as well as the equipment in use are reviewed, with special attention to some of the problems encountered in daily routine practice such as fixation, staining and absolute counting. One of the main advantages of flow cytometry over epifluorescence microscopy is the ability to obtain cell-specific measurements in large numbers of cells with limited effort. We discuss how this characteristic has been used for differentiating photosynthetic from non-photosynthetic prokaryotes, for measuring bacterial cell size and nucleic acid content, and for estimating the relative activity and physiological state of each cell. We also describe how some of the flow cytometrically obtained data can be used to characterize the role of microbes on carbon cycling in the aquatic environment and we prospect the likely avenues of progress in the study of planktonic prokaryotes through the use of flow cytometry.

  19. Chemical exergy assessment of organic matter in a water flow

    International Nuclear Information System (INIS)

    Martinez, Amaya; Uche, Javier

    2010-01-01

    In recent years, exergy analysis has been successfully applied to natural resources assessment. The consumption of any natural resource is unavoidably joined to dispersion and degradation. Therefore, exergy analysis can be applied to study the depletion of natural resources and, particularly, to water resources. Different studies range from global fresh water resources evaluation to specific water bodies' detailed analysis. Physical Hydronomics is a new approach based on the specific application of Thermodynamics to physically characterize the state of a river and to help in the Governance of water bodies. The core task in the methodology is the construction of the exergy profiles of the river and it requires the calculation of the different specific exergy components in the water body: potential, thermal, mechanical, kinetic and chemical exergy. This paper is focused on the exergy assessment for the organic chemical matter present in water bodies. Different parameters such as chemical oxygen demand (COD), biological oxygen demand (BOD) or total organic carbon (TOC), among others, can be used as raw data for the calculation. Starting from available sampling data, previous approaches are analyzed, completed and compared. The well-known and most simple average molecule representing the organic matter in the river (CH 2 O) is proposed. Results show that, considering surface waters, TOC parameter is the most convenient one, but also that the BOD and COD can be reasonably useful.

  20. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part II: Constraint methodology of hydrodynamic models.

    Science.gov (United States)

    Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R

    2016-09-01

    Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Ground-water flow and ground- and surface-water interaction at the Weldon Spring quarry, St. Charles County, Missouri

    International Nuclear Information System (INIS)

    Imes, J.L.; Kleeschulte, M.J.

    1997-01-01

    Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field

  2. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    International Nuclear Information System (INIS)

    K. Rehfeldt

    2004-01-01

    This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In addition to being utilized

  3. The effects of viscosity, surface tension, and flow rate on gasoil-water flow pattern in microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Boogar, Rahman Sadeghi; Gheshlaghi, Reza; Mahdavi, Mahmood Akhavan [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2013-01-15

    A microchannel was fabricated with glass tubes to investigate the effect of viscosity, surface tension, and flow rate on the liquid-liquid two-phase flow regime. Water and gasoil were selected as aqueous and organic working fluids, respectively. The two fluids were injected into the microchannel and created either slug or parallel profile depending on the applied conditions. The range of Reynolds and capillary numbers was chosen in such a way that neither inertia nor interfacial tension forces were negligible. Xanthan gum was used to increase viscosity and Triton X-100 (TX-100) and Sodium Dodecyl Sulfate (SDS) were used to reduce the interfacial tension. The results demonstrated that higher value of viscosity and flow rate increased interfacial area, but slug flow regime remained unchanged. The two surfactants showed different effects on the flow regime and interfacial area. Addition of TX-100 did not change the slug flow but decreased the interfacial area. In contrast, addition of SDS increased interfacial area by decreasing the slug’s length in the low concentrations and by switching from slug to parallel regime at high concentrations.

  4. Flow characteristics of centrifugal gas-liquid separator. Investigation with air-water two-phase flow experiment

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Inada, Fumio

    2004-01-01

    Air-water two-phase flow experiment was conducted to examine the basic flow characteristics of a centrifugal gas-liquid separator. Vertical transparent test section, which is 4 m in height, was used to imitate the scale of a BWR separator. Flow rate conditions of gas and liquid were fixed at 0.1 m 3 /s and 0.033 m 3 /s, respectively. Radial distributions of two-phase flow characteristics, such as void fraction, gas velocity and bubble chord length, were measured by traversing dual optical void probes in the test section, horizontally. The flow in the standpipe reached to quasi-developed state within the height-to-diameter aspect ratio H/D=10, which in turn can mean the maximum value for an ideal height design of a standpipe. The liquid film in the barrel showed a maximum thickness at 0.5 to 1 m in height from the swirler exit, which was a common result for three different standpipe length conditions, qualitatively and quantitatively. The empirical database obtained in this study would contribute practically to the validation of numerical analyses for an actual separator in a plant, and would also be academically useful for further investigations of two-phase flow in large-diameter pipes. (author)

  5. Prediction of unsaturated flow and water backfill during infiltration in layered soils

    Science.gov (United States)

    Cui, Guotao; Zhu, Jianting

    2018-02-01

    We develop a new analytical infiltration model to determine water flow dynamics around layer interfaces during infiltration process in layered soils. The model mainly involves the analytical solutions to quadratic equations to determine the flux rates around the interfaces. Active water content profile behind the wetting front is developed based on the solution of steady state flow to dynamically update active parameters in sharp wetting front infiltration equations and to predict unsaturated flow in coarse layers before the front reaches an impeding fine layer. The effect of water backfill to saturate the coarse layers after the wetting front encounters the impeding fine layer is analytically expressed based on the active water content profiles. Comparison to the numerical solutions of the Richards equation shows that the new model can well capture water dynamics in relation to the arrangement of soil layers. The steady state active water content profile can be used to predict the saturation state of all layers when the wetting front first passes through these layers during the unsteady infiltration process. Water backfill effect may occur when the unsaturated wetting front encounters a fine layer underlying a coarse layer. Sensitivity analysis shows that saturated hydraulic conductivity is the parameter dictating the occurrence of unsaturated flow and water backfill and can be used to represent the coarseness of soil layers. Water backfill effect occurs in coarse layers between upper and lower fine layers when the lower layer is not significantly coarser than the upper layer.

  6. Novel flow-through bioremediation system for removing nitrate from nursery discharge water.

    Science.gov (United States)

    Chris Wilson, P; Albano, Joseph P

    2013-11-30

    Nitrate losses in surface runoff water from nursery production areas can be significant. This study evaluated the potential use of microbial-based (denitrification), flow-through bioreactors for their nitrate-remediation ability. Duplicate bioreactor systems were constructed at a local foliage plant nursery. Each bioreactor system consisted of four 242 L tanks with connections alternating between bottom and top. Each tank was filled with approximately 113 L of Kaldness media to provide surface area for attachment of native microflora. Molasses was supplied as a carbon source for denitrification and water flow rates through the systems ranged from 5 to 18 L min(-1) during tests. Automatic water samplers were used to collect composite samples every 15 min from both the inflow and the exit flow water. Results indicate consistent removal of 80-100% of the nitrate flowing into the systems. Accumulation of ammoniacal and nitrite nitrogen did not occur, indicating that the nitrate-nitrogen was removed from the water, and not simply transformed into another water-soluble species. Occasions where removal rates were less than 80% were usually traced to faulty delivery of the carbon source. Results indicate that modular microbial-based bioremediation systems may be a useful tool for helping water managers meet stringent nitrogen water quality regulations, especially at nurseries with limited space for expansion of water retention facilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Amount of water needed to save 1 m3 of water: life cycle assessment of a flow regulator

    Science.gov (United States)

