WorldWideScience

Sample records for understand scientific phenomena

  1. Luminous Phenomena - A Scientific Investigation of Anomalous Luminous Atmospheric Phenomena

    Science.gov (United States)

    Teodorani, M.

    2003-12-01

    Anomalous atmospheric luminous phenomena reoccur in several locations of Earth, in the form of multi-color light balls characterized by large dimensions, erratic motion, long duration and a correlated electromagnetic field. The author (an astrophysicist) of this book, which is organized as a selection of some of his technical and popularizing papers and seminars, describes and discusses all the efforts that have been done in 10 years, through several missions and a massive data analysis, in order to obtain some scientific explanation of this kind of anomalies, in particular the Hessdalen anomaly in Norway. The following topics are treated in the book: a) geographic archive of the areas of Earth where such phenomena are known to reoccur most often; b) observational techniques of astrophysical kind that have been used to acquire the data; c) main scientific results obtained so far; d) physical interpretation and natural hypothesis vs. ETV hypothesis; e) historical and chronological issues; f) the importance to brindle new energy sources; g) the importance to keep distance from any kind of "ufology". An unpublished chapter is entirely devoted to a detailed scientific investigation project of light phenomena reoccurring on the Ontario lake; the chosen new-generation multi-wavelength sensing instrumentation that is planned to be used in future missions in that specific area, is described together with scientific rationale and planned procedures. The main results, which were obtained in other areas of the world, such as the Arizona desert, USA and the Sibillini Mountains, Italy, are also briefly mentioned. One chapter is entirely dedicated to the presentation of extensive abstracts of technical papers by the author concerning this specific subject. The book is accompanied with a rich source of bibliographic references.

  2. Understanding the physics of changing mass phenomena

    NARCIS (Netherlands)

    Ellermeijer, A.L.

    2008-01-01

    Changing mass phenomena, like a falling chain or a bungee jumper, might give surprising results, even for experienced physicists. They have resulted in hot discussions in journals, in which for instance Physics professors claim the impossibility of an acceleration larger then g in case of a bungee

  3. Pathways toward understanding Macroscopic Quantum Phenomena

    International Nuclear Information System (INIS)

    Hu, B L; Subaşi, Y

    2013-01-01

    Macroscopic quantum phenomena refer to quantum features in objects of 'large' sizes, systems with many components or degrees of freedom, organized in some ways where they can be identified as macroscopic objects. This emerging field is ushered in by several categories of definitive experiments in superconductivity, electromechanical systems, Bose-Einstein condensates and others. Yet this new field which is rich in open issues at the foundation of quantum and statistical physics remains little explored theoretically (with the important exception of the work of A J Leggett [1], while touched upon or implied by several groups of authors represented in this conference. Our attitude differs in that we believe in the full validity of quantum mechanics stretching from the testable micro to meso scales, with no need for the introduction of new laws of physics.) This talk summarizes our thoughts in attempting a systematic investigation into some key foundational issues of quantum macroscopic phenomena, with the goal of ultimately revealing or building a viable theoretical framework. Three major themes discussed in three intended essays are the large N expansion [2], the correlation hierarchy [3] and quantum entanglement [4]. We give a sketch of the first two themes and then discuss several key issues in the consideration of macro and quantum, namely, a) recognition that there exist many levels of structure in a composite body and only by judicious choice of an appropriate set of collective variables can one give the best description of the dynamics of a specific level of structure. Capturing the quantum features of a macroscopic object is greatly facilitated by the existence and functioning of these collective variables; b) quantum entanglement, an exclusively quantum feature [5], is known to persist to high temperatures [6] and large scales [7] under certain conditions, and may actually decrease with increased connectivity in a quantum network [8]. We use entanglement as a

  4. Archaeoastronomy as a Tool for Understanding Celestial Phenomena

    Science.gov (United States)

    Koufos, S.; Chatzichristou, E.

    2017-09-01

    To key feature of the wise and Modern Man was, is and will be the observation of the sky. The acquisition of knowledge by observing the majesty of the sky and studying these phenomena (stars, planets, sun, moon, comets, asteroids, meteors, orbits, seasons, etc.). decisively influenced all human cultures. Therefore the research on the astronomical knowledge and their usefulness for each culture may reveal important anthropological data. With this scientific article the ARCHAEOASTRONOMY engaged in a global dimension. With common ground among even distant peoples. The purpose of the speech is both the externalization of ARCHAEOASTRONOMY secondly the education and students interested in astronomy in a simple manner and methodology as used by our ancestors in order to better understand the basic rules of the celestial dome. Applied methods with the participation of students from local schools and experiments in ancient monuments in Rhodes existed before with great success since the beginning of 2000 and continues today enriching the resources and people of all ages, the island where noted and considered the "father" astronomy of Hipparchus, the island where construction probably the "Antikythera mechanism"

  5. Using Learning Analytics to Understand Scientific Modeling in the Classroom

    Directory of Open Access Journals (Sweden)

    David Quigley

    2017-11-01

    Full Text Available Scientific models represent ideas, processes, and phenomena by describing important components, characteristics, and interactions. Models are constructed across various scientific disciplines, such as the food web in biology, the water cycle in Earth science, or the structure of the solar system in astronomy. Models are central for scientists to understand phenomena, construct explanations, and communicate theories. Constructing and using models to explain scientific phenomena is also an essential practice in contemporary science classrooms. Our research explores new techniques for understanding scientific modeling and engagement with modeling practices. We work with students in secondary biology classrooms as they use a web-based software tool—EcoSurvey—to characterize organisms and their interrelationships found in their local ecosystem. We use learning analytics and machine learning techniques to answer the following questions: (1 How can we automatically measure the extent to which students’ scientific models support complete explanations of phenomena? (2 How does the design of student modeling tools influence the complexity and completeness of students’ models? (3 How do clickstreams reflect and differentiate student engagement with modeling practices? We analyzed EcoSurvey usage data collected from two different deployments with over 1,000 secondary students across a large urban school district. We observe large variations in the completeness and complexity of student models, and large variations in their iterative refinement processes. These differences reveal that certain key model features are highly predictive of other aspects of the model. We also observe large differences in student modeling practices across different classrooms and teachers. We can predict a student’s teacher based on the observed modeling practices with a high degree of accuracy without significant tuning of the predictive model. These results highlight

  6. Modeling as an Anchoring Scientific Practice for Explaining Friction Phenomena

    Science.gov (United States)

    Neilson, Drew; Campbell, Todd

    2017-12-01

    Through examining the day-to-day work of scientists, researchers in science studies have revealed how models are a central sense-making practice of scientists as they construct and critique explanations about how the universe works. Additionally, they allow predictions to be made using the tenets of the model. Given this, alongside research suggesting that engaging students in developing and using models can have a positive effect on learning in science classrooms, the recent national standards documents in science education have identified developing and using models as an important practice students should engage in as they apply and refine their ideas with peers and teachers in explaining phenomena or solving problems in classrooms. This article details how students can be engaged in developing and using models to help them make sense of friction phenomena in a high school conceptual physics classroom in ways that align with visions for teaching and learning outlined in the Next Generation Science Standards. This particular unit has been refined over several years to build on what was initially an inquiry-based unit we have described previously. In this latest iteration of the friction unit, students developed and refined models through engaging in small group and whole class discussions and investigations.

  7. Enhanced Understanding of High Energy Arcing Fault Phenomena in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Seuk; Kim, Me Kyoung; Lee, Sang Kyu [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    This study reviews the recent HEAF events in nuclear power plants (NPPs) and investigates the HEAF phenomena with the experiment data performed at KEMA supported by OECD/NEA HEAF project. High Energy Arcing Fault (HEAF) can occur in an electrical components or systems through an arc path to ground and has the potential to cause extensive damage to the equipment involved. The intense radiant heat produced by the arc can cause significant damage or even destructions of equipment and can injure people. Affected components include a specific high-energy electrical devices, such as switch gears, load centers, bus bars/ducts, transformers, cables, etc., operating mainly on voltage levels of more than 380V but the voltage levels in NUREG/CR-6580 is more than 440. As stated before, HEAF may cause the significant damage to adjacent facilities as well as the equipment involved. Quantitative estimation of the equipment damage, determining the damage area, and predicting the secondary fire after initiating HEAF event should be further studied in depth. Draft test report produced by KEMA does not give comprehensive understanding of the HEAF phenomena. It is expected that a detail information of slug calorimeter and the test data to show the HEAF characteristics will be given in the final test reports.

  8. Presenteeism and absenteeism: differentiated understanding of related phenomena.

    Science.gov (United States)

    Gosselin, Eric; Lemyre, Louise; Corneil, Wayne

    2013-01-01

    In the past it was assumed that work attendance equated to performance. It now appears that health-related loss of productivity can be traced equally to workers showing up at work as well as to workers choosing not to. Presenteeism in the workplace, showing up for work while sick, seems now more prevalent than absenteeism. These findings are forcing organizations to reconsider their approaches regarding regular work attendance. Given this, and echoing recommendations in the literature, this study seeks to identify the main behavioral correlates of presenteeism and absenteeism in the workplace. Comparative analysis of the data from a representative sample of executives from the Public Service of Canada enables us to draw a unique picture of presenteeism and absenteeism with regards not only to the impacts of health disorders but also to the demographic, organizational, and individual factors involved. Results provide a better understanding of the similarities and differences between these phenomena, and more specifically, of the differentiated influence of certain variables. These findings provide food for thought and may pave the way to the development of new organizational measures designed to manage absenteeism without creating presenteeism.

  9. Scientific Challenges for Understanding the Quantum Universe

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Mohammad A.

    2009-10-16

    A workshop titled "Scientific Challenges for Understanding the Quantum Universe" was held December 9-11, 2008, at the Kavli Institute for Particle Astrophysics and Cosmology at the Stanford Linear Accelerator Center-National Accelerator Laboratory. The primary purpose of the meeting was to examine how computing at the extreme scale can contribute to meeting forefront scientific challenges in particle physics, particle astrophysics and cosmology. The workshop was organized around five research areas with associated panels. Three of these, "High Energy Theoretical Physics," "Accelerator Simulation," and "Experimental Particle Physics," addressed research of the Office of High Energy Physics’ Energy and Intensity Frontiers, while the"Cosmology and Astrophysics Simulation" and "Astrophysics Data Handling, Archiving, and Mining" panels were associated with the Cosmic Frontier.

  10. Contribution of cellular automata to the understanding of corrosion phenomena

    Directory of Open Access Journals (Sweden)

    M. Zenkri

    2017-09-01

    Full Text Available We present a stochastic CA modelling approach of corrosion based on spatially separated electrochemical half-reactions, diffusion, acido-basic neutralization in solution and passive properties of the oxide layers. Starting from different initial conditions, a single framework allows one to describe generalised corrosion, localised corrosion, reactive and passive surfaces, including occluded corrosion phenomena as well. Spontaneous spatial separation of anodic and cathodic zones is associated with bare metal and passivated metal on the surface. This separation is also related to local acidification of the solution. This spontaneous change is associated with a much faster corrosion rate. Material morphology is closely related to corrosion kinetics, which can be used for technological applications.

  11. Eletromagnetivity: the mainspring for the understanding of all the phenomena

    International Nuclear Information System (INIS)

    Sousa, Clessio Alves

    2013-01-01

    Full text: In the present article, we present the unification of the four fundamental forces (strong force, electroweak, electromagnetic and gravitational) of Nature; demonstrating that, three of them, are just different manifestations of the intensity of a single force - Gravity. Done that, through the unified force, it is explained the mechanism of cohesion of the atomic nucleus, the cause of the Pioneer anomaly, the origin of inertia, the mechanism of the red shift because of a gravitational field and it is demonstrated, through the formula of centrifugal force the reality of the Machs Principle. Moreover, the cause of phenomena already known are explained; such as the superfluidity of helium II, the nature of the escape velocity, the nature of matter and dark energy, the formation mechanism of black holes in the galactic center, the mechanism of gravitational interaction, the variation of energy that must be added to the terms of the total mechanical energy of a system and the retrograde motion of Venus. Furthermore, by the present theory, it is unified the general relativity to the quantum mechanics into a single theoretical body; after establishing the ratio between small and large scales in the universe, proving the applicability of the same physical laws in both situations. (author)

  12. Proportional Reasoning: An Essential Component of Scientific Understanding

    Science.gov (United States)

    Hilton, Annette; Hilton, Geoff

    2016-01-01

    In many scientific contexts, students need to be able to use mathematical knowledge in order to engage in scientific reasoning and problem-solving, and their understanding of scientific concepts relies heavily on their ability to understand and use mathematics in often new or unfamiliar contexts. Not only do science students need high levels of…

  13. Mathematical understanding of nature essays on amazing physical phenomena and their understanding by mathematicians

    CERN Document Server

    Arnold, V I

    2014-01-01

    This collection of 39 short stories gives the reader a unique opportunity to take a look at the scientific philosophy of Vladimir Arnold, one of the most original contemporary researchers. Topics of the stories included range from astronomy, to mirages, to motion of glaciers, to geometry of mirrors and beyond. In each case Arnold's explanation is both deep and simple, which makes the book interesting and accessible to an extremely broad readership. Original illustrations hand drawn by the author help the reader to further understand and appreciate Arnold's view on the relationship between math

  14. Deconstructing sexual orientation: understanding the phenomena of sexual orientation.

    Science.gov (United States)

    Stein, T S

    1997-01-01

    The very terms of a debate about whether or not sexual orientation is primarily a biological phenomenon fail to consider the complex origins of the phenomenon. Deconstruction of the term "homosexuality" shows that it refers to multiple factors which cannot be studied as or subsumed under a unitary concept. Adequate understanding of sexual orientation must consider the developmental, interpersonal, experiential, and cultural dimensions of sexuality, as well as any biological contributions to sexual attraction, behavior, and identity.

  15. Using Relational Reasoning to Learn about Scientific Phenomena at Unfamiliar Scales

    Science.gov (United States)

    Resnick, Ilyse; Davatzes, Alexandra; Newcombe, Nora S.; Shipley, Thomas F.

    2017-01-01

    Many scientific theories and discoveries involve reasoning about extreme scales, removed from human experience, such as time in geology and size in nanoscience. Thus, understanding scale is central to science, technology, engineering, and mathematics. Unfortunately, novices have trouble understanding and comparing sizes of unfamiliar large and…

  16. Understanding Peer Review of Scientific Research

    Science.gov (United States)

    Association of American Universities, 2011

    2011-01-01

    An important factor in the success of America's national research system is that federal funds for university-based research are awarded primarily through peer review, which uses panels of scientific experts, or "peers," to evaluate the quality of grant proposals. In this competitive process, proposals compete for resources based on their…

  17. Understanding scientific practices: The role of robustness notions

    NARCIS (Netherlands)

    Boon, Mieke; Soler, Lena

    2012-01-01

    This article explores the role of `robustness-notions¿ in an account of the engineering sciences. The engineering sciences aim at technological production of, and intervention with phenomena relevant to the (dis-)functioning of materials and technological devices, by means of scientific

  18. Approaches for advancing scientific understanding of macrosystems

    Science.gov (United States)

    Levy, Ofir; Ball, Becky A.; Bond-Lamberty, Ben; Cheruvelil, Kendra S.; Finley, Andrew O.; Lottig, Noah R.; Surangi W. Punyasena,; Xiao, Jingfeng; Zhou, Jizhong; Buckley, Lauren B.; Filstrup, Christopher T.; Keitt, Tim H.; Kellner, James R.; Knapp, Alan K.; Richardson, Andrew D.; Tcheng, David; Toomey, Michael; Vargas, Rodrigo; Voordeckers, James W.; Wagner, Tyler; Williams, John W.

    2014-01-01

    The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them.

  19. Understanding the Impact of an Apprenticeship-Based Scientific Research Program on High School Students' Understanding of Scientific Inquiry

    Science.gov (United States)

    Aydeniz, Mehmet; Baksa, Kristen; Skinner, Jane

    2011-01-01

    The purpose of this study was to understand the impact of an apprenticeship program on high school students' understanding of the nature of scientific inquiry. Data related to seventeen students' understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic…

  20. Ninth Grade Students' Understanding of The Nature of Scientific Knowledge

    Science.gov (United States)

    Kilic, Kerem; Sungur, Semra; Cakiroglu, Jale; Tekkaya, Ceren

    2005-01-01

    The purpose of this study was to investigate the 9th-grade students' understandings of the nature of scientific knowledge. The study also aimed to investigate the differences in students' understanding of the nature of scientific knowledge by gender, and school types. A total of 575 ninth grade students from four different school types (General…

  1. The Value of Bilingualism in Pupils' Understanding of Scientific Language.

    Science.gov (United States)

    Kearsey, John; Turner, Sheila

    1999-01-01

    Argues that, although some bilingual pupils may be at a disadvantage in understanding scientific language, there may be some circumstances where being bilingual is an advantage in understanding scientific language. Presents evidence of circumstances where being bilingual was an advantage and circumstances where it was a disadvantage in…

  2. A Scientific Understanding of Keystroke Dynamics

    Science.gov (United States)

    2012-01-01

    of Procedia — Social and Behavioral Sciences . Elsevier, 2011. S. Douhou and J. R. Magnus. The reliability of user authentication through keystroke...manifestations of people’s behavior — keystroke timings especially so. As such, looking to other sciences for solutions to the problem of understanding...excitement and enthusiasm over being studied. The discovery spurred changes in the research methods of behavioral science (Shadish et al., 2002

  3. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    Science.gov (United States)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  4. DEFINING THE HYPNOSIS FROM THE PSYCHOBIOLOGY: SOME LINES OF SCIENTIFIC DEVELOPMENT OF THE HYPNOTICS PHENOMENA

    Directory of Open Access Journals (Sweden)

    Juan Cristóbal Ruiz Díaz

    2008-11-01

    Full Text Available In the present article we defined hypnosis from a psychobiologic viewpoint. We understand this phenomenonas a particular “global state” in which the subject exhibit changes both in subjective – conscious state - and invisceral, automatic and behavioural process, al these as a result of integrative activity of the neuro-endocrinesystem (NES. Here we petend two objetives, the first: to outline a preliminar definition of hypnosis as a state,and the second: present a review of some neuroscientific studies about different hypnotic phenomena. Withinthe hypnotic phenomena, we select five of them of general interest: pain, perceptual modulation, emotionalevocation, phobia treatment and attentional conflict manegment in hipnosis. These are relevant due they may contribute unto a vast development in basic investigation and in aplied psychotherapy. Phobia investigation has demonstrate the positive effect in patients highly hypnotizable, this treatment aloud to restore the sympatic-vagal balance. The brain imaging results suggest an attentional change model, in which participate the anterior cingulate cortex (ACC. Emotional control studies stablished changes in evoqued potential in different cortical regions. The hypnosis posibillities to inhibit and to evoke emotions in front of specific virtual events are of enormous value in therapy. Attentional studies present the effect of specific suggestions in higly hipnotizable patients, the activity of ACC and visual cortex decrease significatively. These outcomes correlate with a lessen attentional conflict (attentional interference during Stroop paradigm. All these findingsdemonstrate that hypnosis is a productive field for basic and clinical investigation.

  5. Outlook of multiple time and spatial scale simulation for understanding self-organizing phenomena in plasmas

    International Nuclear Information System (INIS)

    Hayashi, Takaya; Horiuchi, Ritoku; Watanabe, Kunihiko; Sato, Tetsuya

    2003-01-01

    The importance of the methodology of computer simulation has been recognized in plasma physics since the early era of computer evolution. In particular, the goal of simulation in this research field has been characterized by attempts to treat phenomena in a self-consistent manner as much as possible. Owing to the astonishing progress in recent supercomputer technology, we are now standing on a doorway to open a new stage in the simulation research in this direction, that is, an execution of multi-layer model simulation to understand complex phenomena in plasmas. (author)

  6. Fundamentals of Fire Phenomena

    DEFF Research Database (Denmark)

    Quintiere, James

    analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...

  7. Fuel-coolant interaction (FCI) phenomena in reactor safety. Current understanding and future research needs

    Energy Technology Data Exchange (ETDEWEB)

    Speis, T.P. [Maryland Univ., College Park, MD (United States); Basu, S.

    1998-01-01

    This paper gives an account of the current understanding of fuel-coolant interaction (FCI) phenomena in the context of reactor safety. With increased emphasis on accident management and with emerging in-vessel core melt retention strategies for advanced light water reactor (ALWR) designs, recent interest in FCI has broadened to include an evaluation of potential threats to the integrity of reactor vessel lower head and ex-vessel structural support, as well as the role of FCI in debris quenching and coolability. The current understanding of FCI with regard to these issues is discussed, and future research needs to address the issues from a risk perspective are identified. (author)

  8. Design of FCI Experiments to Understand Fuel Out-Pin Phenomena in the SFR

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Park, Seong Dae [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook; Bang, In Cheol [Chungang Univ., Seoul (Korea, Republic of)

    2014-05-15

    It is important to guarantee a passive nuclear safety regarding enhanced negative reactivity by fragmenting the molten fuel. In the SFR, it has a strong point that the negative reactivity is immediately introduced when the metal fuel is melted by the UTOP or ULOP accident. These characteristics of the metal fuel can prevent from progressing in severe accidents such as core disruptive accidents (CDA). As key phenomena in the accidents, fuel-coolant interaction (FCI) phenomena have been studied over the last few decades. Especially, several previous researches focused on instability and fragmentation of a core melt jet in water. However, the studies showed too limited phenomena to fully understand. In the domestic SFR technology development, researches for severe accidents tend to lag behind ones of other countries. Or, South Korea has a very basic level of the research such as literature survey. Recently, the SAS4A code, which was developed at Argonne National Laboratory (ANL) for thermal-hydraulic and neutronic analyses of power and flow transients in liquid-metal-cooled nuclear reactors (LMRs), is still under development to consider for a metal fuel. The other countries carried out basic experiments for molten fuel and coolant interactions. However, in a high temperature condition, methods for analysis of structural interaction between molten fuel and fuel cladding are very limited. The ultimate objective of the study is to evaluate the possibility of recriticality accident induced by fuel-coolant interaction in the SFR adopting metal fuel. It is a key point to analyze the molten-fuel behavior based on the experimental results which show fuel-coolant interaction with the simulant materials. It is necessary to establish the test facility, to build database, and to develop physical models to understand the FCI phenomena in the SFR; molten fuel-coolant interaction as soon as the molten fuel is ejected to the sodium coolant channel and molten fuel-coolant interaction

  9. On multi-level thinking and scientific understanding

    Science.gov (United States)

    McIntyre, Michael Edgeworth

    2017-10-01

    Professor Duzheng YE's name has been familiar to me ever since my postdoctoral years at MIT with Professors Jule CHARNEY and Norman PHILLIPS, back in the late 1960s. I had the enormous pleasure of meeting Professor YE personally in 1992 in Beijing. His concern to promote the very best science and to use it well, and his thinking on multi-level orderly human activities, reminds me not only of the communication skills we need as scientists but also of the multi-level nature of science itself. Here I want to say something (a) about what science is; (b) about why multi-level thinking—and taking more than one viewpoint—is so important for scientific as well as for other forms of understanding; and (c) about what is meant, at a deep level, by "scientific understanding" and trying to communicate it, not only with lay persons but also across professional disciplines. I hope that Professor YE would approve.

  10. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    International Nuclear Information System (INIS)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  11. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano, E-mail: dsierras@eafit.edu.co, E-mail: langel@eafit.edu.co [Grupo de Optica Aplicada, Universidad EAFIT, 1 Medellin (Colombia)

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  12. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    Science.gov (United States)

    Sierra-Sosa, Daniel-Esteban; Ángel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  13. Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs

    Energy Technology Data Exchange (ETDEWEB)

    M. Anderson; M. Corradini; K.Y. Bank; R. Bonazza; D. Cho

    2005-04-26

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications.

  14. Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs

    International Nuclear Information System (INIS)

    Anderson, M.; Corradini, M.; Bank, K.Y.; Bonazza, R.; Cho, D.

    2005-01-01

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications

  15. Understanding and modelling Neo-proterozoic glaciations and their associated phenomena

    International Nuclear Information System (INIS)

    Le Hir, Guillaume

    2007-01-01

    The objective of this research thesis is to provide a consistent image of extreme glaciations which occurred during the Neo-proterozoic era. By using climate and carbon cycle models (or model of bio-geochemical cycles), the author aims at answering various scientific questions raised by the Snowball Earth hypothesis. After a description of the main geological features which characterize the Proterozoic, scientific problems are presented. The author then reports the study of carbon cycle during glaciation in order to understand its operation. Based on this constraint, a consistent scenario of exit from glaciation is defined. The physical-chemical evolution of the ocean during and after a global glaciation is then quantified in order to assess its potential effects on the environment and on the Precambrian biosphere. The last part focuses on the post-glacial evolution to establish the delay for a return to equilibrium of climate after such an extreme event [fr

  16. ["Unintended consequences of scientific discoveries" or: "Heterogeny of purposes" as phenomena of the history of science].

    Science.gov (United States)

    Wittkau-Horgby, A

    2001-01-01

    This paper deals with an old observation in respect to man's action--the problem of unintended consequences of human action. It presents the scientific approaches to this phenomenon in the 18th century and focusses then on the problem of unintended consequences of scientific discoveries. Using the prominent examples of Copernicus and Darwin the author shows that the actual outcomes and final effects of scientific discoveries must not necessarily be the originally intended ones. On the contrary, especially those results of scientific discoveries which have affected the sphere of world view (Weltanschauung) like the research works of Copernicus and Darwin were originally meant to be only scientific studies. The final results in respect to the world view were on Copernicus' side not even realized and on Darwin's side neither intended nor welcomed. The conclusion of this analysis is that due to the fact that both scientists did not have the intention to change the world view they can only partly be regarded to be responsible for the fundamental changes they finally caused.

  17. Toward the Long-Term Scientific Study of Encounter Group Phenomena: I. Methodological Considerations.

    Science.gov (United States)

    Diamond, Michael Jay; Shapiro, Jerrold Lee

    This paper proposes a model for the long-term scientific study of encounter, T-, and sensitivity groups. The authors see the need for overcoming major methodological and design inadequacies of such research. They discuss major methodological flaws in group outcome research as including: (1) lack of adequate base rate or pretraining measures; (2)…

  18. Switching Phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).

  19. Advanced computational multi-fluid dynamics: a new model for understanding electrokinetic phenomena in porous media

    Science.gov (United States)

    Gulamali, M. Y.; Saunders, J. H.; Jackson, M. D.; Pain, C. C.

    2009-04-01

    We present results from a new computational multi-fluid dynamics code, designed to model the transport of heat, mass and chemical species during flow of single or multiple immiscible fluid phases through porous media, including gravitational effects and compressibility. The model also captures the electrical phenomena which may arise through electrokinetic, electrochemical and electrothermal coupling. Building on the advanced computational technology of the Imperial College Ocean Model, this new development leads the way towards a complex multiphase code using arbitrary unstructured and adaptive meshes, and domains decomposed to run in parallel over a cluster of workstations or a dedicated parallel computer. These facilities will allow efficient and accurate modelling of multiphase flows which capture large- and small-scale transport phenomena, while preserving the important geology and/or surface topology to make the results physically meaningful and realistic. Applications include modelling of contaminant transport in aquifers, multiphase flow during hydrocarbon production, migration of carbon dioxide during sequestration, and evaluation of the design and safety of nuclear reactors. Simulations of the streaming potential resulting from multiphase flow in laboratory- and field-scale models demonstrate that streaming potential signals originate at fluid fronts, and at geologic boundaries where fluid saturation changes. This suggests that downhole measurements of streaming potential may be used to inform production strategies in oil and gas reservoirs. As water encroaches on an oil production well, the streaming-potential signal associated with the water front encompasses the well even when the front is up to 100 m away, so the potential measured at the well starts to change significantly relative to a distant reference electrode. Variations in the geometry of the encroaching water front could be characterized using an array of electrodes positioned along the well

  20. DEFINING THE HYPNOSIS FROM THE PSYCHOBIOLOGY: SOME LINES OF SCIENTIFIC DEVELOPMENT OF THE HYPNOTICS PHENOMENA

    OpenAIRE

    Juan Cristóbal Ruiz Díaz; Guy Santibáñez-Hidalgo

    2008-01-01

    In the present article we defined hypnosis from a psychobiologic viewpoint. We understand this phenomenonas a particular “global state” in which the subject exhibit changes both in subjective – conscious state - and invisceral, automatic and behavioural process, al these as a result of integrative activity of the neuro-endocrinesystem (NES). Here we petend two objetives, the first: to outline a preliminar definition of hypnosis as a state,and the second: present a review of some neuroscientif...

  1. Understanding the coherence of the severity effect and optimism phenomena: Lessons from attention.

    Science.gov (United States)

    Harris, Adam J L

    2017-04-01

    Claims that optimism is a near-universal characteristic of human judgment seem to be at odds with recent results from the judgment and decision making literature suggesting that the likelihood of negative outcomes are overestimated relative to neutral outcomes. In an attempt to reconcile these seemingly contrasting phenomena, inspiration is drawn from the attention literature in which there is evidence that both positive and negative stimuli can have attentional privilege relative to neutral stimuli. This result provides a framework within which I consider three example phenomena that purport to demonstrate that people's likelihood estimates are optimistic: Wishful thinking; Unrealistic comparative optimism and Asymmetric belief updating. The framework clarifies the relationships between these phenomena and stimulates future research questions. Generally, whilst results from the first two phenomena appear reconcilable in this conceptualisation, further research is required in reconciling the third. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Balancing regulatory control, scientific knowledge, and public understanding.

    Science.gov (United States)

    Kingsbury, D T

    1988-01-01

    In summary, I would like to emphasize the continued need for broad and vigorous basic research, with a balance between the fundamental work that may eventually lead to commercial products and the fundamental work that is necessary for an understanding of the interaction of many types of organisms within the environment. I would like also to reiterate the need for balance in the regulatory approach so that we do not repress innovation in research and development. Over-regulation has many side effects. In addition to repressing innovation and not taking advantage of our research base, over-regulation leads to reluctance by the capital markets to invest in the future of our new industries, thereby halting their development at an early stage. At the same time, under-regulation leads to lack of confidence by the public and paralysis of the industry based on public outcry and legal proceedings. It is my personal belief that the combination of a sound approach to regulatory practice, based on current scientific knowledge, combined with appropriate communication with the public regarding the new products, will lead to an exciting future for all sectors of industry that use the new biotechnology.

  3. Improvement in understanding of natural circulation phenomena in water cooled nuclear power plants

    International Nuclear Information System (INIS)

    Choi, Jong-Ho; Cleveland, John; Aksan, Nusret

    2011-01-01

    Highlights: ► Phenomena influencing natural circulation in passive systems. ► Behaviour in large pools of liquid. ► Effect of non-condensable gas on condensation heat transfer. ► Behaviour of containment emergency systems. ► Natural circulation flow and pressure drop in various geometries. - Abstract: The IAEA has organized a coordinated research project (CRP) on “Natural Circulation Phenomena, Modelling, and Reliability of Passive Systems That Utilize Natural Circulation.” Specific objectives of CRP were to (i) establish the status of knowledge: reactor start-up and operation, passive system initiation and operation, flow stability, 3-D effects, and scaling laws, (ii) investigate phenomena influencing reliability of passive natural circulation systems, (iii) review experimental databases for the phenomena, (iv) examine the ability of computer codes to predict natural circulation and related phenomena, and (v) apply methodologies for examining the reliability of passive systems. Sixteen institutes from 13 IAEA Member States have participated in this CRP. Twenty reference advanced water cooled reactor designs including evolutionary and innovative designs were selected to examine the use of natural circulation and passive systems in their designs. Twelve phenomena influencing natural circulation were identified and characterized: (1) behaviour in large pools of liquid, (2) effect of non-condensable gases on condensation heat transfer, (3) condensation on the containment structures, (4) behaviour of containment emergency systems, (5) thermo-fluid dynamics and pressure drops in various geometrical configurations, (6) natural circulation in closed loop, (7) steam liquid interaction, (8) gravity driven cooling and accumulator behaviour, (9) liquid temperature stratification, (10) behaviour of emergency heat exchangers and isolation condensers, (11) stratification and mixing of boron, and (12) core make-up tank behaviour. This paper summarizes the

  4. From naive to scientific understanding of motion and its causes

    International Nuclear Information System (INIS)

    Ascari, A.; Corni, F.; Ceroni, G.; Fuchs, Hans U.

    2015-01-01

    The difference in the descriptions of motion phenomena made by pupils in the first grades of secondary school and physicists is quite evident. Conceptual metaphors hidden in language suggest that there is continuity between the conceptual structure involved in the description and the interpretation of motion of experts and lay persons. In this paper the presence of such a continuity is shown through a metaphor analysis of linguistic expressions from both groups.

  5. (Mis)understanding Science: The Problem with Scientific Breakthroughs.

    Science.gov (United States)

    Evans, James P

    2016-09-01

    On Saturday morning, February 28, 1953, the mystery of heredity appeared secure. Humans hadn't the faintest idea of how genetic information was transmitted-how the uncanny resemblance between mother and daughter, grandfather and grandson was conveyed across generations. Yet, by that Saturday afternoon, two individuals, James Watson and Francis Crick, had glimpsed the solution to these mysteries. The story of Watson and Crick's great triumph has been told and retold and has rightly entered the pantheon of scientific legend. But Watson and Crick's breakthrough was just that: a rupture and dramatic discontinuity in human knowledge that solved a deep mystery, the likes of which occurs, perhaps, a couple of times each century. And that's the problem. The story is just so good and so irresistible that it has misled generations of scientists about what to expect regarding a life in science. And more damaging, the resulting breakthrough mentality misleads the public, the media, and society's decision-makers about how science really works, all to the detriment of scientific progress and our society's well-being. © 2016 The Hastings Center.

  6. Understanding oscillatory phenomena in molecular hydrogen generation via sodium borohydride hydrolysis.

    Science.gov (United States)

    Budroni, M A; Biosa, E; Garroni, S; Mulas, G R C; Marchettini, N; Culeddu, N; Rustici, M

    2013-11-14

    The hydrolysis of borohydride salts represents one of the most promising processes for the generation of high purity molecular hydrogen under mild conditions. In this work we show that the sodium borohydride hydrolysis exhibits a fingerprinting periodic oscillatory transient in the hydrogen flow over a wide range of experimental conditions. We disproved the possibility that flow oscillations are driven by supersaturation phenomena of gaseous bubbles in the reactive mixture or by a nonlinear thermal feedback according to a thermokinetic model. Our experimental results indicate that the NaBH4 hydrolysis is a spontaneous inorganic oscillator, in which the hydrogen flow oscillations are coupled to an "oscillophor" in the reactive solution. The discovery of this original oscillator paves the way for a new class of chemical oscillators, with fundamental implications not only for testing the general theory on oscillations, but also with a view to chemical control of borohydride systems used as a source of hydrogen based green fuel.

  7. 76 FR 16443 - Proposed Information Collection: Strengthening the Scientific Understanding of Climate Change...

    Science.gov (United States)

    2011-03-23

    ... Collection: Strengthening the Scientific Understanding of Climate Change Impacts on Freshwater Resources of... Scientific Understanding of Climate Change Impacts on Freshwater Resources of the United States.'' The draft report reviews key issues related to freshwater resource data and climate change and identifies next...

  8. Gender Differences in Lunar-Related Scientific and Mathematical Understandings

    Science.gov (United States)

    Wilhelm, Jennifer

    2009-01-01

    This paper reports an examination on gender differences in lunar phases understanding of 123 students (70 females and 53 males). Middle-level students interacted with the Moon through observations, sketching, journalling, two-dimensional and three-dimensional modelling, and classroom discussions. These lunar lessons were adapted from the Realistic…

  9. Scientific Models Help Students Understand the Water Cycle

    Science.gov (United States)

    Forbes, Cory; Vo, Tina; Zangori, Laura; Schwarz, Christina

    2015-01-01

    The water cycle is a large, complex system that encompasses ideas across the K-12 science curriculum. By the time students leave fifth grade, they should understand "that a system is a group of related parts that make up a whole and can carry out functions its individual parts cannot" and be able to describe both components and processes…

  10. Fundamental Understanding of Ambient and High-Temperature Plasticity Phenomena in Structural Materials in Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Deo, Chaitanya; Zhu, Ting; McDowell, David

    2013-11-17

    The goal of this research project is to develop the methods and tools necessary to link unit processes analyzed using atomistic simulations involving interaction of vacancies and interstitials with dislocations, as well as dislocation mediation at sessile junctions and interfaces as affected by radiation, with cooperative influence on higher-length scale behavior of polycrystals. These tools and methods are necessary to design and enhance radiation-induced damage-tolerant alloys. The project will achieve this goal by applying atomistic simulations to characterize unit processes of: 1. Dislocation nucleation, absorption, and desorption at interfaces 2. Vacancy production, radiation-induced segregation of substitutional Cr at defect clusters (point defect sinks) in BCC Fe-Cr ferritic/martensitic steels 3. Investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S) 4. Time evolution of swelling (cluster growth) phenomena of irradiated materials 5. Energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and formation of prismatic loops, informing statistical models of continuum character with regard to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip This project will consider the Fe, Fe-C, and Fe-Cr ferritic/martensitic material system, accounting for magnetism by choosing appropriate interatomic potentials and validating with first principles calculations. For these alloys, the rate of swelling and creep enhancement is considerably lower than that of face-centered cubic (FCC) alloys and of austenitic Fe-Cr-Mo alloys. The team will confirm mechanisms, validate simulations at various time and length scales, and improve the veracity of computational models. The proposed research?s feasibility is supported by recent modeling of radiation effects in metals and alloys, interfacial dislocation transfer reactions in nano-twinned copper, and dislocation

  11. The pallid sturgeon: Scientific investigations help understand recovery needs

    Science.gov (United States)

    DeLonay, Aaron J.

    2010-01-01

    Understanding of the pallid sturgeon (Scaphirhynchus albus) has increased significantly since the species was listed as endangered over two decades ago. Since 2005, scientists at the U.S. Geological Survey (USGS) Columbia Environmental Research Center (CERC) have been engaged in an interdisciplinary research program in cooperation with the U.S. Army Corps of Engineers Missouri River Recovery Program, U.S. Fish and Wildlife Service, Nebraska Game and Parks Commission, and numerous other State and Federal cooperators to provide managers and policy makers with the knowledge needed to evaluate recovery options. During that time, the USGS has worked collaboratively with river scientists and managers to develop methods, baseline information, and research approaches that are critical contributions to recovery success. The pallid sturgeon is endangered throughout the Missouri River because of insufficient reproduction and survival of early life stages. Primary management actions on the Missouri River designed to increase reproductive success and survival have focused on flow regime, channel morphology, and propagation. The CERC research strategies have, therefore, been designed to examine the linkages among flow regime, re-engineered channel morphology, and reproductive success and survival. Specific research objectives include the following: (1) understanding reproductive physiology of pallid sturgeon and relations to environmental conditions; (2) determining movement, habitat use, and reproductive behavior of pallid sturgeon; and (3) quantifying availability and dynamics of aquatic habitats needed by pallid sturgeon for all life stages.

  12. What's Missing in Teaching Probability and Statistics: Building Cognitive Schema for Understanding Random Phenomena

    Science.gov (United States)

    Kuzmak, Sylvia

    2016-01-01

    Teaching probability and statistics is more than teaching the mathematics itself. Historically, the mathematics of probability and statistics was first developed through analyzing games of chance such as the rolling of dice. This article makes the case that the understanding of probability and statistics is dependent upon building a…

  13. The treatment process of understanding scientific texts: A necessity in the current Cuban university

    Directory of Open Access Journals (Sweden)

    Yanet María Guerra Santana

    2016-06-01

    Full Text Available This work has as main purpose to emphasize the need for treatment of the process of understanding scientific texts in the university today, for the development of science and technology has placed at the forefront in every race the problem of processing scientific information. The ability to produce scientific texts has been somewhat spontaneity in the curriculum of professional training in Cuban university, which has resulted in some professionals do not yet have linguistic, discursive and strategic " tools " best to communicate the style of science, hence the study of the process of understanding of scientific texts in undergraduate currently constitute a need in our universities.

  14. Probing Student Understanding of Scientific Thinking in the Context of Introductory Astrophysics

    Science.gov (United States)

    Steinberg, Richard N.; Cormier, Sebastien; Fernandez, Adiel

    2009-01-01

    Common forms of testing of student understanding of science content can be misleading about their understanding of the nature of scientific thinking. Observational astronomy integrated with related ideas of force and motion is a rich context to explore the correlation between student content knowledge and student understanding of the scientific…

  15. Integrated Approach for Understanding Impurity Adsorption on Calcite: Mechanisms for Micro-scale Surface Phenomena

    Science.gov (United States)

    Vinson, M. D.; Arvidson, R. S.; Luttge, A.

    2004-12-01

    A longstanding goal within the field of environmental geochemistry has been the development of a fundamental understanding of the kinetics that governs the interactions of solution-borne impurities with the calcite mineral surface. Recent dissolution experiments using Mg2+, Mn2+, and Sr2+ have shown distinct differences in the interaction of these three impurity ions with the calcite crystal surface. Because the dissolution of carbonate minerals in soils and sediments influences the uptake and migration of groundwater contaminants, a rigorous understanding of the basic processes that occur at the mineral-fluid interface is necessary. We have used vertical scanning interferometry (VSI) coupled with scanning probe microscopy (SPM) to examine calcite crystal dissolution in the presence of Mg2+, Mn2+, and Sr2+, all known dissolution inhibitors and possible groundwater contaminants. We have studied the kinetics of impurity-crystal interactions at a pH 8.8, and in the presence or absence of dissolved inorganic carbon. Our data show that, when individually introduced into undersaturated solutions, Mg2+ and Mn2+ are shown to activate the calcite crystal surface, resulting in enhanced etch pit nucleation rates and step density. Conversely, Sr2+ is shown to cause passivation of the calcite surface. The effect is intensified when solutions are saturated with respect to atmospheric CO2. Results indicate that aqueous CO32- (or HCO3-) may influence how aqueous metal ionic complexes interact with the crystal surface. Furthermore, the influence is differently exhibited, and passivation or activation ultimately depends on the properties of the diffusing metal ion or metal-hydroxide complex. These properties include for example, differences in hydration enthalpy, the effective ionic radius, and electron shell configuration.

  16. Dynamic use of geoscience information to develop scientific understanding for a nuclear waste repository

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Tsang, C.F.

    1990-01-01

    This paper discusses the development and safety evaluation of a nuclear waste geologic repository. Scientific understanding dependent upon information from a number of geoscience disciplines is described. A discussion is given on the dynamic use of the information through the different stages. The authors point out the need for abstracting, deriving and updating a quantitative spatial and process model (QSPM) to develop a scientific understanding of site responses as a crucial element in the dynamic procedure

  17. New tendencies in wildland fire simulation for understanding fire phenomena: An overview of the WFDS system capabilities in Mediterranean ecosystems

    Science.gov (United States)

    Pastor, E.; Tarragó, D.; Planas, E.

    2012-04-01

    Wildfire theoretical modeling endeavors predicting fire behavior characteristics, such as the rate of spread, the flames geometry and the energy released by the fire front by applying the physics and the chemistry laws that govern fire phenomena. Its ultimate aim is to help fire managers to improve fire prevention and suppression and hence reducing damage to population and protecting ecosystems. WFDS is a 3D computational fluid dynamics (CFD) model of a fire-driven flow. It is particularly appropriate for predicting the fire behaviour burning through the wildland-urban interface, since it is able to predict the fire behaviour in the intermix of vegetative and structural fuels that comprise the wildland urban interface. This model is not suitable for operational fire management yet due to computational costs constrains, but given the fact that it is open-source and that it has a detailed description of the fuels and of the combustion and heat transfer mechanisms it is currently a suitable system for research purposes. In this paper we present the most important characteristics of the WFDS simulation tool in terms of the models implemented, the input information required and the outputs that the simulator gives useful for understanding fire phenomena. We briefly discuss its advantages and opportunities through some simulation exercises of Mediterranean ecosystems.

