WorldWideScience

Sample records for understand science concepts

  1. Future Science Teachers' Understandings of Diffusion and Osmosis Concepts

    Science.gov (United States)

    Tomazic, Iztok; Vidic, Tatjana

    2012-01-01

    The concepts of diffusion and osmosis cross the disciplinary boundaries of physics, chemistry and biology. They are important for understanding how biological systems function. Since future (pre-service) science teachers in Slovenia encounter both concepts at physics, chemistry and biology courses during their studies, we assessed the first-,…

  2. Threshold concepts as barriers to understanding climate science

    Science.gov (United States)

    Walton, P.

    2013-12-01

    Whilst the scientific case for current climate change is compelling, the consequences of climate change have largely failed to permeate through to individuals. This lack of public awareness of the science and the potential impacts could be considered a key obstacle to action. The possible reasons for such limited success centre on the issue that climate change is a complex subject, and that a wide ranging academic, political and social research literature on the science and wider implications of climate change has failed to communicate the key issues in an accessible way. These failures to adequately communicate both the science and the social science of climate change at a number of levels results in ';communication gaps' that act as fundamental barriers to both understanding and engagement with the issue. Meyer and Land (2003) suggest that learners can find certain ideas and concepts within a discipline difficult to understand and these act as a barrier to deeper understanding of a subject. To move beyond these threshold concepts, they suggest that the expert needs to support the learner through a range of learning experiences that allows the development of learning strategies particular to the individual. Meyer and Land's research into these threshold concepts has been situated within Economics, but has been suggested to be more widely applicable though there has been no attempt to either define or evaluate threshold concepts to climate change science. By identifying whether common threshold concepts exist specifically in climate science for cohorts of either formal or informal learners, scientists will be better able to support the public in understanding these concepts by changing how the knowledge is communicated to help overcome these barriers to learning. This paper reports on the findings of a study that examined the role of threshold concepts as barriers to understanding climate science in a UK University and considers its implications for wider

  3. Understanding of Earth and Space Science Concepts: Strategies for Concept-Building in Elementary Teacher Preparation

    Science.gov (United States)

    Bulunuz, Nermin; Jarrett, Olga S.

    2009-01-01

    This research is concerned with preservice teacher understanding of six earth and space science concepts that are often taught in elementary school: the reason for seasons, phases of the moon, why the wind blows, the rock cycle, soil formation, and earthquakes. Specifically, this study examines the effect of readings, hands-on learning stations,…

  4. Concept Mapping as a Tool to Develop and Measure Students' Understanding in Science

    Science.gov (United States)

    Tan, Sema; Erdimez, Omer; Zimmerman, Robert

    2017-01-01

    Concept maps measured a student's understanding of the complexity of concepts, and interrelationships. Novak and Gowin (1984) claimed that the continuous use of concept maps increased the complexity and interconnectedness of students' understanding of relationships between concepts in a particular science domain. This study has two purposes; the…

  5. Simulation-Based Performance Assessment: An Innovative Approach to Exploring Understanding of Physical Science Concepts

    Science.gov (United States)

    Gale, Jessica; Wind, Stefanie; Koval, Jayma; Dagosta, Joseph; Ryan, Mike; Usselman, Marion

    2016-01-01

    This paper illustrates the use of simulation-based performance assessment (PA) methodology in a recent study of eighth-grade students' understanding of physical science concepts. A set of four simulation-based PA tasks were iteratively developed to assess student understanding of an array of physical science concepts, including net force,…

  6. Influence of Particle Theory Conceptions on Pre-Service Science Teachers' Understanding of Osmosis and Diffusion

    Science.gov (United States)

    AlHarbi, Nawaf N. S.; Treagust, David F.; Chandrasegaran, A. L.; Won, Mihye

    2015-01-01

    This study investigated the understanding of diffusion, osmosis and particle theory of matter concepts among 192 pre-service science teachers in Saudi Arabia using a 17-item two-tier multiple-choice diagnostic test. The data analysis showed that the pre-service teachers' understanding of osmosis and diffusion concepts was mildly correlated with…

  7. Understanding Economic and Management Sciences Teachers' Conceptions of Sustainable Development

    Science.gov (United States)

    America, Carina

    2014-01-01

    Sustainable development has become a key part of the global educational discourse. Education for sustainable development (ESD) specifically is pronounced as an imperative for different curricula and regarded as being critical for teacher education. This article is based on research that was conducted on economic and management sciences (EMS)…

  8. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    Science.gov (United States)

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  9. The Effects of Hands-On Learning Stations on Building American Elementary Teachers' Understanding about Earth and Space Science Concepts

    Science.gov (United States)

    Bulunuz, Nermin; Jarrett, Olga S.

    2010-01-01

    Research on conceptual change indicates that not only children, but also teachers have incomplete understanding or misconceptions on science concepts. This mixed methods study was concerned with in-service teachers' understanding of four earth and space science concepts taught in elementary school: reason for seasons, phases of the moon, rock…

  10. Munazza's story: Understanding science teaching and conceptions of the nature of science in Pakistan through a life history study

    Science.gov (United States)

    Halai, Nelofer

    In this study I have described and tried to comprehend how a female science teacher understands her practice. Additionally, I have developed some understanding of her understanding of the nature of science. While teaching science, a teacher projects messages about the nature of science that can be captured by observations and interviews. Furthermore, the manner is which a teacher conceptualizes science for teaching, at least in part, depends on personal life experiences. Hence, I have used the life history method to understand Munazza's practice. Munazza is a young female science teacher working in a private, co-educational school for children from middle income families in Karachi, Pakistan. Her stories are central to the study, and I have represented them using a number of narrative devices. I have woven in my own stories too, to illustrate my perspective as a researcher. The data includes 13 life history interviews and many informal conversations with Munazza, observations of science teaching in classes seven and eight, and interviews with other science teachers and administrative staff of the school. Munazza's personal biography and experiences of school and undergraduate courses has influenced the way she teaches. It has also influenced the way she does not teach. She was not inspired by her science teachers, so she has tried not to teach the way she was taught science. Contextual factors, her conception of preparation for teaching as preparation for subject content and the tension that she faces in balancing care and control in her classroom are some factors that influence her teaching. Munazza believes that science is a stable, superior and value-free way of knowing. In trying to understand the natural world, observations come first, which give reliable information about the world leading inductively to a "theory". Hence, she relies a great deal on demonstrations in the class where students "see" for themselves and abstract the scientific concept from the

  11. From Words to Concepts: Focusing on Word Knowledge When Teaching for Conceptual Understanding within an Inquiry-Based Science Setting

    Science.gov (United States)

    Haug, Berit S.; Ødegaard, Marianne

    2014-01-01

    This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the…

  12. Innovative learning model for improving students’ argumentation skill and concept understanding on science

    Science.gov (United States)

    Nafsiati Astuti, Rini

    2018-04-01

    Argumentation skill is the ability to compose and maintain arguments consisting of claims, supports for evidence, and strengthened-reasons. Argumentation is an important skill student needs to face the challenges of globalization in the 21st century. It is not an ability that can be developed by itself along with the physical development of human, but it must be developed under nerve like process, giving stimulus so as to require a person to be able to argue. Therefore, teachers should develop students’ skill of arguing in science learning in the classroom. The purpose of this study is to obtain an innovative learning model that are valid in terms of content and construct in improving the skills of argumentation and concept understanding of junior high school students. The assessment of content validity and construct validity was done through Focus Group Discussion (FGD), using the content and construct validation sheet, book model, learning video, and a set of learning aids for one meeting. Assessment results from 3 (three) experts showed that the learning model developed in the category was valid. The validity itself shows that the developed learning model has met the content requirement, the student needs, state of the art, strong theoretical and empirical foundation and construct validity, which has a connection of syntax stages and components of learning model so that it can be applied in the classroom activities

  13. Early Science Education: Exploring Familiar Contexts To Improve the Understanding of Some Basic Scientific Concepts.

    Science.gov (United States)

    Martins, Isabel P.; Veiga, Luisa

    2001-01-01

    Argues that science education is a fundamental tool for global education and that it must be introduced in early years as a first step to a scientific culture for all. Describes testing validity of a didactic strategy for developing the learning of concepts, which was based upon an experimental work approach using everyday life contexts. (Author)

  14. The Effect of Three Levels of Inquiry on the Improvement of Science Concept Understanding of Elementary School Teacher Candidates

    Science.gov (United States)

    Artayasa, I. Putu; Susilo, Herawati; Lestari, Umie; Indriwati, Sri Endah

    2018-01-01

    This research aims to compare the effect of the implementation of three levels of inquiry: level 2 (structured inquiry), level 3 (guided inquiry), and level 4 (open inquiry) toward science concept understanding of elementary school teacher candidates. This is a quasi experiment research with pre-test post-test nonequivalent control group design.…

  15. Understanding environmental contributions to autism: Causal concepts and the state of science.

    Science.gov (United States)

    Hertz-Picciotto, Irva; Schmidt, Rebecca J; Krakowiak, Paula

    2018-04-01

    The complexity of neurodevelopment, the rapidity of early neurogenesis, and over 100 years of research identifying environmental influences on neurodevelopment serve as backdrop to understanding factors that influence risk and severity of autism spectrum disorder (ASD). This Keynote Lecture, delivered at the May 2016 annual meeting of the International Society for Autism Research, describes concepts of causation, outlines the trajectory of research on nongenetic factors beginning in the 1960s, and briefly reviews the current state of this science. Causal concepts are introduced, including root causes; pitfalls in interpreting time trends as clues to etiologic factors; susceptible time windows for exposure; and implications of a multi-factorial model of ASD. An historical background presents early research into the origins of ASD. The epidemiologic literature from the last fifteen years is briefly but critically reviewed for potential roles of, for example, air pollution, pesticides, plastics, prenatal vitamins, lifestyle and family factors, and maternal obstetric and metabolic conditions during her pregnancy. Three examples from the case-control CHildhood Autism Risks from Genes and the Environment Study are probed to illustrate methodological approaches to central challenges in observational studies: capturing environmental exposure; causal inference when a randomized controlled clinical trial is either unethical or infeasible; and the integration of genetic, epigenetic, and environmental influences on development. We conclude with reflections on future directions, including exposomics, new technologies, the microbiome, gene-by-environment interaction in the era of -omics, and epigenetics as the interface of those two. As the environment is malleable, this research advances the goal of a productive and fulfilling life for all children, teen-agers and adults. Autism Res 2018, 11: 554-586. © 2018 International Society for Autism Research, Wiley Periodicals, Inc

  16. Student understanding development in chemistry concepts through constructivist-informed laboratory and science camp process in secondary school

    Science.gov (United States)

    Pathommapas, Nookorn

    2018-01-01

    Science Camp for Chemistry Concepts was the project which designed to provide local students with opportunities to apply chemistry concepts and thereby developing their 21st century skills. The three study purposes were 1) to construct and develop chemistry stations for encouraging students' understandings in chemistry concepts based on constructivist-informed laboratory, 2) to compare students' understandings in chemistry concepts before and after using chemistry learning stations, and 3) to study students' satisfactions of using their 21st century skills in science camp activities. The research samples were 67 students who attended the 1-day science camp. They were levels 10 to 11 students in SumsaoPittayakarn School, UdonThani Province, Thailand. Four constructivist-informed laboratory stations of chemistry concepts were designed for each group. Each station consisted of a chemistry scenario, a question, answers in tier 1 and supporting reasons in tier 2, and 4 sets of experimental instruments. Four to five-member subgroups of four student groups parallel participated in laboratory station for an hour in each station. Student activities in each station concluded of individual pretest, group prediction, experimental design, testing out and collection data, interpreting the results, group conclusion, and individual post-test. Data collection was done by station mentors using two-tier multiple choice questions, students' written work and interviews. Data triangulation was used for interpreting and confirming students' understandings of chemistry concepts which divided into five levels, Sound Understanding (SU), Partial Understanding (PU), Specific Misconception (SM), No Understanding (NU) and No Response (NR), before and after collaborating at each station. The study results found the following: 1) four constructivist-laboratory stations were successfully designed and used to investigate student' understandings in chemistry concepts via collaborative workshop of

  17. THE EFFECTIVENESS OF E-LAB TO IMPROVE GENERIC SCIENCE SKILLS AND UNDERSTANDING THE CONCEPT OF PHYSICS

    Directory of Open Access Journals (Sweden)

    J. Siswanto

    2016-01-01

    Full Text Available The aimed of this sudy are: (1 investigate the effectiveness of E-Lab to improve generic science skills and understanding the concepts oh physics; and (2 investigate the effect of generic science skills towards understanding the concept of students after learning by using the E-Lab. The method used in this study is a pre-experimental design with one group pretest-posttest. Subjects were students of Physics Education in University PGRI Semarang with methode random sampling. The results showed that: (1 learning to use E-Lab effective to increase generic science skills of students; and (2 Generic science skills give positive effect on student conceptual understanding on the material of the photoelectric effect, compton effect, and electron diffraction. Tujuan penelitian ini yaitu: (1 menyelidiki efektifitas E-Lab untuk meningkatkan keterampilan generik sains dan pemahaman konsep mahasiswa; dan (2  menyelidiki pengaruh keterampilan generik sains terhadap pemahaman konsep mahasiswa setelah dilakukan pembelajaran dengan menggunakan E-Lab. Metode penelitian yang digunakan dalam penelitian ini adalah pre-experimental dengan desain one group pretest-posttest. Subjek penelitian adalah mahasiswa Program Studi Pendidikan  Fisika  Universitas PGRI Semarang, dengan metode pengambilan sampel penelitian secara random. Hasil penelitian menunjukkan bahwa bahwa: (1 pembelajaran menggunakan E-Lab efektif untuk meningkatkan keterampilan generik sains mahasiswa; dan  (2 Keterampilan generik sains berpengaruh positif terhadap pemahaman konsep mahasiswa pada materi efek fotolistrik, efek compton, dan difraksi elektron. 

  18. Opportunities to Learn in School and at Home: How can they predict students' understanding of basic science concepts and principles?

    Science.gov (United States)

    Wang, Su; Liu, Xiufeng; Zhao, Yandong

    2012-09-01

    As the breadth and depth of economic reforms increase in China, growing attention is being paid to equalities in opportunities to learn science by students of various backgrounds. In early 2009, the Chinese Ministry of Education and Ministry of Science and Technology jointly sponsored a national survey of urban eighth-grade students' science literacy along with their family and school backgrounds. The present study focused on students' understanding of basic science concepts and principles (BSCP), a subset of science literacy. The sample analyzed included 3,031 students from 109 randomly selected classes/schools. Correlation analysis, one-way analysis of variance, and two-level linear regression were conducted. The results showed that having a refrigerator, internet, more books, parents purchasing books and magazines related to school work, higher father's education level, and parents' higher expectation of the education level of their child significantly predicted higher BSCP scores; having siblings at home, owning an apartment, and frequently contacting teachers about the child significantly predicted lower BSCP scores. At the school level, the results showed that being in the first-tier or key schools, having school libraries, science popularization galleries, computer labs, adequate equipment for teaching, special budget for teacher training, special budget for science equipment, and mutual trust between teachers and students significantly predicated higher BSCP scores; and having science and technology rooms, offering science and technology interest clubs, special budget for science curriculum development, and special budget for science social practice activities significantly predicted lower BSCP scores. The implications of the above findings are discussed.

  19. Technology in the curriculum: A vehicle for the development of children's understanding of science concepts through problem solving

    Science.gov (United States)

    Jane, Beverley; Smith, Leanne

    1992-12-01

    This research was carried out over a period of ten months with children in Grades 2 and 3 (aged 7 and 8) who were participating in a sequence of technology activities. Since the introduction into Victorian primary schools of The Technology Studies Framework P-10 (Crawford, 1988), more teachers are including technology studies in their classrooms and by so doing may assist children's understanding of science concepts. Children are being exposed to science phenomena related to the technology activities and Technology Studies may be a way of providing children with science experiences. ‘Technology Studies’ in this context refers to children carrying out practical problem solving tasks which can be completed without any particular scientific knowledge. Participation in the technology activities may encourage children to become actively involved, thereby facilitating an exploration of the related science concepts. The project identified the importance of challenge in relation to the children's involvement in the technology activities and the conference paper (available from the first author) discusses particular topics in terms of the balance between cognitive/metacognitive and affective influences (Baird et al., 1990)

  20. The Relationship between Preservice Science Teachers' Attitude toward Astronomy and Their Understanding of Basic Astronomy Concepts

    Science.gov (United States)

    Bektasli, Behzat

    2016-01-01

    Turkish preservice science teachers have been taking a two-credit astronomy class during the last semester of their undergraduate program since 2010. The current study aims to investigate the relationship between preservice science teachers' astronomy misconceptions and their attitudes toward astronomy. Preservice science teachers were given an…

  1. Research and Teaching: An Investigation of the Evolution of High School and Undergraduate Student Researchers' Understanding of Key Science Ethics Concepts

    Science.gov (United States)

    Mabrouk, Patricia Ann

    2013-01-01

    High school and undergraduate research students were surveyed over the 10-week period of their summer research programs to investigate their understanding of key concepts in science ethics and whether their understanding changed over the course of their summer research experiences. Most of the students appeared to understand the issues relevant to…

  2. Conceptions of Musical Understanding

    Science.gov (United States)

    Hallam, Susan; Papageorgi, Ioulia

    2016-01-01

    Music can be understood in many ways. This has important implications for music education. The research reported here explored how groups of people conceptualise musical understanding and what they believe supports its acquisition. In this study 463 participants completed two statements: "Musical understanding is" and "You learn to…

  3. Science Olympiad students' nature of science understandings

    Science.gov (United States)

    Philpot, Cindy J.

    2007-12-01

    Recent reform efforts in science education focus on scientific literacy for all citizens. In order to be scientifically literate, an individual must have informed understandings of nature of science (NOS), scientific inquiry, and science content matter. This study specifically focused on Science Olympiad students' understanding of NOS as one piece of scientific literacy. Research consistently shows that science students do not have informed understandings of NOS (Abd-El-Khalick, 2002; Bell, Blair, Crawford, and Lederman, 2002; Kilcrease and Lucy, 2002; Schwartz, Lederman, and Thompson, 2001). However, McGhee-Brown, Martin, Monsaas and Stombler (2003) found that Science Olympiad students had in-depth understandings of science concepts, principles, processes, and techniques. Science Olympiad teams compete nationally and are found in rural, urban, and suburban schools. In an effort to learn from students who are generally considered high achieving students and who enjoy science, as opposed to the typical science student, the purpose of this study was to investigate Science Olympiad students' understandings of NOS and the experiences that formed their understandings. An interpretive, qualitative, case study method was used to address the research questions. The participants were purposefully and conveniently selected from the Science Olympiad team at a suburban high school. Data collection consisted of the Views of Nature of Science -- High School Questionnaire (VNOS-HS) (Schwartz, Lederman, & Thompson, 2001), semi-structured individual interviews, and a focus group. The main findings of this study were similar to much of the previous research in that the participants had informed understandings of the tentative nature of science and the role of inferences in science, but they did not have informed understandings of the role of human imagination and creativity, the empirical nature of science, or theories and laws. High level science classes and participation in

  4. Piloting a Geoscience Literacy Exam for Assessing Students' Understanding of Earth, Climate, Atmospheric and Ocean Science Concepts

    Science.gov (United States)

    Steer, D. N.; Iverson, E. A.; Manduca, C. A.

    2013-12-01

    This research seeks to develop valid and reliable questions that faculty can use to assess geoscience literacy across the curriculum. We are particularly interested on effects of curricula developed to teach Earth, Climate, Atmospheric, and Ocean Science concepts in the context of societal issues across the disciplines. This effort is part of the InTeGrate project designed to create a population of college graduates who are poised to use geoscience knowledge in developing solutions to current and future environmental and resource challenges. Details concerning the project are found at http://serc.carleton.edu/integrate/index.html. The Geoscience Literacy Exam (GLE) under development presently includes 90 questions. Each big idea from each literacy document can be probed using one or more of three independent questions: 1) a single answer, multiple choice question aimed at basic understanding or application of key concepts, 2) a multiple correct answer, multiple choice question targeting the analyzing to analysis levels and 3) a short essay question that tests analysis or evaluation cognitive levels. We anticipate multiple-choice scores and the detail and sophistication of essay responses will increase as students engage with the curriculum. As part of the field testing of InTeGrate curricula, faculty collected student responses from classes that involved over 700 students. These responses included eight pre- and post-test multiple-choice questions that covered various concepts across the four literacies. Discrimination indices calculated from the data suggest that the eight tested questions provide a valid measure of literacy within the scope of the concepts covered. Student normalized gains across an academic term with limited InTeGrate exposure (typically two or fewer weeks of InTeGrate curriculum out of 14 weeks) were found to average 16% gain. A small set of control data (250 students in classes from one institution where no InTeGrate curricula were used) was

  5. Kindergarten Students' Levels of Understanding Some Science Concepts and Scientific Inquiry Processes According to Demographic Variables (The Sampling of Kilis Province in Turkey)

    Science.gov (United States)

    Ilhan, Nail; Tosun, Cemal

    2016-01-01

    The purpose of this study is to identify the kindergarten students' levels of understanding some science concepts (LUSSC) and scientific inquiry processes (SIP) and compare their LUSSC and SIP in terms of some demographic variables. Also, another purpose of this study is to identify the predictive power of those demographic variables over the…

  6. Assessment of primary school students’ level of understanding the concepts of 2nd grade life sciences course based on different variables

    Directory of Open Access Journals (Sweden)

    Altıntaş Gülşen

    2016-01-01

    Full Text Available The course of Life Sciences is one of the pivot courses taught in the first three years of primary school. Ensuring children get to know their environment and gain correct information related to their problems by making them investigate their natural and socio-cultural environment as well as providing them with necessary information, skills and behaviors for environmental adaptation are among the main purposes of Life Sciences course. The concepts to be instilled in students in line with these purposes are important. Since concepts are mostly intellectual and non-physical, they can only exist tangibly through examples. This study aims to assess Primary School Students’ Level of Understanding the Concepts of 2nd Grade Life Sciences Course Based on Different Variables. 17 concepts included in the 2nd Grade Life Sciences course within the subject of School Excitement were addressed within the study, and students were requested to define and exemplify these concepts. A total of 102 students from five different primary schools of upper-middle and lower socioeconomic classes located in Manisa and Istanbul were included in the study in line with the intentional maximum diversity sample selection. The answers given by students for each concept were categorized and analyzed in terms of liking or disliking home, school, technology and the course of Life Sciences.

  7. Understanding Social Networks: Theories, Concepts, and Findings

    Science.gov (United States)

    Kadushin, Charles

    2012-01-01

    Despite the swift spread of social network concepts and their applications and the rising use of network analysis in social science, there is no book that provides a thorough general introduction for the serious reader. "Understanding Social Networks" fills that gap by explaining the big ideas that underlie the social network phenomenon.…

  8. The pursuit of understanding: A study of exemplary high school students' conceptions of knowledge validation in science and history

    Science.gov (United States)

    Boix Mansilla, Veronica Maria

    The study presented examined 16 award-winning high school students' beliefs about the criteria by which scientific theories and historical narratives are deemed trustworthy. It sought to (a) describe such beliefs as students reasoned within each discipline; (b) examine the degree to which such beliefs were organized as coherent systems of thought; and (c) explore the relationship between students' beliefs and their prior disciplinary research experience. Students were multiple-year award-winners at the Massachusetts Science Fair and the National History Day---two pre-collegiate State-level competitions. Two consecutive semi-structured interviews invited students to assess and enhance the trustworthiness of competing accounts of genetic inheritance and the Holocaust in science and history respectively. A combined qualitative and quantitative data analysis yielded the following results: (a) Students valued three standards of acceptability that were common across disciplines: e.g. empirical strength, explanatory power and formal and presentational strength. However, when reasoning within each discipline they tended to define each standard in disciplinary-specific ways. Students also valued standards of acceptability that were not shared across disciplines: i.e., external validity in science and human understanding in history. (b) In science, three distinct epistemological orientations were identified---i.e., "faith in method," "trusting the scientific community" and "working against error." In history students held two distinct epistemologies---i.e., "reproducing the past" and "organizing the past". Students' epistemological orientations tended to operate as collections of mutually supporting ideas about what renders a theory or a narrative acceptable. (c) Contrary to the standard position to date in the literature on epistemological beliefs, results revealed that students' research training in a particular discipline (e.g., science or history) was strongly related to

  9. Ausubel's understanding of concept development

    Directory of Open Access Journals (Sweden)

    Janković Aleksandar P.

    2015-01-01

    Full Text Available This paper presents one of relatively new cognitivistic learning and cognition theories - the theory by American psychologist David Ausubel. We consider this theory to be very usable for teaching beginners or for cognition process. It is of utmost importance that first or elementary concepts concerning natural and social phenomena a pupil aquires need to be accurate, understandable and properly connected in a cause-effect sequence of conceptual systems so that items of knowledge aquired can be stable and usable. For correct understanding of Ausubel's claims concerning processes and procedures involved in the acquisition of elementary concepts, which is central to this investigation, it is necessary to address problems and questions concerning the following: the process of aquisition or construction of first concepts; how to base verbal learning; how is subsuming achieved, that is connecting of new and previously acquired concepts; what is the relation of this theory with other cognitivistic theories of learning, and, finally, what are critical views or evalutions which can make this theory truly productive in relation to teaching.

  10. Politicizing science: conceptions of politics in science and technology studies.

    Science.gov (United States)

    Brown, Mark B

    2015-02-01

    This essay examines five ideal-typical conceptions of politics in science and technology studies. Rather than evaluating these conceptions with reference to a single standard, the essay shows how different conceptions of politics serve distinct purposes: normative critique, two approaches to empirical description, and two views of democracy. I discuss each conception of politics with respect to how well it fulfills its apparent primary purpose, as well as its implications for the purpose of studying a key issue in contemporary democratic societies: the politicization of science. In this respect, the essay goes beyond classifying different conceptions of politics and also recommends the fifth conception as especially conducive to understanding and shaping the processes whereby science becomes a site or object of political activity. The essay also employs several analytical distinctions to help clarify the differences among conceptions of politics: between science as 'political' (adjective) and science as a site of 'politics' (noun), between spatial-conceptions and activity-conceptions of politics, between latent conflicts and actual conflicts, and between politics and power. The essay also makes the methodological argument that the politics of science and technology is best studied with concepts and methods that facilitate dialogue between actors and analysts. The main goal, however, is not to defend a particular view of politics, but to promote conversation on the conceptions of politics that animate research in social studies of science and technology.

  11. Preservice Science Teachers' Beliefs about Astronomy Concepts

    Science.gov (United States)

    Ozkan, Gulbin; Akcay, Hakan

    2016-01-01

    The purpose of this study was to investigate preservice science teachers' conceptual understanding of astronomy concepts. Qualitative research methods were used. The sample consists of 118 preservice science teachers (40 freshmen, 31 sophomores, and 47 juniors). The data were collected with Astronomy Conceptual Questionnaire (ACQ) that includes 13…

  12. Kindergarten students’ levels of understanding some science concepts and scientific inquiry processes according to demographic variables (the sampling of Kilis Province in Turkey

    Directory of Open Access Journals (Sweden)

    Nail İlhan

    2016-12-01

    Full Text Available The purpose of this study is to identify the kindergarten students’ levels of understanding some science concepts (LUSSC and scientific inquiry processes (SIP and compare their LUSSC and SIP in terms of some demographic variables. Also, another purpose of this study is to identify the predictive power of those demographic variables over the kindergarten students’ LUSSC and SIP. This study was conducted according to quantitative research design. The study group consisted of 335 kindergarten students from 20 different rural and urban schools. In the study, the scale for “Turkish Kindergarten Students’ Understandings of Scientific Concepts and Scientific Inquiry Processes” was used. According to some variables (such as mother’s education level and family structure, there was a statistically significant difference between students’ mean scores for LUSSC and between students’ mean scores for SIP. Within the scope of this study, it was found that among the predictor variables (age, family’s income level, and number of brother/sister were significant predictors for LUSSC, and number of brother/sister was a significant predictor for SIP.

  13. Science + Maths = A Better Understanding of Science!

    Science.gov (United States)

    Markwick, Andy; Clark, Kris

    2016-01-01

    Science and mathematics share a common purpose: to explore, understand and explain the pure beauty of our universe and how it works. Using mathematics in science enquiry can enhance children's understanding of science and also provide opportunities for children to apply their mathematical knowledge to "real" contexts. The authors…

  14. Deep Understanding of Electromagnetism Using Crosscutting Concepts

    Science.gov (United States)

    De Poorter, John; De Lange, Jan; Devoldere, Lies; Van Landeghem, Jouri; Strubbe, Katrien

    2017-01-01

    Crosscutting concepts like patterns and models are fundamental parts in both the American framework of science education (from the AAAS) and our proposals for a new science education framework in Flanders. These concepts deepen the insight of both students and teachers. They help students to ask relevant questions during an inquiry and they give…

  15. Understanding pressure: didactical transpositions and pupils' conceptions

    Science.gov (United States)

    Kariotogloy, P.; Psillos, D.; Vallassiades, O.

    1990-03-01

    Using the concept of pressure two research trends-content analysis and pupils' conceptions of subject matter-are drawn together, in an attempt to understand the issues in teaching and learning specific domains of physics.

  16. Science Club--A Concept

    Science.gov (United States)

    Wegner, Claas; Issak, Nicole; Tesch, Katharina; Zehne, Carolin

    2016-01-01

    The following article presents a concept of a science club which was developed by two master's students as a part of their thesis and which has been developed and improved ever since. The extra-curricular concept emphasises pupils' individuality through focusing on problem based leaning, station learning, and mixed age groups. Having joined the…

  17. Teachers' Understanding and Operationalisation of `Science Capital'

    Science.gov (United States)

    King, Heather; Nomikou, Effrosyni; Archer, Louise; Regan, Elaine

    2015-12-01

    Across the globe, governments, industry and educationalists are in agreement that more needs to be done to increase and broaden participation in post-16 science. Schools, as well as teachers, are seen as key in this effort. Previous research has found that engagement with science, inclination to study science and understanding of the value of science strongly relates to a student's science capital. This paper reports on findings from the pilot year of a one-year professional development (PD) programme designed to work with secondary-school teachers to build students' science capital. The PD programme introduced teachers to the nature and importance of science capital and thereafter supported them to develop ways of implementing science capital-building pedagogy in their practice. The data comprise interviews with the participating teachers (n = 10), observations of classroom practices and analyses of the teachers' accounts of their practice. Our findings suggest that teachers found the concept of science capital to be compelling and to resonate with their own intuitive understandings and experiences. However, the ways in which the concept was operationalised in terms of the implementation of pedagogical practices varied. The difficulties inherent in the operationalisation are examined and recommendations for future work with teachers around the concept of science capital are developed.

  18. Between understanding and appreciation. Current science communication in Denmark

    Directory of Open Access Journals (Sweden)

    Kristian Hvidtfelt Nielsen

    2005-12-01

    Full Text Available In this paper I use the conceptsunderstanding of science” and “appreciation of science” to analyze selected case studies of current science communication in Denmark. The Danish science communication system has many similarities with science communication in other countries: the increasing political and scientific interest in science communication, the co-existence of many different kinds of science communication, and the multiple uses of the concepts of understanding vs. appreciation of science. I stress the international aspects of science communication, the national politico-scientific context as well as more local contexts as equally important conditions for understanding current Danish science communication.

  19. Weight, Mass, and Gravity: Threshold Concepts in Learning Science

    Science.gov (United States)

    Bar, Varda; Brosh, Yaffa; Sneider, Cary

    2016-01-01

    Threshold concepts are essential ideas about the natural world that present either a barrier or a gateway to a deep understanding of science. Weight, mass, and gravity are threshold concepts that underpin students' abilities to understand important ideas in all fields of science, embodied in the performance expectations in the Next Generation…

  20. Pre-Service Physics Teachers' Conceptions of Nature of Science

    Science.gov (United States)

    Buaraphan, Khajornsak

    2011-01-01

    Understanding of NOS (nature of science) appears as a prerequisite of a scientifically literate person. Promoting adequate understanding of NOS in pre-service physics teachers is, therefore, an important task of science educators. Before doing that, science educators must have information concerning their pre-service teachers' conceptions of NOS.…

  1. Understanding catchment behaviour through model concept improvement

    NARCIS (Netherlands)

    Fenicia, F.

    2008-01-01

    This thesis describes an approach to model development based on the concept of iterative model improvement, which is a process where by trial and error different hypotheses of catchment behaviour are progressively tested, and the understanding of the system proceeds through a combined process of

  2. Grounded understanding of abstract concepts: The case of STEM learning.

    Science.gov (United States)

    Hayes, Justin C; Kraemer, David J M

    2017-01-01

    Characterizing the neural implementation of abstract conceptual representations has long been a contentious topic in cognitive science. At the heart of the debate is whether the "sensorimotor" machinery of the brain plays a central role in representing concepts, or whether the involvement of these perceptual and motor regions is merely peripheral or epiphenomenal. The domain of science, technology, engineering, and mathematics (STEM) learning provides an important proving ground for sensorimotor (or grounded) theories of cognition, as concepts in science and engineering courses are often taught through laboratory-based and other hands-on methodologies. In this review of the literature, we examine evidence suggesting that sensorimotor processes strengthen learning associated with the abstract concepts central to STEM pedagogy. After considering how contemporary theories have defined abstraction in the context of semantic knowledge, we propose our own explanation for how body-centered information, as computed in sensorimotor brain regions and visuomotor association cortex, can form a useful foundation upon which to build an understanding of abstract scientific concepts, such as mechanical force. Drawing from theories in cognitive neuroscience, we then explore models elucidating the neural mechanisms involved in grounding intangible concepts, including Hebbian learning, predictive coding, and neuronal recycling. Empirical data on STEM learning through hands-on instruction are considered in light of these neural models. We conclude the review by proposing three distinct ways in which the field of cognitive neuroscience can contribute to STEM learning by bolstering our understanding of how the brain instantiates abstract concepts in an embodied fashion.

  3. Investigating the Relationship between Teachers' Nature of Science Conceptions and Their Practice of Inquiry Science

    Science.gov (United States)

    Atar, Hakan Yavuz; Gallard, Alejandro

    2011-01-01

    In addition to recommending inquiry as the primary approach to teaching science, developers of recent reform efforts in science education have also strongly suggested that teachers develop a sound understanding of the nature of science. Most studies on teachers' NOS conceptions and inquiry beliefs investigated these concepts of teachers' NOS…

  4. Understanding statistical concepts using S-PLUS

    CERN Document Server

    Schumacker, Randall E

    2001-01-01

    Written as a supplemental text for an introductory or intermediate statistics course, this book is organized along the lines of many popular statistics texts. The chapters provide a good conceptual understanding of basic statistics and include exercises that use S-PLUS simulation programs. Each chapter lists a set of objectives and a summary.The book offers a rich insight into how probability has shaped statistical procedures in the behavioral sciences, as well as a brief history behind the creation of various statistics. Computational skills are kept to a minimum by including S-PLUS programs

  5. Computer Science Concept Inventories: Past and Future

    Science.gov (United States)

    Taylor, C.; Zingaro, D.; Porter, L.; Webb, K. C.; Lee, C. B.; Clancy, M.

    2014-01-01

    Concept Inventories (CIs) are assessments designed to measure student learning of core concepts. CIs have become well known for their major impact on pedagogical techniques in other sciences, especially physics. Presently, there are no widely used, validated CIs for computer science. However, considerable groundwork has been performed in the form…

  6. Public understanding of radiation protection concepts

    International Nuclear Information System (INIS)

    1988-01-01

    The Chernobyl accident in April 1986 clearly showed that communication with the public was one of the areas where there was a strong need for improvement, particularly concerning the nature and extent of the information provided by national authorities. The countermeasures adopted by public health authorities also raised difficulties in terms of public understanding and acceptance due, in part, to the perception of discrepancies in national, regional or local response to the accident, but also to a more basic lack of comprehension of the complex radiation protection considerations involved. In an attempt to help improve the situation, the NEA Committee on Radiation Protection and Public Health decided to organise a Workshop on public communication in the event of a nuclear accident, centered on radiation protection issues. The purpose of this Workshop was to analyse appropriate methods and language to be used when explaining to the public the scientific concepts underlying radiation risks and radiation protection, and the technical rationale for the choice of protective actions in an emergency. Separate abstracts were prepared for individual papers presented at the meeting

  7. Investigating Undergraduate Science Students’ Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. PMID:26163563

  8. Basic concepts in social sciences I

    NARCIS (Netherlands)

    Hoede, C.

    2000-01-01

    In this paper the results are given of an investigation into concepts from Economics, Organization Theory, Political Science, Psychology and Sociology. The goal of this investigation was to find out whether there is a set of concepts that may be considered to be basic to all these five social

  9. Using Concept Maps in Political Science

    Science.gov (United States)

    Chamberlain, Robert P.

    2015-01-01

    Concept mapping is a pedagogical technique that was developed in the 1970s and is being used in K-12 and postsecondary education. Although it has shown excellent results in other fields, it is still rare in political science. In this research note, I discuss the implementation and testing of concept mapping in my Advanced Introduction to…

  10. The Problem of Understanding of Nature in Exact Science

    Directory of Open Access Journals (Sweden)

    Leo Näpinen

    2014-10-01

    Full Text Available In this short inquiry I would like to defend the statement that exact science deals with the explanation of models, but not with the understanding (comprehending of nature. By the word ‘nature’ I mean nature as physis (as a self-moving and self-developing living organism to which humans also belong, not nature as natura naturata (as a nonevolving creature created by someone or something. The Estonian philosopher of science Rein Vihalemm (2008 has shown with his conception of phi-science (φ-science that exact science is itself an idealized model or theoretical object derived from Galilean mathematical physics.

  11. Understanding space science under the northern lights

    Science.gov (United States)

    Koskinen, H.

    What is space science? The answers to this question can be very variable indeed. In fact, space research is a field where science, technology, and applications are so closely tied together that it is often difficult to recognize the central role of science. However, as paradoxical as it may sound, it appears that the less-educated public often appreciates the value of space science better than highly educated policy makers and bureaucrats who tend to evaluate the importance of space activities in terms of economic and societal benefits only. In a country like Finland located below the zone, where auroras are visible during the long dark winter nights, the space is perhaps closer to the public than in countries where the visible objects are the Moon, planets and stars somewhere far away. This positive fact has been very useful, for example, in popularization of such an abstract concept as space weather. In Finland it is possible to see space weather and this rises the curiosity about the processes behind this magnificent phenomenon. Of course, also in Finland the beautiful SOHO images of the Sun and the Hubble Space Telescope pictures of the remote universe attract the attention of the large public. We also have an excellent vehicle in increasing the public understanding in the society of Finnish amateur astronomers Ursa. It is an organization for anyone interested in practically everything from visual phenomena in the air to the remote galaxies and the Big Bang. Ursa publishes a high-quality monthly magazine in Finnish and runs local amateur clubs. Last year its 80th birthday exhibition was one of the best-visited public events in Helsinki. It clearly gave a strong evidence of wide public interest in space in general and in space science in particular. Only curious people can grasp the beauty and importance of the underlying science. Thus, we should focus our public space science education and outreach primarily on waking up the curiosity of the public instead of

  12. Between understanding and appreciation. Current science communication in Denmark (Danish original version

    Directory of Open Access Journals (Sweden)

    Kristian Hvidtfelt Nielsen

    2005-12-01

    Full Text Available In this paper I use the conceptsunderstanding of science” and “appreciation of science” to analyze selected case studies of current science communication in Denmark. The Danish science communication system has many similarities with science communication in other countries: the increasing political and scientific interest in science communication, the co-existence of many different kinds of science communication, and the multiple uses of the concepts of understanding vs. appreciation of science. I stress the international aspects of science communication, the national politico-scientific context as well as more local contexts as equally important conditions for understanding current Danish science communication.

  13. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  14. On performing concepts during science lectures

    Science.gov (United States)

    Pozzer-Ardenghi, Lilian; Roth, Wolff-Michael

    2007-01-01

    When lecturing, teachers make use of both verbal and nonverbal communication. What is called teaching, therefore, involves not only the words and sentences a teacher utters and writes on the board during a lesson, but also all the hands/arms gestures, body movements, and facial expressions a teacher performs in the classroom. All of these communicative modalities constitute resources that are made available to students for making sense of and learning from lectures. Yet in the literature on teaching science, these other means of communication are little investigated and understood - and, correspondingly, they are undertheorized. The purpose of this position paper is to argue for a different view of concepts in lectures: they are performed simultaneously drawing on and producing multiple resources that are different expressions of the same holistic meaning unit. To support our point, we provide examples from a database of 26 lectures in a 12th-grade biology class, where the human body was the main topic of study. We analyze how different types of resources - including verbal and nonverbal discourse and various material artifacts - interact during lectures. We provide evidence for the unified production of these various sense-making resources during teaching to constitute a meaning unit, and we emphasize particularly the use of gestures and body orientations inside this meaning unit. We suggest that proper analyses of meaning units need to take into account not only language and diagrams but also a lecturer's pointing and depicting gestures, body positions, and the relationships between these different modalities. Scientific knowledge (conceptions) exists in the concurrent display of all sense-making resources, which we, following Vygotsky, understand as forming a unit (identity) of nonidentical entities.

  15. Understanding understanding in secondary school science: An interpretive study

    Science.gov (United States)

    O'Neill, Maureen Gail

    This study investigated the teaching of secondary school science with an emphasis on promoting student understanding. In particular, I focused on two research questions: What are the possible meanings of teaching for understanding? And, how might one teach secondary school science for understanding? After semi-structured interviews were conducted with 13 secondary school science teachers, grounded theory methodology was used to interpret the data. As a result of the selective coding process, I was able to identify 14 connected components of teaching for understanding (TfU). The process of TfU involves: puzzle-solving, a specific pedagogy and a conscious decision. The teacher must be a reflective practitioner who has some knowledge of the facets of understanding. The teacher comes to a critical incident or crisis in his or her pedagogy and adopts a mindset which highlights TfU as a personal problematic. Teachers operate with student-centred rather than teacher-centred metaphors. TfU requires a firm belief in and passion for the process, a positive attitude and excellent pedagogical content knowledge. It hinges on a performance view of understanding and demands risk-taking in the science classroom. Abstracting these ideas to a theory led me to the notion of Purposive Teaching . In their purposive-driven role as pedagogues, these teachers have placed TfU at the core of their daily practice. Constraints and challenges facing TfU as well as implications of the findings are discussed. Keywords. science teaching, teaching for understanding, purposive teaching, constructivism, understanding, pedagogy, pedagogical content knowledge, memorization, meaningful learning, reflective practice.

  16. The Impact of Science Fiction Film on Student Understanding of Science

    Science.gov (United States)

    Barnett, Michael; Wagner, Heather; Gatling, Anne; Anderson, Janice; Houle, Meredith; Kafka, Alan

    2006-04-01

    Researchers who have investigated the public understanding of science have argued that fictional cinema and television has proven to be particularly effective at blurring the distinction between fact and fiction. The rationale for this study lies in the notion that to teach science effectively, educators need to understand how popular culture influences their students' perception and understanding of science. Using naturalistic research methods in a diverse middle school we found that students who watched a popular science fiction film, The Core, had a number of misunderstandings of earth science concepts when compared to students who did not watch the movie. We found that a single viewing of a science fiction film can negatively impact student ideas regarding scientific phenomena. Specifically, we found that the film leveraged the scientific authority of the main character, coupled with scientifically correct explanations of some basic earth science, to create a series of plausible, albeit unscientific, ideas that made sense to students.

  17. A Description Logic Based Knowledge Representation Model for Concept Understanding

    DEFF Research Database (Denmark)

    Badie, Farshad

    2017-01-01

    This research employs Description Logics in order to focus on logical description and analysis of the phenomenon of ‘concept understanding’. The article will deal with a formal-semantic model for figuring out the underlying logical assumptions of ‘concept understanding’ in knowledge representation...... systems. In other words, it attempts to describe a theoretical model for concept understanding and to reflect the phenomenon of ‘concept understanding’ in terminological knowledge representation systems. Finally, it will design an ontology that schemes the structure of concept understanding based...