    Berger, Markus; Söchtig, Michael; Weis, Christoph; Finkbeiner, Matthias

    2017-06-01

    Water saving devices in the sanitary equipment, such as flow regulators, are assumed to be environmentally advantageous even though their environmental benefit has never been compared to the environmental burden caused during their production und disposal. Therefore, a life cycle assessment according to ISO 14044 has been conducted to identify and quantify the environmental effects throughout the lifespan of a flow regulator. The analysis comprises the production of materials, manufacturing of components at suppliers, the assembly at NEOPERL®, all transports, savings of water and thermal energy during use as well as waste incineration including energy recovery in the end-of-life stage. Results show that the production of one flow regulator causes 0.12 MJ primary energy demand, a global warming potential of 5.9 g CO2-equivalent, and a water consumption of 30.3 ml. On the other hand, during a use of 10 years, it saves 19,231 MJ primary energy, 1223 kg CO2-equivalent, and avoids a water consumption of 790 l (166,200 l water use). Since local impacts of water consumption are more relevant than volumes, consequences of water consumption have been analyzed using recently developed impact assessment models. Accordingly, the production of a flow regulator causes 8.5 ml freshwater depletion, 1.4 × 10-13 disability adjusted life years, and 4.8 × 10-6 potentially disappeared fractions of species m2 a. Even though avoided environmental impacts resulting from water savings highly depend on the region where the flow regulator is used, the analysis has shown that environmental benefits are at least 15,000 times higher than impacts caused during the production.

  8. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs

    Directory of Open Access Journals (Sweden)

    P. Döll

    2009-12-01

    Full Text Available Global-scale information on natural river flows and anthropogenic river flow alterations is required to identify areas where aqueous ecosystems are expected to be strongly degraded. Such information can support the identification of environmental flow guidelines and a sustainable water management that balances the water demands of humans and ecosystems. This study presents the first global assessment of the anthropogenic alteration of river flow regimes, in particular of flow variability, by water withdrawals and dams/reservoirs. Six ecologically relevant flow indicators were quantified using an improved version of the global water model WaterGAP. WaterGAP simulated, with a spatial resolution of 0.5 degree, river discharge as affected by human water withdrawals and dams around the year 2000, as well as naturalized discharge without this type of human interference. Compared to naturalized conditions, long-term average global discharge into oceans and internal sinks has decreased by 2.7% due to water withdrawals, and by 0.8% due to dams. Mainly due to irrigation, long-term average river discharge and statistical low flow Q90 (monthly river discharge that is exceeded in 9 out of 10 months have decreased by more than 10% on one sixth and one quarter of the global land area (excluding Antarctica and Greenland, respectively. Q90 has increased significantly on only 5% of the land area, downstream of reservoirs. Due to both water withdrawals and reservoirs, seasonal flow amplitude has decreased significantly on one sixth of the land area, while interannual variability has increased on one quarter of the land area mainly due to irrigation. It has decreased on only 8% of the land area, in areas downstream of reservoirs where consumptive water use is low. The impact of reservoirs is likely underestimated by our study as small reservoirs are not taken into account. Areas most affected by anthropogenic river flow

  9. Water flow in soil from organic dairy rotations

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Eriksen, Jørgen; Krogh, Paul Henning

    2017-01-01

    and fertilizer practice on the movement of water through sandy loam soil profiles were investigated in managed grassland of a dairy operation. Experiments using tracer chemicals were performed, with or without cattle slurry application, with cutting or grazing, in the 1st and the 3rd year of ley, and in winter...... rye. Each plot was irrigated for an hour with 18·5 mm of water containing a conservative tracer, potassium bromide; 24 h after irrigation, macropores >1 mm were recorded visually on a horizontal plan of 0·7 m2 at five depths (10, 30, 40, 70 and 100 cm). The bromide (Br−) concentration in soil was also...... by the grazing regime. Infiltrating water may bypass the soil matrix under similar or more extreme conditions than in the current experiment. Such hydraulic functioning in the grazing regime is expected to reduce the risk of leaching of nitrate contained in soil water....

  10. Virtual water flows in the international trade of agricultural products of China.

    Science.gov (United States)

    Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun

    2016-07-01

    With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Water excretion mechanisms of the kidney studied in the rabbit using tritiated water during the stop-flow assay

    International Nuclear Information System (INIS)

    Morel, F.; Amiel, CI.; Falbriard, A.

    1960-01-01

    The pattern of water turnover in the kidney and the mechanisms of water transfer into the urine have been studied in the rabbit using tritiated water as a tracer and the stop-flow technique. The experiments have given the following results: a) During the interruption of the diuresis, the injected tritiated water is completely exchanged with the water of the renal cortex, but the tracer does not reach the deep regions of the kidney, despite the fact that the blood circulation is maintained in these regions; this suggests that the vascular loops of the vasa recta function as a mechanism of water exchange by countercurrent. b) During the osmotic polyuria following the stop-flow period, the concentration gradient of tritiated water inside the kidney diminishes progressively. The concentration of the tracer in the urine is at all time similar to that existing in the deep medulla and the renal papilla and markedly different from that of the cortex or arterial blood. This fact shows that the molecules of water in the urine excreted do not come from either the glomerular filtrate or the convoluted tubules but from the water contained in the deep regions of the kidney. Also these results indicate that the walls of the collecting ducts have a very high permeability to water diffusion. Reprint of a paper published in Revue francaise d'etudes cliniques et biologiques, Vol. IV, no. 8, p. 773-779, 1959 [fr

  12. The Application of 2-D Resistivity and Self Potential (SP) Methods in Determining the Water Flow

    Science.gov (United States)

    Nordiana, M. M.; Tajudeen Olugbenga, Adeeko; Afiq Saharudin, Muhamad; nabila, S.; El Hidayah Ismail, Noer

    2018-04-01

    Existence of water flow at urban area will decrease the shear strength and increase hydraulic conductivity of soil which finally caused subsurface problems at this area. To avoid landslide, slope instability and disturbance of the ecosystem, good and detailed planning must be done when developing hilly area. The understanding about geological condition has to be considering before construction activities be done. Six 2-D resistivity survey lines with minimum 5 m electrode spacing were executed using Pole-dipole array. The field investigation such as borehole was carried out at multiple locations in the area where the 2-D resistivity method have been conducted. The directions and intensities of the water were evaluated with self-potential (SP) method. Subsequently, the results from borehole were used to verify the results of electrical resistivity method. Interpretation of 2-D resistivity data showed a low resistivity value (support the results of 2-D resistivity method relating a saturated zone in the survey area. There is a good correlation between the 2-D resistivity investigations and the results of borehole records.

  13. Vibration of helical springs in cross water flow

    International Nuclear Information System (INIS)

    Axisa, F.; Brunet, G.

    1987-05-01

    The purpose of this paper is to present new experimental data on vortex-shedding induced vibration on helical springs subjected to cross-flows. Intense locked-in vibration were observed on the natural modes of axial displacement. A simplified model is tentatively proposed to interpret the experimental data which is based on an analogy with vortex-shedding as observed on straight tube rows

  14. How granular vortices can help understanding rheological and mixing properties of dense granular flows

    Directory of Open Access Journals (Sweden)

    Rognon Pierre

    2017-01-01

    Full Text Available Dense granular flows exhibit fascinating kinematic patterns characterised by strong fluctuations in grain velocities. In this paper, we analyse these fluctuations and discuss their possible role on macroscopic properties such as effective viscosity, non-locality and shear-induced diffusion. The analysis is based on 2D experimental granular flows performed with the stadium shear device and DEM simulations. We first show that, when subjected to shear, grains self-organised into clusters rotating like rigid bodies. The average size of these so-called granular vortices is found to increase and diverge for lower inertial numbers, when flows decelerate and stop. We then discuss how such a microstructural entity and its associated internal length scale, possibly much larger than a grain, may be used to explain two important properties of dense granular flows: (i the existence of shear-induced diffusion of grains characterised by a shear-rate independent diffusivity and (ii the development of boundary layers near walls, where the viscosity is seemingly lower than the viscosity far from walls.