  18. Toward Understanding Astrophysical Phenomena

    Science.gov (United States)

    Luan, Jing

    2015-06-01

    I hope to resume working on fast radio bursts (FRBs) in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints. The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central ms pulsar. The two orbits are highly hierarchical, namely Porb,1 " Porb,2, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, e1/ e2, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, e1 " e2 for the parallel mode, while e 1 " e2 for the anti-parallel one. We show that the former precesses ˜10 times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially e1 oscillate on ˜103yr timescale. Detectable changes would occur within ˜1y. We demonstrate that the anti-parallel mode gets damped ˜10 4 times faster than its parallel brother by any dissipative process diminishing e1. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter (Q) to be ˜106, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers mass/angular momentum loss, which might cause e1 to grow rather than decay. Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io-Europa, Europa-Ganymede and Enceladus-Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phase spaces of the Mimas-Tethys and Titan-Hyperion MMRs and their resonant arguments are the only ones to exhibit substantial librations. When a separatrix is present, tidal damping of eccentricity or inclination excites overstable librations that can lead to passage through resonance on the damping timescale. However, after investigation, we conclude that the librations in the Mimas-Tethys and Titan-Hyperion MMRs are fossils and do not result from overstability. Rubble piles are common in the solar system. Monolithic elements touch their neighbors in small localized areas. Voids occupy a significant fraction of the volume. In a fluid-free environment, heat cannot conduct through voids; only radiation can transfer energy across them. We model the effective thermal conductivity of a rubble pile and show that it is proportional the square root of the pressure, P, for P ≤ epsilon 3Ymu where epsilonY is the material's yield strain and mu its shear modulus. Our model provides an excellent fit to the depth dependence of the thermal conductivity in the top 140cm of the lunar regolith. It also offers an explanation for the low thermal inertias of rocky asteroids and icy satellites. Lastly, we discuss how rubble piles slow down the cooling of small bodies such as asteroids. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger electromagnetic (EM) observation before the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method. (Abstract shortened by UMI.).

  19. Understanding the Validity of Data: A Knowledge-Based Network Underlying Research Expertise in Scientific Disciplines

    Science.gov (United States)

    Roberts, Ros

    2016-01-01

    This article considers what might be taught to meet a widely held curriculum aim of students being able to understand research in a discipline. Expertise, which may appear as a "chain of practice," is widely held to be underpinned by networks of understanding. Scientific research expertise is considered from this perspective. Within…

  20. The Perceived Credibility of Scientific Claims, Paranormal Phenomena, and Miracles among Primary Teacher Students: A Comparative Study.

    Science.gov (United States)

    Keranto, Tapio

    2001-01-01

    Presents data collected concerning scientific, religious, and magic-occult connections from Finnish, Estonian, and Michigan primary teacher students to answer questions such as Do we find any differences between the credibility estimates?, Are there any differences between primary teacher students raised in different societies and educated in…

  1. Probing student understanding of scientific thinking in the context of introductory astrophysics

    Directory of Open Access Journals (Sweden)

    Richard N. Steinberg

    2009-09-01

    Full Text Available Common forms of testing of student understanding of science content can be misleading about their understanding of the nature of scientific thinking. Observational astronomy integrated with related ideas of force and motion is a rich context to explore the correlation between student content knowledge and student understanding of the scientific thinking about that content. In this paper, we describe this correlation in detail with a focus on a question about the relative motion of the Sun and the Earth. We find that high achieving high school students throughout New York City struggle with what constitutes scientific justification and thought processes, but can improve these skills tremendously in an inquiry-oriented summer astronomy-physics program.

  2. Dynamic use of geoscience information to develop scientific understanding for a nuclear waste repository

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Tsang, C.F.

    1990-01-01

    The development and safety evaluation of a nuclear waste geologic repository require a proper scientific understanding of the site response. Such scientific understanding depends on information from a number of geoscience disciplines, including geology, geophysics, geochemistry, geomechanics and hydrogeology. The information comes in four stages: (1) general regional survey data base, (2) surface-based testing, (3) exploratory shaft testing, and (4) repository construction and evaluation. A discussion is given on the dynamic use of the information through the different stages. We point out the need for abstracting, deriving and updating a quantitative spatial and process model (QSPM) to develop a scientific understanding of site responses as a crucial element in the dynamic procedure. 2 figs

  3. Scientific thinking in elementary school: Children's social cognition and their epistemological understanding promote experimentation skills.

    Science.gov (United States)

    Osterhaus, Christopher; Koerber, Susanne; Sodian, Beate

    2017-03-01

    Do social cognition and epistemological understanding promote elementary school children's experimentation skills? To investigate this question, 402 children (ages 8, 9, and 10) in 2nd, 3rd, and 4th grades were assessed for their experimentation skills, social cognition (advanced theory of mind [AToM]), epistemological understanding (understanding the nature of science), and general information-processing skills (inhibition, intelligence, and language abilities) in a whole-class testing procedure. A multiple indicators multiple causes model revealed a significant influence of social cognition (AToM) on epistemological understanding, and a McNemar test suggested that children's development of AToM is an important precursor for the emergence of an advanced, mature epistemological understanding. Children's epistemological understanding, in turn, predicted their experimentation skills. Importantly, this relation was independent of the common influences of general information processing. Significant relations between experimentation skills and inhibition, and between epistemological understanding, intelligence, and language abilities emerged, suggesting that general information processing contributes to the conceptual development that is involved in scientific thinking. The model of scientific thinking that was tested in this study (social cognition and epistemological understanding promote experimentation skills) fitted the data significantly better than 2 alternative models, which assumed nonspecific, equally strong relations between all constructs under investigation. Our results support the conclusion that social cognition plays a foundational role in the emergence of children's epistemological understanding, which in turn is closely related to the development of experimentation skills. Our findings have significant implications for the teaching of scientific thinking in elementary school and they stress the importance of children's epistemological understanding in

  4. USING SCIENTIFIC PAPERS TO STIMULATE THE STUDY OF BIOCHEMISTRY AND THE UNDERSTANDING OF SCIENTIFIC KNOWLEDGE CONSTRUCTION: THE RESEARCH ON ADRENOLEUKODYSTROPHY

    Directory of Open Access Journals (Sweden)

    R. B. Gagianone

    2015-08-01

    understanding of mechanisms completely unknown by the time of LO development and also the comprehension of scientific knowledge construction through a playful and participative activity.AcknowledgementsWe thank Prograd-UFF for scholarship supply.Key wordsAdrenoleukodystrophy; Biochemistry teaching; scientific knowledge

  5. Scaffolded Instruction Improves Student Understanding of the Scientific Method & Experimental Design

    Science.gov (United States)

    D'Costa, Allison R.; Schlueter, Mark A.

    2013-01-01

    Implementation of a guided-inquiry lab in introductory biology classes, along with scaffolded instruction, improved students' understanding of the scientific method, their ability to design an experiment, and their identification of experimental variables. Pre- and postassessments from experimental versus control sections over three semesters…

  6. Articulating Scientific Practice: Understanding Dean Hamer's "Gay Gene" Study as Overlapping Material, Social and Rhetorical Registers

    Science.gov (United States)

    Lynch, John A.

    2009-01-01

    Rhetoricians have tried to develop a better understanding of the connection between words and things, but these attempts often employ a logic of representation that undermines a full examination of materiality and the complexity of scientific practice. A logic of articulation offers a viable alternative by focusing attention on the linkages…

  7. What Science Is about--Development of the Scientific Understanding of Secondary School Students

    Science.gov (United States)

    Cincera, Jan; Medek, Michal; Cincera, Pavel; Lupac, Miroslav; Tichá, Irena

    2017-01-01

    Background: Development of scientific understanding of secondary school students is considered to be one of the goals of environmental education. However, it is not quite clear what instructional strategies and what other factors contribute to the effectiveness of environmental education programs promoting this goal. Purpose: The aim was to…

  8. Pre-service elementary teachers' understanding of scientific inquiry and its role in school science

    Science.gov (United States)

    Macaroglu, Esra

    The purpose of this research was to explore pre-service elementary teachers' developing understanding of scientific inquiry within the context of their elementary science teaching and learning. More specifically, the study examined 24 pre-service elementary teachers' emerging understanding of (1) the nature of science and scientific inquiry; (2) the "place" of scientific inquiry in school science; and (3) the roles and responsibilities of teachers and students within an inquiry-based learning environment. Data sources consisted primarily of student-generated artifacts collected throughout the semester, including pre/post-philosophy statements and text-based materials collected from electronic dialogue journals. Individual data sources were open-coded to identify concepts and categories expressed by students. Cross-comparisons were conducted and patterns were identified. Assertions were formed with these patterns. Findings are hopeful in that they suggest pre-service teachers can develop a more contemporary view of scientific inquiry when immersed in a context that promotes this perspective. Not surprisingly, however, the prospective teachers encountered a number of barriers when attempting to translate their emerging ideas into practice. More research is needed to determine which teacher preparation experiences are most powerful in supporting pre-service teachers as they construct a framework for science teaching and learning that includes scientific inquiry as a central component.

  9. Instructional games: Scientific language use, concept understanding, and attitudinal development of middle school learners

    Science.gov (United States)

    Mongillo, Geraldine

    The purpose of this qualitative study was to discover the influence of instructional games on middle school learners' use of scientific language, concept understanding, and attitude toward learning science. The rationale for this study stemmed from the lack of research concerning the value of play as an instructional strategy for older learners. Specifically, the study focused on the ways in which 6 average ability 7th grade students demonstrated scientific language and concept use during gameplay. The data were collected for this 6-week study in a southern New Jersey suburban middle school and included audio recordings of the 5 games observed in class, written documents (e.g., student created game questions, self-evaluation forms, pre- and post-assessments, and the final quiz) interviews, and researcher field notes. Data were coded and interpreted borrowing from the framework for scientific literacy developed by Bybee (1997). Based on the findings, the framework was modified to reflect the level of scientific understanding demonstrated by the participants and categorized as: Unacquainted, Nominal, Functional, and Conceptual. Major findings suggested that the participants predominantly achieved the Functional level of scientific literacy (i.e., the ability to adequately and appropriately use scientific language in both written and oral discourse) during games. Further, it was discovered that the participants achieved the Conceptual level of scientific literacy during gameplay. Through games participants were afforded the opportunity to use common, everyday language to explore concepts, promoted through peer collaboration. In games the participants used common language to build understandings that exceeded Nominal or token use of the technical vocabulary and concepts. Additionally, the participants reported through interviews and self-evaluation forms that their attitude (patterns included: Motivation, Interest, Fun, Relief from Boredom, and an Alternate Learning

  10. Diagramming Scientific Papers - A New Idea for Understanding/Teaching/Sharing Science

    Science.gov (United States)

    Saltus, R. W.; Fedi, M.

    2014-12-01

    How do we best communicate scientific results? As the number of scientists and scientific papers steadily increases, one of the greatest challenges is effective and efficient sharing of science. The official repository of scientific knowledge is the peer-reviewed journal archive. However, this primary knowledge can be difficult to access and understand by anyone but a relevant specialist. We propose some new ideas for diagramming the content and significance of scientific papers using a simple and intuitive graphical approach. We propose a visual mapping that highlights four fundamental aspects of most scientific papers: Data, Methods/Models, Results/Ideas, and Implications/Importance. Each of these aspects is illustrated within boxed fields which contain one or more labeled elements positioned to reflect novelty (aka originality) and impact relative to the vertical and horizontal axes. The relative position of the boxed fields themselves indicates the relative significance of data, methods, ideas, or implications to the paper. Optional lines between boxed elements indicate the flow and dependence of data/methods/ideas within the paper. As with any graphical depiction, you need to see it to best appreciate it -- this written abstract is only meant as an introduction to the idea.We anticipate that diagramming may prove useful in both communication of scientific ideas among scientists as well as in education and outreach. For example, professors could assign diagramming of papers as a way to help students organize their thoughts about the structure and impact of scientific articles. Students could compare and defend their diagrams as a way to facilitate discussion/debate. Authors could diagram their own work as a way to efficiently summarize the importance and significance of their work. We also imagine that (in the future) automatic diagramming might be used to help summarize or facilitate the discovery of archived work.

  11. About role of 'Nuclear sciences' and other trends of scientific and technological works in innovation development of phenomena and globalization processes in XX and XXI centuries

    International Nuclear Information System (INIS)

    Arifov, P.V.; Azimova, D.S.; Trostyanskij, D.V.; Umarov, A.G.

    2005-01-01

    It is concluded, that just successful development of scientific and technological works in the field 'Nuclear Sciences' results economy advantages for USA and some West countries compared with USSR and the rest countries of East Europe. In the following decades this advantage allows to a leader-countries develop with success principally new trends of scientific, technological workings in the a wide-scale sphere of natural, technical, biomedical, and other related sciences. Here soon the USA gap from other world countries was achieved. In the field of fundamental sciences there are such fields: Computer Sciences (1940 and then), Space Sciences (1950 and then), Life Sciences (1960 and then), Computer tomography Sciences (1970 and then). Material Researches Sciences (1980 and then), Internet Sciences (1994 and then), Nanosciences and Nanotechnologies (1999 and then). In the end of XX century these advantages allow to USA to realize two known global innovation initiatives having National character: Ballistic Missile Defense - from 1983, Internet - from 1994, and to declare the third one - targeting to the XXI century - Nanosciences and Nanotechnologies - from 1999. It is noted, that due to unexampled high temps of development of phenomena and globalization in the XXI century the specialists and professionals of Uzbekistan in the shortest time have to learn the newest world experience in order to ensure worthy status for the young independent state in the world developed countries commonwealth in new age

  12. Scientific literacy: Role of natural history studies in constructing understanding of the nature of science

    Science.gov (United States)

    Lutz, Martha Victoria Rosett

    2002-01-01

    Scientific literacy is a central goal of science education. One purpose of this investigation was to reevaluate the definition of 'scientific literacy.' Another purpose was to develop and implement new curriculum involving natural history experiments with insects, with the goal of allowing students opportunities to construct an understanding of the nature of science, a crucial aspect of scientific literacy. This investigation was a qualitative case study. Methods of data collection included direct observations, analysis of sketches and written products created by students and class-room teachers, and analysis of audio tapes. Major findings include: (1) Scientific literacy is generally defined by lists of factual information which students are expected to master. When asked to evaluate their knowledge of selected items on a list published in a science education reform curriculum guide, 15 practicing scientists reported lack of familiarity or comprehension with many items, with the exception of items within their areas of specialization. (2) Genuine natural history experiments using insects can be incorporated into the existing school schedule and need not require any increase in the budget for science materials. (3) Students as young as first through third grade can learn the manual techniques and conceptual skills necessary for designing and conducting original natural history experiments, including manipulating the insects, making accurate sketches, developing test able hypotheses, recording data, and drawing conclusions from their data. Students were generally enthusiastic both about working with live insects and also conducting genuine science experiments. (4) Girls appear both positive and engaged with natural history activities and may be more likely than boys to follow through on designing, conducting, and reporting on independent experiments. The results imply that a valid definition of scientific literacy should be based on the ability to acquire scientific

  13. The (Mis)understanding of Scientific Uncertainty? How Experts View Policy-Makers, the Media and Publics

    OpenAIRE

    Landstrom, Catharina; Hauxwell-Baldwin, Richard; Lorenzoni, Irene; Rogers-Hayden, Tee

    2015-01-01

    Frequent claims that publics ‘misunderstand’ science ignore the contested definition of scientific uncertainty itself. Scientific uncertainty means different things in the natural sciences, social sciences and the humanities, while public controversies show that these interpretations of scientific uncertainty have different implications for policy and decision-making. This prompts analysis of the ways that experts view scientific uncertainty and how they characterise the (mis)understandings o...

  14. Publication Ethics and the Emerging Scientific Workforce: Understanding ‘Plagiarism’ in a Global Context

    Science.gov (United States)

    Cameron, Carrie; Zhao, Hui; McHugh, Michelle K.

    2013-01-01

    Scientific publication has long been dominated by the English language and is rapidly moving towards near complete hegemony of English, while the majority of the world’s publishing scientists are not native English speakers. This imbalance has important implications for training in and enforcement of publication ethics, particularly with respect to plagiarism. A lack of understanding of what constitutes plagiarism and the use of a linguistic support strategy known as patchwriting can lead to inadvertent misuse of source material by non-native speakers writing in English as well as to unfounded accusations of intentional scientific misconduct on the part of these authors. A rational and well-informed dialogue about this issue is needed among both native English speaking and non-native English speaking writers, editors, educators, and administrators. Recommendations for educating and training are provided. PMID:22104051

  15. Perspective: publication ethics and the emerging scientific workforce: understanding "plagiarism" in a global context.

    Science.gov (United States)

    Cameron, Carrie; Zhao, Hui; McHugh, Michelle K

    2012-01-01

    English has long been the dominant language of scientific publication, and it is rapidly approaching near-complete hegemony. The majority of the scientists publishing in English-language journals are not native English speakers, however. This imbalance has important implications for training concerning ethics and enforcement of publication standards, particularly with respect to plagiarism. The authors suggest that lack of understanding of what constitutes plagiarism and the use of a linguistic support strategy known as "patchwriting" can lead to inadvertent misuse of source material by nonnative speakers writing in English as well as to unfounded accusations of intentional scientific misconduct on the part of these authors. They propose that a rational and well-informed dialogue about this issue is needed among editors, educators, administrators, and both native-English-speaking and nonnative-English-speaking writers. They offer recommendations for creating environments in which such dialogue and training can occur.

  16. On Understanding: Maxwell on the Methods of Illustration and Scientific Metaphor

    Science.gov (United States)

    Cat, Jordi

    In this paper I examine the notion and role of metaphors and illustrations in Maxwell's works in exact science as a pathway into a broader and richer philosophical conception of a scientist and scientific practice. While some of these notions and methods are still at work in current scientific research-from economics and biology to quantum computation and quantum field theory-, here I have chosen to attest to their entrenchment and complexity in actual science by attempting to make some conceptual sense of Maxwell's own usage; this endeavour includes situating Maxwell's conceptions and applications in his own culture of Victorian science and philosophy. I trace Maxwell's notions to the formulation of the problem of understanding, or interpreting, abstract representations such as potential functions and Lagrangian equations. I articulate the solution in terms of abstract-concrete relations, where the concrete, in tune with Victorian British psychology and engineering, includes the muscular as well as the pictorial. This sets the basis for a conception of understanding in terms of unification and concrete modelling, or representation. I examine the relation of illustration to analogies and metaphors on which this account rests. Lastly, I stress and explain the importance of context-dependence, its consequences for realism-instrumentalism debates, and Maxwell's own emphasis on method.

  17. Paranormal phenomena

    Science.gov (United States)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  18. A SEM Model in Assessing the Effect of Convergent, Divergent and Logical Thinking on Students' Understanding of Chemical Phenomena

    Science.gov (United States)

    Stamovlasis, D.; Kypraios, N.; Papageorgiou, G.

    2015-01-01

    In this study, structural equation modeling (SEM) is applied to an instrument assessing students' understanding of chemical change. The instrument comprised items on understanding the structure of substances, chemical changes and their interpretation. The structural relationships among particular groups of items are investigated and analyzed using…

  19. THE EFFECTS OF NATIONAL SCIENTIFIC STYLE ON THE UNDERSTANDING OF SCIENTIFIC INNOVATION--SPECIAL RELATIVITY, A CASE HISTORY. FINAL REPORT.

    Science.gov (United States)

    GOLDBERG, STANLEY

    COMPARED ARE THE RESPONSES TO EINSTEIN'S THEORY OF RELATIVITY IN FOUR COUNTRIES BETWEEN THE YEARS 1905 AND 1911. THE COUNTRIES STUDIED ARE GERMANY, FRANCE, ENGLAND, AND THE UNITED STATES. ON THE BASIS OF THE RESPONSE, NATIONAL SCIENTIFIC STYLES ARE IDENTIFIED, AND THESE STYLES ARE RELATED TO PREVIOUS NATIONAL CHARACTERISTICS OF DOING SCIENCE AND…

  20. Explicitly Targeting Pre-Service Teacher Scientific Reasoning Abilities and Understanding of Nature of Science through an Introductory Science Course

    Science.gov (United States)

    Koenig, Kathleen; Schen, Melissa; Bao, Lei

    2012-01-01

    Development of a scientifically literate citizenry has become a national focus and highlights the need for K-12 students to develop a solid foundation of scientific reasoning abilities and an understanding of nature of science, along with appropriate content knowledge. This implies that teachers must also be competent in these areas; but…

  1. An Inquiry-Based Laboratory Module to Promote Understanding of the Scientific Method and Bacterial Conjugation

    Directory of Open Access Journals (Sweden)

    Melanie B. Berkmen

    2014-08-01

    Full Text Available Students are engaged and improve their critical thinking skills in laboratory courses when they have the opportunity to design and conduct inquiry-based experiments that generate novel results. A discovery-driven project for a microbiology, genetics, or multidisciplinary research laboratory course was developed to familiarize students with the scientific method. In this multi-lab module, students determine whether their chosen stress conditions induce conjugation and/or cell death of the model BSL-1 Gram-positive bacterium Bacillus subtilis. Through consultation of the primary literature, students identify conditions or chemicals that can elicit DNA damage, the SOS response, and/or cellular stress.  In groups, students discuss their selected conditions, develop their hypotheses and experimental plans, and formulate their positive and negative controls. Students then subject the B. subtilis donor cells to the stress conditions, mix donors with recipients to allow mating, and plate serial dilutions of the mixtures on selective plates to measure how the treatments affect conjugation frequency and donor cell viability.  Finally, students analyze and discuss their collective data in light of their controls. The goals of this module are to encourage students to be actively involved in the scientific process while contributing to our understanding of the conditions that stimulate horizontal gene transfer in bacteria.

  2. Specially Designed Sound-Boxes Used by Students to Perform School-Lab Sensor–Based Experiments, to Understand Sound Phenomena

    Directory of Open Access Journals (Sweden)

    Stefanos Parskeuopoulos

    2011-02-01

    Full Text Available The research presented herein investigates and records students’ perceptions relating to sound phenomena and their improvement during a specialised laboratory practice utilizing ICT and a simple experimental apparatus, especially designed for teaching. This school-lab apparatus and its operation are also described herein. A number of 71 first and second grade Vocational-school students, aged 16 to 20, participated in the research. These were divided into groups of 4-5 students, each of which worked for 6 hours in order to complete all activities assigned. Data collection was carried out through personal interviews as well as questionnaires which were distributed before and after the instructive intervention. The results shows that students’ active involvement with the simple teaching apparatus, through which the effects of sound waves are visible, helps them comprehend sound phenomena. It also altered considerably their initial misconceptions about sound propagation. The results are presented diagrammatically herein, while some important observations are made, relating to the teaching and learning of scientific concepts concerning sound.

  3. Using analog instruments in Tracker video-based experiments to understand the phenomena of electricity and magnetism in physics education

    Science.gov (United States)

    Aguilar-Marín, Pablo; Chavez-Bacilio, Mario; Jáuregui-Rosas, Segundo

    2018-05-01

    Tracker is a piece of freeware software, designed to use video recorded images of the motion of objects as input data, and has been mostly applied in physics education to analyse and simulate physical phenomena in mechanics. In this work we report the application of Tracker to the study of experiments in electricity and magnetism using analog instruments for electrical signal measurements. As we are unable to directly video-track the motion of electrons in electric circuits, the angular deflections of the instruments’ pointers were video captured instead. The kinematic variables (angular position as a function of time) had to be related to the electrical ones (voltages and currents as a function of time). Two well-known experiments in physics teaching, the RC circuit for charging and discharging a capacitor and Faraday electromagnetic induction, were chosen to illustrate the procedures. The third experiment analysed and modeled with Tracker was the rather well-known electromagnetic retardation of disk- or cylinder-shaped magnets falling inside non-magnetic metallic pipes. Instead of metallic pipes we used an aluminum plate with an arrangement of a couple of parallelepiped-shaped magnets falling parallel to the plate. In the three cases studied, the experimental and the Tracker simulation results were in very good agreement. These outcomes show that it is possible to exploit the potential of Tracker software in areas other than mechanics, in areas where electrical signals are involved. The experiments are inexpensive and simple to perform, and are suitable for high school and introductory undergraduate courses in electricity, magnetism and electronics. We propose the use of Tracker combined with analog measuring devices to explore further its applications in electricity, magnetism, electronics and in other experimental sciences where electrical signals are involved.

  4. Understanding the nature of science and scientific progress: A theory-building approach

    Directory of Open Access Journals (Sweden)

    Maria Chuy

    2010-11-01

    Full Text Available In 1993 Carey and Smith conjectured that the most promising way to boost students’ understanding of the nature of science is a “theory-building approach to teaching about inquiry.” The research reported here tested this conjecture by comparing results from two Grade 4 classrooms that differed in their emphasis on and technological support for creating and improving theories. One class followed a Knowledge Building approach and used Knowledge Forum®, which together emphasize theory improvement and sustained creative work with ideas. The other class followed an inquiry approach mediated through collaborative project-based activities. Apart from this, the two classes were demographically similar and both fell within the broad category of constructivist, inquiry-based approaches and employed a range of modes and media for investigative research and reports. An augmented version of Carey and Smith’s Nature of Science Interview showed that the Knowledge Building approach resulted in deeper understanding of the nature of theoretical progress, the connections between theories and facts, and the role of ideas in scientific inquiry.

  5. Scientific Process Flowchart Assessment (SPFA): A Method for Evaluating Changes in Understanding and Visualization of the Scientific Process in a Multidisciplinary Student Population.

    Science.gov (United States)

    Wilson, Kristy J; Rigakos, Bessie

    The scientific process is nonlinear, unpredictable, and ongoing. Assessing the nature of science is difficult with methods that rely on Likert-scale or multiple-choice questions. This study evaluated conceptions about the scientific process using student-created visual representations that we term "flowcharts." The methodology, Scientific Process Flowchart Assessment (SPFA), consisted of a prompt and rubric that was designed to assess students' understanding of the scientific process. Forty flowcharts representing a multidisciplinary group without intervention and 26 flowcharts representing pre- and postinstruction were evaluated over five dimensions: connections, experimental design, reasons for doing science, nature of science, and interconnectivity. Pre to post flowcharts showed a statistically significant improvement in the number of items and ratings for the dimensions. Comparison of the terms used and connections between terms on student flowcharts revealed an enhanced and more nuanced understanding of the scientific process, especially in the areas of application to society and communication within the scientific community. We propose that SPFA can be used in a variety of circumstances, including in the determination of what curricula or interventions would be useful in a course or program, in the assessment of curriculum, or in the evaluation of students performing research projects. © 2016 K. J. Wilson and B. Rigakos. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Preservice special education teachers' understandings, enactments, views, and plans for scientific inquiry: Issues and hopes

    Science.gov (United States)

    Ghosh, Rajlakshmi

    This study examined the understandings, enactments, views, and plans for scientific inquiry held by preservice special education teachers enrolled in a K--8 general science methods course. Sixteen participants from four special education concentration areas---Mild to Moderate Educational Needs, Moderate to Intense Educational Needs, Mild to Moderate Educational Needs with Language Arts and Reading Emphasis, and Early Childhood Intervention---participated in this study. Qualitative data were collected from questionnaires, interviews, teaching videos, lesson plans, planning commentaries, and reflection papers. Data were analyzed using a grounded theory approach (Strauss & Corbin, 1990) and compared against the theoretical view of inquiry as conceptualized by the National Research Council (NRC, 2000). The participants held unique interpretations of inquiry that only partially matched with the theoretical insights provided by the NRC. The participants' previous science learning experiences and experiences in special education played an important role in shaping their conceptualizations of inquiry as learned in the science methods class. The impacts of such unique interpretations are discussed with reference to both science education and special education, and implications for teacher education are provided.

  7. Traditional Chinese medicine formulas for irritable bowel syndrome: from ancient wisdoms to scientific understandings.

    Science.gov (United States)

    Xiao, Hai-Tao; Zhong, Linda; Tsang, Siu-Wai; Lin, Ze-Si; Bian, Zhao-Xiang

    2015-01-01

    Traditional Chinese Medicine (TCM) serves as the most common alternative therapeutic approach for Western medicine and benefits IBS patients globally. Due to the lack of scientific evidence in the past, TCM formulas were not internationally well recognized as promising IBS remedies. In this review, firstly, we present the etiology and therapy of IBS in terms of traditional Chinese medical theory. Secondly, we summarize the clinical randomized controlled trials (RCTs) of TCM formulas for IBS patients that are available in the literature (from 1998 to September 2013), in which 14 RCTs conducted of high quality were discussed in detail. Of the 14 selected trials, 12 of those concluded that TCM formulas provided superior improvement in the global symptoms of IBS patients over the placebo or conventional medicines. As well, all 14 RCTs suggested that TCM formulas have good safety and tolerability. Last but not least, we explore the pharmacological mechanisms of the anti-IBS TCM formulas available in the literature (from 1994 to September, 2013). Collectively, in combating IBS symptoms, most TCM formulas exert multi-targeting actions including the regulation of neurotransmitters and hormones in the enteric nervous system (ENS), modulation of smooth muscle motility in the gastrointestinal (GI) tract, modulation of the hypothalamic-pituitary-adrenal (HPA) axis, attenuation of intestinal inflammation and restoration of intestinal flora, etc. In conclusion, TCM formulas appear to be promising for IBS treatment. This review provides a useful reference for the public in furthering a better understanding and acceptance of TCM formulas as IBS remedies.

  8. Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications.

    Science.gov (United States)

    Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B

    2015-08-01

    Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Guiding students to develop an understanding of scientific inquiry: a science skills approach to instruction and assessment.

    Science.gov (United States)

    Stone, Elisa M

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations-for example, hypothesizing, data analysis, or use of controls-and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level.

  10. Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment

    Science.gov (United States)

    Stone, Elisa M.

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations—for example, hypothesizing, data analysis, or use of controls—and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level. PMID:24591508

  11. Reproducibility in Psychological Science: When Do Psychological Phenomena Exist?

    Directory of Open Access Journals (Sweden)

    Seppo E. Iso-Ahola

    2017-06-01

    Full Text Available Scientific evidence has recently been used to assert that certain psychological phenomena do not exist. Such claims, however, cannot be made because (1 scientific method itself is seriously limited (i.e., it can never prove a negative; (2 non-existence of phenomena would require a complete absence of both logical (theoretical and empirical support; even if empirical support is weak, logical and theoretical support can be strong; (3 statistical data are only one piece of evidence and cannot be used to reduce psychological phenomena to statistical phenomena; and (4 psychological phenomena vary across time, situations and persons. The human mind is unreproducible from one situation to another. Psychological phenomena are not particles that can decisively be tested and discovered. Therefore, a declaration that a phenomenon is not real is not only theoretically and empirically unjustified but runs counter to the propositional and provisional nature of scientific knowledge. There are only “temporary winners” and no “final truths” in scientific knowledge. Psychology is a science of subtleties in human affect, cognition and behavior. Its phenomena fluctuate with conditions and may sometimes be difficult to detect and reproduce empirically. When strictly applied, reproducibility is an overstated and even questionable concept in psychological science. Furthermore, statistical measures (e.g., effect size are poor indicators of the theoretical importance and relevance of phenomena (cf. “deliberate practice” vs. “talent” in expert performance, not to mention whether phenomena are real or unreal. To better understand psychological phenomena, their theoretical and empirical properties should be examined via multiple parameters and criteria. Ten such parameters are suggested.

  12. Reproducibility in Psychological Science: When Do Psychological Phenomena Exist?

    Science.gov (United States)

    Iso-Ahola, Seppo E.

    2017-01-01

    Scientific evidence has recently been used to assert that certain psychological phenomena do not exist. Such claims, however, cannot be made because (1) scientific method itself is seriously limited (i.e., it can never prove a negative); (2) non-existence of phenomena would require a complete absence of both logical (theoretical) and empirical support; even if empirical support is weak, logical and theoretical support can be strong; (3) statistical data are only one piece of evidence and cannot be used to reduce psychological phenomena to statistical phenomena; and (4) psychological phenomena vary across time, situations and persons. The human mind is unreproducible from one situation to another. Psychological phenomena are not particles that can decisively be tested and discovered. Therefore, a declaration that a phenomenon is not real is not only theoretically and empirically unjustified but runs counter to the propositional and provisional nature of scientific knowledge. There are only “temporary winners” and no “final truths” in scientific knowledge. Psychology is a science of subtleties in human affect, cognition and behavior. Its phenomena fluctuate with conditions and may sometimes be difficult to detect and reproduce empirically. When strictly applied, reproducibility is an overstated and even questionable concept in psychological science. Furthermore, statistical measures (e.g., effect size) are poor indicators of the theoretical importance and relevance of phenomena (cf. “deliberate practice” vs. “talent” in expert performance), not to mention whether phenomena are real or unreal. To better understand psychological phenomena, their theoretical and empirical properties should be examined via multiple parameters and criteria. Ten such parameters are suggested. PMID:28626435

  13. Understanding and Affecting Science Teacher Candidates' Scientific Reasoning in Introductory Astrophysics

    Science.gov (United States)

    Steinberg, Richard; Cormier, Sebastien

    2013-01-01

    This study reports on a content course for science immersion teacher candidates that emphasized authentic practice of science and thinking scientifically in the context of introductory astrophysics. We explore how 122 science teacher candidates spanning three cohorts did and did not reason scientifically and how this evolved in our program. Our…

  14. Scientific Understanding from Long Term Observations: Insights from the Long Term Ecological Research (LTER) Program

    Science.gov (United States)

    Gosz, J.

    2001-12-01

    estuaries below by removing all incoming freshwater. At Toolik Lake, long-term experiments of removing top predators from the good web of lakes showed dramatic alterations of lake populations of small fish and zooplankton. In New Mexico, LTER research on small mammal populations is successfully predicting rodent increases and the potential for increased zoonotic diseases such as Hantavirus and bubonic plague. This ability to forecast based on El Nino prediction is being used to increase scientific awareness and public health awareness through media based communication with the public. In Oregon, the Andrews Forest LTER program has had long, strong links with natural resource policy and management. Basic understanding of forest-stream interactions, characteristics of old-growth forests, roles of woody debris in temperate forest ecosystems, invertebrate biodiversity and ecosystem function have been incorporated in management guidelines, plans and regulations for public and private lands throughout the Pacific Northwest. Other examples of the values of long-term research and monitoring will be presented.

  15. Children’s understanding of scientific concepts : Combining a micro-developmental approach with a longitudinal study

    NARCIS (Netherlands)

    van der Steen, Steffie

    2015-01-01

    This paper shows that the social (teacher) and material environment (task) play an active part in children's learning process and cannot be viewed as a separate, outside-based influence on cognitive development. We illustrate this using a longitudinal study on children's understanding of scientific

  16. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    Science.gov (United States)

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  17. The Effectiveness of the Brain Based Teaching Approach in Enhancing Scientific Understanding of Newtonian Physics among Form Four Students

    Science.gov (United States)

    Saleh, Salmiza

    2012-01-01

    The aim of this study was to assess the effectiveness of Brain Based Teaching Approach in enhancing students' scientific understanding of Newtonian Physics in the context of Form Four Physics instruction. The technique was implemented based on the Brain Based Learning Principles developed by Caine & Caine (1991, 2003). This brain compatible…

  18. Rheological phenomena in focus

    CERN Document Server

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  19. Judgments of widely held beliefs about psychological phenomena ...

    African Journals Online (AJOL)

    Lay understandings of human cognition, affect, and behaviour often diverge from the findings of scientific investigations. The present study examined South African fourth year psychology students' judgments about the factual correctness of statements of psychological phenomena that have been demonstrated to be ...

  20. Understanding the Correlations between Social Attention and Topic Trends of Scientific Publications

    Directory of Open Access Journals (Sweden)

    Xianlei Dong

    2016-03-01

    Full Text Available Purpose: We propose and apply a simplified nowcasting model to understand the correlations between social attention and topic trends of scientific publications. Design/methodology/approach: First, topics are generated from the obesity corpus by using the latent Dirichlet allocation (LDA algorithm and time series of keyword search trends in Google Trends are obtained. We then establish the structural time series model using data from January 2004 to December 2012, and evaluate the model using data from January 2013. We employ a state-space model to separate different non-regression components in an observational time series (i.e. the tendency and the seasonality and apply the “spike and slab prior” and stepwise regression to analyze the correlations between the regression component and the social media attention. The two parts are combined using Markov-chain Monte Carlo sampling techniques to obtain our results. Findings: The results of our study show that (1 the number of publications on child obesity increases at a lower rate than that of diabetes publications; (2 the number of publication on a given topic may exhibit a relationship with the season or time of year; and (3 there exists a correlation between the number of publications on a given topic and its social media attention, i.e. the search frequency related to that topic as identified by Google Trends. We found that our model is also able to predict the number of publications related to a given topic. Research limitations: First, we study a correlation rather than causality between topics' trends and social media. As a result, the relationships might not be robust, so we cannot predict the future in the long run. Second, we cannot identify the reasons or conditions that are driving obesity topics to present such tendencies and seasonal patterns, so we might need to do “field” study in the future. Third, we need to improve the efficiency of our model by finding more efficient

  1. Early Science Education: Exploring Familiar Contexts To Improve the Understanding of Some Basic Scientific Concepts.

    Science.gov (United States)

    Martins, Isabel P.; Veiga, Luisa

    2001-01-01

    Argues that science education is a fundamental tool for global education and that it must be introduced in early years as a first step to a scientific culture for all. Describes testing validity of a didactic strategy for developing the learning of concepts, which was based upon an experimental work approach using everyday life contexts. (Author)

  2. Exploring the Changes in Students' Understanding of the Scientific Method Using Word Associations

    Science.gov (United States)

    Gulacar, Ozcan; Sinan, Olcay; Bowman, Charles R.; Yildirim, Yetkin

    2015-01-01

    A study is presented that explores how students' knowledge structures, as related to the scientific method, compare at different student ages. A word association test comprised of ten total stimulus words, among them "experiment," "science fair," and "hypothesis," is used to probe the students' knowledge structures.…

  3. The Effect of Constructivist Learning Using Scientific Approach on Mathematical Power and Conceptual Understanding of Students Grade IV

    Science.gov (United States)

    Kusmaryono, Imam; Suyitno, Hardi

    2016-02-01

    This study used a model of Concurrent Embedded with the aim of: (1) determine the difference between the conceptual understanding and mathematical power of students grade fourth who take the constructivist learning using scientific approach and direct learning, (2) determine the interaction between learning approaches and initial competence on the mathematical power and conceptual of understanding, and (3) describe the mathematical power of students grade fourth. This research was conducted in the fourth grade elementary school early 2015. Data initial competence and mathematical power obtained through tests, and analyzed using statistical tests multivariate and univariate. Statistical analysis of the results showed that: (1) There are differences in the concept of understanding and mathematical power among the students who follow the scientifically-based constructivist learning than students who take the Direct Learning in terms of students initial competency (F = 5.550; p = 0.007 problem solving and contributes tremendous increase students' math skills. Researcher suggested that the learning of mathematics in schools using scientifically- based constructivist approach to improve the mathematical power of students and conceptual understanding.

  4. Cultures of Diversity: Considering Scientific and Humanistic Understandings in Introductory Psychology

    Science.gov (United States)

    Guest, Andrew M.; Simmons, Zachary L.; Downs, Andrew; Pitzer, Mark R.

    2017-01-01

    Teachers of psychology tend to agree that learning about diversity is an important goal for undergraduate psychology courses. There is significantly less agreement about what aspects of diversity psychology students should understand. The current research proposes and investigates two potentially distinct ways students might understand diversity:…

  5. Electrostatic Phenomena on Planetary Surfaces

    Science.gov (United States)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  6. Transport phenomena

    International Nuclear Information System (INIS)

    Kirczenow, G.; Marro, J.

    1974-01-01

    Some simple remarks on the basis of transport theory. - Entropy, dynamics and scattering theory. - Response, relaxation and fluctuation. - Fluctuating hydrodynamics and renormalization of susceptibilities and transport coefficients. - Irreversibility of the transport equations. - Ergodic theory and statistical mechanics. - Correlation functions in Heisenberg magnets. - On the Enskog hard-sphere kinetic eqquation and the transport phenomena of dense simple gases. - What can one learn from Lorentz models. - Conductivity in a magnetic field. - Transport properties in gases in presence of external fields. - Transport properties of dilute gases with internal structure. (orig.) [de

  7. Relations between representational consistency, conceptual understanding of the force concept, and scientific reasoning

    Directory of Open Access Journals (Sweden)

    Pasi Nieminen

    2012-05-01

    Full Text Available Previous physics education research has raised the question of “hidden variables” behind students’ success in learning certain concepts. In the context of the force concept, it has been suggested that students’ reasoning ability is one such variable. Strong positive correlations between students’ preinstruction scores for reasoning ability (measured by Lawson’s Classroom Test of Scientific Reasoning and their learning of forces [measured by the Force Concept Inventory (FCI] have been reported in high school and university introductory courses. However, there is no published research concerning the relation between students’ ability to interpret multiple representations consistently (i.e., representational consistency and their learning of forces. To investigate this, we collected 131 high school students’ pre- and post-test data of the Representational Variant of the Force Concept Inventory (for representational consistency and the FCI. The students’ Lawson pretest data were also collected. We found that the preinstruction level of students’ representational consistency correlated strongly with student learning gain of forces. The correlation (0.51 was almost equal to the correlation between Lawson prescore and learning gain of forces (0.52. Our results support earlier findings which suggest that scientific reasoning ability is a hidden variable behind the learning of forces. In addition, we suggest that students’ representational consistency may also be such a factor, and that this should be recognized in physics teaching.

  8. Influence of student-designed experiments with fast plants on their understanding of plants and of scientific inquiry

    Science.gov (United States)

    Akey, Ann Kosek

    2000-10-01

    This dissertation investigates the influence of student designed experiments with Fast Plants in an undergraduate agroecology course on the students' conceptual understanding of plant life cycles and on their procedural understanding of scientific experimentation. It also considers students' perspectives on the value of these experiences. Data sources included semi-structured interviews with students and the instructor, a written task, course evaluations, and observations of class meetings. Students came into the course having strong practical experience with plants from their agricultural backgrounds. Students did not always connect aspects of plant biology that they studied in class, particularly respiration and photosynthesis, to plant growth requirements. The instructor was able to bridge the gap between some practical knowledge and textbook knowledge with experiences other than the Fast Plant project. Most students held an incomplete picture of plant reproduction that was complicated by differences between agricultural and scientific vocabulary. There is need for teaching approaches that help students tie together their knowledge of plants into a cohesive framework. Experiences that help students draw on their background knowledge related to plants, and which give students the opportunity to examine and discuss their ideas, may help students make more meaningful connections. The Fast Plant project, a positive experience for most students, was seen by these undergraduate students as being more helpful in learning about scientific experimentation than about plants. The process of designing and carrying out their own experiments gave students insight into experimentation, provoked their curiosity, and resulted in a sense of ownership and accomplishment.