  18. Understanding augmented reality concepts and applications

    CERN Document Server

    Craig, Alan B

    2013-01-01

    Augmented reality is not a technology. Augmented reality is a medium. Likewise, a book on augmented reality that only addresses the technology that is required to support the medium of augmented reality falls far short of providing the background that is needed to produce, or critically consume augmented reality applications. One reads a book. One watches a movie. One experiences augmented reality. Understanding Augmented Reality addresses the elements that are required to create compelling augmented reality experiences. The technology that supports

  19. Grade six students' understanding of the nature of science

    Science.gov (United States)

    Cochrane, Donald Brian

    The goal of scientific literacy requires that students develop an understanding of the nature of science to assist them in the reasoned acquisition of science concepts and in their future role as citizens in a participatory democracy. The purpose of this study was to investigate and describe the range of positions that grade six students hold with respect to the nature of science and to investigate whether gender or prior science education was related to students' views of the nature of science. Two grade six classes participated in this study. One class was from a school involved in a long-term elementary science curriculum project. The science curriculum at this school involved constructivist epistemology and pedagogy and a realist ontology. The curriculum stressed hands-on, open-ended activities and the development of science process skills. Students were frequently involved in creating and testing explanations for physical phenomena. The second class was from a matched school that had a traditional science program. Results of the study indicated that students hold a wider range of views of the nature of science than previously documented. Student positions ranged from having almost no understanding of the nature of science to those expressing positions regarding the nature of science that were more developed than previous studies had documented. Despite the range of views documented, all subjects held realist views of scientific knowledge. Contrary to the literature, some students were able to evaluate a scientific theory in light of empirical evidence that they had generated. Results also indicated that students from the project school displayed more advanced views of the nature of science than their matched peers. However, not all students benefited equally from their experiences. No gender differences were found with respect to students' understanding of the nature of science.

  20. Stepping into Science Fiction: Understanding the Genre

    Science.gov (United States)

    Barone, Diane; Barone, Rebecca

    2014-01-01

    This manuscript focuses on fifth graders' understanding of science fiction. It is argued that it is necessary for students to understand both reading strategies and the key elements of a genre for comprehension. Students read "The Giver" within literature circles and conversation and written responses about the book were used for…

  1. A Formal Semantics for Concept Understanding relying on Description Logics

    DEFF Research Database (Denmark)

    Badie, Farshad

    2017-01-01

    logical assumptions whose discovery may lead us to a better understanding of ‘concept understanding’. The Structure of Observed Learning Outcomes (SOLO) model as an appropriate model of increasing complexity of humans’ understanding has supported the formal analysis.......In this research, Description Logics (DLs) will be employed for logical description, logical characterisation, logical modelling and ontological description of concept understanding in terminological systems. It’s strongly believed that using a formal descriptive logic could support us in revealing...

  2. A Formal Semantics for Concept Understanding relying on Description Logics

    DEFF Research Database (Denmark)

    Badie, Farshad

    2017-01-01

    In this research, Description Logics (DLs) will be employed for logical description, logical characterisation, logical modelling and ontological description of concept understanding in terminological systems. It’s strongly believed that using a formal descriptive logic could support us in reveali...... logical assumptions whose discovery may lead us to a better understanding of ‘concept understanding’. The Structure of Observed Learning Outcomes (SOLO) model as an appropriate model of increasing complexity of humans’ understanding has supported the formal analysis....

  3. In-Service Elementary Teachers' Understanding of Magnetism Concepts before and after Non-Traditional Instruction

    Science.gov (United States)

    Atwood, Ronald K.; Christopher, John E.; Combs, Rebecca K.; Roland, Elizabeth E.

    2010-01-01

    Magnetism is a topic frequently studied in elementary schools. Since magnetism is a popular topic and is included in national science education standards, it might be assumed that elementary teachers have a good understanding of this topic and that elementary students develop a good understanding of fundamental magnetism concepts. Unfortunately,…

  4. Toward using games to teach fundamental computer science concepts

    Science.gov (United States)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  5. Students’ Conception on Heat and Temperature toward Science Process Skill

    Science.gov (United States)

    Ratnasari, D.; Sukarmin, S.; Suparmi, S.; Aminah, N. S.

    2017-09-01

    This research is aimed to analyze the effect of students’ conception toward science process skill. This is a descriptive research with subjects of the research were 10th-grade students in Surakarta from high, medium and low categorized school. The sample selection uses purposive sampling technique based on physics score in national examination four latest years. Data in this research collecting from essay test, two-tier multiple choice test, and interview. Two-tier multiple choice test consists of 30 question that contains an indicator of science process skill. Based on the result of the research and analysis, it shows that students’ conception of heat and temperature affect science process skill of students. The students’ conception that still contains the wrong concept can emerge misconception. For the future research, it is suggested to improve students’ conceptual understanding and students’ science process skill with appropriate learning method and assessment instrument because heat and temperature is one of physics material that closely related with students’ daily life.

  6. Evaluation of Students' Understanding of Thermal Concepts in Everyday Contexts

    Science.gov (United States)

    Chu, Hye-Eun; Treagust, David F.; Yeo, Shelley; Zadnik, Marjan

    2012-01-01

    The aims of this study were to determine the underlying conceptual structure of the thermal concept evaluation (TCE) questionnaire, a pencil-and-paper instrument about everyday contexts of heat, temperature, and heat transfer, to investigate students' conceptual understanding of thermal concepts in everyday contexts across several school years and…

  7. A behavioral science framework for understanding kawaii

    OpenAIRE

    Nittono, Hiroshi

    2010-01-01

    Kawaii is a key concept that characterizes modern Japanese culture. It is often translated into English as “cute," but asubtle difference of nuance exists between the two words. Although many books and articles have been published onthis subject, these discussions are mostly limited to the fields of humanities and sociology. In this paper, I put forward aframework for research on kawaii from a behavioral science perspective. First, I provide an overview of kawaii,including a summary of its di...

  8. Understanding the biological concept "bird": A kindergarten case study

    Science.gov (United States)

    Buchholz, Dilek

    The purpose of this qualitative, multiple case study of 14 students in a metropolitan public school in the Deep South was to find out, during a period of three months, what these kindergarten-aged children knew about birds, whether this knowledge represented current scientific thought, if such science instruction meaningfully affected their prior knowledge, and if so, what the factors during instruction that seemed to influence their understanding of the concept of bird were. The research was conducted in three phases; preinstruction interviews, instruction, and postinstruction interviews. The theoretical framework for this research was based on the Human Constructivism theory of learning (Mintzes, Wandersee and Novak, 1997). Instructional materials consisted of carefully chosen books (both fiction and non-fiction), guest speakers, field trips, a live bird in the classroom, students' observation journals, teacher-made classification and sorting activities, and picture-based concept maps. The findings suggest that young children's knowledge of birds was limited chiefly to birds' anatomical and morphological characteristics, with repeated references being made by the children to human characteristics. There was a positive, significant difference in young children's pre- and postinstruction scientific knowledge of birds. Although performance varied from child to child after instruction, most children were able to identify some common birds by name. Just one child resisted conceptual change. Kindergarten children's basic knowledge of bird behavior was limited to flight and eating. Although the children had more conceptual knowledge at the end, understanding still appeared to be shallow. The children did develop their skill in observing markedly. It also became evident that these kindergarten children needed more (a) experience in asking questions, (b) practice in techniques of visual representation, and (c) language development in order to be able to explain what they

  9. Science-based occupations and the science curriculum: Concepts of evidence

    Science.gov (United States)

    Aikenhead, Glen S.

    2005-03-01

    What science-related knowledge is actually used by nurses in their day-to-day clinical reasoning when attending patients? The study investigated the knowledge-in-use of six acute-care nurses in a hospital surgical unit. It was found that the nurses mainly drew upon their professional knowledge of nursing and upon their procedural understanding that included a common core of concepts of evidence (concepts implicitly applied to the evaluation of data and the evaluation of evidence - the focus of this research). This core included validity triangulation, normalcy range, accuracy, and a general predilection for direct sensual access to a phenomenon over indirect machine-managed access. A cluster of emotion-related concepts of evidence (e.g. cultural sensitivity) was also discovered. These results add to a compendium of concepts of evidence published in the literature. Only a small proportion of nurses (one of the six nurses in the study) used canonical science content in their clinical reasoning, a result consistent with other research. This study also confirms earlier research on employees in science-rich workplaces in general, and on professional development programs for nurses specifically: canonical science content found in a typical science curriculum (e.g. high school physics) does not appear relevant to many nurses' knowledge-in-use. These findings support a curriculum policy that gives emphasis to students learning how to learn science content as required by an authentic everyday or workplace context, and to students learning concepts of evidence.

  10. Towards Building Science Teachers’ Understandings of Contemporary Science Practices

    Directory of Open Access Journals (Sweden)

    Greg Lancaster

    2017-03-01

    Full Text Available Faculties of Education and Science at Monash University have designed a Masters unit to assist pre-service and in-service science teachers in exploring the practices of contemporary science and examine how varied understandings can influence science communication. Teachers are encouraged to explore their current understandings of the Nature of Science (NoS and to contrast their views with those known to be widely held by society (Cobern & Loving, 1998. Teachers are challenged to provide insights into their thinking relating to the NoS. In order to build understandings of contemporary science practice each teacher shadows a research scientist and engages them in conversations intended to explore the scientists’ views of NoS and practice. Findings suggest that teachers were initially uncomfortable with the challenge to express ideas relating to their NoS and were also surprised how diverse the views of NoS can be among teachers, scientists and their peers, and that these views can directly impact ways of communicating contemporary science practice.

  11. Promoting Creative Thinking and Expression of Science Concepts among Elementary Teacher Candidates through Science Content Movie Creation and Showcasing

    Science.gov (United States)

    Hechter, Richard P.; Guy, Mark

    2010-01-01

    This article reports the phases of design and use of video editing technology as a medium for creatively expressing science content knowledge in an elementary science methods course. Teacher candidates communicated their understanding of standards-based core science concepts through the creation of original digital movies. The movies were assigned…

  12. Understanding the Concept of Nationally Appropriate Mitigation Action

    DEFF Research Database (Denmark)

    Sharma, Sudhir; Desgain, Denis DR

    This publication is intended to enable national policy makers and other stakeholders, such as the private sector and technical experts, to acquaint themselves with the concept of NAMA. It aims to provide a comprehensive overview of the Nationally Appropriate Mitigation Action (NAMA) concept...... and enhance the understanding of NAMAs by explaining the underlying decisions of the Conference of the Parties in layman’s terms. The first chapter describes how the concept of NAMA emerged in the context of the negotiations on climate change. The chapter gives an overview of how the concepts of NAMA...

  13. Can citizen science enhance public understanding of science?

    Science.gov (United States)

    Bonney, Rick; Phillips, Tina B; Ballard, Heidi L; Enck, Jody W

    2016-01-01

    Over the past 20 years, thousands of citizen science projects engaging millions of participants in collecting and/or processing data have sprung up around the world. Here we review documented outcomes from four categories of citizen science projects which are defined by the nature of the activities in which their participants engage - Data Collection, Data Processing, Curriculum-based, and Community Science. We find strong evidence that scientific outcomes of citizen science are well documented, particularly for Data Collection and Data Processing projects. We find limited but growing evidence that citizen science projects achieve participant gains in knowledge about science knowledge and process, increase public awareness of the diversity of scientific research, and provide deeper meaning to participants' hobbies. We also find some evidence that citizen science can contribute positively to social well-being by influencing the questions that are being addressed and by giving people a voice in local environmental decision making. While not all citizen science projects are intended to achieve a greater degree of public understanding of science, social change, or improved science -society relationships, those projects that do require effort and resources in four main categories: (1) project design, (2) outcomes measurement, (3) engagement of new audiences, and (4) new directions for research. © The Author(s) 2015.

  14. Remote sensing science - new concepts and applications

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.; Cooke, B.J.; Henderson, B.G.; Love, S.P.; Zardecki, A.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The science and technology of satellite remote sensing is an emerging interdisciplinary field that is growing rapidly with many global and regional applications requiring quantitative sensing of earth`s surface features as well as its atmosphere from space. It is possible today to resolve structures on the earth`s surface as small as one meter from space. If this high spatial resolution is coupled with high spectral resolution, instant object identification can also be achieved. To interpret these spectral signatures correctly, it is necessary to perform a computational correction on the satellite imagery that removes the distorting effects of the atmosphere. This project studied such new concepts and applied innovative new approaches in remote sensing science.

  15. How Do Students Acquire an Understanding of Logarithmic Concepts?

    Science.gov (United States)

    Mulqueeny, Ellen

    2012-01-01

    The use of logarithms, an important tool for calculus and beyond, has been reduced to symbol manipulation without understanding in most entry-level college algebra courses. The primary aim of this research, therefore, was to investigate college students' understanding of logarithmic concepts through the use of a series of instructional tasks…

  16. Understanding concepts of place in recreation research and management.

    Science.gov (United States)

    Linda. E. Kruger; Troy E. Hall; Maria C. Stiefel

    2008-01-01

    Over a 3-day weekend in the spring of 2004 a group of scientists interested in extending understanding of place as applied in recreation research and management convened a working session in Portland, Oregon. The purpose of the gathering was to clarify their understanding of place-related concepts, approaches to the study of people-place relations, and the application...

  17. Undergraduate Mathematics Students' Understanding of the Concept of Function

    Science.gov (United States)

    Bardini, Caroline; Pierce, Robyn; Vincent, Jill; King, Deborah

    2014-01-01

    Concern has been expressed that many commencing undergraduate mathematics students have mastered skills without conceptual understanding. A pilot study carried out at a leading Australian university indicates that a significant number of students, with high tertiary entrance ranks, have very limited understanding of the concept of function,…

  18. Etymology as an Aid to Understanding Chemistry Concepts

    Science.gov (United States)

    Sarma, Nittala S.

    2004-01-01

    Learning the connection between the roots and the chemical meaning of terms can improve students' understanding of chemistry concepts, making them easier and more enjoyable to master. The way in which using etymology to understand the meanings and relationships of chemistry terms can aid students in strengthening and expanding their grasp of…

  19. Academic Self-Concept: Modeling and Measuring for Science

    Science.gov (United States)

    Hardy, Graham

    2014-01-01

    In this study, the author developed a model to describe academic self-concept (ASC) in science and validated an instrument for its measurement. Unlike previous models of science ASC, which envisage science as a homogenous single global construct, this model took a multidimensional view by conceiving science self-concept as possessing distinctive…

  20. Understanding Electrochemistry Concepts Using the Predict-Observe-Explain Strategy

    Science.gov (United States)

    Karamustafaoglu, Sevilay; Mamlok-Naaman, Rachel

    2015-01-01

    The current study deals with freshman students who study at the Department of Science at the Faculty of Education. The aim of the study was to investigate the effect of teaching electrochemistry concepts using Predict-Observe-Explain (POE) strategy. The study was quasi-experimental design using 20 students each in the experimental group (EG) and…

  1. Investigation of students’ intermediate conceptual understanding levels: the case of direct current electricity concepts

    International Nuclear Information System (INIS)

    Aktan, D Cobanoglu

    2013-01-01

    Conceptual understanding is one of the main topics in science and physics education research. In the majority of conceptual understanding studies, students’ understanding levels were categorized dichotomously, either as alternative or scientific understanding. Although they are invaluable in many ways, namely developing new instructional materials and assessment instruments, students’ alternative understandings alone are not sufficient to describe students’ conceptual understanding in detail. This paper introduces an example of a study in which a method was developed to assess and describe students’ conceptual understanding beyond alternative and scientific understanding levels. In this study, six undergraduate students’ conceptual understanding levels of direct current electricity concepts were assessed and described in detail by using their answers to qualitative problems. In order to do this, conceptual understanding indicators are described based on science and mathematics education literature. The students’ understanding levels were analysed by assertion analysis based on the conceptual understanding indicators. The results indicated that the participants demonstrated three intermediate understanding levels in addition to alternative and scientific understanding. This paper presents the method and its application to direct current electricity concepts. (paper)

  2. THE EFFECT OF CONCEPT MAPPING ON CONCEPT LEARNING IN SCIENCE

    OpenAIRE

    岡, 直樹; 今永, 久美子

    2012-01-01

    An experiment was conducted to investigate the effects of concept map completion tasks on concept learning in the primary schoolchildren. The participants were to insert some of the suitable concepts (concept group) or link labeles (link label group) or both of them (concept/link label group) into the blanks to make up the map wholly. It was revealed that the results of the concept group and the concept/link label group were better than the link label group. These results were discussed in te...

  3. [The concept of "understanding" (Verstehen) in Karl Jaspers].

    Science.gov (United States)

    Villareal, Helena; Aragona, Massimiliano

    2014-01-01

    This article explores the relationship between empathy and psychopathology. It deals with the concept of "understanding" in Jaspers' General Psychopathology, 100 years after the publication of its first edition. The Jaspersian proposal has the person and his/her experience as its primary object of study, just as in Ortegas' vital reason. Jaspers' understanding is not rational but empathetic, based on the co-presence of emotional content and detailed descriptions. Jaspers' methodology is essentially pluralistic, considering both explanation and understanding, necessary for psychopathology. Despite certain limits, the concept of understanding is the backbone of the psychopathological reasoning, and has proven useful over a century of clinical practice. However, it needs a review covering the recent epistemological and clinical findings. "To be understandable" is a relational property that emerges from a semiotic process. Therefore, an effective psychology should encompass an inter-subjective process, and get away from strict rationalism.

  4. A Cross-Age Study of Student Understanding of the Concept of Homeostasis.

    Science.gov (United States)

    Westbrook, Susan L.; Marek, Edmund A.

    1992-01-01

    The conceptual views of homeostasis held by students (n=300) in seventh grade life science, tenth grade biology, and college zoology were examined. A biographical questionnaire, the results from two Piagetian-like developmental tasks, and a concept evaluation statement of homeostasis were collected from each student. Understanding of the concept…

  5. The InVEST Volcanic Concept Survey: Exploring Student Understanding about Volcanoes

    Science.gov (United States)

    Parham, Thomas L., Jr.; Cervato, Cinzia; Gallus, William A., Jr.; Larsen, Michael; Hobbs, Jon; Stelling, Pete; Greenbowe, Thomas; Gupta, Tanya; Knox, John A.; Gill, Thomas E.

    2010-01-01

    Results from the Volcanic Concept Survey (VCS) indicated that many undergraduates do not fully understand volcanic systems and plate tectonics. During the 2006 academic year, a ten-item conceptual survey was distributed to undergraduate students enrolled in Earth science courses at five U.S. colleges and universities. A trained team of graders…

  6. Understanding leadership in the environmental sciences

    OpenAIRE

    Evans, L.; Hicks, C.; Cohen, P.; Case, P.; Prideaux, M.; Mills, D.

    2015-01-01

    Leadership is often assumed, intuitively, to be an important driver of sustainable development. To understand how leadership is conceptualised and analysed in the environmental sciences and to discover what this research says about leadership outcomes, we conducted a review of environmental leadership research over the last ten years. We find that much of the environmental leadership literature we reviewed focuses on a few key individuals and desirable leadership competencies. It also reports...

  7. Connecting Knowledge Domains : An Approach to Concept Learning in Primary Science and Technology Education

    NARCIS (Netherlands)

    Koski, M.

    2014-01-01

    In order to understand our dependency on technology and the possible loss of control that comes with it, it is necessary for people to understand the nature of technology as well as its roots in science. Learning basic science and technology concepts should be a part of primary education since it

  8. Towards Concept Understanding relying on Conceptualisation in Constructivist Learning

    DEFF Research Database (Denmark)

    Badie, Farshad

    2017-01-01

    and understandings over their mental structures in the framework of constructivism, and I will clarify my logical [and semantic] conceptions of humans’ concept understandings. This research focuses on philosophy of education and on logics of human learning. It connects with the topics ‘Cognition in Education......, through this constructivism to a pedagogical theory of learning. I will mainly focus on conceptual and epistemological analysis of humans’ conceptualisations based on their own mental objects (schemata). Subsequently, I will propose an analytical specification of humans’ conceptualisations...

  9. Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules.

    Science.gov (United States)

    Higashi, Taishi; Iohara, Daisuke; Motoyama, Keiichi; Arima, Hidetoshi

    2018-01-01

    Supramolecular chemistry is an extremely useful and important domain for understanding pharmaceutical sciences because various physiological reactions and drug activities are based on supramolecular chemistry. However, it is not a major domain in the pharmaceutical field. In this review, we propose a new concept in pharmaceutical sciences termed "supramolecular pharmaceutical sciences," which combines pharmaceutical sciences and supramolecular chemistry. This concept could be useful for developing new ideas, methods, hypotheses, strategies, materials, and mechanisms in pharmaceutical sciences. Herein, we focus on cyclodextrin (CyD)-based supermolecules, because CyDs have been used not only as pharmaceutical excipients or active pharmaceutical ingredients but also as components of supermolecules.

  10. Elucidating elementary science teachers' conceptions of the nature of science: A view to beliefs about both science and teaching

    Science.gov (United States)

    Keske, Kristina Palmer

    requirement for understanding the scientific enterprise. This study also offered support for the elucidation of teachers' conceptions of the nature of science through in-depth conversations rather than convergent types of assessment. Data analysis of participant responses to isolated aspects of the nature of science yielded incomplete or inconsistent pictures of how the participants saw science. A more consistent picture of science emerged as the participants' beliefs about science and knowledge construction merged. This study proposed that all science teachers need to address their beliefs about knowledge construction across contexts.

  11. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  12. Understandings of Nature of Science and Multiple Perspective Evaluation of Science News by Non-science Majors

    Science.gov (United States)

    Leung, Jessica Shuk Ching; Wong, Alice Siu Ling; Yung, Benny Hin Wai

    2015-10-01

    Understandings of nature of science (NOS) are a core component of scientific literacy, and a scientifically literate populace is expected to be able to critically evaluate science in the media. While evidence has remained inconclusive on whether better NOS understandings will lead to critical evaluation of science in the media, this study aimed at examining the correlation therein. Thirty-eight non-science majors, enrolled in a science course for non-specialists held in a local community college, evaluated three health news articles by rating the extent to which they agreed with the reported claims and providing as many justifications as possible. The majority of the participants were able to evaluate and justify their viewpoint from multiple perspectives. Students' evaluation was compared with their NOS conceptions, including the social and cultural embedded NOS, the tentative NOS, the peer review process and the community of practice. Results indicated that participants' understanding of the tentative NOS was significantly correlated with multiple perspective evaluation of science news reports of socioscientific nature (r = 0.434, p media of socioscientific nature. However, the null result for other target NOS aspects in this study suggested a lack of evidence to assume that understanding the social dimensions of science would have significant influence on the evaluation of science in the media. Future research on identifying the reasons for why and why not NOS understandings are applied in the evaluation will move this field forward.

  13. Evaluation of Students' Energy Conception in Environmental Science

    Science.gov (United States)

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  14. Understanding the concept of nationally appropriate mitigation action

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.; Desgain, D.

    2013-05-15

    This publication is intended to enable national policy makers and other stakeholders, such as the private sector and technical experts, to acquaint themselves with the concept of NAMA. It aims to provide a comprehensive overview of the Nationally Appropriate Mitigation Action (NAMA) concept and enhance the understanding of NAMAs by explaining the underlying decisions of the Conference of the Parties in layman's terms. The first chapter describes how the concept of NAMA emerged in the context of the negotiations on climate change. The chapter gives an overview of how the concepts of NAMA and related MRV and financing issues have evolved through the different COPs. The second chapter clarifies the understanding of NAMAs in the context of the global temperature goal, and moves on to discuss the legal nature and scope of NAMAs. The chapter subsequently analyses the diversity of NAMAs submitted by developing countries to the UNFCCC, and ends by proposing a structure for formal submission of a NAMA. The third chapter specifically addresses the concept of measurement, reporting and verification (MRV), and describes the implications for countries implementing the MRV requirements. The last chapter discusses institutional arrangements, under the Convention, for providing financing to develop and implement NAMAs. The chapter also briefly discusses the different financial sources for implementing NAMAs, and concludes by explaining the concept of incremental cost in this specific context. (Author)

  15. Investigating High School Students' Understanding of Chemical Equilibrium Concepts

    Science.gov (United States)

    Karpudewan, Mageswary; Treagust, David F.; Mocerino, Mauro; Won, Mihye; Chandrasegaran, A. L.

    2015-01-01

    This study investigated the year 12 students' (N = 56) understanding of chemical equilibrium concepts after instruction using two conceptual tests, the "Chemical Equilibrium Conceptual Test 1" ("CECT-1") consisting of nine two-tier multiple-choice items and the "Chemical Equilibrium Conceptual Test 2"…

  16. Improving students’ understanding of mathematical concept using maple

    Science.gov (United States)

    Ningsih, Y. L.; Paradesa, R.

    2018-01-01

    This study aimed to improve students’ understanding of mathematical concept ability through implementation of using Maple in learning and expository learning. This study used a quasi-experimental research with pretest-posttest control group design. The sample on this study was 61 students in the second semester of Mathematics Education of Universitas PGRI Palembang, South Sumatera in academic year 2016/2017. The sample was divided into two classes, one class as the experiment class who using Maple in learning and the other class as a control class who received expository learning. Data were collective through the test of mathematical initial ability and mathematical concept understanding ability. Data were analyzed by t-test and two ways ANOVA. The results of this study showed (1) the improvement of students’ mathematical concept understanding ability who using Maple in learning is better than those who using expository learning; (2) there is no interaction between learning model and students’ mathematical initial ability toward the improvement of students’ understanding of mathematical concept ability.

  17. Alienation: A Concept for Understanding Low-Income, Urban Clients

    Science.gov (United States)

    Holcomb-McCoy, Cheryl

    2004-01-01

    The author examines the concept of alienation and how it can be used to understand low-income, urban clients. A description is presented of 4 dimensions of alienation: powerlessness, meaninglessness, normlessness, and social isolation. Case illustrations are provided, and recommendations are made for counseling alienated clients. This article…

  18. Radiography – How do students understand the concept of radiography?

    International Nuclear Information System (INIS)

    Lundgren, S.M.; Lundén, M.; Andersson, B.T.

    2015-01-01

    Background: Radiography as a concept has mainly been associated with the functional role of the radiographer. The concept has been studied from a theoretical point of view. However, there is a lack of a theoretical foundation and research on the actual substance of the term radiography used in education. It is therefore important to undertake an investigation in order to determine how students after three years education understand the subject of radiography. Aim: The aim of this study was to analyse how students in the Swedish radiographers' degree program understand the concept of radiography. Method: A concept analysis was made according to the hybrid model, which combines theoretical, fieldwork and analytical phases. A summative content analysis was used to identify the number and content of statements. The empirical data were collected from questionnaires answered by radiography students at four universities in Sweden. Findings: All radiography students' exemplified radiography with statements related to the practical level although some of them also identified radiography at an abstract level, as a subject within a discipline. The attribute ‘An interdisciplinary area of knowledge’ emerged, which is an attribute on the abstract level. The practical level was described by four attributes: Mastering Medical Imaging’, ‘To accomplish images for diagnosis and interventions’, ‘Creating a caring environment’ and ‘Enabling fruitful encounters’. Conclusion: The hybrid model used was a versatile model of concept development. The results of this study have increased the understanding of what characterizes the concept of radiography in a Swedish context. - Highlights: • This concept analysis of radiography was undertaken according to a hybrid model. • In radiography humanistic aspects are emphasized, a shift from the technological perspective. • The attributes demonstrate the essence and interdisciplinary nature of radiography. • This

  19. Concept of hegemony in contemporary geopolitical science

    Directory of Open Access Journals (Sweden)

    M. A. Shepyelyev

    2017-07-01

    Full Text Available The article discusses the main conceptual approaches to understanding the nature and patterns of functioning and development of hegemony in international relations. Analysed the contribution to the development of research hegemony in international relations, which has made the school world-system analysis. According to its founder F. Braudel, the hegemony of the world is a manifestation of inequality, the latter reveals the structural realities that are approved very slowly, very slowly disappear. The concept of a follower of Fernand Braudel, Emmanuel Wallerstein, according to which the hegemony reflects the ability of a particular state to make one part of the international system to its customers, and the second - to drive into a defensive position. The development of the «modern world-system» is defined by Wallerstein changes hegemony. Wallerstein argues that the State has the ability to create a stable geopolitical system of unequal social division of powers, which are part of the normal functioning of the capitalist world-economy. It is also noted that the pattern of ups and downs of world leaders - hegemony - are considered in the research of many scientists, including George Modelski. He develops a theory about hundred-year cycle of global leadership, using the term «selection» to describe the process of competition and the adoption of this role. Among the concepts of hegemony also highlighted the Charles Krauthammer’s conception of monopolarity, on which the present geopolitical structure of the world after the «cold war» - one pole of world power , consisting of the United States as the top of the industrial West. Analyzed the  Piter Taylor’s conception of global hegemony, which distinguishes the competitive and non-competitive era, successive, and the Nail Ferguson’s conception of imperialism. The paper shows that the problem of hegemony in the 70-th years passed from the purely theoretical plane into practical politics

  20. A Functional Conceptualization of Understanding Science in the News

    Science.gov (United States)

    Anderson, Megan M.

    The idea that the public should have the capacity for understanding science in the news has been embraced by scientists, educators, and policymakers alike. An oft-cited goal of contemporary science education, in fact, is to enhance students' understanding of science in the news. But what exactly does it mean to understand science in the news? Surprisingly few have asked this question, or considered the significance of its answer. This dissertation steps away from issues of science teaching and learning to examine the nature of understanding science in the news itself. My work consolidates past scholarship from the multiple fields concerned with the relationship between science and society to produce a theoretical model of understanding science in the news as a complex, multidimensional process that involves an understanding of science as well as journalism. This thesis begins by exploring the relationship between the understanding implicit in understanding science in the news and understanding science. Many assume these two ways of knowing are one in the same. To rebut this assumption, I examine the types of knowledge necessary for understanding science and understanding science in the news. I then use the literature devoted to scientific literacy to show how past research has imagined the knowledge necessary to understand science in the news. Next, I argue that one of the principle difficulties with these conceptualizations is that they define science in the news in essentially the same terms as science. They also, I suggest, oversimplify how and why public interacts with science in the news. This dissertation concludes with a proposal for one way we might think about understanding science in the news on its own terms rather than those of understanding science. This dissertation attempts to connect two fields of research that rarely intersect, despite their multiple common interests: science education and mass communication. It considers the notion of

  1. Understanding structural conservation through materials science:

    DEFF Research Database (Denmark)

    Fuster-López, Laura; Krarup Andersen, Cecil

    2014-01-01

    with tools to avoid future problems, it should be present in all conservation-restoration training programs to help promote students’ understanding of the degradation mechanisms in cultural materials (and their correlation with chemical and biological degradation) as well as the implications behind......Mechanical properties and the structure of materials are key elements in understanding how structural interventions in conservation treatments affect cultural heritage objects. In this context, engineering mechanics can help determine the strength and stability found in art objects as it can...... provide both explanation and prediction of failure in materials. It has therefore shown to be an effective method for developing useful solutions to conservation problems. Since materials science and mechanics can help conservators predict the long term consequences of their treatments and provide them...

  2. Understanding Science: Frameworks for using stories to facilitate systems thinking

    Science.gov (United States)

    ElShafie, S. J.; Bean, J. R.

    2017-12-01

    Studies indicate that using a narrative structure for teaching and learning helps audiences to process and recall new information. Stories also help audiences retain specific information, such as character names or plot points, in the context of a broader narrative. Stories can therefore facilitate high-context systems learning in addition to low-context declarative learning. Here we incorporate a framework for science storytelling, which we use in communication workshops, with the Understanding Science framework developed by the UC Museum of Paleontology (UCMP) to explore the application of storytelling to systems thinking. We translate portions of the Understanding Science flowchart into narrative terms. Placed side by side, the two charts illustrate the parallels between the scientific process and the story development process. They offer a roadmap for developing stories about scientific studies and concepts. We also created a series of worksheets for use with the flowcharts. These new tools can generate stories from any perspective, including a scientist conducting a study; a character that plays a role in a larger system (e.g., foraminifera or a carbon atom); an entire system that interacts with other systems (e.g., the carbon cycle). We will discuss exemplar stories about climate change from each of these perspectives, which we are developing for workshops using content and storyboard models from the new UCMP website Understanding Global Change. This conceptual framework and toolkit will help instructors to develop stories about scientific concepts for use in a classroom setting. It will also help students to analyze stories presented in class, and to create their own stories about new concepts. This approach facilitates student metacognition of the learning process, and can also be used as a form of evaluation. We are testing this flowchart and its use in systems teaching with focus groups, in preparation for use in teacher professional development workshops.

  3. Seeding science success: Relations of secondary students' science self-concepts and motivation with aspirations and achievement

    Science.gov (United States)

    Chandrasena, Wanasinghe Durayalage

    identified barriers to promoting science in schools were: the difficulty of the subject matter, lack of student interest, the large amount of subject content, lack of perceived relevance of the subject matter to day-to-day life, ineffective teacher characteristics, lack of aspirations to pursue science as a career, inadequate teaching methods, lack of adequate teacher training, lack of proper policies to reward science teachers, and inadequate support for science from the media. Overall, the results from this study provide a greater understanding of the relations of secondary students' science self-concepts and motivation with aspirations and achievement in different science domains across gender and age levels. Hence, this research makes a valuable contribution to the literature by providing new insight. The findings will be useful for science educators in planning and developing science curriculum and policies with regard to student self-concepts and motivation. Equally, science teachers may find implications for classroom practices, for the planning and conducting of science lessons, for conveying scientific concepts and principles to students more effectively, and in considering the need to generate enthusiasm about the subject in young science students. Thus, the findings may offer the necessary strategies to assist in reducing the decline of students' enrolments in science through efficacious attention to student self-concepts and motivation. The newly developed instrument provides a new opportunity for future research to confidently interrogate the psychosocial issues central to science education and promotion. (Abstract shortened by ProQuest.).

  4. Emergence, concept, and understanding of Pan-River-Basin (PRB

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2015-12-01

    Full Text Available In this study, the concept of Pan-River-Basin (PRB for water resource management is proposed with a discussion on the emergence, concept, and application of PRB. The formation and application of PRB is also discussed, including perspectives on the river contribution rates, harmonious levels of watershed systems, and water resource availability in PRB system. Understanding PRB is helpful for reconsidering river development and categorizing river studies by the influences from human projects. The sustainable development of water resources and the harmonization between humans and rivers also requires PRB.

  5. Understanding leadership in the environmental sciences

    Directory of Open Access Journals (Sweden)

    Louisa S. Evans

    2015-03-01

    Full Text Available Leadership is often assumed, intuitively, to be an important driver of sustainable development. To understand how leadership is conceptualized and analyzed in the environmental sciences and to discover what this research says about leadership outcomes, we conducted a review of environmental leadership research over the last 10 years. We found that much of the environmental leadership literature focuses on a few key individuals and desirable leadership competencies. The literature also reports that leadership is one of the most important of a number of factors contributing to effective environmental governance. Only a subset of the literature highlights interacting sources of leadership, disaggregates leadership outcomes, or evaluates leadership processes in detail. We argue that the literature on environmental leadership is highly normative. Leadership is typically depicted as an unequivocal good, and its importance is often asserted rather than tested. We trace how leadership studies in the management sciences are evolving and argue that, taking into account the state of the art in environmental leadership research, more critical approaches to leadership research in environmental science can be developed.

  6. Elementary pre-service teachers' conceptual understanding of dissolving: a Vygotskian concept development perspective

    Science.gov (United States)

    Harrell, Pamela; Subramaniam, Karthigeyan

    2015-09-01

    Background and purpose: The purpose of this study was to investigate and identify the nature and the interrelatedness of pre-service teachers' misconceptions and scientific concepts for explaining dissolving before, during, and after a 5E learning cycle lesson on dissolving, the intervention. Sample, design, and methods: Guided by Vygotsky's theory of concept development, the study focused specifically on the spontaneous, and spontaneous pseudo-concepts held by the 61 elementary pre-service teachers during a 15-week science methods course. Data included concept maps, interview transcripts, written artifacts, drawings, and narratives, and were thematically analyzed to classify concepts and interrelatedness. Results: Results of the study showed that spontaneous pseudo-concepts (1) dominated pre-service teachers' understandings about dissolving throughout the study, and (2) were simply associated with scientific concepts during and after the intervention. Conclusion: Collectively, the results indicated that the pre-service teachers' did not acquire a unified system of knowledge about dissolving that could be characterized as abstract, generalizable, and hierarchical. Implications include the need for (1) familiarity with pre-service teachers' prior knowledge about science content; (2) a variety of formative assessments to assess their misconceptions; (3) emphasizing the importance of dialectical method for concept development during instruction; and (4) skillful content instructors.

  7. Development of preservice elementary teachers' science self- efficacy beliefs and its relation to science conceptual understanding

    Science.gov (United States)

    Menon, Deepika

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self

  8. Do Elementary Science Methods Textbooks Promote Understanding of Shadows?

    Directory of Open Access Journals (Sweden)

    Lloyd H. Barrow

    2016-02-01

    Full Text Available Elementary science methods textbooks can be an important resource for future elementary teachers of science. Since shadows are a common topic in elementary school and Next Generation Science Standards (NGSS Lead States, 2013. A series of ten shadows concepts were formed into a learning progression by Wizman and Fortus (2007. For this research, ten science methods textbook were read and analyzed about how each of the shadow concepts were addressed. These methods textbooks focused on a limited number of shadow concepts. Consequently, as a future reference, they are very limited in addressing all ten shadow concepts.

  9. The Concept of Embodied Knowledge for Understanding Organisational Knowledge Creation

    Science.gov (United States)

    Matsudaira, Yoshito; Fujinami, Tsutomu

    Our goal in this paper is to understand, in the light of intuition and emotion, the problem-finding and value judgments by organisational members that are part of organisational knowledge creation. In doing so, we emphasise the importance of embodied knowledge of organisations as an explanatory concept. We propose ways of approaching intuition and sense of value as these are posited as objects of research. Approaches from the first, second, and third-person viewpoints result in a deeper grasp of embodied knowledge of organisations. Important in organisational knowledge creation is embodied knowledge of organisations, which has a bearing on problem-finding before any problem-solving or decision making takes place, and on value judgments about the importance of problems that have been found. This article proposes the concept of embodied knowledge, and, by introducing it, gives a profound understanding of that facet of organisational knowledge creation characterised by tacit knowledge held by organisational individuals.

  10. Explorers of the Universe: Metacognitive Tools for Learning Science Concepts

    Science.gov (United States)

    Alvarez, Marino C.

    1998-01-01

    Much of school learning consists of rote memorization of facts with little emphasis on meaningful interpretations. Knowledge construction is reduced to factual knowledge production with little regard for critical thinking, problem solving, or clarifying misconceptions. An important role of a middle and secondary teacher when teaching science is to aid students' ability to reflect upon what they know about a given topic and make available strategies that will enhance their understanding of text and science experiments. Developing metacognition, the ability to monitor one's own knowledge about a topic of study and to activate appropriate strategies, enhances students' learning when faced with reading, writing and problem solving situations. Two instructional strategies that can involve students in developing metacognitive awareness are hierarchical concept mapping, and Vee diagrams. Concept maps enable students to organize their ideas and reveal visually these ideas to others. A Vee diagram is a structured visual means of relating the methodological aspects of an activity to its underlying conceptual aspect in ways that aid learners in meaningful understanding of scientific investigations.

  11. Understanding children's science identity through classroom interactions

    Science.gov (United States)

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity. It asks how children conceive of doing science like scientists and how they develop views of science beyond the stereotypes. This study employs positioning theory to examine how children and their teacher position themselves in science learning contexts and develop science identity through classroom interactions. Fifteen students in grades 4-6 science classrooms in Western Canada participated in this study. Classroom activities and interactions were videotaped, transcribed, and analysed to examine how the teacher and students position each other as scientists in the classroom. A descriptive explanatory case analysis showed how the teacher's positioning acted to develop students' science identity with responsibilities of knowledge seeking, perseverance, and excitement about science.

  12. Conceptual Change in Understanding the Nature of Science Learning: An Interpretive Phenomenological Analysis

    Science.gov (United States)

    DiBenedetto, Christina M.

    This study is the first of its kind to explore the thoughts, beliefs, attitudes and values of secondary educators as they experience conceptual change in their understanding of the nature of science learning vis a vis the Framework for K-12 Science Education published by the National Research Council. The study takes aim at the existing gap between the vision for science learning as an active process of inquiry and current pedagogical practices in K-12 science classrooms. For students to understand and explain everyday science ideas and succeed in science studies and careers, the means by which they learn science must change. Focusing on this change, the study explores the significance of educator attitudes, beliefs and values to science learning through interpretive phenomenological analysis around the central question, "In what ways do educators understand and articulate attitudes and beliefs toward the nature of science learning?" The study further explores the questions, "How do educators experience changes in their understanding of the nature of science learning?" and "How do educators believe these changes influence their pedagogical practice?" Study findings converge on four conceptions that science learning: is the action of inquiry; is a visible process initiated by both teacher and learner; values student voice and changing conceptions is science learning. These findings have implications for the primacy of educator beliefs, attitudes and values in reform efforts, science teacher leadership and the explicit instruction of both Nature of Science and conceptual change in educator preparation programs. This study supports the understanding that the nature of science learning is cognitive and affective conceptual change. Keywords: conceptual change, educator attitudes and beliefs, framework for K-12 science education, interpretive phenomenological analysis, nature of science learning, next generation science standards, science professional development

  13. Integrating Felting in Elementary Science Classrooms to Facilitate Understanding of the Polar Auroras

    Directory of Open Access Journals (Sweden)

    Brandy Terrill

    2017-10-01

    Full Text Available The Next Generation Science Standards (NGSS emphasize conceptual science instruction that draws on students’ ability to make observations, explain natural phenomena, and examine concept relationships. This paper explores integrating the arts, in the form of felting, in elementary science classrooms as a way for students to model and demonstrate understanding of the complex scientific processes that cause the polar auroras. The steps for creating felting, and using the felting artwork students create for assessing science learning, are described.

  14. Science, Technology and Innovation: Concepts, Theory and Policy

    OpenAIRE

    Zehra Taşkın; Güleda Doğan

    2016-01-01

    This study is a review of the book entitled “Science, Technology and Innovation: Concepts, Theory and Policy”. In the converging world, the book is an important contribution not only for the field of economy, but also information science which includes information-economy concepts.

  15. Epistemological Predictors of Prospective Biology Teachers' Nature of Science Understandings

    Science.gov (United States)

    Köseoglu, Pinar; Köksal, Mustafa Serdar

    2015-01-01

    The purpose of this study was to investigate epistemological predictors of nature of science understandings of 281 prospective biology teachers surveyed using the Epistemological Beliefs Scale Regarding Science and the Nature of Science Scale. The findings on multiple linear regression showed that understandings about definition of science and…

  16. Liberal Liability. Understanding Students’ Conceptions of Gender Structures

    Directory of Open Access Journals (Sweden)

    Linda Murstedt

    2014-04-01

    Full Text Available Research has shown that teaching gender theories tends to be an educational challenge and elicits student resistance. However, little is known about students’ learning processes in social science. This study aims to explore these learning processes by drawing on feminist pedagogy and conceptual change theory. The results show that when students are asked to perform analysis from a structural gender perspective, they recurrently introduce other explanatory frameworks based on non-structural understandings. The students’ learning processes involve reformulating questions and making interpretations based on liberal understandings of power, freedom of choice and equality. We argue that this process is due to the hegemonic position of the liberal paradigm as well as to the dominant ideas about science. Clarifying the underlying presumptions of a liberal perspective and a structural perspective may help students to recognise applied premises and enable them to distinguish relevant explanations.

  17. [Conception of the history of science in the interpretation of Bogdan Suchodolski].