  15. Ground water flow velocity in the bank of the Columbia River, Hanford, Washington

    International Nuclear Information System (INIS)

    Ballard, S.

    1995-12-01

    To properly characterize the transport of contaminants from the sediments beneath the Hanford Site into the Columbia River, a suite of In Situ Permeable Flow Sensors was deployed to accurately characterize the hydrologic regime in the banks of the river. The three dimensional flow velocity was recorded on an hourly basis from mid May to mid July, 1994 and for one week in September. The first data collection interval coincided with the seasonal high water level in the river while the second interval reflected conditions during relatively low seasonal river stage. Two flow sensors located approximately 50 feet from the river recorded flow directions which correlated very well with river stage, both on seasonal and diurnal time scales. During time intervals characterized by falling river stage, the flow sensors recorded flow toward the river while flow away from the river was recorded during times of rising river stage. The flow sensor near the river in the Hanford Formation recorded a component of flow oriented vertically downward, probably reflecting the details of the hydrostratigraphy in close proximity to the probe. The flow sensor near the river in the Ringold Formation recorded an upward component of flow which dominated the horizontal components most of the time. The upward flow in the Ringold probably reflects regional groundwater flow into the river. The magnitudes of the flow velocities recorded by the flow sensors were lower than expected, probably as a result of drilling induced disturbance of the hydraulic properties of the sediments around the probes. The probes were installed with resonant sonic drilling which may have compacted the sediments immediately surrounding the probes, thereby reducing the hydraulic conductivity adjacent to the probes and diverting the groundwater flow away from the sensors

  16. Understanding the Ecological Adoption of Solar Water Heaters Among Customers of Island Economies

    Directory of Open Access Journals (Sweden)

    Pudaruth Sharmila

    2017-04-01

    Full Text Available This paper explores the major factors impacting upon the ecological adoption of solar water heaters in Mauritius. The paper applies data reduction technique by using exploratory factor analysis on a sample of 228 respondents and condenses a set of 32 attributes into a list of 8 comprehensible factors impacting upon the sustained adoption of solar water heater in Mauritius. Multiple regression analysis was also conducted to investigate upon the most predictive factor influencing the adoption of solar water heaters in Mauritius. The empirical estimates of the regression analysis have also depicted that the most determining factor pertaining to the ‘government incentives for solar water heaters’ impacts upon the adoption of solar water heaters. These results can be related to sustainable adoption of green energy whereby targeted incentive mechanisms can be formulated with the aim to accelerate and cascade solar energy adoption in emerging economies. A novel conceptual model was also proposed in this paper, whereby, ecological stakeholders in the sustainable arena could use the model as a reference to pave the way to encourage adoption of solar water heating energy. This research represents a different way of understanding ecological customers by developing an expanding on an original scale development for the survey on the ecological adoption of solar water heaters.

  17. Sense Things in the Big Deep Water Bring the Big Deep Water to Computers so People can understand the Deep Water all the Time without getting wet

    Science.gov (United States)

    Pelz, M.; Heesemann, M.; Scherwath, M.; Owens, D.; Hoeberechts, M.; Moran, K.

    2015-12-01

    Senses help us learn stuff about the world. We put sense things in, over, and under the water to help people understand water, ice, rocks, life and changes over time out there in the big water. Sense things are like our eyes and ears. We can use them to look up and down, right and left all of the time. We can also use them on top of or near the water to see wind and waves. As the water gets deep, we can use our sense things to see many a layer of different water that make up the big water. On the big water we watch ice grow and then go away again. We think our sense things will help us know if this is different from normal, because it could be bad for people soon if it is not normal. Our sense things let us hear big water animals talking low (but sometimes high). We can also see animals that live at the bottom of the big water and we take lots of pictures of them. Lots of the animals we see are soft and small or hard and small, but sometimes the really big ones are seen too. We also use our sense things on the bottom and sometimes feel the ground shaking. Sometimes, we get little pockets of bad smelling air going up, too. In other areas of the bottom, we feel hot hot water coming out of the rock making new rocks and we watch some animals even make houses and food out of the hot hot water that turns to rock as it cools. To take care of the sense things we use and control water cars and smaller water cars that can dive deep in the water away from the bigger water car. We like to put new things in the water and take things out of the water that need to be fixed at least once a year. Sense things are very cool because you can use the sense things with your computer too. We share everything for free on our computers, which your computer talks to and gets pictures and sounds for you. Sharing the facts from the sense things is the best part about having the sense things because we can get many new ideas about understanding the big water from anyone with a computer!

  18. Water quality modelling of an impacted semi-arid catchment using flow data from the WEAP model

    Science.gov (United States)

    Slaughter, Andrew R.; Mantel, Sukhmani K.

    2018-04-01

    The continuous decline in water quality in many regions is forcing a shift from quantity-based water resources management to a greater emphasis on water quality management. Water quality models can act as invaluable tools as they facilitate a conceptual understanding of processes affecting water quality and can be used to investigate the water quality consequences of management scenarios. In South Africa, the Water Quality Systems Assessment Model (WQSAM) was developed as a management-focussed water quality model that is relatively simple to be able to utilise the small amount of available observed data. Importantly, WQSAM explicitly links to systems (yield) models routinely used in water resources management in South Africa by using their flow output to drive water quality simulations. Although WQSAM has been shown to be able to represent the variability of water quality in South African rivers, its focus on management from a South African perspective limits its use to within southern African regions for which specific systems model setups exist. Facilitating the use of WQSAM within catchments outside of southern Africa and within catchments for which these systems model setups to not exist would require WQSAM to be able to link to a simple-to-use and internationally-applied systems model. One such systems model is the Water Evaluation and Planning (WEAP) model, which incorporates a rainfall-runoff component (natural hydrology), and reservoir storage, return flows and abstractions (systems modelling), but within which water quality modelling facilities are rudimentary. The aims of the current study were therefore to: (1) adapt the WQSAM model to be able to use as input the flow outputs of the WEAP model and; (2) provide an initial assessment of how successful this linkage was by application of the WEAP and WQSAM models to the Buffalo River for historical conditions; a small, semi-arid and impacted catchment in the Eastern Cape of South Africa. The simulations of

  19. Velocity flow field and water level measurements in shoaling and breaking water waves

    CSIR Research Space (South Africa)

    Mukaro, R

    2010-01-01

    Full Text Available levels were measured using capacitive waves gauges, while the instantaneous velocity flow fields were measured using video techniques together with digital correlation techniques. The instantaneous velocity flow fields were further analyzed to yield...