  9. A process approach to children's understanding of scientific concepts : A longitudinal case study

    NARCIS (Netherlands)

    van der Steen, Steffie; Steenbeek, Henderien; van Dijk, Marijn; van Geert, Paul

    In order to optimally study changes in the complexity of understanding, microgenetic measures are needed, and a coupling of these to longer-term measures. We focus on the interaction dynamics between a 4-year old boy and a researcher while they work on tasks about air pressure in three subsequent

  10. Understanding the Nature of Science and Scientific Progress: A Theory-Building Approach

    Science.gov (United States)

    Chuy, Maria; Scardamalia, Marlene; Bereiter, Carl; Prinsen, Fleur; Resendes, Monica; Messina, Richard; Hunsburger, Winifred; Teplovs, Chris; Chow, Angela

    2010-01-01

    In 1993 Carey and Smith conjectured that the most promising way to boost students' understanding of the nature of science is a "theory-building approach to teaching about inquiry." The research reported here tested this conjecture by comparing results from two Grade 4 classrooms that differed in their emphasis on and technological…

  11. Improving Marking Reliability of Scientific Writing with the Developing Understanding of Assessment for Learning Programme

    Science.gov (United States)

    Bird, Fiona L.; Yucel, Robyn

    2013-01-01

    The Developing Understanding of Assessment for Learning (DUAL) programme was developed with the dual aims of improving both the quality and consistency of feedback students receive and the students' ability to use that feedback to improve. DUAL comprises a range of processes (including marking rubrics, sample reports, moderation discussions and…

  12. Students Designing Their own Experiments on Heat Transfer Phenomena Using Sensors and ICT: An Educational Trial to Consolidate Related Scientific concepts

    Directory of Open Access Journals (Sweden)

    Denis Vavougios

    2009-11-01

    Full Text Available Following our previous research effort, the present study focuses on a laboratory practice utilizing sensors and ICT, and follows the change in the perceptions students have in relation to the concept of heat transfer. The present paper builds on the experience gained and refines the techniques used. The new sample consists of a larger group of 16-20 year old students, all studying mechanical engineering in a vocational school. A novel and creative research approach was followed. Students were asked to use their experience so as to design, create, calibrate, and use an experimental setup so as to demonstrate heat transfer phenomena. All students used heat sensors and appropriate ICT-systems. Our aim was to improve students’ comprehension concerning heat transfer. The 122 students forming the total sample were split into an experimental group of 64, which is the one that was asked to design, create, calibrate, and subsequently use a school-experiment, while a control group of 58 of student-users only used the experimental set-ups of the experimental group (without any creative design. Both questionnaires and personal interviews were used to collect the research-data. Subsequent data analysis indicates that, when the questions are relevant to the creation of the experimental setup, the experimental group exhibits a higher percentage of correct or partly correct answers in comparison to those of the control group, whereas any differences observed in the rest of the questions lie within the limits of the total measurement errors. The use of ICT-systems in the present educational effort is proving invaluable. Some interesting conclusion are drawn which are discussed herein.

  13. Computer-aided software understanding systems to enhance confidence of scientific codes

    International Nuclear Information System (INIS)

    Sheng, G.; Oeren, T.I.

    1991-01-01

    A unique characteristic of nuclear waste disposal is the very long time span over which the combined engineered and natural containment system must remain effective: hundreds of thousands of years. Since there is no precedent in human history for such an endeavour, simulation with the use of computers is the only means we have of forecasting possible future outcomes quantitatively. The need for reliable models and software to make such forecasts so far into the future is obvious. One of the critical elements necessary to ensure reliability is the degree of reviewability of the computer program. Among others, there are two very important reasons for this. Firstly, if there is to be any chance at all of validating the conceptual models as implemented by the computer code, peer reviewers must be able to see and understand what the program is doing. It is all but impossible to achieve this understanding by just looking at the code due to possible unfamiliarity with the language and often due as well to the length and complexity of the code. Secondly, a thorough understanding of the code is also necessary to carry out code maintenance activities which include among others, error detection, error correction and code modification for purposes of enhancing its performance, functionality or to adapt it to a changed environment. The emerging concepts of computer-aided software understanding and reverse engineering can answer precisely these needs. This paper will discuss the role they can play in enhancing the confidence one has on computer codes and several examples will be provided. Finally a brief discussion of combining state-of-art forward engineering systems with reverse engineering systems will show how powerfully they can contribute to the overall quality assurance of a computer program. (13 refs., 7 figs.)

  14. Reflective Writing for a Better Understanding of Scientific Concepts in High School

    Science.gov (United States)

    El-Helou, Joseph; Kalman, Calvin S.

    2018-02-01

    Science teachers can always benefit from efficient tools that help students to engage with the subject and understand it better without significantly adding to the teacher's workload nor requiring too much of class time to manage. Reflective writing is such a low-impact, high-return tool. What follows is an introduction to reflective writing, and more on its usefulness for teachers is given in the last part of this article.

  15. Implementation of Scientific Community Laboratories and Their Effect on Student Conceptual Learning, Attitudes, and Understanding of Uncertainty

    Science.gov (United States)

    Lark, Adam

    Scientific Community Laboratories, developed by The University of Maryland, have shown initial promise as laboratories meant to emulate the practice of doing physics. These laboratories have been re-created by incorporating their design elements with the University of Toledo course structure and resources. The laboratories have been titled the Scientific Learning Community (SLC) Laboratories. A comparative study between these SLC laboratories and the University of Toledo physics department's traditional laboratories was executed during the fall 2012 semester on first semester calculus-based physics students. Three tests were executed as pre-test and post-tests to capture the change in students' concept knowledge, attitudes, and understanding of uncertainty. The Force Concept Inventory (FCI) was used to evaluate students' conceptual changes through the semester and average normalized gains were compared between both traditional and SLC laboratories. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) was conducted to elucidate students' change in attitudes through the course of each laboratory. Finally, interviews regarding data analysis and uncertainty were transcribed and coded to track changes in the way students understand uncertainty and data analysis in experimental physics after their participation in both laboratory type. Students in the SLC laboratories showed a notable an increase conceptual knowledge and attitudes when compared to traditional laboratories. SLC students' understanding of uncertainty showed most improvement, diverging completely from students in the traditional laboratories, who declined throughout the semester.

  16. Correlated randomness and switching phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Kumar, P.; Plerou, V.; Preis, T.

    2010-08-01

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture-crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many spatial and temporal patterns in biology, medicine, and economics and even begin to characterize the switching phenomena that enables a system to pass from one state to another. Inspired by principles developed by A. Nihat Berker and scores of other statistical physicists in recent years, we discuss some applications of correlated randomness to understand switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water’s anomalies are related to a switching point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not “outliers” (another Gladwell immortalization). Though more speculative, we support the idea of disease as arising from some kind of yet-to-be-understood complex switching phenomenon, by discussing data on selected examples, including heart disease and Alzheimer disease.

  17. Recent scientific advances in leiomyoma (uterine fibroids) research facilitates better understanding and management.

    Science.gov (United States)

    Taylor, Darlene K; Holthouser, Kristine; Segars, James H; Leppert, Phyllis C

    2015-01-01

    Uterine leiomyomas (fibroids) are the most prevalent medical problem of the female reproductive tract, but there are few non-surgical treatment options. Although many advances in the understanding of the molecular components of these tumors have occurred over the past five years, an effective pharmaceutical approach remains elusive. Further, there is currently no clinical method to distinguish a benign uterine leiomyoma from a malignant leiomyosarcoma prior to treatment, a pressing need given concerns about the use of the power morcellator for minimally invasive surgery. This paper reviews current studies regarding the molecular biology of uterine fibroids, discusses non-surgical approaches and suggests new cutting-edge therapeutic and diagnostic approaches.

  18. Does attainment of Piaget's formal operational level of cognitive development predict student understanding of scientific models?

    Science.gov (United States)

    Lahti, Richard Dennis, II

    Knowledge of scientific models and their uses is a concept that has become a key benchmark in many of the science standards of the past 30 years, including the proposed Next Generation Science Standards. Knowledge of models is linked to other important nature of science concepts such as theory change which are also rising in prominence in newer standards. Effective methods of instruction will need to be developed to enable students to achieve these standards. The literature reveals an inconsistent history of success with modeling education. These same studies point to a possible cognitive development component which might explain why some students succeeded and others failed. An environmental science course, rich in modeling experiences, was used to test both the extent to which knowledge of models and modeling could be improved over the course of one semester, and more importantly, to identify if cognitive ability was related to this improvement. In addition, nature of science knowledge, particularly related to theories and theory change, was also examined. Pretest and posttest results on modeling (SUMS) and nature of science (SUSSI), as well as data from the modeling activities themselves, was collected. Cognitive ability was measured (CTSR) as a covariate. Students' gain in six of seven categories of modeling knowledge was at least medium (Cohen's d >.5) and moderately correlated to CTSR for two of seven categories. Nature of science gains were smaller, although more strongly correlated with CTSR. Student success at creating a model was related to CTSR, significantly in three of five sub-categories. These results suggest that explicit, reflective experience with models can increase student knowledge of models and modeling (although higher cognitive ability students may have more success), but successfully creating models may depend more heavily on cognitive ability. This finding in particular has implications in the grade placement of modeling standards and

  19. Scientific approach as an understanding and applications of hydrological concepts of tropical rainforest

    Science.gov (United States)

    Haryanto, Z.; Setyasih, I.

    2018-04-01

    East Kalimantan has a variety of biomes, one of which is tropical rain forests. Tropical rain forests have enormous hydrological potential, so it is necessary to provide understanding to prospective teachers. Hydrology material cannot be separated from the concept of science, for it is needed the right way of learning so students easily understand the material. This research uses descriptive method with research subject is geography education students taking hydrology course at Faculty of Teacher Training and Education, Mulawarman University. The results showed that the students were able to observe, ask question, collect data, give reason, and communicate the hydrological conditions of tropical rain forest biomes, especially related to surface ground water and groundwater conditions. Tropical rainforests are very influenced by the hydrological conditions of the region and the availability of water is affected by the forest area as a catchment area. Therefore, the tropical rainforest must be maintained in condition and its duration, so that there is no water crisis and hydrological related disasters.

  20. The Merapi Interactive Project: Offering a Fancy Cross-Disciplinary Scientific Understanding of Merapi Volcano to a Wide Audience.

    Science.gov (United States)

    Morin, J.; Kerlow, I.

    2015-12-01

    The Merapi volcano is of great interest to a wide audience as it is one of the most dangerous volcanoes worldwide and a beautiful touristic spot. The scientific literature available on that volcano both in Earth and Social sciences is rich but mostly inaccessible to the public because of the scientific jargon and the restricted database access. Merapi Interactive aims at developing clear information and attractive content about Merapi for a wide audience. The project is being produced by the Art and Media Group at the Earth Observatory of Singapore, and it takes the shape of an e-book. It offers a consistent, comprehensive, and jargon-filtered synthesis of the main volcanic-risk related topics about Merapi: volcanic mechanisms, eruptive history, associated hazards and risks, the way inhabitants and scientists deal with it, and what daily life at Merapi looks like. The project provides a background to better understand volcanoes, and it points out some interactions between scientists and society. We propose two levels of interpretation: one that is understandable by 10-year old kids and above and an expert level with deeper presentations of specific topics. Thus, the Merapi Interactive project intends to provide an engaging and comprehensive interactive book that should interest kids, adults, as well as Earth Sciences undergraduates and academics. Merapi Interactive is scheduled for delivery in mid-2016.

  1. The Effect of Cooperative Learning with DSLM on Conceptual Understanding and Scientific Reasoning among Form Four Physics Students with Different Motivation Levels

    Directory of Open Access Journals (Sweden)

    M.S. Hamzah

    2010-11-01

    Full Text Available The purpose of this study was to investigate the effect of Cooperative Learning with a Dual Situated Learning Model (CLDSLM and a Dual Situated Learning Model (DSLM on (a conceptual understanding (CU and (b scientific reasoning (SR among Form Four students. The study further investigated the effect of the CLDSLM and DSLM methods on performance in conceptual understanding and scientific reasoning among students with different motivation levels. A quasi-experimental method with the 3 x 2 Factorial Design was applied in the study. The sample consisted of 240 stu¬dents in six (form four classes selected from three different schools, i.e. two classes from each school, with students randomly selected and assigned to the treatment groups. The results showed that students in the CLDSLM group outperformed their counterparts in the DSLM group—who, in turn, significantly outperformed other students in the traditional instructional method (T group in scientific reasoning and conceptual understanding. Also, high-motivation (HM students in the CLDSLM group significantly outperformed their counterparts in the T groups in conceptual understanding and scientific reasoning. Furthermore, HM students in the CLDSLM group significantly outperformed their counterparts in the DSLM group in scientific reasoning but did not significantly outperform their counterparts on conceptual understanding. Also, the DSLM instructional method has significant positive effects on highly motivated students’ (a conceptual understanding and (b scientific reason¬ing. The results also showed that LM students in the CLDSLM group significantly outperformed their counterparts in the DSLM group and (T method group in scientific reasoning and conceptual understanding. However, the low-motivation students taught via the DSLM instructional method significantly performed higher than the low-motivation students taught via the T method in scientific reasoning. Nevertheless, they did not

  2. Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site.

    Science.gov (United States)

    Peterson, Reid A; Buck, Edgar C; Chun, Jaehun; Daniel, Richard C; Herting, Daniel L; Ilton, Eugene S; Lumetta, Gregg J; Clark, Sue B

    2018-01-16

    This Critical Review reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micro scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiation fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and the high aluminum content must be reduced prior to vitrification for the manufacture of waste glass of acceptable durability. However, caustic leaching indicates that boehmite dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations generally only describe material balances and have not effectively predicted process performance. Recent advances in the areas of in situ microscopy, aberration-corrected transmission electron microscopy, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.

  3. Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Reid A.; Buck, Edgar C.; Chun, Jaehun; Daniel, Richard C.; Herting, Daniel L. [Washington River Protection Solutions, Richland, Washington 99354, United States; Ilton, Eugene S.; Lumetta, Gregg J.; Clark, Sue B. [Chemistry

    2018-01-02

    This paper reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy’s Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micron scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiation fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and must be reduced prior to vitrification, but dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations lack true predictive capabilities. Recent advances in in situ microscopy, aberration corrected TEM, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.

  4. Students' understandings of nature of science and their arguments in the context of four socio-scientific issues

    Science.gov (United States)

    Khishfe, Rola; Alshaya, Fahad S.; BouJaoude, Saouma; Mansour, Nasser; Alrudiyan, Khalid I.

    2017-02-01

    The purpose of this study was to examine students understandings about nature of science (NOS) and their arguments in context of controversial socio-scientific issue (SSI). A total of 74 11th graders in six schools in Saudi Arabia participated in the study. The instrument used was a questionnaire consisting of four scenarios addressing SSI about global warming, genetically modified food, acid rain, and human cloning. The scenarios were followed by questions relating to argumentation and NOS. Quantitative and qualitative measures were employed to analyze the data related to participants understandings of three NOS aspects (subjective, tentative, and empirical) and their arguments components (argument, counterargument, and rebuttal). Results showed no significant correlations between argument components and the NOS aspects. On the other hand, qualitative data showed that participants who generated well-developed arguments across the four SSI also exhibited more informed understandings of the NOS aspects, especially for female participants. Further, the chi-square analyses did not show significant differences in participants arguments and NOS understandings across the four scenarios. Again, the qualitative data from questionnaires showed differences in participants responses to the different scenarios. The results were interpreted along contextual factors, emotional factors, and cultural factors. Implications for the teaching of NOS and arguments were discussed.

  5. Transport phenomena in environmental engineering

    Science.gov (United States)

    Sander, Aleksandra; Kardum, Jasna Prlić; Matijašić, Gordana; Žižek, Krunoslav

    2018-01-01

    A term transport phenomena arises as a second paradigm at the end of 1950s with high awareness that there was a strong need to improve the scoping of chemical engineering science. At that point, engineers became highly aware that it is extremely important to take step forward from pure empirical description and the concept of unit operations only to understand the specific process using phenomenological equations that rely on three elementary physical processes: momentum, energy and mass transport. This conceptual evolution of chemical engineering was first presented with a well-known book of R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot, Transport Phenomena, published in 1960 [1]. What transport phenomena are included in environmental engineering? It is hard to divide those phenomena through different engineering disciplines. The core is the same but the focus changes. Intention of the authors here is to present the transport phenomena that are omnipresent in treatment of various process streams. The focus in this chapter is made on the transport phenomena that permanently occur in mechanical macroprocesses of sedimentation and filtration for separation in solid-liquid particulate systems and on the phenomena of the flow through a fixed and a fluidized bed of particles that are immanent in separation processes in packed columns and in environmental catalysis. The fundamental phenomena for each thermal and equilibrium separation process technology are presented as well. Understanding and mathematical description of underlying transport phenomena result in scoping the separation processes in a way that ChEs should act worldwide.

  6. Wolf-Rayet phenomena

    International Nuclear Information System (INIS)

    Conti, P.S.

    1982-01-01

    The author reviews in broad terms the concept of Wolf-Rayet (W-R) phenomena, outlines what we currently know about the properties of stars showing such phenomena and indicates the directions in which future work is leading. He begins by listing the characteristics of W-R spectra and then considers the following specific problems: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions; the mass loss rates; the existence of very luminous and possibly very massive W-R stars. He discusses briefly our current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R stars. (Auth.)

  7. Executive Summary of the NHLBI Workshop Report: Leveraging Current Scientific Advancements to Understand Sarcoidosis Variability and Improve Outcomes.

    Science.gov (United States)

    Maier, Lisa A; Crouser, Elliott D; Martin, William J; Eu, Jerry

    2017-12-01

    Sarcoidosis is a systemic granulomatous disease that primarily affects the lung; it is associated with significant disparities, more commonly impacting those in the prime of their lives (age 20-50 yr, with a second peak after age 60 yr), black individuals, and women. However, the burden of disease, the ability to diagnose and prognose organ involvement and course, as well as specific treatment options, management options, and disease pathogenesis remain poorly understood. As a result, the National Heart, Lung, and Blood Institute undertook a sarcoidosis workshop, "Leveraging Current Scientific Advancements to Understand Sarcoidosis Variability and Improve Outcomes," to help address these issues by defining the scientific and clinical priorities to improve sarcoidosis care. The overarching recommendations from this workshop are outlined in the following summary and detailed in the accompanying articles. The recommendations included establishing collaborations and networks to conduct research based on consensus definitions of disease phenotypes and standards of care, and to provide clinical outreach to areas with a burden of disease to improve care. These collaborative networks would also serve as the hub to conduct clinical trials of devastating phenotypes (e.g., cardiac, neurologic, and fibrotic disease) not only for treatment but to enhance our understanding of the burden of disease. In addition, the networks would be used to leverage state-of-the-art "omics" and systems biology research, as well as other studies to advance understanding of disease pathogenesis, and development of biomarkers and therapeutic targets, with a goal to translate this information to improve care of individuals with sarcoidosis.

  8. Scientific Process Flowchart Assessment (SPFA): A Method for Evaluating Changes in Understanding and Visualization of the Scientific Process in a Multidisciplinary Student Population

    Science.gov (United States)

    Wilson, Kristy J.; Rigakos, Bessie

    2016-01-01

    The scientific process is nonlinear, unpredictable, and ongoing. Assessing the nature of science is difficult with methods that rely on Likert-scale or multiple-choice questions. This study evaluated conceptions about the scientific process using student-created visual representations that we term "flowcharts." The methodology,…

  9. Using Models to Understand Sea Level Rise

    Science.gov (United States)

    Barth-Cohen, Lauren; Medina, Edwing

    2017-01-01

    Important science phenomena--such as atomic structure, evolution, and climate change--are often hard to observe directly. That's why an important scientific practice is to use scientific models to represent one's current understanding of a system. Using models has been included as an essential science and engineering practice in the "Next…

  10. Mundane science use in a practice theoretical perspective: Different understandings of the relations between citizen-consumers and public communication initiatives build on scientific claims.

    Science.gov (United States)

    Halkier, Bente

    2015-08-13

    Public communication initiatives play a part in placing complicated scientific claims in citizen-consumers' everyday contexts. Lay reactions to scientific claims framed in public communication, and attempts to engage citizens, have been important subjects of discussion in the literatures of public understanding and public engagement with science. Many of the public communication initiatives, however, address lay people as consumers rather than citizens. This creates specific challenges for understanding public engagement with science and scientific citizenship. The article compares five different understandings of the relations between citizen-consumers and public issue communication involving science, where the first four types are widely represented in the Public Understanding of Science discussions. The fifth understanding is a practice theoretical perspective. The article suggests how the public understanding of and engagement in science literature can benefit from including a practice theoretical approach to research about mundane science use and public engagement. © The Author(s) 2015.

  11. Applying Scientific Principles to Resolve Student Misconceptions

    Science.gov (United States)

    Yin, Yue

    2012-01-01

    Misconceptions about sinking and floating phenomena are some of the most challenging to overcome (Yin 2005), possibly because explaining sinking and floating requires students to understand challenging topics such as density, force, and motion. Two scientific principles are typically used in U.S. science curricula to explain sinking and floating:…

  12. A Simple Exercise Reveals the Way Students Think about Scientific Modeling

    Science.gov (United States)

    Ruebush, Laura; Sulikowski, Michelle; North, Simon

    2009-01-01

    Scientific modeling is an integral part of contemporary science, yet many students have little understanding of how models are developed, validated, and used to predict and explain phenomena. A simple modeling exercise led to significant gains in understanding key attributes of scientific modeling while revealing some stubborn misconceptions.…

  13. Bridging the Gap between Scientific and Indigenous knowledge to Better Understand Social Impacts of Changing Rainfall Regimes

    Science.gov (United States)

    Lynch, A. H.; Joachim, L.; Zhu, X.; Hammer, C.; Harris, M.; Griggs, D.

    2011-12-01

    The Murray-Darling Basin incorporates Australia's three longest rivers and is important for an agricultural industry worth more than $9 billion per annum, a rich biodiversity of habitat and species, and the very life of its traditional owners. The complex and sometimes enigmatic relationships between modes of variability and Australian regional rainfall distribution means that reliable projections of future water availability remain highly uncertain. Persistent drought, with associated heat stress and high fire danger, and episodic flooding rains present further challenges. Indeed, recent extremes likely herald a tipping point for the communities and ecosystems that rely on the river system. The Barmah-Millewa region in the Murray-Darling Basin is the heart of Yorta Yorta Traditional Tribal Lands. The Yorta Yorta continue to assert their inherent rights to country and have shown through oral, documentary and material evidence, that their social, spiritual, economic and cultural links with country have never been broken. Current water policy and practice, highly contested community consultation processes, cross-border governance issues and a changing social landscape create in this region a microcosm for understanding the complex demands of economic, environmental and cultural security along the Murray-Darling Basin as the climate changes. New approaches to bridging the gap between scientific and Indigenous epistemologies have emerged in recent years, including for example ecosystem-based adaptation (Vignola et al. 2009) and the analysis of cultural water flows (Weir 2010). The potential for innovation using these approaches has informed a study that investigates how the deep knowledge of country of the Yorta Yorta people can be combined with state of the art climate science to develop a better understanding of the competing demands on water resources in the Barmah-Millewa region now and in the future. An important dimension of this collaborative work with the Yorta

  14. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  15. Modelling of transport phenomena

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi.

    1993-09-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the anomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confinement modes, and the sudden jumps such as L-H transition. Starting from the formalism of the transport matrix, the modelling based on the low frequency instabilities are reviewed. Theoretical results in the range of drift wave frequency are examined. Problems in theories based on the quasilinear and mixing-length estimates lead to the renewal of the turbulence theory, and the physics picture of the self-sustained turbulence is discussed. The theory of transport using the fluid equation of plasma is developed, showing that the new approach is very promising in explaining abovementioned characteristics of anomalous transport in both L-mode and improved confinement plasmas. The interference of the fluxes is the key to construct the physics basis of the bifurcation theory for the L-H transition. The present status of theories on the mechanisms of improved confinement is discussed. Modelling on the nonlocal nature of transport is briefly discussed. Finally, the impact of the anomalous transport on disruptive phenomena is also described. (author) 95 refs

  16. Quantification of natural phenomena

    International Nuclear Information System (INIS)

    Botero Alvarez, Javier

    1997-01-01

    The science is like a great spider's web in which unexpected connections appear and therefore it is frequently difficult to already know the consequences of new theories on those existent. The physics is a clear example of this. The Newton mechanics laws describe the physical phenomena observable accurately by means of our organs of the senses or by means of observation teams not very sophisticated. After their formulation at the beginning of the XVIII Century, these laws were recognized in the scientific world as a mathematical model of the nature. Together with the electrodynamics law, developed in the XIX century, and the thermodynamic one constitutes what we call the classic physics. The state of maturity of the classic physics at the end of last century it was such that some scientists believed that the physics was arriving to its end obtaining a complete description of the physical phenomena. The spider's web of the knowledge was supposed finished, or at least very near its termination. It ended up saying, in arrogant form, that if the initial conditions of the universe were known, we could determine the state of the same one in any future moment. Two phenomena related with the light would prove in firm form that mistaken that they were, creating unexpected connections in the great spider's web of the knowledge and knocking down part of her. The thermal radiation of the bodies and the fact that the light spreads to constant speed in the hole, without having an absolute system of reference with regard to which this speed is measured, they constituted the decisive factors in the construction of a new physics. The development of sophisticated of measure teams gave access to more precise information and it opened the microscopic world to the observation and confirmation of existent theories

  17. Cold fusion in the context of a scientific revolution in physics: History and economic ramifications

    International Nuclear Information System (INIS)

    Lewis, Edward

    2006-01-01

    Scientific revolutions have occurred in an approximately 80 year periodicity since 1500. Economic depressions have occurred at an approximately 40-50 year periodicity since 1790, and the economic depressions are a result of the scientific revolutions. The field of cold fusion is a part of a scientific revolution in physics. Understanding cold fusion phenomena in the broader historical context is helpful for understanding the development of the field and the significance of the phenomena technologically and economically. This paper includes a short history of science and of the recent scientific revolution, and includes predictions about the economic consequences of the development of the paradigm. (author)

  18. RETROCK Project. Treatment of geosphere retention phenomena in safety assessments. Scientific basis of retention processes and their implementation in safety assessment models (WP2). Work Package 2 report of the RETROCK Concerted Action

    International Nuclear Information System (INIS)

    Nykyri, M.

    2004-10-01

    This report considers the present-day understanding and approaches to take into account retention and transport processes in the performance assessment (PA) models used in the evaluation of the long-term safety of deep geological repositories for radioactive waste. It is a product of Work Package 2 in the RETROCK Concerted Action, a part of EURATOM's research and training programme. The processes emphasised in RETROCK are the influences of the flow field, matrix diffusion, and sorption on radionuclide transport characteristics. These processes, and radioactive decay, provide the key terms to the transport equations of the PA models. The following processes are handled more cursorily: colloid-facilitated transport, microbial activity, gas-mediated transport, precipitation/coprecipitation, and off diagonal Onsager processes. The environment in question is saturated sparsely fractured rock in the repository far field. The fracture network offers flow paths for the groundwater transporting radionuclides away from a repository. The radionuclides in various chemical forms interact physically and chemically with other matter in groundwater, fracture surfaces, fracture infills and the rock matrix adjacent to the fractures. These interactions typically result in significant retardation, and decay, of radionuclides compared to the velocity of the groundwater. The PA models usually take into account retention phenomena using simplified concepts that are justified by their conservatism. They are complemented by a large variety of more detailed and realistic process-specific models that can be used to support the choice of data for PA models, as well as specific arguments made in safety cases. While the fundamental understanding, the conceptualisations of the phenomena, the models and the computing resources develop, the extensive data requirements often become a most restrictive factor to the use of a model. The difficulties in obtaining data tend to hinder the utilisation of

  19. RETROCK Project. Treatment of geosphere retention phenomena in safety assessments. Scientific basis of retention processes and their implementation in safety assessment models (WP2). Work Package 2 report of the RETROCK Concerted Action

    Energy Technology Data Exchange (ETDEWEB)

    Nykyri, M. [Safram Oy, Espoo (Finland)] [and others

    2004-10-01

    This report considers the present-day understanding and approaches to take into account retention and transport processes in the performance assessment (PA) models used in the evaluation of the long-term safety of deep geological repositories for radioactive waste. It is a product of Work Package 2 in the RETROCK Concerted Action, a part of EURATOM's research and training programme. The processes emphasised in RETROCK are the influences of the flow field, matrix diffusion, and sorption on radionuclide transport characteristics. These processes, and radioactive decay, provide the key terms to the transport equations of the PA models. The following processes are handled more cursorily: colloid-facilitated transport, microbial activity, gas-mediated transport, precipitation/coprecipitation, and off diagonal Onsager processes. The environment in question is saturated sparsely fractured rock in the repository far field. The fracture network offers flow paths for the groundwater transporting radionuclides away from a repository. The radionuclides in various chemical forms interact physically and chemically with other matter in groundwater, fracture surfaces, fracture infills and the rock matrix adjacent to the fractures. These interactions typically result in significant retardation, and decay, of radionuclides compared to the velocity of the groundwater. The PA models usually take into account retention phenomena using simplified concepts that are justified by their conservatism. They are complemented by a large variety of more detailed and realistic process-specific models that can be used to support the choice of data for PA models, as well as specific arguments made in safety cases. While the fundamental understanding, the conceptualisations of the phenomena, the models and the computing resources develop, the extensive data requirements often become a most restrictive factor to the use of a model. The difficulties in obtaining data tend to hinder the

  20. RETROCK Project. Treatment of geosphere retention phenomena in safety assessments. Scientific basis of retention processes and their implementation in safety assessment models (WP2). Work Package 2 report of the RETROCK Concerted Action

    Energy Technology Data Exchange (ETDEWEB)

    Nykyri, M [Safram Oy, Espoo (Finland); and others

    2004-10-01

    This report considers the present-day understanding and approaches to take into account retention and transport processes in the performance assessment (PA) models used in the evaluation of the long-term safety of deep geological repositories for radioactive waste. It is a product of Work Package 2 in the RETROCK Concerted Action, a part of EURATOM's research and training programme. The processes emphasised in RETROCK are the influences of the flow field, matrix diffusion, and sorption on radionuclide transport characteristics. These processes, and radioactive decay, provide the key terms to the transport equations of the PA models. The following processes are handled more cursorily: colloid-facilitated transport, microbial activity, gas-mediated transport, precipitation/coprecipitation, and off diagonal Onsager processes. The environment in question is saturated sparsely fractured rock in the repository far field. The fracture network offers flow paths for the groundwater transporting radionuclides away from a repository. The radionuclides in various chemical forms interact physically and chemically with other matter in groundwater, fracture surfaces, fracture infills and the rock matrix adjacent to the fractures. These interactions typically result in significant retardation, and decay, of radionuclides compared to the velocity of the groundwater. The PA models usually take into account retention phenomena using simplified concepts that are justified by their conservatism. They are complemented by a large variety of more detailed and realistic process-specific models that can be used to support the choice of data for PA models, as well as specific arguments made in safety cases. While the fundamental understanding, the conceptualisations of the phenomena, the models and the computing resources develop, the extensive data requirements often become a most restrictive factor to the use of a model. The difficulties in obtaining data tend to hinder the utilisation of

  1. From the Field to the Classroom: Developing Scientifically Literate Citizens Using the Understanding Global Change Framework in Education and Citizen Science

    Science.gov (United States)

    Toupin, C.; Bean, J. R.; Gavenus, K.; Johnson, H.; Toupin, S.

    2017-12-01

    With the copious amount of science and pseudoscience reported on by non-experts in the media, it is critical for educators to help students develop into scientifically literate citizens. One of the most direct ways to help students develop deep scientific understanding and the skills to critically question the information they encounter is to bring science into their daily experiences and to contextualize scientific inquiry within the classroom. Our work aims to use a systems-based models approach to engage students in science, in both formal and informal contexts. Using the Understanding Global Change (UGC) and the Understanding Science models developed at the Museum of Paleontology at UC Berkeley, high school students from Arizona were tasked with developing a viable citizen science program for use at the Center for Alaskan Coastal Studies in Homer, Alaska. Experts used the UGC model to help students define why they were doing the work, and give context to the importance of citizen science. Empowered with an understanding of the scientific process, excited by the purpose of their work and how it could contribute to the scientific community, students whole-heartedly worked together to develop intertidal monitoring protocols for two locations while staying at Peterson Bay Field Station, Homer. Students, instructors, and scientists used system models to communicate and discuss their understanding of the biological, physical, and chemical processes in Kachemak Bay. This systems-based models approach is also being used in an integrative high school physics, chemistry, and biology curriculum in a truly unprecedented manner. Using the Understanding Global Change framework to organize curriculum scope and sequence, the course addresses how the earth systems work, how interdisciplinary science knowledge is necessary to understand those systems, and how scientists and students can measure changes within those systems.

  2. Syntactic Idioms and Precedent Phenomena: Intersection Zones

    Directory of Open Access Journals (Sweden)

    Hanna Sytar

    2016-08-01

    Full Text Available Background: One examined mainly structural and semantic features of syntactic idioms so far. The pragmatic dimension of these original units that are on the verge of syntax and phraseology, has not been highlighted properly in the scientific literature, so it needs theoretical understanding. The combination of syntactic idiom and phraseological phenomenon refers to the communication techniques impacting on message recipient. Purpose: to analyze the intersection zones of syntactic idioms and precedent phenomena. Results: Analysis of the collected factual material allows to distinguish two areas of interpenetration of syntactic idioms and precedent units: 1 construction of expression according to the phraseologized model, within which the position of variable component is filled by the precedent name or precedent expression; 2 the model of sentence itself is precedent, and lexical content does not comply with generally known one that does not affect on understanding of model content by recipient. With a combination of syntactic idiom and precedent phenomena speakers provide drawing of recipients’ attention, carry out a hidden influence on them, express their own attitude to the realities, so that perform phatic, manipulative and expressive-evaluative functions. The modifications and transformations of precedent expressions and names appeared to be regular in such interpenetrations. Discussion: The obtained results reflect the general trend towards transform (transformation, modification, variation, etc. of precedent, as well as phraseological units, and can be used for the analysis of patterns of their formation and modifications. Further research phase implies tracing patterns of syntactic idioms combination with other means of expressive syntax.

  3. Comparison of Pre-Service Physics Teachers' Conceptual Understanding of Dynamics in Model-Based Scientific Inquiry and Scientific Inquiry Environments

    Science.gov (United States)

    Arslan Buyruk, Arzu; Ogan Bekiroglu, Feral

    2018-01-01

    The focus of this study was to evaluate the impact of model-based inquiry on pre-service physics teachers' conceptual understanding of dynamics. Theoretical framework of this research was based on models-of-data theory. True-experimental design using quantitative and qualitative research methods was carried out for this research. Participants of…

  4. Kindergarten Students' Levels of Understanding Some Science Concepts and Scientific Inquiry Processes According to Demographic Variables (The Sampling of Kilis Province in Turkey)

    Science.gov (United States)

    Ilhan, Nail; Tosun, Cemal

    2016-01-01

    The purpose of this study is to identify the kindergarten students' levels of understanding some science concepts (LUSSC) and scientific inquiry processes (SIP) and compare their LUSSC and SIP in terms of some demographic variables. Also, another purpose of this study is to identify the predictive power of those demographic variables over the…

  5. Experimental study of the natural circulation phenomena

    International Nuclear Information System (INIS)

    Sabundjian, Gaiane; Andrade, Delvonei Alves de; Umbehaun, Pedro E.; Torres, Walmir M.; Castro, Alfredo Jose Alvim de; Belchior Junior, Antonio; Rocha, Ricardo Takeshi Vieira da; Damy, Osvaldo Luiz de Almeida; Torres, Eduardo

    2006-01-01

    The objective of this paper is to study the natural circulation in experimental loops and extend the results to nuclear facilities. New generation of compact nuclear power plants use the natural circulation as cooling and residual heat removal systems in case of accidents or shutdown. Lately the interest in this phenomenon, by scientific community, has increased. The experimental loop, described in this paper, was assembled at Escola Politecnica - USP at the Chemical Engineering Department. It is the goal to generate information to help with the understanding of the one and two phase natural circulation phenomena. Some experiments were performed with different levels of heat power and different flow of the cooling water at the secondary circuit. The data generated from these experiments are going to be used to validate some computational thermal hydraulic codes. Experimental results for one and two phase regimes are presented as well as the proposed model to simulate the flow regimes with the RELAP5 code. (author)

  6. Workshop on Interface Phenomena

    CERN Document Server

    Kreuzer, Hans

    1987-01-01

    This book contains the proceedings of the first Workshop on Interface Phenomena, organized jointly by the surface science groups at Dalhousie University and the University of Maine. It was our intention to concentrate on just three topics related to the kinetics of interface reactions which, in our opinion, were frequently obscured unnecessarily in the literature and whose fundamental nature warranted an extensive discussion to help clarify the issues, very much in the spirit of the Discussions of the Faraday Society. Each session (day) saw two principal speakers expounding the different views; the session chairmen were asked to summarize the ensuing discussions. To understand the complexity of interface reactions, paradigms must be formulated to provide a framework for the interpretation of experimen­ tal data and for the construction of theoretical models. Phenomenological approaches have been based on a small number of rate equations for the concentrations or mole numbers of the various species involved i...

  7. Reorienting Esthetic Knowing as an Appropriate "Object" of Scientific Inquiry to Advance Understanding of a Critical Pattern of Nursing Knowledge in Practice.

    Science.gov (United States)

    Bender, Miriam; Elias, Dina

    The esthetic pattern of knowing is critical for nursing practice, yet remains weakly defined and understood. This gap has arguably relegated esthetic knowing to an "ineffable" creativity that resists transparency and understanding, which is a barrier to articulating its value for nursing and its importance in producing beneficial health outcomes. Current philosophy of science developments are synthesized to argue that esthetic knowing is an appropriate "object" of scientific inquiry. Examples of empirical scholarship that can be conceived as scientific inquiry into manifestations of esthetic knowing are highlighted. A program of research is outlined to advance a science of esthetic knowing.

  8. Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Michael Søgaard; Kornbeck, Kasper Pihl; Kristensen, Rune

    Dropout from university studies comprises a number of complex phenomena with serious complex consequences and profound political attention. Further analysis of the field is, therefore, warranted. Such an analysis is offered here as a systematic review which gives answers based on the best possible...... such dropout phenomena occur at universities? What can be done by the universities to prevent or reduce such dropout phenomena?...

  9. Exploring How Research Experiences for Teachers Changes Their Understandings of the Nature of Science and Scientific Inquiry

    Science.gov (United States)

    Buxner, Sanlyn R.

    2014-01-01

    The nature of science is a prevalent theme across United States national science education standards and frameworks as well as other documents that guide formal and informal science education reform. To support teachers in engaging their students in authentic scientific practices and reformed teaching strategies, research experiences for teachers…

  10. Scientific Research Activity of Students Pre-Service Teachers of Sciences at University: The Aspects of Understanding, Situation and Improvement

    Science.gov (United States)

    Lamanauskas, Vincentas; Augiene, Dalia

    2017-01-01

    The development of student abilities of scientific research activity (SRA) in the process of studies appears as a highly important area. In the course of studies, students not only increase their general competencies, acquire professional abilities and skills but also learn to conduct research. This does not mean that all students will build their…

  11. Preschool Pathways to Science (PrePS[TM]): Facilitating Scientific Ways of Thinking, Talking, Doing, and Understanding

    Science.gov (United States)

    Gelman, Rochel; Brenneman, Kimberly; Macdonald, Gay; Roman, Moises

    2009-01-01

    To ensure they're meeting state early learning guidelines for science, preschool educators need fun, age-appropriate, and research-based ways to teach young children about scientific concepts. The basis for the PBS KIDS show "Sid the Science Kid," this teaching resource helps children ages 3-5 investigate their everyday world and develop the…

  12. Deepening Our Understanding of Academic Inbreeding Effects on Research Information Exchange and Scientific Output: New Insights for Academic Based Research

    Science.gov (United States)

    Horta, Hugo

    2013-01-01

    This paper analyzes the impact of academic inbreeding in relation to academic research, and proposes a new conceptual framework for its analysis. We find that mobility (or lack of) at the early research career stage is decisive in influencing academic behaviors and scientific productivity. Less mobile academics have more inward oriented…

  13. Does Attainment of Piaget's Formal Operational Level of Cognitive Development Predict Student Understanding of Scientific Models?

    Science.gov (United States)

    Lahti, Richard Dennis, II.

    2012-01-01

    Knowledge of scientific models and their uses is a concept that has become a key benchmark in many of the science standards of the past 30 years, including the proposed Next Generation Science Standards. Knowledge of models is linked to other important nature of science concepts such as theory change which are also rising in prominence in newer…

  14. The Scientific Mind: Ever Searching, Never Certain

    Directory of Open Access Journals (Sweden)

    Leonard N. Ezegbunam

    2008-02-01

    Full Text Available This article examines the nature of scientific thought and looks at how "the scientific method" has propelled mankind's understanding of natural phenomena from the embryonic metaphysics to the present-day quantum and plasma physics. The scientific mind is always in search of ways to improve the present knowledge about nature, and is never satisfied that the present knowledge is "the truth, the whole truth and nothing but the truth". "Science is grounded on a firm foundation of doubt" - Don Cupitt. "The moderns have subjected the phenomena of nature to the laws of mathematics" - Isaac Newton. The scholastic adage, "all men by nature desire to know" has driven philosophers, from as far back as the Aristotelian era, to ponder the question "what are the conditions of knowing?", Or, simply put "how do you know that you know something?” Under what conditions can something be called knowledge?

  15. Is risk analysis scientific?

    Science.gov (United States)

    Hansson, Sven Ove; Aven, Terje

    2014-07-01

    This article discusses to what extent risk analysis is scientific in view of a set of commonly used definitions and criteria. We consider scientific knowledge to be characterized by its subject matter, its success in developing the best available knowledge in its fields of study, and the epistemic norms and values that guide scientific investigations. We proceed to assess the field of risk analysis according to these criteria. For this purpose, we use a model for risk analysis in which science is used as a base for decision making on risks, which covers the five elements evidence, knowledge base, broad risk evaluation, managerial review and judgment, and the decision; and that relates these elements to the domains experts and decisionmakers, and to the domains fact-based or value-based. We conclude that risk analysis is a scientific field of study, when understood as consisting primarily of (i) knowledge about risk-related phenomena, processes, events, etc., and (ii) concepts, theories, frameworks, approaches, principles, methods and models to understand, assess, characterize, communicate, and manage risk, in general and for specific applications (the instrumental part). © 2014 Society for Risk Analysis.

  16. Comprehending emergent systems phenomena through direct-manipulation animation

    Science.gov (United States)

    Aguirre, Priscilla Abel

    This study seeks to understand the type of interaction mode that best supports learning and comprehension of emergent systems phenomena. Given that the literature has established that students hold robust misconceptions of such phenomena, this study investigates the influence of using three types of interaction; speed-manipulation animation (SMN), post-manipulation animation (PMA) and direct-manipulation animation (DMA) for increasing comprehension and testing transfer of the phenomena, by looking at the effect of simultaneous interaction of haptic and visual channels on long term and working memories when seeking to comprehend emergent phenomena. The questions asked were: (1) Does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool (i.e., SMA, PMA or DMA), improve students' mental model construction of systems, thus increasing comprehension of this scientific concept? And (2) does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool, give the students the necessary complex cognitive skill which can then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios? In an empirical study undergraduate and graduate students were asked to participate in one of three experimental conditions: SMA, PMA, or DMA. The results of the study found that it was the participants of the SMA treatment condition that had the most improvement in post-test scores. Students' understanding of the phenomena increased most when they used a dynamic model with few interactive elements (i.e., start, stop, and speed) that allowed for real time visualization of one's interaction on the phenomena. Furthermore, no indication was found that the learning of emergent phenomena, with the aid of a dynamic interactive modeling tool, gave the students the necessary complex cognitive skill which could then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios

  17. Representing space in the scientific revolution

    CERN Document Server

    Miller, David Marshall

    2014-01-01

    The novel understanding of the physical world that characterized the Scientific Revolution depended on a fundamental shift in the way its protagonists understood and described space. At the beginning of the seventeenth century, spatial phenomena were described in relation to a presupposed central point; by its end, space had become a centerless void in which phenomena could only be described by reference to arbitrary orientations. David Marshall Miller examines both the historical and philosophical aspects of this far-reaching development, including the rejection of the idea of heavenly sphere

  18. Containment severe accident thermohydraulic phenomena

    International Nuclear Information System (INIS)

    Frid, W.