    Science.gov (United States)

    Lietz, Natalia

    2011-01-01

    In the article is presented the conception of the history of science in the interpretation of Bogdan Suchodolski. Having described the conception of the history of science created by George Sarton (1884-1956), whose thought was influenced by positivistic philosophy of August Comte, the idea of the history of science of Johan Nordstr6m (1891-1967), who was inspired by the system of Wilhelm Dilthey, and the materialistic conception of the history of science, which was represented, among others, by John Desmond Bernal (1901-1971), the author is making an attempt at revealing to what extent Bogdan Suchodolski was inspired by the above-mentioned visions of the history of science. Having defined the history of science as the history of scientific activity of people and their consciousness formed by the activity, Bogdan Suchodolski applied in the field of his own conception of the history of science the ideas that were put forward by German thinkers and philosophers, and were connected with a way of understanding culture as the constant development of national awareness, which can be exemplified with different dimensions of culture. Undoubtedly, identifying the history of Polish science with constitutive element of the history of national culture and paying attention to the conceptions tending not only to explaining, but also understanding phenomena, B. Suchodolski was influenced by Alfred Vierkandt's and Wilhelm Dilthey's thought. The present article includes several reflections on the conception of the history of science, which was created by B. Suchodolski. Among others, we can find here detailed information on how B. Suchodolski understood: the history of science, its subject, aim and methodology; its status in modern social consciousness and as the history of truth; relations between history of science and theory of science and scientific policy, history of science and the problem of unity and diversity of scientific thinking, history of science and ideas, history of

  18. Spatial abilities, Earth science conceptual understanding, and psychological gender of university non-science majors

    Science.gov (United States)

    Black, Alice A. (Jill)

    Research has shown the presence of many Earth science misconceptions and conceptual difficulties that may impede concept understanding, and has also identified a number of categories of spatial ability. Although spatial ability has been linked to high performance in science, some researchers believe it has been overlooked in traditional education. Evidence exists that spatial ability can be improved. This correlational study investigated the relationship among Earth science conceptual understanding, three types of spatial ability, and psychological gender, a self-classification that reflects socially-accepted personality and gender traits. A test of Earth science concept understanding, the Earth Science Concepts (ESC) test, was developed and field tested from 2001 to 2003 in 15 sections of university classes. Criterion validity was .60, significant at the .01 level. Spearman/Brown reliability was .74 and Kuder/Richardson reliability was .63. The Purdue Visualization of Rotations (PVOR) (mental rotation), the Group Embedded Figures Test (GEFT) (spatial perception), the Differential Aptitude Test: Space Relations (DAT) (spatial visualization), and the Bem Inventory (BI) (psychological gender) were administered to 97 non-major university students enrolled in undergraduate science classes. Spearman correlations revealed moderately significant correlations at the .01 level between ESC scores and each of the three spatial ability test scores. Stepwise regression analysis indicated that PVOR scores were the best predictor of ESC scores, and showed that spatial ability scores accounted for 27% of the total variation in ESC scores. Spatial test scores were moderately or weakly correlated with each other. No significant correlations were found among BI scores and other test scores. Scantron difficulty analysis of ESC items produced difficulty ratings ranging from 33.04 to 96.43, indicating the percentage of students who answered incorrectly. Mean score on the ESC was 34

  19. Academic Self-Concept: Modeling and Measuring for Science

    Science.gov (United States)

    Hardy, Graham

    2014-08-01

    In this study, the author developed a model to describe academic self-concept (ASC) in science and validated an instrument for its measurement. Unlike previous models of science ASC, which envisage science as a homogenous single global construct, this model took a multidimensional view by conceiving science self-concept as possessing distinctive facets including conceptual and procedural elements. In the first part of the study, data were collected from 1,483 students attending eight secondary schools in England, through the use of a newly devised Secondary Self-Concept Science Instrument, and structural equation modeling was employed to test and validate a model. In the second part of the study, the data were analysed within the new self-concept framework to examine learners' ASC profiles across the domains of science, with particular attention paid to age- and gender-related differences. The study found that the proposed science self-concept model exhibited robust measures of fit and construct validity, which were shown to be invariant across gender and age subgroups. The self-concept profiles were heterogeneous in nature with the component relating to self-concept in physics, being surprisingly positive in comparison to other aspects of science. This outcome is in stark contrast to data reported elsewhere and raises important issues about the nature of young learners' self-conceptions about science. The paper concludes with an analysis of the potential utility of the self-concept measurement instrument as a pedagogical device for science educators and learners of science.

  20. Understanding How Science Works: The Nature of Science as The Foundation for Science Teaching and Learning

    Science.gov (United States)

    McComas, William F.

    2017-01-01

    The nature of science (NOS) is a phrase used to represent the rules of the game of science. Arguably, NOS is the most important content issue in science instruction because it helps students understand the way in which knowledge is generated and validated within the scientific enterprise. This article offers a proposal for the elements of NOS that…

  1. Understanding Gravity: The Role of a School Visit to a Science Centre

    Science.gov (United States)

    Lelliott, Anthony

    2014-01-01

    This paper examines the knowledge construction processes involved when grades 7 and 8 South African students learnt about the concept of gravity while visiting an astronomy-related science centre. The literature on students' understanding of gravity identifies a number of alternative conceptions prevalent, several of which are mirrored in this…

  2. Science Literacy: Concepts, Contexts, and Consequences

    Science.gov (United States)

    Snow, Catherine E., Ed.; Dibner, Kenne A., Ed.

    2016-01-01

    Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to science--whether using knowledge or creating it--necessitates some level of familiarity with the enterprise and…

  3. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  4. Financial Understanding: A Phenomenographic Access to Students’ Concepts of Credits

    Directory of Open Access Journals (Sweden)

    Sandra Speer

    2013-07-01

    Full Text Available Financial education has become a more popular part of general education in schools. Different social and economic backgrounds as well as experiences influence the students’ conceptualization of the same financial phenomenon. Therefore, phenomenography is an appropriate research strategy for investigating students’ deeper understanding of financial core concepts. Our research concentrates on ‘credit’ as a central phenomenon. Thirteen focus groups made up of secondary school students and university students in Germany discussed varying examples of taking out a loan. Systematizing students’ conceptualizations, the outcome space consists of four main categories: attitudes, needs, credit terms and calculation. On a deeper level we found further subcategories. The results of our explorative study can guide a chronology of teaching different concepts as well as further research.

  5. Teachers' and Students' Conceptions of Good Science Teaching

    Science.gov (United States)

    Yung, Benny Hin Wai; Zhu, Yan; Wong, Siu Ling; Cheng, Man Wai; Lo, Fei Yin

    2013-01-01

    Capitalizing on the comments made by teachers on videos of exemplary science teaching, a video-based survey instrument on the topic of "Density" was developed and used to investigate the conceptions of good science teaching held by 110 teachers and 4,024 year 7 students in Hong Kong. Six dimensions of good science teaching are identified…

  6. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    Science.gov (United States)

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  7. Investigating inquiry beliefs and nature of science (NOS) conceptions of science teachers as revealed through online learning

    Science.gov (United States)

    Atar, Hakan Yavuz

    teachers NOS conceptions. Developing desired understanding of nature of science conceptions and having an adequate experience with inquiry learning is especially important for science teachers because science education literature suggests that the development of teachers' nature of science conceptions is influenced by their experiences with inquiry science (Akerson et. al. 2000) and implementation of science lessons reflect teachers' NOS conceptions (Abd-EL-Khalick & Boujaoude, 1997; Matson & Parsons, 1998; Rosenthal, 1993; Trowbridge, Bybee & Powell, 2000; Turner & Sullenger, 1999). Furthermore, the impediments to successful integration of inquiry based science instruction from teachers' perspective are particularly important, as they are the implementers of inquiry based science education reform. The purpose of this study is to understand the relationship between the teachers' NOS conceptions and their inquiry beliefs and practices in their classrooms and how this relationship impedes or contributes to the implementation of inquiry based science education reform efforts. The participants of this study were in-service teachers who were accepted into the online Masters Program in science education program at a southern university. Three online courses offered in the summer semester of 2005 constituted the research setting of this study: (1) Special Problems in the Teaching of Secondary School Science: Nature of Science & Science Teaching, (2) Curriculum in Science Education, and (3) Colloquium. Multiple data sources were used for data triangulation (Miles & Huberman, 1984; Yin, 1994) in order to understand the relationship between participants' NOS views and their conceptions and beliefs about inquiry-based science teaching. The study revealed that the relationship between the teachers' NOS conceptions and their inquiry beliefs and practices is far from being simple and linear. Data suggests that the teachers' sophistication of NOS conceptions influence their perception of

  8. Scientists' understanding of public communication of science and technology

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt; Kjaer, Carsten Rahbæk; Dahlgaard, Jørgen

    Background Research into the field of science communication has tended to focus on public understanding of science or on the processes of science communication itself, e.g. by looking at science in the media. Few studies have explored how scientists understand science communication. At present...... and technical sciences see science communication. We wanted to map their general interest in using different media of science communication as well as their active participation in current science communication. Moreover, we wanted to find out what they think about future of science communication, and what...... science communication. Results Our respondents indicated interest in doing science communication through media aimed at a broader public. In particular, news media surfaced as the most attractive media of public communication. The respondents preferred to be in charge of science communication themselves...

  9. Guidance for Science Data Centers through Understanding Metrics

    Science.gov (United States)

    Moses, J. F.

    2006-12-01

    NASA has built a multi-year set of transaction and user satisfaction information about the evolving, broad collection of earth science products from a diverse set of users of the Earth Observing System Data and Information System (EOSDIS). The transaction and satisfaction trends provide corroborative information to support perception and intuition, and can often be the basis for understanding the results of cross-cutting initiatives and for management decisions about future strategies. The information is available through two fundamental complementary methods, product and user transaction data collected regularly from the major science data centers, and user satisfaction information collected through the American Customer Satisfaction Index survey. The combination provides the fundamental data needed to understand utilization trends in the research community. This paper will update trends based on 2006 metrics from the NASA earth science data centers and results from the 2006 EOSDIS ACSI survey. Principle concepts are explored that lead to sound guidance for data center managers and strategists over the next year.

  10. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…

  11. Using the BERT concept to promote public understanding of radiation

    International Nuclear Information System (INIS)

    Ng, Kwan-Hoong; Cameron, J.R.

    2001-01-01

    Radiation phobia can be greatly decreased if the simple BERT (Background Equivalent Radiation Time) concept is used to explain the dose to all diagnostic radiology patients. It converts the radiation dose to an equivalent period of natural background radiation. It is understandable, it does not mention risk, and it educates the patient that human-made radiation is the same as the background radiation which gives them most of their annual dose. Medical physicists should provide each clinical x-ray unit with a table that gives the BERT value for various procedures and patient sizes and educate the radiologists and radiographers how to use the BERT approach for relieving radiation anxiety. (author)

  12. The self-concept of chiropractic students as science students

    Science.gov (United States)

    Shields, Robert F.

    2005-01-01

    Abstract Purpose To determine the self-concepts of chiropractic students as science students and if any personal variable affect their self-concepts. Participants Students in their first trimester and eighth trimester at the Los Angeles College of Chiropractic during the 1993 academic year (n=158). Methods Peterson-Yaakobi Q-Sort, National Assessment of Educational Progress, two-tailed T-test, one way analysis of variance and Spearman-rho correlation. Results The majority of students have positive self- concepts as science students and although there was a difference between the 2 trimesters, it was not significant. As a group they generally had less exposure to science compared to undergraduates from a selected science program. Variables of socio-economic status, undergraduate major, and highest completed level of education did not statistically affect their self-concept. Conclusion Chiropractic students had the self-concept that enables them to subscribe to the philosophical foundations of science and better engage in basic sciences and, later, science-based clinical research. Knowledge of this self- concept can be used in the development of a more rigorous basic science curricula and clinical research programs at chiropractic colleges with the ultimate goal of providing a more firm scientifically based foundation for the profession. PMID:19674649

  13. Nanotechnology and the public: Effectively communicating nanoscale science and engineering concepts

    International Nuclear Information System (INIS)

    Castellini, O. M.; Walejko, G. K.; Holladay, C. E.; Theim, T. J.; Zenner, G. M.; Crone, W. C.

    2007-01-01

    Researchers are faced with challenges when addressing the public on concepts and applications associated with nanotechnology. The goal of our work was to understand the public's knowledge of nanotechnology in order to identify appropriate starting points for dialog. Survey results showed that people lack true understanding of concepts associated with atoms and the size of the nanoscale regime. Such gaps in understanding lead to a disappointing lack of communication between researchers and the public concerning fundamental concepts in nanoscale science and engineering. Strategies are offered on how scientists should present their research when engaging the public on nanotechnology topics

  14. Implications of the Integration of Computing Methodologies into Conventional Marketing Research upon the Quality of Students' Understanding of the Concept

    Science.gov (United States)

    Ayman, Umut; Serim, Mehmet Cenk

    2004-01-01

    It has been an ongoing concern among academicians teaching social sciences to develop a better methodology to ease understanding of students. Since verbal emphasis is at the core of the concepts within such disciplines it has been observed that the adequate or desired level of conceptual understanding of the students to transforms the theories…

  15. Minority Preservice Teachers' Conceptions of Teaching Science: Sources of Science Teaching Strategies

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2013-01-01

    This study explores five minority preservice teachers' conceptions of teaching science and identifies the sources of their strategies for helping students learn science. Perspectives from the literature on conceptions of teaching science and on the role constructs used to describe and distinguish minority preservice teachers from their mainstream…

  16. Mining Concept Maps to Understand University Students' Learning

    Science.gov (United States)

    Yoo, Jin Soung; Cho, Moon-Heum

    2012-01-01

    Concept maps, visual representations of knowledge, are used in an educational context as a way to represent students' knowledge, and identify mental models of students; however there is a limitation of using concept mapping due to its difficulty to evaluate the concept maps. A concept map has a complex structure which is composed of concepts and…

  17. The Contribution of Conceptual Change Texts Accompanied by Concept Mapping to Eleventh-Grade Students Understanding of Cellular Respiration Concepts

    Science.gov (United States)

    Al khawaldeh, Salem A.; Al Olaimat, Ali M.

    2010-01-01

    The present study conducted to investigate the contribution of conceptual change texts, accompanied by concept mapping instruction to eleventh-grade students' understanding of cellular respiration concepts, and their retention of this understanding. Cellular respiration concepts test was developed as a result of examination of related literature…

  18. Information science and its core concepts

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2013-01-01

    One often encounters disagreements in information science (IS) (or library and information science, LIS), even disagreements about what might seem rather trivial questions. Such disagreements range from the designation of the field to questions such as whether IS is an academic discipline or not...... terminological hygiene” may account for some of the disagreements, but basically the problem is seen as a lack of sufficient strong centripetal tendencies keeping the field together....

  19. Mathematics and science Teachers' Understanding and Practices of ...

    African Journals Online (AJOL)

    Amy Stambach

    It employed qualitative methods of data collection including in-depth interviews and ... Education, Science, Technology, Scientific Research, 2003; Rwanda Education .... Rwandan science teachers were not having common understanding of ...

  20. Understanding Engagement: Science Demonstrations and Emotional Energy

    Science.gov (United States)

    Milne, Catherine; Otieno, Tracey

    2007-01-01

    Although beloved of some chemists and physicists, science demonstrations have been criticized for stifling inquiry and assisting teachers to maintain a power differential between themselves and students in the classroom. This interpretive study reports the unexpected positive learning outcomes for urban science students in two chemistry classes…

  1. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  2. Cryogenic treatment of steel: from concept to metallurgical understanding

    DEFF Research Database (Denmark)

    Villa, Matteo; Somers, Marcel A. J.

    2017-01-01

    , the metallurgical understanding of the microstructural changes involved in cryogenic treatment of steel has remained poor. It is believed that the improvement in wear resistance is promoted by an enhanced precipitation of carbides during tempering, but no explanation has been given as to how this enhanced......Subjecting steel to cryogenic treatment to improve its properties was conceived in the 30ies of the previous century. The proof of concept that properties, in particular wear resistance, can indeed be improved importantly, was reported in the next decades. Despite many investigations...... precipitation can be obtained. In the last six years, the authors have applied in situ magnetometry, synchrotron X-Ray Diffraction and dilatometry to enlighten the phase transitions occurring in steels at cryogenic temperatures and to point out the connection between different treatment parameters...

  3. UNDERSTANDING AND APPLICABILITY OF THE FOREST SOIL CONCEPT

    Directory of Open Access Journals (Sweden)

    Ana Paula Moreira Rovedder

    2013-08-01

    Full Text Available http://dx.doi.org/10.5902/1980509810563The forestry sector plays an important role in the socioeconomic and environmental Brazilian context, therefore the improvement of the knowledge about forest soil becomes essential for its sustainable use as a conservation base of natural heritage as resource for economical development. Forest soil can be characterized by pedogenesis occurred under influence of a forestry typology or under a currently natural or cultivated forest coverage. Differentiating forest soils from those occupied with other uses helps the understanding of possible alterations related to vegetal coverage and the developing of better management strategies to soil and forest use. Nevertheless, there is no consensus about this term because the soils present variations according to the forest characteristics, stimulating the discussion concerning its interpretation and applicability. This review aimed to analyze the utilization of forest soil concept, highlighting the differentiation characteristics and the relation with coverage type, natural or cultivated. Aspects related to deposition, quality and management of residues, nutrients cycling, soil compaction and site productivity are emphasized. The forest soil concept is widely used by specific literature and useful to collect specific information and to plan the sustainable use of soil and forest. The improvement of knowledge about these resources provides the creation of a common identity, supporting comparative studies and consolidating the research regarding to this theme.

  4. Key Concept Mathematics and Management Science Models

    Science.gov (United States)

    Macbeth, Thomas G.; Dery, George C.

    1973-01-01

    The presentation of topics in calculus and matrix algebra to second semester freshmen along with a treatment of exponential and power functions would permit them to cope with a significant portion of the mathematical concepts that comprise the essence of several disciplines in a business school curriculum. (Author)

  5. Non-Determinism: An Abstract Concept in Computer Science Studies

    Science.gov (United States)

    Armoni, Michal; Gal-Ezer, Judith

    2007-01-01

    Non-determinism is one of the most important, yet abstract, recurring concepts of Computer Science. It plays an important role in Computer Science areas such as formal language theory, computability theory, distributed computing, and operating systems. We conducted a series of studies on the perception of non-determinism. In the current research,…

  6. Exploring teacher's perceptions of concept mapping as a teaching strategy in science: An action research approach

    Science.gov (United States)

    Marks Krpan, Catherine Anne

    In order to promote science literacy in the classroom, students need opportunities in which they can personalize their understanding of the concepts they are learning. Current literature supports the use of concept maps in enabling students to make personal connections in their learning of science. Because they involve creating explicit connections between concepts, concept maps can assist students in developing metacognitive strategies and assist educators in identifying misconceptions in students' thinking. The literature also notes that concept maps can improve student achievement and recall. Much of the current literature focuses primarily on concept mapping at the secondary and university levels, with limited focus on the elementary panel. The research rarely considers teachers' thoughts and ideas about the concept mapping process. In order to effectively explore concept mapping from the perspective of elementary teachers, I felt that an action research approach would be appropriate. Action research enabled educators to debate issues about concept mapping and test out ideas in their classrooms. It also afforded the participants opportunities to explore their own thinking, reflect on their personal journeys as educators and play an active role in their professional development. In an effort to explore concept mapping from the perspective of elementary educators, an action research group of 5 educators and myself was established and met regularly from September 1999 until June 2000. All of the educators taught in the Toronto area. These teachers were interested in exploring how concept mapping could be used as a learning tool in their science classrooms. In summary, this study explores the journey of five educators and myself as we engaged in collaborative action research. This study sets out to: (1) Explore how educators believe concept mapping can facilitate teaching and student learning in the science classroom. (2) Explore how educators implement concept

  7. The Nature of Science in Science Curricula: Methods and Concepts of Analysis

    Science.gov (United States)

    Ferreira, Sílvia; Morais, Ana M.

    2013-01-01

    The article shows methods and concepts of analysis of the nature of science in science curricula through an exemplary study made in Portugal. The study analyses the extent to which the message transmitted by the Natural Science curriculum for Portuguese middle school considers the nature of science. It is epistemologically and sociologically…

  8. Students' conceptions of evidence during a university introductory forensic science course

    Science.gov (United States)

    Yeshion, Theodore Elliot

    Students' Conceptions of Science, Scientific Evidence, and Forensic Evidence during a University Introductory Forensic Science Course This study was designed to examine and understand what conceptions undergraduate students taking an introductory forensic science course had about scientific evidence. Because the relationships between the nature of science, the nature of evidence, and the nature of forensic evidence are not well understood in the science education literature, this study sought to understand how these concepts interact and affect students' understanding of scientific evidence. Four participants were purposefully selected for this study from among 89 students enrolled in two sections of an introductory forensic science course taught during the fall 2005 semester. Of the 89 students, 84 were criminal justice majors with minimal science background and five were chemistry majors with academic backgrounds in the natural and physical sciences. All 89 students completed a biographical data sheet and a pre-instruction Likert scale survey consisting of twenty questions relating to the nature of scientific evidence. An evaluation of these two documents resulted in a purposeful selection of four varied student participants, each of whom was interviewed three times throughout the semester about the nature of science, the nature of evidence, and the nature of forensic evidence. The same survey was administered to the participants again at the end of the semester-long course. This study examined students' assumptions, prior knowledge, their understanding of scientific inference, scientific theory, and methodology. Examination of the data found few differences with regard to how the criminal justice majors and the chemistry majors responded to interview questions about forensic evidence. There were qualitative differences, however, when the same participants answered interview questions relating to traditional scientific evidence. Furthermore, suggestions are

  9. Children's understanding of area concepts: development, curriculum and educational achievement.

    Science.gov (United States)

    Bond, Trevor G; Parkinson, Kellie

    2010-01-01

    As one part of a series of studies undertaken to investigate the contribution of developmental attributes of learners to school learning, a representative sample of forty-two students (age from 5 years and 3 months to 13 years and 1 month) was randomly selected from a total student population of 142 students at a small private primary school in northern Australia. Those children's understandings of area concepts taught during the primary school years were assessed by their performance in two testing situations. The first consisted of a written classroom test of ability to solve area problems with items drawn directly from school texts, school examinations and other relevant curriculum documents. The second, which focused more directly on each child's cognitive development, was an individual interview for each child in which four "area" tasks such as the Meadows and Farmhouse Experiment taken from Chapter 11 of The Child's Conception of Geometry (Piaget, Inhelder and Szeminska, 1960, pp. 261-301) were administered. Analysis using the Rasch Partial Credit Model provided a finely detailed quantitative description of the developmental and learning progressions revealed in the data. It is evident that the school mathematics curriculum does not satisfactorily match the learner's developmental sequence at some key points. Moreover, the children's ability to conserve area on the Piagetian tasks, rather than other learner characteristics, such as age and school grade seems to be a precursor for complete success on the mathematical test of area. The discussion focuses on the assessment of developmental (and other) characteristics of school-aged learners and suggests how curriculum and school organization might better capitalize on such information in the design and sequencing of learning experiences for school children. Some features unique to the Rasch family of measurement models are held to have special significance in elucidating the development/attainment nexus.

  10. Understanding and Applying the Concept of Value Creation in Radiology.

    Science.gov (United States)

    Larson, David B; Durand, Daniel J; Siegal, Daniel S

    2017-04-01

    The concept of value in radiology has been strongly advocated in recent years as a means of advancing patient care and decreasing waste. This article explores the concept of value creation in radiology and offers a framework for how radiology practices can create value according to the needs of their referring clinicians. Value only exists in the eyes of a customer. We propose that the primary purpose of diagnostic radiology is to answer clinical questions using medical imaging to help guide management of patient care. Because they are the direct recipient of this service, we propose that referring clinicians are the direct customers of a radiology practice and patients are indirect customers. Radiology practices create value as they understand and fulfill their referring clinicians' needs. To narrow those needs to actionable categories, we propose a framework consisting of four major dimensions: (1) how quickly the clinical question needs to be answered, (2) the degree of specialization required to answer the question, (3) how often the referring clinician uses imaging, and (4) the breadth of imaging that the referring clinician uses. We further identify three major settings in which referring clinicians utilize radiological services: (1) emergent or urgent care, (2) primary care, and (3) specialty care. Practices best meet these needs as they engage with their referring clinicians, create a shared vision, work together as a cohesive team, structure the organization to meet referring clinicians' needs, build the tools, and continually improve in ways that help referring clinicians care for patients. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  11. Examining student conceptions of the nature of science from two project-based classrooms

    Science.gov (United States)

    Moss, David M.

    The purpose of this research was to develop descriptive accounts of precollege students' conceptions of the nature of science from two project-based classrooms, and track those conceptions over the course of an academic year. A model of the nature of science was developed and served as the criterion by which students' beliefs were evaluated. The model distinguishes between two major categories of science, the nature of the scientific enterprise and the nature of scientific knowledge. Five students were selected from each class and interviewed individually for 30-45 minutes each, six times over the year. Data from semi-structured, formal interviewing consisted of audio-recorded interviews which were transcribed verbatim. All passages were coded using codes which corresponded to the premises of the model of the nature of science. Passages in the transcripts were interpreted to develop a summary of the students' conceptions over the year. Qualitative methodologies, especially formal interviewing in conjunction with participant observation, were effective for uncovering students' conceptions of the nature of science, adding to the knowledge base in this field. The research design of the current study was a significant factor in explaining the inconsistencies seen between findings from this study and the literature. This study finds that participants at both classroom sites held fully formed conceptions of the nature of science for approximately 40 percent of the premises across the model. For two-thirds of the elements which comprise the premises, participants held full understandings. Participants held more complete understandings of the nature of scientific knowledge than the nature of the scientific enterprise. Most participants had difficulty distinguishing between science and non-science and held poor understandings of the role of questions in science. Students' beliefs generally remained unchanged over the year. When their conceptions did evolve, project

  12. Quantum philosophy understanding and interpreting contemporary science

    CERN Document Server

    Omnès, Roland

    2002-01-01

    In this magisterial work, Roland Omnès takes us from the academies of ancient Greece to the laboratories of modern science as he seeks to do no less than rebuild the foundations of the philosophy of knowledge. One of the world's leading quantum physicists, Omnès reviews the history and recent development of mathematics, logic, and the physical sciences to show that current work in quantum theory offers new answers to questions that have puzzled philosophers for centuries: Is the world ultimately intelligible? Are all events caused? Do objects have definitive locations? Omnès addresses these p

  13. How Contextualized Learning Settings Enhance Meaningful Nature of Science Understanding

    Science.gov (United States)

    Bilican, K.; Cakiroglu, J.; Oztekin, C.

    2015-01-01

    Exploring different contexts to facilitate in-depth nature of science (NOS) views were seen as critical for better professional development of pre-service science teachers, which ultimately would assure better students' NOS understanding and achieve an ultimate goal of current science education reforms. This study aimed to reduce the lack of…

  14. New infrastructures for knowledge production understanding e-science

    CERN Document Server

    Hine, Christine

    2006-01-01

    New Infrastructures for Knowledge Production: Understanding E-Science offers a distinctive understanding of new infrastructures for knowledge production based in science and technology studies. This field offers a unique potential to assess systematically the prospects for new modes of science enabled by information and communication technologies. The authors use varied methodological approaches, reviewing the origins of initiatives to develop e-science infrastructures, exploring the diversity of the various solutions and the scientific cultures which use them, and assessing the prospects for wholesale change in scientific structures and practices. New Infrastructures for Knowledge Production: Understanding E-Science contains practical advice for the design of appropriate technological solutions, and long range assessments of the prospects for change useful both to policy makers and those implementing institutional infrastructures. Readers interested in understanding contemporary science will gain a rich pict...

  15. Microbiome Data Science: Understanding Our Microbial Planet.

    Science.gov (United States)

    Kyrpides, Nikos C; Eloe-Fadrosh, Emiley A; Ivanova, Natalia N

    2016-06-01

    Microbiology is experiencing a revolution brought on by recent developments in sequencing technology. The unprecedented volume of microbiome data being generated poses significant challenges that are currently hindering progress in the field. Here, we outline the major bottlenecks and propose a vision to advance microbiome research as a data-driven science. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Grade Level Differences in High School Students' Conceptions of and Motives for Learning Science

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung

    2017-08-01

    Students' conceptions of learning science and their relations with motive for learning may vary as the education level increases. This study aimed to compare the quantitative patterns in students' conceptions of learning science (COLS) and motives for learning science (MLS) across grade levels by adopting two survey instruments. A total of 768 high school students were surveyed in Taiwan, including 204 eighth graders, 262 tenth graders, and 302 12th graders. In the current research, memorizing, testing, and calculating and practicing were categorized as reproductive conceptions of learning science, while increase of knowledge, applying, understanding and seeing-in-a-new-way were regarded as constructivist conceptions. The results of multivariate analyses of variance (MANOVA) revealed that conceptions of learning science are more constructivist as education level increases. Both tenth graders and 12th graders endorsed understanding, seeing-in-a-new-way, and the constructivist COLS composite more strongly than the eighth graders did. In addition, the results of multigroup structural equation modeling (SEM) analysis indicated that the positive relations between testing and reproductive COLS were stronger as the grade level increased, while the negative relations between reproductive COLS and deep motive were tighter with the increase in grade level.

  17. Analysing dutch Science cafés to better understand the science-society relationship

    NARCIS (Netherlands)

    Dijkstra, Anne M.

    2017-01-01

    Science cafés offer a place for information and discussion for all who are interested in science and its broader implications for society. In this paper, science cafés are explored as a means of informal science dialogue in order to gain more understanding of the science-society relationship.

  18. Systems in Science: Modeling Using Three Artificial Intelligence Concepts.

    Science.gov (United States)

    Sunal, Cynthia Szymanski; Karr, Charles L.; Smith, Coralee; Sunal, Dennis W.

    2003-01-01

    Describes an interdisciplinary course focusing on modeling scientific systems. Investigates elementary education majors' applications of three artificial intelligence concepts used in modeling scientific systems before and after the course. Reveals a great increase in understanding of concepts presented but inconsistent application. (Author/KHR)

  19. Results and Implications of a 12-Year Longitudinal Study of Science Concept Learning

    Science.gov (United States)

    Novak, Joseph D.

    2005-03-01

    This paper describes the methods and outcomes of a 12-year longitudinal study into the effects of an early intervention program, while reflecting back on changes that have occurred in approaches to research, learning and instruction since the preliminary inception stages of the study in the mid 1960s. We began the study to challenge the prevailing consensus at the time that primary school children were either preoperational or concrete operational in their cognitive development and they could not learn abstract concepts. Our early research, based on Ausubelian theory, suggested otherwise. The paper describes the development and implementation of a Grade 1-2 audio tutorial science instructional sequence, and the subsequent tracing over 12 years, of the children's conceptual understandings in science compared to a matched control group. During the study the concept map was developed as a new tool to trace children's conceptual development. We found that students in the instruction group far outperformed their non-instructed counterparts, and this difference increased as they progressed through middle and high school. The data clearly support the earlier introduction of science instruction on basic science concepts, such as the particulate nature of matter, energy and energy transformations. The data suggest that national curriculum standards for science grossly underestimate the learning capabilities of primary-grade children. The study has helped to lay a foundation for guided instruction using computers and concept mapping that may help both teachers and students become more proficient in understanding science.

  20. Students' Conceptions of the Nature of Science: Perspectives from Canadian and Korean Middle School Students

    Science.gov (United States)

    Park, Hyeran; Nielsen, Wendy; Woodruff, Earl

    2014-01-01

    This study examined and compared students' understanding of nature of science (NOS) with 521 Grade 8 Canadian and Korean students using a mixed methods approach. The concepts of NOS were measured using a survey that had both quantitative and qualitative elements. Descriptive statistics and one-way multivariate analysis of variances examined the…

  1. Social Situation of Development: Parents Perspectives on Infants-Toddlers' Concept Formation in Science

    Science.gov (United States)

    Sikder, Shukla

    2015-01-01

    The social situation of development (SSD) specific to each age determines regularly the whole picture of the child's life. Therefore, we need to learn about the whole context surrounding children relevant to their development. The focus of the study is to understand parent's views on infant-toddler's science concept formation in the family…

  2. An Empirical Study of Relationships between Student Self-Concept and Science Achievement in Hong Kong

    Science.gov (United States)

    Wang, Jianjun; Oliver, Steve; Garcia, Augustine

    2004-01-01

    Positive self-concept and good understanding of science are important indicators of scientific literacy endorsed by professional organizations. The existing research literature suggests that these two indicators are reciprocally related and mutually reinforcing. Generalization of the reciprocal model demands empirical studies in different…

  3. Addressing Pre-Service Teachers' Understandings and Difficulties with Some Core Concepts in the Special Theory of Relativity

    Science.gov (United States)

    Selcuk, Gamze Sezgin

    2011-01-01

    The aim of this study is to investigate pre-service teachers' understanding of and difficulties with some core concepts in the special theory of relativity. The pre-service teachers (n = 185) from the Departments of Physics Education and Elementary Science Education at Dokuz Eylul University (in Turkey) participated. Both quantitative and…

  4. Science teachers understanding of inquiry-based science teaching ...

    African Journals Online (AJOL)

    owner

    This paper aims at finding out Rwandan lower secondary school science teachers' ... enterprise, which in the context of the present study has a focus on inquiry. .... methods was adopted and both quantitative and qualitative data collected.

  5. Advancing Future Network Science through Content Understanding

    Science.gov (United States)

    2014-05-01

    BitTorrent, PostgreSQL, MySQL , and GRSecurity) and emerging technologies (HadoopDFS, Tokutera, Sector/Sphere, HBase, and other BigTable-like...result. • Multi-Source Network Pulse Analyzer and Correlator provides course of action planning by enhancing the understanding of the complex dynamics

  6. Computing as Empirical Science – Evolution of a Concept

    Directory of Open Access Journals (Sweden)

    Polak Paweł

    2016-12-01

    Full Text Available This article presents the evolution of philosophical and methodological considerations concerning empiricism in computer/computing science. In this study, we trace the most important current events in the history of reflection on computing. The forerunners of Artificial Intelligence H.A. Simon and A. Newell in their paper Computer Science As Empirical Inquiry (1975 started these considerations. Later the concept of empirical computer science was developed by S.S. Shapiro, P. Wegner, A.H. Eden and P.J. Denning. They showed various empirical aspects of computing. This led to a view of the science of computing (or science of information processing - the science of general scope. Some interesting contemporary ways towards a generalized perspective on computations were also shown (e.g. natural computing.

  7. Instructional games: Scientific language use, concept understanding, and attitudinal development of middle school learners

    Science.gov (United States)

    Mongillo, Geraldine

    The purpose of this qualitative study was to discover the influence of instructional games on middle school learners' use of scientific language, concept understanding, and attitude toward learning science. The rationale for this study stemmed from the lack of research concerning the value of play as an instructional strategy for older learners. Specifically, the study focused on the ways in which 6 average ability 7th grade students demonstrated scientific language and concept use during gameplay. The data were collected for this 6-week study in a southern New Jersey suburban middle school and included audio recordings of the 5 games observed in class, written documents (e.g., student created game questions, self-evaluation forms, pre- and post-assessments, and the final quiz) interviews, and researcher field notes. Data were coded and interpreted borrowing from the framework for scientific literacy developed by Bybee (1997). Based on the findings, the framework was modified to reflect the level of scientific understanding demonstrated by the participants and categorized as: Unacquainted, Nominal, Functional, and Conceptual. Major findings suggested that the participants predominantly achieved the Functional level of scientific literacy (i.e., the ability to adequately and appropriately use scientific language in both written and oral discourse) during games. Further, it was discovered that the participants achieved the Conceptual level of scientific literacy during gameplay. Through games participants were afforded the opportunity to use common, everyday language to explore concepts, promoted through peer collaboration. In games the participants used common language to build understandings that exceeded Nominal or token use of the technical vocabulary and concepts. Additionally, the participants reported through interviews and self-evaluation forms that their attitude (patterns included: Motivation, Interest, Fun, Relief from Boredom, and an Alternate Learning

  8. State of the science of maternal-infant bonding: a principle-based concept analysis.

    Science.gov (United States)

    Bicking Kinsey, Cara; Hupcey, Judith E

    2013-12-01

    to provide a principle-based analysis of the concept of maternal-infant bonding. principle-based method of concept analysis for which the data set included 44 articles published in the last decade from Pubmed, CINAHL, and PyschINFO/PsychARTICLES. literature inclusion criteria were English language, articles published in the last decade, peer-reviewed journal articles and commentary on published work, and human populations. after a brief review of the history of maternal-infant bonding, a principle-based concept analysis was completed to examine the state of the science with regard to this concept. The concept was critically examined according to the clarity of definition (epistemological principle), applicability of the concept (pragmatic principle), consistency in use and meaning (linguistic principle), and differentiation of the concept from related concepts (logical principle). Analysis of the concept revealed: (1) Maternal-infant bonding describes maternal feelings and emotions towards her infant. Evidence that the concept encompasses behavioural or biological components was limited. (2) The concept is clearly operationalised in the affective domain. (3) Maternal-infant bonding is linguistically confused with attachment, although the boundaries between the concepts are clearly delineated. despite widespread use of the concept, maternal-infant bonding is at times superficially developed and subject to confusion with related concepts. Concept clarification is warranted. A theoretical definition of the concept of maternal-infant bonding was developed to aid in the clarification, but more research is necessary to further clarify and advance the concept. nurse midwives and other practitioners should use the theoretical definition of maternal-infant bonding as a preliminary guide to identification and understanding of the concept in clinical practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Understanding students' concepts through guided inquiry learning and free modified inquiry on static fluid material

    OpenAIRE

    Sularso Sularso; Widha Sunarno; Sarwanto Sarwanto

    2017-01-01

    This study provides information on understanding students' concepts in guided inquiry learning groups and in free modified inquiry learning groups. Understanding of student concept is reviewed on the concept of static fluid case. The number of samples tested were 67 students. The sample is divided into 2 groups of students: the group is given guided inquiry learning and the group given the modified free inquiry learning. Understanding the concept of students is measured through 23 tests of it...

  10. Prospective Mathematics Teachers' Understanding of the Base Concept

    Science.gov (United States)

    Horzum, Tugba; Ertekin, Erhan

    2018-01-01

    The purpose of this study is to analyze what kind of conceptions prospective mathematics teachers (PMTs) have about the base concept (BC). One-hundred and thirty-nine PMTs participated in the study. In this qualitative research, data were obtained through open-ended questions, the semi-structured interviews and pictures of geometric figures drawn…

  11. A Chinese young adult non-scientist's epistemologies and her understandings of the concept of speed

    Science.gov (United States)

    Cao, Ying; Brizuela, Barbara M.

    2015-08-01

    Past research has investigated students' epistemologies while they were taking courses that required an integrated understanding of mathematical and scientific concepts. However, past studies have not investigated students who are not currently enrolled in such classes. Additionally, past studies have primarily focused on individuals who are native English speakers from Western cultures. In this paper, we aim to investigate whether Hammer and his colleagues' claims concerning learners' epistemologies could be extended to individuals who lack advanced mathematics and science training, have had different cultural and learning experiences, and have grown up speaking and learning in another language. To this end, we interviewed a participant with these characteristics about her understandings of the concept of speed. Our findings show that previous theoretical frameworks can be used to explain the epistemologies of the individual examined in this study. The case suggests that these theories may be relevant regardless of the learner's mathematics and science background, language, educational experience, and cultural background. In the future, more cases should be examined with learners from different academic backgrounds and cultures to further support this finding.

  12. Science teacher’s idea about environmental concepts in science learning as the first step of science teacher training

    Science.gov (United States)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2018-05-01

    To refresh natural environmental concepts in science, science teacher have to attend a teacher training. In teacher training, all participant can have a good sharing and discussion with other science teacher. This study is the first step of science teacher training program held by education foundation in Bandung and attended by 20 science teacher from 18 Junior High School. The major aim of this study is gathering science teacher’s idea of environmental concepts. The core of questions used in this study are basic competencies linked with environmental concepts, environmental concepts that difficult to explain, the action to overcome difficulties and references in teaching environmental concepts. There are four major findings in this study. First finding, most environmental concepts are taught in 7th grade. Second finding, most difficult environmental concepts are found in 7th grade. Third finding, there are five actions to overcome difficulties. Fourth finding, science teacher use at least four references in mastering environmental concepts. After all, teacher training can be a solution to reduce difficulties in teaching environmental concepts.

  13. Scientists' conceptions of scientific inquiry: Revealing a private side of science

    Science.gov (United States)

    Reiff, Rebecca R.

    Science educators, philosophers, and pre-service teachers have contributed to conceptualizing inquiry but missing from the inquiry forum is an in-depth research study concerning science faculty conceptions of scientific inquiry. The science education literature has tended to focus on certain aspects of doing, teaching, and understanding scientific inquiry without linking these concepts. As a result, conceptions of scientific inquiry have been disjointed and are seemingly unrelated. Furthermore, confusion surrounding the meaning of inquiry has been identified as a reason teachers are not using inquiry in instruction (Welch et al., 1981). Part of the confusion surrounding scientific inquiry is it has been defined differently depending on the context (Colburn, 2000; Lederman, 1998; Shymansky & Yore, 1980; Wilson & Koran, 1976). This lack of a common conception of scientific inquiry is the reason for the timely nature of this research. The result of scientific journeys is not to arrive at a stopping point or the final destination, but to refuel with questions to drive the pursuit of knowledge. A three-member research team conducted Interviews with science faculty members using a semi-structured interview protocol designed to probe the subject's conceptions of scientific inquiry. The participants represented a total of 52 science faculty members from nine science departments (anthropology, biology, chemistry, geology, geography, school of health, physical education and recreation (HPER), medical sciences, physics, and school of environmental science) at a large mid-western research university. The method of analysis used by the team was grounded theory (Strauss & Corbin, 1990; Glaser & Strauss, 1967), in which case the frequency of concepts, patterns, and themes were coded to categorize scientists' conceptions of scientific inquiry. The results from this study address the following components: understanding and doing scientific inquiry, attributes of scientists engaged

  14. The effects of three concept mapping strategies on seventh-grade students' science achievement at an urban middle school

    Science.gov (United States)

    Dosanjh, Navdeep Kaur

    2011-12-01

    There is great concern over students' poor science achievement in the United States. Due to the lack of science achievement, students are not pursing science related careers resulting in an increase in outsourcing to other countries. Learning strategies such as concept mapping may ameliorate this situation by providing students with tools that encourage meaningful learning. The purpose of this quasi-experimental study was to measure the effects of three concept mapping learning strategies (concept identifying, proposition identifying, student generated) on urban middle school students' understanding of the circulatory system. Three intact classes of seventh-grade students were assigned to one of the three concept mapping strategies. The students were given a pretest on the circulatory system then learned and used their respective concept mapping strategies while learning about the circulatory system. At the conclusion of the study, students' science achievement was measured by performance on an achievement test and rubric scores of their respective concept identifying, proposition identifying, and student generated concept maps. The results of the study suggest that all three of the concept mapping strategies are effective in increasing students' science achievement. Additionally, the moderate significant correlations between the posttest and concept map scores of the current study established that concept maps are a useful measure of student knowledge. Lastly, the results of the current study also suggest that the concept identifying mapping strategy may be a useful scaffold in instructing students how to develop student generated concept maps.

  15. Learning of science concepts within a traditional socio-cultural ...

    African Journals Online (AJOL)

    The learning of science concepts within a traditional socio-cultural environment were investigated by looking at: 1) the nature of \\"cognitive border crossing\\" exhibited by the students from the traditional to the scientific worldview, and 2) whether or not three learning theories / hypotheses: border crossing, collaterality, and ...

  16. Students' Self-Concept and Their Achievement in Basic Science ...

    African Journals Online (AJOL)

    The study investigated the relationship between students self-concept andtheir academic performance in Basic Science. It further examines genderdifference in students performance. The study adopted ex-post factorresearch design and made use of 300 students all from Public Schools. Theadapted Version of ...

  17. The Role of Science and Discovery Centres in the Public Understanding of Science

    Science.gov (United States)

    Short, Daniel B.; Weis, Nicole

    2013-01-01

    The number of science and discovery centres has grown exponentially over the last two centuries. Science and discovery centres are one of the top five stimuli that influence a career choice in science. Their history, growth, impact and role in the public understanding of science are discussed. (Contains 2 tables, 7 figures, and 21 online…

  18. The home concept in poetic texts: new ways of understanding

    Directory of Open Access Journals (Sweden)

    С А Радзиевская

    2010-03-01

    Full Text Available The article focuses on the analysis of the HOME concept in American poetic texts and on the description of the model of its content. Linguocognitive mechanisms of the formation of the images of home are revealed.

  19. What conceptions of science communication are espoused by science research funding bodies?

    Science.gov (United States)

    Palmer, Sarah E; Schibeci, Renato A

    2014-07-01

    We examine the conceptions of science communication, especially in relation to "public engagement with science" (PES), evident in the literature and websites of science research funding bodies in Europe, North America, South America, Asia and Oceania, and Africa. The analysis uses a fourfold classification of science communication to situate these conceptions: professional, deficit, consultative and deliberative. We find that all bodies engage in professional communication (within the research community); however, engagement with the broader community is variable. Deficit (information dissemination) models still prevail but there is evidence of movement towards more deliberative, participatory models.

  20. Secondary School Students' Understanding of Science and Their Socioscientific Reasoning

    Science.gov (United States)

    Karahan, Engin; Roehrig, Gillian

    2017-01-01

    Research in socioscientific issue (SSI)-based interventions is relatively new (Sadler in "Journal of Research in Science Teaching" 41:513-536, 2004; Zeidler et al. in "Journal of Research in Science Teaching" 46:74-101, 2009), and there is a need for understanding more about the effects of SSI-based learning environments…

  1. Supporting Staff to Develop a Shared Understanding of Science Assessment

    Science.gov (United States)

    Sampey, Carol

    2018-01-01

    Assessment is not something that stands alone and teachers need support to develop their understanding of both assessment practices and the subject being assessed. Teachers at Shaw Primary School were fortunate to take part in the Teacher Assessment in Primary Science (TAPS) project and, in this article, the outlines how science and assessment can…

  2. Thinking about television science: How students understand the nature of science from different program genres

    Science.gov (United States)

    Dhingra, Koshi

    2003-02-01

    Student views on the nature of science are shaped by a variety of out-of-school forces and television-mediated science is a significant force. To attempt to achieve a science for all, we need to recognize and understand the diverse messages about science that students access and think about on a regular basis. In this work I examine how high school students think about science that is mediated by four different program genres on television: documentary, magazine-format programming, network news, and dramatic or fictional programming. The following categories of findings are discussed: the ethics and validity of science, final form science, science as portrayed by its practitioners, and school science and television science. Student perceptions of the nature of science depicted on the program sample used in this study ranged from seeing science as comprising tentative knowledge claims to seeing science as a fixed body of facts.