  20. Impacts of impervious cover, water withdrawals, and climate change on river flows in the conterminous US

    Directory of Open Access Journals (Sweden)

    P. V. Caldwell

    2012-08-01

    Full Text Available Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land-use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of impervious cover and water withdrawal on river flow across the conterminous US at the 8-digit Hydrologic Unit Code (HUC watershed scale. We then estimated the impacts of projected change in withdrawals, impervious cover, and climate under the B1 "Low" and A2 "High" emission scenarios on river flows by 2060. Our results suggest that compared to no impervious cover, 2010 levels of impervious cover increased river flows by 9.9% on average with larger impacts in and downstream of major metropolitan areas. In contrast, compared to no water withdrawals, 2005 withdrawals decreased river flows by 1.4% on average with larger impacts in heavily irrigated arid regions of Western US. By 2060, impacts of climate change were predicted to overwhelm the potential gain in river flow due to future changes in impervious cover and add to the potential reduction in river flows from withdrawals, decreasing mean annual river flows from 2010 levels by 16% on average. However, increases in impervious cover by 2060 may offset the impact of climate change during the growing season in some watersheds. Large water withdrawals will aggravate the predicted impact of climate change on river flows, particularly in the Western US. Predicted ecohydrological impacts of land cover, water withdrawal, and climate change will likely include alteration of the terrestrial water balance, stream channel habitat, riparian and aquatic community structure in snow-dominated basins, and fish and mussel extirpations in heavily impacted watersheds. These changes may also require new infrastructure to support increasing anthropogenic

  1. First status report on regional ground-water flow modeling for Vacherie Dome, Louisiana

    International Nuclear Information System (INIS)

    1986-07-01

    Regional ground-water flow within the principal geohydrologic units in the vicinity of Vacherie Dome, Louisiana is evaluated by developing a conceptual model of the flow regime within these units and testing the model using a three-dimensional, finite-difference flow code (SWENT). Semiquantitative sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model, particularly in regard to the geohydrologic properties. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study are summarized. The conceptual model is defined in terms of the areal and vertical averaging of lithologic units, aquifer properties, and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, areas of upward and downward flow across aquitards, tables summarizing the horizontal and vertical volumetric flows through the principal units, ground-water travel times and paths, and Darcy velocities within specified finite-difference blocks. The reported work is the first stage of an ongoing evaluation of Vacherie Dome as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the conceptualization of ground-water flow to parameterization and, to a lesser extent, the uncertainties in the present conceptualization. 34 refs., 57 figs., 19 tabs

  2. Control-volume-based model of the steam-water injector flow

    Science.gov (United States)

    Kwidziński, Roman

    2010-03-01

    The paper presents equations of a mathematical model to calculate flow parameters in characteristic cross-sections in the steam-water injector. In the model, component parts of the injector (steam nozzle, water nozzle, mixing chamber, condensation wave region, diffuser) are treated as a series of connected control volumes. At first, equations for the steam nozzle and water nozzle are written and solved for known flow parameters at the injector inlet. Next, the flow properties in two-phase flow comprising mixing chamber and condensation wave region are determined from mass, momentum and energy balance equations. Then, water compression in diffuser is taken into account to evaluate the flow parameters at the injector outlet. Irreversible losses due to friction, condensation and shock wave formation are taken into account for the flow in the steam nozzle. In two-phase flow domain, thermal and mechanical nonequilibrium between vapour and liquid is modelled. For diffuser, frictional pressure loss is considered. Comparison of the model predictions with experimental data shows good agreement, with an error not exceeding 15% for discharge (outlet) pressure and 1 K for outlet temperature.

  3. Papers of the CWRA climate change symposium : understanding climate change impacts on Manitoba's water resources

    International Nuclear Information System (INIS)

    2003-01-01

    This symposium provided an opportunity for discussions on climate change issues with particular reference to the impacts on Manitoba's water resources. The presentations addressed issues of importance to governments, scientists, academics, managers, consultants and the general public. Topics of discussion ranged from climate change impacts on water quality, wetlands, hydropower, fisheries and drought, to adaptation to climate change. Recent advances in global and regional climate modelling were highlighted along with paleo-environmental indicators of climate change. The objective was to provide a better understanding of the science of climate change. The conference featured 16 presentations of which 1 was indexed separately for inclusion in this database. refs., tabs., figs

  4. Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colson, Steven D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Laufer, Allan H [US Department of Energy Office of Science Office of Basic Energy Sciences; Ray, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-06-10

    On September 26–28, 2002, a workshop entitled “Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry” was held to assess new research opportunities in electron-driven processes and radical chemistry in aqueous systems. Of particular interest was the unique and complex role that the structure of water plays in influencing these processes. Novel experimental and theoretical approaches to solving long-standing problems in the field were explored. A broad selection of participants from universities and the national laboratories contributed to the workshop, which included scientific and technical presentations and parallel sessions for discussions and report writing.

  5. Well balancing of the SWE schemes for moving-water steady flows

    Science.gov (United States)

    Caleffi, Valerio; Valiani, Alessandro

    2017-08-01

    In this work, the exact reproduction of a moving-water steady flow via the numerical solution of the one-dimensional shallow water equations is studied. A new scheme based on a modified version of the HLLEM approximate Riemann solver (Dumbser and Balsara (2016) [18]) that exactly preserves the total head and the discharge in the simulation of smooth steady flows and that correctly dissipates mechanical energy in the presence of hydraulic jumps is presented. This model is compared with a selected set of schemes from the literature, including models that exactly preserve quiescent flows and models that exactly preserve moving-water steady flows. The comparison highlights the strengths and weaknesses of the different approaches. In particular, the results show that the increase in accuracy in the steady state reproduction is counterbalanced by a reduced robustness and numerical efficiency of the models. Some solutions to reduce these drawbacks, at the cost of increased algorithm complexity, are presented.

  6. Simulation of the solidification in a channel of a water-cooled glass flow

    Directory of Open Access Journals (Sweden)

    G. E. Ovando Chacon

    2014-12-01

    Full Text Available A computer simulation study of a laminar steady-state glass flow that exits from a channel cooled with water is reported. The simulations are carried out in a two-dimensional, Cartesian channel with a backward-facing step for three different angles of the step and different glass outflow velocities. We studied the interaction of the fluid dynamics, phase change and thermal behavior of the glass flow due to the heat that transfers to the cooling water through the wall of the channel. The temperature, streamline, phase change and pressure fields are obtained and analyzed for the glass flow. Moreover, the temperature increments of the cooling water are characterized. It is shown that, by reducing the glass outflow velocity, the solidification is enhanced; meanwhile, an increase of the step angle also improves the solidification of the glass flow.

  7. Modeling Flow Rate to Estimate Hydraulic Conductivity in a Parabolic Ceramic Water Filter

    Directory of Open Access Journals (Sweden)

    Ileana Wald

    2012-01-01

    Full Text Available In this project we model volumetric flow rate through a parabolic ceramic water filter (CWF to determine how quickly it can process water while still improving its quality. The volumetric flow rate is dependent upon the pore size of the filter, the surface area, and the height of water in the filter (hydraulic head. We derive differential equations governing this flow from the conservation of mass principle and Darcy's Law and find the flow rate with respect to time. We then use methods of calculus to find optimal specifications for the filter. This work is related to the research conducted in Dr. James R. Mihelcic's Civil and Environmental Engineering Lab at USF.

  8. The study on three-dimensional mathematical model of river bed erosion for water-sediment two-phase flow

    Science.gov (United States)

    Fang, Hongwei

    1996-02-01

    Based on the tensor analysis of water-sediment two-phase flow, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent flow. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained.

  9. Numerical modeling of coupled water flow and heat transport in soil and snow

    Science.gov (United States)

    Thijs J. Kelleners; Jeremy Koonce; Rose Shillito; Jelle Dijkema; Markus Berli; Michael H. Young; John M. Frank; William Massman

    2016-01-01

    A one-dimensional vertical numerical model for coupled water flow and heat transport in soil and snow was modified to include all three phases of water: vapor, liquid, and ice. The top boundary condition in the model is driven by incoming precipitation and the surface energy balance. The model was applied to three different terrestrial systems: A warm desert bare...