    1991-08-01

    This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)

  19. Teaching optical phenomena with Tracker

    Science.gov (United States)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  20. Visible and invisible the wonders of light phenomena

    CERN Document Server

    Bisi, Olmes

    2015-01-01

    Light phenomena have intrigued humankind since prehistory. Think of the rainbow, a sunset on the sea, a game of shadows. Humans have always used light for their own needs, from cooking food to illuminating a room. However, light is not only limited to what we can see with our eyes. The invisible part of the electromagnetic spectrum is broad and dynamic. This book outlines the mysteries and wonders of electromagnetism, heat, and light. It also covers the history of our scientific understanding of light. The dark as well as the bright sides of light are fully explored in these pages, from their impact on our world to their use in cutting-edge technologies in a variety of fields. Numerous full-color images and drawings complement the text, and light phenomena are explained in a simple and engaging way.

  1. Observation of Celestial Phenomena in Ancient China

    Science.gov (United States)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  2. Understanding the Magic of the Bicycle; Basic scientific explanations to the two-wheeler's mysterious and fascinating behavior

    Science.gov (United States)

    Connolly, Joseph W.

    The bicycle is a common, yet unique mechanical contraption in our world. In spite of this, the bike's physical and mechanical principles are understood by a select few. You do not have to be a genius to join this small group of people who understand the physics of cycling. This is your guide to fundamental principles (such as Newton's laws) and the book provides intuitive, basic explanations for the bicycle's behaviour. Each concept is introduced and illustrated with simple, everyday examples. Although cycling is viewed by most as a fun activity, and almost everyone acquires the basic skills at a young age, few understand the laws of nature that give magic to the ride. This is a closer look at some of these fun, exhilarating, and magical aspects of cycling. In the reading, you will also understand other physical principles such as motion, force, energy, power, heat, and temperature.

  3. Kindergarten students’ levels of understanding some science concepts and scientific inquiry processes according to demographic variables (the sampling of Kilis Province in Turkey

    Directory of Open Access Journals (Sweden)

    Nail İlhan

    2016-12-01

    Full Text Available The purpose of this study is to identify the kindergarten students’ levels of understanding some science concepts (LUSSC and scientific inquiry processes (SIP and compare their LUSSC and SIP in terms of some demographic variables. Also, another purpose of this study is to identify the predictive power of those demographic variables over the kindergarten students’ LUSSC and SIP. This study was conducted according to quantitative research design. The study group consisted of 335 kindergarten students from 20 different rural and urban schools. In the study, the scale for “Turkish Kindergarten Students’ Understandings of Scientific Concepts and Scientific Inquiry Processes” was used. According to some variables (such as mother’s education level and family structure, there was a statistically significant difference between students’ mean scores for LUSSC and between students’ mean scores for SIP. Within the scope of this study, it was found that among the predictor variables (age, family’s income level, and number of brother/sister were significant predictors for LUSSC, and number of brother/sister was a significant predictor for SIP.

  4. How to Generate Understanding of the Scientific Process in Introductory Biology: A Student-Designed Laboratory Exercise on Yeast Fermentation

    Science.gov (United States)

    Collins, Linda T.; Bell, Rebekah P.

    2004-01-01

    Heavy faculty teaching loads and limited funds biology teachers designed certain objectives in order to increase the understandability of the subject matter of the laboratory exercises they write. In relation to these objectives an old "cookbook" laboratory exercise on yeast fermentation is introduced which involve students asking questions,…

  5. Using Memes and Memetic Processes to Explain Social and Conceptual Influences on Student Understanding about Complex Socio-Scientific Issues

    Science.gov (United States)

    Yoon, Susan

    2008-01-01

    This study investigated seventh grade learners' decision making about genetic engineering concepts and applications. A social network analyses supported by technology tracked changes in student understanding with a focus on social and conceptual influences. Results indicated that several social and conceptual mechanisms potentially affected how…

  6. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  7. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  8. Science and Paranormal Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H. Pierre

    1999-06-03

    In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ''historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ''paranormal phenomena'' might-but need not- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be defined as contradicting physics.

  9. Nonequilibrium Phenomena in Plasmas

    CERN Document Server

    Sharma, A Surjalal

    2005-01-01

    The complexity of plasmas arises mainly from their inherent nonlinearity and far from equilibrium nature. The nonequilibrium behavior of plasmas is evident in the natural settings, for example, in the Earth's magnetosphere. Similarly, laboratory plasmas such as fusion bottles also have their fair share of complex behavior. Nonequilibrium phenomena are intimately connected with statistical dynamics and form one of the growing research areas in modern nonlinear physics. These studies encompass the ideas of self-organization, phase transition, critical phenomena, self-organized criticality and turbulence. This book presents studies of complexity in the context of nonequilibrium phenomena using theory, modeling, simulations, and experiments, both in the laboratory and in nature.

  10. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  11. BNFL's advertising phase II: 'We understand that you are a successful scientific company, but what do you actually do?'

    International Nuclear Information System (INIS)

    Haskins, Louise

    1998-01-01

    Full text: Last year, I presented a case study about the development of BNFL's advertising strategy and the challenges which we overcame since its launch in 1995. The case study this year will follow the progress of the strategy's second phase. It will begin by reiterating the role of advertising in the communications mix and the distinct part we believe it plays in building and retaining a strong corporate reputation amongst influential audiences within the UK. Our advertising to date has aimed to define BNFL's role in the nuclear sector and so detach the company from the contentious debate which surrounds the nuclear industry in general. The case study will briefly summarise how effective we have been in achieving this objective through the first phase of television and press advertising. The presentation will concentrate, in particular, on the development of the second phase which has involved the production of a new television advertisement and a press and poster advertisement. Having introduced the key characteristics of the company to the UK population during the first phase through describing key scientific achievements, phase two concentrates on BNFL's core activity - recycling nuclear fuel. The presentation will outline the various development phases including concept research, our tough negotiations with the UK's advertising regulatory bodies (the Broadcast Advertising Clearance Centre (BACC) and the Independent Television Commission (ITC) through to final production, testing and media scheduling. Generating positive attribution amongst the UK population is obviously the key success indicator. Equally, we believe that it is imperative to share such communications activity with another key stakeholder - our own employees. The case study will outline the phase of internal negotiations and substantiation through to the methods we adopted to ensure that employees saw the television advertisement before the UK population at large. The campaign was launched on

  12. Classifying prion and prion-like phenomena.

    Science.gov (United States)

    Harbi, Djamel; Harrison, Paul M

    2014-01-01

    The universe of prion and prion-like phenomena has expanded significantly in the past several years. Here, we overview the challenges in classifying this data informatically, given that terms such as "prion-like", "prion-related" or "prion-forming" do not have a stable meaning in the scientific literature. We examine the spectrum of proteins that have been described in the literature as forming prions, and discuss how "prion" can have a range of meaning, with a strict definition being for demonstration of infection with in vitro-derived recombinant prions. We suggest that although prion/prion-like phenomena can largely be apportioned into a small number of broad groups dependent on the type of transmissibility evidence for them, as new phenomena are discovered in the coming years, a detailed ontological approach might be necessary that allows for subtle definition of different "flavors" of prion / prion-like phenomena.

  13. Interfacial transport phenomena

    CERN Document Server

    Slattery, John C; Oh, Eun-Suok

    2007-01-01

    Revised and updated extensively from the previous editionDiscusses transport phenomena at common lines or three-phase lines of contactProvides a comprehensive summary about the extensions of continuum mechanics to the nanoscale.

  14. Severe accident phenomena

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Kilpi, K.; Lindholm, I.; Maekynen, J.; Pekkarinen, E.; Sairanen, R.; Silde, A.

    1995-02-01

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  15. Introduction to wetting phenomena

    International Nuclear Information System (INIS)

    Indekeu, J.O.

    1995-01-01

    In these lectures the field of wetting phenomena is introduced from the point of view of statistical physics. The phase transition from partial to complete wetting is discussed and examples of relevant experiments in binary liquid mixtures are given. Cahn's concept of critical-point wetting is examined in detail. Finally, a connection is drawn between wetting near bulk criticality and the universality classes of surface critical phenomena. (author)

  16. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  17. Transport phenomena an introduction to advanced topics

    CERN Document Server

    Glasgow, Larry A

    2010-01-01

    Enables readers to apply transport phenomena principles to solve advanced problems in all areas of engineering and science This book helps readers elevate their understanding of, and their ability to apply, transport phenomena by introducing a broad range of advanced topics as well as analytical and numerical solution techniques. Readers gain the ability to solve complex problems generally not addressed in undergraduate-level courses, including nonlinear, multidimensional transport, and transient molecular and convective transport scenarios. Avoiding rote memorization, the author em

  18. SEPARATION PHENOMENA LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    Ikaro Daniel de Carvalho Barreto

    2014-03-01

    Full Text Available This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score. It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.

  19. Positive muscle phenomena-diagnosis, pathogenesis and associated disorders

    NARCIS (Netherlands)

    Kortman, Hans G.; Veldink, Jan H.; Drost, Gea

    Positive muscle phenomena arise owing to various forms of spontaneous muscle hyperactivity originating in motor neurons or in the muscle itself. Although they are common in a wide range of neurological and non-neurological diseases, clinical and scientific data on these phenomena are limited, and

  20. Bioelectrochemistry II membrane phenomena

    CERN Document Server

    Blank, M

    1987-01-01

    This book contains the lectures of the second course devoted to bioelectro­ chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special­ ized study of biological phenomena, for which the investigation using the dual approach, physico-che...

  1. Sawtooth phenomena in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1989-01-01

    A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs

  2. Fundamentals of wave phenomena

    CERN Document Server

    Hirose, Akira

    2010-01-01

    This textbook provides a unified treatment of waves that either occur naturally or can be excited and propagated in various media. This includes both longitudinal and transverse waves. The book covers both mechanical and electrical waves, which are normally covered separately due to their differences in physical phenomena.

  3. Research in magnetospheric wave phenomena

    International Nuclear Information System (INIS)

    Barfield, J.N.

    1975-01-01

    During the last 4 years a number of developments have occurred which have led to an increased understanding of the role of wave phenomena in the physical processes of the magnetosphere. While the studies span the frequency regime from millihertz to the electron gyrofrequency, the developments to be discussed in this paper have in common that they have added substantially to the understanding of the controlling processes, regions, and boundaries in the magnetosphere. The topics discussed are the increased awareness and documentation of the role of the plasmapause in micropulsation generation and propagation; the establishment of the role of ion cyclotron waves in the wave-particle interactions at the plasmapause; the discovery of magnetospheric electrostatic waves with ω = (3/2)Ω/sub -/; the discovery and preliminary identification of the source of plasmaspheric hiss; and the analysis of storm time Pc 5 waves as observed on the satellites ATS 1 and Explorer 45. (auth)

  4. Chaotic phenomena in plasmas

    International Nuclear Information System (INIS)

    Kawai, Y.

    1991-08-01

    It has recently been recognized that the research on various aspects of chaotic dynamics grows rapidly as one of some areas in nonlinear science. On the other hands, the plasma has long been called a treasure-house of nonlinear phenomena, so it is easy to imagine that the plasma is abundant in chaotic phenomena. In fact, the research on plasma chaos is going on, such as the research on the stochastic magnetic field and the chaotic orbit in the toroidal helical system, as well as the research in other experiments. To review the present status of the research on plasma chaos and to make clear the basic common physics, a working group was organized in 1990 as a collaboration research of National Institute for Fusion Science. This is the report on its activity in 1990, with a stress on experimental data obtained in basic plasma experiments and RFP, and on the relaxed theories and computer simulations. (author)

  5. Theory of threshold phenomena

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2002-01-01

    Theory of Threshold Phenomena in Quantum Scattering is developed in terms of Reduced Scattering Matrix. Relationships of different types of threshold anomalies both to nuclear reaction mechanisms and to nuclear reaction models are established. Magnitude of threshold effect is related to spectroscopic factor of zero-energy neutron state. The Theory of Threshold Phenomena, based on Reduced Scattering Matrix, does establish relationships between different types of threshold effects and nuclear reaction mechanisms: the cusp and non-resonant potential scattering, s-wave threshold anomaly and compound nucleus resonant scattering, p-wave anomaly and quasi-resonant scattering. A threshold anomaly related to resonant or quasi resonant scattering is enhanced provided the neutron threshold state has large spectroscopic amplitude. The Theory contains, as limit cases, Cusp Theories and also results of different nuclear reactions models as Charge Exchange, Weak Coupling, Bohr and Hauser-Feshbach models. (author)

  6. Transport phenomena II essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena II covers forced convention, temperature distribution, free convection, diffusitivity and the mechanism of mass transfer, convective mass transfer, concentration

  7. Large momentum transfer phenomena

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

    1978-01-01

    The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

  8. Hauntings, homeopathy, and the Hopkinsville Goblins: using pseudoscience to teach scientific thinking

    Science.gov (United States)

    Schmaltz, Rodney; Lilienfeld, Scott O.

    2014-01-01

    With access to information ever increasing, it is essential that students acquire the skills to distinguish fact from fiction. By incorporating examples of pseudoscience into lectures, instructors can provide students with the tools needed to understand the difference between scientific and pseudoscientific or paranormal claims. We discuss examples involving psychics, ghosts, aliens, and other phenomena in relation to scientific thinking. In light of research literature demonstrating that presenting and dispelling scientific misconceptions in the classroom is an effective means of countering non-scientific or pseudoscientific beliefs, we provide examples of pseudoscience that can be used to help students acquire healthy skepticism while avoiding cynicism. PMID:24860520

  9. Hauntings, homeopathy, and the Hopkinsville Goblins: Using pseudoscience to teach scientific thinking

    Directory of Open Access Journals (Sweden)

    Rodney Michael Schmaltz

    2014-04-01

    Full Text Available With access to information ever increasing, it is essential that students acquire the skills to distinguish fact from fiction. By incorporating examples of pseudoscience into lectures, instructors can provide students with the tools needed to understand the difference between scientific and pseudoscientific or paranormal claims. We discuss examples involving psychics, ghosts, aliens, and other phenomena in relation to scientific thinking. In light of research literature demonstrating that presenting and dispelling scientific misconceptions in the classroom is an effective means of countering non-scientific or pseudoscientific beliefs, we provide examples of pseudoscience that can be used to help students acquire healthy skepticism while avoiding cynicism.

  10. Hauntings, homeopathy, and the Hopkinsville Goblins: using pseudoscience to teach scientific thinking.

    Science.gov (United States)

    Schmaltz, Rodney; Lilienfeld, Scott O

    2014-01-01

    With access to information ever increasing, it is essential that students acquire the skills to distinguish fact from fiction. By incorporating examples of pseudoscience into lectures, instructors can provide students with the tools needed to understand the difference between scientific and pseudoscientific or paranormal claims. We discuss examples involving psychics, ghosts, aliens, and other phenomena in relation to scientific thinking. In light of research literature demonstrating that presenting and dispelling scientific misconceptions in the classroom is an effective means of countering non-scientific or pseudoscientific beliefs, we provide examples of pseudoscience that can be used to help students acquire healthy skepticism while avoiding cynicism.

  11. Hauntings, homeopathy, and the Hopkinsville Goblins: using pseudoscience to teach scientific thinking

    OpenAIRE

    Schmaltz, Rodney; Lilienfeld, Scott O.

    2014-01-01

    With access to information ever increasing, it is essential that students acquire the skills to distinguish fact from fiction. By incorporating examples of pseudoscience into lectures, instructors can provide students with the tools needed to understand the difference between scientific and pseudoscientific or paranormal claims. We discuss examples involving psychics, ghosts, aliens, and other phenomena in relation to scientific thinking. In light of research literature demonstrating that pre...

  12. Four stages of a scientific discipline; four types of scientist.

    Science.gov (United States)

    Shneider, Alexander M

    2009-05-01

    In this article I propose the classification of the evolutionary stages that a scientific discipline evolves through and the type of scientists that are the most productive at each stage. I believe that each scientific discipline evolves sequentially through four stages. Scientists at stage one introduce new objects and phenomena as subject matter for a new scientific discipline. To do this they have to introduce a new language adequately describing the subject matter. At stage two, scientists develop a toolbox of methods and techniques for the new discipline. Owing to this advancement in methodology, the spectrum of objects and phenomena that fall into the realm of the new science are further understood at this stage. Most of the specific knowledge is generated at the third stage, at which the highest number of original research publications is generated. The majority of third-stage investigation is based on the initial application of new research methods to objects and/or phenomena. The purpose of the fourth stage is to maintain and pass on scientific knowledge generated during the first three stages. Groundbreaking new discoveries are not made at this stage. However, new ways to present scientific information are generated, and crucial revisions are often made of the role of the discipline within the constantly evolving scientific environment. The very nature of each stage determines the optimal psychological type and modus operandi of the scientist operating within it. Thus, it is not only the talent and devotion of scientists that determines whether they are capable of contributing substantially but, rather, whether they have the 'right type' of talent for the chosen scientific discipline at that time. Understanding the four different evolutionary stages of a scientific discipline might be instrumental for many scientists in optimizing their career path, in addition to being useful in assembling scientific teams, precluding conflicts and maximizing

  13. Seeing Orange, Feeling Blue: Sound Art as an Approach to Bridge the Gap Between Public Perception and Scientific Understanding of Risk

    Science.gov (United States)

    Steltzer, H.; House, B.

    2017-12-01

    In August 2015, 3 million gallons of acidic mine water flooded into a mountain stream, then flowed into the Animas River and the San Juan River. Downstream communities in Colorado, New Mexico and Utah watched in shock as the rivers on which they depend turned an unworldly orange color. As a result, water color currently drives public concern about river health. Data collected by the US Environmental Protection Agency and local and state public health indicate that water color does not correspond with health risk. Health risk is driven by river chemistry that cannot be seen, and river chemistry and quantity vary seasonally and due to precipitation events. Rivers have a pulse, one that is both regular and irregular, some aspects of which can be seen and others that cannot be seen. As a science communicator, I wanted to know if art could communicate the `pulse of the river', helping people to understand the dynamic quality of mountain rivers, and why scientific data is needed to determine health risk. Brian's vision was to do this through sound with real-time data on river water chemistry generating tones so that we can hear what we can't see. Through art, complex data on our world and how it is changing can be shared, reach more people, and lead to new dialogue. These conversations are much needed as we work to manage for global environmental issues.

  14. CEBAF [Continuous Electron Beam Accelerator Facility] scientific program

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    The principal scientific mission of the Continuous Electron Beam Facility (CEBAF) is to study collective phenomena in cold (or normal) nucler matter in order to understand the structure and behavior of macroscopic systems constructed from nuclei. This document discusses in broad popular terms those issues which the CEBAF experimental and theoretical program are designed to address. Specific experimental programs currently planned for CEBAF are also reivewed. 35 refs., 19 figs

  15. Acoustic phenomena during boiling

    International Nuclear Information System (INIS)

    Dorofeev, B.M.

    1985-01-01

    Applied and theoretical significance of investigation into acoustic phenomena on boiling is discussed. Effect of spatial and time conditions on pressure vapour bubble has been elucidated. Collective effects were considered: acoustic interaction of bubbles, noise formation ion developed boiling, resonance and hydrodynamic autooscillations. Different methods for predicting heat transfer crisis using changes of accompanying noise characteristics were analysed. Principle peculiarities of generation mechanism of thermoacoustic autooscillations were analysed as well: formation of standing waves; change of two-phase medium contraction in a channel; relation of alternating pressure with boiling process as well as with instantaneous and local temperatures of heat transfer surface and liquid in a boundary layer

  16. Magnetohydrodynamic flow phenomena

    International Nuclear Information System (INIS)

    Gerbeth, G.; Mutschke, G.; Eckert, S.

    1995-01-01

    The MHD group of the Institute of Safety Research performs basic studies on fluid dynamics and heat/mass transfer in fluids, particularly for electrically conducting fluids (liquid metals) exposed to external magnetic fields (Magnetohydrodynamics - MHD). Such a contactless influence on transport phenomena is of principal importance for a variety of applied problems including safety and design aspects in liquid metal cooled fusion reactors, fast reactors, and chemical systems. Any electrically conducting flow can be influenced without any contact by means of an external electromagnetic field. This, of course, can change the known hydromechanically flow patterns considerably. In the following two examples of such magnetic field influence are presented. (orig.)

  17. Random phenomena; Phenomenes aleatoires

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, G. [Commissariat a l' energie atomique et aux energies alternatives - CEA, C.E.N.G., Service d' Electronique, Section d' Electronique, Grenoble (France)

    1963-07-01

    This document gathers a set of conferences presented in 1962. A first one proposes a mathematical introduction to the analysis of random phenomena. The second one presents an axiomatic of probability calculation. The third one proposes an overview of one-dimensional random variables. The fourth one addresses random pairs, and presents basic theorems regarding the algebra of mathematical expectations. The fifth conference discusses some probability laws: binomial distribution, the Poisson distribution, and the Laplace-Gauss distribution. The last one deals with the issues of stochastic convergence and asymptotic distributions.

  18. Transport phenomena I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena I includes viscosity, flow of Newtonian fluids, velocity distribution in laminar flow, velocity distributions with more than one independent variable, thermal con

  19. Digital Learning Aids for Nynorsk Pupils in School: - A Politically Sensitive Area or a Question of a Deeper Scientific Understanding of Learning?

    Directory of Open Access Journals (Sweden)

    Rune Johan Krumsvik

    2015-11-01

    Full Text Available This position paper focuses on Nynorsk in the digital era and the need for research-based knowledge about it in school settings in Norway. The Norwegian language situation is exceptional because Norway has two written standards, Bokmål (majority variety and Nynorsk (minority variety, and both the Education Act and the Norwegian Directorate of Education require that publishers provide parallel editions of all paper-based and digital learning aids for pupils. However, a national report by Skjær,Eiksund, Fretland, Holen & Netteland(2008 revealed that few publishers have developed and offered digital learning aids in Nynorsk. In 2015 the situation appears to be largely unchanged, even though the authorities, language organisations and “leadings lights” have taken several initiatives to encourage compliance with the Education Act; however, what is needed is further research into the situation of parallel editions of digital learning aids. This is of particular interest today since the pupils in the county with the highest rate (97% of Nynorsk-pupils has consistently been at the top of the list as one of the best performing counties in Norway in national tests since 2006 (Directorate of Education 2015. In addition, Vangsnes, Söderlund & Blekesaune (2015 find that municipalities in Norway with more than 50% Nynorsk-pupils achieve better in National tests when compared to Bokmål municipalities. The main message in our position paper is that the digital revolution might have changed some underlying premises for how we understand and use language and dialects, and the need for parallel editions of digital learning aids in Bokmål and Nynorsk is no longer a question of economics or of political statements for or against Nynorsk, etc., but is instead a question of a more nuanced scientific understanding of learning and achievement in today’s digitized school. The achievements of Nynorsk pupils in national tests is one indicator of school

  20. Direct channel problems and phenomena

    International Nuclear Information System (INIS)

    Cutkosky, R.E.

    1975-01-01

    Direct channel problems and phenomena are considered covering the need for precision hadron spectroscopy, the data base for precision hadron spectroscopy, some relations between direct-channel and cross-channel effects, and spin rotation phenomena

  1. Collision and interaction phenomena - a historical outline

    International Nuclear Information System (INIS)

    Radmaneche, R.

    1977-09-01

    Collisions and interactions have become important for the description of matter. The author presents an outline which deals with elastic and inelastic collisions, with strong interactions, electromagnetic interactions, weak interactions and gravitational interactions. It is shown that the description of such processes has developed parallel with the understanding of matter and with the mechanism of the phenomena. Current and unsolved problems are mentioned

  2. The quest for new phenomena

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1996-12-01

    The Standard Model of particle physics has been very successful in describing experimental data with great precision. With the exception of some neutrino anomalies, there is no data that is in disagreement with it. Nevertheless, the model is regarded as incomplete and unsatisfactory. There is no explanation of the pattern of quark and lepton masses and, possibly more important, no understanding of the scale of electroweak interactions. Electroweak symmetry breaking is implemented in the Standard Model from the presence of a scalar electroweak doublet, the Higgs field, that acquires a vacuum expectation value of order 250 GeV and leaves as a remnant one physical state, the electrically neutral Higgs boson whose mass is not predicted. In this talk, the author compares the techniques used at, and capabilities of, various facilities in searching for new phenomena. The author emphasizes the cases where information from more than one facility may be needed to fully explore the physics

  3. Phenomena Associated With EIT Waves

    Science.gov (United States)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.

    2003-01-01

    We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  4. Scientific Research: How Many Paradigms?

    Science.gov (United States)

    Strawn, George O.

    2012-01-01

    As Yogi Berra said, "Predictions are hard, especially about the future." In this article, the author offers a few forward-looking observations about the emerging impact of information technology on scientific research. Scientific research refers to a particular method for acquiring knowledge about natural phenomena. This method has two dimensions:…

  5. Self field electromagnetism and quantum phenomena

    Science.gov (United States)

    Schatten, Kenneth H.

    1994-07-01

    Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.

  6. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  7. Foot morphometric phenomena.

    Science.gov (United States)

    Agić, Ante

    2007-06-01

    Knowledge of the foot morphometry is important for proper foot structure and function. Foot structure as a vital part of human body is important for many reasons. The foot anthropometric and morphology phenomena are analyzed together with hidden biomechanical descriptors in order to fully characterize foot functionality. For Croatian student population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot morphometric descriptors are influenced by many factors, such as life style, climate, and things of great importance in human society. Dominant descriptors related to fit and comfort are determined by the use 3D foot shape and advanced foot biomechanics. Some practical recommendations and conclusions for medical, sportswear and footwear practice are highlighted.

  8. Fast fission phenomena

    International Nuclear Information System (INIS)

    Gregoire, Christian.

    1982-03-01

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr

  9. Arcing phenomena in fusion devices workshop

    International Nuclear Information System (INIS)

    Clausing, R.E.

    1979-01-01

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included

  10. Selected social phenomena following the extraction of mineral resources

    Directory of Open Access Journals (Sweden)

    Kocoń Paweł

    2014-12-01

    Full Text Available The author, due to the didactic needs and seeing a small gap in the way of presenting scientific data on the area of social science, have decided to present this work hoping that it will influence on widening both the social science and geography knowledge of the recipients, having connected the development and creation of certain social phenomena with particular economic activity, that is, the extraction of mineral resources. The aim of the hereby text is to present such social phenomena like organizational culture, discourse and social capital. The notions mentioned above ought to concern not only students, but also the specialists and scientists dealing with any of those two fields, as it seems prudent to follow the path of closely connecting two major issues emerging from two distinctively separate areas of science if that may help to better understand how such mixture influence people’s behaviour and allows to draw conclusion on the effect such actions may have on community or society. Moreover, such fact was prior for the author to decide to work on the problem of protests for mining in the future. On the other hand, the article may help in organizing the process of exploitation of mineral resources in the different organizations involved in this type of activity.

  11. Mission Concept to Connect Magnetospheric Physical Processes to Ionospheric Phenomena

    Science.gov (United States)

    Dors, E. E.; MacDonald, E.; Kepko, L.; Borovsky, J.; Reeves, G. D.; Delzanno, G. L.; Thomsen, M. F.; Sanchez, E. R.; Henderson, M. G.; Nguyen, D. C.; Vaith, H.; Gilchrist, B. E.; Spanswick, E.; Marshall, R. A.; Donovan, E.; Neilson, J.; Carlsten, B. E.

    2017-12-01

    On the Earth's nightside the magnetic connections between the ionosphere and the dynamic magnetosphere have a great deal of uncertainty: this uncertainty prevents us from scientifically understanding what physical processes in the magnetosphere are driving the various phenomena in the ionosphere. Since the 1990s, the space plasma physics group at Los Alamos National Laboratory has been working on a concept to connect magnetospheric physical processes to auroral phenomena in the ionosphere by firing an electron beam from a magnetospheric spacecraft and optically imaging the beam spot in the ionosphere. The magnetospheric spacecraft will carry a steerable electron accelerator, a power-storage system, a plasma contactor, and instruments to measure magnetic and electric fields, plasma, and energetic particles. The spacecraft orbit will be coordinated with a ground-based network of cameras to (a) locate the electron beam spot in the upper atmosphere and (b) monitor the aurora. An overview of the mission concept will be presented, including recent enabling advancements based on (1) a new understanding of the dynamic spacecraft charging of the accelerator and plasma-contactor system in the tenuous magnetosphere based on ion emission rather than electron collection, (2) a new understanding of the propagation properties of pulsed MeV-class beams in the magnetosphere, and (3) the design of a compact high-power 1-MeV electron accelerator and power-storage system. This strategy to (a) determine the magnetosphere-to-ionosphere connections and (b) reduce accelerator- platform charging responds to one of the six emerging-technology needs called out in the most-recent National Academies Decadal Survey for Solar and Space Physics. [LA-UR-17-23614

  12. [Spiritual phenomena occurring in everybody and health].

    Science.gov (United States)

    Krsiak, M

    2008-01-01

    The past several years have seen an explosion of research in the area of spirituality and health. However, confusion and incomprehension of the conception of spirituality (e.g. confounding spirituality with various conventional views on religiousness) hampers better understanding in this area. The present paper proposes definition of spiritual phenomena in man based on natural epistemological and instrumental criteria (whether a certain phenomenon can be objectively known and evoked): spiritual phenomena in man are those, which cannot be objectively known nor evoked, but which act (e.g., love, idea). Spiritual phenomena can be really known only in the self ("in spirit"). Objectively known can be only manifestations of spiritual phenomena. Some attributes of love (e.g. its personal uniqueness) or ideas (e.g., sense of own life) whose satisfaction appears to be important for health are briefly outlined. A review of some frequently cited recent papers investigating the role of spirituality in health and discussion of frequent pitfalls in this area is given. Spirituality is a universal human phenomenon. All human beings, secular or religious, encounter with spiritual phenomena. Although the present conception of spirituality distances from some conventional views on religiousness, it is not atheistic. On the contrary, it accommodates the basic religious concept "God is love". Conceptual clarification is essential for further progress in the study of impact of spirituality on health.

  13. Arcjet cathode phenomena

    Science.gov (United States)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  14. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  15. The Aysen Glacier Trail (AGT): Fostering leadership and personal growth towards understanding our place in the environment through experiential learning and scientific inquiry in northern Patagonia, Chile

    Science.gov (United States)

    Sincavage, R.; Chambers, F. B.; Leidich, J.

    2017-12-01

    The Colonia Glacier, a low elevation mid-latitude glacier, drains the lee side of the central division of the Northern Patagonian Ice Field (NPI). As such, it serves as a microcosm of conditions on the NPI as a whole. Glaciers of this type have experienced extreme variability in Holocene thickness and extent, making them excellent indicators of local and regional climate conditions. Glacial lake outburst floods (GLOFs) originating in the remote Cachet Basin, dammed by the Colonia Glacier, have increased in frequency from once every 10 years to 3 times annually since 2008. These flood events are important in that they 1.) directly impact the livelihoods of downstream residents, 2.) may be linked to the overall health of the Colonia Glacier and, to a larger extent, the NPI, 3.) provide a natural laboratory for studying the dynamics of large flood events, and 4.) have downcut the sediments sequestered in the upper basin, revealing a rich Holocene sedimentologic and climate record. With improved access to this remote region through local partners in recent years, outstanding opportunities for scientific discovery, education, and outreach exist in one of the most beautiful and least-studied glacial regions on Earth. We propose establishing an NSF REU site here to further develop the abundant educational and research opportunities in this spectacular locale. We envision students participating under the REU will receive a broad-based background in glaciology and sedimentology prior to the field experience, and then participate in basic field research led by the PIs into understanding recent and Holocene linkages between climate change and the glacio-fluvio geomorphology of the NPI. A pilot program of 13 U.S. and Chilean students with wide-ranging backgrounds and degree levels was conducted in the winter of 2015-16. A two week backcountry trek across rocky terrain, mountain streams, active glaciers, and proglacial lakes in this seldom-visited region immersed the students

  16. Hysteresis phenomena in hydraulic measurement

    International Nuclear Information System (INIS)

    Ran, H J; Farhat, M; Luo, X W; Chen, Y L; Xu, H Y

    2012-01-01

    Hysteresis phenomena demonstrate the lag between the generation and the removal of some physical phenomena. This paper studies the hysteresis phenomena of the head-drop in a scaled model pump turbine using experiment test and CFD methods. These lag is induced by complicated flow patterns, which influenced the reliability of rotating machine. Keeping the same measurement procedure is concluded for the hydraulic machine measurement.

  17. Haters Phenomena in Social Media

    OpenAIRE

    Pradipta, Angga; Lailiyah, S.Sos, M.I.Kom, Nuriyatul

    2016-01-01

    Social media is internet-basic media, functioned as interaction media room based on multimedia technology. And social media created some effects. One of the negative effects of social media is haters phenomena. Haters are a person who easily said dirty words, harass, and humiliate to others. This phenomena causes anxiety—especially in Indonesia, even the Government issued public policy and letter of regulation about this phenomena, through Paragraph 27 verse (3) IT Constitution, Paragraph 45 ...

  18. Emergent Phenomena at Oxide Interfaces

    International Nuclear Information System (INIS)

    Hwang, H.Y.

    2012-01-01

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r → -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t → -t. In quantum mechanics, the time-evolution of the wave-function Ψ is given by the phase factor e -iEt/h b ar with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign

  19. Simulations of Biomechanical Phenomena

    Science.gov (United States)

    Gonzalez, Jose Cruz

    Recent studies have published breakthroughs in the application of finite element (FEA) studies in the design and analysis of advanced orthodontics. However, FEA has not captured bone remodeling responses to advanced orthodontics. The results of these simulations report unrealistic displacement around the nasal bridge, which impeded correlation with clinical data. Bone remodeling has been previously documented in FEA and has shown bone response to mechanical stimulus in femur bone models. However, the relationship between mechanical stimulus and bone remodeling has not been reported in orthodontic studies due to the complexity of the skull. In the current study, strain energy is used as the mechanical stimulus to control remodeling, from which density and modulus evolve. Due to the localization of forces in orthodontics, current remodeling algorithms have limited application. In turn, we developed an algorithm that dynamically collects, sorts, and bins stresses in all elements for regional remodeling based on the proximity of the element to the load. The results demonstrate that bone response to orthodontic appliances is different than that of an FEA without bone remodeling, due to load path changes based upon evolution of the bone properties. It was also found that density and moduli proximal to the load application site exhibit faster remodeling than those located remotely. Modeling another biomechanical phenomena, a 3D simulation was created to simulate recent experimental results that discovered a difference in impact mitigation properties of dense-polymer/foam bilayer structure based on the orientation of the dense-polymer with respect to the impact site. The impact energy transmitted varied in time of arrival and amplitude depending on the orientation of the structure (thin layer up or down). By creating a 3D explicit dynamic FEA simulation, it is expected to reduce costly experiments and time consumed in set up, and offer opportunities for optimization for

  20. Introductory lectures on critical phenomena

    International Nuclear Information System (INIS)

    Khajehpour, M.R.H.

    1988-09-01

    After a presentation of classical models for phase transitions and critical phenomena (Van der Waals theory, Weiss theory of ferromagnetism) and theoretical models (Ising model, XY model, Heisenberg model, spherical model) the Landau theory of critical and multicritical points and some single applications of renormalization group method in static critical phenomena are presented. 115 refs, figs and tabs

  1. Developing a Critical Dialog for Educational Technology: Understanding the Nature of Technology and the Legacy of Scientific Management in Our Schools

    Science.gov (United States)

    Frizelle, Thomas Kenneth

    2012-01-01

    This dissertation examines the legacy of scientific management and the dominance of one-dimensional thinking in the field of educational technology. Through this analysis, I demonstrate that the ways practitioners and policymakers frame educational technology, assess its effectiveness, and make judgments about its potential, often exclude…

  2. Can Dynamic Visualizations Improve Middle School Students' Understanding of Energy in Photosynthesis?

    Science.gov (United States)

    Ryoo, Kihyun; Linn, Marcia C.

    2012-01-01

    Dynamic visualizations have the potential to make abstract scientific phenomena more accessible and visible to students, but they can also be confusing and difficult to comprehend. This research investigates how dynamic visualizations, compared to static illustrations, can support middle school students in developing an integrated understanding of…

  3. Argument Construction in Understanding Noncovalent Interactions: A Comparison of Two Argumentation Frameworks

    Science.gov (United States)

    Cooper, A. Kat; Oliver-Hoyo, M. T.

    2016-01-01

    Argument construction is a valuable ability for explaining scientific phenomena and introducing argumentation skills as part of a curriculum can greatly enhance student understanding by promoting self-reflection on the topic under investigation. This article aims to use argument construction as a technique to support an activity designed to…

  4. Reduplication phenomena: body, mind and archetype.

    Science.gov (United States)

    Garner, J

    2000-09-01

    The many biological and few psychodynamic explanations of reduplicative syndromes tend to have paralleled the dualism of the phenomenon with organic theories concentrating on form and dynamic theories emphasising content. This paper extends the contribution of psychoanalytic thinking to an elucidation of the form of the delusion. Literature on clinical and aetiological aspects of reduplicative phenomena is reviewed alongside a brief examination of psychoanalytic models not overtly related to these phenomena. The human experience of doubles as universal archetype is considered. There is an obvious aetiological role for brain lesions in delusional misidentifications, but psychological symptoms in an individual can rarely be reduced to an organic disorder. The splitting and doubling which occurs in the phenomena have resonances in cultural mythology and in theories from different schools of psychodynamic thought. For the individual patient and doctor, it is a diverting but potentially empty debate to endeavour to draw strict divisions between what is physical and what is psychological although both need to be investigated. Nevertheless, in patients in whom there is clear evidence of an organic contribution to aetiology a psychodynamic understanding may serve to illuminate the patient's experience. Organic brain disease or serious functional illness predispose to regression to earlier modes of archetypical and primitive thinking with concretization of the metaphorical and mythological world. Psychoanalytic models have a contribution in describing the form as well as the content of reduplicative phenomena.

  5. Transport phenomena in strongly correlated Fermi liquids

    International Nuclear Information System (INIS)

    Kontani, Hiroshi

    2013-01-01

    Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.

  6. Solar Phenomena Associated with "EIT Waves"

    Science.gov (United States)

    Biesecker, D. A.; Myers, D. C.; Thompson, B. J.; Hammer, D. M.; Vourlidas, A.

    2002-01-01

    In an effort to understand what an 'EIT wave' is and what its causes are, we have looked for correlations between the initiation of EIT waves and the occurrence of other solar phenomena. An EIT wave is a coronal disturbance, typically appearing as a diffuse brightening propagating across the Sun. A catalog of EIT waves, covering the period from 1997 March through 1998 June, was used in this study. For each EIT wave, the catalog gives the heliographic location and a rating for each wave, where the rating is determined by the reliability of the observations. Since EIT waves are transient, coronal phenomena, we have looked for correlations with other transient, coronal phenomena: X-ray flares, coronal mass ejections (CMEs), and metric type II radio bursts. An unambiguous correlation between EIT waves and CMEs has been found. The correlation of EIT waves with flares is significantly weaker, and EIT waves frequently are not accompanied by radio bursts. To search for trends in the data, proxies for each of these transient phenomena are examined. We also use the accumulated data to show the robustness of the catalog and to reveal biases that must be accounted for in this study.

  7. Scientific issues in fuel behaviour

    International Nuclear Information System (INIS)

    1995-01-01

    The current limits on discharge burnup in today's nuclear power stations have proven the fuel to be very reliable in its performance, with a negligibly small rate of failure. However, for reasons of economy, there are moves to increase the fuel enrichment in order to extend both the cycle time and the discharge burnup. But, longer periods of irradiation cause increased microstructural changes in the fuel and cladding, implying a larger degradation of physical and mechanical properties. This degradation may well limit the plant life, hence the NSC concluded that it is of importance to develop a predictive capability of fuel behaviour at extended burnup. This can only be achieved through an improved understanding of the basic underlying phenomena of fuel behaviour. The Task Force on Scientific Issues Related to Fuel Behaviour of the NEA Nuclear Science Committee has identified the most important scientific issues on the subject and has assigned priorities. Modelling aspects are listed in Appendix A and discussed in Part II. In addition, quality assurance process for performing and evaluating new integral experiments is considered of special importance. Main activities on fuel behaviour modelling, as carried out in OECD Member countries and international organisations, are listed in Part III. The aim is to identify common interests, to establish current coverage of selected issues, and to avoid any duplication of efforts between international agencies. (author). refs., figs., tabs

  8. Understanding the corrosion phenomena to organize the nondestructive evaluation programs in the nuclear power plants; Connaitre les phenomenes de corrosion pour organiser les programmes d'end dans les centrales nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Berge, J.Ph. [Federation Europeenne de Corrosion, 75 - Paris (France); Samman, J. [Electricite de France (EDF), Div. du Production Nucleaire, 75 - Paris (France)

    2001-07-01

    The french nuclear power plants used PWR which components revealed many corrosion defects of different shapes as stress corrosion cracks or pits. Understanding the corrosion processes will help the inspection of in service power plants. The following examples describe some corrosion cases and present the corresponding developed control methods: corrosion on condenser, secondary circuit pipes and corrosion-erosion, steam generator pipes, vessels head penetration. (A.L.B.)

  9. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    Science.gov (United States)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  10. Modeling in transport phenomena a conceptual approach

    CERN Document Server

    Tosun, Ismail

    2007-01-01

    Modeling in Transport Phenomena, Second Edition presents and clearly explains with example problems the basic concepts and their applications to fluid flow, heat transfer, mass transfer, chemical reaction engineering and thermodynamics. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations and the physical significance of each term are given in detail, for students to easily understand and follow up the material. There is a strong incentive in science and engineering to

  11. On the Possibility of a Scientific Theory of Scientific Method.

    Science.gov (United States)

    Nola, Robert

    1999-01-01

    Discusses the philosophical strengths and weaknesses of Laudan's normative naturalism, which understands the principles of scientific method to be akin to scientific hypotheses, and therefore open to test like any principle of science. Contains 19 references. (Author/WRM)

  12. Kinetic effects on magnetohydrodynamic phenomena

    International Nuclear Information System (INIS)

    Naito, Hiroshi; Matsumoto, Taro

    2001-01-01

    Resistive and ideal magnetohydrodynamic (MHD) theories are insufficient to adequately explain MHD phenomena in the high-temperature plasma. Recent progress in numerical simulations concerning kinetic effects on magnetohydrodynamic phenomena is summarized. The following three topics are studied using various models treating extended-MHD phenomena. (1) Kinetic modifications of internal kink modes in tokamaks with normal and reversed magnetic shear configurations. (2) Temporal evolution of the toroidal Alfven eigenmode and fishbone mode in tokamaks with energetic ions. (3) Kinetic stabilization of a title mode in field-reversed configurations by means of anchoring ions and beam ions. (author)

  13. Micro transport phenomena during boiling

    CERN Document Server

    Peng, Xiaofeng

    2011-01-01

    "Micro Transport Phenomena During Boiling" reviews the new achievements and contributions in recent investigations at microscale. It presents some original research results and discusses topics at the frontier of thermal and fluid sciences.