  3. The concept verification testing of materials science payloads

    Science.gov (United States)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  4. Peeling the Onion: Student Teacher's Conceptions of Literary Understanding.

    Science.gov (United States)

    Carlsson, Maj Asplund; Fulop, Marta; Marton, Ference

    2001-01-01

    Studied the theories student teachers held about literary understanding through interviews with 25 Hungarian and 8 Swedish student teachers. Categories of theories captured a substantial portion of the variation in how literary understanding can be seen. Three central aspects of human understanding, variation, discernment, and simultaneity, could…

  5. A study of understanding: Alchemy, abstraction, and circulating reference in tertiary science education

    Science.gov (United States)

    Merritt, Brett W.

    Understanding is widely touted to be of paramount importance for education. This is especially true in science education research and development where understanding is heralded as one of the cornerstones of reform. Teachers are expected to teach for understanding and students are expected to learn with understanding. This dissertation is an empirical study of the concept of understanding. After analyzing various constructions of understanding in current U.S. education literature, I suggest that understanding is defined by five distinct features---they are knowledge (or knowledge base), coherence, transfer, extrapolation, and cognition--- and that these features are heavily informed and shaped by the psychological sciences. This relationship is neither good nor bad, I argue, but it means that teaching for and learning with understanding are not heavily informed and shaped by, for example, the natural sciences. Drawing from historical, philosophical, and anthropological perspectives of science, but especially from the work of Bruno Latour, I enact a radical revision(ing) of psychological notions such as "abstraction" and "transfer." The two main purposes of this re-visioning are (1) to draw critical attention to particular characteristics of a cognitive learning theory that emphasizes abstract concepts, and (2) to align many of the principles and tools used in science education more closely with those used in empirical scientific research. Finally, by bringing some examples of teaching and learning from an undergraduate biology classroom into conversation with both psychological and empirical practices and perspectives, I suggest that problematizing the current construction of understanding creates much needed room in mainstream science education for more empirical forms of learning and styles of teaching. A shift to such forms and styles, I conclude, should prove to be more inclusive and less constraining for both students and teachers.

  6. [Towards understanding human ecology in nursing practice: a concept analysis].

    Science.gov (United States)

    Huynh, Truc; Alderson, Marie

    2010-06-01

    Human ecology is an umbrella concept encompassing several social, physical, and cultural elements existing in the individual's external environment. The pragmatic utility method was used to analyze the "human ecology" concept in order to ascertain the conceptual fit with nursing epistemology and to promote its use by nurses in clinical practice. Relevant articles for the review were retrieved from the MEDLINE, CINAHL, PsycINFO, and CSA databases using the terms "human ecology," "environment," "nursing," and "ecology." Data analysis revealed that human ecology is perceived as a theoretical perspective designating a complex, multilayered, and multidimensional system, one that comprises individuals and their reciprocal interactions with their global environments and the subsequent impact of these interactions upon their health. Human ecology preconditions include the individuals, their environments, and their transactions. Attributes of this concept encompass the characteristics of an open system (e.g., interdependence, reciprocal).

  7. Teaching 5th grade science for aesthetic understanding

    Science.gov (United States)

    Girod, Mark A.

    Many scientists speak with great zeal about the role of aesthetics and beauty in their science and inquiry. Few systematic efforts have been made to teach science in ways that appeal directly to aesthetics and this research is designed to do just that. Drawing from the aesthetic theory of Dewey, I describe an analytic lens called learning for aesthetic understanding that finds power in the degree to which our perceptions of the world are transformed, our interests and enthusiasm piqued, and our actions changed as we seek further experiences in the world. This learning theory is contrasted against two other current and popular theories of science learning, that of learning for conceptual understanding via conceptual change theory and learning for a language-oriented or discourse-based understanding. After a lengthy articulation of the pedagogical strategies used to teach for aesthetic understanding the research is described in which comparisons are drawn between students in two 5th grade classrooms---one taught for the goal of conceptual understanding and the other taught for the goal of aesthetic understanding. Results of this comparison show that more students in the treatment classroom had aesthetic experiences with science ideas and came to an aesthetic understanding when studying weather, erosion, and structure of matter than students in the control group. Also statistically significant effects are shown on measures of interest, affect, and efficacy for students in the treatment class. On measures of conceptual understanding it appears that treatment class students learned more and forgot less over time than control class students. The effect of the treatment does not generally depend on gender, ethnicity, or prior achievement except in students' identity beliefs about themselves as science learners. In this case, a significant interaction for treatment class females on science identity beliefs did occur. A discussion of these results as well as elaboration and

  8. Understanding context in knowledge translation: a concept analysis study protocol.

    Science.gov (United States)

    Squires, Janet E; Graham, Ian D; Hutchinson, Alison M; Linklater, Stefanie; Brehaut, Jamie C; Curran, Janet; Ivers, Noah; Lavis, John N; Michie, Susan; Sales, Anne E; Fiander, Michelle; Fenton, Shannon; Noseworthy, Thomas; Vine, Jocelyn; Grimshaw, Jeremy M

    2015-05-01

    To conduct a concept analysis of clinical practice contexts (work environments) that facilitate or militate against the uptake of research evidence by healthcare professionals in clinical practice. This will involve developing a clear definition of context by describing its features, domains and defining characteristics. The context where clinical care is delivered influences that care. While research shows that context is important to knowledge translation (implementation), we lack conceptual clarity on what is context, which contextual factors probably modify the effect of knowledge translation interventions (and hence should be considered when designing interventions) and which contextual factors themselves could be targeted as part of a knowledge translation intervention (context modification). Concept analysis. The Walker and Avant concept analysis method, comprised of eight systematic steps, will be used: (1) concept selection; (2) determination of aims; (3) identification of uses of context; (4) determination of defining attributes of context; (5) identification/construction of a model case of context; (6) identification/construction of additional cases of context; (7) identification/construction of antecedents and consequences of context; and (8) definition of empirical referents of context. This study is funded by the Canadian Institutes of Health Research (January 2014). This study will result in a much needed framework of context for knowledge translation, which identifies specific elements that, if assessed and used to tailor knowledge translation activities, will result in increased research use by nurses and other healthcare professionals in clinical practice, ultimately leading to better patient care. © 2014 John Wiley & Sons Ltd.

  9. Secondary School Students' Understanding of Science and Their Socioscientific Reasoning

    Science.gov (United States)

    Karahan, Engin; Roehrig, Gillian

    2017-08-01

    Research in socioscientific issue (SSI)-based interventions is relatively new (Sadler in Journal of Research in Science Teaching 41:513-536, 2004; Zeidler et al. in Journal of Research in Science Teaching 46:74-101, 2009), and there is a need for understanding more about the effects of SSI-based learning environments (Sadler in Journal of Research in Science Teaching 41:513-536, 2004). Lee and Witz (International Journal of Science Education 31:931-960, 2009) highlighted the need for detailed case studies that would focus on how students respond to teachers' practices of teaching SSI. This study presents case studies that investigated the development of secondary school students' science understanding and their socioscientific reasoning within SSI-based learning environments. A multiple case study with embedded units of analysis was implemented for this research because of the contextual differences for each case. The findings of the study revealed that students' understanding of science, including scientific method, social and cultural influences on science, and scientific bias, was strongly influenced by their experiences in SSI-based learning environments. Furthermore, multidimensional SSI-based science classes resulted in students having multiple reasoning modes, such as ethical and economic reasoning, compared to data-driven SSI-based science classes. In addition to portraying how participants presented complexity, perspectives, inquiry, and skepticism as aspects of socioscientific reasoning (Sadler et al. in Research in Science Education 37:371-391, 2007), this study proposes the inclusion of three additional aspects for the socioscientific reasoning theoretical construct: (1) identification of social domains affecting the SSI, (2) using cost and benefit analysis for evaluation of claims, and (3) understanding that SSIs and scientific studies around them are context-bound.

  10. Conceptual Blending Monitoring Students' Use of Metaphorical Concepts to Further the Learning of Science

    Science.gov (United States)

    Fredriksson, Alexandra; Pelger, Susanne

    2018-03-01

    The aim of this study is to explore how tertiary science students' use of metaphors in their popular science article writing may influence their understanding of subject matter. For this purpose, six popular articles written by students in physics or geology were analysed by means of a close textual analysis and a metaphor analysis. In addition, semi-structured interviews were conducted with the students. The articles showed variation regarding the occurrence of active (non-conventional) metaphors, and metaphorical concepts, i.e. metaphors relating to a common theme. In addition, the interviews indicated that students using active metaphors and metaphorical concepts reflected more actively upon their use of metaphors. These students also discussed the possible relationship between subject understanding and creation of metaphors in terms of conceptual blending. The study suggests that students' process of creating metaphorical concepts could be described and visualised through integrated networks of conceptual blending. Altogether, the study argues for using conceptual blending as a tool for monitoring and encouraging the use of adequate metaphorical concepts, thereby facilitating students' opportunities of understanding and influencing the learning of science.

  11. Chronotope Disruption as a Sensitizing Concept for Understanding Chronic Illness Narratives

    Science.gov (United States)

    2014-01-01

    Objectives: This article aims to elaborate chronotope disruption —a changed relation to time and space— as a sensitizing concept for understanding chronic illness narratives. Methods: Sixteen men and 16 women with Type 2 diabetes were purposefully sampled. Each was interviewed about his or her experience of diabetes self-management using the biographical-narrative interview method. Transcripts were inspected for key moments defined as emotionally laden stories relevant to the purpose of the research. We present dialogically inflected discursive analysis of exemplar extracts. Results: The analysis demonstrates how the concept of chronotope disruption helps identify, and understand, important aspects of patients’ chronic illness narratives. First, we investigate how medical advice can conflict with embodied experience and how progressive bodily deterioration can provoke a reevaluation of past illness (self-mis)management. Second, the increasing temporal and spatial intrusion of chronic illness into participants’ lives is examined. Finally, we focus on the masquerade of health as an attempt to manage, hide, or deny that one is physically challenged. Conclusions: Chronotope disruption offers a useful sensitizing concept for approaching chronic illness narratives and around which to organize analytical insights and to develop practice. Chronotope analysis fills an important gap in the science through compensating current health sciences’ focus on rationality, cognition, and prospective time (prediction) with a patient-oriented focus on emotionality, embodiment, and retrospective time (nostalgia). Chronotope disruption could be used to develop practice by gaining empathic understanding of patients’ life-worlds and provides a tool to examine how new technologies change the way in which the chronically ill have “being” in the world. PMID:25197985

  12. Preservice Science Teachers’ Levels of Associating The Concept of Gas Pressure with Everyday Life

    Directory of Open Access Journals (Sweden)

    Aybüke Pabuçcu

    2016-10-01

    Full Text Available Through this research, it was aimed to investigate how pre-service science teachers’ use their knowledge about the concept of gas pressure in explaining some examples from everyday life. The research was carried out with 33 freshmen pre-service science teachers. The data in the research were collected through five formative assessment probes. The students were asked to work in small groups to complete the questions. Groups’ discussions were recorded. Groups’ written responses were classified in five different categories: sound understanding, partial understanding, specific misconception, no understanding, and no response. Data under these categories were given as percentages in a table. The sum of students’ responses in sound understanding and partial understanding are in the range of 37.5% and 62.5%. Results revealed that students had difficulty in understanding the gases concepts and associating these concepts with everyday life events. Moreover, many misconceptions and misuse of the ideal gas equation were determined in the students’ explanations.

  13. The Open Business Model: Understanding an Emerging Concept

    OpenAIRE

    Weiblen Tobias

    2014-01-01

    Along with the emergence of phenomena such as value co-creation, firm networks, and open innovation, open business models have achieved growing attention in research. Scholars from different fields use the open business model, largely without providing a definition. This has led to an overall lack of clarity of the concept itself. Based on a comprehensive review of scholarly literature in the field, commonalities and differences in the perceived nature of the open business model are carved ou...

  14. Prospective mathematics teachers' understanding of the base concept

    Science.gov (United States)

    Horzum, Tuğba; Ertekin, Erhan

    2018-02-01

    The purpose of this study is to analyze what kind of conceptions prospective mathematics teachers(PMTs) have about the base concept(BC). One-hundred and thirty-nine PMTs participated in the study. In this qualitative research, data were obtained through open-ended questions, the semi-structured interviews and pictures of geometric figures drawn by PMTs. As a result, it was determined that PMTs dealt with the BC in a broad range of seven different images. It was also determined that the base perception of PMTs was limited mostly to their usage in daily life and in this context, they have position-dependent and word-dependent images. It was also determined that PMTs named the base to explain the BC or paid attention to the naming of three-dimensional geometric figures through the statement: 'objects are named according to their bases'. At the same time, it was also determined that PMTs had more than one concept imageswhich were contradicting with each other. According to these findings, potential explanations and advices were given.

  15. Introduction: From "The Popularization of Science through Film" to "The Public Understanding of Science".

    Science.gov (United States)

    Vidal, Fernando

    2018-03-01

    Science in film, and usual equivalents such as science on film or science on screen, refer to the cinematographic representation, staging, and enactment of actors, information, and processes involved in any aspect or dimension of science and its history. Of course, boundaries are blurry, and films shot as research tools or documentation also display science on screen. Nonetheless, they generally count as scientific film, and science in and on film or screen tend to designate productions whose purpose is entertainment and education. Moreover, these two purposes are often combined, and inherently concern empirical, methodological, and conceptual challenges associated with popularization, science communication, and the public understanding of science. It is in these areas that the notion of the deficit model emerged to designate a point of view and a mode of understanding, as well as a set of practical and theoretical problems about the relationship between science and the public.

  16. Science Communication for the Public Understanding of Nuclear Issues

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seongkyung [Myungji Univ., Yongin (Korea, Republic of)

    2006-04-15

    Uncertainty, stigma, risk perception, and value judgment represent characteristics of nuclear issues in the public arena. Nuclear issue, in the public arena, is a kind of risk rather than technology that we are willing to use for good purpose. There are uncertainty, stigma, risk perception, and value judgment as characteristics of nuclear. The notion of the public, here is of active, sensitive, and sensible citizens, with power and influence. The public understands nuclear issues less through direct experience or education than through the filter of mass media. Trust has been a key issue on public understanding of nuclear issues. Trust belongs to human. The public understanding process includes perception, interpretation, and evaluation. Therefore, science communication is needed for public understanding. Unfortunately, science communication is rarely performed well, nowadays, There are three important actors-the public, experts, and media. Effective science communication means finding comprehensible ways of presenting opaque and complex nuclear issues. It makes new and strong demands on experts. In order to meet that requirement, experts should fulfill their duty about developing nuclear technology for good purpose, understand the public before expecting the public to understand nuclear issues, accept the unique culture of the media process, take the responsibility for any consequence which nuclear technologies give rise to, communicate with an access route based on sensibility and rationality, have a flexible angle in the science communication process, get creative leadership for the communication process with deliberation and disagreement, make efficient use of various science technologies for science communication. We should try to proceed with patience, because science communication makes for a more credible society.

  17. Science Communication for the Public Understanding of Nuclear Issues

    International Nuclear Information System (INIS)

    Cho, Seongkyung

    2006-01-01

    Uncertainty, stigma, risk perception, and value judgment represent characteristics of nuclear issues in the public arena. Nuclear issue, in the public arena, is a kind of risk rather than technology that we are willing to use for good purpose. There are uncertainty, stigma, risk perception, and value judgment as characteristics of nuclear. The notion of the public, here is of active, sensitive, and sensible citizens, with power and influence. The public understands nuclear issues less through direct experience or education than through the filter of mass media. Trust has been a key issue on public understanding of nuclear issues. Trust belongs to human. The public understanding process includes perception, interpretation, and evaluation. Therefore, science communication is needed for public understanding. Unfortunately, science communication is rarely performed well, nowadays, There are three important actors-the public, experts, and media. Effective science communication means finding comprehensible ways of presenting opaque and complex nuclear issues. It makes new and strong demands on experts. In order to meet that requirement, experts should fulfill their duty about developing nuclear technology for good purpose, understand the public before expecting the public to understand nuclear issues, accept the unique culture of the media process, take the responsibility for any consequence which nuclear technologies give rise to, communicate with an access route based on sensibility and rationality, have a flexible angle in the science communication process, get creative leadership for the communication process with deliberation and disagreement, make efficient use of various science technologies for science communication. We should try to proceed with patience, because science communication makes for a more credible society

  18. History and Philosophy of Science as a Guide to Understanding Nature of Science

    Directory of Open Access Journals (Sweden)

    Mansoor Niaz

    2016-06-01

    Full Text Available Nature of science (NOS is considered to be a controversial topic by historians, philosophers of science and science educators. It is paradoxical that we all teach science and still have difficulties in understanding what science is and how it develops and progresses. A major obstacle in understanding NOS is that science is primarily ‘unnatural’, that is it cannot be learned by a simple observation of phenomena. In most parts of the world history and philosophy of science are ‘inside’ science content and as such can guide our understanding of NOS. However, some science educators consider the ‘historical turn’ as dated and hence neglect the historical approach and instead emphasize the model based naturalist view of science. The objective of this presentation is to show that the historical approach is very much a part of teaching science and actually complements naturalism. Understanding NOS generally requires two aspects of science: Domain general and domain specific. In the classroom this can be illustrated by discussing the atomic models developed in the early 20th century which constitute the domain specific aspect of NOS. This can then lead to an understanding of the tentative nature of science that is a domain general aspect of NOS. A review of the literature in science education reveals three views (among others of understanding NOS: a Consensus view: It attempts to include only those domain-general NOS aspects that are the least controversial (Lederman, Abd-El-Khalick; b Family resemblance view: Based on the ideas of Wittgenstein, this view promotes science as a cognitive system (Irzik, Nola; c Integrated view: this view postulates that both domain general and domain specific aspects of NOS are not dichotomous but rather need to be integrated and are essential if we want students to understandscience in the making’ (Niaz. The following framework helps to facilitate integration: i Elaboration of a theoretical framework

  19. The Effect of the Conceptual Change Oriented Instruction through Cooperative Learning on 4th Grade Students' Understanding of Earth and Sky Concepts

    Science.gov (United States)

    Celikten, Oksan; Ipekcioglu, Sevgi; Ertepinar, Hamide; Geban, Omer

    2012-01-01

    The purpose of this study was to compare the effectiveness of the conceptual change oriented instruction through cooperative learning (CCICL) and traditional science instruction (TI) on 4th grade students' understanding of earth and sky concepts and their attitudes toward earth and sky concepts. In this study, 56 fourth grade students from the…

  20. The Impact of Science Fiction Film on Student Understanding of Science

    Science.gov (United States)

    Barnett, Michael; Wagner, Heather; Gatling, Anne; Anderson, Janice; Houle, Meredith; Kafka, Alan

    2006-01-01

    Researchers who have investigated the public understanding of science have argued that fictional cinema and television has proven to be particularly effective at blurring the distinction between fact and fiction. The rationale for this study lies in the notion that to teach science effectively, educators need to understand how popular culture…

  1. The Affordable Care Act: a case study for understanding and applying complexity concepts to health care reform.

    Science.gov (United States)

    Larkin, D Justin; Swanson, R Chad; Fuller, Spencer; Cortese, Denis A

    2016-02-01

    The current health system in the United States is the result of a history of patchwork policy decisions and cultural assumptions that have led to persistent contradictions in practice, gaps in coverage, unsustainable costs, and inconsistent outcomes. In working toward a more efficient health system, understanding and applying complexity science concepts will allow for policy that better promotes desired outcomes and minimizes the effects of unintended consequences. This paper will consider three applied complexity science concepts in the context of the Patient Protection and Affordable Care Act (PPACA): developing a shared vision around reimbursement for value, creating an environment for emergence through simple rules, and embracing transformational leadership at all levels. Transforming the US health system, or any other health system, will be neither easy nor quick. Applying complexity concepts to health reform efforts, however, will facilitate long-term change in all levels, leading to health systems that are more effective, efficient, and equitable. © 2014 John Wiley & Sons, Ltd.

  2. Conceptualizing In-service Secondary School Science Teachers' Knowledge Base for Promoting Understanding about the Science of Global Climate Change

    Science.gov (United States)

    Bhattacharya, Devarati

    Efforts to adapt and mitigate the effects of global climate change (GCC) have been ongoing for the past two decades and have become a major global concern. However, research and practice for promoting climate literacy and understanding about GCC have only recently become a national priority. The National Research Council (NRC), has recently emphasized upon the importance of developing learners' capacity of reasoning, their argumentation skills and understanding of GCC (Framework for K-12 Science Education, National Research Council, 2012). This framework focuses on fostering conceptual clarity about GCC to promote innovation, resilience, and readiness in students as a response towards the threat of a changing environment. Previous research about teacher understanding of GCC describes that in spite of the prevalent frameworks like the AAAS Science Literacy Atlas (AAAS, 2007) and the Essential Principles for Climate Literacy (United States Global Climate Research Program, 2009; Bardsley, 2007), most learners are challenged in understanding the science of GCC (Michail et al., 2007) and misinformed perceptions about basic climate science content and the role of human activities in changing climate remain persistent (Reibich and Gautier, 2006). Our teacher participants had a rather simplistic knowledge structure. While aware of climate change, teacher participants lacked in depth understanding of how change in climate can impact various ecosystems on the Earth. Furthermore, they felt overwhelmed with the extensive amount of information needed to comprehend the complexity in GCC. Hence, extensive efforts not only focused on assessing conceptual understanding of GCC but also for teaching complex science topics like GCC are essential. This dissertation explains concept mapping, and the photo elicitation method for assessing teachers' understanding of GCC and the use of metacognitive scaffolding in instruction of GCC for developing competence of learners in this complex

  3. Applied data-centric social sciences concepts, data, computation, and theory

    CERN Document Server

    Sato, Aki-Hiro

    2014-01-01

    Applied data-centric social sciences aim to develop both methodology and practical applications of various fields of social sciences and businesses with rich data. Specifically, in the social sciences, a vast amount of data on human activities may be useful for understanding collective human nature. In this book, the author introduces several mathematical techniques for handling a huge volume of data and analysing collective human behaviour. The book is constructed from data-oriented investigation, with mathematical methods and expressions used for dealing with data for several specific problems. The fundamental philosophy underlying the book is that both mathematical and physical concepts are determined by the purposes of data analysis. This philosophy is shown throughout exemplar studies of several fields in socio-economic systems. From a data-centric point of view, the author proposes a concept that may change people’s minds and cause them to start thinking from the basis of data. Several goals underlie ...

  4. Mars Science Laboratory Using Laser Instrument, Artist's Concept

    Science.gov (United States)

    2007-01-01

    This artist's conception of NASA's Mars Science Laboratory portrays use of the rover's ChemCam instrument to identify the chemical composition of a rock sample on the surface of Mars. ChemCam is innovative for planetary exploration in using a technique referred to as laser breakdown spectroscopy to determine the chemical composition of samples from distances of up to about 8 meters (25 feet) away. ChemCam is led by a team at the Los Alamos National Laboratory and the Centre d'Etude Spatiale des Rayonnements in Toulouse, France. Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development at NASA's Jet Propulsion Laboratory for a launch opportunity in 2009. The mission is managed by JPL, a division of the California Institute of Technology, Pasadena, Calif., for the NASA Science Mission Directorate, Washington.

  5. Teaching secondary science constructing meaning and developing understanding

    CERN Document Server

    Ross, Keith; McKechnie, Janet

    2010-01-01

    Now fully updated in its third edition Teaching Secondary Science is a comprehensive guide to all aspects of science teaching, providing a wealth of information and ideas about different approaches. With guidance on how children understand scientific ideas and the implications this has on teaching, teachers are encouraged to construct their own meanings and become reflective in their practice. Relating science to government agendas, such as the National Strategies, Assessment for Learning and Every Child Matters, this new edition reflects and maps to changes in national standards. Ke

  6. University Student Conceptions of Learning Science through Writing

    Science.gov (United States)

    Ellis, Robert A.; Taylor, Charlotte E.; Drury, Helen

    2006-01-01

    First-year undergraduate science students experienced a writing program as an important part of their assessment in a biology subject. The writing program was designed to help them develop both their scientific understanding as well as their written scientific expression. Open-ended questionnaires investigating the quality of the experience of…

  7. Assessing Children's Understanding of Length Measurement: A Focus on Three Key Concepts

    Science.gov (United States)

    Bush, Heidi

    2009-01-01

    In this article, the author presents three different tasks that can be used to assess students' understanding of the concept of length. Three important measurement concepts for students to understand are transitive reasoning, use of identical units, and iteration. In any teaching and learning process it is important to acknowledge students'…

  8. Retention in STEM: Understanding the Effectiveness of Science Posse

    Science.gov (United States)

    Godsoe, Kimberly

    One of the major areas of debate in higher education is how to best support underrepresented racial minority students in their study of Science, Technology, Engineering, and Math. In 2008, Brandeis University began a new program in conjunction with the Posse Foundation for students interested in studying science at the college-level. The research used a mixed methods design. A detailed quantitative analysis was conducted to understand how being part of Science Posse impacted the probability of doing well in initial science classes, influenced perceptions of the difficulty of studying science, and predicted the probability of majoring in STEM at Brandeis. The qualitative data was drawn from 89 student interviews, including 38 Science Posse Scholars, 24 students from backgrounds similar to the Scholars, and 25 students from well-resourced families. The qualitative analysis demonstrated how students had been exposed to the sciences prior to enrollment, how they navigated the sciences at Brandeis, and how they demonstrated resilience when science becomes challenging. This research study had four key findings. The first was in the quantitative analysis which demonstrated that Science Posse Scholars experience strong feelings of doubt about their academic abilities; based on previous research, this should have resulted in their not declaring majors in STEM disciplines. Instead, Science Posse Scholars were more likely to earn a B+ or above in their entry level science courses and declare a major in a STEM discipline, even when factors such as math and verbal SAT scores were included in the analysis. The second finding was in the qualitative analysis, which demonstrated that the cohort model in which Science Posse Scholars participate was instrumental to their success. The third finding was that students who attended academically less rigorous high schools could succeed in the sciences at a highly selective research institution such as Brandeis without academic remediation

  9. The impact of whole-plant instruction of preservice teachers' understanding of plant science principles

    Science.gov (United States)

    Hypolite, Christine Collins

    The purpose of this research was to determine how an inquiry-based, whole-plant instructional strategy would affect preservice elementary teachers' understanding of plant science principles. This study probed: what preservice teachers know about plant biology concepts before and after instruction, their views of the interrelatedness of plant parts and the environment, how growing a plant affects preservice teachers' understanding, and which types of activity-rich plant themes studies, if any, affect preservice elementary teachers' understandings. The participants in the study were enrolled in two elementary science methods class sections at a state university. Each group was administered a preinstructional test at the beginning of the study. The treatment group participated in inquiry-based activities related to the Principles of Plant Biology (American Society of Plant Biologists, 2001), while the comparison group studied those same concepts through traditional instructional methods. A focus group was formed from the treatment group to participate in co-concept mapping sessions. The participants' understandings were assessed through artifacts from activities, a comparison of pre- and postinstructional tests, and the concept maps generated by the focus group. Results of the research indicated that the whole-plant, inquiry-based instructional strategy can be applied to teach preservice elementary teachers plant biology while modeling the human constructivist approach. The results further indicated that this approach enhanced their understanding of plant science content knowledge, as well as pedagogical knowledge. The results also showed that a whole-plant approach to teaching plant science concepts is an instructional strategy that is feasible for the elementary school. The theoretical framework for this study was Human Constructivist learning theory (Mintzes & Wandersee, 1998). The content knowledge and instructional strategy was informed by the Principles of Plant

  10. A Coalition on the Public Understanding of Science

    Science.gov (United States)

    Allison, L.; Hehn, J.; Kass, J.; O'Grady, R.; Scotchmoor, J.; Stucky, R.

    2006-12-01

    For many of the problems facing contemporary societies, such as potential impacts of climate change, coastal degradation, reductions of fisheries stocks, volcanic and earthquake hazards in densely populated areas, quality and availability of water, and exploitation of hydrocarbon resources and development of alternative energy sources, formulation of wise public policy depends on evaluation of the state of geoscientific research in the relevant areas. In a democratic society, public discourse about and input to policy decisions on key issues affecting the public welfare requires a public that understands the scientific research process, values the contribution of science to society, and has a working knowledge of what science can and cannot yet say about specific issues. Arguably, that ideal falls short in contemporary American society. Disturbing trends in science education, low public scientific literacy, and increasing alarms about U.S. competitiveness have all been prominent national news topics in recent years. (1) A recent National Science Board report indicated that two-thirds of Americans do not understand what science is, how it is conducted, and what one can expect from it. (2) A recent Gallup poll reports widespread and increasingly prevalent belief in pseudoscience. (3) There is a growing public complacency about and disengagement from science at the very moment when the impact of science on public life is greater than ever. (4) The Business Roundtable of major U.S. companies notes that the scientific and technical building blocks of our economic leadership are eroding at a time when many other nations are gathering strength. In response, a Coalition on the Public Understanding of Science COPUS has been initiated. Essential to COPUS is the premise that public understanding of science and the scientific process and an awareness of the impacts of scientific advancements on our quality of life are necessary to increase student interest in science as a

  11. Assessing middle school students` understanding of science relationships and processes: Year 2 - instrument validation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schau, C.; Mattern, N.; Weber, R.; Minnick, K.

    1997-01-01

    Our overall purpose for this multi-year project was to develop an alternative assessment format measuring rural middle school students understanding of science concepts and processes and the interrelationships among them. This kind of understanding is called structural knowledge. We had 3 major interrelated goals: (1) Synthesize the existing literature and critically evaluate the actual and potential use of measures of structural knowledge in science education. (2) Develop a structural knowledge alternative assessment format. (3) Examine the validity of our structural knowledge format. We accomplished the first two goals during year 1. The structural knowledge assessment we identified and developed further was a select-and-fill-in concept map format. The goal for our year 2 work was to begin to validate this assessment approach. This final report summarizes our year 2 work.

  12. Teaching science for conceptual change: Toward a proposed taxonomy of diagnostic teaching strategies to gauge students' personal science conceptions

    Science.gov (United States)

    Shope, Richard Edwin, III

    Science instruction aims to ensure that students properly construct scientific knowledge so that each individual may play a role as a science literate citizen or as part of the science workforce (National Research Council, 1996, 2000). Students enter the classroom with a wide range of personal conceptions regarding science phenomena, often at variance with prevailing scientific views (Duschl, Hamilton, & Grandy, 1992; Hewson, 1992). The extensive misconceptions research literature emphasizes the importance of diagnosing students' initial understandings in order to gauge the accuracy and depth of what each student knows prior to instruction and then to use that information to adapt the teaching to address student needs. (Ausubel, 1968; Carey, 2000; Driver et al., 1985; Karplus & Thier, 1967; Mintzes, Wandersee, & Novak, 1998; Osborne & Freyberg, 1985; Project 2061, 1993; Strike & Posner, 1982, 1992; Vygotsky, 1934/1987). To gain such insight, teachers diagnose not only the content of the students' personal conceptions but also the thinking processes that produced them (Strike and Posner, 1992). Indeed, when teachers design opportunities for students to express their understanding, there is strong evidence that such diagnostic assessment also enhances science teaching and learning (Black & William, 1998). The functional knowledge of effective science teaching practice resides in the professional practitioners at the front lines---the science teachers in the classroom. Nevertheless, how teachers actually engage in the practice of diagnosis is not well documented. To help fill this gap, the researcher conducted a study of 16 sixth grade science classrooms in four Los Angeles area middle schools. Diagnostic teaching strategies were observed in action and then followed up by interviews with each teacher. Results showed that teachers use strategies that vary by the complexity of active student involvement, including pretests, strategic questions, interactive discussion

  13. Different understanding: science through the eyes of visual thinkers

    Energy Technology Data Exchange (ETDEWEB)

    Sesko, S.C.; Marchant, M.

    1997-09-11

    The objective of this emergent study was to follow the cognitive and creative processes demonstrated by five art student participants as they integrated a developing knowledge of big science, as practiced at the Department of Energy`s Lawrence Livermore National Laboratory, into a personal and idiosyncratic visual, graphical, or multimedia product. The non-scientist participants involved in this process attended design classes sponsored by the Laboratory at the Art Center College of Design in California. The learning experience itself, and how the students arrived at their product, were the focus of the class and the research. The study was emergent in that we found no applicable literature on the use of art to portray a cognitive understanding of science. This lack of literature led us to the foundation literature on creativity and to the corpus of literature on public understanding of science. We believe that this study contributes to the literature on science education, art education, cognitive change, and public understanding of science. 20 refs., 11 figs.

  14. Amplification of the concept of erroneous meaning in psychodynamic science and in the consulting room.

    Science.gov (United States)

    Brookes, Crittenden E

    2007-01-01

    Previous papers dealt with the concept of psyche as that dynamic field which underlies the subjective experience of mind. A new paradigm, psychodynamic science, was suggested for dealing with subjective data. The venue of the psychotherapeutic consulting room is now brought directly into science, expanding the definition of psychotherapy to include both humanistic and scientific elements. Certain concepts were introduced to amplify this new scientific model, including psyche as hypothetical construct, the concept of meaning as replacement for operational validation in scientific investigation, the synonymity of meaning and insight, and the concept of synchronicity, together with the meaning-connected affect of numinosity. The presence of unhealthy anxiety as the conservative ego attempts to preserve its integrity requires a deeper look at the concept of meaning. This leads to a distinction between meaning and erroneous meaning. The main body of this paper amplifies that distinction, and introduces the concept of intolerance of ambiguity in the understanding of erroneous meanings and their connection with human neurosis.

  15. How Augmented Reality Enables Conceptual Understanding of Challenging Science Content

    Science.gov (United States)

    Yoon, Susan; Anderson, Emma; Lin, Joyce; Elinich, Karen

    2017-01-01

    Research on learning about science has revealed that students often hold robust misconceptions about a number of scientific ideas. Digital simulation and dynamic visualization tools have helped to ameliorate these learning challenges by providing scaffolding to understand various aspects of the phenomenon. In this study we hypothesize that…

  16. THE CONCEPT OF SENCE IN THE WORLD, METAPHYSICS AND SCIENCE

    Directory of Open Access Journals (Sweden)

    Michal Sicinski

    2007-01-01

    Full Text Available The notion of objective sense is commonly used in various contexts, and is also frequently misused. It has been often criticised in the context of natural sciences during the last 200 years - the period of positivistically oriented science. In the ancient Greek philosophy the problem of Nature possessing its own sense was stressed, and from the problem the first germs of science started in the Ionic and Pythagorean schools. Contrary to that, Aristotelean approach initiated the positivist tradition which banned from science the question of Nature as possessing an internal sense, and the scholastics introduced a concept of Nature's sense being not intrinsic but granted to it by the divine action. The mathematisation of physics caused that the the divine action started to be interpreted as "mathematical", and in consequence, the sense of Nature was seen as expressed by mathematics. Later on, this mathematically expressed sense of Nature, as seen in physical theories, started to be perceived as independent from God and having not much to as supernatural: inside the mathematical science there was no place for any anthropomorphic Creators.Recently, however when in the newest physics the mathematical structures have already been perceived not only as a language but also as a kind of ultimate reality, a place for quasi-religious feeling of mystery hidden in these structures has been welcome. It means that within the field of modern physical theories there is no place for the traditional religious concepts, but there is a place for a kind of mystics of objective mathematics in the Pythagorean style, related to the modern "new spirituality" mysticism.The situation is completely different in the area of less mathematised branches like biology. The tensions between science and religion are strong there, and the alternative is as follows: traditional religiousness versus traditional atheism, but not a neutral science separated from religion versus a non

  17. Information in Our World: Conceptions of Information and Problems of Method in Information Science

    Science.gov (United States)

    Ma, Lai

    2012-01-01

    Many concepts of information have been proposed and discussed in library and information science. These concepts of information can be broadly categorized as empirical and situational information. Unlike nomenclatures in many sciences, however, the concept of information in library and information science does not bear a generally accepted…

  18. Crowd science and engineering: concept and research framework

    Directory of Open Access Journals (Sweden)

    Yueting Chai

    2017-03-01

    Full Text Available Purpose – The synthetic application and interaction of/between the internet, Internet of Things, cloud computing, big data, Industry 4.0 and other new patterns and new technologies shall breed future Web-based industrial operation system and social operation management patterns, manifesting as a crowd cyber eco-system composed of multiple interconnected intelligent agents (enterprises, individuals and governmental agencies and its dynamic behaviors. This paper aims to explore the basic principles and laws of such a system and its behavior. Design/methodology/approach – The authors propose the concepts of crowd science and engineering (CSE and expound its main content, thus forming a research framework of theories and methodologies of crowd science. Findings – CSE is expected to substantially promote the formation and development of crowd science and thus lay a foundation for the advancement of Web-based industrial operation system and social operation management patterns. Originality/value – This paper is the first one to propose the concepts of CSE, which lights the beacon for the future research in this area.

  19. A systematic review of concept mapping-based formative assessment processes in primary and secondary science education

    DEFF Research Database (Denmark)

    Hartmeyer, Rikke; Stevenson, Matt P.; Bentsen, Peter

    2017-01-01

    assessment: firstly, concept mapping should be constructed in teaching, preferably on repeated occasions. Secondly, concept mapping should be carried out individually if personal understanding is to be elicited; however, collaborative concept mapping might foster discussions valuable for developing students......’ understanding and for activating them as instructional resources and owners of their own learning. Thirdly, low-directed mapping seems most suitable for formative assessment. Fourthly, technology-based or peer assessments are useful strategies likely to reduce the load of interpretation for the educator......In this paper, we present and discuss the results of a systematic review of concept mapping-based interventions in primary and secondary science education. We identified the following recommendations for science educators on how to successfully apply concept mapping as a method for formative...

  20. New concepts of science and medicine in science and technology studies and their relevance to science education

    Directory of Open Access Journals (Sweden)

    Hsiu-Yun Wang

    2012-02-01

    Full Text Available Science education often adopts a narrow view of science that assumes the lay public is ignorant, which seemingly justifies a science education limited to a promotional narrative of progress in the form of scientific knowledge void of meaningful social context. We propose that to prepare students as future concerned citizens of a technoscientific society, science education should be informed by science, technology, and society (STS perspectives. An STS-informed science education, in our view, will include the following curricular elements: science controversy education, gender issues, historical perspective, and a move away from a Eurocentric view by looking into the distinctive patterns of other regional (in this case of Taiwan, East Asian approaches to science, technology, and medicine. This article outlines the significance of some major STS studies as a means of illustrating the ways in which STS perspectives can, if incorporated into science education, enhance our understanding of science and technology and their relationships with society.

  1. Promoting Children's Understanding And Interest In Science Through Informal Science Education

    Science.gov (United States)

    Bartley, Jessica E.; Mayhew, Laurel M.; Finkelstein, Noah D.

    2009-11-01

    We present results from the University of Colorado's Partnership for Informal Science Education in the Community (PISEC) in which university participants work in afterschool programs on inquiry-based activities with primary school children from populations typically under represented in science. This university-community partnership is designed to positively impact youth, university students, and the institutions that support them while improving children's attitudes towards and understanding of science. Children worked through circuit activities adapted from the Physics and Everyday Thinking (PET) curriculum and demonstrated increased understanding of content area as well as favorable beliefs about science.

  2. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  3. Effectiveness of Science-Technology-Society (STS) Instruction on Student Understanding of the Nature of Science and Attitudes toward Science

    Science.gov (United States)

    Akcay, Behiye; Akcay, Hakan

    2015-01-01

    The study reports on an investigation about the impact of science-technology-society (STS) instruction on middle school student understanding of the nature of science (NOS) and attitudes toward science compared to students taught by the same teacher using traditional textbook-oriented instruction. Eight lead teachers used STS instruction an…

  4. Brazilian science teachers conceptions about the world situation

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Vital dos Santos Abib

    2000-09-01

    Full Text Available Recognizing the urgent need of a scientific education thet would provide for citizen participation in decision making regarding problems that affect our survival, this paper reports teachers perceptions about problems that affect the future of human kind and life in our planet. Taking as reference recent studies which approach this issue globally, we analyse science teachers conceptions concerning the present world situation. Results show a fragmentary character and an insufficient conscientization of the extent and serioussness of the problems. This finding points at the need of formative actions that would provide teachers with a more adequate perspection of those problems and of possible solutions.

  5. An overview of conceptual understanding in science education curriculum in Indonesia

    Science.gov (United States)

    Widiyatmoko, A.; Shimizu, K.

    2018-03-01

    The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.

  6. The comparative effect of individually-generated vs. collaboratively-generated computer-based concept mapping on science concept learning

    Science.gov (United States)

    Kwon, So Young

    Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However

  7. Conceptions of Teaching Science Held by Novice Teachers in an Alternative Certification Program

    Science.gov (United States)

    Koballa, Thomas R.; Glynn, Shawn M.; Upson, Leslie

    2005-01-01

    Case studies to investigate the conceptions of teaching science held by three novice teachers participating in an alternative secondary science teacher certification program were conducted, along with the relationships between their conceptions of science teaching and their science teaching practice. Data used to build the cases included the…

  8. Conceptions, Self-Regulation, and Strategies of Learning Science among Chinese High School Students

    Science.gov (United States)

    Li, Mang; Zheng, Chunping; Liang, Jyh-Chong; Zhang, Yun; Tsai, Chin-Chung

    2018-01-01

    This study explored the structural relationships among secondary school students' conceptions, self-regulation, and strategies of learning science in mainland China. Three questionnaires, namely conceptions of learning science (COLS), self-regulation of learning science (SROLS), and strategies of learning science (SLS) were developed for…

  9. Science Understanding through Playground Physics: Organized Recess Teaching (SUPPORT)

    Science.gov (United States)

    Kincaid, Russell

    2010-03-01

    From 1995-2007, U.S. science students in grade four scored higher than the scaled TIMSS average, but their scores did not improve over this time. Moreover, in the area of physical science, the U.S. scored significantly lower than several Asian countries, as well as Russia, England, and Latvia (TIMSS). Methods to enhance student achievement in science are still being sought. An approach to utilizing playground equipment as a teaching tool for a variety of physics concepts was developed as a physical science teaching method. This program established an appropriate set of experiments, coordinated the effort with local school districts, and implemented a brief pilot study to test the teaching methodology. The program assigned undergraduate middle school science education majors to teach small groups of fourth grade students. The experimental group used the newly developed ``Playground Physics'' methodology while the control group used traditional approaches. Follow up activities will include an expansion of the duration and the scope of the program.

  10. Influence of subject matter discipline and science content knowledge on National Board Certified science teachers' conceptions, enactment, and goals for inquiry

    Science.gov (United States)

    Breslyn, Wayne Gene

    The present study investigated differences in the continuing development of National Board Certified Science Teachers' (NBCSTs) conceptions of inquiry across the disciplines of biology, chemistry, earth science, and physics. The central research question of the study was, "How does a NBCST's science discipline (biology, chemistry, earth science, or physics) influence their conceptions, enactment, and goals for inquiry-based teaching and learning?" A mixed methods approach was used that included an analysis of the National Board portfolio entry, Active Scientific Inquiry, for participants (n=48) achieving certification in the 2007 cohort. The portfolio entry provided detailed documentation of teachers' goals and enactment of an inquiry lesson taught in their classroom. Based on the results from portfolio analysis, participant interviews were conducted with science teachers (n=12) from the 2008 NBCST cohort who represented the science disciplines of biology, chemistry, earth science, and physics. The interviews provided a broader range of contexts to explore teachers' conceptions, enactment, and goals of inquiry. Other factors studied were disciplinary differences in NBCSTs' views of the nature of science, the relation between their science content knowledge and use of inquiry, and changes in their conceptions of inquiry as result of the NB certification process. Findings, based on a situated cognitive framework, suggested that differences exist between biology, chemistry, and earth science teachers' conceptions, enactment, and goals for inquiry. Further, individuals teaching in more than one discipline often held different conceptions of inquiry depending on the discipline in which they were teaching. Implications for the research community include being aware of disciplinary differences in studies on inquiry and exercising caution in generalizing findings across disciplines. In addition, teachers who teach in more than one discipline can highlight the contextual

  11. A guide to understanding social science research for natural scientists.

    Science.gov (United States)

    Moon, Katie; Blackman, Deborah

    2014-10-01

    Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes. © 2014 Society for Conservation Biology.