  10. Within plant resistance to water flow in tomato and sweet melons ...

    African Journals Online (AJOL)

    This is probably due to that fact that Kp includes the hydraulic conductance of the root system, which offers the highest resistance to water flow in a plant, and the frictional resistance of the proximal part of the crown. Day time course of water relation parameters were monitored in melon and tomato (predawn, 1100 to 1400 h) ...

  11. Evaluation of 2D shallow-water model for spillway flow with a complex geometry

    Science.gov (United States)

    Although the two-dimensional (2D) shallow water model is formulated based on several assumptions such as hydrostatic pressure distribution and vertical velocity is negligible, as a simple alternative to the complex 3D model, it has been used to compute water flows in which these assumptions may be ...

  12. The influence of water flow (reversal) on bond strength development in young masonry

    NARCIS (Netherlands)

    Groot, C.; Larbi, J.

    1999-01-01

    Water loss from the fresh mortar is believed to be related to mortar-brick bond strength development in masonry. Recent research on mortar-brick bond has shown that, particularly, effects of water flow on the composition and the hydration conditions of the mortar-brick interface have to be taken

  13. Farm level optimal water management : assistant for irrigation under deficit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2008-01-01

    FLOW-AID is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  14. Farm level optimal water management: Assistant for irrigation under Defecit (FLOW-AID)

    NARCIS (Netherlands)

    Balendonck, J.; Stanghellini, C.; Hemming, J.; Kempkes, F.L.K.; Tuijl, van B.A.J.

    2009-01-01

    Flow-aid is an on-going 6th Framework European project (2006-2009) with the objective to contribute to sustainable irrigated agriculture by developing an irrigation management system that can be used for crop production in cases with limited water supply and marginal water quality. The project

  15. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Science.gov (United States)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  16. Water and mass budgets of a vertical-flow constructed wetland used for wastewater treatment

    NARCIS (Netherlands)

    Meuleman, Arthur F M; Van Logtestijn, Richard; Rijs, Gerard B J; Verhoeven, Jos T A

    To estimate the nutrient and organic matter (Biological Oxygen Demand (BODs) and Chemical Oxygen Demand (COD)) removal capacity of a constructed vertical-flow wetland in The Netherlands, a water and nutrient budget study was conducted. Also bacterial water quality enhancement was measured. The

  17. Continuous Flow Aquatic Toxicity Testing Using Dilution Water by Reverse Osmosis

    Science.gov (United States)

    1979-04-01

    AMRL-TR-79-25 CONTINUOUS FLOW AQUATIC TOXICOLOGY TESTING USING DILUTION WATER BY REVERSE OSMOSIS J. W. FISHtER R. C INMAN M. A. HAGERMAN C. B. HARRAH...showing construction design. 8 DISCUSSION This system was designed for limited xise in an aquatic toxicology laboratory. The floor space and water quality

  18. Towards a comprehensive assessment and framework for low and high flow water risks

    Science.gov (United States)

    Motschmann, Alina; Huggel, Christian; Drenkhan, Fabian; León, Christian

    2017-04-01

    Driven by international organizations such as the Intergovernmental Panel on Climate Change (IPCC) the past years have seen a move from a vulnerability concept of climate change impacts towards a risk framework. Risk is now conceived at the intersection of climate-driven hazard and socioeconomic-driven vulnerability and exposure. The concept of risk so far has been mainly adopted for sudden-onset events. However, for slow-onset and cumulative climate change impacts such as changing water resources there is missing clarity and experience how to apply a risk framework. Research has hardly dealt with the challenge of how to integrate both low and high flow risks in a common framework. Comprehensive analyses of risks related to water resources considering climate change within multi-dimensional drivers across different scales are complex and often missing in climate-sensitive mountain regions where data scarcity and inconsistencies represent important limitations. Here we review existing vulnerability and risk assessments of low and high flow water conditions and identify critical conceptual and practical gaps. Based on this, we develop an integrated framework for low and high flow water risks which is applicable to both past and future conditions. The framework explicitly considers a water balance model simulating both water supply and demand on a daily basis. We test and apply this new framework in the highly glacierized Santa River catchment (SRC, Cordillera Blanca, Peru), representative for many developing mountain regions with both low and high flow water risks and poor data availability. In fact, in the SRC, both low and high flow hazards, such as droughts and floods, play a central role especially for agricultural, hydropower, domestic and mining use. During the dry season (austral winter) people are increasingly affected by water scarcity due to shrinking glaciers supplying melt water. On the other hand during the wet season (austral summer) high flow water

  19. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  20. Determination of fan flow and water rate adjustment for off-design cooling tower tests

    International Nuclear Information System (INIS)

    Vance, J.M.

    1984-02-01

    The determination of the performance of a mechanical draft cooling tower requires that the air mass flow through the tower be known. Since this flow is not measured, it has been customary to use the manufacturer's design air flow and adjust it by the one-third power of the ratio of the design to test fan horsepower. The most nearly correct approximation of air flow through a tower can be obtained by incrementally moving through the tower from air inlet to outlet while calculating mass flows, energy balances, and pressure drops for each increment and then utilizing fan curves to determine volumetric and mass flows. This procedure would account for changes in air humidity and density through the tower, evaporation of water, effect of water rate on air pressure drop, and changes in fan characteristics. These type calculations may be within the capabilities of all in the near future, but for the interim, it is recommended that a more elementary approach be used which can be handled with a good calculator and without any proprietary data. This approach depends on certain assumptions which are acceptable if the tower test is conducted within CTI code requirements. The fan must be considered a constant suction volume blower for a given blade pitch. The total pressure at the fan, a function of volumetric flow and wet air density, must be assumed to be unaffected by other considerations, and the fan horsepower must be assumed to change only as volumetric flow and wet air density changes. Given these assumptions, along with design information normally provided with a tower, the determination of air flow through a tower in a test can be made from CTI test data. The air flow, and consequently the water rate adjustment and corrected water to air ratio, are derived and found to be direct functions of horsepower and density and an inverse function of wet air humidities

  1. Effect of water flow rate and feed training on "pacamã" (Siluriforme: Pseudopimelodidae juvenile production

    Directory of Open Access Journals (Sweden)

    R.K. Luz

    2011-08-01

    Full Text Available The effects of different water flow rates and feed training on the production of "pacamã" Lophiosilurus alexandri juveniles were evaluated. In the first experiment, nine day post-hatch larvae (n= 2,400 were stocked at a density of 5 larvae/L. Different water flow (F rates were tested: F1 = 180; F2 = 600; F3 = 1,300; and F4 = 2,600mL/min. Artemia nauplii were offered as food during the first 15 days of active feeding. In the second experiment for feed training, 720 juveniles (total length of 22.2mm were stocked at a density of 1.5 juveniles/L. A water flow rate similar to F1 was used. The use of extruded dry diet was tested, and feed training was done with and without other enhanced flavors (Artemia nauplii or Scott emulsion. The water flow rates did not influence the survival or growth of L. alexandri. Cannibalism occurred during feed training. The worst survival, specific growth rate and high mortality were found with the use of extruded dry diet, while similar values were registered with the different feed training diets used. Reduced water flow rate can be used to lower water consumption during larviculture and feed training of L. alexandri.

  2. On the design criteria for the evaporated water flow rate in a wet air cooler

    International Nuclear Information System (INIS)

    Bourillot, C.