  14. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos; Sun, Zhonghao

    2017-01-01

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration

  15. Renormalization group and critical phenomena

    International Nuclear Information System (INIS)

    Ji Qing

    2004-01-01

    The basic clue and the main steps of renormalization group method used for the description of critical phenomena is introduced. It is pointed out that this method really reflects the most important physical features of critical phenomena, i.e. self-similarity, and set up a practical solving method from it. This way of setting up a theory according to the features of the physical system is really a good lesson for today's physicists. (author)

  16. Transport phenomena in strongly correlated Fermi liquids

    CERN Document Server

    Kontani, Hiroshi

    2013-01-01

    In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...

  17. Scientific computing an introduction using Maple and Matlab

    CERN Document Server

    Gander, Walter; Kwok, Felix

    2014-01-01

    Scientific computing is the study of how to use computers effectively to solve problems that arise from the mathematical modeling of phenomena in science and engineering. It is based on mathematics, numerical and symbolic/algebraic computations and visualization. This book serves as an introduction to both the theory and practice of scientific computing, with each chapter presenting the basic algorithms that serve as the workhorses of many scientific codes; we explain both the theory behind these algorithms and how they must be implemented in order to work reliably in finite-precision arithmetic. The book includes many programs written in Matlab and Maple – Maple is often used to derive numerical algorithms, whereas Matlab is used to implement them. The theory is developed in such a way that students can learn by themselves as they work through the text. Each chapter contains numerous examples and problems to help readers understand the material “hands-on”.

  18. Parasitic phenomena in the dynamics of industrial devices

    CERN Document Server

    Borboni, Alberto

    2011-01-01

    In the real world the dynamic behavior of a real machine presents either unforeseen or limiting phenomena: both are undesired, and can be therefore be classified as parasitic phenomena - unwanted, unforeseen, or limiting behaviors. Parasitic Phenomena in the Dynamics of Industrial Devices describes the potential causes and effects of these behaviors and provides indications that could minimize their influence on the mechanical system in question. The authors introduce the phenomena and explore them through real cases, avoiding academic introductions, but inserting the entire academic and experimental knowledge that is useful to understand and solve real-world problems. They then examine these parasitic phenomena in the machine dynamics, using two cases that cover the classical cultural division between cam devices and mechanisms. They also present concrete cases with an amount of experimental data higher than the proposed ones and with a modern approach that can be applied to various mechanical devices, acqui...

  19. Beyond usage: understanding the use of electronic journals on the basis of information activity analysis. Electronic journals, Use studies, Information activity, Scientific communication

    Directory of Open Access Journals (Sweden)

    Annaïg Mahé

    2004-01-01

    Full Text Available In this article, which reports the second part of a two-part study of the use of electronic journals by researchers in two French research institutions, we attempt to explain the integration of the use of electronic journals in the scientists' information habits, going beyond usage analysis. First, we describe how the development of electronic journals use follows a three-phase innovation process - research-development, first uses, and technical acculturation. Then, we attempt to find more significant explanatory factors, and emphasis is placed on the wider context of information activity. Three main information activity types are outlined - marginal, parallel, and integrated. Each of these types corresponds to a particular attitude towards scientific information and to different levels of electronic journal use.

  20. Reframing science communication: How the use of metaphor, rhetoric, and other tools of persuasion can strengthen the public understanding of science (without weakening the integrity of the scientific process)

    Science.gov (United States)

    Soderberg, Jeanne

    This paper is about "truthiness", its resulting impact on the public understanding of science (and subsequently science policy), and why scientists need to learn how to navigate truthiness in order to ensure that the scientific body of knowledge is both preserved and shared. In order to contend with truthiness, scientists must understand and acknowledge how people receive and process information, how they form their reactions and opinions about it, and how they can be manipulated by various agencies and players to feel and think in certain ways. In order to accomplish these objectives, scientists must also understand various aspects of culture, language, psychology, neuroscience, and communication. Most importantly, scientists must recognize their own humanity, and learn how to accept and work with their own human boundaries. Truth can indeed be beauty. And, there is absolutely nothing unscientific about creating beauty in order to demonstrate and explain truth.

  1. Pseudo-Scientific Information: Reasons of Spread and Premises of Vitality

    Directory of Open Access Journals (Sweden)

    Valdas Pruskus

    2011-04-01

    Full Text Available The phenomenon of pseudo-scientific information, the reasons of its spread and premises of its vitality are discussed in the paper. Pseudo-scientific information is understandable as an attempt to suit a demand, which exists in society, while providing a simple answer to a question, which an individual or society is concerned about, and that answer is not sustained by scientific research. It is showed that the rise and spread of pseudo-scientific information in society are conditioned by objective reasons. Firstly, the lack of information concerning a subject which is significant for society. Secondly, the lack of information for a particular individual (social group concerning a substantial subject. Thirdly, fast spread of scientific and technical inventions and penetration of technological innovations into various spheres of life the understanding of which demands an appropriate informal “processing”, i e it demands provision in an appropriate form, which is partly provided by pseudo-scientific knowledge.The existence of pseudo-scientific information is determined by the fact that it performs important social functions in society. The existence of pseudo-scientific information by official certified scientific information and the fact, that all social groups are affected to a larger or lesser extent, show its ambivalent power and vitality. On the one part, the roots of its vitality lie in the duality of this phenomenon, where opposite things coexist in a strange way – the truth (scientifically verified propositions and speculations which are based on intuition rather than on scientifically verified facts. On the other part, it is maintained by our permanent wish to get an additional and fresher information, though not totally reliable, while seeking to know universally and better the world around us and its phenomena. While meeting this requirement, a pseudo-scientific information stimulates researchers both to enhance their attempts to

  2. Critical Phenomena in Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Gundlach Carsten

    1999-01-01

    Full Text Available As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term 'critical phenomena'. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. This review gives an introduction to the phenomena, tries to summarize the essential features of what is happening, and then presents extensions and applications of this basic scenario. Critical phenomena are of interest particularly for creating surprising structure from simple equations, and for the light they throw on cosmic censorship and the generic dynamics of general relativity.

  3. Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control

    Science.gov (United States)

    2016-07-30

    flames," Physics of Fluids , vol. 7, no. 6, pp. 1447-54, 1995. [8] K. Lyons, " Toward an understanding of the stabilization mechanisms of lifted...Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control This report summarizes the research accomplished in the project...34Experimental Studies of Hydrocarbon Flame Phenomena: Enabling Combustion Control". The main areas of activity are: a) electrostatic flame and flow

  4. On Process Modelling Using Physical Oriented And Phenomena Based Principles

    Directory of Open Access Journals (Sweden)

    Mihai Culea

    2000-12-01

    Full Text Available This work presents a modelling framework based on phenomena description of the process. The approach is taken to easy understand and construct process model in heterogeneous possible distributed modelling and simulation environments. A simplified case study of a heat exchanger is considered and Modelica modelling language to check the proposed concept. The partial results are promising and the research effort will be extended in a computer aided modelling environment based on phenomena.

  5. Social phenomena from data analysis to models

    CERN Document Server

    Perra, Nicola

    2015-01-01

    This book focuses on the new possibilities and approaches to social modeling currently being made possible by an unprecedented variety of datasets generated by our interactions with modern technologies. This area has witnessed a veritable explosion of activity over the last few years, yielding many interesting and useful results. Our aim is to provide an overview of the state of the art in this area of research, merging an extremely heterogeneous array of datasets and models. Social Phenomena: From Data Analysis to Models is divided into two parts. Part I deals with modeling social behavior under normal conditions: How we live, travel, collaborate and interact with each other in our daily lives. Part II deals with societal behavior under exceptional conditions: Protests, armed insurgencies, terrorist attacks, and reactions to infectious diseases. This book offers an overview of one of the most fertile emerging fields bringing together practitioners from scientific communities as diverse as social sciences, p...

  6. Study of Travelling Interplanetary Phenomena Report

    Science.gov (United States)

    Dryer, Murray

    1987-09-01

    Scientific progress on the topic of energy, mass, and momentum transport from the Sun into the heliosphere is contingent upon interdisciplinary and international cooperative efforts on the part of many workers. Summarized here is a report of some highlights of research carried out during the SMY/SMA by the STIP (Study of Travelling Interplanetary Phenomena) Project that included solar and interplanetary scientists around the world. These highlights are concerned with coronal mass ejections from solar flares or erupting prominences (sometimes together); their large-scale consequences in interplanetary space (such as shocks and magnetic 'bubbles'); and energetic particles and their relationship to these large-scale structures. It is concluded that future progress is contingent upon similar international programs assisted by real-time (or near-real-time) warnings of solar activity by cooperating agencies along the lines experienced during the SMY/SMA.

  7. Simple models of equilibrium and nonequilibrium phenomena

    International Nuclear Information System (INIS)

    Lebowitz, J.L.

    1987-01-01

    This volume consists of two chapters of particular interest to researchers in the field of statistical mechanics. The first chapter is based on the premise that the best way to understand the qualitative properties that characterize many-body (i.e. macroscopic) systems is to study 'a number of the more significant model systems which, at least in principle are susceptible of complete analysis'. The second chapter deals exclusively with nonequilibrium phenomena. It reviews the theory of fluctuations in open systems to which they have made important contributions. Simple but interesting model examples are emphasised

  8. Phenomena and parameters important to burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Dehart, M.D.; Wagner, J.C.

    2001-01-01

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water- reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given. (author)

  9. Chalcogenides Metastability and Phase Change Phenomena

    CERN Document Server

    Kolobov, Alexander V

    2012-01-01

    A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devices¿optical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.

  10. Abnormal pressures as hydrodynamic phenomena

    Science.gov (United States)

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  11. Whistlers and related ionospheric phenomena

    CERN Document Server

    Helliwell, Robert A

    2006-01-01

    The investigation of whistlers and related phenomena is a key element in studies of very-low-frequency propagation, satellite communication, the outer ionosphere, and solar-terrestrial relationships. This comprehensive text presents a history of the study of the phenomena and includes all the elements necessary for the calculation of the characteristics of whistlers and whistler-mode signals.An introduction and brief history are followed by a summary of the theory of whistlers and a detailed explanation of the calculation of their characteristics. Succeeding chapters offer a complete atlas of

  12. Molecular nanomagnets and related phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Song (ed.) [Peking Univ., Beijing (China). College of Chemistry and Molecular Engineering

    2015-07-01

    The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for

  13. Molecular nanomagnets and related phenomena

    International Nuclear Information System (INIS)

    Gao, Song

    2015-01-01

    The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for

  14. Lamont-Doherty's Secondary School Field Research Program: Using Goal-Oriented Applied Research as a Means of Building Comprehensive and Integrated Scientific Understanding

    Science.gov (United States)

    Bostick, B. C.; Newton, R.; Vincent, S.; Peteet, D. M.; Sambrotto, R.; Schlosser, P.; Corbett, E.

    2015-12-01

    Conventional instruction in science often proceeds from the general to the specific and from text to action. Fundamental terminologies, concepts, and ideas that are often abstract are taught first and only after such introductory processes can a student engage in research. Many students struggle to find relevance when presented information without context specific to their own experiences. This challenge is exacerbated for students whose social circles do not include adults who can validate scientific learning from their own experiences. Lamont-Doherty's Secondary School Field Research Program inverts the standard paradigm and places small groups of students in research projects where they begin by performing manageable tasks on complex applied research projects. These tasks are supplemented with informal mentoring and relevant articles (~1 per week). Quantitative metrics suggest the approach is highly successful—most participants report a dramatic increase in their enthusiasm for science, 100% attend college, and approximately 50% declare majors in science or technology. We use one project, the construction of a microbial battery, to illustrate this novel model of science learning and argue that it should be considered a best practice for project-based science education. The goal of this project was to build a rechargeable battery for a mobile phone based on a geochemical cycle, to generate and store electricity. The students, mostly from ethnic groups under-represented in the STEM fields, combined concepts and laboratory methods from biology, chemistry and physics to isolate photosynthetic bacteria from a natural salt marsh, and made an in situ device capable of powering a light bulb. The younger participants had been exposed to neither high school chemistry nor physics at the start of the project, yet they were able to use the project as a platform to deepen their science knowledge and their desire for increased participation in formal science education.

  15. Water EducaTion for Alabama's Black Belt (WET Alabama): Facilitating Scientific Understanding of the Hydrologic Cycle in Low-Resource Schools

    Science.gov (United States)

    Wolf, L. W.; Lee, M.; Stone, K.

    2008-12-01

    Youth, as future citizens, play an important role in obtaining and maintaining water resources. Water EducaTion for Alabama's Black Belt (WET Alabama) provides off-campus environmental and water-education activities designed to increase the appreciation, knowledge, conservation, and protection of water resources by middle-school teachers and children from predominantly African-American families in some of Alabama's poorest counties. The project is structured around a variety of indoor and outdoor activities held at two field sites, Auburn University's E. V. Smith Center in Macon County and the Robert G. Wehle Nature Center in Bullock County located in Alabama's "Black Belt" region, a region in which the prosperity of local communities is low. The educational activities provide an engaging laboratory and field experience for children from rural schools that lack scientific facilities and equipment. Both hosting centers have easy access to surface water (ponds, wetlands, streams) and offer facilities for basic hydrologic experiments (e.g., aquifer models, permeameter, water quality). The E.V. Smith site has access to groundwater through pairs of nested wells. Educational activities are designed to help students and teachers visualize groundwater flow and its interaction with surface water in an aquifer tank model; compare the hydrologic properties (porosity and permeability) of different aquifer materials (sands, gravels, and clays); learn about groundwater purging and sampling; and assess water quality and flow direction in the field. Simple exercises demonstrate (1) the balance of recharge and discharge, (2) the effects of flooding, drought and pumping, and (3) movement of contaminants through aquifers. A set of ready-to-teach laboratory exercises and tutorials address goals specified by the State of Alabama science curriculum for grades 6 to 8. The ultimate goal of Project WET Alabama is to help students and teachers from resource-poor schools become knowledgeable

  16. Transport phenomena in particulate systems

    CERN Document Server

    Freire, José Teixeira; Ferreira, Maria do Carmo

    2012-01-01

    This volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.

  17. Discovery potential for new phenomena

    International Nuclear Information System (INIS)

    Godfrey, S.; Price, L.E.

    1997-03-01

    The authors examine the ability of future facilities to discover and interpret non-supersymmetric new phenomena. The authors first explore explicit manifestations of new physics, including extended gauge sectors, leptoquarks, exotic fermions, and technicolor models. They then take a more general approach where new physics only reveals itself through the existence of effective interactions at lower energy scales

  18. Strings, fields and critical phenomena

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1987-07-01

    The connection between field theory and critical phenomena is reviewed. Emphasis is put on the use of Monte Carlo methods in the study of non-perturbative aspects of field theory. String theory is then described as a statistical theory of random surfaces and the critical behaviour is analyzed both by analytical and numerical methods. (orig.)

  19. Understanding Energy

    Science.gov (United States)

    Menon, Deepika; Shelby, Blake; Mattingly, Christine

    2016-01-01

    "Energy" is a term often used in everyday language. Even young children associate energy with the food they eat, feeling tired after playing soccer, or when asked to turn the lights off to save light energy. However, they may not have the scientific conceptual understanding of energy at this age. Teaching energy and matter could be…

  20. Visual computing scientific visualization and imaging systems

    CERN Document Server

    2014-01-01

    This volume aims to stimulate discussions on research involving the use of data and digital images as an understanding approach for analysis and visualization of phenomena and experiments. The emphasis is put not only on graphically representing data as a way of increasing its visual analysis, but also on the imaging systems which contribute greatly to the comprehension of real cases. Scientific Visualization and Imaging Systems encompass multidisciplinary areas, with applications in many knowledge fields such as Engineering, Medicine, Material Science, Physics, Geology, Geographic Information Systems, among others. This book is a selection of 13 revised and extended research papers presented in the International Conference on Advanced Computational Engineering and Experimenting -ACE-X conferences 2010 (Paris), 2011 (Algarve), 2012 (Istanbul) and 2013 (Madrid). The examples were particularly chosen from materials research, medical applications, general concepts applied in simulations and image analysis and ot...

  1. In vessel core melt progression phenomena

    International Nuclear Information System (INIS)

    Courtaud, M.

    1993-01-01

    For all light water reactor (LWR) accidents, including the so called severe accidents where core melt down can occur, it is necessary to determine the amount and characteristics of fission products released to the environment. For existing reactors this knowledge is used to evaluate the consequences and eventual emergency plans. But for future reactors safety authorities demand decrease risks and reactors designed in such a way that fission products are retained inside the containment, the last protective barrier. This requires improved understanding and knowledge of all accident sequences. In particular it is necessary to be able to describe the very complex phenomena occurring during in vessel core melt progression because they will determine the thermal and mechanical loads on the primary circuit and the timing of its rupture as well as the fission product source term. On the other hand, in case of vessel failure, knowledge of the physical and chemical state of the core melt will provide the initial conditions for analysis of ex-vessel core melt progression and phenomena threatening the containment. Finally a good understanding of in vessel phenomena will help to improve accident management procedures like Emergency Core Cooling System water injection, blowdown and flooding of the vessel well, with their possible adverse effects. Research and Development work on this subject was initiated a long time ago and is still in progress but now it must be intensified in order to meet the safety requirements of the next generation of reactors. Experiments, limited in scale, analysis of the TMI 2 accident which is a unique source of global information and engineering judgment are used to establish and assess physical models that can be implemented in computer codes for reactor accident analysis

  2. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  3. Recent scientific advances in leiomyoma (uterine fibroids research facilitates better understanding and management [v1; ref status: indexed, http://f1000r.es/54a

    Directory of Open Access Journals (Sweden)

    Darlene K. Taylor

    2015-07-01

    Full Text Available Uterine leiomyomas (fibroids are the most prevalent medical problem of the female reproductive tract, but there are few non-surgical treatment options. Although many advances in the understanding of the molecular components of these tumors have occurred over the past five years, an effective pharmaceutical approach remains elusive. Further, there is currently no clinical method to distinguish a benign uterine leiomyoma from a malignant leiomyosarcoma prior to treatment, a pressing need given concerns about the use of the power morcellator for minimally invasive surgery. This paper reviews current studies regarding the molecular biology of uterine fibroids, discusses non-surgical approaches and suggests new cutting-edge therapeutic and diagnostic approaches.

  4. Overview: Understanding nucleation phenomena from simulations of lattice gas models

    International Nuclear Information System (INIS)

    Binder, Kurt; Virnau, Peter

    2016-01-01

    Monte Carlo simulations of homogeneous and heterogeneous nucleation in Ising/lattice gas models are reviewed with an emphasis on the general insight gained on the mechanisms by which metastable states decay. Attention is paid to the proper distinction of particles that belong to a cluster (droplet), that may trigger a nucleation event, from particles in its environment, a problem crucial near the critical point. Well below the critical point, the lattice structure causes an anisotropy of the interface tension, and hence nonspherical droplet shapes result, making the treatment nontrivial even within the conventional classical theory of homogeneous nucleation. For temperatures below the roughening transition temperature facetted crystals rather than spherical droplets result. The possibility to find nucleation barriers from a thermodynamic analysis avoiding a cluster identification on the particle level is discussed, as well as the question of curvature corrections to the interfacial tension. For the interpretation of heterogeneous nucleation at planar walls, knowledge of contact angles and line tensions is desirable, and methods to extract these quantities from simulations will be mentioned. Finally, also the problem of nucleation near the stability limit of metastable states and the significance of the spinodal curve will be discussed, in the light of simulations of Ising models with medium range interactions.

  5. Measuring and understanding ultrafast phenomena using X-rays

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Nielsen, Martin Meedom

    2014-01-01

    Within the last decade, significant advances in X-ray sources and instrumentation as well as simultaneous developments in analysis methodology has allowed the field of fast- and ultrafast time-resolved X-ray studies of solution-state systems to truly come of age. We here describe some aspects of ...

  6. Through an understanding of thermoluminescence phenomena from Einstein radiation theory

    Energy Technology Data Exchange (ETDEWEB)

    Nieto H, B.; Vazquez C, G.A.; Azorin, J. [UAM-I, 09340 Mexico D.F. (Mexico)

    2005-07-01

    In this work we made an outline of Einstein's radiation theory and its connection with elementary TL theory. We did not pretend in this paper to discuss advanced TL theories in these terms. Our main goal was to explore the simplest relationships among radiation theory, such as, transition probabilities and mean time-lives with kinetic parameters of the Randall-Wilkins model. (Author)

  7. Through an understanding of thermoluminescence phenomena from Einstein radiation theory

    Energy Technology Data Exchange (ETDEWEB)

    Nieto H, B; Vazquez C, G A; Azorin, J [UAM-I, 09340 Mexico D.F. (Mexico)

    2005-07-01

    In this work we made an outline of Einstein's radiation theory and its connection with elementary TL theory. We did not pretend in this paper to discuss advanced TL theories in these terms. Our main goal was to explore the simplest relationships among radiation theory, such as, transition probabilities and mean time-lives with kinetic parameters of the Randall-Wilkins model. (Author)

  8. Through an understanding of thermoluminescence phenomena from Einstein radiation theory

    International Nuclear Information System (INIS)

    Nieto H, B.; Vazquez C, G.A.; Azorin, J.

    2005-01-01

    In this work we made an outline of Einstein's radiation theory and its connection with elementary TL theory. We did not pretend in this paper to discuss advanced TL theories in these terms. Our main goal was to explore the simplest relationships among radiation theory, such as, transition probabilities and mean time-lives with kinetic parameters of the Randall-Wilkins model. (Author)

  9. Shaping a Scientific Self

    DEFF Research Database (Denmark)

    Andrade-Molina, Melissa; Valero, Paola

    us to understand how a truth is reproduced, circulating among diverse fields of human knowledge. Also it will show why we accept and reproduce a particular discourse. Finally, we state Euclidean geometry as a truth that circulates in scientific discourse and performs a scientific self. We unfold...... the importance of having students following the path of what schools perceive a real scientist is, no to become a scientist, but to become a logical thinker, a problem solver, a productive citizen who uses reason....

  10. Augmented Visual Experience of Simulated Solar Phenomena

    Science.gov (United States)

    Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.

    2017-12-01

    The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.

  11. Slow slip phenomena in Cascadia from 2007 and beyond: a review

    Science.gov (United States)

    Gomberg, Joan; ,

    2010-01-01

    Recent technological advances combined with more detailed analyses of seismologic and geodetic observations have fundamentally changed our understanding of the ways in which tectonic stresses arising from plate motions are accommodated by slip on faults. The traditional view that relative plate motions are accommodated by a simple cycle of stress accumulation and release on “locked” plate-boundary faults has been revolutionized by the serendipitous discovery and recognition of the significance of slow-slip phenomena, mostly in the deeper reaches of subduction zones. The Cascadia subduction zone, located in the Pacific Northwest of the conterminous United States and adjacent Canada, is an archetype of exploration and learning about slow-slip phenomena. These phenomena are manifest as geodetically observed aseismic transient deformations accompanied by a previously unrecognized class of seismic signals. Although secondary failure processes may be involved in generating the seismic signals, the primary origins of both aseismic and seismic phenomena appear to be episodic fault slip, probably facilitated by fluids, on a plate interface that is critically stressed or weakened. In Cascadia, this transient slip evolves more slowly and over more prolonged durations relative to the slip in earthquakes, and it occurs between the 30- and 40-km-depth contours of the plate interface where information was previously elusive. Although there is some underlying organization that relaxes nearly all the accrued plate-motion stresses along the entirety of Cascadia, we now infer that slow slip evolves in complex patterns indicative of propagating stress fronts. Our new understanding provides key constraints not only on the region where the slow slip originates, but also on the probable characteristics of future megathrust earthquakes in Cascadia. Herein, we review the most significant scientific issues and progress related to understanding slow-slip phenomena in Cascadia and

  12. The Oak Ridge Field Research Center : Advancing Scientific Understanding of the Transportation, Fate, and Remediation of Subsurface Contamination Sources and Plumes

    International Nuclear Information System (INIS)

    David Watson

    2005-01-01

    Historical research, development, and testing of nuclear materials across this country resulted in subsurface contamination that has been identified at over 7,000 discrete sites across the U.S. Department of Energy (DOE) complex. With the end of the Cold War threat, DOE has shifted its emphasis to remediation, decommissioning, and decontamination of the immense volumes of contaminated groundwater, sediments, and structures at its sites. DOE currently is responsible for remediating 1.7 trillion gallons of contaminated groundwater, an amount equal to approximately four times the daily U.S. water consumption, and 40 million cubic meters of contaminated soil, enough to fill approximately 17 professional sports stadiums.* DOE also sponsors research intended to improve or develop remediation technologies, especially for difficult, currently intractable contaminants or conditions. The Oak Ridge FRC is representative of some difficult sites, contaminants, and conditions. Buried wastes in contact with a shallow water table have created huge reservoirs of contamination. Rainfall patterns affect the water table level seasonally and over time. Further, the hydrogeology of the area, with its fractures and karst geology, affects the movement of contaminant plumes. Plumes have migrated long distances and to surface discharge points through ill-defined preferred flowpaths created by the fractures and karst conditions. From the standpoint of technical effectiveness, remediation options are limited, especially for contaminated groundwater. Moreover, current remediation practices for the source areas, such as capping, can affect coupled processes that, in turn, may affect the movement of subsurface contaminants in unknown ways. Research conducted at the FRC or with FRC samples therefore promotes understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of extant remediation options, and the

  13. Transport phenomena in multiphase flows

    CERN Document Server

    Mauri, Roberto

    2015-01-01

    This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy.  It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory...

  14. Mathematical Modeling of Diverse Phenomena

    Science.gov (United States)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  15. Multiparticle phenomena and Landau damping

    International Nuclear Information System (INIS)

    Talman, R.

    1987-01-01

    The purpose of this paper is to survey various methods of studying multiparticle phenomena in accelerators. Both experimental and theoretical methods are described. An effort has been made to emphasize the intuitive and qualitative aspects rather than the detailed mathematics. Some of the terms or concepts to be explained are coherent and incoherent tunes, normal modes, Landau damping, beam-transfer functions, and feedback. These are all of daily importance in the interpretation of colliding-beam observations and the control of performance

  16. Dialectic and science: Galen, Herophilus and Aristotle on phenomena.

    Science.gov (United States)

    Tieleman, T

    1995-01-01

    This paper examines the nature of Galen's argument in the De placitis Hippocratis et Platonis, books 2-3, concerned with the location of the psychic functions within the body. To this question Galen applies a coherent set of methodological principles, integrating Aristotelian dialectic and scientific demonstration based on anatomical experiments. Galen disagrees with Aristotle in that he relegates the endoxa from the realm of dialectic to that of rhetoric. His attitude is marked by a distinctive emphasis on perceptible phenomena as the starting point for scientific inquiry. This and other features can be traced back to the Hellenistic scientist Herophilus.

  17. Antagonistic Phenomena in Network Dynamics

    Science.gov (United States)

    Motter, Adilson E.; Timme, Marc

    2018-03-01

    Recent research on the network modeling of complex systems has led to a convenient representation of numerous natural, social, and engineered systems that are now recognized as networks of interacting parts. Such systems can exhibit a wealth of phenomena that not only cannot be anticipated from merely examining their parts, as per the textbook definition of complexity, but also challenge intuition even when considered in the context of what is now known in network science. Here, we review the recent literature on two major classes of such phenomena that have far-reaching implications: (a) antagonistic responses to changes of states or parameters and (b) coexistence of seemingly incongruous behaviors or properties - both deriving from the collective and inherently decentralized nature of the dynamics. They include effects as diverse as negative compressibility in engineered materials, rescue interactions in biological networks, negative resistance in fluid networks, and the Braess paradox occurring across transport and supply networks. They also include remote synchronization, chimera states, and the converse of symmetry breaking in brain, power-grid, and oscillator networks as well as remote control in biological and bioinspired systems. By offering a unified view of these various scenarios, we suggest that they are representative of a yet broader class of unprecedented network phenomena that ought to be revealed and explained by future research.

  18. Scientific Misconduct.

    Science.gov (United States)

    Goodstein, David

    2002-01-01

    Explores scientific fraud, asserting that while few scientists actually falsify results, the field has become so competitive that many are misbehaving in other ways; an example would be unreasonable criticism by anonymous peer reviewers. (EV)

  19. Scientific Theories and Naive Theories as Forms of Mental Representation: Psychologism Revived

    Science.gov (United States)

    Brewer, William F.

    This paper analyzes recent work in psychology on the nature of the representation of complex forms of knowledge with the goal of understanding how theories are represented. The analysis suggests that, as a psychological form of representation, theories are mental structures that include theoretical entities (usually nonobservable), relationships among the theoretical entities, and relationships of the theoretical entities to the phenomena of some domain. A theory explains the phenomena in its domain by providing a conceptual framework for the phenomena that leads to a feeling of understanding in the reader/hearer. The explanatory conceptual framework goes beyond the original phenomena, integrates diverse aspects of the world, and shows how the original phenomena follow from the framework. This analysis is used to argue that mental models are the subclass of theories that use causal/mechanical explanatory frameworks. In addition, an argument is made for a new psychologism in the philosophy of science, in which the mental representation of scientific theories must be taken into account.

  20. Meteorological phenomena in Western classical orchestral music

    Science.gov (United States)

    Williams, P. D.; Aplin, K. L.

    2012-12-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765

  1. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    Science.gov (United States)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  2. Biomedical Signals and Sensors I Linking Physiological Phenomena and Biosignals

    CERN Document Server

    Kaniusas, Eugenijus

    2012-01-01

    This two-volume set focuses on the interface between physiologic mechanisms and diagnostic human engineering. Today numerous biomedical sensors are commonplace in clinical practice. The registered biosignals reflect mostly vital physiologic phenomena. In order to adequately apply biomedical sensors and reasonably interpret the corresponding biosignals, a proper understanding of the involved physiologic phenomena, their influence on the registered biosignals, and the technology behind the sensors is necessary. The first volume is devoted to the interface between physiologic mechanisms and arising biosignals, whereas the second volume is focussed on the interface between biosignals and biomedical sensors. The physiologic mechanisms behind the biosignals are described from the basic cellular level up to their advanced mutual coordination level during sleep. The arising biosignals are discussed within the scope of vital physiologic phenomena to foster their understanding and comprehensive analysis.

  3. Laboratory simulation of space plasma phenomena*

    Science.gov (United States)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  4. Shock Wave Diffraction Phenomena around Slotted Splitters

    Directory of Open Access Journals (Sweden)

    Francesca Gnani

    2015-01-01

    Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.

  5. Phenomena and Diosignes of Aratous

    Science.gov (United States)

    Avgoloupis, S. I.

    2013-01-01

    Aratous (305-240B.C.) was a singular intellectual, writer and poet which engage himself to compose a very interesting astronomical poet, using the "Dactylous sixstage' style, the formal style of the ancient Greek Epic poetry. This astronomic poem of Aratous "Phenomena and Diosignes" became very favorite reading during the Alexandrine, the Romman and the Byzandin eras as well and had received many praises from significant poets and particularly from Hipparchous and from Theonas from Alexandria, an astronomer of 4rth century A.C.(in Greeks)

  6. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2001-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in

  7. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2000-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m

  8. Nonlinear phenomena in general relativity

    Science.gov (United States)

    Allahyari, Alireza; Firouzjaee, Javad T.; Mansouri, Reza

    2018-04-01

    The perturbation theory plays an important role in studying structure formation in cosmology and post-Newtonian physics, but not all phenomena can be described by the linear perturbation theory. Thus, it is necessary to study exact solutions or higher-order perturbations. Specifically, we study black hole (apparent) horizons and the cosmological event horizon formation in the perturbation theory. We emphasize that in the perturbative regime of the gravitational potential these horizons cannot form in the lower order. Studying the infinite plane metric, we show that, to capture the cosmological constant effect, we need at least a second-order expansion.

  9. Nonlinear phenomena at cyclotron resonance

    International Nuclear Information System (INIS)

    Subbarao, D.; Uma, R.

    1986-01-01

    Finite amplitude electromagnetic waves in a magnetoplasma which typically occur in situations as in present day wave heating, current drives and other schemes in magnetically confined fusion systems, can show qualitatively different absorption and emission characteristics around resonant frequencies of the plasma because of anharmonicity. Linear wave plasma coupling as well as weak nonlinear effects such as parametric instabilities generally overlook this important effect even though the thresholds for the two phenomena as shown here are comparable. Though the effects described here are relevant to a host of nonlinear resonance effects in fusion plasmas, the authors mainly limit themselves to ECRH

  10. Violent phenomena in the Universe

    CERN Document Server

    Narlikar, Jayant V

    2007-01-01

    The serenity of a clear night sky belies the evidence-gathered by balloons, rockets, satellites, and telescopes-that the universe contains centers of furious activity that pour out vast amounts of energy, some in regular cycles and some in gigantic bursts. This reader-friendly book, acclaimed by Nature as ""excellent and uncompromising,"" traces the development of modern astrophysics and its explanations of these startling celestial fireworks.This lively narrative ranges from the gravitational theories of Newton and Einstein to recent exciting discoveries of such violent phenomena as supernova

  11. Nonlinear Dynamic Phenomena in Mechanics

    CERN Document Server

    Warminski, Jerzy; Cartmell, Matthew P

    2012-01-01

    Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear

  12. Quantum theory of collective phenomena

    CERN Document Server

    Sewell, G L

    2014-01-01

    ""An excellent and competent introduction to the field … [and] … a source of information for the expert."" - Physics Today""This a book of major importance…. I trust that this book will be used as a basis for the teaching of a balanced, modern and rigorous course on statistical mechanics in all universities."" - Bulletin of the London Mathematical Society""This is one of the best introductions to the subject, and it is strongly recommended to anyone interested in collective phenomena."" - Physics Bulletin ""The book may be recommended for students as a well-balanced introduction to this rich s

  13. Foot anthropometry and morphology phenomena.

    Science.gov (United States)

    Agić, Ante; Nikolić, Vasilije; Mijović, Budimir

    2006-12-01

    Foot structure description is important for many reasons. The foot anthropometric morphology phenomena are analyzed together with hidden biomechanical functionality in order to fully characterize foot structure and function. For younger Croatian population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot structure descriptors are influenced by many factors, as a style of life, race, climate, and things of the great importance in human society. Dominant descriptors are determined by principal component analysis. Some practical recommendation and conclusion for medical, sportswear and footwear practice are highlighted.

  14. Gravitational Anomaly and Transport Phenomena

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Megias, Eugenio; Pena-Benitez, Francisco

    2011-01-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.

  15. Quantum phenomena in gravitational field

    Science.gov (United States)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  16. Quantum phenomena in gravitational field

    International Nuclear Information System (INIS)

    Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.

    2010-01-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  17. Studies of Novel Quantum Phenomena in Ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Zhiqiang

    2011-04-08

    electron has been among central topics of contempary condensed matter physics. Ultrfast phase transitions accompanied by switching of conductivity or magnetization in stronly correlated materials are believed to be promising in developing next generation of transistors. Our work on layered ruthenates has remarkably advanced our understanding of how the exotic phenomena of correlated electrons is governed by the complex interplay between charge, spin, lattice and orbital degrees of freedom. In addition to studies on ruthenates, we have also expanded our research to the emerging field of Fe-based superconductors, focusing on the iron chalcogenide Fe1+y(Te1-xSex) superconductor system. We first studied the superconductivity of this alloy system following the discovery of superconductivity in FeSe using polycrystalline samples. Later, we successfuly grew high-quality single crystals of these materials. Using these single crystals, we have determined the magnetic structure of the parent compound Fe1+yTe, observed spin resonance of superconducting state in optimally doped samples, and established a phase diagram. Our work has produced an important impact in this burgeoning field. The PI presented an invited talk on this topic at APS March meeting in 2010. We have published 19 papers in these two areas (one in Nature materials, five in Physical Review Letters, and nine in Physical Review B) and submitted two (see the list of publications attached below).

  18. Spin-transfer phenomena in layered magnetic structures: Physical phenomena and materials aspects

    International Nuclear Information System (INIS)

    Gruenberg, P.; Buergler, D.E.; Dassow, H.; Rata, A.D.; Schneider, C.M.

    2007-01-01

    During the past 20 years, layered structures consisting of ferromagnetic layers and spacers of various material classes with a thickness of only a few nanometers have revealed a variety of exciting and potentially very useful phenomena not present in bulk material. Representing distinct manifestations of spin-transfer processes, these phenomena may be categorized into interlayer exchange coupling (IEC), giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and the more recently discovered spin-transfer torque effect leading to current-induced magnetization switching (CIMS) and current-driven magnetization dynamics. These phenomena clearly confer novel material properties on magnetic layered structures with respect to the (magneto-)transport and the magnetostatic as well as magnetodynamic behavior. Here, we will first concentrate on the less well understood aspects of IEC across insulating and semiconducting interlayers and relate the observations to TMR in the corresponding structures. In this context, we will also discuss more recent advances in TMR due to the use of electrodes made from Heusler alloys and the realization of coherent tunneling in epitaxial magnetic tunneling junctions. Finally, we will review our results on CIMS in epitaxial magnetic nanostructures showing that normal and inverse CIMS can occur simultaneously in a single nanopillar device. In all cases discussed, material issues play a major role in the detailed understanding of the spin-transfer effects, in particular in those systems that yield the largest effects and are thus of utmost interest for applications

  19. Designing scientific applications on GPUs

    CERN Document Server

    Couturier, Raphael

    2013-01-01

    Many of today's complex scientific applications now require a vast amount of computational power. General purpose graphics processing units (GPGPUs) enable researchers in a variety of fields to benefit from the computational power of all the cores available inside graphics cards.Understand the Benefits of Using GPUs for Many Scientific ApplicationsDesigning Scientific Applications on GPUs shows you how to use GPUs for applications in diverse scientific fields, from physics and mathematics to computer science. The book explains the methods necessary for designing or porting your scientific appl

  20. Nuclear chromodynamics: Novel nuclear phenomena predicted by QCD

    NARCIS (Netherlands)

    Bakker, B.L.G.; Ji, C.R.

    2014-01-01

    With the acceptance of QCD as the fundamental theory of strong interactions, one of the basic problems in the analysis of nuclear phenomena became how to consistently account for the effects of the underlying quark/gluon structure of nucleons and nuclei. Besides providing more detailed understanding

  1. Progress in the theory of magnetic reconnection phenomena

    International Nuclear Information System (INIS)

    Ottaviani, M.; Arcis, N.; Maget, P.; Zwingmann, W.; Grasso, D.; Militello, F.; Porcelli, F.

    2004-01-01

    Recent theoretical work on magnetic reconnection in hot plasma confinement devices is reviewed. The presentation highlights the common aspects of reconnection phenomena, and current research trends are emphasised. Progress in understanding the dynamics of slowly evolving modes of the tearing family, based on advanced analytic techniques and numerical simulation, as well as of faster modes that lead to internal disruptions, is reported. (authors)

  2. Discrete computational mechanics for stiff phenomena

    KAUST Repository

    Michels, Dominik L.

    2016-11-28

    Many natural phenomena which occur in the realm of visual computing and computational physics, like the dynamics of cloth, fibers, fluids, and solids as well as collision scenarios are described by stiff Hamiltonian equations of motion, i.e. differential equations whose solution spectra simultaneously contain extremely high and low frequencies. This usually impedes the development of physically accurate and at the same time efficient integration algorithms. We present a straightforward computationally oriented introduction to advanced concepts from classical mechanics. We provide an easy to understand step-by-step introduction from variational principles over the Euler-Lagrange formalism and the Legendre transformation to Hamiltonian mechanics. Based on such solid theoretical foundations, we study the underlying geometric structure of Hamiltonian systems as well as their discrete counterparts in order to develop sophisticated structure preserving integration algorithms to efficiently perform high fidelity simulations.

  3. Quantum field theory and critical phenomena

    CERN Document Server

    Zinn-Justin, Jean

    1996-01-01

    Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...

  4. Novel nuclear phenomena in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1987-08-01

    Many of the key issues in understanding quantum chromodynamics involve processes in nuclear targets at intermediate energies. A range of hadronic and nuclear phenomena-exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction were discussed as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Several areas were also reviewed where there has been significant theoretical progress determining the form of hadron and nuclear wave functions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. A possible interpretation was also discussed of the large spin correlation A/sub NN/ in proton-proton scattering, and how relate this effect to an energy and angular dependence of color transparency in nuclei. 76 refs., 24 figs

  5. Scientific communication

    Directory of Open Access Journals (Sweden)

    Aleksander Kobylarek

    2017-09-01

    Full Text Available The article tackles the problem of models of communication in science. The formal division of communication processes into oral and written does not resolve the problem of attitude. The author defines successful communication as a win-win game, based on the respect and equality of the partners, regardless of their position in the world of science. The core characteristics of the process of scientific communication are indicated , such as openness, fairness, support, and creation. The task of creating the right atmosphere for science communication belongs to moderators, who should not allow privilege and differentiation of position to affect scientific communication processes.

  6. Scientific millenarianism

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1997-01-01

    Today, for the first time, scientific concerns are seriously being addressed that span future times--hundreds, even thousands, or more years in the future. One is witnessing what the author calls scientific millenarianism. Are such concerns for the distant future exercises in futility, or are they real issues that, to the everlasting gratitude of future generations, this generation has identified, warned about and even suggested how to cope with in the distant future? Can the four potential catastrophes--bolide impact, CO 2 warming, radioactive wastes and thermonuclear war--be avoided by technical fixes, institutional responses, religion, or by doing nothing? These are the questions addressed in this paper

  7. Scientific meetings

    International Nuclear Information System (INIS)

    1973-01-01

    One of the main aims of the IAEA is to foster the exchange of scientific and technical information and one of the main ways of doing this is to convene international scientific meetings. They range from large international conferences bringing together several hundred scientists, smaller symposia attended by an average of 150 to 250 participants and seminars designed to instruct rather than inform, to smaller panels and study groups of 10 to 30 experts brought together to advise on a particular programme or to develop a set of regulations. The topics of these meetings cover every part of the Agency's activities and form a backbone of many of its programmes. (author)

  8. ldentifying Episodes of Earth Science Phenomena Using a Big-Data Technology

    Science.gov (United States)

    Kuo, Kwo-Sen; Oloso, Amidu; Rushing, John; Lin, Amy; Fekete, Gyorgy; Ramachandran, Rahul; Clune, Thomas; Dunny, Daniel

    2014-01-01

    A significant portion of Earth Science investigations is phenomenon- (or event-) based, such as the studies of Rossby waves, volcano eruptions, tsunamis, mesoscale convective systems, and tropical cyclones. However, except for a few high-impact phenomena, e.g. tropical cyclones, comprehensive records are absent for the occurrences or events of these phenomena. Phenomenon-based studies therefore often focus on a few prominent cases while the lesser ones are overlooked. Without an automated means to gather the events, comprehensive investigation of a phenomenon is at least time-consuming if not impossible. We have constructed a prototype Automated Event Service (AES) system that is used to methodically mine custom-defined events in the reanalysis data sets of atmospheric general circulation models. Our AES will enable researchers to specify their custom, numeric event criteria using a user-friendly web interface to search the reanalysis data sets. Moreover, we have included a social component to enable dynamic formation of collaboration groups for researchers to cooperate on event definitions of common interest and for the analysis of these events. An Earth Science event (ES event) is defined here as an episode of an Earth Science phenomenon (ES phenomenon). A cumulus cloud, a thunderstorm shower, a rogue wave, a tornado, an earthquake, a tsunami, a hurricane, or an El Nino, is each an episode of a named ES phenomenon, and, from the small and insignificant to the large and potent, all are examples of ES events. An ES event has a duration (often finite) and an associated geo-location as a function of time; it's therefore an entity embedded in four-dimensional (4D) spatiotemporal space. Earth Science phenomena with the potential to cause massive economic disruption or loss of life often rivet the attention of researchers. But, broader scientific curiosity also drives the study of phenomena that pose no immediate danger, such as land/sea breezes. Due to Earth System

  9. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  10. Interface-Induced Phenomena in Magnetism.