  12. U.S. Geological Survey Water science strategy--observing, understanding, predicting, and delivering water science to the nation

    Science.gov (United States)

    Evenson, Eric J.; Orndorff, Randall C.; Blome, Charles D.; Böhlke, John Karl; Hershberger, Paul K.; Langenheim, V.E.; McCabe, Gregory J.; Morlock, Scott E.; Reeves, Howard W.; Verdin, James P.; Weyers, Holly S.; Wood, Tamara M.

    2013-01-01

    This report expands the Water Science Strategy that began with the USGS Science Strategy, “Facing Tomorrow’s Challenges—U.S. Geological Survey Science in the Decade 2007–2017” (U.S. Geological Survey, 2007). This report looks at the relevant issues facing society and develops a strategy built around observing, understanding, predicting, and delivering water science for the next 5 to 10 years by building new capabilities, tools, and delivery systems to meet the Nation’s water-resource needs. This report begins by presenting the vision of water science for the USGS and the societal issues that are influenced by, and in turn influence, the water resources of our Nation. The essence of the Water Science Strategy is built on the concept of “water availability,” defined as spatial and temporal distribution of water quantity and quality, as related to human and ecosystem needs, as affected by human and natural influences. The report also describes the core capabilities of the USGS in water science—the strengths, partnerships, and science integrity that the USGS has built over its 134-year history. Nine priority actions are presented in the report, which combine and elevate the numerous specific strategic actions listed throughout the report. Priority actions were developed as a means of providing the audience of this report with a list for focused attention, even if resources and time limit the ability of managers to address all of the strategic actions in the report.

  13. Biological Principles and Threshold Concepts for Understanding Natural Selection. Implications for Developing Visualizations as a Pedagogic Tool

    Science.gov (United States)

    Tibell, Lena A. E.; Harms, Ute

    2017-11-01

    Modern evolutionary theory is both a central theory and an integrative framework of the life sciences. This is reflected in the common references to evolution in modern science education curricula and contexts. In fact, evolution is a core idea that is supposed to support biology learning by facilitating the organization of relevant knowledge. In addition, evolution can function as a pivotal link between concepts and highlight similarities in the complexity of biological concepts. However, empirical studies in many countries have for decades identified deficiencies in students' scientific understanding of evolution mainly focusing on natural selection. Clearly, there are major obstacles to learning natural selection, and we argue that to overcome them, it is essential to address explicitly the general abstract concepts that underlie the biological processes, e.g., randomness or probability. Hence, we propose a two-dimensional framework for analyzing and structuring teaching of natural selection. The first—purely biological—dimension embraces the three main principles variation, heredity, and selection structured in nine key concepts that form the core idea of natural selection. The second dimension encompasses four so-called thresholds, i.e., general abstract and/or non-perceptual concepts: randomness, probability, spatial scales, and temporal scales. We claim that both of these dimensions must be continuously considered, in tandem, when teaching evolution in order to allow development of a meaningful understanding of the process. Further, we suggest that making the thresholds tangible with the aid of appropriate kinds of visualizations will facilitate grasping of the threshold concepts, and thus, help learners to overcome the difficulties in understanding the central theory of life.

  14. Appropriating religion: understanding religion as an object of science

    Directory of Open Access Journals (Sweden)

    Donald Wiebe

    1999-01-01

    Full Text Available In this paper, the author focuses on the study of religion as a scientific project, for it is the scientific interest in religion which has constituted the grounds for admitting the study of religion into the curriculum of the modern Western university. Despite that academic legitimation, however, the study of religion in the setting of the modern research university is not held in high esteem relative to the other sciences. It if the scientific study of religion is to be legitimately ensconced in the modern research university, the notion of religion will have to be wholly appropriated by science; only then will we be able to establish a conceptual foundation from which to make valid knowledge claims about religion on a level commensurate with the pronouncements of the natural and social sciences. Indeed, to go one step further, given the hold on the concept of religion by those committed to the humanistic study of religion, we might need to talk here not of the appropriation but of expropriation of religion by science—that is, of wresting ownership of the concept from the humanists by using it solely as a taxonomic device to differentiate and explain a peculiar range of human behaviour demonstrated in religious practices.

  15. The Conceptions of Learning Science by Laboratory among University Science-Major Students: Qualitative and Quantitative Analyses

    Science.gov (United States)

    Chiu, Yu-Li; Lin, Tzung-Jin; Tsai, Chin-Chung

    2016-01-01

    Background: The sophistication of students' conceptions of science learning has been found to be positively related to their approaches to and outcomes for science learning. Little research has been conducted to particularly investigate students' conceptions of science learning by laboratory. Purpose: The purpose of this research, consisting of…

  16. Correlation of Students' Brain Types to Their Conceptions of Learning Science and Approaches to Learning Science

    Science.gov (United States)

    Park, Jiyeon; Jeon, Dongryul

    2015-01-01

    The systemizing and empathizing brain type represent two contrasted students' characteristics. The present study investigated differences in the conceptions and approaches to learning science between the systemizing and empathizing brain type students. The instruments are questionnaires on the systematizing and empathizing, questionnaires on the…

  17. The Social Science Teacher. 1972. Collected Conference Papers: Social Science Concepts Classroom Methods.

    Science.gov (United States)

    Noble, Pat, Ed.; And Others

    Papers in this publication are collected from a conference on social science concepts and classroom methods which focused on the theories of Jerome Bruner. The first article, entitled "Jerome Bruner," outlines four of Bruner's themes--structure, readiness, intuition, and interest--which relate to cognitive learning. Three…

  18. Using Laboratory Activities Enhanced with Concept Cartoons to Support Progression in Students' Understanding of Acid-Base Concepts

    Science.gov (United States)

    Ozmen, Haluk; Demircioglu, Gokhan; Burhan, Yasemin; Naseriazar, Akbar; Demircioglu, Hulya

    2012-01-01

    The aim of this study is to examine the effectiveness of an intervention based on a series of laboratory activities enhanced with concept cartoons. The purpose of the intervention was to enhance students' understanding of acid-base chemistry for eight grade students' from two classes in a Turkish primary school. A pretest-posttest non-equivalent…

  19. Scientific approach as an understanding and applications of hydrological concepts of tropical rainforest

    Science.gov (United States)

    Haryanto, Z.; Setyasih, I.

    2018-04-01

    East Kalimantan has a variety of biomes, one of which is tropical rain forests. Tropical rain forests have enormous hydrological potential, so it is necessary to provide understanding to prospective teachers. Hydrology material cannot be separated from the concept of science, for it is needed the right way of learning so students easily understand the material. This research uses descriptive method with research subject is geography education students taking hydrology course at Faculty of Teacher Training and Education, Mulawarman University. The results showed that the students were able to observe, ask question, collect data, give reason, and communicate the hydrological conditions of tropical rain forest biomes, especially related to surface ground water and groundwater conditions. Tropical rainforests are very influenced by the hydrological conditions of the region and the availability of water is affected by the forest area as a catchment area. Therefore, the tropical rainforest must be maintained in condition and its duration, so that there is no water crisis and hydrological related disasters.

  20. The Cultural Argument for Understanding Nature of Science. A Chance to Reflect on Similarities and Differences Between Science and Humanities

    Science.gov (United States)

    Reiners, Christiane S.; Bliersbach, Markus; Marniok, Karl

    2017-07-01

    , and the role of technology. Thus, the cultural argument for understanding science invites us not only to consider domain-specific concepts but also to reflect on similarities between science and the humanities by way of examples.

  1. Philosophical conceptions of the self: implications for cognitive science.

    Science.gov (United States)

    Gallagher

    2000-01-01

    Several recently developed philosophical approaches to the self promise to enhance the exchange of ideas between the philosophy of the mind and the other cognitive sciences. This review examines two important concepts of self: the 'minimal self', a self devoid of temporal extension, and the 'narrative self', which involves personal identity and continuity across time. The notion of a minimal self is first clarified by drawing a distinction between the sense of self-agency and the sense of self-ownership for actions. This distinction is then explored within the neurological domain with specific reference to schizophrenia, in which the sense of self-agency may be disrupted. The convergence between the philosophical debate and empirical study is extended in a discussion of more primitive aspects of self and how these relate to neonatal experience and robotics. The second concept of self, the narrative self, is discussed in the light of Gazzaniga's left-hemisphere 'interpreter' and episodic memory. Extensions of the idea of a narrative self that are consistent with neurological models are then considered. The review illustrates how the philosophical approach can inform cognitive science and suggests that a two-way collaboration may lead to a more fully developed account of the self.

  2. An analysis of the concept of teaching in elementary school science education

    Science.gov (United States)

    Seatter, Carol Eunice Scarff

    The problem for this thesis arises directly from several years of observation of science classrooms in British Columbia. The troubling phenomenon seen within numerous classrooms, taught by teachers claiming to be constructivist teachers, involved teachers fostering the idea that children can think about science in terms of their own ideas, that is, that children can think about science in common-sense terms. In the many cases I have observed, teachers justify this practice on the grounds of constructivist theory. However, this kind of "constructivist teaching" does not, in my opinion, lead to scientific reasoning. My argument begins with the premise that the development of scientific reasoning in children is necessary for science education. I will argue that the currently popular "constructivist" movement has significant potential to fail in producing scientific reasoning in children, as did its predecessor, the "discovery learning" movement of the 1960s. The incommensurable differences between scientific and common-sense reasoning are presented and discussed. This thesis examines constructivist theory in terms of its potential to hinder the development of scientific reasoning in children. Two features of the constructivist writings are examined: those which pertain to the nature of science, and those relating to the concept of teaching. A chapter on the logic of scientific inquiry is central to the thesis, as it describes and explains the concepts, forms of explanation and truth criteria unique to the discipline of science. The epistemological foundations of science education are discussed in terms of the realist/instrumentalist debate. The thesis argues in favor of a sophisticated realist view of knowledge, such as those offered by Hacking and Matthews who take into account Hanson's "theory-laden" observation without falling prey to a naive realist view. Reasoning in science is compared with children's common-sense reasoning in an attempt to further understand

  3. Towards a Common Understanding of the Health Sciences.

    Science.gov (United States)

    Stucki, G; Rubinelli, S; Reinhardt, J D; Bickenbach, J E

    2016-09-01

    The aim of health sciences is to maintain and improve the health of individuals and populations and to limit disability. Health research has expanded astoundingly over the last century and a variety of scientific disciplines rooted in very different scientific and intellectual traditions has contributed to these goals. To allow health scientists to fully contextualize their work and engage in interdisciplinary research, a common understanding of the health sciences is needed. The aim of this paper is to respond to the call of the 1986 Ottawa Charter to improve health care by looking both within and beyond health and health care, and to use the opportunity offered by WHO's International Classification of Functioning, Disability and Health (ICF) for a universal operationalization of health, in order to develop a common understanding and conceptualization of the field of health sciences that account for its richness and vitality. A critical analysis of health sciences based on WHO's ICF, on WHO's definition of health systems and on the content and methodological approaches promoted by the biological, clinical and socio-humanistic traditions engaged in health research. The field of health sciences is presented according to: 1) a specification of the content of the field in terms of people's health needs and the societal response to them, 2) a meta-level framework to exhaustively represent the range of mutually recognizable scientific disciplines engaged in health research and 3) a heuristic framework for the specification of a set of shared methodological approaches relevant across the range of these disciplines. This conceptualization of health sciences is offered to contextualize the work of health researchers, thereby fostering interdisciplinarity. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Test of Understanding of Vectors: A Reliable Multiple-Choice Vector Concept Test

    Science.gov (United States)

    Barniol, Pablo; Zavala, Genaro

    2014-01-01

    In this article we discuss the findings of our research on students' understanding of vector concepts in problems without physical context. First, we develop a complete taxonomy of the most frequent errors made by university students when learning vector concepts. This study is based on the results of several test administrations of open-ended…

  5. Conceptions of Memorizing and Understanding in Learning, and Self-Efficacy Held by University Biology Majors

    Science.gov (United States)

    Lin, Tzu-Chiang; Liang, Jyh-Chong; Tsai, Chin-Chung

    2015-01-01

    This study aims to explore Taiwanese university students' conceptions of learning biology as memorizing or as understanding, and their self-efficacy. To this end, two questionnaires were utilized to survey 293 Taiwanese university students with biology-related majors. A questionnaire for measuring students' conceptions of memorizing and…

  6. The Effect of Guided Inquiry-Based Instruction on Middle School Students' Understanding of Lunar Concepts

    Science.gov (United States)

    Trundle, Kathy Cabe; Atwood, Ronald K.; Christopher, John E.; Sackes, Mesut

    2010-01-01

    This study investigated the effect of non-traditional guided inquiry instruction on middle school students' conceptual understandings of lunar concepts. Multiple data sources were used to describe participants' conceptions of lunar phases and their cause, including drawings, interviews, and a lunar shapes card sort. The data were analyzed via a…

  7. Learning about a Level Physics Students' Understandings of Particle Physics Using Concept Mapping

    Science.gov (United States)

    Gourlay, H.

    2017-01-01

    This paper describes a small-scale piece of research using concept mapping to elicit A level students' understandings of particle physics. Fifty-nine year 12 (16- and 17 year-old) students from two London schools participated. The exercise took place during school physics lessons. Students were instructed how to make a concept map and were…

  8. Prospective Physics Teachers' Level of Understanding Energy, Power and Force Concepts

    Science.gov (United States)

    Saglam-Arslan, Aysegul; Kurnaz, Mehmet Altan

    2009-01-01

    The aim of this study is to determine prospective physics teachers' level of understanding of the concepts of energy and the related concepts of force and power. The study was carried out with the participation of 56 physics education department students at a university in Karadeniz region. All participants had previously taken an introductory…

  9. Effectiveness of Instruction Based on the Constructivist Approach on Understanding Chemical Equilibrium Concepts

    Science.gov (United States)

    Akkus, Huseyin; Kadayifci, Hakki; Atasoy, Basri; Geban, Omer

    2003-01-01

    The purpose of this study was to identify misconceptions concerning chemical equilibrium concepts and to investigate the effectiveness of instruction based on the constructivist approach over traditional instruction on 10th grade students' understanding of chemical equilibrium concepts. The subjects of this study consisted of 71 10th grade…

  10. Critical Phenomena in Natural Sciences Chaos, Fractals, Selforganization and Disorder: Concepts and Tools

    CERN Document Server

    Sornette, Didier

    2006-01-01

    Concepts, methods and techniques of statistical physics in the study of correlated, as well as uncorrelated, phenomena are being applied ever increasingly in the natural sciences, biology and economics in an attempt to understand and model the large variability and risks of phenomena. This is the first textbook written by a well-known expert that provides a modern up-to-date introduction for workers outside statistical physics. The emphasis of the book is on a clear understanding of concepts and methods, while it also provides the tools that can be of immediate use in applications. Although this book evolved out of a course for graduate students, it will be of great interest to researchers and engineers, as well as to post-docs in geophysics and meteorology.

  11. Profile of Metacognition of Mathematics and Mathematics Education Students in Understanding the Concept of Integral Calculus

    Science.gov (United States)

    Misu, La; Ketut Budayasa, I.; Lukito, Agung

    2018-03-01

    This study describes the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. The metacognition profile is a natural and intact description of a person’s cognition that involves his own thinking in terms of using his knowledge, planning and monitoring his thinking process, and evaluating his thinking results when understanding a concept. The purpose of this study was to produce the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. This research method is explorative method with the qualitative approach. The subjects of this study are mathematics and mathematics education students who have studied integral calculus. The results of this study are as follows: (1) the summarizing category, the mathematics and mathematics education students can use metacognition knowledge and metacognition skills in understanding the concept of indefinite integrals. While the definite integrals, only mathematics education students use metacognition skills; and (2) the explaining category, mathematics students can use knowledge and metacognition skills in understanding the concept of indefinite integrals, while the definite integrals only use metacognition skills. In addition, mathematics education students can use knowledge and metacognition skills in understanding the concept of both indefinite and definite integrals.

  12. Challenges and Changes: Developing Teachers' and Initial Teacher Education Students' Understandings of the Nature of Science

    Science.gov (United States)

    Ward, Gillian; Haigh, Mavis

    2017-12-01

    Teachers need an understanding of the nature of science (NOS) to enable them to incorporate NOS into their teaching of science. The current study examines the usefulness of a strategy for challenging or changing teachers' understandings of NOS. The teachers who participated in this study were 10 initial teacher education chemistry students and six experienced teachers from secondary and primary schools who were introduced to an explicit and reflective activity, a dramatic reading about a historical scientific development. Concept maps were used before and after the activity to assess teachers' knowledge of NOS. The participants also took part in a focus group interview to establish whether they perceived the activity as useful in developing their own understanding of NOS. Initial analysis led us to ask another group, comprising seven initial teacher education chemistry students, to take part in a modified study. These participants not only completed the same tasks as the previous participants but also completed a written reflection commenting on whether the activity and focus group discussion enhanced their understanding of NOS. Both Lederman et al.'s (Journal of Research in Science Teaching, 39(6), 497-521, 2002) concepts of NOS and notions of "naive" and "informed" understandings of NOS and Hay's (Studies in Higher Education, 32(1), 39-57, 2007) notions of "surface" and "deep" learning were used as frameworks to examine the participants' specific understandings of NOS and the depth of their learning. The ways in which participants' understandings of NOS were broadened or changed by taking part in the dramatic reading are presented. The impact of the data-gathering tools on the participants' professional learning is also discussed.

  13. Addressing pre-service teachers' understandings and difficulties with some core concepts in the special theory of relativity

    International Nuclear Information System (INIS)

    Selcuk, Gamze Sezgin

    2011-01-01

    The aim of this study is to investigate pre-service teachers' understanding of and difficulties with some core concepts in the special theory of relativity. The pre-service teachers (n = 185) from the Departments of Physics Education and Elementary Science Education at Dokuz Eylul University (in Turkey) participated. Both quantitative and qualitative research methods were used in this study. Students' understanding of and difficulties with core elements (time, length, mass and density) were tested using a paper-and-pencil questionnaire (including four questions) and in-depth interviews after the instruction of related modern physics topics. The analyses of the collected data were based on quantitative and qualitative techniques. The results indicate that pre-service teachers at different academic levels have specific and considerable difficulties with proper time, time dilation, proper length, mass and relativistic density concepts. In this paper, the conclusions of the study and implications for physics teaching are discussed.

  14. Analysis of chemical concepts as the basic of virtual laboratory development and process science skills in solubility and solubility product subject

    Science.gov (United States)

    Syafrina, R.; Rohman, I.; Yuliani, G.

    2018-05-01

    This study aims to analyze the concept characteristics of solubility and solubility products that will serve as the basis for the development of virtual laboratory and students' science process skills. Characteristics of the analyzed concepts include concept definitions, concept attributes, and types of concepts. The concept analysis method uses concept analysis according to Herron. The results of the concept analysis show that there are twelve chemical concepts that become the prerequisite concept before studying the solubility and solubility and five core concepts that students must understand in the solubility and Solubility product. As many as 58.3% of the definitions of the concepts contained in high school textbooks support students' science process skills, the rest of the definition of the concept is memorized. Concept attributes that meet three levels of chemical representation and can be poured into a virtual laboratory have a percentage of 66.6%. Type of concept, 83.3% is a concept based on principle; and 16.6% concepts that state the process. Meanwhile, the science process skills that can be developed based on concept analysis are the ability to observe, calculate, measure, predict, interpret, hypothesize, apply, classify, and inference.

  15. A conceptual change analysis of nature of science conceptions: The deep roots and entangled vines of a conceptual ecology

    Science.gov (United States)

    Johnston, Adam Thomas

    This research used theories of conceptual change to analyze learners' understandings of the nature of science (NOS). Ideas regarding the NOS have been advocated as vital aspects of science literacy, yet learners at many levels (students and teachers) have difficulty in understanding these aspects in the way that science literacy reforms advocate. Although previous research has shown the inadequacies in learners' NOS understandings and have documented ways by which to improve some of these understandings, little has been done to show how these ideas develop and why learners' preexisting conceptions of NOS are so resistant to conceptual change. The premise of this study, then, was to describe the nature of NOS conceptions and of the conceptual change process itself by deeply analyzing the conceptions of individual learners. Toward this end, 4 individuals enrolled in a physical science course designed for preservice elementary teachers were selected to participate in a qualitative research study. These individuals answered questionnaires, surveys, direct interview questions, and a variety of interview probes (e.g., critical incidents, responses to readings/videos, reflections on coursework, card sorting tasks, etc.) which were administered throughout the duration of a semester. By utilizing these in-depth, qualitative probes, learners' conceptions were not only assessed but also described in great detail, revealing the source of their conceptions as well as identifying many instances in which a learner's directly stated conception was contradictory to that which was reflected by more indirect probes. As a result of this research, implications regarding NOS conceptions and their development have been described. In addition, various descriptions of conceptual change have been further refined and informed. Especially notable, the influence of a learner's conceptual ecology and its extrarational influences on conceptual change have been highlighted. It is argued that

  16. Science and Reconnaissance from the Europa Clipper Mission Concept: Exploring Europa's Habitability

    Science.gov (United States)

    Pappalardo, Robert; Senske, David; Prockter, Louise; Paczkowski, Brian; Vance, Steve; Goldstein, Barry; Magner, Thomas; Cooke, Brian

    2015-04-01

    Europa is recognized by the Planetary Science De-cadal Survey as a prime candidate to search for a pre-sent-day habitable environment in our solar system. As such, NASA has pursued a series of studies, facilitated by a Europa Science Definition Team (SDT), to define a strategy to best advance our scientific understanding of this icy world with the science goal: Explore Europa to investigate its habitability. (In June of 2014, the SDT completed its task of identifying the overarching science objectives and investigations.) Working in concert with a technical team, a set of mission archi-tectures were evaluated to determine the best way to achieve the SDT defined science objectives. The fa-vored architecture would consist of a spacecraft in Ju-piter orbit making many close flybys of Europa, con-centrating on remote sensing to explore the moon. In-novative mission design would use gravitational per-turbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of Europa's sur-face, with nominally 45 close flybys, typically at alti-tudes from 25 to 100 km. This concept has become known as the Europa Clipper. The Europa SDT recommended three science ob-jectives for the Europa Clipper: Ice Shell and Ocean: Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; Composition: Understand the habitability of Europa's ocean through composition and chemistry; and Geology: Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The Europa SDT also considered implications of the Hubble Space Telescope detection of possible plumes at Europa. To feed forward to potential subsequent future ex-ploration that could be enabled by a lander, it was deemed that the Europa Clipper mission concept should provide the

  17. Students' Conceptions of the Nature of Science: Perspectives from Canadian and Korean Middle School Students

    Science.gov (United States)

    Park, Hyeran; Nielsen, Wendy; Woodruff, Earl

    2014-05-01

    This study examined and compared students' understanding of nature of science (NOS) with 521 Grade 8 Canadian and Korean students using a mixed methods approach. The concepts of NOS were measured using a survey that had both quantitative and qualitative elements. Descriptive statistics and one-way multivariate analysis of variances examined the quantitative data while a conceptually clustered matrix classified the open-ended responses. The country effect could explain 3-12 % of the variances of subjectivity, empirical testability and diverse methods, but it was not significant for the concepts of tentativeness and socio-cultural embeddedness of science. The open-ended responses showed that students believed scientific theories change due to errors or discoveries. Students regarded empirical evidence as undeniable and objective although they acknowledged experiments depend on theories or scientists' knowledge. The open responses revealed that national situations and curriculum content affected their views. For our future democratic citizens to gain scientific literacy, science curricula should include currently acknowledged NOS concepts and should be situated within societal and cultural perspectives.

  18. Increasing the understanding of chemical concepts: The effectiveness of multiple exposures

    Science.gov (United States)

    Bius, Janet H.

    Chemistry is difficult because it has multilevels of knowledge with each level presenting challenges in vocabulary, abstract thinking, and symbolic language. Students have to be able to transfer between levels to understand the concepts and the theoretical models of chemistry. The cognitive theories of constructivism and cognitive-load theory are used to explain the difficulties novice learners have with the subject of chemistry and methods to increase success for students. The relationship between external representations, misconceptions and topics on the success of students are addressed. If students do not know the formalisms associated with chemical diagrams and graphs, the representations will decrease student success. Misconceptions can be formed when new information is interpreted based on pre-existing knowledge that is faulty. Topics with large amount of interacting elements that must be processed simultaneously are considered difficult to understand. New variables were created to measure the number of times a student is exposed to a chemical concept. Each variable was coded according to topic and learning environment, which are the lecture and laboratory components of the course, homework assignments and textbook examples. The exposure variables are used to measure the success rate of students on similar exam questions. Question difficulty scales were adapted for this project from those found in the chemical education literature. The exposure variables were tested on each level of the difficulty scales to determine their effect at decreasing the cognitive demand of these questions. The subjects of this study were freshmen science majors at a large Midwest university. The effects of the difficulty scales and exposure variables were measured for those students whose exam scores were in the upper one-fourth percentile, for students whose test scores were in the middle one-half percentile, and the lower one-fourth percentile are those students that scored the

  19. Proportional Reasoning and Related Concepts: Analysis of Gaps and Understandings of Middle Grade Students

    Science.gov (United States)

    Ojose, Bobby

    2015-01-01

    This study investigated proportional reasoning and the related concepts of decimal, percent, and ratio. In particular, the research focused on analyzing the gaps and understandings that grades 6, 7, and 8 students have and advanced factors for such gaps and understandings. The study employed a mixed method approach in which quantitative data was…

  20. Modern Social Science Concepts, Proportionate Reciprocity, Modesty, and Democracy

    Directory of Open Access Journals (Sweden)

    Gerasimos T. SOLDATOS

    2014-06-01

    Full Text Available Proportionate Reciprocity, Modesty, and Democracy, are the key concepts in Aristotle’s economics of exchange. The following correspondence of these concepts with modern social science may be contemplated: (a Ideally, reciprocal justice in bilateral bargaining to minimize expenditure given utility levels results in Pareto-efficient, envy-free, equitable outcomes. (b Practically, bargaining under the threat or actual recontracting may act as a surrogate of reciprocal justice, leading to an N-person contract topology. (c But, recontracting is subject to practical limitations too, in which case near-reciprocal justice/general equilibrium outcomes may be fostered if, as a surrogate of recontracting, modesty in interaction is exhibited in an evolutionarily-stable-strategy fashion. (d That is, incomplete recontracting amounts to asymmetric agent-type information, which in turn lays the ground for injustices; the same lack of information prevents rectificatory justice from being efficient and hence, modesty can be efficient only if it operates as a social norm and hence, only in a modest polity, which can be no other than democracy.

  1. ANALYSIS LEARNING MODEL OF DISCOVERY AND UNDERSTANDING THE CONCEPT PRELIMINARY TO PHYSICS LEARNING OUTCOMES SMA

    Directory of Open Access Journals (Sweden)

    Sri Rosepda Sebayang

    2015-12-01

    Full Text Available This study aims: 1 to determine whether the student learning outcomes using discovery learning is better than conventional learning 2 To determine whether the learning outcomes of students who have a high initial concept understanding better then of low initial concept understanding, and 3 to determine the effect of interaction discovery learning and understanding of the initial concept of the learning outcomes of students. The samples in this study was taken by cluster random sampling two classes where class X PIA 3 as a class experiment with applying discovery learning and class X PIA 2 as a control class by applying conventional learning. The instrument used in this study is a test of learning outcomes in the form of multiple-choice comprehension test initial concept description form. The results of research are: 1 learning outcomes of students who were taught with discovery learning is better than the learning outcomes of students who are taught by conventional learning, 2 student learning outcomes with high initial conceptual understanding better than the learning outcomes of students with low initial conceptual understanding, and 3 there was no interaction between discovery learning and understanding of initial concepts for the student learning outcomes.

  2. Understanding Materials Science History · Properties · Applications

    CERN Document Server

    Hummel, Rolf E

    2005-01-01

    This introduction to materials science both for students of engineering and physics and for the interested general public examines not only the physical and engineering properties of virtually all kinds of materials, but also their history, uses, development, and some of the implications of resource depletion and recycling. It covers all topics on materials from an entirely novel perspective: the role materials have played throughout history in the development of humankind and technologies. Specifically, it shows the connection between the technical and the cultural, economic, ecological, and societal aspects of materials science. It aims to whet the appetite of its readers and inspire them to further explore the properties and applications of metals, alloys, ceramics, plastics, and electronic materials by presenting easily understandable explanations and entertaining historical facts. It is also intended to raise the reader’s awareness of their obligations to society as practicing engineers and scientists....

  3. The science and art of simulation I exploring, understanding, knowing

    CERN Document Server

    Kaminski, Andreas; Gehring, Petra

    2017-01-01

    The new book series “The Science and Art of Simulation” (SAS) addresses computer simulations as a scientific activity and engineering artistry (in the sense of a technē). The first volume is devoted to three topics: 1. The Art of Exploring Computer Simulations Philosophy began devoting attention to computer simulations at a relatively early stage. Since then, the unquestioned point of view has been that computer simulation is a new scientific method; the philosophy of simulation is therefore part of the philosophy of science. The first section of this volume discusses this implicit, unchallenged assumption by addressing, from different perspectives, the question of how to explore (and how not to explore) research on computer simulations. Scientists discuss what is still lacking or considered problematic, while philosophers draft new directions for research, and both examine the art of exploring computer simulations. 2. The Art of Understanding Computer Simulations The results of computer simulations are ...

  4. Origins Space Telescope: Science Case and Design Reference Mission for Concept 1

    Science.gov (United States)

    Meixner, Margaret; Cooray, Asantha; Pope, Alexandra; Armus, Lee; Vieira, Joaquin Daniel; Milam, Stefanie N.; Melnick, Gary; Leisawitz, David; Staguhn, Johannes G.; Bergin, Edwin; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The science case for OST covers four themes: Tracing the Signature of Life and the Ingredients of Habitable Worlds; Charting the Rise of Metals, Dust and the First Galaxies, Unraveling the Co-evolution of Black Holes and Galaxies and Understanding Our Solar System in the Context of Planetary System Formation. Using a set of proposed observing programs from the community, we estimate a design reference mission for OST mission concept 1. The mission will complete significant programs in these four themes and have time for other programs from the community. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.edu.

  5. Examining the Conceptual Understandings of Geoscience Concepts of Students with Visual Impairments: Implications of 3-D Printing

    Science.gov (United States)

    Koehler, Karen E.

    The purpose of this qualitative study was to explore the use of 3-D printed models as an instructional tool in a middle school science classroom for students with visual impairments and compare their use to traditional tactile graphics for aiding conceptual understanding of geoscience concepts. Specifically, this study examined if the students' conceptual understanding of plate tectonics was different when 3-D printed objects were used versus traditional tactile graphics and explored the misconceptions held by students with visual impairments related to plate tectonics and associated geoscience concepts. Interview data was collected one week prior to instruction and one week after instruction and throughout the 3-week instructional period and additional ata sources included student journals, other student documents and audio taped instructional sessions. All students in the middle school classroom received instruction on plate tectonics using the same inquiry-based curriculum but during different time periods of the day. One group of students, the 3D group, had access to 3-D printed models illustrating specific geoscience concepts and the group of students, the TG group, had access to tactile graphics illustrating the same geoscience concepts. The videotaped pre and post interviews were transcribed, analyzed and coded for conceptual understanding using constant comparative analysis and to uncover student misconceptions. All student responses to the interview questions were categorized in terms of conceptual understanding. Analysis of student journals and classroom talk served to uncover student mental models and misconceptions about plate tectonics and associated geoscience concepts to measure conceptual understanding. A slight majority of the conceptual understanding before instruction was categorized as no understanding or alternative understanding and after instruction the larger majority of conceptual understanding was categorized as scientific or scientific

  6. Seeding Science Success: Psychometric Properties of Secondary Science Questionnaire on Students' Self-Concept, Motivation, and Aspirations

    Science.gov (United States)

    Chandrasena, Wanasinghe; Craven, Rhonda G.; Tracey, Danielle; Dillon, Anthony

    2014-01-01

    Every sphere of life has been revolutionised by science. Thus, science understanding is an increasingly precious resource throughout the world. Despite the widely recognised need for better science education, the percentage of school students studying science is particularly low, and the numbers of students pursuing science continue to decline…

  7. Hans-Georg Gadamer’s philosophical hermeneutics: Concepts of reading, understanding and interpretation

    OpenAIRE

    Paul Regan

    2012-01-01

    Hans-Georg Gadamer’s philosophical hermeneutics is a popular qualitative research interpretive method aiming to explore the meaning of individual experiences in relation to understanding human interpretation. Gadamer identifies that authentic engagement with reading requires awareness of the inter-subjective nature of understanding in order to promote a reflective engagement with the text. The main concepts of Gadamer’s view of reading and understanding are explored in this paper in relation ...

  8. Levels of abstraction in students' understanding of the concept of algorithm : the qualitative perspective

    NARCIS (Netherlands)

    Perrenet, J.C.; Kaasenbrood, E.J.S.

    2006-01-01

    In a former, mainly quantitative, study we defined four levels of abstraction in Computer Science students' thinking about the concept of algorithm. We constructed a list of questions about algorithms to measure the answering level as an indication for the thinking level. The answering level

  9. Developing Conceptions of Fair Contest Procedures and the Understanding of Skill and Luck.

    Science.gov (United States)

    Thorkildsen, Theresa A.; White-McNulty, Lisa

    2002-01-01

    Contrary to assumptions about aversive effects of competition on achievement motivation, in this study young people saw academic contests as fair. When participants completed structural interviews on fair ways to organize science contests and on differentiation of skill and luck, age-related trends in their conceptions of procedural justice were…

  10. An Assessment of Students' Understanding of Ecosystem Concepts: Conflating Ecological Systems and Cycles

    Science.gov (United States)

    Jordan, Rebecca; Gray, Steven; Demeter, Marylee; Lui, Lei; Hmelo-Silver, Cindy E.

    2009-01-01

    Teaching ecological concepts in schools is important in promoting natural science and environmental education for young learners. Developing educational programs is difficult, however, because of complicated ecological processes operating on multiple levels, the unlimited nature of potential system interactions (given the openness of systems), and…

  11. The Effects of Visualizations on Linguistically Diverse Students' Understanding of Energy and Matter in Life Science

    Science.gov (United States)

    Ryoo, Kihyun; Bedell, Kristin

    2017-01-01

    Although extensive research has shown the educational value of different types of interactive visualizations on students' science learning in general, how such technologies can contribute to English learners' (ELs) understanding of complex scientific concepts has not been sufficiently explored to date. This mixed-methods study investigated how…

  12. Science for Alaska: Public Understanding of University Research Priorities

    Science.gov (United States)

    Campbell, D.

    2015-12-01

    Science for Alaska: Public Understanding of Science D. L. Campbell11University of Alaska Fairbanks, USA Around 200 people brave 40-below-zero temperatures to listen to university researchers and scientists give lectures about their work at an event called the Science for Alaska Lecture Series, hosted by the University of Alaska Fairbanks Geophysical Institute. It is held once a week, for six weeks during the coldest part of a Fairbanks, Alaska, winter. The topics range from space physics to remote sensing. The lectures last for 45 minutes with 15 minutes for audience questions and answers. It has been popular for about 20 years and is one of many public outreach efforts of the institute. The scientists are careful in their preparations for presentations and GI's Public Relations staff chooses the speakers based on topic, diversity and public interest. The staff also considers the speaker's ability to speak to a general audience, based on style, clarity and experience. I conducted a qualitative research project to find out about the people who attended the event, why they attend and what they do with the information they hear about. The participants were volunteers who attended the event and either stayed after the lectures for an interview or signed up to be contacted later. I used used an interview technique with open-ended questions, recorded and transcribed the interview. I identified themes in the interviews, using narrative analysis. Preliminary data show that the lecture series is a form of entertainment for people who are highly educated and work in demanding and stressful jobs. They come with family and friends. Sometimes it's a date with a significant other. Others want to expose their children to science. The findings are in keeping with the current literature that suggests that public events meant to increase public understanding of science instead draws like-minded people. The findings are different from Campbell's hypothesis that attendance was based

  13. Earth Science Week 2009, "Understanding Climate", Highlights and News Clippings

    Energy Technology Data Exchange (ETDEWEB)

    Robeck, Edward C. [American Geological Inst., Alexandria, VA (United States)

    2010-01-05

    The American Geological Institute (AGI) proposes to expand its influential Earth Science Week Program in 2009, with the support of the U.S. Department of Energy, to disseminate DOE's key messages, information, and resources on climate education and to include new program components. These components, ranging from online resources to live events and professional networks, would significantly increase the reach and impact of AGI's already successful geoscience education and public awareness effort in the United States and abroad in 2009, when the campaign's theme will be "Understanding Climate."

  14. Comparison of Science-Technology-Society Approach and Textbook Oriented Instruction on Students' Abilities to Apply Science Concepts

    Science.gov (United States)

    Kapici, Hasan Ozgur; Akcay, Hakan; Yager, Robert E.

    2017-01-01

    It is important for students to learn concepts and using them for solving problems and further learning. Within this respect, the purpose of this study is to investigate students' abilities to apply science concepts that they have learned from Science-Technology-Society based approach or textbook oriented instruction. Current study is based on…

  15. The Cognitive Science of Learning: Concepts and Strategies for the Educator and Learner.

    Science.gov (United States)

    Weidman, Joseph; Baker, Keith

    2015-12-01

    Education is the fundamental process used to develop and maintain the professional skills of physicians. Medical students, residents, and fellows are expected to learn considerable amounts of information as they progress toward board certification. Established practitioners must continue to learn in an effort to remain up-to-date in their clinical realm. Those responsible for educating these populations endeavor to teach in a manner that is effective, efficient, and durable. The study of learning and performance is a subdivision of the field of cognitive science that focuses on how people interpret and process information and how they eventually develop mastery. A deeper understanding of how individuals learn can empower both educators and learners to be more effective in their endeavors. In this article, we review a number of concepts found in the literature on learning and performance. We address both the theoretical principles and the practical applications of each concept. Cognitive load theory, constructivism, and analogical transfer are concepts particularly beneficial to educators. An understanding of goal orientation, metacognition, retrieval, spaced learning, and deliberate practice will primarily benefit the learner. When these concepts are understood and incorporated into education and study, the effectiveness of learning is significantly improved.

  16. 492 Study Habit, Self-Concept and Science Achievement of Public ...

    African Journals Online (AJOL)

    Nekky Umera

    student study habit and self-concept combined together and singularly predicted science ... Study skills are fundamental to academic success. A student who ... Motivation to engage or not in a task is significantly determined by self- concept or ...

  17. Implementation of basic chemistry experiment based on metacognition to increase problem-solving and build concept understanding

    Science.gov (United States)

    Zuhaida, A.

    2018-04-01

    Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.

  18. Pre-Service Physics Teachers' Understanding of the Relational Structure of Physics Concepts: Organising Subject Contents for Purposes of Teaching

    Science.gov (United States)

    Koponen, Ismo; Nousiainen, Maija

    2013-01-01

    Good conceptual understanding of physics is based on understanding what the key concepts are and how they are related. This kind of understanding is especially important for physics teachers in planning how and in what order to introduce concepts in teaching; connections which tie concepts to each other give direction of progress--there is "flux…

  19. An exploration of middle school science teachers' understandings and teaching practice of science as inquiry

    Science.gov (United States)

    Castle, Margaret Ann

    understanding of science increases (Akkus, Gunel & Hand, 2007; Gibson, 2002; Liu, Lee & Linn, 2010). As a result, it is important to explore middle school science teachers' definition of science as inquiry because of its importance in how their understandings are reflected in their practice. Researchers must witness, first- hand, what is taking place in middle school science classrooms with respect to the teaching of scientific inquiry before recommendations for improvements can be made. We must also allow opportunities for middle school science teachers to broach, examine, explore, interpret and report implementation strategies when practicing the elements of scientific inquiry as a science content area. It then stands to reason that more research needs to be done to: (1) assess teachers' knowledge related to reform-based teaching, (2) investigate teachers' views about the goals and purposes of inquiry, and (3) investigate the processes by which teachers carry out SI and motivation for undertaking such a complex and difficult to manage form of instruction. The purpose of this study was to examine middle school science teachers' understandings and skills related to scientific inquiry; how those understandings and skills were translated into classroom practice, and the role the school district played in the development of such understandings and skills.

  20. The development and validation of a two-tiered multiple-choice instrument to identify alternative conceptions in earth science

    Science.gov (United States)

    Mangione, Katherine Anna

    This study was to determine reliability and validity for a two-tiered, multiple- choice instrument designed to identify alternative conceptions in earth science. Additionally, this study sought to identify alternative conceptions in earth science held by preservice teachers, to investigate relationships between self-reported confidence scores and understanding of earth science concepts, and to describe relationships between content knowledge and alternative conceptions and planning instruction in the science classroom. Eighty-seven preservice teachers enrolled in the MAT program participated in this study. Sixty-eight participants were female, twelve were male, and seven chose not to answer. Forty-seven participants were in the elementary certification program, five were in the middle school certification program, and twenty-nine were pursuing secondary certification. Results indicate that the two-tiered, multiple-choice format can be a reliable and valid method for identifying alternative conceptions. Preservice teachers in all certification areas who participated in this study may possess common alternative conceptions previously identified in the literature. Alternative conceptions included: all rivers flow north to south, the shadow of the Earth covers the Moon causing lunar phases, the Sun is always directly overhead at noon, weather can be predicted by animal coverings, and seasons are caused by the Earth's proximity to the Sun. Statistical analyses indicated differences, however not all of them significant, among all subgroups according to gender and certification area. Generally males outperformed females and preservice teachers pursuing middle school certification had higher scores on the questionnaire followed by those obtaining secondary certification. Elementary preservice teachers scored the lowest. Additionally, self-reported scores of confidence in one's answers and understanding of the earth science concept in question were analyzed. There was a

  1. A Science-Based Understanding of Cermet Processing

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, III, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roach, Robert Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kilgo, Alice C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Susan, Donald Francis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Ornum, David J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stuecker, John N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shollenberger, Kimberly A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report is a summary of the work completed in FY01 for science-based characterization of the processes used to fabricate 1) cermet vias in source feedthrus using slurry and paste-filling techniques and 2) cermet powder for dry pressing. Common defects found in cermet vias were characterized based on the ability of subsequent processing techniques (isopressing and firing) to remove the defects. Non-aqueous spray drying and mist granulation techniques were explored as alternative methods of creating CND50, the powder commonly used for dry pressed parts. Compaction and flow characteristics of these techniques were analyzed and compared to standard dry-ball-milled CND50. Due to processing changes, changes in microstructure can occur. A microstructure characterization technique was developed to numerically describe cermet microstructure. Machining and electrical properties of dry pressed parts were also analyzed and related to microstructure using this analytical technique.3 Executive SummaryThis report outlines accomplishments in the science-based understanding of cermet processing up to fiscal year 2002 for Sandia National Laboratories. The three main areas of work are centered on 1) increasing production yields of slurry-filled cermets, 2) evaluating the viability of high-solids-loading pastes for the same cermet components, and 3) optimizing cermet powder used in pressing processes (CND50). An additional development that was created as a result of the effort to fully understand the impacts of alternative processing techniques is the use of analytical methods to relate microstructure to physical properties. Recommendations are suggested at the end of this report. Summaries of these four efforts are as follows:1.Increase Production Yields of Slurry-Filled Cermet Vias Finalized slurry filling criteria were determined based on three designs of experiments where the following factors were analyzed: vacuum time, solids loading, pressure drop across the filter paper

  2. New concepts of science and medicine in science and technology studies and their relevance to science education.

    Science.gov (United States)

    Wang, Hsiu-Yun; Stocker, Joel F; Fu, Daiwie

    2012-02-01

    Science education often adopts a narrow view of science that assumes the lay public is ignorant, which seemingly justifies a science education limited to a promotional narrative of progress in the form of scientific knowledge void of meaningful social context. We propose that to prepare students as future concerned citizens of a technoscientific society, science education should be informed by science, technology, and society (STS) perspectives. An STS-informed science education, in our view, will include the following curricular elements: science controversy education, gender issues, historical perspective, and a move away from a Eurocentric view by looking into the distinctive patterns of other regional (in this case of Taiwan, East Asian) approaches to science, technology, and medicine. This article outlines the significance of some major STS studies as a means of illustrating the ways in which STS perspectives can, if incorporated into science education, enhance our understanding of science and technology and their relationships with society. Copyright © 2011. Published by Elsevier B.V.