    1982-01-01

    The author discusses Poppe's formulation used for the modelling of heat exchangers between air and water, in Electricite de France's TEFERI numerical wet atmospheric cooler model: heat transfer laws in unsaturated and saturated air, Bosnjakivic's formula, evaporation coefficient. The theorical results show good agreement with the measurements taken on Neurath's cooler C in West Germany, whatever the ambient temperature (evaporated water flow rate, condensate content of warm air). The author then demonstrates the inadequacy of Merkel's method for calculating evaporated water flow rates, and estimates the influence of the assumptions made on the total error [fr

  3. Water flow modulates the response of coral reef communities to ocean acidification.

    Science.gov (United States)

    Comeau, S; Edmunds, P J; Lantz, C A; Carpenter, R C

    2014-10-20

    By the end of the century coral reefs likely will be affected negatively by ocean acidification (OA), but both the effects of OA on coral communities and the crossed effects of OA with other physical environmental variables are lacking. One of the least considered physical parameters is water flow, which is surprising considering its strong role in modulating the physiology of reef organisms and communities. In the present study, the effects of flow were tested on coral reef communities maintained in outdoor flumes under ambient pCO2 and high pCO2 (1300 μatm). Net calcification of coral communities, including sediments, was affected by both flow and pCO2 with calcification correlated positively with flow under both pCO2 treatments. The effect of flow was less evident for sediments where dissolution exceeded precipitation of calcium carbonate under all flow speeds at high pCO2. For corals and calcifying algae there was a strong flow effect, particularly at high pCO2 where positive net calcification was maintained at night in the high flow treatment. Our results demonstrate the importance of water flow in modulating the coral reef community response to OA and highlight the need to consider this parameter when assessing the effects of OA on coral reefs.

  4. Understanding flood-induced water chemistry variability extracting temporal patterns with the LDA method

    Science.gov (United States)

    Aubert, A. H.; Tavenard, R.; Emonet, R.; De Lavenne, A.; Malinowski, S.; Guyet, T.; Quiniou, R.; Odobez, J.; Merot, P.; Gascuel-odoux, C.

    2013-12-01

    Studying floods has been a major issue in hydrological research for years, both in quantitative and qualitative hydrology. Stream chemistry is a mix of solutes, often used as tracers, as they originate from various sources in the catchment and reach the stream by various flow pathways. Previous studies (for instance (1)) hypothesized that stream chemistry reaction to a rainfall event is not unique but varies seasonally, and according to the yearly meteorological conditions. Identifying a typology of flood temporal chemical patterns is a way to better understand catchment processes at the flood and seasonal time scale. We applied a probabilistic model (Latent Dirichlet Allocation or LDA (2)) mining recurrent sequential patterns from a dataset of floods. A set of 472 floods was automatically extracted from a daily 12-year long record of nitrate, dissolved organic carbon, sulfate and chloride concentrations. Rainfall, discharge, water table depth and temperature are also considered. Data comes from a long-term hydrological observatory (AgrHys, western France) located at Kervidy-Naizin. From each flood, a document has been generated that is made of a set of "hydrological words". Each hydrological word corresponds to a measurement: it is a triplet made of the considered variable, the time at which the measurement is made (relative to the beginning of the flood), and its magnitude (that can be low, medium or high). The documents and the number of pattern to be mined are used as input data to the LDA algorithm. LDA relies on spotting co-occurrences (as an alternative to the more traditional study of correlation) between words that appear within the flood documents. It has two nice properties that are its ability to easily deal with missing data and its additive property that allows a document to be seen as a mixture of several flood patterns. The output of LDA is a set of patterns easily represented in graphics. These patterns correspond to typical reactions to rainfall

  5. Ultrabroadband THz Time-Domain Spectroscopy of a Free-Flowing Water Film

    DEFF Research Database (Denmark)

    Wang, Tianwu; Pedersen, Pernille Klarskov; Jepsen, Peter Uhd

    2014-01-01

    of liquid water using two different THz-TDS setups. The extracted absorption coefficient and refractive index of water are in agreement with previous results reported in the literature. With this we show that the thin free-flowing liquid film is a versatile tool for windowless, ultrabroadband THz......We demonstrate quantitative ultrabroadband THz time-domain spectroscopy (THz-TDS) of water by application of a 17-$\\mu$m thick gravity-driven wire-guided flow jet of water. The thickness and stability of the water film is accurately measured by an optical intensity crosscorrelator, and the standard...... deviation of the film thickness is less than 500 nm. The cross section of the water film is found to have a biconcave cylindrical lens shape. By transmitting through such a thin film, we perform the first ultrabroadband (0.2–30 THz) THz-TDS across the strongest absorbing part of the infrared spectrum...

  6. Numerical simulation of micro-scale flow and colloid transport near air-water interface in unsaturated porous media

    Science.gov (United States)

    Shi, Grace; Lazouskaya, Volha; Jin, Yan; Wang, Lian-Ping

    2008-11-01

    This work is motivated by the need to understand colloid-facilitated transport of contaminants in unsaturated soil porous media. Unsaturated soil is characterized by the presence of moving air-water interface within micro-scale flow passage of soil porous media. Previous experimental observations using confocal microscopy reveal the importance of air-water interface and contact line on the retention of colloids. Here we develop a computational approach to model the transport and retention of colloids near the interfacial region. First, we simulate the microscale flow field near the interfacial region by simultaneously employing a mesoscopic lattice Boltzmann equation approach and a macroscopic volume-of-fluid approach. We will examine how the flow field changes with capillary number, Reynolds number, density ratio, and viscosity ratio. Numerical issues such as stability and spurious currents for interfacial flow simulation will be discussed. We then track the motion of colloids by solving colloids equation of motion including hydrodynamic forces and physicochemical forces, to study the trajectories of colloids and the likely retention sites. Numerical results will be compared with parallel visualization experiments.

  7. Understanding the Fundamental Roles of Momentum and Vorticity Injections in Flow Control

    Science.gov (United States)

    2016-09-02

    software package, Cascade Technologies; Ham & Iaccarino (2004); Ham et al. (2006)). The incompressible Navier–Stokes equations are dis- cretized using...second order accurate ( Ham & Iaccarino, 2004; Ham et al., 2006). For this discretization scheme, the non- zero values of the matrix are illustrated in...Springer-Verlag, New York . Cattafesta, L., Song, Q., Williams, D., Rowley, C. & Alvi, F. 2008 Active control of flow-induced cavity oscillations. Progress

  8. simulation of vertical water flow through vadose zone

    African Journals Online (AJOL)

    HOD

    hundreds (100) meters to water table as common in arid regions [1]. The vadose zone is not always considered .... software system was developed by the International. Hydrological Program (UNESCO) [13] to raise ... obtained from samples collected from various locations in the NDA permanent site. Simulation parameters ( ...

  9. Water flow and nitrate leaching in a layered silt loam

    NARCIS (Netherlands)

    Vos, J.A.; Hesterberg, D.L.R.; Raats, P.A.C.