    Science.gov (United States)

    Hellman, Frances; Hoffmann, Axel; Tserkovnyak, Yaroslav; Beach, Geoffrey S D; Fullerton, Eric E; Leighton, Chris; MacDonald, Allan H; Ralph, Daniel C; Arena, Dario A; Dürr, Hermann A; Fischer, Peter; Grollier, Julie; Heremans, Joseph P; Jungwirth, Tomas; Kimel, Alexey V; Koopmans, Bert; Krivorotov, Ilya N; May, Steven J; Petford-Long, Amanda K; Rondinelli, James M; Samarth, Nitin; Schuller, Ivan K; Slavin, Andrei N; Stiles, Mark D; Tchernyshyov, Oleg; Thiaville, André; Zink, Barry L

    2017-01-01

    This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.

  11. Earthquake prediction with electromagnetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Masashi, E-mail: hayakawa@hi-seismo-em.jp [Hayakawa Institute of Seismo Electomagnetics, Co. Ltd., University of Electro-Communications (UEC) Incubation Center, 1-5-1 Chofugaoka, Chofu Tokyo, 182-8585 (Japan); Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo (Japan); Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062 (Japan); Fuji Security Systems. Co. Ltd., Iwato-cho 1, Shinjyuku-ku, Tokyo (Japan)

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  12. Transport phenomena in porous media

    CERN Document Server

    Ingham, Derek B

    1998-01-01

    Research into thermal convection in porous media has substantially increased during recent years due to its numerous practical applications. These problems have attracted the attention of industrialists, engineers and scientists from many very diversified disciplines, such as applied mathematics, chemical, civil, environmental, mechanical and nuclear engineering, geothermal physics and food science. Thus, there is a wealth of information now available on convective processes in porous media and it is therefore appropriate and timely to undertake a new critical evaluation of this contemporary information. Transport Phenomena in Porous Media contains 17 chapters and represents the collective work of 27 of the world's leading experts, from 12 countries, in heat transfer in porous media. The recent intensive research in this area has substantially raised the expectations for numerous new practical applications and this makes the book a most timely addition to the existing literature. It includes recent major deve...

  13. In-vessel phenomena -- CORA

    International Nuclear Information System (INIS)

    Ott, L.J.; Rij, W.I. van.

    1991-01-01

    Experiment-specific models have been employed since 1986 by Oak Ridge National Laboratory (ORNL) severe accident analysis programs for the purpose of boiling water reactor experimental planning and optimum interpretation of experimental results. The large integral tests performed to date, which start from an initial undamaged core state, have involved significantly different-from-prototypic boundary and experimental conditions because of either normal facility limitations or specific experimental constraints. These experiments (ACRR: DF-4, NRU: FLHT-6, and CORA) were designed to obtain specific phenomenological information such as the degradation and interaction of prototypic components and the effects on melt progression of control-blade materials and channel boxes. Applications of ORNL models specific to the KfK CORA-16 and CORA-17 experiments are discussed and significant findings from the experimental analyses such as the following are presented: applicability of available Zircaloy oxidation kinetics correlations; influence of cladding strain on Zircaloy oxidation; influence of spacer grids on the structural heatup; and the impact of treating the gaseous coolant as a gray interacting medium. The experiment-specific models supplement and support the systems-level accident analysis codes. They allow the analyst to accurately quantify the observed experimental phenomena and to compensate for the effect of known uncertainties. They provide a basis for the efficient development of new models for phenomena that are currently not modeled (such as material interactions). They can provide validated phenomenological models (from the results of the experiments) as candidates for incorporation in the systems-level ''whole-core'' codes

  14. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  15. Ben Franklin's Scientific Amusements

    Science.gov (United States)

    Herschbach, Dudley

    2003-04-01

    As an American icon, Benjamin Franklin is often portrayed as wise and canny in business and politics, earnestly pursuing and extolling diligence, sensible conduct, pragmatism, and good works. Also legendary are some of his inventions, particularly the lightning rod, bifocals, and an efficient wood-burning stove. The iconic image is misleading in major respects. Today, surprisingly few people appreciate that, in the 18th century, Franklin was greatly esteemed throughout Europe as a scientist (termed then a "natural philosopher.") He was hailed as the "Newton of Electricity." Indeed, until Franklin, electricity seemed more mysterious than had gravity in Newton's time, and lightning was considered the wrath of God. By his own account, Franklin's studies of electricity and many other phenomena were prompted not by practical aims, but by his playful curiosity--which often became obsessive. Also not generally appreciated is the importance of Franklin's scientific reputation in enhancing his efforts to obtain French support for the American Revolution.

  16. Integrating Felting in Elementary Science Classrooms to Facilitate Understanding of the Polar Auroras

    Directory of Open Access Journals (Sweden)

    Brandy Terrill

    2017-10-01

    Full Text Available The Next Generation Science Standards (NGSS emphasize conceptual science instruction that draws on students’ ability to make observations, explain natural phenomena, and examine concept relationships. This paper explores integrating the arts, in the form of felting, in elementary science classrooms as a way for students to model and demonstrate understanding of the complex scientific processes that cause the polar auroras. The steps for creating felting, and using the felting artwork students create for assessing science learning, are described.

  17. Mastering scientific computing with R

    CERN Document Server

    Gerrard, Paul

    2015-01-01

    If you want to learn how to quantitatively answer scientific questions for practical purposes using the powerful R language and the open source R tool ecosystem, this book is ideal for you. It is ideally suited for scientists who understand scientific concepts, know a little R, and want to be able to start applying R to be able to answer empirical scientific questions. Some R exposure is helpful, but not compulsory.

  18. Diffusion phenomena of cells and biomolecules in microfluidic devices.

    Science.gov (United States)

    Yildiz-Ozturk, Ece; Yesil-Celiktas, Ozlem

    2015-09-01

    Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges. The present article outlines the recent advancements in diffusion phenomena of cells and biomolecules by highlighting transport principles from an engineering perspective, cell responses in microfluidic devices with emphases on diffusion- and flow-based microfluidic gradient platforms, macroscopic and microscopic approaches for investigating the diffusion phenomena of biomolecules, microfluidic platforms for the delivery of these molecules, as well as the state of the art in biological applications of mammalian cell responses and diffusion of biomolecules.

  19. The Impact of Science Fiction Film on Student Understanding of Science

    Science.gov (United States)

    Barnett, Michael; Wagner, Heather; Gatling, Anne; Anderson, Janice; Houle, Meredith; Kafka, Alan

    2006-04-01

    Researchers who have investigated the public understanding of science have argued that fictional cinema and television has proven to be particularly effective at blurring the distinction between fact and fiction. The rationale for this study lies in the notion that to teach science effectively, educators need to understand how popular culture influences their students' perception and understanding of science. Using naturalistic research methods in a diverse middle school we found that students who watched a popular science fiction film, The Core, had a number of misunderstandings of earth science concepts when compared to students who did not watch the movie. We found that a single viewing of a science fiction film can negatively impact student ideas regarding scientific phenomena. Specifically, we found that the film leveraged the scientific authority of the main character, coupled with scientifically correct explanations of some basic earth science, to create a series of plausible, albeit unscientific, ideas that made sense to students.

  20. A Retrospection of Chaotic Phenomena in Electrical Systems

    Directory of Open Access Journals (Sweden)

    Umesh Kumar

    1998-01-01

    Full Text Available In the last decade new phenomena have been observed in all areas of non linear dynamics, principal among these being ‘Chaotic phenomena’. Chaos has been reported virtually from every scientific discipline. This paper summarizes a study of the chaotic phenomena in electrical systems and attempts to translate the mathematical ideas and techniques into language that engineers and applied scientists can use to study ‘Chaos’. Towards this end, the paper has summarized the study of chaos in several examples like Chua’s circuit family; Folded Torus circuit; non-autonomous circuits; switched capacitor circuits and hyper-chaos circuits. As observed in power systems, control systems and digital filters, chaos has been exhibited and shown on examples.

  1. Understanding physics

    CERN Document Server

    Cassidy, David; Rutherford, James

    2002-01-01

    Understanding Physics provides a thorough grounding in contemporary physics while placing physics into its social and historical context Based in large part on the highly respected Project Physics Course developed by two of the authors, it also integrates the results of recent pedagogical research The text thus - teaches about the basic phenomena in the physical world and the concepts developed to explain them - shows that science is a rational human endeavor with a long and continuing tradition, involving many different cultures and people - develops facility in critical thinking, reasoned argumentation, evaluation of evidence, mathematical modeling, and ethical values The treatment emphasizes not only what we know but also how we know it, why we believe it, and what effects that knowledge has - Why do we believe the Earth and planets revolve around the Sun? - Why do we believe that matter is made of atoms? - How do relativity theory and quantum mechanics alter our conception of Nature and in what ways do th...

  2. Poorly studied phenomena in geoelectrics

    Directory of Open Access Journals (Sweden)

    В. С. Могилатов

    2016-12-01

    Full Text Available Undoubtedly, modern geoelectric technologies emerge in the result of the development of traditional approaches and techniques. However of more interest is the appearance of completely new technologies based on new effects and new models of interaction of geological medium and electromagnetic field. The author does not commit to indicate principally new directions, but only wants to discuss some poorly known facts from the theory and practice of geoelectrics. The outcome of this study could be considered attracting the attention of experts to non-traditional signals in geoelectrics. The reviewed phenomena of interest, not fully implemented in practice in the author’s opinion, are field split into two polarizations: transverse electric (the ТЕ-field and transverse magnetic (the ТМ-field, then some poorly known properties of ТМ-field, the role of bias currents, the anisotropy of horizontal resistances, the role of geomagnetic field in geoelectric sounding, the unique resolution of CSEM (Controlled Source Electro-Magnetic techniques at sea.

  3. Transient phenomena in multiphase flow

    International Nuclear Information System (INIS)

    Afgan, N.H.

    1988-01-01

    This book is devoted to formulation of the two-phase system. Emphasis is given to classical instantaneous equations of mass momentum and energy for local conditions and respective averaging procedures and their relevance to the structure of transfer laws. In formulating an equation for a two-velocity continuum, two-phase dispersed flow, two-velocity and local inertial effects associated with contraction and expansion of the mixture have been considered. Particular attention is paid to the effects of interface topology and area concentration as well as the latter's dependence on interfacial transfer laws. Also covered are low bubble concentrations in basic nonuniform unsteady flow where interactions between bubbles are negligible but where the effects of bubbles must still be considered. Special emphasis has been given to the pairwise interaction of the bubble and respective hydrodynamic equations describing the motion of a pair of spherical bubbles through a liquid This book introduces turbulence phenomena in two-phase flow and related problems of phase distribution in two-phase flow. This includes an extensive survey of turbulence and phase distribution models in transient two-phase flow. It is shown that if the turbulent structure of the continuous phase of bubbly two-phase is either measured or can be predicted, then the observed lateral phase distribution can be determined by using an multidimensional two-fluid model in which all lateral forces are properly modeled

  4. Electrostatic phenomena in volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S J; James, M R; Gilbert, J S, E-mail: s.lane@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2011-06-23

    Electrostatic phenomena have long been associated with the explosive eruption of volcanoes. Lightning generated in volcanic plumes is a spectacular atmospheric electrical event that requires development of large potential gradients over distances of up to kilometres. This process begins as hydrated liquid rock (magma) ascends towards Earth's surface. Pressure reduction causes water supersaturation in the magma and the development of bubbles of supercritical water, where deeper than c. 1000 m, and water vapour at shallower depths that drives flow expansion. The generation of high strain rates in the expanding bubbly magma can cause it to fracture in a brittle manner, as deformation relaxation timescales are exceeded. The brittle fracture provides the initial charge separation mechanism, known as fractoemission. The resulting mixture of charged silicate particles and ions evolves over time, generating macro-scale potential gradients in the atmosphere and driving processes such as particle aggregation. For the silicate particles, aggregation driven by electrostatic effects is most significant for particles smaller than c. 100 {mu}m. Aggregation acts to change the effective aerodynamic behaviour of silicate particles, thus altering the sedimentation rates of particles from volcanic plumes from the atmosphere. The presence of liquid phases also promotes aggregation processes and lightning.

  5. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos

    2017-07-06

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.

  6. Simulation of Magnetic Phenomena at Realistic Interfaces

    KAUST Repository

    Grytsyuk, Sergiy

    2016-02-04

    In modern technology exciting developments are related to the ability to understand and control interfaces. Particularly, magnetic interfaces revealing spindependent electron transport are of great interest for modern spintronic devices, such as random access memories and logic devices. From the technological point of view, spintronic devices based on magnetic interfaces enable manipulation of the magnetism via an electric field. Such ability is a result of the different quantum effects arising from the magnetic interfaces (for example, spin transfer torque or spin-orbit torque) and it can reduce the energy consumption as compared to the traditional semiconductor electronic devices. Despite many appealing characteristics of these materials, fundamental understanding of their microscopic properties and related phenomena needs to be established by thorough investigation. In this work we implement first principles calculations in order to study the structural, electric, and magnetic properties as well as related phenomena of two types of interfaces with large potential in spintronic applications: 1) interfaces between antiferromagnetic 3d-metal-oxides and ferromagnetic 3d-metals and 2) interfaces between non-magnetic 5d(4d)- and ferromagnetic 3d-metals. A major difficulty in studying such interfaces theoretically is the typically large lattice mismatch. By employing supercells with Moir e patterns, we eliminate the artificial strain that leads to doubtful results and are able to describe the dependence of the atomic density at the interfaces on the component materials and their thicknesses. After establishing understanding about the interface structures, we investigate the electronic and magnetic properties. A Moir e supercell with transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces. In addition, we systematically study the magnetic anisotropy and Rashba band

  7. Scientific computer simulation review

    International Nuclear Information System (INIS)

    Kaizer, Joshua S.; Heller, A. Kevin; Oberkampf, William L.

    2015-01-01

    Before the results of a scientific computer simulation are used for any purpose, it should be determined if those results can be trusted. Answering that question of trust is the domain of scientific computer simulation review. There is limited literature that focuses on simulation review, and most is specific to the review of a particular type of simulation. This work is intended to provide a foundation for a common understanding of simulation review. This is accomplished through three contributions. First, scientific computer simulation review is formally defined. This definition identifies the scope of simulation review and provides the boundaries of the review process. Second, maturity assessment theory is developed. This development clarifies the concepts of maturity criteria, maturity assessment sets, and maturity assessment frameworks, which are essential for performing simulation review. Finally, simulation review is described as the application of a maturity assessment framework. This is illustrated through evaluating a simulation review performed by the U.S. Nuclear Regulatory Commission. In making these contributions, this work provides a means for a more objective assessment of a simulation’s trustworthiness and takes the next step in establishing scientific computer simulation review as its own field. - Highlights: • We define scientific computer simulation review. • We develop maturity assessment theory. • We formally define a maturity assessment framework. • We describe simulation review as the application of a maturity framework. • We provide an example of a simulation review using a maturity framework

  8. Framing of scientific knowledge as a new category of health care research.

    Science.gov (United States)

    Salvador-Carulla, Luis; Fernandez, Ana; Madden, Rosamond; Lukersmith, Sue; Colagiuri, Ruth; Torkfar, Ghazal; Sturmberg, Joachim

    2014-12-01

    The new area of health system research requires a revision of the taxonomy of scientific knowledge that may facilitate a better understanding and representation of complex health phenomena in research discovery, corroboration and implementation. A position paper by an expert group following and iterative approach. 'Scientific evidence' should be differentiated from 'elicited knowledge' of experts and users, and this latter typology should be described beyond the traditional qualitative framework. Within this context 'framing of scientific knowledge' (FSK) is defined as a group of studies of prior expert knowledge specifically aimed at generating formal scientific frames. To be distinguished from other unstructured frames, FSK must be explicit, standardized, based on the available evidence, agreed by a group of experts and subdued to the principles of commensurability, transparency for corroboration and transferability that characterize scientific research. A preliminary typology of scientific framing studies is presented. This typology includes, among others, health declarations, position papers, expert-based clinical guides, conceptual maps, classifications, expert-driven health atlases and expert-driven studies of costs and burden of illness. This grouping of expert-based studies constitutes a different kind of scientific knowledge and should be clearly differentiated from 'evidence' gathered from experimental and observational studies in health system research. © 2014 John Wiley & Sons, Ltd.

  9. Evaluating a scientific collaboratory

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.; Whitton, Mary C.; Maglaughlin, Kelly L.

    2003-01-01

    of the system, and post-interviews to understand the participants' views of doing science under both conditions. We hypothesized that study participants would be less effective, report more difficulty, and be less favorably inclined to adopt the system when collaborating remotely. Contrary to expectations...... of collaborating remotely. While the data analysis produced null results, considered as a whole, the analysis leads us to conclude there is positive potential for the development and adoption of scientific collaboratory systems....

  10. Statistical trend analysis methods for temporal phenomena

    International Nuclear Information System (INIS)

    Lehtinen, E.; Pulkkinen, U.; Poern, K.

    1997-04-01

    We consider point events occurring in a random way in time. In many applications the pattern of occurrence is of intrinsic interest as indicating a trend or some other systematic feature in the rate of occurrence. The purpose of this report is to survey briefly different statistical trend analysis methods and illustrate their applicability to temporal phenomena in particular. The trend testing of point events is usually seen as the testing of the hypotheses concerning the intensity of the occurrence of events. When the intensity function is parametrized, the testing of trend is a typical parametric testing problem. In industrial applications the operational experience generally does not suggest any specified model and method in advance. Therefore, and particularly, if the Poisson process assumption is very questionable, it is desirable to apply tests that are valid for a wide variety of possible processes. The alternative approach for trend testing is to use some non-parametric procedure. In this report we have presented four non-parametric tests: The Cox-Stuart test, the Wilcoxon signed ranks test, the Mann test, and the exponential ordered scores test. In addition to the classical parametric and non-parametric approaches we have also considered the Bayesian trend analysis. First we discuss a Bayesian model, which is based on a power law intensity model. The Bayesian statistical inferences are based on the analysis of the posterior distribution of the trend parameters, and the probability of trend is immediately seen from these distributions. We applied some of the methods discussed in an example case. It should be noted, that this report is a feasibility study rather than a scientific evaluation of statistical methods, and the examples can only be seen as demonstrations of the methods

  11. Statistical trend analysis methods for temporal phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, E.; Pulkkinen, U. [VTT Automation, (Finland); Poern, K. [Poern Consulting, Nykoeping (Sweden)

    1997-04-01

    We consider point events occurring in a random way in time. In many applications the pattern of occurrence is of intrinsic interest as indicating a trend or some other systematic feature in the rate of occurrence. The purpose of this report is to survey briefly different statistical trend analysis methods and illustrate their applicability to temporal phenomena in particular. The trend testing of point events is usually seen as the testing of the hypotheses concerning the intensity of the occurrence of events. When the intensity function is parametrized, the testing of trend is a typical parametric testing problem. In industrial applications the operational experience generally does not suggest any specified model and method in advance. Therefore, and particularly, if the Poisson process assumption is very questionable, it is desirable to apply tests that are valid for a wide variety of possible processes. The alternative approach for trend testing is to use some non-parametric procedure. In this report we have presented four non-parametric tests: The Cox-Stuart test, the Wilcoxon signed ranks test, the Mann test, and the exponential ordered scores test. In addition to the classical parametric and non-parametric approaches we have also considered the Bayesian trend analysis. First we discuss a Bayesian model, which is based on a power law intensity model. The Bayesian statistical inferences are based on the analysis of the posterior distribution of the trend parameters, and the probability of trend is immediately seen from these distributions. We applied some of the methods discussed in an example case. It should be noted, that this report is a feasibility study rather than a scientific evaluation of statistical methods, and the examples can only be seen as demonstrations of the methods. 14 refs, 10 figs.

  12. Understanding uncertainty

    CERN Document Server

    Lindley, Dennis V

    2013-01-01

    Praise for the First Edition ""...a reference for everyone who is interested in knowing and handling uncertainty.""-Journal of Applied Statistics The critically acclaimed First Edition of Understanding Uncertainty provided a study of uncertainty addressed to scholars in all fields, showing that uncertainty could be measured by probability, and that probability obeyed three basic rules that enabled uncertainty to be handled sensibly in everyday life. These ideas were extended to embrace the scientific method and to show how decisions, containing an uncertain element, could be rationally made.

  13. 'demoted'?: Symbols as religious phenomena

    African Journals Online (AJOL)

    2013-03-06

    Mar 6, 2013 ... process by which symbols grow and develop, the particular context of a symbol is important. In this article a particular theory as to what symbols are, is presented. ... of communication and reference between these two worlds are symbols. .... from a psychological perspective, understands symbols as a.

  14. Astrophysical phenomena related to supermassive black holes

    Science.gov (United States)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  15. Scientific computing

    CERN Document Server

    Trangenstein, John A

    2017-01-01

    This is the third of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses topics that depend more on calculus than linear algebra, in order to prepare the reader for solving differential equations. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 90 examples, 200 exercises, 36 algorithms, 40 interactive JavaScript programs, 91 references to software programs and 1 case study. Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in GSLIB and MATLAB. This book could be used for a second course in numerical methods, for either ...

  16. Nonlinear dynamical phenomena in liquid crystals

    International Nuclear Information System (INIS)

    Wang, X.Y.; Sun, Z.M.

    1988-09-01

    Because of the existence of the orientational order and anisotropy in liquid crystals, strong nonlinear phenomena and singular behaviors, such as solitary wave, transient periodic structure, chaos, fractal and viscous fingering, can be excited by a very small disturbance. These phenomena and behaviors are in connection with physics, biology and mathematics. 12 refs, 6 figs

  17. Polarization phenomena in heavy-ion reactions

    International Nuclear Information System (INIS)

    Sugimoto, K.; Ishihara, M.; Takahashi, N.

    1984-01-01

    This chapter presents a few key experiments which provide direct evidence of the polarization phenomena in heavy-ion reactions. The theory of polarization observables and measurements is given with the necessary formulae. The polarization phenomena is described and studies of product nuclear polarization in heavy-ion reactions are discussed. Studies of heavy-ion reactions induced by polarized beams are examined

  18. A Connection between Transport Phenomena and Thermodynamics

    Science.gov (United States)

    Swaney, Ross; Bird, R. Byron

    2017-01-01

    Although students take courses in transport phenomena and thermodynamics, they probably do not ask whether these two subjects are related. Here we give an answer to that question. Specifically we give relationships between the equations of change for total energy, internal energy, and entropy of transport phenomena and key equations of equilibrium…

  19. Calcium contained tap water phenomena: students misconception patterns of acids-bases concept

    Science.gov (United States)

    Liliasari, S.; Albaiti, A.; Wahyudi, A.

    2018-05-01

    Acids and bases concept is very important and fundamental concept in learning chemistry. It is one of the chemistry subjects considered as an abstract and difficult concept to understand. The aim of this research was to explore student’s misconception pattern about acids and bases phenomena in daily life, such as calcium contained tap water. This was a qualitative research with descriptive methods. Participants were 546 undergraduate students of chemistry education and chemistry program, and graduate students of chemistry education in West Java, Indonesia. The test to explore students’ misconception about this phenomena was essay test. The results showed that there were five patterns of students’ misconception in explaining the phenomena of calcium carbonate precipitation on heating tap water. Students used irrelevant concepts in explaining this phenomena, i.e. temporary hardness, coagulation, density, and phase concepts. No students had right answer in explaining this phenomena. This research contributes to design meaningful learning and to achieve better understanding.

  20. Precedent Phenomena in Quebecois Linguistic World View

    Directory of Open Access Journals (Sweden)

    Ксения Эдуардовна Болотина

    2016-12-01

    Full Text Available This article is devoted to the linguocultural analysis of precedent phenomena as parts of Quebecois’ cognitive base. Precedent phenomena being cultural facts are one of the key issues in modern linguistic and cognitive studies. By precedent phenomena we mean, according to Y.E. Prohorov, such entities when verbalized in discourse that refer to a certain cultural fact behind them. In the article the precedent phenomena such as precedent text, precedent situation, precedent utterance, and precedent name are analyzed. The main theses of the precedence theory given in the article (Y.N. Karaulov, Y.E. Prohorov, V.V. Krasnyh, D.B. Gudkov are at the heart of precedence studies on the basis of different languages. However, a complex analysis of precedent phenomena in the Quebec national variant of French is new to Russian linguistics. The study of precedent phenomena enables us to elicit features of their functioning in ethnospecific discourse and determine cultural dominants existing in Quebecois’ linguistic world view. Given the fact that the size of the article is limited, we undertooke the analysis of eight phenomena precedent of the bearers of Quebec linguoculture. The choice of phenomena is determined by the frequency of their use in discourse. The facts analyzed are of national character, i.e. known to all members of the linguocultural community. A certain cultural fact is at the very core of each precedent phenomenon given in the article. To get the whole picture we analysed historic, political, and cultural context connected to the precedent phenomena in question. The study enables us to elicit distinctive features that are at the core of each phenomenon. The results are backed with the supportive material drawn from analysis of different types of discourse. The analysis of precedent phenomena undertaken in this article allows us to reconstruct, to a certain extent, Quebec cultural space and is a stepping stone to the reconstruction of the

  1. Transport phenomena and drying of solids and particulate materials

    CERN Document Server

    Lima, AG

    2014-01-01

    The purpose of this book, Transport Phenomena and Drying of Solids and Particulate Materials, is to provide a collection of recent contributions in the field of heat and mass transfer, transport phenomena, drying and wetting of solids and particulate materials. The main benefit of the book is that it discusses some of the most important topics related to the heat and mass transfer in solids and particulate materials. It includes a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena, drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional c...

  2. Living matter: the "lunar eclipse" phenomena.

    Science.gov (United States)

    Korpan, Nikolai N

    2010-01-01

    The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use

  3. Phenomena at very high spins

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1980-03-01

    The present talk has three parts: first, a discussion of current ideas about the physics of very high spin states; second, some comments about noncollective behavior up to the highest spins where it is known, approx. 40 h; and finally, a presentation of the newest method for studying collective behavior up to spins of 60 to 70 h. The intention is that the overview presented in the first part will be sufficiently broad to indicate the relationship of the noncollective and collective behavior discussed in the other parts, and to provide some understanding of the compromise in behavior that seems to occur at the very highest spins. 13 figures

  4. Quantum chemistry and scientific calculus

    International Nuclear Information System (INIS)

    Gervais, H.P.

    1988-01-01

    The 1988 progress report of the Polytechnic School research team, concerning the quantum chemistry and the scientific calculus. The research program involves the following topics: the transition metals - carbon monoxide systems, which are a suitable model for the chemisorption phenomena; the introduction of the vibronic perturbations in the magnetic screen constants; the gauge invariance method (used in the calculation of the magnetic perturbations), extended to the case of the static or dynamic electrical polarizabilities. The published papers, the congress communications and the thesis are listed [fr

  5. Electrocapillary Phenomena at Edible Oil/Saline Interfaces.

    Science.gov (United States)

    Nishimura, Satoshi; Ohzono, Takuya; Shoji, Kohei; Yagihara, Shin; Hayashi, Masafumi; Tanaka, Hisao

    2017-03-01

    Interfacial tension between edible oil and saline was measured under applied electric fields to understand the electrocapillary phenomena at the edible oil/saline interfaces. The electric responses of saline droplets in edible oil were also observed microscopically to examine the relationship between the electrocapillary phenomena and interfacial polarization. When sodium oleate (SO) was added to edible oil (SO-oil), the interfacial tension between SO-oil and saline decreased. However, no decrease was observed for additive-free oil or oleic acid (OA)-added oil (OA-oil). Microscopic observations suggested that the magnitude of interfacial polarization increased in the order of additive-free oil oil oil. The difference in electrocapillary phenomena between OA- and SO-oils was closely related to the polarization magnitude. In the case of SO-oil, the decrease in interfacial tension was remarkably larger for saline (pH 5.4~5.6) than that for phosphate-buffered saline (PBS, pH 7.2~7.4). However, no difference was observed between the electric responses of PBS and saline droplets in SO-oil. The difference in electrocapillary phenomena for PBS and saline could not be simply explained in terms of polarization magnitude. The ratio of ionized and non-ionized OA at the interfaces changed with the saline pH, possibly leading to the above difference.

  6. Teaching Teaching & Understanding Understanding

    DEFF Research Database (Denmark)

    2006-01-01

    "Teaching Teaching & Understanding Understanding" is a 19-minute award-winning short-film about teaching at university and higher-level educational institutions. It is based on the "Constructive Alignment" theory developed by Prof. John Biggs. The film delivers a foundation for understanding what...

  7. Interfacial polarization phenomena in organic molecular films

    International Nuclear Information System (INIS)

    Iwamoto, Mitsumasa; Manaka, Takaaki

    2006-01-01

    Electrostatic phenomena occurring at the interface between metal/organic and organic/organic materials are discussed from the viewpoint of dielectrics physics. Focusing on two important origins of surface polarization phenomena, orientational ordering of polar molecules and displacement of excess charges at the interface, surface polarization phenomena of organic thin films are discussed. To define the orientational order of polar molecules, orientational order parameters are introduced, and surface polarization due to the alignment of dipoles is expressed. The generation of Maxwell displacement current (MDC) and optical second harmonic generation (SHG) that are specific for surface organic monomolecular films are discussed, and some experimental evidence are shown. As an extension of the concept of surface Fermi level introduced to discuss the electrostatic phenomena due to electron transfer at the interface between metal-organic insulators, the surface Fermi level is extended to the discussion on the electrostatic phenomena of organic semiconductor materials on metals. In this paper, some experimental evidence of surface polarization originating from polar molecules and displacement of excess charges are shown. After that, with consideration of these surface phenomena, single electron tunneling of organic films are briefly discussed in association with surface polarization phenomena

  8. Scientific Visualization Tools for Enhancement of Undergraduate Research

    Science.gov (United States)

    Rodriguez, W. J.; Chaudhury, S. R.

    2001-05-01

    Undergraduate research projects that utilize remote sensing satellite instrument data to investigate atmospheric phenomena pose many challenges. A significant challenge is processing large amounts of multi-dimensional data. Remote sensing data initially requires mining; filtering of undesirable spectral, instrumental, or environmental features; and subsequently sorting and reformatting to files for easy and quick access. The data must then be transformed according to the needs of the investigation(s) and displayed for interpretation. These multidimensional datasets require views that can range from two-dimensional plots to multivariable-multidimensional scientific visualizations with animations. Science undergraduate students generally find these data processing tasks daunting. Generally, researchers are required to fully understand the intricacies of the dataset and write computer programs or rely on commercially available software, which may not be trivial to use. In the time that undergraduate researchers have available for their research projects, learning the data formats, programming languages, and/or visualization packages is impractical. When dealing with large multi-dimensional data sets appropriate Scientific Visualization tools are imperative in allowing students to have a meaningful and pleasant research experience, while producing valuable scientific research results. The BEST Lab at Norfolk State University has been creating tools for multivariable-multidimensional analysis of Earth Science data. EzSAGE and SAGE4D have been developed to sort, analyze and visualize SAGE II (Stratospheric Aerosol and Gas Experiment) data with ease. Three- and four-dimensional visualizations in interactive environments can be produced. EzSAGE provides atmospheric slices in three-dimensions where the researcher can change the scales in the three-dimensions, color tables and degree of smoothing interactively to focus on particular phenomena. SAGE4D provides a navigable

  9. Plagiarism in scientific publishing.

    Science.gov (United States)

    Masic, Izet

    2012-12-01

    scientific research and intellectual honesty of researchers which would be absolutely applicable in all situations and in all research institutions. A special form of plagiarism is self-plagiarism. Scientists need to take into consideration this form of plagiarism, though for now there is an attitude as much as their own words can be used without the word about plagiarism. If the authors cite their own research facilities already stated then they should be put in quote sand cite the source in which it was published. Science should not be exempt from disclosure and sanctioning plagiarism. In the fight against intellectual dishonesty on ethics education in science has a significant place. A general understanding of ethics in scientific research work in all its stages had to be acquired during the undergraduate course and continue to intensify. It is also important ethical aspect of the publishing industry,especially in small and developing economies,because the issuer has an educational role in the development of the scientific community that aspires to relish so. In this paper author describe his experiences in discovering of plagiarism as Editor-in-Chief of three indexed medical journals with presentations of several examples of plagiarism recorded in countries in Southeastern Europe.

  10. PLAGIARISM IN SCIENTIFIC PUBLISHING

    Science.gov (United States)

    Masic, Izet

    2012-01-01

    scientific research and intellectual honesty of researchers which would be absolutely applicable in all situations and in all research institutions. A special form of plagiarism is self-plagiarism. Scientists need to take into consideration this form of plagiarism, though for now there is an attitude as much as their own words can be used without the word about plagiarism. If the authors cite their own research facilities already stated then they should be put in quote sand cite the source in which it was published. Science should not be exempt from disclosure and sanctioning plagiarism. In the fight against intellectual dishonesty on ethics education in science has a significant place. A general understanding of ethics in scientific research work in all its stages had to be acquired during the undergraduate course and continue to intensify. It is also important ethical aspect of the publishing industry,especially in small and developing economies,because the issuer has an educational role in the development of the scientific community that aspires to relish so. In this paper author describe his experiences in discovering of plagiarism as Editor-in-Chief of three indexed medical journals with presentations of several examples of plagiarism recorded in countries in Southeastern Europe. PMID:23378684

  11. A statistical approach to strange diffusion phenomena

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Sanchez, R.

    2005-01-01

    The study of particle (and heat) transport in fusion plasmas has revealed the existence of what might be called 'unusual' transport phenomena. Such phenomena are: unexpected scaling of the confinement time with system size, power degradation (i.e. sub-linear scaling of energy content with power input), profile stiffness (also known as profile consistency), rapid transient transport phenomena such as cold and heat pulses (travelling much faster than the diffusive timescale would allow), non-local behaviour and central profile peaking during off-axis heating, associated with unexplained inward pinches. The standard modelling framework, essentially equal to Fick's Law plus extensions, has great difficulty in providing an all-encompassing and satisfactory explanation of all these phenomena. This difficulty has motivated us to reconsider the basics of the modelling of diffusive phenomena. Diffusion is based on the well-known random walk. The random walk is captured in all its generality in the Continuous Time Random Walk (CTRW) formalism. The CTRW formalism is directly related to the well-known Generalized Master Equation, which describes the behaviour of tracer particle diffusion on a very fundamental level, and from which the phenomenological Fick's Law can be derived under some specific assumptions. We show that these assumptions are not necessarily satisfied under fusion plasma conditions, in which case other equations (such as the Fokker-Planck diffusion law or the Master Equation itself) provide a better description of the phenomena. This fact may explain part of the observed 'strange' phenomena (namely, the inward pinch). To show how the remaining phenomena mentioned above may perhaps find an explanation in the proposed alternative modelling framework, we have designed a toy model that incorporates a critical gradient mechanism, switching between rapid (super-diffusive) and normal diffusive transport as a function of the local gradient. It is then demonstrated

  12. SCHOOL LINGUISTIC CREATIVITY BASED ON SCIENTIFIC GEOGRAPHICAL TEXTS

    OpenAIRE

    VIORICA BLÎNDĂ

    2012-01-01

    The analysis and observation of the natural environment and of the social and economic one, observing phenomena, objects, beings, and geographical events are at the basis of producing geographical scientific texts. The symbols of iconotexts and cartotexts are another source of inspiration for linguistic interpretation. The linguistic creations that we selected for our study are the scientific analysis, the commentary, the characteriz...

  13. Fourteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A; Silvestri, Sandro; Ultrafast Phenomena XIV

    2005-01-01

    Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics. This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.

  14. Transient phenomena in electrical power systems

    CERN Document Server

    Venikov, V A; Higinbotham, W

    1964-01-01

    Electronics and Instrumentation, Volume 24: Transient Phenomena in Electrical Power Systems presents the methods for calculating the stability and the transient behavior of systems with forced excitation control. This book provides information pertinent to the analysis of transient phenomena in electro-mechanical systems.Organized into five chapters, this volume begins with an overview of the principal requirements in an excitation system. This text then explains the electromagnetic and electro-mechanical phenomena, taking into account the mutual action between the components of the system. Ot

  15. Computational transport phenomena for engineering analyses

    CERN Document Server

    Farmer, Richard C; Cheng, Gary C; Chen, Yen-Sen

    2009-01-01

    Computational Transport PhenomenaOverviewTransport PhenomenaAnalyzing Transport PhenomenaA Computational Tool: The CTP CodeVerification, Validation, and GeneralizationSummaryNomenclatureReferencesThe Equations of ChangeIntroductionDerivation of The Continuity EquationDerivation of The Species Continuity EquationDerivation of The Equation Of MotionDerivation of The General Energy EquationNon-Newtonian FluidsGeneral Property BalanceAnalytical and Approximate Solutions for the Equations of ChangeSummaryNomenclatureReferencesPhysical PropertiesOverviewReal-Fluid ThermodynamicsChemical Equilibrium

  16. Nonlinear Photonics and Novel Optical Phenomena

    CERN Document Server

    Morandotti, Roberto

    2012-01-01

    Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.

  17. Sixteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Corkum, Paul; Nelson, Keith A; Riedle, Eberhard; Schoenlein, Robert W; Ultrafast Phenomena XVI

    2009-01-01

    Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

  18. Heat transfer phenomena revelant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression

  19. Developing Phenomena Models from Experimental Data

    DEFF Research Database (Denmark)

    Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay

    2003-01-01

    A systematic approach for developing phenomena models from experimental data is presented. The approach is based on integrated application of stochastic differential equation (SDE) modelling and multivariate nonparametric regression, and it is shown how these techniques can be used to uncover...... unknown functionality behind various phenomena in first engineering principles models using experimental data. The proposed modelling approach has significant application potential, e.g. for determining unknown reaction kinetics in both chemical and biological processes. To illustrate the performance...... of the approach, a case study is presented, which shows how an appropriate phenomena model for the growth rate of biomass in a fed-batch bioreactor can be inferred from data....

  20. Developing Phenomena Models from Experimental Data

    DEFF Research Database (Denmark)

    A systematic approach for developing phenomena models from experimental data is presented. The approach is based on integrated application of stochastic differential equation (SDE) modelling and multivariate nonparametric regression, and it is shown how these techniques can be used to uncover...... unknown functionality behind various phenomena in first engineering principles models using experimental data. The proposed modelling approach has significant application potential, e.g. for determining unknown reaction kinetics in both chemical and biological processes. To illustrate the performance...... of the approach, a case study is presented, which shows how an appropriate phenomena model for the growth rate of biomass in a fed-batch bioreactor can be inferred from data....

  1. Heat transfer phenomena relevant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression. 26 refs

  2. 10 March 2008 - Swedish Minister for Higher Education and Research L. Leijonborg signing the guest book with CERN Chef Scientific Officer J. Engelen, followed by the signature of the Swedish Computing Memorandum of Understanding by the Director General of the Swedish Research Council P. Ömling.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    10 March 2008 - Swedish Minister for Higher Education and Research L. Leijonborg signing the guest book with CERN Chef Scientific Officer J. Engelen, followed by the signature of the Swedish Computing Memorandum of Understanding by the Director General of the Swedish Research Council P. Ömling.

  3. Autonomous Sensory Meridian Response (ASMR) and Frisson: Mindfully Induced Sensory Phenomena That Promote Happiness

    Science.gov (United States)

    del Campo, Marisa A.; Kehle, Thomas J.

    2016-01-01

    There are many important phenomena involved in human functioning that are unnoticed, misunderstood, not applied, or do not pique the interest of the scientific community. Among these, "autonomous sensory meridian response" ("ASMR") and "frisson" are two very noteworthy instances that may prove to be therapeutically…

  4. Exposure to Science Is Not Enough: The Influence of Classroom Experiences on Belief in Paranormal Phenomena

    Science.gov (United States)

    Manza, Lou; Hilperts, Keri; Hindley, Lauren; Marco, Christina; Santana, Amanda; Hawk, Michelle Vosburgh

    2010-01-01

    Beliefs in scientifically unsubstantiated ideas were investigated with a study that contrasted college students' attitudes toward paranormal phenomena before and after exposure to skeptical arguments concerning these events. Specifically, students enrolled in 2 sections of a psychological statistics course were exposed to illustrations of…

  5. Using a Concept Cartoon© Method to Address Elementary School Students' Ideas about Natural Phenomena

    Science.gov (United States)

    Minárechová, Michaela

    2016-01-01

    This study investigated the identification and subsequent development or modification of students´ ideas about scientific phenomena by teaching by concept cartoons© method. We found out ideas of students of the fourth grade of primary school by conceptual tasks which were parts of quasi-experiment (pretest and posttest design). For triangulation…

  6. Particle accelerators and scientific culture

    International Nuclear Information System (INIS)

    Amaldi, U.

    1979-01-01

    A historical review of fifty years of physics around particle accelerators, from the first nuclear reactions produced by beams of artificially accelerated particles to the large multinational projects now under discussion. The aim is to show how the description of natural phenomena has been shaped by advances in theoretical understanding, the development of new techniques, and the characters of men. Large use has been made of quotations from many of the scientists involved. (Auth.)

  7. Particle accelerators and scientific culture

    International Nuclear Information System (INIS)

    Amaldi, U.

    1979-01-01

    A historical review of fifty years of physics around particle accelerators, from the first nuclear reactions produced by beams of artificially accelerated particles to the large multinational projects now under discussion. The aim is to show how our description of natural phenomena has been shaped by advances in theoretical understanding, the development of new techniques, and the characters of men. Large use has been made of quotations from many of the scientists involved. (Auth.)

  8. Physics education students’ cognitive and affective domains toward ecological phenomena

    Science.gov (United States)

    Napitupulu, N. D.; Munandar, A.; Redjeki, S.; Tjasyono, B.

    2018-05-01

    Environmental education is become prominent in dealing with natural phenomena that occur nowadays. Studying environmental physics will lead students to have conceptual understanding which are importent in enhancing attitudes toward ecological phenomena that link directry to cognitive and affective domains. This research focused on the the relationship of cognitive and affective domains toward ecological phenomena. Thirty-seven Physics Education students participated in this study and validated sources of data were collected to eksplore students’ conceptual understanding as cognitive domain and to investigate students’ attitudes as affective domain. The percentage of cognitive outcome and affective outcome are explore. The features of such approaches to environmental learning are discussion through analysis of contribution of cognitive to develop the attitude ecological as affective outcome. The result shows that cognitive domains do not contribute significantly to affective domain toward ecological henomena as an issue trend in Central Sulawesi although students had passed Environmental Physics instruction for two semester. In fact, inferior knowledge in a way actually contributes to the attitude domain caused by the prior knowledge that students have as ombo as a Kaili local wisdom.

  9. Conditioning and breakdown phenomena in accelerator tubes

    International Nuclear Information System (INIS)

    Skorka, S.J.

    1979-01-01

    Important breakdown mechanisms in accelerator tubes are reviewed, and discharge phenomena in NEC tubes are deduced from the surface appearance of the electrodes and insulators of a used tube. Microphotos of these surfaces are shown

  10. Canister storage building natural phenomena design loads

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1996-02-01

    This document presents natural phenomena hazard (NPH) loads for use in the design and construction of the Canister Storage Building (CSB), which will be located in the 200 East Area of the Hanford Site

  11. Didactic demonstrations of superfluidity and superconductivity phenomena

    International Nuclear Information System (INIS)

    Aniola-Jedrzejak, L.; Lewicki, A.; Pilipowicz, A.; Tarnawski, Z.; Bialek, H.