  3. The Contribution of Constructivist Instruction Accompanied by Concept Mapping in Enhancing Pre-Service Chemistry Teachers' Conceptual Understanding of Chemistry in the Laboratory Course

    Science.gov (United States)

    Aydin, Sevgi; Aydemir, Nurdane; Boz, Yezdan; Cetin-Dindar, Ayla; Bektas, Oktay

    2009-01-01

    The present study aimed to evaluate whether a chemistry laboratory course called "Laboratory Experiments in Science Education" based on constructivist instruction accompanied with concept mapping enhanced pre-service chemistry teachers' conceptual understanding. Data were collected from five pre-service chemistry teachers at a university…

  4. Exploring Young Children's Understanding about the Concept of Volume through Engineering Design in a STEM Activity: A Case Study

    Science.gov (United States)

    Park, Do-Yong; Park, Mi-Hwa; Bates, Alan B.

    2018-01-01

    This case study explores young children's understanding and application of the concept of volume through the practices of engineering design in a STEM activity. STEM stands for science, technology, engineering, and mathematics. However, engineering stands out as a challenging area to implement. In addition, most early engineering education…

  5. Understanding current causes of women's underrepresentation in science.

    Science.gov (United States)

    Ceci, Stephen J; Williams, Wendy M

    2011-02-22

    Explanations for women's underrepresentation in math-intensive fields of science often focus on sex discrimination in grant and manuscript reviewing, interviewing, and hiring. Claims that women scientists suffer discrimination in these arenas rest on a set of studies undergirding policies and programs aimed at remediation. More recent and robust empiricism, however, fails to support assertions of discrimination in these domains. To better understand women's underrepresentation in math-intensive fields and its causes, we reprise claims of discrimination and their evidentiary bases. Based on a review of the past 20 y of data, we suggest that some of these claims are no longer valid and, if uncritically accepted as current causes of women's lack of progress, can delay or prevent understanding of contemporary determinants of women's underrepresentation. We conclude that differential gendered outcomes in the real world result from differences in resources attributable to choices, whether free or constrained, and that such choices could be influenced and better informed through education if resources were so directed. Thus, the ongoing focus on sex discrimination in reviewing, interviewing, and hiring represents costly, misplaced effort: Society is engaged in the present in solving problems of the past, rather than in addressing meaningful limitations deterring women's participation in science, technology, engineering, and mathematics careers today. Addressing today's causes of underrepresentation requires focusing on education and policy changes that will make institutions responsive to differing biological realities of the sexes. Finally, we suggest potential avenues of intervention to increase gender fairness that accord with current, as opposed to historical, findings.

  6. Understanding Children's Science Identity through Classroom Interactions

    Science.gov (United States)

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity.…

  7. Using Science Skills to Understand Ecophysiology and Manage Resources

    Science.gov (United States)

    Bubenheim, David

    2015-01-01

    Presentation will be for a general audience and focus on plant science and ecosystem science in NASA. Examples from the projects involving the presenter will be used to illustrate. Specifically, the California Sacramento-San Joaquin River Delta project. This collaboration supports the goals of the Delta Plan in developing science-based, adaptive-management strategies. The mission is to improve reliability of water supply and restore a healthy Delta ecosystem while enhancing agriculture and recreation. NASA can contribute gap-filling science understanding of overall functions in the Delta ecosystem and assess and help develop management plans for specific issues. Airborne and satellite remote-sensing, ecosystem modeling, and biological studies provide underlying data needed by Delta stakeholders to assess and address water, ecosystem restoration, and environmental and economic impacts of potential actions in the Delta. The California Sacramento-San Joaquin River Delta, the hub for California's water supply, supports important ecosystem services for fisheries, supplies drinking water for millions, and distributes water from Northern California to agriculture and urban communities to the south; millions of people and businesses depend on Delta water. Decades of competing demands for Delta resources and year-to-year variability in precipitation has resulted in diminished overall health of the Delta. Declines in fish populations, threatened ecosystems, endangered species, invasive plants and animals, cuts in agricultural exports, and increased water conservation is the result. NASA and the USDA, building on previous collaborations, aide local Delta stakeholders in assessing and developing an invasive weed management approach. Aquatic, terrestrial, and riparian invasive weeds threaten aquatic and terrestrial ecosystem restoration efforts. Aquatic weeds are currently detrimental economically, environmentally, and sociologically in the Delta. They negatively impact the

  8. Examining Preservice Science Teacher Understanding of Nature of Science: Discriminating Variables on the Aspects of Nature of Science

    Science.gov (United States)

    Jones, William I.

    This study examined the understanding of nature of science among participants in their final year of a 4-year undergraduate teacher education program at a Midwest liberal arts university. The Logic Model Process was used as an integrative framework to focus the collection, organization, analysis, and interpretation of the data for the purpose of (1) describing participant understanding of NOS and (2) to identify participant characteristics and teacher education program features related to those understandings. The Views of Nature of Science Questionnaire form C (VNOS-C) was used to survey participant understanding of 7 target aspects of Nature of Science (NOS). A rubric was developed from a review of the literature to categorize and score participant understanding of the target aspects of NOS. Participants' high school and college transcripts, planning guides for their respective teacher education program majors, and science content and science teaching methods course syllabi were examined to identify and categorize participant characteristics and teacher education program features. The R software (R Project for Statistical Computing, 2010) was used to conduct an exploratory analysis to determine correlations of the antecedent and transaction predictor variables with participants' scores on the 7 target aspects of NOS. Fourteen participant characteristics and teacher education program features were moderately and significantly ( p Middle Childhood with a science concentration program major or in the Adolescent/Young Adult Science Education program major were more likely to have an informed understanding on each of the 7 target aspects of NOS. Analyses of the planning guides and the course syllabi in each teacher education program major revealed differences between the program majors that may account for the results.

  9. Development and Validation of the Life Sciences Assessment: A Measure of Preschool Children's Conceptions of Basic Life Sciences

    Science.gov (United States)

    Maherally, Uzma Nooreen

    2014-01-01

    The purpose of this study was to develop and validate a science assessment tool termed the Life Sciences Assessment (LSA) in order to assess preschool children's conceptions of basic life sciences. The hypothesis was that the four sub-constructs, each of which can be measured through a series of questions on the LSA, will make a significant…

  10. The Concept of Ideology in Analysis of Fundamental Questions in Science Education

    Science.gov (United States)

    Säther, Jostein

    The use of the concept of `ideology' in interpretation of science education curricula, textbooks and various practises is reviewed, and examples are given by referring to Norwegian curricula and textbooks. The term is proposed to be used in a broad sense about any kind of action-oriented theory based on a system of ideas, or any attempt to approach politics in the light of a system of ideas. Politics in this context is about shaping of education, and is related to forces (i.e., hypothetical impacts of idea systems) which may legitimise, change, or criticise social practices. The focus is (although not in every case) on the hidden, unconscious and critical aspects. The notion ideological aspects is proposed to be related to metaphysical-ontological, epistemological and axiological claims and connotations. Examples of educational issues concerning e.g., aims, compartmentalisation, integration, and fundamentally different ideas about truth, learning and man are mentioned. Searching for a single and unifying concept for the discussing of all of science education's fundamental questions seems however in vain. Therefore a wide range of concepts seems necessary to deepen our understanding of ``the fundamental questions''.

  11. Planetary Science Education - Workshop Concepts for Classrooms and Internships

    Science.gov (United States)

    Musiol, S.; Rosenberg, H.; Rohwer, G.; Balthasar, H.; van Gasselt, S.

    2014-12-01

    the Martian surface and presented their results in the end. Extensive handouts and high-quality print material supplemented face-to-face exercises. For the future we plan to expand our workshop concepts, to give students the possibility of conducting a week-long internship with our Planetary Sciences research group.

  12. Pre-service elementary teachers' understanding of scientific inquiry and its role in school science

    Science.gov (United States)

    Macaroglu, Esra

    The purpose of this research was to explore pre-service elementary teachers' developing understanding of scientific inquiry within the context of their elementary science teaching and learning. More specifically, the study examined 24 pre-service elementary teachers' emerging understanding of (1) the nature of science and scientific inquiry; (2) the "place" of scientific inquiry in school science; and (3) the roles and responsibilities of teachers and students within an inquiry-based learning environment. Data sources consisted primarily of student-generated artifacts collected throughout the semester, including pre/post-philosophy statements and text-based materials collected from electronic dialogue journals. Individual data sources were open-coded to identify concepts and categories expressed by students. Cross-comparisons were conducted and patterns were identified. Assertions were formed with these patterns. Findings are hopeful in that they suggest pre-service teachers can develop a more contemporary view of scientific inquiry when immersed in a context that promotes this perspective. Not surprisingly, however, the prospective teachers encountered a number of barriers when attempting to translate their emerging ideas into practice. More research is needed to determine which teacher preparation experiences are most powerful in supporting pre-service teachers as they construct a framework for science teaching and learning that includes scientific inquiry as a central component.

  13. Learner Characteristics and Understanding Nature of Science. Is There an Association?

    Science.gov (United States)

    Çetinkaya-Aydın, Gamze; Çakıroğlu, Jale

    2017-11-01

    The purpose of this study was to investigate the possible associations between preservice science teachers' understanding of nature of science and their learner characteristics; understanding of nature of scientific inquiry, science teaching self-efficacy beliefs, metacognitive awareness level, and faith/worldview schemas. The sample of the current study was 60 3rd-year preservice science teachers enrolled in the Nature of Science and History of Science course. Using a descriptive and associational case study design, data were collected by means of different qualitative and quantitative questionnaires. Analysis of the data revealed that preservice science teachers' understanding of nature of science and nature of scientific inquiry were highly associated. Similarly, science teaching self-efficacy beliefs, metacognitive awareness levels, and faith/worldviews of the preservice science teachers were found to be significantly associated with their understanding of nature of science. Thus, it can be concluded that there might be other factors interfering with the learning processes of nature of science.

  14. Teaching science for public understanding: Developing decision-making abilities

    Science.gov (United States)

    Siegel, Marcelle A.

    significant gains (p = .06) according to the Rasch analysis. A measure of students' understanding of coherent argumentation was correlated with higher decision posttest scores. Over time, both classes significantly regarded science as being more relevant to everyday life. Students' attitudes about ability showed insignificant changes.

  15. The understanding of core pharmacological concepts among health care students in their final semester.

    Science.gov (United States)

    Aronsson, Patrik; Booth, Shirley; Hägg, Staffan; Kjellgren, Karin; Zetterqvist, Ann; Tobin, Gunnar; Reis, Margareta

    2015-12-29

    The overall aim of the study was to explore health care students´ understanding of core concepts in pharmacology. An interview study was conducted among twelve students in their final semester of the medical program (n = 4), the nursing program (n = 4), and the specialist nursing program in primary health care (n = 4) from two Swedish universities. The participants were individually presented with two pharmacological clinically relevant written patient cases, which they were to analyze and propose a solution to. Participants were allowed to use the Swedish national drug formulary. Immediately thereafter the students were interviewed about their assessments. The interviews were audio-recorded and transcribed verbatim. A thematic analysis was used to identify units of meaning in each interview. The units were organized into three clusters: pharmacodynamics, pharmacokinetics, and drug interactions. Subsequent procedure consisted of scoring the quality of students´ understanding of core concepts. Non-parametric statistics were employed. The study participants were in general able to define pharmacological concepts, but showed less ability to discuss the meaning of the concepts in depth and to implement these in a clinical context. The participants found it easier to grasp concepts related to pharmacodynamics than pharmacokinetics and drug interactions. These results indicate that education aiming to prepare future health care professionals for understanding of more complex pharmacological reasoning and decision-making needs to be more focused and effective.

  16. Assessing middle school students` understanding of science relationships and processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schau, C.; Mattern, N.; Weber, R. [Univ. of New Nexico, Albuquerque, NM (United States); Minnick, K. [Minnick & Associates, Inc., Albuquerque, NM (United States)

    1994-09-01

    Our overall goal for this multi-year project is to develop and validate an alternative assessment format that effectively measures middle school students understanding of the relationships among selected science concepts and processes. In this project, we collaborate with the staff of the Los Alamos National Laboratory`s TOPS Program and the Programs participating teachers and their students. We also work with selected middle school science teachers from the TOPS program at Sandia National Laboratories. Our goal for this past year was to develop and field test informally a variety of potential measurement formats. This work has allowed us to identify formats to test during the validation phase of the project which will occur during the second year.

  17. Understanding Science and Technology Interactions Through Ocean Science Exploration: A Summer Course for Science Teachers

    Science.gov (United States)

    Baldauf, J.; Denton, J.

    2003-12-01

    In order to replenish the national supply of science and mathematics educators, the National Science Foundation has supported the formation of the Center for Applications of Information Technology in the Teaching and Learning of Science (ITS) at Texas A&M University. The center staff and affiliated faculty work to change in fundamental ways the culture and relationships among scientists, educational researchers, and teachers. ITS is a partnership among the colleges of education, science, geosciences, agriculture and life science at Texas A&M University. Participants (teachers and graduate students) investigate how science is done and how science is taught and learned; how that learning is assessed, and how scholarly networks among all engaged in this work can be encouraged. While the center can offer graduate degrees most students apply as non-degree seekers. ITS participants are schooled on classroom technology applications, experience working on project teams, and access very current research work being conducted by scientists. ITS offers a certificate program consisting of two summer sessions over two years that results in 12 hours of graduate credit that can be applied to a degree. Interdisciplinary project teams spend three intense weeks connecting current research to classroom practices. During the past summer with the beginning of the two-year sequence, a course was implemented that introduced secondary teachers to Ocean Drilling Program (ODP) contributions to major earth science themes, using core and logging data, engineering (technology) tools and processes. Information Technology classroom applications were enhanced through hands-on laboratory exercises, web resources and online databases. The course was structured around the following objectives. 1. Distinguish the purpose and goals of the Ocean Drilling Program from the Integrated Ocean Drilling Program and describe the comparable science themes (ocean circulation, marine sedimentation, climate history

  18. Promoting Climate Literacy and Conceptual Understanding among In-service Secondary Science Teachers requires an Epistemological Perspective

    Science.gov (United States)

    Bhattacharya, D.; Forbes, C.; Roehrig, G.; Chandler, M. A.

    2017-12-01

    Promoting climate literacy among in-service science teachers necessitates an understanding of fundamental concepts about the Earth's climate System (USGCRP, 2009). Very few teachers report having any formal instruction in climate science (Plutzer et al., 2016), therefore, rather simple conceptions of climate systems and their variability exist, which has implications for students' science learning (Francies et al., 1993; Libarkin, 2005; Rebich, 2005). This study uses the inferences from a NASA Innovations in Climate Education (NICE) teacher professional development program (CYCLES) to establish the necessity for developing an epistemological perspective among teachers. In CYCLES, 19 middle and high school (male=8, female=11) teachers were assessed for their understanding of global climate change (GCC). A qualitative analysis of their concept maps and an alignment of their conceptions with the Essential Principles of Climate Literacy (NOAA, 2009) demonstrated that participants emphasized on EPCL 1, 3, 6, 7 focusing on the Earth system, atmospheric, social and ecological impacts of GCC. However, EPCL 4 (variability in climate) and 5 (data-based observations and modeling) were least represented and emphasized upon. Thus, participants' descriptions about global climatic patterns were often factual rather than incorporating causation (why the temperatures are increasing) and/or correlation (describing what other factors might influence global temperatures). Therefore, engaging with epistemic dimensions of climate science to understand the processes, tools, and norms through which climate scientists study the Earth's climate system (Huxter et al., 2013) is critical for developing an in-depth conceptual understanding of climate. CLiMES (Climate Modeling and Epistemology of Science), a NSF initiative proposes to use EzGCM (EzGlobal Climate Model) to engage students and teachers in designing and running simulations, performing data processing activities, and analyzing

  19. Using the Tower of Hanoi Puzzle to Infuse Your Mathematics Classroom with Computer Science Concepts

    Science.gov (United States)

    Marzocchi, Alison S.

    2016-01-01

    This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi…

  20. A Comparison of Key Concepts in Data Analytics and Data Science

    Science.gov (United States)

    McMaster, Kirby; Rague, Brian; Wolthuis, Stuart L.; Sambasivam, Samuel

    2018-01-01

    This research study provides an examination of the relatively new fields of Data Analytics and Data Science. We compare word rates in Data Analytics and Data Science documents to determine which concepts are mentioned most often. The most frequent concept in both fields is "data." The word rate for "data" is more than twice the…

  1. What Are the Roles that Children's Drawings Play in Inquiry of Science Concepts?

    Science.gov (United States)

    Chang, Ni

    2012-01-01

    This study was designed to identify the roles that drawing played in the process of children's acquisition of science concepts. Seventy pre-service teachers through four semesters from a Midwest University in the USA developed lesson plans on science concepts and then taught them to 70 young children ages 4-7, respectively. This experience was…

  2. Relationships between Prospective Elementary Teachers' Classroom Practice and Their Conceptions of Biology and of Teaching Science.

    Science.gov (United States)

    Meyer, Helen; Tabachnick, B. Robert; Hewson, Peter W.; Lemberger, John; Park, Hyun-Ju

    1999-01-01

    Discusses three prospective elementary teachers' conceptions of teaching science and selected portions of their knowledge base in life science. Explores how these teachers' conceptions, along with their teaching actions, developed during the course of a teacher-education program. Contains 21 references. (Author/WRM)

  3. Investigating the Interrelationships among Conceptions of, Approaches to, and Self-Efficacy in Learning Science

    Science.gov (United States)

    Zheng, Lanqin; Dong, Yan; Huang, Ronghuai; Chang, Chun-Yen; Bhagat, Kaushal Kumar

    2018-01-01

    The purpose of this study was to examine the relations between primary school students' conceptions of, approaches to, and self-efficacy in learning science in Mainland China. A total of 1049 primary school students from Mainland China participated in this study. Three instruments were adapted to measure students' conceptions of learning science,…

  4. Using Guided Reinvention to Develop Teachers' Understanding of Hypothesis Testing Concepts

    Science.gov (United States)

    Dolor, Jason; Noll, Jennifer

    2015-01-01

    Statistics education reform efforts emphasize the importance of informal inference in the learning of statistics. Research suggests statistics teachers experience similar difficulties understanding statistical inference concepts as students and how teacher knowledge can impact student learning. This study investigates how teachers reinvented an…

  5. The Effect of Various Media Scaffolding on Increasing Understanding of Students' Geometry Concepts

    Science.gov (United States)

    Sutiarso, Sugeng; Coesamin, M.; Nurhanurawati

    2018-01-01

    This study is a quasi-experimental research with pretest-posttest control group design, which aims to determine (1) the tendency of students in using various media scaffolding based on gender, and (2) effect of media scaffolding on increasing understanding of students' geometry concepts. Media scaffolding used this study is chart, props, and…

  6. Understanding the Nernst Equation and Other Electrochemical Concepts: An Easy Experimental Approach for Students

    Science.gov (United States)

    Vidal-Iglesias, Francisco J.; Solla-Gullon, Jose; Rodes, Antonio; Herrero, Enrique; Aldaz, Antonio

    2012-01-01

    The goal of the present laboratory experiment is to deepen the understanding of the Nernst equation and some other concepts that are essential in electrochemistry. In this practical laboratory session, students first learn that the equilibrium potential of an electrode is related to the difference between two equilibrium inner electric potentials…

  7. Students' Understanding of Genetics Concepts: The Effect of Reasoning Ability and Learning Approaches

    Science.gov (United States)

    Kiliç, Didem; Saglam, Necdet

    2014-01-01

    Students tend to learn genetics by rote and may not realise the interrelationships in daily life. Because reasoning abilities are necessary to construct relationships between concepts and rote learning impedes the students' sound understanding, it was predicted that having high level of formal reasoning and adopting meaningful learning orientation…

  8. The Collaboration of Cooperative Learning and Conceptual Change: Enhancing the Students' Understanding of Chemical Bonding Concepts

    Science.gov (United States)

    Eymur, Gülüzar; Geban, Ömer

    2017-01-01

    The main purpose of this study was to investigate the effects of cooperative learning based on conceptual change approach instruction on ninth-grade students' understanding in chemical bonding concepts compared to traditional instruction. Seventy-two ninth-grade students from two intact chemistry classes taught by the same teacher in a public high…

  9. Determination of Factors Related to Students' Understandings of Heat, Temperature and Internal Energy Concepts

    Science.gov (United States)

    Gurcay, Deniz; Gulbas, Etna

    2018-01-01

    The purpose of this research is to investigate the relationships between high school students' learning approaches and logical thinking abilities and their understandings of heat, temperature and internal energy concepts. Learning Approach Questionnaire, Test of Logical Thinking and Three-Tier Heat, Temperature and Internal Energy Test were used…

  10. Comparing Two Types of Diagnostic Items to Evaluate Understanding of Heat and Temperature Concepts

    Science.gov (United States)

    Chu, Hye-Eun; Chandrasegaran, A. L.; Treagust, David F.

    2018-01-01

    The purpose of this research was to investigate an efficient method to assess year 8 (age 13-14) students' conceptual understanding of heat and temperature concepts. Two different types of instruments were used in this study: Type 1, consisting of multiple-choice items with open-ended justifications; and Type 2, consisting of two-tier…

  11. Effect of Conceptual Change Approach on Students' Understanding of Reaction Rate Concepts

    Science.gov (United States)

    Kingir, Sevgi; Geban, Omer

    2012-01-01

    The purpose of the present study was to investigate the effect of conceptual change text oriented instruction compared to traditional instruction on 10th grade students' understanding of reaction rate concepts. 45 students from two classes of the same teacher in a public high school participated in this study. Students in the experimental group…

  12. Understanding the Concept of Food Sovereignty Using the Ghana School Feeding Program

    NARCIS (Netherlands)

    Quaye, W.; Ruivenkamp, G.T.P.; Frempong, G.; Essegbey, G.

    2010-01-01

    This article deepens the understanding of the emerging food sovereignty concept using a case study of a home-grown school feeding programme that promotes local food demand - supply linkages. A school feeding programme in four selected districts in Ghana is analysed with respect to community

  13. A Mixed Methods Analysis of Students' Understanding of Slope and Derivative Concepts and Students' Mathematical Dispositions

    Science.gov (United States)

    Patel, Rita Manubhai

    2013-01-01

    This dissertation examined understanding of slope and derivative concepts and mathematical dispositions of first-semester college calculus students, who are recent high school graduates, transitioning to university mathematics. The present investigation extends existing research in the following ways. First, based on this investigation, the…

  14. Building Students' Understanding of Quadratic Equation Concept Using Naïve Geometry

    Science.gov (United States)

    Fachrudin, Achmad Dhany; Putri, Ratu Ilma Indra; Darmawijoyo

    2014-01-01

    The purpose of this research is to know how Naïve Geometry method can support students' understanding about the concept of solving quadratic equations. In this article we will discuss one activities of the four activities we developed. This activity focused on how students linking the Naïve Geometry method with the solving of the quadratic…

  15. The Precalculus Concept Assessment: A Tool for Assessing Students' Reasoning Abilities and Understandings

    Science.gov (United States)

    Carlson, Marilyn; Oehrtman, Michael; Engelke, Nicole

    2010-01-01

    This article describes the development of the Precalculus Concept Assessment (PCA) instrument, a 25-item multiple-choice exam. The reasoning abilities and understandings central to precalculus and foundational for beginning calculus were identified and characterized in a series of research studies and are articulated in the PCA Taxonomy. These…

  16. Conceptual Understanding of Acids and Bases Concepts and Motivation to Learn Chemistry

    Science.gov (United States)

    Cetin-Dindar, Ayla; Geban, Omer

    2017-01-01

    The purpose of this study was to investigate the effect of 5E learning cycle model oriented instruction (LCMI) on 11th-grade students' conceptual understanding of acids and bases concepts and student motivation to learn chemistry. The study, which lasted for 7 weeks, involved two groups: An experimental group (LCMI) and a control group (the…

  17. Social Studies Student Teachers' Levels of Understanding Sociology Concepts within Social Studies Curriculum

    Science.gov (United States)

    Karatekin, Kadir

    2013-01-01

    This study aims at investigating social studies student teachers' levels of understanding sociology concepts within social studies curriculum. Study group of the research consists of 266 teacher candidates attending the Department of Social Studies, Faculty of Education, Kastamonu University during 2012 to 2013 education year. A semi-structured…

  18. Integrating international relations and environmental science course concepts through an interactive world politics simulation

    Science.gov (United States)

    Straub, K. H.; Kesgin, B.

    2012-12-01

    During the fall 2012 semester, students in two introductory courses at Susquehanna University - EENV:101 Environmental Science and POLI:131 World Affairs - will participate together in an online international relations simulation called Statecraft (www.statecraftsim.com). In this strategy game, students are divided into teams representing independent countries, and choose their government type (democracy, constitutional monarchy, communist totalitarian, or military dictatorship) and two country attributes (industrial, green, militaristic, pacifist, or scientific), which determine a set of rules by which that country must abide. Countries interact over issues such as resource distribution, war, pollution, immigration, and global climate change, and must also keep domestic political unrest to a minimum in order to succeed in the game. This simulation has typically been run in political science courses, as the goal is to allow students to experience the balancing act necessary to maintain control of global and domestic issues in a dynamic, diverse world. This semester, environmental science students will be integrated into the simulation, both as environmental advisers to each country and as independent actors representing groups such as Greenpeace, ExxonMobil, and UNEP. The goal in integrating the two courses in the simulation is for the students in each course to gain both 1) content knowledge of certain fundamental material in the other course, and 2) a more thorough, applied understanding of the integrated nature of the two subjects. Students will gain an appreciation for the multiple tradeoffs that decision-makers must face in the real world (economy, resources, pollution, health, defense, etc.). Environmental science students will link these concepts to the traditional course material through a "systems thinking" approach to sustainability. Political science students will face the challenges of global climate change and gain an understanding of the nature of

  19. Understanding the Influence of Learners' Forethought on Their Use of Science Study Strategies in Postsecondary Science Learning

    Science.gov (United States)

    Dunn, Karee E.; Lo, Wen-Juo

    2015-01-01

    Understanding self-regulation in science learning is important for theorists and practitioners alike. However, very little has been done to explore and understand students' self-regulatory processes in postsecondary science courses. In this study, the influence of science efficacy, learning value, and goal orientation on the perceived use of…

  20. How Role Play Addresses the Difficulties Students Perceive when Writing Reflectively about the Concepts They are Learning in Science

    Science.gov (United States)

    Millar, Susan

    A fundamental problem which confronts Science teachers is the difficulty many students experience in the construction, understanding and remembering of concepts. This is more likely to occur when teachers adhere to a Transmission model of teaching and learning, and fail to provide students with opportunities to construct their own learning. Social construction, followed by individual reflective writing, enables students to construct their own understanding of concepts and effectively promotes deep learning. This method of constructing knowledge in the classroom is often overlooked by teachers as they either have no knowledge of it, or do not know how to appropriate it for successful teaching in Science. This study identifies the difficulties which students often experience when writing reflectively and offers solutions which are likely to reduce these difficulties. These solutions, and the use of reflective writing itself, challenge the ideology of the Sydney Genre School, which forms the basis of the attempt to deal with literacy in the NSW Science Syllabus. The findings of this investigation support the concept of literacy as the ability to use oral and written language, reading and listening to construct meaning. The investigation demonstrates how structured discussion, role play and reflective writing can be used to this end. While the Sydney Genre School methodology focuses on the structure of genre as a prerequisite for understanding concepts in Science, the findings of this study demonstrate that students can use their own words to discuss and write reflectively as they construct scientific concepts for themselves. Social construction and reflective writing can contribute to the construction of concepts and the development of metacognition in Science. However, students often experience difficulties when writing reflectively about scientific concepts they are learning. In this investigation, students identified these difficulties as an inability to understand

  1. Science Shops - a concept for community based learning

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Hende, Merete

    2001-01-01

    Experience from science shops show that besides assisting citizen groups, science shops can also contribute to the development of university curricula and research. The paper is based on an investigation of the impact of science shops on university curricula and research through a questionnaire...... sent out to science shops and through follow-up interviews with employees from nine different university based science shops. These science shops had in the questionnaire indicated that the science shop in one way or the other has had impact on university curricula and/or research. This paper focuses...... on the impact on university curricula. The case studies have been supplemented with articles and reports. The analysis has focused on the kind of impact, which the science shops have reported, and has tried to relate the impact to the local history of the science shop. One direct impact on the curricula...

  2. Effect of a Problem Based Simulation on the Conceptual Understanding of Undergraduate Science Education Students

    Science.gov (United States)

    Kumar, David Devraj; Sherwood, Robert D.

    2007-01-01

    A study of the effect of science teaching with a multimedia simulation on water quality, the "River of Life," on the science conceptual understanding of students (N = 83) in an undergraduate science education (K-9) course is reported. Teaching reality-based meaningful science is strongly recommended by the National Science Education Standards…

  3. Concept Communication and Interpretation of Illness: A Holistic Model of Understanding in Nursing Practice.

    Science.gov (United States)

    Nordby, Halvor

    To ensure patient communication in nursing, certain conditions must be met that enable successful exchange of beliefs, thoughts, and other mental states. The conditions that have received most attention in the nursing literature are derived from general communication theories, psychology, and ethical frameworks of interpretation. This article focuses on a condition more directly related to an influential coherence model of concept possession from recent philosophy of mind and language. The basic ideas in this model are (i) that the primary source of understanding of illness experiences is communicative acts that express concepts of illness, and (ii) that the key to understanding patients' concepts of illness is to understand how they depend on patients' lifeworlds. The article argues that (i) and (ii) are especially relevant in caring practice since it has been extensively documented that patients' perspectives on disease and illness are shaped by their subjective horizons. According to coherentism, nurses need to focus holistically on patients' horizons in order to understand the meaning of patients' expressions of meaning. Furthermore, the coherence model implies that fundamental aims of understanding can be achieved only if nurses recognize the interdependence of patients' beliefs and experiences of ill health. The article uses case studies to elucidate how the holistic implications of coherentism can be used as conceptual tools in nursing.

  4. Exploring children's understanding of death: through drawings and the Death Concept Questionnaire.

    Science.gov (United States)

    Bonoti, Fotini; Leondari, Angeliki; Mastora, Adelais

    2013-01-01

    To investigate whether children's understanding of the concept of death varies as a function of death experience and age, 52 children aged 7, 9, and 11 years (26 had a personal death experience), drew a picture reflecting the meaning of the word death and completed the Death Concept Questionnaire for examination of Human and Animal Death. The results showed that the 2 methodological tools used offered complementary information and that children's understanding of death is related both to age and past experience. Children with death experience seem to have a more realistic understanding of death than their inexperienced age-mates. As regards to the effect of age, our findings support the assumption that the different components of death develop through different processes.

  5. Photoelectric effect experiment for understanding the concept of quantization of radiation energy

    Directory of Open Access Journals (Sweden)

    Yeimy Gerardine Berrios Saavedra

    2016-09-01

    Full Text Available This study forms part of research on the teaching of physics. The question that directed it was: How a proposed classroom, based on the photoelectric effect experiment helps pres-service teachers of physics of the Universidad Pedagógica Nacional to expand their understanding of the concept of quantization energy of radiation? The construction of the theoretical framework developed on the one hand, with scientific ideas about the quantization of energy, and moreover, with the educational proposals of teaching for understanding. This pedagogical approach was guided by the investigative gaze of the study methodology based on design, taking as main element the use of learning tools such as the task to Predict, Experiment and Explain (PEE. It was found that these tasks fomented the initial understandings of students about the concept, while they enriched and transformed progressively their models and scientific ideas, promoting aspects of scientific work in developing curiosity, imagination and motivation.

  6. Integrating the social sciences to understand human-water dynamics

    Science.gov (United States)

    Carr, G.; Kuil, L., Jr.

    2017-12-01

    Many interesting and exciting socio-hydrological models have been developed in recent years. Such models often aim to capture the dynamic interplay between people and water for a variety of hydrological settings. As such, peoples' behaviours and decisions are brought into the models as drivers of and/or respondents to the hydrological system. To develop and run such models over a sufficiently long time duration to observe how the water-human system evolves the human component is often simplified according to one or two key behaviours, characteristics or decisions (e.g. a decision to move away from a drought or flood area; a decision to pump groundwater, or a decision to plant a less water demanding crop). To simplify the social component, socio-hydrological modellers often pull knowledge and understanding from existing social science theories. This requires them to negotiate complex territory, where social theories may be underdeveloped, contested, dynamically evolving, or case specific and difficult to generalise or upscale. A key question is therefore, how can this process be supported so that the resulting socio-hydrological models adequately describe the system and lead to meaningful understanding of how and why it behaves as it does? Collaborative interdisciplinary research teams that bring together social and natural scientists are likely to be critical. Joint development of the model framework requires specific attention to clarification to expose all underlying assumptions, constructive discussion and negotiation to reach agreement on the modelled system and its boundaries. Mutual benefits to social scientists can be highlighted, i.e. socio-hydrological work can provide insights for further exploring and testing social theories. Collaborative work will also help ensure underlying social theory is made explicit, and may identify ways to include and compare multiple theories. As socio-hydrology progresses towards supporting policy development, approaches that

  7. Effects of Jigsaw and Animation Techniques on Students' Understanding of Concepts and Subjects in Electrochemistry

    Science.gov (United States)

    Doymus, Kemal; Karacop, Ataman; Simsek, Umit

    2010-01-01

    This study investigated the effect of jigsaw cooperative learning and animation versus traditional teaching methods on students' understanding of electrochemistry in a first-year general chemistry course. This study was carried out in three different classes in the department of primary science education during the 2007-2008 academic year. The…

  8. Anthropophagy: a singular concept to understand Brazilian culture and psychology as specific knowledge.

    Science.gov (United States)

    Ferreira, Arthur Arruda Leal

    2015-11-01

    The aim of this work is to present the singularity of the concept of anthropophagy in Brazilian culture. This article examines its use in the Modernist Movement of the 1920s and explores the possibilities it creates for thinking about Brazilian culture in nonidentitarian terms. We then use the concept of anthropophagy in a broader, practical sense to understand psychology as a kind of anthropophagical knowledge. We do so because in many ways the discipline of psychology is similar to Brazilian culture in its plurality and complexity. (c) 2015 APA, all rights reserved).

  9. SKILL OF TEACHER CANDIDATES IN INTEGRATING THE CONCEPT OF SCIENCE WITH LOCAL WISDOM

    Directory of Open Access Journals (Sweden)

    Parmin -

    2015-11-01

    Full Text Available Learning science is not limited to reviewing the concepts, but strengthens the identity of a nation that has a diversity of cultures. Science learning objectives that have been set in Indonesia, including the student is able to apply the science wisely, to maintain and preserve the cultural survival. The study aims to measure students' ability to relate concepts of science with local knowledge to use mind maps compiled individually. The results showed that 85% of teacher candidates are able to determine the relationship of science and local knowledge correctly. The ability to link the two domains, through the literature review, observation and interviews.

  10. Science to support the understanding of Ohio's water resources

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  11. Undergraduate Students' Earth Science Learning: Relationships among Conceptions, Approaches, and Learning Self-Efficacy in Taiwan

    Science.gov (United States)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-01-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to…

  12. Understanding science teacher enhancement programs: Essential components and a model

    Science.gov (United States)

    Spiegel, Samuel Albert

    perspectives influence and are examined across three settings, program, individual, and school. An over-arching theme, namely the content focus of the program, such as the teaching and learning of science illuminate both the perspectives and the settings. While the model was developed to understand and evaluate a specific program, it is hypothesized that it can be a powerful tool for designing and implementing a variety of programs.

  13. KEY CONCEPTS OF AGROECOLOGY SCIENCE. A SYSTEMATIC REVIEW

    Directory of Open Access Journals (Sweden)

    Luis Fernando Gómez-Echeverri

    2016-08-01

    Full Text Available A systematic review was conducted with the objective of determining the key concepts that are currently used in theoretical work in agroecology. They were obtained from titles and keywords of theoretical articles and books that included the term agroecology in the title. Fifteen terms with occurrences higher than three were obtained. They show that agroecology revolves around the concept of integral sustainability, and that there is agreement on neither its object of study nor goal. As a result, most key concepts concern the object of study or the goal of agroecology. Other key concepts are food sovereignty, agriculture, ecofeminism, climate change, family farming, and social movements.

  14. Texas Science Teacher Characteristics and Conceptual Understanding of Newton's Laws of Motion

    Science.gov (United States)

    Busby, Karin Burk

    Misconceptions of Newtonian mechanics and other physical science concepts are well documented in primary and pre-service teacher populations (Burgoon, Heddle, & Duran, 2009; Allen & Coole, 2012; Kruger, Summers, & Palacio, 1990; Ginns & Watters, 1995; Trumper, 1999; Asikainen & Hirovonen, 2014). These misconceptions match the misconceptions held by students, leaving teachers ill-equipped to rectify these concepts in the classroom (Kind, 2014; Kruger et al., 1990; Cochran & Jones, 1998). Little research has been devoted to misconceptions held by in-service secondary teachers, the population responsible for teaching Newtonian mechanics. This study focuses on Texas in-service science teachers in middle school and high school science, specifically sixth grade science, seventh grade science, eighth grade science, integrated physics and chemistry, and physics teachers. This study utilizes two instruments to gauge conceptual understanding of Newton's laws of motion: the Force Concept Inventory [FCI] (Hestenes, Wells, & Swackhamer, 1992) and a custom instrument developed for the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching (Urquhart, M., e-mail, April 4, 2017). Use of each instrument had its strengths and limitations. In the initial work of this study, the FCI was given to middle and high school teacher volunteers in two urban school districts in the Dallas- Fort Worth area to assess current conceptual understanding of Newtonian mechanics. Along with the FCI, each participant was asked to complete a demographic survey. Demographic data collected included participant's sex, years of service in teaching position, current teaching position, degrees, certification type, and current certifications for science education. Correlations between variables and overall average on the FCI were determined by t-tests and ANOVA tests with a post-hoc Holm-Bonferroni correction test. Test questions pertaining to each of Newton's three laws of motion were

  15. Exploring Europa's Habitability: Science achieved from the Europa Orbiter and Clipper Mission Concepts

    Science.gov (United States)

    Senske, D. A.; Prockter, L. M.; Pappalardo, R. T.; Patterson, G. W.; Vance, S.

    2012-12-01

    Europa is a prime candidate in the search for present-day habitable environments in our solar system. Europa is unique among the large icy satellites because it probably has a saltwater ocean today beneath an ice shell that is geodynamically active. The combination of irradiation of its surface and tidal heating of its interior could make Europa a rich source of chemical energy for life. Perhaps most importantly, Europa's ocean is believed to be in direct contact with its rocky mantle, where conditions could be similar to those on Earth's biologically rich sea floor. Hydrothermal zones on Earth's seafloor are known to be rich with life, powered by energy and nutrients that result from reactions between the seawater and the warm rocky ocean floor. Life as we know it depends on three principal "ingredients": 1) a sustained liquid water environment; 2) essential chemical elements that are critical for building life; and 3) a source of energy that could be utilized by life. Europa's habitability requires understanding whether it possesses these three ingredients. NASA has enlisted a study team to consider Europa mission options feasible over the next decade, compatible with NASA's projected planetary science budget and addressing Planetary Decadal Survey priorities. Two Europa mission concepts (Orbiter and multiple flyby—call the "Clipper") are undergoing continued study with the goal to "Explore Europa to investigate its habitability." Each mission would address this goal in complementary ways, with high science value of its own. The Orbiter and Clipper architectures lend themselves to specific types of scientific measurements. The Orbiter concept is tailored to the unique geophysical science that requires being in orbit at Europa. This includes confirming the existence of an ocean and characterizing that ocean through geophysical measurements of Europa's gravitational tides and magnetic induction response. It also includes mapping of the global morphology and

  16. The value of science with all thy getting, get understanding

    CERN Multimedia

    2002-01-01

    Editorial that discusses the idea that although it is the applications of science which are most visible to people, the intrinsic value of science for its own sake, should not be forgotten (1/2 page).

  17. The influence of teachers' conceptions on their students' learning: children's understanding of sheet music.

    Science.gov (United States)

    López-Íñiguez, Guadalupe; Pozo, Juan Ignacio

    2014-06-01

    Despite increasing interest in teachers' and students' conceptions of learning and teaching, and how they influence their practice, there are few studies testing the influence of teachers' conceptions on their students' learning. This study tests how teaching conception (TC; with a distinction between direct and constructive) influences students' representations regarding sheet music. Sixty students (8-12 years old) from music conservatories: 30 of them took lessons with teachers with a constructive TC and another 30 with teachers shown to have a direct TC. Children were given a musical comprehension task in which they were asked to select and rank the contents they needed to learn. These contents had different levels of processing and complexity: symbolic, analytical, and referential. Three factorial ANOVAs, two-one-way ANOVAs, and four 2 × 3 repeated-measures ANOVAs were used to analyse the effects of and the interaction between the independent variables TC and class, both for/on total cards selected, their ranking, and each sub-category (the three processing levels). ANOVAs on the selection and ranking of these contents showed that teachers' conceptions seem to mediate significantly in the way the students understand the music. Students from constructive teachers have more complex and deep understanding of music. They select more elements for learning scores than those from traditional teachers. Teaching conception also influences the way in which children rank those elements. No difference exists between the way 8- and 12-year-olds learn scores. Children's understanding of the scores is more complex than assumed in other studies. © 2013 The British Psychological Society.

  18. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Richard Burnite [General Atomics; McLean, Harry M. [Lawrence Livermore National Laboratory; Theobald, Wolfgang [Laboratory for Laser Energetics; Akli, Kramer U. [The Ohio State University; Beg, Farhat N. [University of California, San Diego; Sentoku, Yasuhiko [University of Nevada, Reno; Schumacher, Douglass W. [The Ohio State University; Wei, Mingsheng [General Atomics

    2013-09-04

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density

  19. Understanding the concept of resolving power in the Fabry-Perot interferometer using a digital simulation

    International Nuclear Information System (INIS)

    Juvells, I; Carnicer, A; Ferre-Borrull, J; MartIn-Badosa, E; Montes-Usategui, M

    2006-01-01

    The resolution concept in connection with the Fabry-Perot interferometer is difficult to understand for undergraduate students enrolled in physical optics courses. The resolution criterion proposed in textbooks for distinguishing equal intensity maxima and the deduction of the resolving power equation is formal and non-intuitive. In this paper, we study the practical meaning of the resolution criterion and resolution power using a computer simulation of a Fabry-Perot interferometer. The light source in the program has two monochromatic components, the wavelength difference being tunable by the user. The student can also adjust other physical parameters so as to obtain different simulation results. By analysing the images and graphics of the simulation, the resolving power concept becomes intuitive and understandable

  20. Students concept understanding of fluid static based on the types of teaching

    Science.gov (United States)

    Rahmawati, I. D.; Suparmi; Sunarno, W.

    2018-03-01

    This research aims to know the concept understanding of student are taught by guided inquiry based learning and conventional based learning. Subjects in this study are high school students as much as 2 classes and each class consists of 32 students, both classes are homogen. The data was collected by conceptual test in the multiple choice form with the students argumentation of the answer. The data analysis used is qualitative descriptive method. The results of the study showed that the average of class that was using guided inquiry based learning is 78.44 while the class with use conventional based learning is 65.16. Based on these data, the guided inquiry model is an effective learning model used to improve students concept understanding.

  1. Understanding the Science-Learning Environment: A Genetically Sensitive Approach

    Science.gov (United States)

    Haworth, Claire M. A.; Davis, Oliver S. P.; Hanscombe, Ken B.; Kovas, Yulia; Dale, Philip S.; Plomin, Robert

    2013-01-01

    Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000…

  2. The Influence of Argumentation on Understanding Nature of Science

    Science.gov (United States)

    Boran, Gül Hanim; Bag, Hüseyin

    2016-01-01

    The aim in conducting this study is to explore the effects of argumentation on pre-service science teachers' views of the nature of science. This study used a qualitative case study and conducted with 20 pre-service science teachers. Data sources include an open-ended questionnaire and audio-taped interviews. According to pretest and posttest…

  3. The concepts of nanotechnology as a part of physics education in high school and in interactive science museum

    Science.gov (United States)

    Kolářová, Lucie; Rálišová, Ema

    2017-01-01

    The advancements in nanotechnology especially in medicine and in developing new materials offer interesting possibilities for our society. It is not only scientists and engineers who need a better understanding of these new technologies but it is also important to prepare the young people and the general public on impact of nanotechnology on their life. Knowledge from this field likewise provides the opportunities to engage and motivate high school students for the study of science. Although, the concepts of nanoscience and nanotechnology are not a part of Czech high school physics curriculum they can be successfully integrated into regular curriculum in appropriate places. Because it is an interdisciplinary field, it also provides an opportunity for the interdisciplinary connections of physics, chemistry and biology. Many concepts for understanding the nanoworld can be shown by the simple activities and experiments and it is not a problem to demonstrate these experiments in each classroom. This paper presents the proposal for integration of the concepts of nanoscience and nanotechnologies into the high school physics curriculum, and the involvement of some of these concepts into the instructional program for middle and high school students which was realized in interactive science museum Fort Science in Olomouc. As a part of the program there was a quantitative questionnaire and its goal was to determine the effectiveness of the program and how students are satisfied with it.