    2000-01-01

    Nitrate (NO3) leaching was studied for a winter leaching period in a layered calcareous silt loam with tile-drains at about 1-m depth and 12-m spacing. Groundwater levels, drain discharge rates, and NO3 concentrations in the drainage water were monitored, and the soil hydraulic characteristics were

  10. Determination of nitrate in water by flow-injection analysis

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Večeřa, Zbyněk

    2001-01-01

    Roč. 8, č. 1 (2001), s. 115-120 ISSN 1231-7098 R&D Projects: GA ČR GA203/98/0943 Grant - others:COPERNICUS(BE) SUB-AERO EVK2-1999-000327 Institutional research plan: CEZ:AV0Z4031919 Keywords : nitrate * chemiluminescence * water Subject RIV: CB - Analytical Chemistry, Separation

  11. Effect of air on water capillary flow in silica nanochannels

    DEFF Research Database (Denmark)

    Zambrano, Harvey; Walther, Jens Honore; Oyarzua, Elton

    2013-01-01

    Capillarity is a classical topic in fluid dynamics. The fundamental relationship between capillarity and surface tension is solidly established. Nevertheless, capillarity is an active research area especially as the miniaturization of devices is reaching the molecular scale. Currently, with the f...... to changes in the dynamics contact angle of the water meniscus....

  12. Propagation of density disturbances in air-water flow

    Science.gov (United States)

    Nassos, G. P.

    1969-01-01

    Study investigated the behavior of density waves propagating vertically in an atmospheric pressure air-water system using a technique based on the correlation between density change and electric resistivity. This information is of interest to industries working with heat transfer systems and fluid power and control systems.

  13. Understanding and managing the water use of planted forests in a changing environment

    Science.gov (United States)

    Jami Nettles

    2016-01-01

    Forest productivity will only become more important in the future, not just for carbon sequestration and renewable energy but for wood products and economic security for an increasing population. However, the threat of increasing drought and resource scarcity means a need for more explicit characterization of the water use of planted forests and the understanding of...

  14. Decreased water flowing from a forest amended with calcium silicate

    Science.gov (United States)

    Mark B. Green; Amey S. Bailey; Scott W. Bailey; John J. Battles; John L. Campbell; Charles T. Driscoll; Timothy J. Fahey; Lucie C. Lepine; Gene E. Likens; Scott V. Ollinger; Paul G. Schaberg

    2013-01-01

    Acid deposition during the 20th century caused widespread depletion of available soil calcium (Ca) throughout much of the industrialized world. To better understand how forest ecosystems respond to changes in a component of acidification stress, an 11.8-ha watershed was amended with wollastonite, a calcium silicate mineral, to restore available soil Ca to preindustrial...

  15. Understanding dielectrophoretic trapping of neuronal cells: modelling electric field, electrode-liquid interface and fluid flow

    International Nuclear Information System (INIS)

    Heida, T.; Rutten, W.L.C.; Marani, E.

    2002-01-01

    By application of dielectrophoresis neuronal cells can be trapped successfully. Several trapping experiments have been performed using a quadrupole electrode structure at different amplitudes (1, 3, and 5 V pp ) and frequencies (10-50 MHz). Due to the high conductivity of the suspending medium negative dielectrophoretic forces are created. The dielectrophoretic force is determined by the gradient of the electric field. However, the electrode-liquid interfaces are responsible for decreased electric field strengths, and thus decreased field gradients, inside the medium, especially at lower frequencies. Circuit modelling is used to determine the frequency-dependent electric field inside the medium. The creation of an electric field in high conductivity of the medium results in local heating, which in turn induces fluid flow. This flow also drives the neurons and was found to enhance the trapping effect of the dielectrophoretic force. With the use of finite element modelling, this aspect was investigated. The results show that the dielectrophoretic force is dominating just above the substrate. When the upward dielectrophoretic force is large enough to levitate the cells, they may be dragged along with the fluid flow. The result is that more cells may be trapped than expected on the basis of dielectrophoresis alone. (author)

  16. Analysis of different water-sediment flow processes in a mountain torrent

    Directory of Open Access Journals (Sweden)

    M. Arattano

    2004-01-01

    Full Text Available Sediment – water flows occurring in mountain torrents may show a variety of regimes, ranging from water flows with transport of individual particles to massive transport of debris, as it occurs in case of debris flows. Sometimes it is possible, by means of accurate field investigations, to identify the kind of processes that took place in a torrent after the occurrence of an event. However this procedure cannot give indications regarding the development of the process in time. In fact, because of the frequent presence of different surges within the same event, the rheological characteristics of an event can be detected only when some recorded hydrographs or videos are available. For the same reason, since the rheological behaviour of the flow changes according to the solid concentration, the analysis of the materials deposited on the debris fan cannot directly give any information on the particular types of flow that took place: a possible alternation in time of different water sediment surges with different concentrations may have occurred, during the same event. The installation of ultrasonic gauges or videocameras along the torrent might give more information on this issue. To this regard, the analysis of a flow event which occurred in 2002 in the Moscardo torrent watershed, instrumented for debris flow monitoring, has been undertaken, studying the hydrographs recorded at two different ultrasonic gauges placed at a known distance along the torrent. An empirical flow resistance law has been applied analysing the values assumed by its parameters after calibration. The application of this law actually spans from debris flow and immature debris flow to bed load transport. Only field observations and surveys, together with ultrasonic data, may allow to clearly discriminate which type of flow really occurred. The analysis confirms that different water sediment surges alternated in time while the mathematical simulation of the flow compared with

  17. Transverse structure of tidal flow, residual flow and sediment concentration in estuaries: sensitivity to tidal forcing and water depth

    NARCIS (Netherlands)

    Huijts, K.M.H.|info:eu-repo/dai/nl/304831867; de Swart, H.E.|info:eu-repo/dai/nl/073449725; Schramkowski, G.P.; Schuttelaars, H.M.

    2011-01-01

    An analytical and a numerical model are used to understand the response of velocity and sediment distributions over Gaussian-shaped estuarine cross-sections to changes in tidal forcing and water depth. The estuaries considered here are characterized by strong mixing and a relatively weak

  18. Quantitative neutron imaging of water distribution, venation network and sap flow in leaves.

    Science.gov (United States)

    Defraeye, Thijs; Derome, Dominique; Aregawi, Wondwosen; Cantré, Dennis; Hartmann, Stefan; Lehmann, Eberhard; Carmeliet, Jan; Voisard, Frédéric; Verboven, Pieter; Nicolai, Bart

    2014-08-01

    Quantitative neutron imaging is a promising technique to investigate leaf water flow and transpiration in real time and has perspectives towards studies of plant response to environmental conditions and plant water stress. The leaf hydraulic architecture is a key determinant of plant sap transport and plant-atmosphere exchange processes. Non-destructive imaging with neutrons shows large potential for unveiling the complex internal features of the venation network and the transport therein. However, it was only used for two-dimensional imaging without addressing flow dynamics and was still unsuccessful in accurate quantification of the amount of water. Quantitative neutron imaging was used to investigate, for the first time, the water distribution in veins and lamina, the three-dimensional venation architecture and sap flow dynamics in leaves. The latter was visualised using D2O as a contrast liquid. A high dynamic resolution was obtained by using cold neutrons and imaging relied on radiography (2D) as well as tomography (3D). The principle of the technique was shown for detached leaves, but can be applied to in vivo leaves as well. The venation network architecture and the water distribution in the veins and lamina unveiled clear differences between plant species. The leaf water content could be successfully quantified, though still included the contribution of the leaf dry matter. The flow measurements exposed the hierarchical structure of the water transport pathways, and an accurate quantification of the absolute amount of water uptake in the leaf was possible. Particular advantages of neutron imaging, as compared to X-ray imaging, were identified. Quantitative neutron imaging is a promising technique to investigate leaf water flow and transpiration in real time and has perspectives towards studies of plant response to environmental conditions and plant water stress.

  19. New model for counter-current flow during reflood in light water reactors

    International Nuclear Information System (INIS)

    Carbajo, J.J.