    1980-01-01

    In order to demonstrate to students phenomena of superfluidity and superconductivity a special helium cryostat has been constructed. The demonstrated effects, construction of the cryostat and the method of demonstration are described. (author)

  12. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  13. Scientific Tourism in Armenia

    Science.gov (United States)

    Tashchyan, Davit

    2016-12-01

    The Scientific Tourism is relatively new direction in the world, however it already has managed to gain great popularity. As it is, it has arisen in 1980s, but its ideological basis comes from the earliest periods of the human history. In Armenia, it is a completely new phenomenon and still not-understandable for many people. At global level, the Scientific Tourism has several definitions: for example, as explains the member of the scientific tourist centre of Zlovlen Mrs. Pichelerova "The essence of the scientific tourism is based on the provision of the educational, cultural and entertainment needs of a group of people of people who are interested in the same thing", which in our opinion is a very comprehensive and discreet definition. We also have our own views on this type of tourism. Our philosophy is that by keeping the total principles, we put the emphasis on the strengthening of science-individual ties. Our main emphasis is on the scientific-experimental tourism. But this does not mean that we do not take steps to other forms of tourism. Studying the global experience and combining it with our resources, we are trying to get a new interdisciplinary science, which will bring together a number of different professionals as well as individuals, and as a result will have a new lore. It is in this way that an astronomer will become an archaeologist, an archaeologist will become an astrophysicist, etc. Speaking on interdisciplinary sciences, it's worth mentioning that in recent years, the role of interdisciplinary sciences at global level every day is being considered more and more important. In these terms, tourism is an excellent platform for the creation of interdisciplinary sciences and, therefore, the preparation of corresponding scholars. Nevertheless, scientific tourism is very important for the revelation, appreciation and promotion of the country's historical-cultural heritage and scientific potential. Let us not forget either that tourism in all its

  14. Evidence on Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Malene Rode; Sommersel, Hanna Bjørnøy; Larsen, Michael Søgaard

    This publication is an excerpt from the full technical report ‘Dropout Phenomena at Universities: What is Dropout? Why does Dropout Occur? What Can be Done by the Universities to Prevent or Reduce it? A systematic review’, which was completed in April 2013. The purpose of this excerpt is to present...... the knowledge we have on dropout phenomena at European universities in a short, precise and comprehensible form to allow readers to orient themselves on the subject in a more readable manner....

  15. Polarization phenomena in two body systems

    International Nuclear Information System (INIS)

    Thomas, G.H.

    1978-01-01

    A review is given of strong interactions at very low, low, intermediate, and high energies over the range 6.14 MeV to 150 GeV/c with regard to polarization phenomena in two-body systems. From the one-pion-exchange model to the theory that can possibly relate to all the phenomena, namely, quantum electrodynamics the review pointed to a unified explanation for the interactions under study. 46 references

  16. Addressing submarine geohazards through scientific drilling

    Science.gov (United States)

    Camerlenghi, A.

    2009-04-01

    Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the

  17. Preface to special issue: Layered Phenomena in the Mesopause Region

    Science.gov (United States)

    Chu, Xinzhao; Marsh, Daniel R.

    2017-09-01

    Historically, the Layered Phenomena in the Mesopause Region (LPMR) workshops have focused on studies of mesospheric clouds and their related science, including spectacular noctilucent clouds (NLCs), polar mesospheric clouds (PMCs), and polar mesospheric summer echoes (PMSEs). This is because, in the pre-technology era, these high-altitude ( 85 km) clouds revealed the existence of substance above the 'normal atmosphere' - our near-space environment is not empty! The occurrence and nature of these clouds have commanded the attention of atmospheric and space scientists for generations. Modern technologies developed in the last 50 years have enabled scientists to significantly advance our understanding of these layered phenomena. Satellite observations expanded these studies to global scales, while lidar and radar observations from the ground enabled fine-scale studies. The launch of the Aeronomy of Ice in the Mesosphere (AIM) satellite in 2007 brought mesospheric cloud research to a more mature level.

  18. Autoscopic phenomena and one's own body representation in dreams.

    Science.gov (United States)

    Occhionero, Miranda; Cicogna, Piera Carla

    2011-12-01

    Autoscopic phenomena (AP) are complex experiences that include the visual illusory reduplication of one's own body. From a phenomenological point of view, we can distinguish three conditions: autoscopic hallucinations, heautoscopy, and out-of-body experiences. The dysfunctional pattern involves multisensory disintegration of personal and extrapersonal space perception. The etiology, generally either neurological or psychiatric, is different. Also, the hallucination of Self and own body image is present during dreams and differs according to sleep stage. Specifically, the representation of the Self in REM dreams is frequently similar to the perception of Self in wakefulness, whereas in NREM dreams, a greater polymorphism of Self and own body representation is observed. The parallels between autoscopic phenomena in pathological cases and the Self-hallucination in dreams will be discussed to further the understanding of the particular states of self awareness, especially the complex integration of different memory sources in Self and body representation. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Second DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1989-01-01

    This conference has been organized into ten presentation sessions which include an overview of the DOE Natural Phenomena Guidelines, Seismic Analysis, Seismic Design, Modifying Existing Facilities, DOE Orders, Codes, and Standards (2 sessions), Seismic Hazard (2 sessions), and Probabilistic Risk Assessment (2 sessions). Two poster sessions were also included in the program to provide a different forum for communication of ideas. Over the past fourteen years, Lawrence Livermore National Laboratory, Nuclear Systems Safety Program, has been working with the US Department of Energy, Office of Safety Appraisals and their predecessors in the area of natural phenomena hazards. During this time we have developed seismic, extreme wind/tornado, and flood hazard models for DOE sites in the United States. Guidelines for designing and evaluating DOE facilities for natural phenomena have been developed and are in interim use throughout the DOE community. A series of state-of-the practice manuals have also been developed to aid the designers. All of this material is listed in the Natural Phenomena Hazards Bibliography included in these proceedings. This conference provides a mechanism to disseminate current information on natural phenomena hazards and their mitigation. It provides an opportunity to bring together members of the DOE community to discuss current projects, to share information, and to hear practicing members of the structural engineering community discuss their experiences from past natural phenomena, future trends, and any changes to building codes. Each paper or poster presented is included in these proceedings. We have also included material related to the luncheon and dinner talks

  20. Speech and scientific paper. A rhetorical approach

    Directory of Open Access Journals (Sweden)

    Juan Carlos Carmona Sandoval

    2013-01-01

    Full Text Available This essay attempts to show that the ancient rhetorical theory has explanatory capabilities to understand and learn to write modern texts and to analyze them in order to understand their communication skills, as in the scientific article, one of the most prestigious forms on scientific communication. It starts with the notion of discourse in the field of scientific communication and then address the rhetorical dimension of the paper.

  1. Practical scientific computing

    CERN Document Server

    Muhammad, A

    2011-01-01

    Scientific computing is about developing mathematical models, numerical methods and computer implementations to study and solve real problems in science, engineering, business and even social sciences. Mathematical modelling requires deep understanding of classical numerical methods. This essential guide provides the reader with sufficient foundations in these areas to venture into more advanced texts. The first section of the book presents numEclipse, an open source tool for numerical computing based on the notion of MATLAB®. numEclipse is implemented as a plug-in for Eclipse, a leading integ

  2. The next scientific revolution.

    Science.gov (United States)

    Hey, Tony

    2010-11-01

    For decades, computer scientists have tried to teach computers to think like human experts. Until recently, most of those efforts have failed to come close to generating the creative insights and solutions that seem to come naturally to the best researchers, doctors, and engineers. But now, Tony Hey, a VP of Microsoft Research, says we're witnessing the dawn of a new generation of powerful computer tools that can "mash up" vast quantities of data from many sources, analyze them, and help produce revolutionary scientific discoveries. Hey and his colleagues call this new method of scientific exploration "machine learning." At Microsoft, a team has already used it to innovate a method of predicting with impressive accuracy whether a patient with congestive heart failure who is released from the hospital will be readmitted within 30 days. It was developed by directing a computer program to pore through hundreds of thousands of data points on 300,000 patients and "learn" the profiles of patients most likely to be rehospitalized. The economic impact of this prediction tool could be huge: If a hospital understands the likelihood that a patient will "bounce back," it can design programs to keep him stable and save thousands of dollars in health care costs. Similar efforts to uncover important correlations that could lead to scientific breakthroughs are under way in oceanography, conservation, and AIDS research. And in business, deep data exploration has the potential to unearth critical insights about customers, supply chains, advertising effectiveness, and more.

  3. Geochemical modelling: what phenomena are missing

    International Nuclear Information System (INIS)

    Jacquier, P.

    1989-12-01

    In the framework of safety assessment of radioactive waste disposal, retention phenomena are usually taken into account by the Kd concept. It is well recognized that this concept is not enough for safety assessment models, because of the several and strong assumptions which are involved in this kind of representation. One way to have a better representation of the retention phenomena, is to substitute for this Kd concept an explicit description of geochemical phenomena and then couple transport codes with geochemical codes in a fully or a two-step procedure. We use currently such codes, but the scope of this paper is to display the limits today of the geochemical modelling in connection with sites analysis for deep disposal. In this paper, we intend to give an overview of phenomena which are missing in the geochemical models, or which are not completely introduced in the models. We can distinguish, on one hand phenomena for which modelling concepts exist such as adsorption/desorption and, on the other hand, phenomena for which modelling concepts do not exist for the moment such as colloids, and complexation by polyelectrolyte solutions (organics). Moreover we have to take care of very low concentrations of radionuclides, which can be expected from the leaching processes in the repository. Under those conditions, some reactions may not occur. After a critical review of the involved phenomena, we intend to stress the main directions of the wishful evolution of the geochemical modelling. This evolution should improve substantially the quality of the above-mentioned site assessments

  4. A generative model for scientific concept hierarchies.

    Science.gov (United States)

    Datta, Srayan; Adar, Eytan

    2018-01-01

    In many scientific disciplines, each new 'product' of research (method, finding, artifact, etc.) is often built upon previous findings-leading to extension and branching of scientific concepts over time. We aim to understand the evolution of scientific concepts by placing them in phylogenetic hierarchies where scientific keyphrases from a large, longitudinal academic corpora are used as a proxy of scientific concepts. These hierarchies exhibit various important properties, including power-law degree distribution, power-law component size distribution, existence of a giant component and less probability of extending an older concept. We present a generative model based on preferential attachment to simulate the graphical and temporal properties of these hierarchies which helps us understand the underlying process behind scientific concept evolution and may be useful in simulating and predicting scientific evolution.

  5. A generative model for scientific concept hierarchies

    Science.gov (United States)

    Adar, Eytan

    2018-01-01

    In many scientific disciplines, each new ‘product’ of research (method, finding, artifact, etc.) is often built upon previous findings–leading to extension and branching of scientific concepts over time. We aim to understand the evolution of scientific concepts by placing them in phylogenetic hierarchies where scientific keyphrases from a large, longitudinal academic corpora are used as a proxy of scientific concepts. These hierarchies exhibit various important properties, including power-law degree distribution, power-law component size distribution, existence of a giant component and less probability of extending an older concept. We present a generative model based on preferential attachment to simulate the graphical and temporal properties of these hierarchies which helps us understand the underlying process behind scientific concept evolution and may be useful in simulating and predicting scientific evolution. PMID:29474409

  6. Scientific and Computational Challenges of the Fusion Simulation Program (FSP)

    International Nuclear Information System (INIS)

    Tang, William M.

    2011-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  7. Scientific and computational challenges of the fusion simulation program (FSP)

    International Nuclear Information System (INIS)

    Tang, William M.

    2011-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) - a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  8. Toward a CFD-grade database addressing LWR containment phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Paladino, Domenico, E-mail: domenico.paladino@psi.ch [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Andreani, Michele; Zboray, Robert; Dreier, Joerg [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The SETH-2 PANDA tests have supplied data with CFD-grade on plumes and jets at large-scale. Black-Right-Pointing-Pointer The PANDA tests have contributed to the understanding of phenomena with high safety relevance for LWRs. Black-Right-Pointing-Pointer The analytical activities related increased confidence in the use of various computational tools for safety analysis. - Abstract: The large-scale, multi-compartment PANDA facility (located at PSI in Switzerland) is one of the state-of-the-art facilities which is continuously upgraded to progressively match the requirements of CFD-grade experiments. Within the OECD/SETH projects, the PANDA facility has been used for the creation of an experimental database on basic containment phenomena e.g. gas mixing, transport, stratification, condensation. In the PANDA tests, these phenomena are driven by large scale plumes or jets. In the paper is presented a selection of the SETH PANDA experimental results. Examples of analytical activities performed at PSI using the GOTHIC, CFX-4 and CFX-5 codes will be used to illustrate how the spatial and temporal resolutions of the measurement grid in PANDA tests are adequate for CFD code (and advanced containment codes) assessment and validation purposes.

  9. Flow reduction due to degassing and redissolution phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, C. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    At the Stripa mine in Sweden, flow and transport experiments in a water-saturated fractured granite were conducted to investigate techniques for site characterization for a geologic nuclear waste repository. In the Simulated Drift Experiment, measured water inflow to an excavated drift with pressure held at 1 bar was only 1/9th the value expected based on inflow to boreholes with pressure held at 2.7 bars. Several physical and chemical mechanisms were hypothesized to be responsible for this reduction in flow. One possibility is that significant degassing of dissolved nitrogen takes place between 2.7 and 1 bars, credating a two-phase regime with an accompanying decrease in fluid mobility, resulting in a decrease in flow to the drift. To investigate this process, theoretical studies on degassing and redissolution phenomena have been carried out, beginning with an idealized model which yields a simple analytical solution, then relaxing some of the simplifying assumptions and using TOUGH2 to study the phenomena numerically. In conjunction with these theoretical studies, laboratory experiments on flow and degassing in transparent fracture replicas are being carried out, and are being used to check the modeling approach. We need to develop a fundamental understanding of degassing and redissolution in particular and two-phase flow phenomena in general for flow in fractures and fracture networks, in order to successfully model conditions around a nuclear waste repository, where long time and large space scales may preclude conclusive field experiments.

  10. 8th International symposium on transport phenomena in combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

  11. Universal role of correlation entropy in critical phenomena

    International Nuclear Information System (INIS)

    Gu Shijian; Sun Changpu; Lin Haiqing

    2008-01-01

    In statistical physics, if we divide successively an equilibrium system into two parts, we will face a situation that, to a certain length ξ, the physics of a subsystem is no longer the same as the original one. The extensive property of the thermal entropy S(A union B) = S(A) + S(B) is then violated. This observation motivates us to introduce a concept of correlation entropy between two points, as measured by the mutual information in information theory, to study the critical phenomena. A rigorous relation is established to display some drastic features of the non-vanishing correlation entropy of a subsystem formed by any two distant particles with long-range correlation. This relation actually indicates a universal role played by the correlation entropy for understanding the critical phenomena. We also verify these analytical studies in terms of two well-studied models for both the thermal and quantum phase transitions: the two-dimensional Ising model and the one-dimensional transverse-field Ising model. Therefore, the correlation entropy provides us with a new physical intuition of the critical phenomena from the point of view of information theory

  12. Toward a CFD-grade database addressing LWR containment phenomena

    International Nuclear Information System (INIS)

    Paladino, Domenico; Andreani, Michele; Zboray, Robert; Dreier, Jörg

    2012-01-01

    Highlights: ► The SETH-2 PANDA tests have supplied data with CFD-grade on plumes and jets at large-scale. ► The PANDA tests have contributed to the understanding of phenomena with high safety relevance for LWRs. ► The analytical activities related increased confidence in the use of various computational tools for safety analysis. - Abstract: The large-scale, multi-compartment PANDA facility (located at PSI in Switzerland) is one of the state-of-the-art facilities which is continuously upgraded to progressively match the requirements of CFD-grade experiments. Within the OECD/SETH projects, the PANDA facility has been used for the creation of an experimental database on basic containment phenomena e.g. gas mixing, transport, stratification, condensation. In the PANDA tests, these phenomena are driven by large scale plumes or jets. In the paper is presented a selection of the SETH PANDA experimental results. Examples of analytical activities performed at PSI using the GOTHIC, CFX-4 and CFX-5 codes will be used to illustrate how the spatial and temporal resolutions of the measurement grid in PANDA tests are adequate for CFD code (and advanced containment codes) assessment and validation purposes.

  13. The making of extraordinary psychological phenomena.

    Science.gov (United States)

    Lamont, Peter

    2012-01-01

    This article considers the extraordinary phenomena that have been central to unorthodox areas of psychological knowledge. It shows how even the agreed facts relating to mesmerism, spiritualism, psychical research, and parapsychology have been framed as evidence both for and against the reality of the phenomena. It argues that these disputes can be seen as a means through which beliefs have been formulated and maintained in the face of potentially challenging evidence. It also shows how these disputes appealed to different forms of expertise, and that both sides appealed to belief in various ways as part of the ongoing dispute about both the facts and expertise. Finally, it shows how, when a formal Psychology of paranormal belief emerged in the twentieth century, it took two different forms, each reflecting one side of the ongoing dispute about the reality of the phenomena. © 2012 Wiley Periodicals, Inc.

  14. Scientific impact: opportunity and necessity.

    Science.gov (United States)

    Cohen, Marlene Z; Alexander, Gregory L; Wyman, Jean F; Fahrenwald, Nancy L; Porock, Davina; Wurzbach, Mary E; Rawl, Susan M; Conn, Vicki S

    2010-08-01

    Recent National Institutes of Health changes have focused attention on the potential scientific impact of research projects. Research with the excellent potential to change subsequent science or health care practice may have high scientific impact. Only rigorous studies that address highly significant problems can generate change. Studies with high impact may stimulate new research approaches by changing understanding of a phenomenon, informing theory development, or creating new research methods that allow a field of science to move forward. Research with high impact can transition health care to more effective and efficient approaches. Studies with high impact may propel new policy developments. Research with high scientific impact typically has both immediate and sustained influence on the field of study. The article includes ideas to articulate potential scientific impact in grant applications as well as possible dissemination strategies to enlarge the impact of completed projects.

  15. The Investigation of New Magnetic Materials and Their Phenomena Using Ultrafast Fresnel Transmission Electron Microscopy

    Science.gov (United States)

    Schliep, Karl B.

    State-of-the-art technology drives scientific progress, pushing the boundaries of our current understanding of fundamental processes and mechanisms. Our continual scientific advancement is hindered only by what we can observe and experimentally verify; thus, it is reasonable to assert that instrument development and improvement is the cornerstone for technological and intellectual growth. For example, the invention of transmission electron microscopy (TEM) allowed us to observe nanoscale phenomena for the first time in the 1930s and even now it is invaluable in the development of smaller, faster electronics. As we uncover more about the fundamentals of nanoscale phenomena, we have realized that images alone reveal only a snapshot of the story; to continue progressing we need a way to observe the entire scene unfold (e.g. how defects affect the flow of current across a transistor or how thermal energy propagates in nanoscale systems like graphene). Recently, by combining the spatial resolution of a TEM with the temporal resolution of ultrafast lasers, ultrafast electron microscopy ? or microscope ? (UEM) has allowed us to simultaneously observe transient nanoscale phenomena at ultrafast timescales. Ultrafast characterization techniques allow for the investigation of a new realm of previously unseen phenomenon inherent to the transient electronic, magnetic, and structural properties of materials. However, despite the progress made in ultrafast techniques, capturing the nanoscale spatial sub-ns temporal mechanisms and phenomenon at play in magnetic materials (especially during the operation of magnetic devices) has only recently become possible using UEM. With only a handful of instruments available, magnetic characterization using UEM is far from commonplace and any advances made are sparsely reported, and further, specific to the individual instrument. In this dissertation, I outline the development of novel magnetic materials and the establishment of a UEM lab at

  16. Modelling transport phenomena in a multi-physics context

    Science.gov (United States)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  17. Modelling transport phenomena in a multi-physics context

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Francesco [Dipartimento di Ingegneria Chimica e Alimentare - Università degli studi di Salerno Via Ponte Don Melillo - 84084 Fisciano SA (Italy)

    2015-01-22

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  18. Modelling transport phenomena in a multi-physics context

    International Nuclear Information System (INIS)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating

  19. A Complexity Approach to Evaluating National Scientific Systems through International Scientific Collaborations

    Science.gov (United States)

    Zelnio, Ryan J.

    2013-01-01

    This dissertation seeks to contribute to a fuller understanding of how international scientific collaboration has affected national scientific systems. It does this by developing three methodological approaches grounded in social complexity theory and applying them to the evaluation of national scientific systems. The first methodology identifies…

  20. Social behavioural epistemology and the scientific community.

    Science.gov (United States)

    Watve, Milind

    2017-07-01

    The progress of science is influenced substantially by social behaviour of and social interactions within the scientific community. Similar to innovations in primate groups, the social acceptance of an innovation depends not only upon the relevance of the innovation but also on the social dominance and connectedness of the innovator. There are a number of parallels between many well-known phenomena in behavioural evolution and various behavioural traits observed in the scientific community. It would be useful, therefore, to use principles of behavioural evolution as hypotheses to study the social behaviour of the scientific community. I argue in this paper that a systematic study of social behavioural epistemology is likely to boost the progress of science by addressing several prevalent biases and other problems in scientific communication and by facilitating appropriate acceptance/rejection of novel concepts.

  1. EDITORIAL: Interrelationship between plasma phenomena in the laboratory and in space

    Science.gov (United States)

    Koepke, Mark

    2008-07-01

    The premise of investigating basic plasma phenomena relevant to space is that an alliance exists between both basic plasma physicists, using theory, computer modelling and laboratory experiments, and space science experimenters, using different instruments, either flown on different spacecraft in various orbits or stationed on the ground. The intent of this special issue on interrelated phenomena in laboratory and space plasmas is to promote the interpretation of scientific results in a broader context by sharing data, methods, knowledge, perspectives, and reasoning within this alliance. The desired outcomes are practical theories, predictive models, and credible interpretations based on the findings and expertise available. Laboratory-experiment papers that explicitly address a specific space mission or a specific manifestation of a space-plasma phenomenon, space-observation papers that explicitly address a specific laboratory experiment or a specific laboratory result, and theory or modelling papers that explicitly address a connection between both laboratory and space investigations were encouraged. Attention was given to the utility of the references for readers who seek further background, examples, and details. With the advent of instrumented spacecraft, the observation of waves (fluctuations), wind (flows), and weather (dynamics) in space plasmas was approached within the framework provided by theory with intuition provided by the laboratory experiments. Ideas on parallel electric field, magnetic topology, inhomogeneity, and anisotropy have been refined substantially by laboratory experiments. Satellite and rocket observations, theory and simulations, and laboratory experiments have contributed to the revelation of a complex set of processes affecting the accelerations of electrons and ions in the geospace plasma. The processes range from meso-scale of several thousands of kilometers to micro-scale of a few meters to kilometers. Papers included in this

  2. A prototype electronic board to investigate galvanotaxis phenomena

    Science.gov (United States)

    Zironi, I.; Boccioletti, L.; Amorini, F.; Castellani, G.; Gabrielli, A.

    2017-05-01

    Galvanotaxis is a bioelectronic phenomenon described since the end of the 19th century, that indicates the movement of a living organism in response to an electrical stimulus. At the cellular level, this particular behavior seems to be present in many physiological processes such as embryogenesis, angiogenesis and tumor metastases. In vitro studies clearly showed that some types of cells, when subjected to electric fields of the same magnitude than the endogenous ones, tend to orientate and to migrate along the axes of the electrical field, targeting the cathode or to the anode depending on the cell type. The main objective of this work is the design and development of an electronic system capable to create and control galvanotactic events. We also performed some preliminary experiments finalized to test whether this device allows reproducing the galvanotaxis phenomena in a scientific and easily reproducible manner.

  3. PREFACE: XI Latin American Workshop on Nonlinear Phenomena

    Science.gov (United States)

    Anteneodo, Celia; da Luz, Marcos G. E.

    2010-09-01

    The XI Latin American Workshop on Nonlinear Phenomena (LAWNP) has been held in Búzios-RJ, Brazil, from 5-9 October 2009. This international conference is one in a series that have gathered biennially, over the past 21 years, physicists and other scientists who direct their work towards several aspects of nonlinear phenomena and complex systems. The main purpose of LAWNP meetings is to create a friendly and motivating environment, such that researchers from Latin America and from other parts of the globe can discuss not only their own latest results but also the trends and perspectives in this very interdisciplinary field of investigation. Hence, it constitutes a forum for promoting scientific collaboration and fomenting the emergence of new ideas, helping to advance the field. The XI edition (LAWNP'09) has gathered more than 230 scientists and students (most from Latin America), covering all of the world (27 different countries from North and South America, Asia, Europe, and Oceania). In total there were 18 plenary lectures, 80 parallel talks, and 140 poster contributions. A stimulating round-table discussion also took place devoted to the present and future of the Latin American Institutions in Complex Phenomena (a summary can be found at http://lawnp09.fis.puc-rio.br, in the Round-Table report link). The 2009 workshop was devoted to a wide scope of themes and points of view, pursuing to include the latest trends and developments in the science of nonlinearity. In this way, we have a great pleasure in publishing this Proceedings volume based on the high quality scientific works presented at LAWNP'09, covering already established methods as well as new approaches, discussing both theoretical and practical aspects, and addressing paradigmatic systems and also completely new problems, in nonlinearity and complexity. In fact, the present volume may be a very valuable reference for those interested in an overview on how nonlinear interactions can affect different

  4. Whose Science and Whose Religion? Reflections on the Relations between Scientific and Religious Worldviews

    Science.gov (United States)

    Glennan, Stuart

    2009-06-01

    Arguments about the relationship between science and religion often proceed by identifying a set of essential characteristics of scientific and religious worldviews and arguing on the basis of these characteristics for claims about a relationship of conflict or compatibility between them. Such a strategy is doomed to failure because science, to some extent, and religion, to a much larger extent, are cultural phenomena that are too diverse in their expressions to be characterized in terms of a unified worldview. In this paper I follow a different strategy. Having offered a loose characterization of the nature of science, I pose five questions about specific areas where religious and scientific worldviews may conflict—questions about the nature of faith, the belief in a God or Gods, the authority of sacred texts, the relationship between scientific and religious conceptions of the mind/soul, and the relationship between scientific and religious understandings of moral behavior. My review of these questions will show that they cannot be answered unequivocally because there is no agreement amongst religious believers as to the meaning of important religious concepts. Thus, whether scientific and religious worldviews conflict depends essentially upon whose science and whose religion one is considering. In closing, I consider the implications of this conundrum for science education.

  5. Quantifying the Ease of Scientific Discovery.

    Science.gov (United States)

    Arbesman, Samuel

    2011-02-01

    It has long been known that scientific output proceeds on an exponential increase, or more properly, a logistic growth curve. The interplay between effort and discovery is clear, and the nature of the functional form has been thought to be due to many changes in the scientific process over time. Here I show a quantitative method for examining the ease of scientific progress, another necessary component in understanding scientific discovery. Using examples from three different scientific disciplines - mammalian species, chemical elements, and minor planets - I find the ease of discovery to conform to an exponential decay. In addition, I show how the pace of scientific discovery can be best understood as the outcome of both scientific output and ease of discovery. A quantitative study of the ease of scientific discovery in the aggregate, such as done here, has the potential to provide a great deal of insight into both the nature of future discoveries and the technical processes behind discoveries in science.

  6. Neutron scattering studies of pretransitional phenomena in structural phase transformations

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1979-03-01

    Materials exhibiting structural phase transformations are well known to possess pretransitional phenomena. Below the transition temperature, T/sub c/, an order parameter appears and the pretransitional effects are associated with the fluctuations of the order parameter. Neutron scattering techniques have proved invaluable in studying the temporal and spatial dependence of these fluctuations. SrTiO 3 is the prototypical example of a structural phase transformation exhibiting features observable in other transformations such as martensitic and order-disorder. The experimental evolution of the understanding of the phase transformation in SrTiO 3 will be reviewed and the features observed will be shown to typify other systems

  7. Vector (two-dimensional) magnetic phenomena

    International Nuclear Information System (INIS)

    Enokizono, Masato

    2002-01-01

    In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)

  8. Incorporating interfacial phenomena in solidification models

    Science.gov (United States)

    Beckermann, Christoph; Wang, Chao Yang

    1994-01-01

    A general methodology is available for the incorporation of microscopic interfacial phenomena in macroscopic solidification models that include diffusion and convection. The method is derived from a formal averaging procedure and a multiphase approach, and relies on the presence of interfacial integrals in the macroscopic transport equations. In a wider engineering context, these techniques are not new, but their application in the analysis and modeling of solidification processes has largely been overlooked. This article describes the techniques and demonstrates their utility in two examples in which microscopic interfacial phenomena are of great importance.

  9. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Silicone elastomers have been heavily investigated as candidates for dielectric elastomers and are as such almost ideal candidates with their inherent softness and compliance but they suffer from low dielectric permittivity. This shortcoming has been sought optimized by many means during recent...... years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...... of silicone elastomers are investigated and different types of breakdown are discussed. Furthermore the use of voltage stabilizers in silicone-based dielectric elastomers is investigated and discussed....

  10. Dissipative phenomena in condensed matter some applications

    CERN Document Server

    Dattagupta, Sushanta

    2004-01-01

    From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.

  11. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...

  12. Third DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1991-01-01

    This conference on Natural Phenomena Hazards Mitigation has been organized into 15 presentation, panel, and poster sessions. The sessions included an overview of activities at DOE Headquarters; natural phenomena hazards tasks underway for DOE; two sessions on codes, standards, orders, criteria, and guidelines; two sessions on seismic hazards; equipment qualification; wind; PRA and margin assessments; modifications, retrofit, and restart; underground structures with a panel discussion; seismic analysis; seismic evaluation and design; and a poster session. Individual projects are processed separately for the data bases

  13. Cooperative phenomena within organised bi-dimensional structures

    International Nuclear Information System (INIS)

    Armand, Franck

    2001-01-01

    In this report produced for an Accreditation to Supervise Research, the author defines a cooperative phenomenon as a phenomenon occurring each time a cooperation between elementary entities results in a collective property which exceeds the simple addition of disorganised individual properties. He reports works and researches which show that such phenomena can be generated by molecular architectures developed in laboratory, but also requires an appropriate organisation of active elementary entities. This can be obtained by self-organisation in solution. However, many applications assume the use of solid phases, and notably thin layers. In this respect, the Langmuir-Blodgett technique and self-assembly are very interesting techniques to produce mono-molecular thin layers, without however controlling molecule in-plane orientation and organisation. The author propose an overview of his works which aimed at obtaining this control, and reports three examples of cooperative phenomena: the generation of a second harmonic, spin transition with hysteresis, and electron conduction (one-dimensional and bi-dimensional electron transfer). The report also contains articles published in various scientific publications, and contributions to congresses [fr

  14. Initiating Young Children into Basic Astronomical Concepts and Phenomena

    Science.gov (United States)

    Kallery, M.

    2010-07-01

    In the present study we developed and implemented three units of activities aiming at acquainting very young children with basic astronomical concepts and phenomena such as the sphericity of the earth, the earth’s movements and the day/night cycle. The activities were developed by a group composed of a researcher/facilitator and six early-years teachers. In the activities children were presented with appropriate for their age scientific information along with conceptual tools such as a globe and an instructional video. Action research processes were used to optimize classroom practices and to gather useful information for the final shaping of the activities and the instruction materials. In these activities the adopted approach to learning can be characterized as socially constructed. The results indicated awareness of concepts and phenomena that the activities dealt with in high percentages of children, storage of the new knowledge in the long term memory and easy retrieval of it, and children’s enthusiasm for the subject.

  15. Minerve: thermal-hydraulic phenomena simulation and virtual reality

    International Nuclear Information System (INIS)

    Laffont, A.; Pentori, B.

    2003-01-01

    MINERVE is a 3D interactive application representing the thermal-hydraulic phenomena happening in a nuclear plant. Therefore, the 3D geometric model of the French 900 MW PWR installations has been built. The users can interact in real time with this model to see at each step of the simulation what happens in the pipes. The thermal-hydraulic simulation is made by CATHARE-2, which calculates at every time step data on about one thousand meshes (the whole primary circuit, a part of the second circuit, and the Residual Heat Removal System). The simulation covers incidental and accidental cases on these systems. There are two main innovations in MINERVE: In the domain of nuclear plant's visualization, it is to introduce interactive 3D software mechanisms to visualize results of a physical simulation. In the domain of real-time 3D, it is to visualize fluids in a pipe, while they can have several configurations, like bubbles or single liquid phase. These mechanisms enable better comprehension and better visual representation of the possible phenomena. This paper describes the functionalities of MINERVE, and the difficulties to represent fluids with several characteristics like speed, configuration,..., in 3D. On the end, we talk about the future of MINERVE, and more widely of the possible futures of such an application in scientific visualization. (authors)

  16. Minerve: thermal-hydraulic phenomena simulation and virtual reality

    Energy Technology Data Exchange (ETDEWEB)

    Laffont, A.; Pentori, B. [EDF R and D, EDF SEPTEN Electricity of France - Research and Development, Department SINETICS, 92 - Clamart (France)

    2003-07-01

    MINERVE is a 3D interactive application representing the thermal-hydraulic phenomena happening in a nuclear plant. Therefore, the 3D geometric model of the French 900 MW PWR installations has been built. The users can interact in real time with this model to see at each step of the simulation what happens in the pipes. The thermal-hydraulic simulation is made by CATHARE-2, which calculates at every time step data on about one thousand meshes (the whole primary circuit, a part of the second circuit, and the Residual Heat Removal System). The simulation covers incidental and accidental cases on these systems. There are two main innovations in MINERVE: In the domain of nuclear plant's visualization, it is to introduce interactive 3D software mechanisms to visualize results of a physical simulation. In the domain of real-time 3D, it is to visualize fluids in a pipe, while they can have several configurations, like bubbles or single liquid phase. These mechanisms enable better comprehension and better visual representation of the possible phenomena. This paper describes the functionalities of MINERVE, and the difficulties to represent fluids with several characteristics like speed, configuration,..., in 3D. On the end, we talk about the future of MINERVE, and more widely of the possible futures of such an application in scientific visualization. (authors)

  17. The Scientific Method - Critical and Creative Thinking

    Science.gov (United States)

    Cotton, John; Scarlise, Randall

    2011-10-01

    The ``scientific method'' is not just for scientists! Combined with critical thinking, the scientific method can enable students to distinguish credible sources of information from nonsense and become intelligent consumers of information. Professors John Cotton and Randall Scalise illustrate these principles using a series of examples and demonstrations that is enlightening, educational, and entertaining. This lecture/demonstration features highlights from their course (whose unofficial title is ``debunking pseudoscience'' ) which enables students to detect pseudoscience in its many guises: paranormal phenomena, free-energy devices, alternative medicine, and many others.

  18. Concurrent phenomena of science and history in the 17th century and their essential interdependence.

    Science.gov (United States)

    Bloch, H.

    1992-01-01

    The explanation for the explosion of science in the 17th century lies in history and medical historiography. Without this approach, it becomes fantasy, accidents, or success stories. Sigerist grasped the essential interdependence of science and history, and had no need for devised reasons or speculation. He realized that once the dark night of the Middle Ages was over, the sciences arose with undreamt of force and accelerated development. The advances in astronomy, mathematics, mechanics, and experimental science benefitted a society developing in seafaring, manufacture, and trade in the 17th century. Sigerist's views make the scientific explosion understandable in human and social terms. He did not overlook the capabilities of some extraordinary individuals, such as Paracelsus (1493-1541), to shape the course of medicine, nor the importance of the mechanistic philosophy in the 17th century. Man makes history and science; hence, we find concurrent phenomena of history and science essentially interdependent. The spirit of experimental science of 17th century England was inspired by the new needs of commercial enterprise for more means of transportation and communication. Likewise, the interest in the mechanics of the pump for waterworks and for the drainage of swamps led Harvey to think of the heart as a pump, and to explain the circulation of the blood in terms of its functioning. PMID:1608066

  19. The Evolution of Scientific Knowledge

    DEFF Research Database (Denmark)

    Jensen, Hans Siggaard; Ricard, Lykke Margot; Vendelø, Morten Thanning

    The Evolution of Scientific Knowledge aims to reach a unique understanding of science with the help of economic and sociological theories. They use institutional and evolutionary theories and the sociological theories draw from the type of work on social studies of science that have, in recent...

  20. The art of scientific writing

    NARCIS (Netherlands)

    Wopereis, Iwan

    2018-01-01

    This three-part workshop introduces strategies, tools, and techniques for sound scientific output. It discusses success and failure factors relevant to the publication process (writing included). The first part aims to understand the entire publication process. It presents an overview of standard

  1. Lexical Features of Scientific Discourse

    Directory of Open Access Journals (Sweden)

    Tatjana Rusko

    2014-06-01

    Full Text Available Currently, a lot of emphasis is placed of the ability of a person to successfully communicate in any sphere of activity, which along with upbringing and education is among the factors that determine a person’s culture. In the context of rapid scientific and technological progress, it is vital to constantly exchange relevant infor- mation. The effectiveness of this process relies not only on the proficient knowledge of the subject and the ability to make grammatically correct sentences, but to a large extent on the level of competence in scientific language. The present article attempts to consider the interaction of discourse and vocabulary, different types of cognitive phenomena responsible for the use of a language in real time and related to the language as a means of storing and organising information. Analysing and classifying some key elements of a scientific discourse lexicon contributes to the development of certain provisions of lexicology, functional stylistics, cognitive linguistics and terminology. The results of the analysis may be advantageous both to linguistics and teaching the language for specific purposes.

  2. CP violating phenomena and theoretical results

    International Nuclear Information System (INIS)

    Grimus, W.

    1987-01-01

    An introduction to CP violating phenomena is given and the standard model and its most popular low energy extensions in this context are reviewed. The discussion comprises the minimal supersymmetric extension of the standard model, left-right symmetry, the standard model with more than one Higgs doublet and gauged horizontal symmetries. (Author)

  3. Transport phenomena in materials processing---1990

    International Nuclear Information System (INIS)

    Bishop, B.J.; Lior, N.; Lavine, A.; Flik, M.; Karwe, M.V.; Bergman, T.L.; Beckermann, C.; Charmchi, M.

    1990-01-01

    The papers contained in this volume represent a wide range of current research interests in processes such as food and polymer processing, casting, welding, machining, laser cutting, and superconductor processing. This volume includes papers presented in four sessions: Heat Transfer in Materials Processing; Thermal Phenomena in Superconductor Processing; Heat Transfer in Food and Polymer Processing; Heat Transfer in CAsting and Welding

  4. Homoclinic phenomena in the gravitational collapse

    International Nuclear Information System (INIS)

    Koiller, J.; Mello Neto, J.R.T. de; Soares, I.D.

    1984-01-01

    A class of Bianchi IX cosmological models is shown to have chaotic gravitational collapse, due to Poincare's homoclinic phenomena. Such models can be programmed so that for any given positive integer N (N=infinity included) the universe undergoes N non-periodic oscillations (each oscillation requiring a long time) before collapsing. For N=infinity the universe undergoes periodic oscillations. (Author) [pt

  5. Novel experimentally observed phenomena in soft matter

    Indian Academy of Sciences (India)

    The resulting flow is non-Newtonian and is characterized by features such as shear rate-dependent viscosities and nonzero normal stresses. This article begins with an introduction to some unusual flow properties displayed by soft matter. Experiments that report a spectrum of novel phenomena exhibited by these materials, ...

  6. Some Phenomena on Negative Inversion Constructions

    Science.gov (United States)

    Sung, Tae-Soo

    2013-01-01

    We examine the characteristics of NDI (negative degree inversion) and its relation with other inversion phenomena such as SVI (subject-verb inversion) and SAI (subject-auxiliary inversion). The negative element in the NDI construction may be" not," a negative adverbial, or a negative verb. In this respect, NDI has similar licensing…

  7. Hyperchaotic phenomena in dynamic decision making

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Mosekilde, Erik; Sterman, John David

    1992-01-01

    of this article is to show how the decision making behavior of real people in simulated corporate environments can lead to chaotic, hyperchaotic and higher-order hyperchaotic phenomena. Characteristics features of these complicated forms of behavior are analyzed with particular emphasis on an interesting form...

  8. DOE natural phenomena hazards mitigation conference: proceedings

    International Nuclear Information System (INIS)

    1985-10-01

    The conference includes sessions which present an overview of DOE programs, available codes, standards and criteria, examples of designs and upgrades from the DOE complex, lessons learned from past natural phenomena, ground motion, seismic evaluation of equipment, and applications of probabilistic risk assessment techniques to DOE facilities. Separate abstracts have been prepared for individual papers

  9. Interface-induced phenomena in magnetism

    NARCIS (Netherlands)

    Hellman, Frances; Hoffmann, A.; Tserkovnyak, Yaroslav; Beach, Geoffrey S.D.; Fullerton, Eric E.; Leighton, Chris; Macdonald, Allan H.; Ralph, Daniel C.; Arena, Dario A.; Dürr, Hermann A.; Fischer, Peter; Grollier, Julie; Heremans, Joseph P.; Jungwirth, Tomas; Kimel, Alexey V.; Koopmans, B.; Krivorotov, Ilya N.; May, Steven J.; Petford-Long, Amanda K.; Rondinelli, James M.; Samarth, Nitin; Schuller, Ivan K.; Slavin, Andrei N.; Stiles, Mark D.; Tchernyshyov, Oleg; Thiaville, André; Zink, Barry L.

    2017-01-01

    This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on

  10. Analysis of induction phenomena in thermonuclear experiments

    International Nuclear Information System (INIS)

    Deeds, W.E.; Dodd, C.V.

    1976-01-01

    Many of the problems involving transients induced by changing currents in the large coils of thermonuclear machines are identical to those arising in nondestructive testing by eddy currents. There are three chief methods used for calculating such induction phenomena: analytical boundary-value solutions, relaxation or iteration techniques, and model experiments. Some of the results obtained by each of these methods are described below

  11. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an

  12. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

    2017-01-01

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloro propyl functionalized silicone elastomers prepared in Madsen et al[2] and we investigate the electrical...

  13. Simple classical approach to spin resonance phenomena

    DEFF Research Database (Denmark)

    Gordon, R A

    1977-01-01

    A simple classical method of describing spin resonance in terms of the average power absorbed by a spin system is discussed. The method has several advantages over more conventional treatments, and a number of important spin resonance phenomena, not normally considered at the introductory level...

  14. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    Science.gov (United States)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  15. Parallel processing is good for your scientific codes...But massively parallel processing is so much better

    International Nuclear Information System (INIS)

    Thomas, B.; Domain, Ch.; Souffez, Y.; Eon-Duval, P.