  4. Students’ understanding and application of the area under the curve concept in physics problems

    Directory of Open Access Journals (Sweden)

    Dong-Hai Nguyen

    2011-06-01

    Full Text Available This study investigates how students understand and apply the area under the curve concept and the integral-area relation in solving introductory physics problems. We interviewed 20 students in the first semester and 15 students from the same cohort in the second semester of a calculus-based physics course sequence on several problems involving the area under the curve concept. We found that only a few students could recognize that the concept of area under the curve was applicable in physics problems. Even when students could invoke the area under the curve concept, they did not necessarily understand the relationship between the process of accumulation and the area under a curve, so they failed to apply it to novel situations. We also found that when presented with several graphs, students had difficulty in selecting the graph such that the area under the graph corresponded to a given integral, although all of them could state that “the integral equaled the area under the curve.” The findings in this study are consistent with those in previous mathematics education research and research in physics education on students’ use of the area under the curve.

  5. Designing learning apparatus to promote twelfth grade students’ understanding of digital technology concept: A preliminary studies

    Science.gov (United States)

    Marlius; Kaniawati, I.; Feranie, S.

    2018-05-01

    A preliminary learning design using relay to promote twelfth grade student’s understanding of logic gates concept is implemented to see how well it’s to adopted by six high school students, three male students and three female students of twelfth grade. This learning design is considered for next learning of digital technology concept i.e. data digital transmition and analog. This work is a preliminary study to design the learning for large class. So far just a few researches designing learning design related to digital technology with relay. It may due to this concept inserted in Indonesian twelfth grade curriculum recently. This analysis is focus on student difficulties trough video analysis to learn the concept. Based on our analysis, the recommended thing for redesigning learning is: students understand first about symbols and electrical circuits; the Student Worksheet is made in more detail on the assembly steps to the project board; mark with symbols at points in certain places in the circuit for easy assembly; assembly using relays by students is enough until is the NOT’s logic gates and the others that have been assembled so that effective time. The design of learning using relays can make the relay a liaison between the abstract on the digital with the real thing of it, especially in the circuit of symbols and real circuits. Besides it is expected to also enrich the ability of teachers in classroom learning about digital technology.

  6. Moral distress: a comparative analysis of theoretical understandings and inter-related concepts.

    Science.gov (United States)

    Lützén, Kim; Kvist, Beatrice Ewalds

    2012-03-01

    Research on ethical dilemmas in health care has become increasingly salient during the last two decades resulting in confusion about the concept of moral distress. The aim of the present paper is to provide an overview and a comparative analysis of the theoretical understandings of moral distress and related concepts. The focus is on five concepts: moral distress, moral stress, stress of conscience, moral sensitivity and ethical climate. It is suggested that moral distress connects mainly to a psychological perspective; stress of conscience more to a theological-philosophical standpoint; and moral stress mostly to a physiological perspective. Further analysis indicates that these thoughts can be linked to the concepts of moral sensitivity and ethical climate through a relationship to moral agency. Moral agency comprises a moral awareness of moral problems and moral responsibility for others. It is suggested that moral distress may serve as a positive catalyst in exercising moral agency. An interdisciplinary approach in research and practice broadens our understanding of moral distress and its impact on health care personnel and patient care.

  7. Displays for promotion of public understanding of geological repository concept and the spatial scale

    International Nuclear Information System (INIS)

    Shobu, Nobuhiro; Kashiwazaki, Hiroshi

    2003-05-01

    Japan Nuclear Cycle Development Institutes (JNC) has a few thousands of short term visitors to Geological Isolation Basic Research Facility of Tokai works in every year. From the viewpoint of promotion of the visitor's understanding and also smooth communication between researchers and visitors, the explanation of the technical information on geological disposal should be carried out in more easily understandable methods, as well as conventional tour to the engineering-scale test facility (ENTRY). This paper reports on the background information and the appearance of displays, which were installed at ENTRY, to promote public understanding of geological repository concept and the spatial scale. They have been practically used as one of the explanation tools to support visitor's understanding. (author)

  8. Predicting Turkish Preservice Elementary Teachers' Orientations to Teaching Science with Epistemological Beliefs, Learning Conceptions, and Learning Approaches in Science

    Science.gov (United States)

    Sahin, Elif Adibelli; Deniz, Hasan; Topçu, Mustafa Sami

    2016-01-01

    The present study investigated to what extent Turkish preservice elementary teachers' orientations to teaching science could be explained by their epistemological beliefs, conceptions of learning, and approaches to learning science. The sample included 157 Turkish preservice elementary teachers. The four instruments used in the study were School…

  9. The Relationship between Science Achievement and Self-Concept among Gifted Students from the Third International Earth Science Olympiad

    Science.gov (United States)

    Chang, Chun-Yen; Lin, Pei-Ling

    2017-01-01

    This study investigated the relationship between gifted students' academic self-concept (ASC) and academic achievement (AC) in earth science with internationally representative high-school students from the third International Earth Science Olympiad (IESO) held in Taiwan in 2009. The results of regression analysis indicated that IESO students' ASC…

  10. Changing Preservice Science Teachers' Views of Nature of Science: Why Some Conceptions May Be More Easily Altered than Others

    Science.gov (United States)

    Mesci, Gunkut; Schwartz, Renee' S.

    2017-01-01

    The purpose of this study was to assess preservice teachers' views of Nature of Science (NOS), identify aspects that were challenging for conceptual change, and explore reasons why. This study particularly focused on why and how some concepts of NOS may be more easily altered than others. Fourteen preservice science teachers enrolled in a NOS and…

  11. Teaching Map Concepts in Social Science Education; an Evaluation with Undergraduate Students

    Science.gov (United States)

    Bugdayci, Ilkay; Zahit Selvi, H.

    2017-12-01

    One of the most important aim of the geography and social science courses is to gain the ability of reading, analysing and understanding maps. There are a lot of themes related with maps and map concepts in social studies education. Geographical location is one of the most important theme. Geographical location is specified by geographical coordinates called latitude and longitude. The geographical coordinate system is the primary spatial reference system of the earth. It is always used in cartography, in geography, in basic location calculations such as navigation and surveying. It’s important to support teacher candidates, to teach maps and related concepts. Cartographers also have important missions and responsibilities in this context. The purpose of this study is to evaluate the knowledge of undergraduate students, about the geographical location. For this purpose, a research has been carried out on questions and activities related to geographical location and related concepts. The details and results of the research conducted by the students in the study are explained.

  12. A Thai pre-service teacher's understanding of nature of science in biology teaching

    Science.gov (United States)

    Srisawat, Akkarawat; Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This study was conducted on the effect of understanding and instruction of the nature of science of Ms. Wanida, a pre-service student under science education program in biology, Faculty of Education, Khon Kaen University. Wanida was a teaching practicum student majoring in biology at Khon Kaen University Demonstration School (Modindaeng). She was teaching biology for 38 Grade 10 students. Methodology regarded interpretive paradigm. The study aimed to examine 1) Wanida's understanding of the nature of science, 2) Wanida's instruction of the nature of science, 3 students' understanding of the nature of science from Wanida's instruction, and 4) the effects of Wanida's understanding and instruction of the nature of science on students' understanding of the nature of science from Wanida's instruction. Tools of interpretation included teaching observation, a semi-structured interview, open-ended questionnaire, and an observation record form for the instruction of the nature of science. The data obtained was interpreted, encoded, and classified, using the descriptive statistics. The findings indicated that Wanida held good understanding of the nature of science. She could apply the deficient nature of science approach mostly, followed by the implicit nature of science approach. Unfortunately, she could not show her teaching as explicit nature of science. However, her students' the understanding of the nature of science was good.

  13. Test of understanding of vectors: A reliable multiple-choice vector concept test

    Science.gov (United States)

    Barniol, Pablo; Zavala, Genaro

    2014-06-01

    In this article we discuss the findings of our research on students' understanding of vector concepts in problems without physical context. First, we develop a complete taxonomy of the most frequent errors made by university students when learning vector concepts. This study is based on the results of several test administrations of open-ended problems in which a total of 2067 students participated. Using this taxonomy, we then designed a 20-item multiple-choice test [Test of understanding of vectors (TUV)] and administered it in English to 423 students who were completing the required sequence of introductory physics courses at a large private Mexican university. We evaluated the test's content validity, reliability, and discriminatory power. The results indicate that the TUV is a reliable assessment tool. We also conducted a detailed analysis of the students' understanding of the vector concepts evaluated in the test. The TUV is included in the Supplemental Material as a resource for other researchers studying vector learning, as well as instructors teaching the material.

  14. Dienes AEM as an alternative mathematics teaching aid to enhance Indonesian students’ understanding of algebra concept

    Science.gov (United States)

    Soro, S.; Maarif, S.; Kurniawan, Y.; Raditya, A.

    2018-01-01

    The aim of this study is to find out the effect of Dienes AEM (Algebra Experience Materials) on the ability of understanding concept of algebra on the senior high school student in Indonesia. This research is an experimental research with subject of all high school students in Indonesia. The samples taken were high school students in three provinces namely DKI Jakarta Province, West Java Province and Banten Province. From each province was taken senior high school namely SMA N 9 Bekasi West Java, SMA N 94 Jakarta and SMA N 5 Tangerang, Banten. The number of samples in this study was 114 high school students of tenth grade as experimental class and 115 high school students of tenth grade as control class. Learning algebra concept is needed in learning mathematics, besides it is needed especially to educate students to be able to think logically, systematically, critically, analytically, creatively, and cooperation. Therefore in this research will be developed an effective algebra learning by using Dienes AEM. The result of this research is that there is a significant influence on the students’ concept comprehension ability taught by using Dienes AEM learning as an alternative to instill the concept of algebra compared to the students taught by conventional learning. Besides, the students’ learning motivation increases because students can construct the concept of algebra with props.

  15. Learner Characteristics and Understanding Nature of Science: Is There an Association?

    Science.gov (United States)

    Çetinkaya-Aydin, Gamze; Çakiroglu, Jale

    2017-01-01

    The purpose of this study was to investigate the possible associations between preservice science teachers' understanding of nature of science and their learner characteristics; understanding of nature of scientific inquiry, science teaching self-efficacy beliefs, metacognitive awareness level, and faith/worldview schemas. The sample of the…

  16. Understanding polycystic ovary syndrome from the patient perspective: a concept elicitation patient interview study.

    Science.gov (United States)

    Martin, Mona L; Halling, Katarina; Eek, Daniel; Krohe, Meaghan; Paty, Jean

    2017-08-18

    The aim of this study was to explore the need for a new disease-specific patient reported outcome (PRO) measure for use in clinical trials of drugs designed to target the underlying causes of polycystic ovary syndrome (PCOS), and in the process contribute to our understanding of the symptoms and impacts that define the patient experience with PCOS. Semi-structured interviews were conducted in 20 women diagnosed with PCOS according to the Rotterdam criteria who had not menstruated in the previous month. The relative importance of PCOS symptoms and impact concepts to patients was determined by analyzing the frequency of their expression in the interview transcripts. These insights were compared to clinicians' perceptions of PCOS. Pain- and discomfort-related symptoms accounted for the highest proportion (27.6%) of the 735 patient expressions, although clinicians did not consider pain to be important to patients with PCOS. The most frequently expressed individual symptoms were cramping (70% of patients; 14.7% of concepts), irregular menstruation (95% of patients; 12.2% of concepts), facial hair growth (75% of patients; 10.6% of concepts), heavy bleeding (70% of patients; 8.8% of concepts), infertility (70% of patients; 5.4% of concepts), and bloating (60% of patients; 5.2% of concepts). Cramping, heavy bleeding, and bloating were not identified by clinicians as being important to patients with PCOS. The impacts most frequently reported by patients with PCOS related to emotional well-being (e.g. anxiety/stress) and coping behaviors (e.g. acne medication, hair removal). The only validated PCOS-specific PRO, the PCOSQ, does not capture some key PCOS symptoms and impacts expressed by patients with PCOS, most notably those related to pain and discomfort, bleeding intensity and coping behaviours. Furthermore, some key PCOS symptoms may be under-recognized in the clinic.

  17. Introduction: contexts and concepts of adaptability and plasticity in 20th-century plant science.

    Science.gov (United States)

    Baranski, Marci; Peirson, B R Erick

    2015-04-01

    Nowhere is the problem of understanding the complex linkages between organisms and their environments more apparent than in the science of plants. Today, efforts by scientists to predict and manage the biological consequences of shifting global and regional climates depend on understanding how organisms respond morphologically, physiologically, and behaviorally to changes in their environments. Investigating organismal "adaptability" (or "plasticity") is rarely straightforward, prompting controversy and discourse among and between ecologists and agricultural scientists. Concepts like agro-climatic adaptation, phenotypic plasticity, and genotype-environment interaction (GxE) are key to those debates, and their complex histories have imbued them with assumptions and meanings that are consequential but often opaque. This special section explores the diverse ways in which organismal adaptability has been conceptualized and investigated in the second half of the 20th century, and the multifarious political, economic, environmental, and intellectual contexts in which those conceptions have emerged and evolved. The papers in this section bring together perspectives from the histories of agriculture, population ecology, evolutionary theory, and plant physiology, cutting across Asian, North American, and British contexts. As a whole, this section highlights not only the diversity of meanings of "adaptability" and "plasticity," but also the complex linkages between those meanings, the scientific practices and technologies in which they are embedded, and the ends toward which those practices and technologies are employed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Informatics with Systems Science and Cybernetics--Concepts and Definitions.

    Science.gov (United States)

    Samuelson, Kjell

    This dictionary defines information science, computer science, systems theory, and cybernetic terms in English and provides the Swedish translation of each term. An index of Swedish terms refers the user to the page where the English equivalent and definition appear. Most of the 38 references listed are in English. (RAA)

  19. Implementing Concepts of Pharmaceutical Engineering into High School Science Classrooms

    Science.gov (United States)

    Kimmel, Howard; Hirsch, Linda S.; Simon, Laurent; Burr-Alexander, Levelle; Dave, Rajesh

    2009-01-01

    The Research Experience for Teachers was designed to help high school science teachers develop skills and knowledge in research, science and engineering with a focus on the area of pharmaceutical particulate and composite systems. The experience included time for the development of instructional modules for classroom teaching. Results of the…

  20. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    Science.gov (United States)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  1. Students’ Understanding of the Concept of Democracy and Implications for Teacher Education in Social Studies

    Directory of Open Access Journals (Sweden)

    Nora Elise Hesby Mathé

    2016-04-01

    be actively encouraged and maintained also in successful democracies. Little is known, however, about how students understand and explain democracy as a subject-specific concept. Such knowledge may be valuable for social studies teachers and teacher educators to fulfil the purpose of the social studies curriculum. The present article investigates 16-year-old students’ understanding of the concept of democracy. In social studies, the concept of democracy is essential not only for disciplinary understanding and discourse, but also for students’ out-of-school democratic participation. To investigate students’ understanding of this concept, semi-structured group interviews were conducted with a total of 23 students at three different Norwegian upper secondary schools. A central finding is that students primarily expressed a liberal understanding of democracy focusing on voting in elections as the main political activity. Students also demonstrated more or less limited or elaborate understanding. In addition to presenting and discussing students’ understandings of the concept of democracy, this article considers implications for teacher education in social studies. One implication is that teacher educators need to engage actively in discussing and defining core concepts with their students. This is related to supporting student teachers’ professional development and in turn developing adolescents’ opportunities for democratic participation. Such a dual focus can provide a knowledge base to help student teachers in their professional development in their first years as practicing teachers.Keywords: democracy, concepts, understanding, teacher education, social studies, democratic theory

  2. How Pre-Service Teachers' Understand and Perform Science Process Skills

    Science.gov (United States)

    Chabalengula, Vivien Mweene; Mumba, Frackson; Mbewe, Simeon

    2012-01-01

    This study explored pre-service teachers' conceptual understanding and performance on science process skills. A sample comprised 91 elementary pre-service teachers at a university in the Midwest of the USA. Participants were enrolled in two science education courses; introductory science teaching methods course and advanced science methods course.…

  3. An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design

    Science.gov (United States)

    Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.

    2009-01-01

    Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.

  4. Reflective Writing for a Better Understanding of Scientific Concepts in High School

    Science.gov (United States)

    El-Helou, Joseph; Kalman, Calvin S.

    2018-02-01

    Science teachers can always benefit from efficient tools that help students to engage with the subject and understand it better without significantly adding to the teacher's workload nor requiring too much of class time to manage. Reflective writing is such a low-impact, high-return tool. What follows is an introduction to reflective writing, and more on its usefulness for teachers is given in the last part of this article.

  5. Introducing a New Elementary GLOBE Book on Climate: Supporting Educators and Students in their Understanding of the Concepts Underlying Climate and Climate Change

    Science.gov (United States)

    Stanitski, D.; Hatheway, B.; Gardiner, L. S.; Taylor, J.; Chambers, L. H.

    2016-12-01

    Much of the focus on climate literacy in K-12 occurs in middle and high school, where teachers and students can dig into the science in some depth. It is important, however, to introduce this topic at an early age, building on a child's natural curiosity about the world around them - but without overwhelming them with frightening climate change impacts. In some U.S. school systems, a recent focus on standardized testing has crowded out science instruction in order to bring up literacy scores. To give teachers a resource to maintain some science instruction under these conditions, a series of Elementary GLOBE books have been developed. These fictional stories describe sound science and engineering practices that are essential for students to learn the process of science while expanding literacy skills, strongly encouraged in the Next Generation Science Standards (NGSS). The main concepts developed in a new Elementary GLOBE book on climate, titled "What in the World Is Happening to Our Climate?", will be introduced in this presentation. This book complements six other Earth System Science modules within the Elementary GLOBE curriculum and is freely available on the GLOBE website (www.globe.gov/elementaryglobe). The book discusses the concept that climate is changing in different ways and places around the world, and what happens to the climate in one place affects other locations across the globe. Supporting ideas clarify the difference between weather and climate, introduce climate science concepts, reveal the impacts of sea level rise, and help students understand that, while humans are contributing to climate change, they can also participate in solutions that address this challenge. Accompanying teacher's notes and companion classroom activities will be described to help elementary school teachers understand how to approach the subject of climate change with their students.

  6. Through the eyes of professional developers: Understanding the design of learning experiences for science teachers

    Science.gov (United States)

    Higgins, Tara Eileen

    Professional development is important for improving teacher practice and student learning, particularly in inquiry-oriented and technology-enhanced science instruction. This study examines professional developers' practices and their impact on teachers' classroom instruction and student achievement. It analyzes professional developers designing and implementing a five-year professional development program designed to support middle school science teachers. The professional developers are four university-based researchers who worked with sixteen science teachers over three years, setting program goals, facilitating workshops, providing in-classroom support for teachers, and continually refining the program. The analysis is guided by the knowledge integration perspective, a sociocognitive framework for understanding how teachers and professional developers integrate their ideas about teaching and learning. The study investigates the professional developers' goals and teachers' interpretations of those goals. It documents how professional developers plan teacher learning experiences and explores the connection between professional development activities and teachers' classroom practice. Results are based on two rounds of interviews with professional developers, audio recordings of professional developers' planning meetings and videotaped professional development activities. Data include classroom observations, teacher interviews, teacher reflections during professional development activities, and results from student assessments. The study shows the benefit of a professional development approach that relies on an integrated cycle of setting goals, understanding teachers' interpretations, and refining implementation. The professional developers based their design on making inquiry and technology accessible, situating professional development in teachers' work, supporting collaboration, and sustaining learning. The findings reflect alignment of the design goals with the

  7. University students’ understanding of the electromotive force concept in the context of electromagnetic induction

    International Nuclear Information System (INIS)

    Zuza, Kristina; Guisasola, Jenaro; De Cock, Mieke; Bollen, Laurens; Van Kampen, Paul

    2016-01-01

    In this work, we present research on university students’ understanding of the concept of electromotive force (emf). The work presented here is a continuation of previous research by Garzón et al (2014 Am. J. Phys. 82 72–6) in which university students’ understanding of emf in the contexts of transient current and direct current circuits was analyzed. In the work we present here the investigation focuses on electromagnetic induction phenomena. Three open-ended questions from a broader questionnaire were analyzed in depth. We used phenomenography to define categories and detect lines of reasoning and difficulties in conceptual understanding. Very few students showed a good understanding of the emf concept in electromagnetic induction circuits or an ability to distinguish it from potential difference. Although the prevalences of the responses in the different categories are different, we find that the difficulties are the same in the three universities. Standard instruction does not allow most students to analyze unfamiliar contexts where the answer requires a systemic explanatory model. (paper)

  8. Children's conceptions of physical events: explicit and tacit understanding of horizontal motion.

    Science.gov (United States)

    Howe, Christine; Taylor Tavares, Joana; Devine, Amy

    2014-06-01

    The conceptual understanding that children display when predicting physical events has been shown to be inferior to the understanding they display when recognizing whether events proceed naturally. This has often been attributed to differences between the explicit engagement with conceptual knowledge required for prediction and the tacit engagement that suffices for recognition, and contrasting theories have been formulated to characterize the differences. Focusing on a theory that emphasizes omission at the explicit level of conceptual elements that are tacitly understood, the paper reports two studies that attempt clarification. The studies are concerned with 6- to 10-year-old children's understanding of, respectively, the direction (141 children) and speed (132 children) of motion in a horizontal direction. Using computer-presented billiards scenarios, the children predicted how balls would move (prediction task) and judged whether or not simulated motion was correct (recognition task). Results indicate that the conceptions underpinning prediction are sometimes interpretable as partial versions of the conceptions underpinning recognition, as the omission hypothesis would imply. However, there are also qualitative differences, which suggest partial dissociation between explicit and tacit understanding. It is suggested that a theoretical perspective that acknowledges this dissociation would provide the optimal framework for future research. © 2013 The British Psychological Society.

  9. United States Science Policy: from Conceptions to Practice

    Directory of Open Access Journals (Sweden)

    V I Konnov

    2012-06-01

    Full Text Available The authors analyze the organizational structure of the U.S. scientific community, examining the V. Bush report Science: the Endless Frontier (1945 as its conceptual basis, which remains the cornerstone of the American science policy. The authors point out decentralization as the key trait of this structure, which reveals itself in the absence of a unitary centre with a mission to formulate and implement science policy and high level of dissemination of self-government practices supported by a wide range of government agencies. This configuration determines the special position, occupied by the universities as universal research establishments possessing flexibility in cooperation with state agencies and private sector.

  10. Testing primary-school children's understanding of the nature of science.

    Science.gov (United States)

    Koerber, Susanne; Osterhaus, Christopher; Sodian, Beate

    2015-03-01

    Understanding the nature of science (NOS) is a critical aspect of scientific reasoning, yet few studies have investigated its developmental beginnings and initial structure. One contributing reason is the lack of an adequate instrument. Two studies assessed NOS understanding among third graders using a multiple-select (MS) paper-and-pencil test. Study 1 investigated the validity of the MS test by presenting the items to 68 third graders (9-year-olds) and subsequently interviewing them on their underlying NOS conception of the items. All items were significantly related between formats, indicating that the test was valid. Study 2 applied the same instrument to a larger sample of 243 third graders, and their performance was compared to a multiple-choice (MC) version of the test. Although the MC format inflated the guessing probability, there was a significant relation between the two formats. In summary, the MS format was a valid method revealing third graders' NOS understanding, thereby representing an economical test instrument. A latent class analysis identified three groups of children with expertise in qualitatively different aspects of NOS, suggesting that there is not a single common starting point for the development of NOS understanding; instead, multiple developmental pathways may exist. © 2014 The British Psychological Society.

  11. Conceptions of Good Science in Our Data-Rich World.

    Science.gov (United States)

    Elliott, Kevin C; Cheruvelil, Kendra S; Montgomery, Georgina M; Soranno, Patricia A

    2016-10-01

    Scientists have been debating for centuries the nature of proper scientific methods. Currently, criticisms being thrown at data-intensive science are reinvigorating these debates. However, many of these criticisms represent long-standing conflicts over the role of hypothesis testing in science and not just a dispute about the amount of data used. Here, we show that an iterative account of scientific methods developed by historians and philosophers of science can help make sense of data-intensive scientific practices and suggest more effective ways to evaluate this research. We use case studies of Darwin's research on evolution by natural selection and modern-day research on macrosystems ecology to illustrate this account of scientific methods and the innovative approaches to scientific evaluation that it encourages. We point out recent changes in the spheres of science funding, publishing, and education that reflect this richer account of scientific practice, and we propose additional reforms.

  12. The understanding of the concept of business in terms of the concepts of GAME/SPORT with the example of business English idioms

    Directory of Open Access Journals (Sweden)

    Milošević Ivan

    2016-01-01

    Full Text Available This paper focuses on the potential understanding of the concept of BUSINESS in terms of the concepts of GAME and SPORT with the examples of Business English idioms (idiomatic expressions. Namely, in the light of the cognitive linguistics, meaning is considered to be not only a linguistic phenomenon, but a conceptual phenomenon as well. Such vantage point enables a lexico-semantic interpretation of linguistic units from a conceptual perspective, which includes the forming of correspondences between two concepts, with one concept being understood in terms of the other. The analysis includes 24 Business English idioms which stem from the conceptual domain of GAME/SPORT and is aimed at establishing the conceptual mapping (primarily via a cognitive mechanism known as the conceptual metaphor between the above stated source and the target domains, which prove a potential understanding of the concept of BUSINESS on the basis of the concepts of SPORT and GAME.

  13. Data-Intensive Science meets Inquiry-Driven Pedagogy: Interactive Big Data Exploration, Threshold Concepts, and Liminality

    Science.gov (United States)

    Ramachandran, Rahul; Word, Andrea; Nair, Udasysankar

    2014-01-01

    Threshold concepts in any discipline are the core concepts an individual must understand in order to master a discipline. By their very nature, these concepts are troublesome, irreversible, integrative, bounded, discursive, and reconstitutive. Although grasping threshold concepts can be extremely challenging for each learner as s/he moves through stages of cognitive development relative to a given discipline, the learner's grasp of these concepts determines the extent to which s/he is prepared to work competently and creatively within the field itself. The movement of individuals from a state of ignorance of these core concepts to one of mastery occurs not along a linear path but in iterative cycles of knowledge creation and adjustment in liminal spaces - conceptual spaces through which learners move from the vaguest awareness of concepts to mastery, accompanied by understanding of their relevance, connectivity, and usefulness relative to questions and constructs in a given discipline. For example, challenges in the teaching and learning of atmospheric science can be traced to threshold concepts in fluid dynamics. In particular, Dynamic Meteorology is one of the most challenging courses for graduate students and undergraduates majoring in Atmospheric Science. Dynamic Meteorology introduces threshold concepts - those that prove troublesome for the majority of students but that are essential, associated with fundamental relationships between forces and motion in the atmosphere and requiring the application of basic classical statics, dynamics, and thermodynamic principles to the three dimensionally varying atmospheric structure. With the explosive growth of data available in atmospheric science, driven largely by satellite Earth observations and high-resolution numerical simulations, paradigms such as that of dataintensive science have emerged. These paradigm shifts are based on the growing realization that current infrastructure, tools and processes will not allow

  14. Changes in Pre-service Science Teachers' Understandings After Being Involved in Explicit Nature of Science and Socioscientific Argumentation Processes

    Science.gov (United States)

    Kutluca, A. Y.; Aydın, A.

    2017-08-01

    The study explored the changes in pre-service science teachers' understanding of the nature of science and their opinions about the nature of science, science teaching and argumentation after their participation in explicit nature of science (NOS) and socioscientific argumentation processes. The participants were 56 third-grade pre-service science teachers studying in a state university in Turkey. The treatment group comprised 27 participants, and there were 29 participants in the comparison group. The comparison group participants were involved in a student-centred science-teaching process, and the participants of the treatment group were involved in explicit NOS and socioscientific argumentation processes. In the study, which lasted a total of 11 weeks, a NOS-as-argumentation questionnaire was administered to all the participants to determine their understanding of NOS at the beginning and end of the data collection process, and six random participants of the treatment group participated in semi-structured interview questions in order to further understand their views regarding NOS, science teaching and argumentation. Qualitative and quantitative data analysis revealed that the explicit NOS and socioscientific argumentation processes had a significant effect on pre-service science teachers' NOS understandings. Furthermore, NOS, argumentation and science teaching views of the participants in the treatment group showed a positive change. The results of this study are discussed in light of the related literature, and suggestions are made within the context of contribution to science-teaching literature, improvement of education quality and education of pre-service teachers.

  15. The concept of behavioural needs in contemporary fur science

    DEFF Research Database (Denmark)

    Kornum, A.L.; Röcklinsberg, H.; Gjerris, Mickey

    2017-01-01

    show that mink place high value on swimming water, whereas other studies indicate the opposite, which has led scientists to question whether this preference constitutes a genuine behavioural need. In this paper, we take a methodological turn and discuss whether the oft-used concept of behavioural needs......This paper discusses the ethical implications of applying the concept of behavioural needs to captive animals. This is done on the basis of analysing the scientific literature on farmed mink and their possible need for swimming. In the wild, American mink (Mustela vison) are semi-aquatic predators...

  16. An APOS analysis of natural science students' understanding of ...

    African Journals Online (AJOL)

    User

    Research was done at the Westville Campus of the University of ... tended to new and more complex functions, including those based on the concept of ... chain rule being one of the hardest ideas to convey to students in calculus (Gordon,.

  17. A concept for performance management for Federal science programs

    Science.gov (United States)

    Whalen, Kevin G.

    2017-11-06

    The demonstration of clear linkages between planning, funding, outcomes, and performance management has created unique challenges for U.S. Federal science programs. An approach is presented here that characterizes science program strategic objectives by one of five “activity types”: (1) knowledge discovery, (2) knowledge development and delivery, (3) science support, (4) inventory and monitoring, and (5) knowledge synthesis and assessment. The activity types relate to performance measurement tools for tracking outcomes of research funded under the objective. The result is a multi-time scale, integrated performance measure that tracks individual performance metrics synthetically while also measuring progress toward long-term outcomes. Tracking performance on individual metrics provides explicit linkages to root causes of potentially suboptimal performance and captures both internal and external program drivers, such as customer relations and science support for managers. Functionally connecting strategic planning objectives with performance measurement tools is a practical approach for publicly funded science agencies that links planning, outcomes, and performance management—an enterprise that has created unique challenges for public-sector research and development programs.

  18. The Effect of 7E Learning Model on Conceptual Understandings of Prospective Science Teachers on 'de Broglie Matter Waves' Subject

    Directory of Open Access Journals (Sweden)

    Meryem Gorecek Baybars

    2018-04-01

    Full Text Available The object of this study is to determine the conceptual understanding that prospective Science teachers have relating "de Broglie: Matter waves" and to investigate the effect of the instruction performed, on the conceptual understanding. This study was performed at a state university located in the western part of Turkey, with the Faculty of Education-Science Teaching students (2nd year / 48 individual in the academic year of 2010-2011. The study was planned as a single group pretest-posttest design. A two-step question was used in the study, prior to and after the instruction. Lessons were conducted using the 7E learning model in the instruction process. When all these results are evaluated, it can be said that the conceptual understanding of the prospective teachers regarding "de Broglie; matter waves" has been taken place. In general, when all the sections are examined, it has been observed that the prospective teachers have more alternative concepts prior to the instruction and more scientific concepts after the instruction. In this process, besides instruction, the prospective teachers have not taken any place in a different application regarding the basic concepts of quantum physics. Therefore, it has been determined that the 7E learning model used in the research and the activities included in the 7E learning model are effective in conceptual understanding.

  19. Mathematical Model of the Public Understanding of Space Science

    Science.gov (United States)

    Prisniakov, V.; Prisniakova, L.

    The success in deployment of the space programs now in many respects depends on comprehension by the citizens of necessity of programs, from "space" erudition of country. Purposefulness and efficiency of the "space" teaching and educational activity depend on knowledge of relationships between separate variables of such process. The empirical methods of ``space'' well-information of the taxpayers should be supplemented by theoretical models permitting to demonstrate a ways of control by these processes. Authors on the basis of their experience of educational activity during 50- years of among the students of space-rocket profession obtain an equation of ``space" state of the society determining a degree of its knowledge about Space, about achievements in its development, about indispensable lines of investigations, rates of informatization of the population. It is supposed, that the change of the space information consists of two parts: (1) - from going of the information about practical achievements, about development special knowledge requiring of independent financing, and (2) from intensity of dissemination of the ``free" information of a general educational line going to the population through mass-media, book, in family, in educational institutions, as a part of obligatory knowledge of any man, etc. In proposed model the level space well-information of the population depends on intensity of dissemination in the society of the space information, and also from a volume of financing of space-rocket technology, from a part of population of the employment in the space-rocket programs, from a factor of education of the population in adherence to space problems, from welfare and mentality of the people, from a rate of unemployment and material inequality. Obtained in the report on these principles the equation of a space state of the society corresponds to catastrophe such as cusp, the analysis has shown which one ways of control of the public understanding of space

  20. Evolution of the Concept of "Human Capital" in Economic Science

    Science.gov (United States)

    Perepelkin, Vyacheslav A.; Perepelkina, Elena V.; Morozova, Elena S.

    2016-01-01

    The relevance of the researched problem is determined by transformation of the human capital into the key economic resource of development of the postindustrial society. The purpose of the article is to disclose the content of evolution of the human capital as a scientific concept and phenomenon of the economic life. The leading approach to the…

  1. The effect of a pretest in an interactive, multimodal pretraining system for learning science concepts

    NARCIS (Netherlands)

    Bos, Floor/Floris; Terlouw, C.; Pilot, Albert

    2009-01-01

    In line with the cognitive theory of multimedia learning by Moreno and Mayer (2007), an interactive, multimodal learning environment was designed for the pretraining of science concepts in the joint area of physics, chemistry, biology, applied mathematics, and computer sciences. In the experimental

  2. Investigation of Preservice Science Teachers' Comprehension of the Star, Sun, Comet and Constellation Concepts

    Science.gov (United States)

    Cevik, Ebru Ezberci; Kurnaz, Mehmet Altan

    2017-01-01

    The purpose of this study is to reveal preservice science teachers' perceptions related to the sun, star, comet and constellation concepts. The research was carried out by 56 preservice science teachers (4th grade) at Kastamonu University taking astronomy course in 2014-2015 academic year. For data collection open-ended questions that required…

  3. Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-3)

    Science.gov (United States)

    Dulikravich, George S. (Editor)

    1991-01-01

    Papers from the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES) are presented. The papers discuss current research in the general field of inverse, semi-inverse, and direct design and optimization in engineering sciences. The rapid growth of this relatively new field is due to the availability of faster and larger computing machines.

  4. The Pre-Service Science Teachers' Mental Models for Concept of Atoms and Learning Difficulties

    Science.gov (United States)

    Kiray, Seyit Ahmet

    2016-01-01

    The purpose of this study is to reveal the pre-service science teachers' difficulties about the concept of atoms. The data was collected from two different sources: The Draw an Atom Test (DAAT) and face-to-face interviews. Draw an atom test (DAAT) were administered to the 142 science teacher candidates. To elaborate the results, the researcher…

  5. Proportional Reasoning Ability and Concepts of Scale: Surface Area to Volume Relationships in Science

    Science.gov (United States)

    Taylor, Amy; Jones, Gail

    2009-01-01

    The "National Science Education Standards" emphasise teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale. Scale influences science processes and phenomena across the domains. One of the big ideas of scale is that of surface area to volume. This study explored whether or not there…

  6. Exploring Students' Conceptions of Science Learning via Drawing: A Cross-Sectional Analysis

    Science.gov (United States)

    Hsieh, Wen-Min; Tsai, Chin-Chung

    2017-01-01

    This cross-sectional study explored students' conceptions of science learning via drawing analysis. A total of 906 Taiwanese students in 4th, 6th, 8th, 10th, and 12th grade were asked to use drawing to illustrate how they conceptualise science learning. Students' drawings were analysed using a coding checklist to determine the presence or absence…

  7. Parental influences on students' self-concept, task value beliefs, and achievement in science.

    Science.gov (United States)

    Senler, Burcu; Sungur, Semra

    2009-05-01

    The aim of this study was twofold: firstly, to investigate the grade level (elementary and middle school) and gender effect on students' motivation in science (perceived academic science self-concept and task value) and perceived family involvement, and secondly to examine the relationship among family environment variables (fathers' educational level, mothers' educational level, and perceived family involvement), motivation, gender and science achievement in elementary and middle schools. Multivariate Analysis of Variance (MANOVA) showed that elementary school students have more positive science self-concept and task value beliefs compared to middle school students. Moreover, elementary school students appeared to perceive more family involvement in their schooling. Path analyses also suggested that family involvement was directly linked to elementary school students' task value and achievement. Also, in elementary school level, significant relationships were found among father educational level, science self-concept, task value and science achievement. On the other hand, in middle school level, family involvement, father educational level, and mother educational level were positively related to students' task value which is directly linked to students' science achievement. Moreover, mother educational level contributed to science achievement through its effect on self-concept.

  8. Dhat syndrome: Evolution of concept, current understanding, and need of an integrated approach

    Directory of Open Access Journals (Sweden)

    Sujita Kumar Kar

    2015-01-01

    Full Text Available Dhat syndrome has often been construed as a culture-bound sexual neurosis of the Indian subcontinent. Symptoms similar to that of Dhat syndrome has been described in other cultures across different time periods. The present paper looks at the evolution of the concept of Dhat syndrome in India. The review also takes an overview of the current understanding of this syndrome in terms of nosological status as a distinct entity and its "culture-bound" status. The narrative finally attempts to discuss the integrated approach for the treatment of this disorder.

  9. Science concept learning by English as second language junior secondary students

    Science.gov (United States)

    Lai, Pui-Kwong; Lucas, Keith B.; Burke, Ed V.

    1995-03-01

    Recent Chinese migrant students from Taiwan studying science in two Australian secondary schools were found to explain the meanings of selected science concept labels in English by translating from Chinese. The research strategy involved interviewing the students concerning their recognition and comprehension of the science concept labels firstly in Chinese and then in English. Mean recognition and comprehension scores were higher in Chinese than in English, with indications that Chinese language and science knowledge learnt in Chinese deteriorated with increasing time of residence in Australia. Rudimentary signs of the students being able to switch between Chinese and English knowledge bases in science were also found. Implications for teaching science to ESL students and suggestions for further research are discussed.

  10. Program on Public Conceptions of Science, Newsletter 10.

    Science.gov (United States)

    Blanpied, William A., Ed.; Shelanski, Vivien, Ed.

    This newsletter is divided into six sections: an introduction; general news items and communications from readers; news items and communications more specifically in the ethical and human values areas; an annotated, selective checklist of imaginative literature concerning the relationship between science, technology and human values; and a general…

  11. Stories, Proverbs, and Anecdotes as Scaffolds for Learning Science Concepts

    Science.gov (United States)

    Mutonyi, Harriet

    2016-01-01

    Few research studies in science education have looked at how stories, proverbs, and anecdotes can be used as scaffolds for learning. Stories, proverbs, and anecdotes are cultural tools used in indigenous communities to teach children about their environment. The study draws on Bruner's work and the theory of border crossing to argue that stories,…

  12. Key Concepts of Environmental Sustainability in Family and Consumer Sciences

    Science.gov (United States)

    Thompson, Nancy E.; Harden, Amy J.; Clauss, Barbara; Fox, Wanda S.; Wild, Peggy

    2012-01-01

    It is the vision of the American Association of Family & Consumer Sciences to be "recognized as the driving force in bringing people together to improve the lives of individuals, families, and communities" (AAFCS, 2010). Because of this focus on individuals and families and its well-established presence in American schools, family and consumer…

  13. The emergence of understanding in a computer model of concepts and analogy-making

    Science.gov (United States)

    Mitchell, Melanie; Hofstadter, Douglas R.

    1990-06-01

    This paper describes Copycat, a computer model of the mental mechanisms underlying the fluidity and adaptability of the human conceptual system in the context of analogy-making. Copycat creates analogies between idealized situations in a microworld that has been designed to capture and isolate many of the central issues of analogy-making. In Copycat, an understanding of the essence of a situation and the recognition of deep similarity between two superficially different situations emerge from the interaction of a large number of perceptual agents with an associative, overlapping, and context-sensitive network of concepts. Central features of the model are: a high degree of parallelism; competition and cooperation among a large number of small, locally acting agents that together create a global understanding of the situation at hand; and a computational temperature that measures the amount of perceptual organization as processing proceeds and that in turn controls the degree of randomness with which decisions are made in the system.

  14. Integrated learning of mathematics, science and technology concepts through LEGO/Logo projects

    Science.gov (United States)

    Wu, Lina

    This dissertation examined integrated learning in the domains of mathematics, science and technology based on Piaget's constructivism, Papert's constructionism, and project-based approach to education. Ten fifth grade students were involved in a two-month long after school program where they designed and built their own computer-controlled LEGO/Logo projects that required the use of gears, ratios and motion concepts. The design of this study centered on three notions of integrated learning: (1) integration in terms of what educational materials/settings provide, (2) integration in terms of students' use of those materials, and (3) integration in the psychological sense. In terms of the first notion, the results generally showed that the LEGO/Logo environment supported the integrated learning of math, science and technology concepts. Regarding the second notion, the students all completed impressive projects of their own design. They successfully combined gears, motors, and LEGO parts together to create motion and writing control commands to manipulate the motion. But contrary to my initial expectations, their successful designs did not require numerical reasoning about ratios in designing effective gear systems. When they did reason about gear relationships, they worked with "qualitative" ratios, e.g., "a larger driver gear with a smaller driven gear increases the speed." In terms of the third notion of integrated learning, there was evidence in all four case study students of the psychological processes involved in linking mathematical, scientific, and/or technological concepts together to achieve new conceptual units. The students not only made connections between ideas and experiences, but also recognized decisive patterns and relationships in their project work. The students with stronger overall project performances showed more evidence of synthesis than the students with relatively weaker performances did. The findings support the conclusion that all three

  15. Teaching science as inquiry in US and in Japan: A cross-cultural comparison of science teachers' understanding of, and attitudes toward inquiry-based teaching

    Science.gov (United States)

    Tosa, Sachiko

    Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.

  16. Conceptions of the Nature of Science and Technology: a Study with Children and Youths in a Non-Formal Science and Technology Education Setting

    Science.gov (United States)

    Rocha Fernandes, Geraldo W.; Rodrigues, António M.; Ferreira, Carlos Alberto

    2017-05-01

    This study investigated some of the aspects that characterise the understanding of the Nature of Science (NOS) and Nature of Technology (NOT) of 20 children and youths from different countries who perform scientific and technological activities in a non-formal teaching and learning setting. Data were collected using a questionnaire and semistructured interviews. A categorical instrument was developed to analyse the participants' conceptions of the following subjects: (1) the role of the scientist, (2) NOS and (3) NOT. The results suggest that the participants had naïve conceptions of NOS that are marked by empirical and technical-instrumental views. They characterised NOT primarily as an instrumental apparatus, an application of knowledge and something important that is part of their lives. They exhibited a stereotypical understanding of the role of the scientist (development of methods, demonstration of facts, relationship with technological devices, etc.).

  17. Nursing Students’ Understanding of the Concept of Self-Esteem: a Qualitative Study

    Science.gov (United States)

    Zamanzadeh, Vahid; Valizadeh, Leila; Badri Gargari, Rahim; Ghahramanian, Akram; Jabbarzadeh Tabriz, Faranak; Crowley, Maureen

    2016-01-01

    Introduction: The concept of self-esteem has several definitions in different paradigms. Nursing has a unique and combined paradigm; therefore it is necessary to explore nursing students’ understanding of the concept of self-esteem. The present study aimed to discover the extent and characteristics of the concept of self-esteem from the perspective of Iranian nursing students through a qualitative approach. Methods: This study was conducted using the conventional content analysis method with the participation of 14 nursing students. Purposive sampling was used to recruit participants and data were collected through in-depth semi-structured interviews and analyzed simultaneously. Results: Study findings showed that the nursing students’ self-esteem is related to the sense of worthy they perceived as being a nursing student. Nursing students’ self-esteem was determined through sense of worthy related to their perceived professionalism level, socialization into the profession, and enthusing of them about being a nursing student. Conclusion: If a nursing student was proud of her or his nursing role, then he or she would enjoy the nursing course and all that entailed; such as communication with colleagues, performing the tasks and, generally her or his career. PMID:26989664

  18. Understanding God images and God concepts: Towards a pastoral hermeneutics of the God attachment experience

    Directory of Open Access Journals (Sweden)

    Victor Counted

    2015-03-01

    Full Text Available The author looks at the God image experience as an attachment relationship experience with God. Hence, arguing that the God image experience is borne originally out of a parent�child attachment contagion, in such a way that God is often represented in either secure or insecure attachment patterns. The article points out that insecure God images often develop head-to-head with God concepts in a believer�s emotional experience of God. On the other hand, the author describes God concepts as indicators of a religious faith and metaphorical standards for regulating insecure attachment patterns. The goals of this article, however, is to highlight the relationship between God images and God concepts, and to provide a hermeneutical process for interpreting and surviving the God image experience.Intradisciplinary and/or interdisciplinary implications: Given that most scholars within the discipline of Practical Theology discuss the subject of God images from cultural and theological perspectives, this article has discussed God images from an attachment perspective, which is a popular framework in psychology of religion. This is rare. The study is therefore interdisciplinary in this regards. The article further helps the reader to understand the intrapsychic process of the God image experience, and thus provides us with hermeneutical answers for dealing with the God image experience from methodologies grounded in Practical Theology and pastoral care.