    1984-01-01

    Counter-current flow (CCF) of steam and water may occur at the upper core plate of a light water reactor (LWR) under reflood conditions. This paper describes a new model for CCF and flooding at the upper core plate of a LWR. The model assumes separate paths for the water draining through some open area of the upper core plate and the steam rising up through the remaining open area. Condensation of steam is not considered

  20. VOF modelling of gas–liquid flow in PEM water electrolysis cell micro-channels

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2017-01-01

    In this study, the gaseliquid flow through an interdigitated anode flow field of a PEM water electrolysis cell (PEMEC) is analysed using a three-dimensional, transient, computational fluid dynamics (CFD) model. To account for two-phase flow, the volume of fluid (VOF) method in ANSYS Fluent 17...... of the gaseliquid flow in a transparent micro-channel, are qualitative compared against the simulation results. The experimental observations confirm the models prediction of long Taylor bubbles with small bubbles in between. From the simulation results, further intriguing details of the flow are revealed. From...... the bottom to the top of the outgoing channel, the film thickness gradually increases from zero to 200 mm. This increase in the film thickness is due to the particular superficial velocity field that develops in an interdigitated flow. Here both the superficial velocities change along the length...

  1. Measurement of Vapor Flow As an Important Source of Water in Dry Land Eco-Hydrology

    Science.gov (United States)

    Wang, Z.; He, Z.; Wang, Y.; Gao, Z.; Hishida, K.

    2014-12-01

    When the temperature of land surface is lower than that of air and deeper soils, water vapor gathers toward the ground surface where dew maybe formed depending on the prevailing dew point and wind speed. Some plants are able to absorb the dew and vapor flow while the soil can readily absorb both. Certain animals such as desert beetles and ants harvest the dew or fog for daily survival. Recently, it is also realized that the dew and vapor flow can be a life-saving amount of water for plant survival at the driest seasons of the year in arid and semi-arid regions. Researches are conducted to quantify the amount of near-surface vapor flow in arid and semi-arid regions in China and USA. Quantitative leaf water absorption and desorption functions were derived based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of plant is characterized by the absorption and desorption functions derived for plant physiology and water balance studies. Field studies are conducted to measure the dynamic vapor flow movements from the atmosphere and the groundwater table to soil surface. Results show that dew is usually formed on soil and plant surfaces during the daily hours when the temperature gradients are inverted toward the soil surface. The amount of dew harvested using gravels on the soil surface was enough to support water melon agriculture on deserts. The vapor flow can be effectively intercepted by artificially seeded plants in semi-arid regions forming new forests. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  2. Interrelationships of petiolar air canal architecture, water depth, and convective air flow in Nymphaea odorata (Nymphaeaceae).

    Science.gov (United States)

    Richards, Jennifer H; Kuhn, David N; Bishop, Kristin

    2012-12-01

    Nymphaea odorata grows in water up to 2 m deep, producing fewer larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiolar air canals are the convective flow pathways. This study describes the structure of these canals, how this structure varies with water depth, and models how convective flow varies with depth. • Nymphaea odorata plants were grown at water depths from 30 to 90 cm. Lamina area, petiolar cross-sectional area, and number and area of air canals were measured. Field-collected leaves and leaves from juvenile plants were analyzed similarly. Using these data and data from the literature, we modeled how convective flow changes with water depth. • Petioles of N. odorata produce two central pairs of air canals; additional pairs are added peripherally, and succeeding pairs are smaller. The first three pairs account for 96% of air canal area. Air canals form 24% of petiolar cross-sectional area. Petiolar and air canal cross-sectional areas increase with water depth. Petiolar area scales with lamina area, but the slope of this relationship is lower in 90 cm water than at shallower depths. In our model, the rate of convective flow varied with depth and with the balance of influx to efflux leaves. • Air canals in N. odorata petioles increase in size and number in deeper water but at a decreasing amount in relation to lamina area. Convective flow also depends on the number of influx to efflux laminae.

  3. Flow resistance reduction of coal water slurry through gas phase addition

    Directory of Open Access Journals (Sweden)

    Robak Jolanta

    2016-01-01

    Full Text Available One of the main advantages of coal water slurry fuel (CWS is a physical form that allows, among others, their transfer by pipelines over long distances. For this form of transport actions towards reducing the flow resistance of the transmitted medium are important. One of the treatments leading to reduction in the flow resistance of suspensions is to introduce gas into the stream of flowing slurry. The goal of that action is to either loosen the structure of densely packed grains or increase the velocity of the suspension. The paper presents the flow resistance of CWS in a horizontal pipeline and the effect of addition of the gas phase on the resistance level. The investigation was carried out with the use of a research stand enabling to measure the flow resistance of the multiphase/multicomponent systems. The measured diameter and length of sections were respectively: 0.03 and 2 m. The coal-water slurries (based on steam coals with concentration of dry coal in the range of 51 do 60% obtained by wet milling in a drum mill were used. During the tests, the following parameters were measured: slurry flow rate, air flow rate, temperature and pressure difference in inlet and outlet of the measured section. The volume flow rate of slurry fuel was in the range of 30 to 110 dm3/min while the volume flow rate of air was from 0.15 to 4 m3/h. Based on the obtained results, the slurry flow resistance as a function of the flow rate and share of introduced air was evaluated. The performed research allowed for assessment of flow resistance reduction condition and to determine the pipe flow curves for different temperatures. It was found that the effect of reducing the flow resistance of the coal slurry by introducing gas into the flow tube depended on the volumetric flow rate, and thus the linear velocity of the slurry. Under the experimental condition, this effect only occurred at low flow rates (30 - 50 dm3/min and low temperature of the suspension. The

  4. Geochemical and isotopic evidences from groundwater and surface water for understanding of natural contamination in chronic kidney disease of unknown etiology (CKDu) endemic zones in Sri Lanka.

    Science.gov (United States)

    Edirisinghe, E A N V; Manthrithilake, H; Pitawala, H M T G A; Dharmagunawardhane, H A; Wijayawardane, R L

    2017-09-26

    Chronic kidney disease of unknown etiology (CKDu) is the main health issue in the dry zone of Sri Lanka. Despite many studies carried out, causative factors have not been identified yet clearly. According to the multidisciplinary researches carried out so far, potable water is considered as the main causative factor for CKDu. Hence, the present study was carried out with combined isotopic and chemical methods to understand possible relationships between groundwater; the main drinking water source, and CKDu in four endemic areas in the dry zone. Different water sources were evaluated isotopically ( 2 H, 3 H and 18 O) and chemically from 2013 to 2015. Results revealed that prevalence of CKDu is significantly low with the groundwater replenished by surface water inputs. It is significantly high with the groundwater stagnated as well as groundwater recharged from regional flow paths. Thus, the origin, recharge mechanism and flow pattern of groundwater, as well as geological conditions which would be responsible for natural contamination of groundwater appear as the main causative factors for CKDu. Therefore, detailed investigations should be made in order to identify the element(s) in groundwater contributing to CKDu. The study recommends providing drinking water to the affected zones using water sources associated with surface waters.

  5. Complexity in the validation of ground-water travel time in fractured flow and transport systems

    International Nuclear Information System (INIS)

    Davies, P.B.; Hunter, R.L.; Pickens, J.F.

    1991-01-01

    Ground-water travel time is a widely used concept in site assessment for radioactive waste disposal. While ground-water travel time was originally conceived to provide a simple performance measure for evaluating repository sites, its definition in many flow and transport environments is ambiguous. The U.S. Department of Energy siting guidelines (10 CFR 960) define ground-water travel time as the time required for a unit volume of water to travel between two l