    1998-01-01

    Harnessing the power of many computers, to solve concurrently difficult scientific problems, is one of the most innovative trend in High Performance Computing. At EDF, we have invested in parallel computing and have achieved significant results. First we improved the processing speed of strategic codes, in order to extend their scope. Then we turned to numerical simulations at the atomic scale. These computations, we never dreamt of before, provided us with a better understanding of metallurgic phenomena. More precisely we were able to trace defects in alloys that are used in nuclear power plants. (author)

  16. Scientific instruments, scientific progress and the cyclotron

    International Nuclear Information System (INIS)

    Baird, David; Faust, Thomas

    1990-01-01

    Philosophers speak of science in terms of theory and experiment, yet when they speak of the progress of scientific knowledge they speak in terms of theory alone. In this article it is claimed that scientific knowledge consists of, among other things, scientific instruments and instrumental techniques and not simply of some kind of justified beliefs. It is argued that one aspect of scientific progress can be characterized relatively straightforwardly - the accumulation of new scientific instruments. The development of the cyclotron is taken to illustrate this point. Eight different activities which promoted the successful completion of the cyclotron are recognised. The importance is in the machine rather than the experiments which could be run on it and the focus is on how the cyclotron came into being, not how it was subsequently used. The completed instrument is seen as a useful unit of scientific progress in its own right. (UK)

  17. The scientific benefits of inertially confined fusion research

    International Nuclear Information System (INIS)

    Key, M

    1999-01-01

    A striking feature of 25 years of research into inertially confined fusion (ICF) and inertial fusion energy (IFE) has been its significant impact in other fields of science. Most ICF facilities worldwide are now being used in part to support a wider portfolio of research than simply ICF. Reasons for this trend include the high intrinsic interest of the new science coupled with the relative ease and low marginal cost of adapting the facilities particularly lasers, to carry out experiments with goals other than ICF. The availability at ICF laboratories of sophisticated theory and modeling capability and advanced diagnostics has given added impetus. The expertise of ICF specialists has also triggered more lateral scientific spin-offs leading for example to new types of lasers and to related developments in basic science. In a generic sense, the facilities developed for ICF have made possible study of new regimes of the properties of matter at extremely high-energy density and the interaction of ultraintense light with matter. This general opportunity has been exploited in numerous and diverse specific lines of research. Examples elaborated below include laboratory simulation of astrophysical phenomena; studies of the equation of state (EOS) of matter under conditions relevant to the interior of planets and stars; development of uniquely intense sources of extreme ultraviolet (EUV) to hard x-ray emission, notably the x-ray laser; understanding of the physics of strong field interaction of light and matter; and related new phenomena such as laser-induced nuclear processes and high-field-electron accelerators. Some of these developments have potential themselves for further scientific exploitation such as the scientific use of advanced light sources. There are also avenues for commercial exploitation, for example the use of laser plasma sources in EUV lithography. Past scientific progress is summarized here and projections are made for new science that may flow from the

  18. Understanding the generative capacity of analogies as a tool for explanation

    Science.gov (United States)

    Wong, E. David

    1993-12-01

    Psychological studies have typically portrayed analogical reasoning as a process of schema transfer from a familiar domain of understanding to a problem situation. These studies have usually examined analogical reasoning in contexts where (a) individuals possess or have been provided with appropriate, problem-specific schema, (b) the nature of the problem and/or solution is fairly well defined, and (c) ideal analogies are provided or suggested by an outside source. This study examines analogical reasoning in contexts where understanding is generated from loosely organized, incomplete prior knowledge rather than transferred from a well-structured domain of understanding. In addition, participants were asked to create, apply, and modify their own analogies - as opposed to applying a given analogy - as a heuristic for constructing, evaluating, and modifying their explanations for a particular scientific phenomena. The results provide empirical support for the generative properties of analogies; that is, analogies can stimulate new inferences and insight. Furthermore, under specific conditions, individuals can productively harness the generative capacity of their own analogies to advance their conceptual understanding of scientific phenomena.

  19. Drilling for scientific purpose

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi

    1987-09-01

    Drilling for scientific purpose is a process of conducting geophysical exploration at deep underground and drilling for collecting crust samples directly. This is because earth science has advanced to get a good understanding about the top of the crust and has shifted its main interest to the lower layer of the crust in land regions. The on-land drilling plan in Japan has just started, and the planned drilling spots are areas around the Minami River, Hidaka Mts., kinds of the Mesozoic and Cenozoic granite in outside zone, the extension of Japan Sea, Ogasawara Is., Minami-Tori Is., and active volcanos. The paper also outlines the present situation of on-land drilling in the world, focusing on the SG-3rd super-deep well SG-3 on the Kola Peninsula, USSR, Satori SG-1st well SG-1 in Azerbaidzhan S.S.R, V.S.S.R, Sweden's wells, Cyprus' wells, Bayearn well Plan in West Germany, and Salton Sea Scientific Drilling Program in the U.S. At its end, the paper explains the present situation and the future theme of the Japanese drilling technique and points out the necessity of developing equipment, and techniques. (14 figs, 5 tabs, 26 refs)

  20. Compreendendo a aprendizagem da linguagem científica na formação de professores de ciências Understanding the learning about scientific language in the science teachers formation

    Directory of Open Access Journals (Sweden)

    Teresa Oliveira

    2009-01-01

    Full Text Available Após a contextualização da reforma curricular das ciências no ensino básico em Portugal, apresenta-se uma proposta de trabalho, no campo da Didática, para os professores de ciências aplicarem em sala de aula, que se pretende inovadora, investigação com base no planeamento - "design-based research (DBR". Com a descrição desta abordagem pretende-se dar resposta a problemas que se colocam a professores e a investigadores, como seja a implementação de práticas de ensino baseadas em resultados da investigação de modo a diminuir o fosso existente entre a investigação educacional e as práticas dos professores. O ensino da linguagem científica, base da literacia e da cultura científica, é aqui tratado nessa perspectiva e integrada na abordagem apresentada. A formação de professores, como resposta ao desafio que estes problemas colocam, constitui-se como campo privilegiado de análise.After the contextualization of the Portuguese curricular basic school science reform, an innovative didactic work proposal was presented to be applied in the classroom by science teachers - "design-based research (DBR". With this approach we intend to solve teachers and researchers problems like the implementation of research-oriented practice and to decrease the gap between educational research and teacher practice. The above-mentioned approach integrates the scientific language teaching, crucial for scientific literacy and scientific culture. The teachers' training, as a challenge to solve those problems is a privileged field for analysis.

  1. Scientific developments ISFD3

    Science.gov (United States)

    Schropp, M.H.I.; Soong, T.W.

    2006-01-01

    Highlights, trends, and consensus from the 63 papers submitted to the Scientific Developments theme of the Third International Symposium on Flood Defence (ISFD) are presented. Realizing that absolute protection against flooding can never be guaranteed, trends in flood management have shifted: (1) from flood protection to flood-risk management, (2) from reinforcing structural protection to lowering flood levels, and (3) to sustainable management through integrated problem solving. Improved understanding of watershed responses, climate changes, applications of GIS and remote-sensing technologies, and advanced analytical tools appeared to be the driving forces for renewing flood-risk management strategies. Technical competence in integrating analytical tools to form the basin wide management systems are demonstrated by several large, transnation models. However, analyses from social-economic-environmental points of view are found lag in general. ?? 2006 Taylor & Francis Group.

  2. Apollo's scientific legacy

    International Nuclear Information System (INIS)

    Meadows, J.

    1979-01-01

    The scientific value and importance of the Apollo lunar programme is assessed in the light of data obtained both from the lunar surface itself and also from the command modules which orbited above. It is stated that much of the material they returned still awaits a detailed examination and that the cooperative teams set up to handle the lunar material have established new methods and standards of analysis, which are currently revitalising the old science of meteoritics. The new forms of organised research have also been carried over in the rapidly developing subject of planetary science. It is concluded that whatever the motives for launching the Apollo missions, planetary scientists have been in a much better position to understand the Solar System since then. (UK)

  3. Going Multi-viral: Synthedemic Modelling of Internet-based Spreading Phenomena

    Directory of Open Access Journals (Sweden)

    Marily Nika

    2015-02-01

    Full Text Available Epidemics of a biological and technological nature pervade modern life. For centuries, scientific research focused on biological epidemics, with simple compartmental epidemiological models emerging as the dominant explanatory paradigm. Yet there has been limited translation of this effort to explain internet-based spreading phenomena. Indeed, single-epidemic models are inadequate to explain the multimodal nature of complex phenomena. In this paper we propose a novel paradigm for modelling internet-based spreading phenomena based on the composition of multiple compartmental epidemiological models. Our approach is inspired by Fourier analysis, but rather than trigonometric wave forms, our components are compartmental epidemiological models. We show results on simulated multiple epidemic data, swine flu data and BitTorrent downloads of a popular music artist. Our technique can characterise these multimodal data sets utilising a parsimonous number of subepidemic models.

  4. SCIENTIFIC METHODOLOGY FOR THE APPLIED SOCIAL SCIENCES: CRITICAL ANALYSES ABOUT RESEARCH METHODS, TYPOLOGIES AND CONTRIBUTIONS FROM MARX, WEBER AND DURKHEIM

    Directory of Open Access Journals (Sweden)

    Mauricio Corrêa da Silva

    2015-06-01

    Full Text Available This study aims to discuss the importance of the scientific method to conduct and advertise research in applied social sciences and research typologies, as well as to highlight contributions from Marx, Weber and Durkheim to the scientific methodology. To reach this objective, we conducted a review of the literature on the term research, the scientific method,the research techniques and the scientific methodologies. The results of the investigation revealed that it is fundamental that the academic investigator uses a scientific method to conduct and advertise his/her academic works in applied social sciences in comparison with the biochemical or computer sciences and in the indicated literature. Regarding the contributions to the scientific methodology, we have Marx, dialogued, the dialectical, striking analysis, explicative of social phenomenon, the need to understand the phenomena as historical and concrete totalities; Weber, the distinction between “facts” and “value judgments” to provide objectivity to the social sciences and Durkheim, the need to conceptualize very well its object of study, reject sensible data and imbue with the spirit of discovery and of being surprised with the results.

  5. Goethe's Theory of Color and Scientific Intuition

    Science.gov (United States)

    Zajonc, Arthur G.

    1976-01-01

    Summarizes Goethe's color studies and his methods of study. It is proposed that the act of accurate qualitative observation creates the capability in the observer for an intuitive understanding of the physical laws underlying the phenomena under observation. The use of such a method as a basis for laboratory instruction is discussed. (Author/CP)

  6. [A nosology for supernatural phenomena and the construction of the 'possessed' brain in the nineteenth century].

    Science.gov (United States)

    Goncalves, Valeria Portugal; Ortega, Francisco

    2013-06-01

    At the end of the twentieth century, supernatural phenomena such as so called trances and possession by spirits received a scientific classification, which includes the numerous diagnoses of the dominant psychiatry. At the end of the nineteenth century we can observe a process of scientific categorization of phenomena considered to have originated in superstition or popular imagination. In this work we show how trances and spiritual possession were studied by Franz Anton Mesmer and his followers when developing the concept of magnetism; by James Braid during the creation of his theory of hypnosis; and by Jean Martin Charcot, which marked the entry of hysteria into nosological classification. Despite the differences between these schools, we identify the use of the brain and cerebral metaphors as the foundation of theories of the mind.

  7. Exotic Phenomena Searches at Hadron Colliders

    CERN Document Server

    INSPIRE-00305407

    2013-01-01

    This review presents a selection of the final results of searches for various exotic physics phenomena in proton-proton collisions at $\\sqrt{s}=7$ and 8~TeV delivered by the LHC and collected with the ATLAS and CMS detectors in 2011 (5 $fb^{-1}$) and in the first part of 2012 (4 $fb^{-1}$). Searches for large extra dimensions, gravitons, microscopic black holes, long-lived particles, dark matter, and leptoquarks are presented in this report. No sign of new physics beyond the standard model has been observed so far. In the majority of the cases these searches set the most stringent limits to date on the aforementioned new physics phenomena.

  8. Renormalization group theory of critical phenomena

    International Nuclear Information System (INIS)

    Menon, S.V.G.

    1995-01-01

    Renormalization group theory is a framework for describing those phenomena that involve a multitude of scales of variations of microscopic quantities. Systems in the vicinity of continuous phase transitions have spatial correlations at all length scales. The renormalization group theory and the pertinent background material are introduced and applied to some important problems in this monograph. The monograph begins with a historical survey of thermal phase transitions. The background material leading to the renormalization group theory is covered in the first three chapters. Then, the basic techniques of the theory are introduced and applied to magnetic critical phenomena in the next four chapters. The momentum space approach as well as the real space techniques are, thus, discussed in detail. Finally, brief outlines of applications of the theory to some of the related areas are presented in the last chapter. (author)

  9. Coherence Phenomena in Coupled Optical Resonators

    Science.gov (United States)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  10. Tunable caustic phenomena in electron wavefields

    Energy Technology Data Exchange (ETDEWEB)

    Tavabi, Amir Hossein, E-mail: a.tavabi@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); Migunov, Vadim; Dwyer, Christian; Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); Pozzi, Giulio [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); Department of Physics and Astronomy, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy)

    2015-10-15

    Novel caustic phenomena, which contain fold, butterfly and elliptic umbilic catastrophes, are observed in defocused images of two approximately collinear oppositely biased metallic tips in a transmission electron microscope. The observed patterns depend sensitively on defocus, on the applied voltage between the tips and on their separation and lateral offset. Their main features are interpreted on the basis of a projected electrostatic potential model for the electron-optical phase shift. - Highlights: • Electron-optical caustics are observed in defocused images of biased metallic tips. • The caustics depend on defocus, on the bias between the tips and on their separation. • The setup offers the flexibility to study a wide variety of caustic phenomena.

  11. Basic transport phenomena in materials engineering

    CERN Document Server

    Iguchi, Manabu

    2014-01-01

    This book presents the basic theory and experimental techniques of transport phenomena in materials processing operations. Such fundamental knowledge is highly useful for researchers and engineers in the field to improve the efficiency of conventional processes or develop novel technology. Divided into four parts, the book comprises 11 chapters describing the principles of momentum transfer, heat transfer, and mass transfer in single phase and multiphase systems. Each chapter includes examples with solutions and exercises to facilitate students’ learning. Diagnostic problems are also provided at the end of each part to assess students’ comprehension of the material.  The book is aimed primarily at students in materials science and engineering. However, it can also serve as a useful reference text in chemical engineering as well as an introductory transport phenomena text in mechanical engineering. In addition, researchers and engineers engaged in materials processing operations will find the material use...

  12. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    Science.gov (United States)

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  13. Coherent topological phenomena in protein folding

    DEFF Research Database (Denmark)

    Bohr, Henrik; Brunak, Søren; Bohr, Jakob

    1997-01-01

    A theory is presented for coherent topological phenomena in protein dynamics with implications for protein folding and stability. We discuss the relationship to the writhing number used in knot diagrams of DNA. The winding state defines a long-range order along the backbone of a protein with long......-range excitations, `wring' modes, that play an important role in protein denaturation and stability. Energy can be pumped into these excitations, either thermally or by an external force....

  14. Workshop on Nonlinear Phenomena in Complex Systems

    CERN Document Server

    1989-01-01

    This book contains a thorough treatment of neural networks, cellular-automata and synergetics, in an attempt to provide three different approaches to nonlinear phenomena in complex systems. These topics are of major interest to physicists active in the fields of statistical mechanics and dynamical systems. They have been developed with a high degree of sophistication and include the refinements necessary to work with the complexity of real systems as well as the more recent research developments in these areas.

  15. Role of spinning electrons in paramagnetic phenomena

    International Nuclear Information System (INIS)

    Bose, D.M.

    1986-06-01

    An attempt is made to explain paramagnetic phenomena without assuming the orientation of a molecule or ion in a magnetic field. Only the spin angular momentum is assumed to be responsible. A derivative of the Gurie-Langevin law and the magnetic moments of ions are given as a function of the number of electrons in an inner, incomplete shell. An explanation of Gerlach's experiments with iron and nickel vapors is attempted. An explanation of magnetomechanical experiments with ferromagnetic elements is given

  16. From critical phenomena to gauge gields

    International Nuclear Information System (INIS)

    Le Bellac, M.

    1988-01-01

    In this book the author gives an introduction to the following questions: critical phenomena (Landau theory, renormalization group, two dimensional models); Perturbation theory and renormalization, scalar euclidian field (Feynman diagrams, Callan-Symanzik equations); Quantum theory of scalar fields (path integrals in quantum mechanics and statistical mechanics, green functions and S matrix, quantization of Klein-Gordon field); Gauge theories (quantization of Dirac field and electromagnetic field, quantum electrodynamics, non-abelian gauge theories) [fr

  17. Pseudogap phenomena in ultracold atomic Fermi gases

    OpenAIRE

    Chen, Qijin; Wang, Jibiao

    2014-01-01

    The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an analogue of Cooper pairing and superconductivity in an electron system, in particular, the high $T_c$ superconductors. Owing to the various tunable parameters that have been made accessible experimentally in recent years, atomic Fermi gases can be explored as a prototype or quantum simulator of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may shed light to ...

  18. Occult Phenomena in Sherlock Holmes the Movie

    OpenAIRE

    NAMAZCARRA, CHRIESHER

    2014-01-01

    Keywords: Occult phenomena, Sherlock Holmes, movie. Lately, it is not difficult for people to find occult practices. There are many television programs and movie which air mystical programme aggressively to raise the rating and attract the viewers. A movie that raise occultism theme is Sherlock Holmes, the Movie. This movie tells about the struggle of detective Sherlock Holmes to fight the black magic power of Lord Blackwood.To carry out the study, the theories of Occultism such as the secrec...

  19. Investigation of oscillating airfoil shock phenomena

    OpenAIRE

    Giordano , Daniel; Fleeter , Sanford

    1992-01-01

    Fundamental experiments were performed in an unsteady flow water table facility to investigate and quantify the unsteady aerodynamics of a biconvex airfoil executing torsion mode oscillations at realistic reduced frequencies. A computer-based image enhancement system was used to measure the oscillating supersonic and transonic shock flow phenomena. By utilizing the hydraulic analogy to compare experimental results with a linear theoretical prediction, magnitude and phase relationships for the...

  20. Conformal field theories and critical phenomena

    International Nuclear Information System (INIS)

    Xu, Bowei

    1993-01-01

    In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories

  1. An interpretation of passive containment cooling phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bum-Jin [Ministry of Science & Technology, Kyunggi-Do (Korea, Democratic People`s Republic of); Kang, Chang-Sun, [Seoul National Univ. (Korea, Democratic People`s Republic of)

    1995-09-01

    A simplified interpretation model for the cooling capability of the Westinghouse type PCCS is proposed in this paper. The PCCS domain was phenomenologically divided into 3 regions; water entrance effect region, asymptotic region, and air entrance effect region. The phenomena in the asymptotic region is focused in this paper. Due to the very large height to thickness ratio of the water film, the length of the asymptotic region is estimated to be over 90% of the whole domain. Using the analogy between heat and mass transfer phenomena in a turbulent situation, a new dependent variable combining temperature and vapor mass fraction was defined. The similarity between the PCCS phenomena, which contains the sensible and latent heat transfer, and the buoyant air flow on a vertical heated plate is derived. The modified buoyant coefficient and thermal conductivity were defined. Using these newly defined variable and coefficients, the modified correlation for the interfacial heat fluxes and the ratios of latent heat transfer to sensible heat transfer is established. To verify the accuracy of the correlation, the results of this study were compared with the results of other numerical analyses performed for the same configuration and they are well within the range of 15% difference.

  2. Quantum Chess: Making Quantum Phenomena Accessible

    Science.gov (United States)

    Cantwell, Christopher

    Quantum phenomena have remained largely inaccessible to the general public. There tends to be a scare factor associated with the word ``Quantum''. This is in large part due to the alien nature of phenomena such as superposition and entanglement. However, Quantum Computing is a very active area of research and one day we will have games that run on those quantum computers. Quantum phenomena such as superposition and entanglement will seem as normal as gravity. Is it possible to create such games today? Can we make games that are built on top of a realistic quantum simulation and introduce players of any background to quantum concepts in a fun and mentally stimulating way? One of the difficulties with any quantum simulation run on a classical computer is that the Hilbert space grows exponentially, making simulations of an appreciable size physically impossible due largely to memory restrictions. Here we will discuss the conception and development of Quantum Chess, and how to overcome some of the difficulties faced. We can then ask the question, ``What's next?'' What are some of the difficulties Quantum Chess still faces, and what is the future of quantum games?

  3. Thermal transport phenomena in nanoparticle suspensions

    International Nuclear Information System (INIS)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications. (topical review)

  4. Physical phenomena as sense determinate occurrences

    International Nuclear Information System (INIS)

    Sommer, H.J.

    2005-01-01

    In the view of El Naschie's E Infinity theory [Chaos, Solitons and Fractals 22 (2004) 495], our physical laws emerge from a chaotic underground, a 'Dirac-sea'. But we have no direct access from our observations to this chaotic world and this implies that the meaning of the correspondence between the phenomena we obtain by our cognition and their causal structures remains hidden to us. The fundamental process which produces our cognition is the 'constitution of sense'. A formal description of this process will be presented. We use Dempster Shafer's belief calculus to define 'belief' and motivate an Anticipation Principle: 'Put the measurements obtained from the world in such an order that the credibility of your forecasts will be maximized.' From this specification of the basic idea of what physical science ideally strives for, we are able to deduce a frame of reference for the formation of phenomena out of arbitrary sets of measurements. Reality is formed by these 'observable phenomena'. In this emerging reality, we recognize characteristic effects and principles of modern physics: Einstein's Postulate of Relativity, Entanglement, and the Quantum Zeno Effect. The presented view of reality is closely related to the ideas that had been presented hundred years ago by Ernst Mach and which recently J. Anandan generalized in his concept of a 'Relational Reality'

  5. Some aspects of geomagnetically conjugate phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, M.J.

    1987-12-01

    Both charged particles and waves convey information about the thermosphere, ionosphere and magnetosphere from the Northern to the Southern Hemisphere and vice versa, along geomagnetic flux tubes.The interhemispheric travel time of electrons or ions, being dependent upon L-value , pitch angle and energy (which may lie between less than or equal to 1 eV and greater than or equal to 1 MeV) may be many hours, ranging down to less than or equal to 1 s. However, the one-hop propagation time for magnetohydrodynamic or whistler mode waves generally lies between 10/sup 2/s and 1 s. Such times, therefore, give the time scales of transient phenomena that are geomagnetically conjugate and of changes in steady-state plasma processes occurring in geomagnetically conjugate regions. Contrasting examples are presented of conjugate physical phenomena, obtained using satellite, rocket, aircraft and ground-based observations; the latter capitalise upon the rather rare disposition of land - rather than ocean - at each end of a geophysically interesting flux tube. Particular attention is paid to the interactions between whistler mode waves and energetic electrons. Geomagnetic, radio, optical and plasma observations, taken together with model computations, provide a wealth of knowledge on conjugate phenomena and their dependence on conditions in the solar wind, substorms, L-value, etc... Finally, some suggestions are made for future lines of research.

  6. What Einstein didn't know scientific answers to everyday questions

    CERN Document Server

    Wolke, Robert L

    2014-01-01

    From simple (How do magnets work?) to complex (Where does uranium get its energy?), this volume offers intriguing insights into scientific facts. Definitive accounts of workings behind everyday phenomena include related do-it-yourself experiments.

  7. Betting on better scientific literacy

    CERN Multimedia

    Daisy Yuhas

    Dmitry Zimin, founder of the Russian philanthropic foundation Dynasty, visited CERN on 23 October. Zimin, who is himself a scientist and businessman, founded Dynasty in order to support scientific education and a greater public understanding of scientific thinking. Zimin met the Bulletin to reflect on the experience and what had interested him about CERN. Zimin, who had read about and researched CERN before his visit, felt prepared for the physics at CERN but was greatly impressed by the collaborative “brainforce.” He observed that “The organization of all of these people is not less important as an achievement than all of the technical achievements, the collider, the experiments.” He was amazed at “how CERN has been able to organize such a grand collaboration of different people from different institutes of countries from all over the world.” At the core of the Dynasty Foundation’s ideals is the dissemination of scientific thought. Zimin ...

  8. Seeing Change in Time: Video Games to Teach about Temporal Change in Scientific Phenomena

    Science.gov (United States)

    Corredor, Javier; Gaydos, Matthew; Squire, Kurt

    2014-06-01

    This article explores how learning biological concepts can be facilitated by playing a video game that depicts interactions and processes at the subcellular level. Particularly, this article reviews the effects of a real-time strategy game that requires players to control the behavior of a virus and interact with cell structures in a way that resembles the actual behavior of biological agents. The evaluation of the video game presented here aims at showing that video games have representational advantages that facilitate the construction of dynamic mental models. Ultimately, the article shows that when video game's characteristics come in contact with expert knowledge during game design, the game becomes an excellent medium for supporting the learning of disciplinary content related to dynamic processes. In particular, results show that students who participated in a game-based intervention aimed at teaching biology described a higher number of temporal-dependent interactions as measured by the coding of verbal protocols and drawings than students who used texts and diagrams to learn the same topic.

  9. Seeing Change in Time: Video Games to Teach about Temporal Change in Scientific Phenomena

    Science.gov (United States)

    Corredor, Javier; Gaydos, Matthew; Squire, Kurt

    2014-01-01

    This article explores how learning biological concepts can be facilitated by playing a video game that depicts interactions and processes at the subcellular level. Particularly, this article reviews the effects of a real-time strategy game that requires players to control the behavior of a virus and interact with cell structures in a way that…

  10. Scientific integrity in Brazil.

    Science.gov (United States)

    Lins, Liliane; Carvalho, Fernando Martins

    2014-09-01

    This article focuses on scientific integrity and the identification of predisposing factors to scientific misconduct in Brazil. Brazilian scientific production has increased in the last ten years, but the quality of the articles has decreased. Pressure on researchers and students for increasing scientific production may contribute to scientific misconduct. Cases of misconduct in science have been recently denounced in the country. Brazil has important institutions for controlling ethical and safety aspects of human research, but there is a lack of specific offices to investigate suspected cases of misconduct and policies to deal with scientific dishonesty.

  11. 3D Scientific Visualization with Blender

    Science.gov (United States)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender (an open source visualization suite widely used in the entertainment and gaming industries) for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  12. 3D Scientific Visualization with Blender

    Science.gov (United States)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  13. Predicting environmental aspects of CCSR leachates through the application of scientifically valid leaching protocols

    International Nuclear Information System (INIS)

    Hassett, D.J.

    1993-01-01

    The disposal of solid wastes from energy production, particularly solid wastes from coal conversion processes, requires a thorough understanding of the waste material as well as the disposal environment. Many coal conversion solid residues (CCSRs) have chemical, mineralogical, and physical properties advantageous for use as engineering construction materials and in other industrial applications. If disposal is to be the final disposition of CCSRs from any source, the very properties that can make ash useful also contribute to behavior that must be understood for scientifically logical and environmentally responsible disposal. This paper describes the application of scientifically valid leaching and characterization tests designed to predict field phenomena. The key to proper characterization of these unique materials is the recognition of and compensation for the hydration reactions that can occur during long-term leaching. Many of these reactions, such as the formation of the mineral ettringite, can have a profound effect on the concentration of potentially problematic trace elements such as boron, chromium, and selenium. The mobility of these elements, which may be concentrated in CCSRs due to the conversion process, must be properly evaluated for the formation of informed and scientifically sound decisions regarding safe disposal. Groundwater is an extremely important and relatively scarce resource. Contamination of this resource is a threat to life, which is highly dependent on it, so management of materials that can impact groundwater must be carefully planned and executed. The application of scientifically valid leaching protocols and complete testing are critical to proper waste management

  14. Understanding Ocean Acidification

    Science.gov (United States)

    National Oceanic and Atmospheric Administration, 2011

    2011-01-01

    This curriculum module is designed for students who are taking high school chemistry. Students should already have some experience with the following: (1) Understanding and reading the pH scale; (2) Knowledge of the carbon cycle; (3) Using scientific notation to express large and small values; and (4) Reading chemical equations. This curriculum…

  15. Network effects on scientific collaborations.

    Directory of Open Access Journals (Sweden)

    Shahadat Uddin

    Full Text Available BACKGROUND: The analysis of co-authorship network aims at exploring the impact of network structure on the outcome of scientific collaborations and research publications. However, little is known about what network properties are associated with authors who have increased number of joint publications and are being cited highly. METHODOLOGY/PRINCIPAL FINDINGS: Measures of social network analysis, for example network centrality and tie strength, have been utilized extensively in current co-authorship literature to explore different behavioural patterns of co-authorship networks. Using three SNA measures (i.e., degree centrality, closeness centrality and betweenness centrality, we explore scientific collaboration networks to understand factors influencing performance (i.e., citation count and formation (tie strength between authors of such networks. A citation count is the number of times an article is cited by other articles. We use co-authorship dataset of the research field of 'steel structure' for the year 2005 to 2009. To measure the strength of scientific collaboration between two authors, we consider the number of articles co-authored by them. In this study, we examine how citation count of a scientific publication is influenced by different centrality measures of its co-author(s in a co-authorship network. We further analyze the impact of the network positions of authors on the strength of their scientific collaborations. We use both correlation and regression methods for data analysis leading to statistical validation. We identify that citation count of a research article is positively correlated with the degree centrality and betweenness centrality values of its co-author(s. Also, we reveal that degree centrality and betweenness centrality values of authors in a co-authorship network are positively correlated with the strength of their scientific collaborations. CONCLUSIONS/SIGNIFICANCE: Authors' network positions in co

  16. The Scientific Enterprise

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 9. The Scientific Enterprise - Assumptions, Problems, and Goals in the Modern Scientific Framework. V V Raman. Reflections Volume 13 Issue 9 September 2008 pp 885-894 ...

  17. Extensional scientific realism vs. intensional scientific realism.

    Science.gov (United States)

    Park, Seungbae

    2016-10-01

    Extensional scientific realism is the view that each believable scientific theory is supported by the unique first-order evidence for it and that if we want to believe that it is true, we should rely on its unique first-order evidence. In contrast, intensional scientific realism is the view that all believable scientific theories have a common feature and that we should rely on it to determine whether a theory is believable or not. Fitzpatrick argues that extensional realism is immune, while intensional realism is not, to the pessimistic induction. I reply that if extensional realism overcomes the pessimistic induction at all, that is because it implicitly relies on the theoretical resource of intensional realism. I also argue that extensional realism, by nature, cannot embed a criterion for distinguishing between believable and unbelievable theories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. [Scientific concepts in clinical medicine].

    Science.gov (United States)

    Rogler, G

    2003-11-28

    The understanding of the scientific basis and the theory of knowledge are surprisingly heterogeneous in practical and clinical medicine. It is frequently influenced or based on the philosophical theory of critical rationalism founded by Sir Karl Popper. Because the theory of knowledge and the understanding of scientific truth is the central basis for cautious and good clinical practise it is necessary to discuss both points to avoid unscientific auto-immunisation against critique in a type of medicine that regards herself as science-based. Evidence-based medicine would not be possible without interpretation and explanation of existing data into the individual treatment context. Besides an inductive or deductive logic the historical and situative side-conditions of the gathering of knowledge and of experiments are of central importance for their interpretation and their relevance in clinical practice. This historical and situative context warrants reflection but must also be paid attention to in the reflections on medical ethics.

  19. Comparative modeling for power generating systems with interaction phenomena

    International Nuclear Information System (INIS)

    Kim, Seong Ho; Kim, Tae Woon

    2007-01-01

    From a conflicting viewpoint, comprehensive assessment of various national power systems can be treated as a multicriteria decision-making (MCDM) problem. In reality, there are interaction phenomena among the decision elements. The main objective of this work is to propose a comprehensive framework to determinate the priority of appropriate national power sources involving various degrees of interaction among the decision elements (e.g., decision goal, decision criteria, and decision alternatives) such as inner dependence, outer dependence, and feedback effect. In the context of a generic hierarchical network (or hiernet) structure instead of one-way directional tree structure, the impact of the interaction phenomena on the grade of priority is investigated using a supermatrix technique or an analytic network process (ANP) method. Moreover, the three types of attitudes towards nuclear power system of the multiple actors are incorporated into the network structure to figure out the effect of characteristics of power systems. An illustrative example of the generic hiernet structure is demonstrated in comparison to the specific hierarchy structure without any interaction among the decision elements. The proposed framework can be applied to select the appropriate power systems, to understand the effect of its underlying decision structures, and to include risk attitudes towards a certain alternative. (author)

  20. Analysis of graphic representation ability in oscillation phenomena

    Science.gov (United States)

    Dewi, A. R. C.; Putra, N. M. D.; Susilo

    2018-03-01

    This study aims to investigates how the ability of students to representation graphs of linear function and harmonic function in understanding of oscillation phenomena. Method of this research used mix methods with concurrent embedded design. The subjects were 35 students of class X MIA 3 SMA 1 Bae Kudus. Data collection through giving essays and interviews that lead to the ability to read and draw graphs in material of Hooke's law and oscillation characteristics. The results of study showed that most of the students had difficulty in drawing graph of linear function and harmonic function of deviation with time. Students’ difficulties in drawing the graph of linear function is the difficulty of analyzing the variable data needed in graph making, confusing the placement of variable data on the coordinate axis, the difficulty of determining the scale interval on each coordinate, and the variation of how to connect the dots forming the graph. Students’ difficulties in representing the graph of harmonic function is to determine the time interval of sine harmonic function, the difficulty to determine the initial deviation point of the drawing, the difficulty of finding the deviation equation of the case of oscillation characteristics and the confusion to different among the maximum deviation (amplitude) with the length of the spring caused the load.Complexity of the characteristic attributes of the oscillation phenomena graphs, students tend to show less well the ability of graphical representation of harmonic functions than the performance of the graphical representation of linear functions.

  1. Climate. For a successful change. Volume 1: How to commit one's territory in an adaptation approach. Volume 2: How to implement a territorial project which integrates adaptation. Volume 3: How to understand the complexity of climate change - Scientific issues

    International Nuclear Information System (INIS)

    2013-12-01

    The first volume presents the climate issue as a world issue as well as a local issue (historic context of adaptation to climate change effects, legal obligation for local communities, indicators of direct and indirect effects of climate change, economic impacts), and presents adaptation as a way of action at a local level (definition of a strategy, articulation between works on greenhouse gas emissions and those on adaptation, actions to be implemented, action follow-up and adjustment). The second volume describes how to communicate and talk about climate change, and more specifically about the above-mentioned issues (reality of climate change, indirect and direct effects, obligations and responsibilities for local communities, economic impacts). It addresses the issue of climate change in the Rhone-Alpes region: adaptation within the regional scheme on climate, air and energy (SRCAE), role of local communities. It presents an action methodology: to inform and organise, to prepare the mobilisation of actors, to prepare the territory vulnerability diagnosis, to define the adaptation strategy, and to implement, follow-up and assess the action. The third volume proposes a set of sheets containing scientific information and data related to climate change: factors of climate variability, current global warming, greenhouse gases and aerosols, physical-chemical principles involved in greenhouse effect, carbon sinks and carbon sources, effects of land assignment and agriculture, combined effects of mankind actions on the atmosphere, climate change and oceans, climate change and cryo-sphere, climate change and biodiversity, extreme meteorological and climate events and their consequences

  2. BWR core melt progression phenomena: Experimental analyses

    International Nuclear Information System (INIS)

    Ott, L.J.

    1992-01-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component

  3. WWW: The Scientific Method

    Science.gov (United States)

    Blystone, Robert V.; Blodgett, Kevin

    2006-01-01

    The scientific method is the principal methodology by which biological knowledge is gained and disseminated. As fundamental as the scientific method may be, its historical development is poorly understood, its definition is variable, and its deployment is uneven. Scientific progress may occur without the strictures imposed by the formal…

  4. ACCIDENT PHENOMENA OF RISK IMPORTANCE PROJECT - Continued RESEARCH CONCERNING SEVERE ACCIDENT PHENOMENA AND MANAGEMENT IN Sweden

    International Nuclear Information System (INIS)

    Rolandson, S.; Mueller, F.; Loevenhielm, G.

    1997-01-01

    Since 1988 all reactors in Sweden have mitigating measures, such as filtered vents, implemented. In parallel with the work of implementing these measures, a cooperation effort (RAMA projects) between the Swedish utilities and the Nuclear Power Inspectorate was performed to acquire sufficient knowledge about severe accident research work. The on-going project has the name Accident Phenomena of Risk Importance 3. In this paper, we will give background information about severe accident management in Sweden. In the Accident Phenomena of Risk Importance 3 project we will focus on the work concerning coolability of melted core in lower plenum which is the main focus of the In-vessel Coolability Task Group within the Accident Phenomena of Risk Importance 3 project. The Accident Phenomena of Risk Importance 3 project has joined on international consortium and the in-vessel cooling experiments are performed by Fauske and Associates, Inc. in Burr Ridge, Illinois, United States America, Sweden also intends to do one separate experiment with one instrument penetration we have in Swedish/Finnish BWR's. Other parts of the Accident Phenomena of Risk Importance 3 project, such as support to level 2 studies, the research at Royal Institute of Technology and participation in international programs, such as Cooperative Severe Accident Research Program, Advanced Containment Experiments and PHEBUS will be briefly described in the paper

  5. Jets and large Psub(T) phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, D. S.

    1980-07-01

    Jets have been observed in hadron-hadron collisions and e/sup +/e/sup -/ annihilation at high energies. An attempt is made to explain the mechanism for the production of jets. The mechanism of quark-fragmentation is described with illustrations. Basic concepts and assumptions are used to study the distribution of quarks and gluons in a hadron. Quark and gluon decay distributions, and the transverse momentum distributions of quarks and gluons, Monte-Carlo methods in the study of jets, large Psub(T) phenomena in hadrons, QCD effects in hadronization of quark jets are discussed.

  6. Quenching phenomena in natural circulation loop

    International Nuclear Information System (INIS)

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-01-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity

  7. General unifying features of controlled quantum phenomena

    International Nuclear Information System (INIS)

    Pechen, Alexander; Brif, Constantin; Wu, Rebing; Chakrabarti, Raj; Rabitz, Herschel

    2010-01-01

    Many proposals have been put forth for controlling quantum phenomena, including open-loop, adaptive feedback, and real-time feedback control. Each of these approaches has been viewed as operationally, and even physically, distinct from the others. This work shows that all such scenarios inherently share the same fundamental control features residing in the topology of the landscape relating the target physical observable to the applied controls. This unified foundation may provide a basis for development of hybrid control schemes that would combine the advantages of the existing approaches to achieve the best overall performance.

  8. Advances in modelling of condensation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  9. Cooperative phenomena in flows; Poster abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Loekseth, Trine (ed.)

    2011-05-15

    The objective of this 'Geilo School' was to bring together researchers with various interests and background including theoretical experimental physicists, material scientists and molecular biologists to identify and discuss areas where synergism between these disciplines may be most fruitfully applied to the study of various aspects of 'Cooperative phenomena in flows'. There were altogether 21 lecturers at the School with about 80 participants from 19 countries. This was the 21. Geilo School held biannually since the first one in I971. Reference to the earlier Geilo Schools 1971-2009 may be found here: http://www.ife.no/departments/physics/projects/geilo (Author)

  10. Current position on severe accident phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Robert E [Fauske and Associates, Inc., Burr Ridge, IL (United States)

    2004-07-01

    The phenomena addressed in this lecture are: in-vessel and ex-vessel hydrogen generation; in-vessel and in-containment natural circulation, steam explosions, direct containment heating, core-concrete interaction; debris coolability, containment strength/failure. The following events were modeled: axial and radial power distribution, two-phase level in the core, steam generation in covered section, decay heat generation, convection to gas, cladding oxidation, cold ballooning and rupture, natural circulation between the core and upper plenum, hydrogen generation, core meltdown, reflooding. Differences between PWR and BWR type reactors.

  11. Current position on severe accident phenomena

    International Nuclear Information System (INIS)

    Henry, Robert E.

    2004-01-01

    The phenomena addressed in this lecture are: in-vessel and ex-vessel hydrogen generation; in-vessel and in-containment natural circulation, steam explosions, direct containment heating, core-concrete interaction; debris coolability, containment strength/failure. The following events were modeled: axial and radial power distribution, two-phase level in the core, steam generation in covered section, decay heat generation, convection to gas, cladding oxidation, cold ballooning and rupture, natural circulation between the core and upper plenum, hydrogen generation, core meltdown, reflooding. Differences between PWR and BWR type reactors

  12. Cooperative phenomena in flows; Poster abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Loekseth, Trine [ed.

    2011-05-15

    The objective of this 'Geilo School' was to bring together researchers with various interests and background including theoretical experimental physicists, material scientists and molecular biologists to identify and discuss areas where synergism between these disciplines may be most fruitfully applied to the study of various aspects of 'Cooperative phenomena in flows'. There were altogether 21 lecturers at the School with about 80 participants from 19 countries. This was the 21. Geilo School held biannually since the first one in I971. Reference to the earlier Geilo Schools 1971-2009 may be found here: http://www.ife.no/departments/physics/projects/geilo (Author)

  13. Critical phenomena and renormalization group transformations

    International Nuclear Information System (INIS)

    Castellani, C.; Castro, C. di

    1980-01-01

    Our main goal is to guide the reader to find out the common rational behind the various renormalization procedures which have been proposed in the last ten years. In the first part of these lectures old arguments on universality and scaling will be briefly recalled. To our opinion these introductory remarks allow one to stress the physical origin of the two majore renormalization procedures, which have been used in the theory of critical phenomena: the Wilson and the field theoretic approach. All the general properties of a ''good'' renormalization transformation will also come out quite naturally. (author)

  14. Nanoscale and microscale phenomena fundamentals and applications

    CERN Document Server

    Khandekar, Sameer

    2015-01-01

    The book is an outcome of research work in the areas of nanotechnology, interfacial science, nano- and micro-fluidics and manufacturing, soft matter, and transport phenomena at nano- and micro-scales. The contributing authors represent prominent research groups from Indian Institute of Technology Bombay, Indian Institute of Technology Kanpur and Indian Institute of Science, Bangalore. The book has 13 chapters and the entire work presented in the chapters is based on research carried out over past three years. The chapters are designed with number of coloured illustrations, figures and tables. The book will be highly beneficial to academicians as well as industrial professionals working in the mentioned areas.

  15. Advances in modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-01-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described

  16. Layered phenomena in the mesopause region

    Science.gov (United States)

    Plane, J. M. C.; Bailey, S. M.; Baumgarten, G.; Rapp, M.

    2015-05-01

    This special issue of the Journal of Atmospheric and Solar-Terrestrial Physics comprises a collection of papers which were mostly presented at the 11th Layered Phenomena in the Mesopause Region (LPMR) Workshop, held at the University of Leeds between 29th July 2013 and 1st August 2013. The topics covered at the workshop included atmospheric dynamics, mesospheric ice clouds, meteoric metal layers, meteoric smoke particles, and airglow layers. There was also a session on the potential of planned sub-orbital spacecraft for making measurements in the mesosphere and lower thermosphere (MLT).

  17. Micro- and nanoscale phenomena in tribology

    CERN Document Server

    Chung, Yip-Wah

    2011-01-01

    Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study.After discussing the

  18. Quenching phenomena in natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  19. Critical Phenomena Associated with Boson Stars

    OpenAIRE

    Hawley, Scott H.; Choptuik, Matthew W.

    2001-01-01

    We present a brief synopsis of related work (gr-qc/0007039), describing a study of black hole threshold phenomena for a self-gravitating, massive complex scalar field in spherical symmetry. We construct Type I critical solutions dynamically by tuning a one-parameter family of initial data consisting of a boson star and a massless real scalar field, and numerically evolving this data. The resulting critical solutions appear to correspond to boson stars on the unstable branch, as we show via co...

  20. Understanding quantum physics

    International Nuclear Information System (INIS)

    Spillner, Vera

    2011-01-01

    This thesis presents a bundle definition for 'scientific understanding' through which the empirically equivalent interpretations of quantum mechanics can be evaluated with respect to the understanding they generate. The definition of understanding is based on a sufficient and necessary criterion, as well as a bundle of conditions - where a theory can be called most understandable whenever it fulfills the highest number of bundle criteria. Thereby the definition of understanding is based on the one hand on the objective number of criteria a theory fulfills, as well as, on the other hand, on the individual's preference of bundle criteria. Applying the definition onto three interpretations of quantum mechanics, the interpretation of David Bohm appears as most understandable, followed by the interpretation of Tim Maudlin and the Kopenhagen interpretation. These three interpretations are discussed in length in my thesis. (orig.)