  19. Science with SALT: the road from concept to reality

    Science.gov (United States)

    Buckley, David A. H.

    2015-08-01

    The Southern African Large Telescope (SALT) was a relatively cheap (~$20M) 10m class telescope, modelled on the innovative HET design, for which the construction phase was completed in late 2005. However it took another 6 years or so before the commissioning was really completed and the telescope entered full science operations. This talk will discuss the design and construction of SALT, its First Generation instruments and the operational model for the telescope. A number of technical challenges, some unforeseeable at the time, had to be overcome, which are described in this talk. Some science highlights will be presented, covering a range of topics and focussing on studies related to some of the more unique or rare capabilities of SALT, like time resolved studies. Finally, I look to the future and the prospects of new instruments and capabilities.

  20. An APOS analysis of natural science students' understanding of ...

    African Journals Online (AJOL)

    User

    point ( , ), and (2) the rate of change of with respect to . Basic rules to .... A genetic decomposition of a concept is a structured set of ... descriptions. •. Action: A transformation is first conceived as an action, when it is a reaction.

  1. Understanding student participation and choice in science and technology education

    CERN Document Server

    Dillon, Justin; Ryder, Jim

    2015-01-01

    Drawing on data generated by the EU’s Interests and Recruitment in Science (IRIS) project, this volume examines the issue of young people’s participation in science, technology, engineering and mathematics education. With an especial focus on female participation, the chapters offer analysis deploying varied theoretical frameworks, including sociology, social psychology and gender studies. The material also includes reviews of relevant research in science education and summaries of empirical data concerning student choices in STEM disciplines in five European countries. Featuring both quantitative and qualitative analyses, the book makes a substantial contribution to the developing theoretical agenda in STEM education. It augments available empirical data and identifies strategies in policy-making that could lead to improved participation—and gender balance—in STEM disciplines. The majority of the chapter authors are IRIS project members, with additional chapters written by specially invited contribu...

  2. Understanding the Gender Gap in Science and Engineering: Evidence from the Chilean College Admissions Tests

    Science.gov (United States)

    Gándara, Fernanda; Silva, Monica

    2016-01-01

    This study seeks to develop a better understanding of the underrepresentation of women in science and engineering by analyzing the gender gaps (a) in the interest in pursuing a science degree and (b) on science achievement. We use national-level college admissions data to examine gender differences and to explore the association between these…

  3. Doing the Project and Learning the Content: Designing Project-Based Science Curricula for Meaningful Understanding

    Science.gov (United States)

    Kanter, David E.

    2010-01-01

    Project-based science curricula can improve students' usable or meaningful understanding of the science content underlying a project. However, such curricula designed around "performances" wherein students design or make something do not always do this. We researched ways to design performance project-based science curricula (pPBSc) to better…

  4. Chinese and Australian Year 3 Children's Conceptual Understanding of Science: A Multiple Comparative Case Study

    Science.gov (United States)

    Tao, Ying; Oliver, Mary Colette; Venville, Grady Jane

    2012-01-01

    Children have formal science instruction from kindergarten in Australia and from Year 3 in China. The purpose of this research was to explore the impact that different approaches to primary science curricula in China and Australia have on children's conceptual understanding of science. Participants were Year 3 children from three schools of high,…

  5. First-Year University Science and Engineering Students' Understanding of Plagiarism

    Science.gov (United States)

    Yeo, Shelley

    2007-01-01

    This paper is a case study of first-year science and engineering students' understandings of plagiarism. Students were surveyed for their views on scenarios illustrating instances of plagiarism in the context of the academic work and assessment of science and engineering students. The aim was to explore their understandings of plagiarism and their…

  6. In praise of science: curiosity, understanding, and progress

    NARCIS (Netherlands)

    Bais, S.

    2010-01-01

    In this engaging, lyrical book, physicist Sander Bais shows how science can liberate us from our cultural straitjacket of prejudice and intolerance. We're living in a time in which technology is taken for granted, yet belief in such standard scientific facts as evolution is actually decreasing. How

  7. In praise of science: curiosity, understanding, and progress

    NARCIS (Netherlands)

    Bais, S.

    2009-01-01

    In this book, author and physicist Sander Bais shows how science can liberate us from our cultural straitjacket of prejudice and intolerance. We're living in a time in which technology is taken for granted, yet belief in such standard scientific facts as evolution is actually decreasing. How is it

  8. Understanding Educational Change through the Lens of Complexity Science

    Science.gov (United States)

    Girtz, Suzann

    2009-01-01

    The purpose of this study was to investigate four attractor states in schools through the perceptions of formal leaders that engaged in and reflected upon school reform regarding the Millennial generation. The term attractor was used as a metaphor for a habitual pattern, gleaned from complexity science which informs of new ways in which to…

  9. Dilemmas in Examining Understanding of Nature of Science in Vietnam

    Science.gov (United States)

    Hatherley-Greene, Peter

    2017-01-01

    The two authors, Thi Phuong Thao-Do and Chokchai Yuenyong, explored the Nature of Science as it is understood in Vietnam, a fast-developing "ancient" and modern country which continues to be shaped by uniquely Asian social norms and values. Upon reviewing their paper, I observed strong parallels to the country, the United Arab Emirates,…

  10. Dilemmas in examining understanding of nature of science in Vietnam

    Science.gov (United States)

    Thao-Do, Thi Phuong; Yuenyong, Chokchai

    2017-06-01

    Scholars proved nature of science (NOS) has made certain contributions to science teaching and learning. Nonetheless, what, how and how much NOS should be integrated in the science curriculum of each country cannot be a benchmark, due to the influence of culture and society. Before employing NOS in a new context, it should be carefully studied. In assessing views of NOS in Vietnam, a developing country with Eastern culture where the NOS is not consider a compulsory learning outcome, there are several issues that researchers and educators should notice to develop an appropriate instrument that can clearly exhibit a NOS view of Vietnamese. They may include: time for the survey; length, content, type, and terms of the questionnaire; Vietnamese epistemology and philosophy; and some other Vietnamese social and cultural aspects. The most important reason for these considerations is that a Vietnamese view of NOS and NOS assessment possibly differs from the Western ideas due to the social and cultural impact. As a result, a Western assessment tool may become less effective in an Eastern context. The suggestions and implications in this study were derived from a prolonged investigation on Vietnamese science teacher educators and student teachers of School of Education, at Can Tho University, a State University in Mekong Delta region, Vietnam.

  11. Data, instruments, and theory a dialectical approach to understanding science

    CERN Document Server

    Ackermann, Robert John

    1985-01-01

    Robert John Ackermann deals decisively with the problem of relativism that has plagued post-empiricist philosophy of science. Recognizing that theory and data are mediated by data domains (bordered data sets produced by scientific instruments), he argues that the use of instruments breaks the dependency of observation on theory and thus creates a reasoned basis for scientific objectivity.

  12. Understanding the Science behind EPA’s Pesticide Decisions

    Science.gov (United States)

    Science is key to EPA’s decision-making. EPA scientists review these data to determine whether to register a pesticide product or use and any need for specific restrictions. EPA maintains a transparent, public process in assessing potential human health ri

  13. Concept maps and the meaningful learning of science

    Directory of Open Access Journals (Sweden)

    José Antonio C. S. Valadares

    2013-03-01

    Full Text Available The foundations of the Meaningful Learning Theory (MLT were laid by David Ausubel. The MLT was highly valued by the contributions of Joseph Novak and D. B. Gowin. Unlike other learning theories, the MLT has an operational component, since there are some instruments based on it and with the meaningful learning facilitation as aim. These tools were designated graphic organizers by John Trowbridge and James Wandersee (2000, pp. 100-129. One of them is the concept map created by Novak to extract meanings from an amalgam of information, having currently many applications. The other one is the Vee diagram or knowledge Vee, also called epistemological Vee or heuristic Vee. It was created by Gowin, and is an excellent organizer, for example to unpack and make transparent the unclear information from an information source. Both instruments help us in processing and becoming conceptually transparent the information, to facilitate the cognitive process of new meanings construction. In this work, after a brief introduction, it will be developed the epistemological and psychological grounds of MLT, followed by a reference to constructivist learning environments facilitators of the meaningful learning, the characterization of concept maps and exemplification of its use in various applications that have proved to be very effective from the standpoint of meaningful learning.

  14. Toward Using Games to Teach Fundamental Computer Science Concepts

    Science.gov (United States)

    Edgington, Jeffrey Michael

    2010-01-01

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. …

  15. Mathematics and science teachers' understanding and practices of ...

    African Journals Online (AJOL)

    Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives ... school level understand and implement learner-centered pedagogy. ... prove that teachers' knowledge and skills as regard learner-centred pedagogical ...

  16. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    Science.gov (United States)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  17. Life Science Research Facility materials management requirements and concepts

    Science.gov (United States)

    Johnson, Catherine C.

    1986-01-01

    The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.

  18. Science as Interests but Not for Career: Understanding High School Students' Engagement in Science in Abu Dhabi

    Science.gov (United States)

    Yang, Guang; Badri, Masood; Al-Mazroui, Karima; Al-Rashedi, Asma; Nai, Peng

    2017-01-01

    Understanding high school students' engagement in science is important for the Emirate of Abu Dhabi. Drawing on data from the ROSE Survey conducted in Abu Dhabi schools in 2013, this paper used a multi-dimensional framework to explore associations between high school students' engagement in science and a range of student psychosocial and…

  19. Appropriating religion: understanding religion as an object of science

    OpenAIRE

    Donald Wiebe

    1999-01-01

    In this paper, the author focuses on the study of religion as a scientific project, for it is the scientific interest in religion which has constituted the grounds for admitting the study of religion into the curriculum of the modern Western university. Despite that academic legitimation, however, the study of religion in the setting of the modern research university is not held in high esteem relative to the other sciences. It if the scientific study of religion is to be legitimately ensconc...

  20. Science Fiction as a Prism for Understanding Geopolitics

    Science.gov (United States)

    2015-04-01

    Graduation Requirements for the Degree of MASTER OF OPERATIONAL ARTS AND SCIENCES Advisor: Dr. William L. Dulaney Maxwell Air Force Base, Alabama...Leadford is from a financially strapped background, socialist in his political views, and of an emotional, romantic temperament, especially towards the...By the mid-1980s, Baen’s books were featuring a distinctive type of cover art , which although arguably gaudy and “tacky,” was nonetheless

  1. Climate Science - getting the world to understand, and to care

    Science.gov (United States)

    Jasmin, T.; Ackerman, S. A.; Whittaker, T. M.

    2012-12-01

    Effectively teaching and conveying climate science has become one of Earth Science's greatest challenges. Existing barriers are many and varied, from political, ideological, and religious, to purely economic. Additionally, studies show the general public at present has a surprising number of basic misconceptions regarding the Earth system, and Earth-Sun relationships. Addressing these misconceptions is the first hurdle to overcome for properly teaching climate science. This talk will discuss ways to address the various barriers. Strategies are being employed to arm teachers with new tools leveraging the move to online, interactive learning. Content can be tailored particular audiences. For any individual, learning will be most effective if there is an understood significance, the information is presented clearly and at an appropriate education level, and when possible some personal relevance can be inferred. People need a reason to care. Examples and approaches for several common education scenarios will be given. A simple "Climate Change 101" outline will be given, a blueprint that could be used to educate most of the general public. Freely available online resources to address Earth System misconceptions will be referenced. Finally, a case will be made that a dramatic improvement in climate literacy worldwide may be the only viable means to successfully tackling global warming.

  2. A Comparison of Exemplary Biology, Chemistry, Earth Science, and Physics Teachers' Conceptions and Enactment of Inquiry

    Science.gov (United States)

    Breslyn, Wayne; McGinnis, J. Randy

    2012-01-01

    Teachers' use of inquiry has been studied largely without regard for the disciplines in which teachers practice. As a result, there is no theoretical understanding of the possible role of discipline in shaping teachers' conceptions and enactment of inquiry. In this mixed-methods study, conceptions and enactment of inquiry for 60 National Board…

  3. Research and Teaching: Correlations between Students' Written Responses to Lecture-Tutorial Questions and Their Understandings of Key Astrophysics Concepts

    Science.gov (United States)

    Eckenrode, Jeffrey; Prather, Edward E.; Wallace, Colin S.

    2016-01-01

    This article reports on an investigation into the correlations between students' understandings of introductory astronomy concepts and the correctness and coherency of their written responses to targeted Lecture-Tutorial questions.

  4. Concept Analysis and the Advance of Nursing Knowledge: State of the Science.

    Science.gov (United States)

    Rodgers, Beth L; Jacelon, Cynthia S; Knafl, Kathleen A

    2018-04-24

    Despite an overwhelming increase in the number of concept analyses published since the early 1970s, there are significant limitations to the impact of this work in promoting progress in nursing science. We conducted an extensive review of concept analyses published between 1972 and 2017 to identify patterns in analysis and followed this with exploration of an exemplar related to the concept of normalization to demonstrate the capabilities of analysis for promoting concept development and progress. Scoping review of peer-reviewed literature published in the Cumulative Index to Nursing and Allied Health Literature (CINAHL) in which the terms "concept analysis," "concept clarification," and "concept derivation" appeared in any part of the reference. The original search returned 3,489 articles. This initial pool was refined to a final sample of 958 articles published in 223 journals and addressing 604 concepts. A review of citations of the original analysis of the concept of normalization resulted in 75 articles selected for closer examination of the process of concept development. Review showed a clear pattern of repetition of analysis of the same concept, growth in number of published analyses, preponderance of first authors with master's degrees, and 43 distinct descriptions of methods. Review of the 75 citations to the normalization analysis identified multiple ways concept analysis can inform subsequent research and theory development. Conceptual work needs to move beyond the level of "concept analysis" involving clear linkage to the resolution of problems in the discipline. Conceptual work is an important component of progress in the knowledge base of a discipline, and more effective use of concept development activities are needed to maximize the potential of this important work. It is important to the discipline that we facilitate progress in nursing science on a theoretical and conceptual level as a part of cohesive and systematic development of the discipline

  5. Understanding Science Teaching Effectiveness: Examining How Science-Specific and Generic Instructional Practices Relate to Student Achievement in Secondary Science Classrooms

    Science.gov (United States)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-01-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student…

  6. Relational benefits and quality of relation – towards understanding of the ties between science and business

    Directory of Open Access Journals (Sweden)

    Małgorzata Grzegorczyk

    2016-06-01

    Full Text Available The goal of this article is to answer the question in what way relational marketing and in particular, the concept of relational benefits, as well as quality of relation may influence the transfer of knowledge and technologies from universities to business. Another goal is to highlight significant, future directions of research in this area. Integration of the theory of relational marketing and technology transfer may create a new framework for fuller understanding of the ties between science and business. Research in this area may contribute to the expansion and development of the theory of relational marketing, which until now was limited to the analysis of relations within a single sector. The results of conducted research show that ties characterized by high relational engagement are common, recognized by both academic and business environment as precious and play an important role in stimulating innovations. The quality of relations and relational benefits may play an important role in building long-term ties between universities and the industry. Integration of behavioural theories with the theory of technology transfer may contribute to a better understanding of the behaviour of particular participants of the transfer on the individual level.

  7. Teaching and Understanding the Concept of Critical Thinking Skills within Michigan Accredited Associate Degree Dental Hygiene Programs

    Science.gov (United States)

    Beistle, Kimberly S.

    2012-01-01

    This study explores dental hygiene faculty's perceptions regarding the issues surrounding the concept of critical thinking skills integration within Michigan accredited associate degree dental hygiene programs. The primary research goals are to determine faculty understanding of the concept of critical thinking, identify personal and departmental…

  8. Writing Like a Scientist: Exploring Elementary Teachers' Understandings and Practices of Writing in Science

    Science.gov (United States)

    Glen, Nicole J.; Dotger, Sharon

    2013-10-01

    This qualitative study examined the connections between elementary teachers’ conceptions of how scientists use writing and how the teachers used writing during science lessons. Data collected included lesson observations, interviews, handouts to students, and curriculum resources. The findings revealed that teachers in this study thought scientists write for several purposes: the presentation of data, observations, experiences, procedures, and facts. The teachers used writing tasks that mirrored this with their students. The teachers also had a limited definition of creativity in writing, and when they had students write creatively in science it was to add in fictional elements. Implications of this study include providing teachers with better models for how and why scientists write, including these models in more inquiry-based science lessons, and directly relating concepts of nature of science to elementary science writing.

  9. Relationship of sex, achievement, and science self-concept to the science career preferences of black students

    Science.gov (United States)

    Jacobowitz, Tina

    Science career preferences of junior high school-aged students, while not stable predictors of ultimate career choice, do serve to direct and maintain individuals along the paths to careers in science. In this study, factors relevant to science career preferences of black eighth grade students were investigated. This issue is of particular import to blacks since they are severely underrepresented in the scientific fields. The sample consisted of 113 males and 148 females in an inner city junior high school. The Science Career Preference Scale, the Peabody Picture Vocabulary Test, and the Self-Concept of Ability Scale (Form B-Science) were administered. Mathematics and science grades were obtained from class rating sheets. Treatment of the data involved multiple regression analysis according to a hierarchical model. Results showed that of all the independent variables, sex was the strongest predictor of science career preferences, accounting for 25% of the criterion variance. The findings suggest that early adolescent science career preferences are related more to interests that are consonant with sex-role considerations than realistic assessment of mathematics or science achievement.

  10. Understanding Teaching or Teaching for Understanding: Alternative Frameworks for Science Classrooms.

    Science.gov (United States)

    Wildy, Helen; Wallace, John

    1995-01-01

    Describes the findings of a study that involved exploring the classroom practices of an experienced physics teacher to enable researchers to reexamine assumptions about good teaching. Asserts that a broader view of good science teaching is needed than that proposed by the constructivist literature. (ZWH)

  11. [Understanding local concepts of equity to formulate public health policies in Burkina Faso].

    Science.gov (United States)

    Ridde, Valéry

    2006-01-01

    Equity is an essential health promotion concept and must be included at the heart of public health policy making. However, equity, which can also be referred to as social justice, is a polysemic and contextual term which definition must stem from the discourse and values of the society where the policies are implemented. Using a case study from Burkina Faso, we try to show that the non-acknowledgement of the local concept of social justice in the policy making process partly explains the resulting policies' relative failure to achieve social justice. Data collection methods vary (individual and group interviews, concept mapping, participant observation, document analyses) and there are qualitative and quantitative analyses. The four groups of actors who generally participate in the policy making process participated in the data collection. With no intention to generalise the results to the entire country, the results show that mass social mobilisation for justice is egalitarian in type. Health or social inequalities are understood by individuals as facts which we cannot act upon, while the inequalities to access care are qualified as unjust, and it is possible to intervene to reduce them if incentive measures to this effect are taken. We also observed a certain social difficulty to conceive sub-groups of population and fierce will to not destabilise social peace, which can be provoked when looking for justice for the impoverished sectors of the population. This research allows better understanding about the emic aspect of equity and seems to confirm the importance of taking into account local values, especially social justice, when determining public policy.

  12. An Understanding of the Concept and Conditions of Bilingualism: A Study in an EFL Setting

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Lastra R.

    2015-07-01

    Full Text Available This paper presents a study carried out at a private school that implemented a bilingual program more than a decade ago. The main aim of the project was to find out how the school community understands the concept of bilingualism and the conditions required to fulfill the goals of a bilingual curriculum at the school. Data were collected through surveys and focus groups made up of different members of the school community. The results showed that bilingualism is associated with a high intensification of English classes and the necessity of having English-speaking employees. Results also depict some theoretical issues about bilingualism and important conditions for implementing a bilingual program.

  13. The effect of Phet Simulation media for physics teacher candidate understanding on photoelectric effect concept

    Directory of Open Access Journals (Sweden)

    Supurwoko Supurwoko

    2017-02-01

    Full Text Available Indonesian new Curriculum for senior high school students required student-centered learning. One of the curriculum implementation constraint was the difficulty of providing learning media. PhET simulations media is one of the options that can help implementation of new curriculum on learning. However, the use of this media in Indonesia still needs to be studied comprehensively. The learning was conducted on students of physics education Study Program in sebelas maret university in 2013. The sample consisted of 62 students that was taking quantum physics course. The method that was used in the research was descriptive qualitative.  The method that was used in learning was demonstration’s method that used PhET media and accompanied by a question and answer and groups discussion. The data was collected using multiple choice test and interview through email. We found that any students still did not understand about photoelectric effect concept. They were confused when asked about the thick material and cross section of the targets as related with the regardless of electrons in the photoelectric effect event. Other than that, the concept of the waves as a particle and its relation with the kinetic energy of the electrons was not understood by most students.

  14. Does an Emphasis on the Concept of Quantum States Enhance Students' Understanding of Quantum Mechanics?

    Science.gov (United States)

    Greca, Ileana Maria; Freire, Olival

    Teaching physics implies making choices. In the case of teaching quantum physics, besides an educational choice - the didactic strategy - another choice must be made, an epistemological one, concerning the interpretation of quantum theory itself. These two choices are closely connected. We have chosen a didactic strategy that privileges the phenomenological-conceptual approach, with emphasis upon quantum features of the systems, instead of searching for classical analogies. This choice has led us to present quantum theory associated with an orthodox, yet realistic, interpretation of the concept of quantum state, considered as the key concept of quantum theory, representing the physical reality of a system, independent of measurement processes. The results of the mplementation of this strategy, with three groups of engineering students, showed that more than a half of them attained a reasonable understanding of the basics of quantum mechanics (QM) for this level. In addition, a high degree of satisfaction was attained with the classes as 80% of the students of the experimental groups claimed to have liked it and to be interested in learning more about QM.

  15. Central Computer Science Concepts to Research-Based Teacher Training in Computer Science: An Experimental Study

    Science.gov (United States)

    Zendler, Andreas; Klaudt, Dieter

    2012-01-01

    The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…

  16. Engagement as a Threshold Concept for Science Education and Science Communication

    Science.gov (United States)

    McKinnon, Merryn; Vos, Judith

    2015-01-01

    Science communication and science education have the same overarching aim--to engage their audiences in science--and both disciplines face similar challenges in achieving this aim. Knowing how to effectively engage their "audiences" is fundamental to the success of both. Both disciplines have well-developed research fields identifying…

  17. The case of Carla: Dilemmas of helping all students to understand science

    Science.gov (United States)

    Kurth, Lori A.; Anderson, Charles W.; Palincsar, Annemarie S.

    2002-05-01

    This paper tells the story of four sixth-grade students, of mixed race and social class, who worked together in a small group. All four students were intrigued as they experimented with colored solutions of different densities. They all wanted to share ideas about the techniques they had used, the observations they had made, and the patterns they had seen. They all wanted to understand why the colored solutions acted as they did. In spite of these common interests, they often failed to achieve intersubjective communication about the colored solutions or about the process of planning and making a poster to report their findings. We explain these failures using the sociolinguistic concepts of polysemy, privileging, and holding the floor. In particular, Carla (an African American girl) was unable to hold the floor within the group, so her opportunities for science learning were diminished. The four students were not overtly prejudiced in their speech or actions. Yet the expectations they brought with them about how and when people should talk, how work should be done, and what standards of quality they should aspire to led them to reconstruct among themselves some of the most troubling inequities of our society as a whole. This story is about important connections. In particular it is about how the actions of children are connected to the histories of their families, and how the privileging of ideas is connected to that of people, and how the practice of science is connected to that of discrimination. Science education reformers may underestimate the difficulty of separating conceptual conflict about ideas from interpersonal conflict about privilege and status.

  18. Understanding the Changing Planet: Strategic Directions for the Geographical Sciences

    Science.gov (United States)

    National Academies Press, 2010

    2010-01-01

    From the oceans to continental heartlands, human activities have altered the physical characteristics of Earth's surface. With Earth's population projected to peak at 8 to 12 billion people by 2050 and the additional stress of climate change, it is more important than ever to understand how and where these changes are happening. Innovation in the…

  19. Dilemmas in examining understanding of nature of science in Vietnam

    Science.gov (United States)

    Hatherley-Greene, Peter

    2017-06-01

    The two authors, Thi Phuong Thao-Do and Chokchai Yuenyong, explored the Nature of Science as it is understood in Vietnam, a fast-developing `ancient' and modern country which continues to be shaped by uniquely Asian social norms and values. Upon reviewing their paper, I observed strong parallels to the country, the United Arab Emirates, where I have lived and worked for 20 years. In this forum piece, I described several areas of similarity and one striking area of difference between the two societies.

  20. (Mis)understanding Science: The Problem with Scientific Breakthroughs.

    Science.gov (United States)

    Evans, James P

    2016-09-01

    On Saturday morning, February 28, 1953, the mystery of heredity appeared secure. Humans hadn't the faintest idea of how genetic information was transmitted-how the uncanny resemblance between mother and daughter, grandfather and grandson was conveyed across generations. Yet, by that Saturday afternoon, two individuals, James Watson and Francis Crick, had glimpsed the solution to these mysteries. The story of Watson and Crick's great triumph has been told and retold and has rightly entered the pantheon of scientific legend. But Watson and Crick's breakthrough was just that: a rupture and dramatic discontinuity in human knowledge that solved a deep mystery, the likes of which occurs, perhaps, a couple of times each century. And that's the problem. The story is just so good and so irresistible that it has misled generations of scientists about what to expect regarding a life in science. And more damaging, the resulting breakthrough mentality misleads the public, the media, and society's decision-makers about how science really works, all to the detriment of scientific progress and our society's well-being. © 2016 The Hastings Center.

  1. Knowledge representation and communication with concept maps in teacher training of science and technology

    Directory of Open Access Journals (Sweden)

    Pontes Pedrajas, Alfonso

    2012-01-01

    Full Text Available This paper shows the development of an educational innovation that we have made in the context of initial teacher training for secondary education of science and technology. In this educational experience computing resources and concept maps are used to develop teaching skills related to knowledge representation, oral communication, teamwork and practical use of ICT in the classroom. Initial results indicate that future teachers value positively the use of concept maps and computer resources as useful tools for teacher training.

  2. Assessing Students' Understandings of Biological Models and Their Use in Science to Evaluate a Theoretical Framework

    Science.gov (United States)

    Grünkorn, Juliane; Upmeier zu Belzen, Annette; Krüger, Dirk

    2014-01-01

    Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical evaluation).…

  3. Learning science in small groups: The relationship of conversation to conceptual understanding

    Science.gov (United States)

    McDonald, James Tarleton

    The purpose of this study was to investigate the relationship between conversation and conceptual understanding of erosion. The objective of this study was to investigate how fifth grade students' conceptions of erosion changed while they used stream tables and worked in groups of four within an inquiry-based curriculum. This study used symbolic interactionism and sociocognitive frameworks to interpret science learning in the elementary classroom. The research focused on the conceptual understanding of the focal group students, their use of classroom discourse to talk about their understandings of erosion, and the expertise that emerged while using stream tables. This study took place over a one-semester long study on erosion. Key informants were eight fifth graders. The data sources consisted of children's journals; transcripts of audiotaped interviews with the key informants before, during, and after the erosion unit; transcripts of videotapes of the students using the stream tables; and field notes recording children's discourse and activity. Individual and group cases were constructed during the study. The knowledge of the eight focal group children was placed on a hierarchy of conceptual understanding that contained 8 components of the erosion process. All four of the students whose ideas were examined in depth gained in their conceptual understanding of erosion. Students' individual expertise enhanced their own conceptual understanding. The contribution of classroom discourse and expertise to conceptual understanding differed between the two focal groups. Group 1 used essential expertise to sustain generative conversations, maximizing their learning opportunities. Students in Group 1 got along with one another, rotated assigned roles and jobs, and were able to start their own generative conversations. Members of Group 1 asked generative questions, connected stream table events to real life situations, and involved everyone in the group. Group 2 engaged in a

  4. Timing Sunsets with Smartphones: Proof of Concept for a Citizen Science Project that Quantifies the Atmosphere and Supports Astronomical Observations

    Science.gov (United States)

    Wilson, Teresa; Kantamneni, A.; Bartlett, J. L.; Nemiroff, R. J.

    2014-01-01

    Current models that predict the times of sunrise and sunset are only accurate, typically, to a few minutes. Variations in atmospheric refraction contribute to the differences between computed and observed times. At high latitudes, slight changes in refraction can cause the Sun to remain continuously above the horizon instead of appearing to set. A substantial collection of observations would help constrain atmospheric models, which should, in turn, complement astronomical observations through improved understanding of air stability, refraction, and transparency. We report on a small project recording data from a few smartphones as a proof of concept for a possible larger scale citizen science effort.

  5. BOOK REVIEW: Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools

    Science.gov (United States)

    Franz, S.

    2004-10-01

    Since the discovery of the renormalization group theory in statistical physics, the realm of applications of the concepts of scale invariance and criticality has pervaded several fields of natural and social sciences. This is the leitmotiv of Didier Sornette's book, who in Critical Phenomena in Natural Sciences reviews three decades of developments and applications of the concepts of criticality, scale invariance and power law behaviour from statistical physics, to earthquake prediction, ruptures, plate tectonics, modelling biological and economic systems and so on. This strongly interdisciplinary book addresses students and researchers in disciplines where concepts of criticality and scale invariance are appropriate: mainly geology from which most of the examples are taken, but also engineering, biology, medicine, economics, etc. A good preparation in quantitative science is assumed but the presentation of statistical physics principles, tools and models is self-contained, so that little background in this field is needed. The book is written in a simple informal style encouraging intuitive comprehension rather than stressing formal derivations. Together with the discussion of the main conceptual results of the discipline, great effort is devoted to providing applied scientists with the tools of data analysis and modelling necessary to analyse, understand, make predictions and simulate systems undergoing complex collective behaviour. The book starts from a purely descriptive approach, explaining basic probabilistic and geometrical tools to characterize power law behaviour and scale invariant sets. Probability theory is introduced by a detailed discussion of interpretative issues warning the reader on the use and misuse of probabilistic concepts when the emphasis is on prediction of low probability rare---and often catastrophic---events. Then, concepts that have proved useful in risk evaluation, extreme value statistics, large limit theorems for sums of independent

  6. Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools

    International Nuclear Information System (INIS)

    Franz, S

    2004-01-01

    Since the discovery of the renormalization group theory in statistical physics, the realm of applications of the concepts of scale invariance and criticality has pervaded several fields of natural and social sciences. This is the leitmotiv of Didier Sornette's book, who in Critical Phenomena in Natural Sciences reviews three decades of developments and applications of the concepts of criticality, scale invariance and power law behaviour from statistical physics, to earthquake prediction, ruptures, plate tectonics, modelling biological and economic systems and so on. This strongly interdisciplinary book addresses students and researchers in disciplines where concepts of criticality and scale invariance are appropriate: mainly geology from which most of the examples are taken, but also engineering, biology, medicine, economics, etc. A good preparation in quantitative science is assumed but the presentation of statistical physics principles, tools and models is self-contained, so that little background in this field is needed. The book is written in a simple informal style encouraging intuitive comprehension rather than stressing formal derivations. Together with the discussion of the main conceptual results of the discipline, great effort is devoted to providing applied scientists with the tools of data analysis and modelling necessary to analyse, understand, make predictions and simulate systems undergoing complex collective behaviour. The book starts from a purely descriptive approach, explaining basic probabilistic and geometrical tools to characterize power law behaviour and scale invariant sets. Probability theory is introduced by a detailed discussion of interpretative issues warning the reader on the use and misuse of probabilistic concepts when the emphasis is on prediction of low probability rare - and often catastrophic - events. Then, concepts that have proved useful in risk evaluation, extreme value statistics, large limit theorems for sums of independent

  7. Measuring University students' understanding of the greenhouse effect - a comparison of multiple-choice, short answer and concept sketch assessment tools with respect to students' mental models

    Science.gov (United States)

    Gold, A. U.; Harris, S. E.

    2013-12-01

    The greenhouse effect comes up in most discussions about climate and is a key concept related to climate change. Existing studies have shown that students and adults alike lack a detailed understanding of this important concept or might hold misconceptions. We studied the effectiveness of different interventions on University-level students' understanding of the greenhouse effect. Introductory level science students were tested for their pre-knowledge of the greenhouse effect using validated multiple-choice questions, short answers and concept sketches. All students participated in a common lesson about the greenhouse effect and were then randomly assigned to one of two lab groups. One group explored an existing simulation about the greenhouse effect (PhET-lesson) and the other group worked with absorption spectra of different greenhouse gases (Data-lesson) to deepen the understanding of the greenhouse effect. All students completed the same assessment including multiple choice, short answers and concept sketches after participation in their lab lesson. 164 students completed all the assessments, 76 completed the PhET lesson and 77 completed the data lesson. 11 students missed the contrasting lesson. In this presentation we show the comparison between the multiple-choice questions, short answer questions and the concept sketches of students. We explore how well each of these assessment types represents student's knowledge. We also identify items that are indicators of the level of understanding of the greenhouse effect as measured in correspondence of student answers to an expert mental model and expert responses. Preliminary data analysis shows that student who produce concept sketch drawings that come close to expert drawings also choose correct multiple-choice answers. However, correct multiple-choice answers are not necessarily an indicator that a student produces an expert-like correlating concept sketch items. Multiple-choice questions that require detailed

  8. The concept of competence and its relevance for science, technology, and mathematics education

    DEFF Research Database (Denmark)

    Ropohl, Mathias; Nielsen, Jan Alexis; Olley, Christopher

    2018-01-01

    . In contrast to earlier ed-ucational goals that focused more on basic skills and knowledge expectations, competences are more functionally oriented. They involve the ability to solve complex problems in a particular context, e.g. in vocational or everyday situations. In science, technology, and mathematics...... education, the concept of competence is closely linked to the concept of literacy. Apart from these rather cognitive and af-fective perspectives influenced by the need to assess students’ achievement of de-sired learning goals in relation to their interest and motivation, the perspectives of the concept...

  9. Sociology and the public understanding of science: from rationalization to rhetoric.

    Science.gov (United States)

    Locke, S

    2001-03-01

    This paper contributes to the reappraisal of sociological theories of modernity inspired by the sociology of scientific knowledge (SSK). As much as these theories rely on received ideas about the nature of science that SSK has called into doubt, so do they rely on ideas about the public understanding of science. Public understanding of science has been assumed to conform to the monolithic logic and perception of science associated with rationalization, leading to an impoverished view of the cognitive outlook of the modern individual. Rationalization has become the basis for the construction of theoretical critique of science divorced from any clear reference to public understanding, with the result that theory has encountered considerable problems in accounting for public scepticism towards science. However, rather than question rationalization, the more typical strategy has been to propose radical changes in the modernization process, such as postmodernism and the risk society. Against this, an alternative view of public understanding is advanced drawn from SSK and rhetorical psychology. The existence of the sociological critique of science, and SSK in particular, suggests that the meaning of science in modernity is not monolithic but multiple, arising out of a central dilemma over the universal form of knowledge-claims and their necessarily particular, human and social grounding. This dilemma plays out not only in intellectual discourses about science, but also in the public's understanding of science. This argument is used to call for further sociological research into public understanding and to encourage sociologists to recognize the central importance of the topic to a proper understanding of modernity.

  10. Girls' and Boys' Academic Self-Concept in Science in Single-Sex and Coeducational Classes

    Science.gov (United States)

    Simpson, Amber; Che, S. Megan; Bridges, William C., Jr.

    2016-01-01

    Recently, single-sex classes within public coeducational schools have proliferated across the USA; yet, we still know little about whether and how single-sex science classes influence adolescents' attitude and affect toward science. This exploratory study expands upon our current understanding by investigating the extent in which female and male…

  11. Understanding Student Participation and Choice in Science and Technology Education

    DEFF Research Database (Denmark)

    Ryder, Jim; Ulriksen, Lars; Bøe, Maria Vetleseter

    2015-01-01

    Many of the chapters in this volume provide reviews of the existing research literature. In this chapter we focus on what the research studies presented in this book have contributed to our understanding of students’ educational choices. The nature of these contributions is varied. Many findings...... corroborate existing research insights, or explore existing perspectives in new educational contexts or across distinct geographical and cultural settings. In some cases our work challenges prevalent accounts of students’ educational choices. This chapter has five themes: theoretical perspectives; choice...

  12. Force, Velocity, and Work: The Effects of Different Contexts on Students' Understanding of Vector Concepts Using Isomorphic Problems

    Science.gov (United States)

    Barniol, Pablo; Zavala, Genaro

    2014-01-01

    In this article we compare students' understanding of vector concepts in problems with no physical context, and with three mechanics contexts: force, velocity, and work. Based on our "Test of Understanding of Vectors," a multiple-choice test presented elsewhere, we designed two isomorphic shorter versions of 12 items each: a test with no…

  13. The Identification of Variation in Students' Understandings of Disciplinary Concepts: The Application of the SOLO Taxonomy within Introductory Accounting

    Science.gov (United States)

    Lucas, Ursula; Mladenovic, Rosina

    2009-01-01

    Insights into students' understandings of disciplinary concepts are fundamental to effective curriculum development. This paper argues that a rounded picture of students' understandings is required to support such development. It is argued that one element of this picture may be provided through the use of the Structure of Observed Learning…

  14. Using Two-Tier Test to Identify Primary Students' Conceptual Understanding and Alternative Conceptions in Acid Base

    Science.gov (United States)

    Bayrak, Beyza Karadeniz

    2013-01-01

    The purpose of this study was to identify primary students' conceptual understanding and alternative conceptions in acid-base. For this reason, a 15 items two-tier multiple choice test administered 56 eighth grade students in spring semester 2009-2010. Data for this study were collected using a conceptual understanding scale prepared to include…

  15. Effect of science teaching on the young child's concept of piagetian physical causality: Animism and dynamism

    Science.gov (United States)

    Wolfinger, Donna M.

    The purpose of this research was to determine whether the young child's understanding of physical causality is affected by school science instruction. Sixty-four subjects, four and one-half through seven years of age, received 300 min of instruction designed to affect the subject's conception of causality as reflected in animism and dynamism. Instruction took place for 30 min per day on ten successive school days. Pretesting was done to allow a stratified random sample to be based on vocabulary level and developmental stage as well as on age and gender. Post-testing consisted of testing of developmental level and level within the causal relations of animism and dynamism. Significant differences (1.05 level) were found between the experimental and control groups for animism. Within the experimental group, males differed significantly (1.001 level) from females. The elimination of animism appeared to have occurred. For dynamism, significant differences (0.05 level) were found only between concrete operational subjects in the experimental and control groups, indicating a concrete level of operations was necessary if dynamism was to be affected. However, a review of interview protocols indicated that subjects classified as nonanimistic had learned to apply a definition rather than to think in a nonanimistic manner.

  16. GeoWall use in an Introductory Geology laboratory: Impacts in Student Understanding of Field Mapping Concepts

    Science.gov (United States)

    Ross, L. E.; Kelly, M.; Springer, A. E.

    2003-12-01

    In the Fall semester of 2003, Northern Arizona University will introduce the GeoWall to its introductory geology courses. This presents an opportunity to assess the impact of this new technology on students' understanding of basic topographic concepts and the spatial relationships between geology, topography, and hydrology on a field trip. Introductory Geology fulfills the Lab Science component of the Liberal Studies Program at Northern Arizona University. The class is open to all Northern Arizona University students, and is most commonly taken by non-science majors. In this class students learn to: locate their position using maps, identify common minerals and rocks, recognize the relationship between geology and geomorphology, visualize how rocks exposed at the surface continue into the subsurface, and to draw conclusions about possible geologic hazards in different settings. In this study we will report how a GeoWall 3D visualization technology was used in a field study of a graben south of Flagstaff. The goal of the field exercise is to improve students' ability to synthesize data collected at field stops into a conceptual model of the graben, linking geology, geomorphology and hydrology. We plan to present a quantitative assessment of the GeoWall learning objectives from data collected from a paired test and control group of students. Teaching assistants (TAs) with two or more lab classes have been identified; these TAs will participate in both GeoWall and non-GeoWall lab exercises. The GeoWall use will occur outside of normal lab hours to avoid disrupting the lab schedule during the eighth week of lab. This field preparation exercise includes a 3D visualization of the Lake Mary graben rendered with the ROMA software. The following week, all students attend the graben field trip; immediately following the trip, students will interviewed about their gain in understanding of the geologic features illustrated during the field trip. The results of the post

  17. The social accountability of doctors: a relationship based framework for understanding emergent community concepts of caring.

    Science.gov (United States)

    Green-Thompson, Lionel P; McInerney, Patricia; Woollard, Bob

    2017-04-12

    Social accountability is defined as the responsibility of institutions to respond to the health priorities of a community. There is an international movement towards the education of health professionals who are accountable to communities. There is little evidence of how communities experience or articulate this accountability. In this grounded theory study eight community based focus group discussions were conducted in rural and urban South Africa to explore community members' perceptions of the social accountability of doctors. The discussions were conducted across one urban and two rural provinces. Group discussions were recorded and transcribed verbatim. Initial coding was done and three main themes emerged following data analysis: the consultation as a place of love and respect (participants have an expectation of care yet are often engaged with disregard); relationships of people and systems (participants reflect on their health priorities and the links with the social determinants of health) and Ubuntu as engagement of the community (reflected in their expectation of Ubuntu based relationships as well as part of the education system). These themes were related through a framework which integrates three levels of relationship: a central community of reciprocal relationships with the doctor-patient relationship as core; a level in which the systems of health and education interact and together with social determinants of health mediate the insertion of communities into a broader discourse. An ubuntu framing in which the tensions between vulnerability and power interact and reflect rights and responsibility. The space between these concepts is important for social accountability. Social accountability has been a concept better articulated by academics and centralized agencies. Communities bring a richer dimension to social accountability through their understanding of being human and caring. This study also creates the connection between ubuntu and social

  18. Understanding of Leaf Development—the Science of Complexity

    Directory of Open Access Journals (Sweden)

    Robert Malinowski

    2013-06-01

    Full Text Available The leaf is the major organ involved in light perception and conversion of solar energy into organic carbon. In order to adapt to different natural habitats, plants have developed a variety of leaf forms, ranging from simple to compound, with various forms of dissection. Due to the enormous cellular complexity of leaves, understanding the mechanisms regulating development of these organs is difficult. In recent years there has been a dramatic increase in the use of technically advanced imaging techniques and computational modeling in studies of leaf development. Additionally, molecular tools for manipulation of morphogenesis were successfully used for in planta verification of developmental models. Results of these interdisciplinary studies show that global growth patterns influencing final leaf form are generated by cooperative action of genetic, biochemical, and biomechanical inputs. This review summarizes recent progress in integrative studies on leaf development and illustrates how intrinsic features of leaves (including their cellular complexity influence the choice of experimental approach.

  19. Understanding the Influence of Learners' Forethought on Their Use of Science Study Strategies in Postsecondary Science Learning

    Science.gov (United States)

    Dunn, Karee E.; Lo, Wen-Juo

    2015-11-01

    Understanding self-regulation in science learning is important for theorists and practitioners alike. However, very little has been done to explore and understand students' self-regulatory processes in postsecondary science courses. In this study, the influence of science efficacy, learning value, and goal orientation on the perceived use of science study strategies was explored using structural equation modeling. In addition, the study served to validate the first two stages of Zimmerman's cyclical model of self-regulation and to address the common methodological weakness in self-regulation research in which data are all collected at one point after the learning cycle is complete. Thus, data were collected across the learning cycle rather than asking students to reflect upon each construct after the learning cycle was complete. The findings supported the hypothesized model in which it was predicted that self-efficacy would significantly and positively influence students' perceived science strategy use, and the influence of students' valuation of science learning on science study strategies would be mediated by their learning goal orientation. The findings of the study are discussed and implications for undergraduate science instructors are proposed.

  20. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study.

    Science.gov (United States)

    Nuhfer, Edward B; Cogan, Christopher B; Kloock, Carl; Wood, Gregory G; Goodman, Anya; Delgado, Natalie Zayas; Wheeler, Christopher W

    2016-03-01

    After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs), we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI). In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE) science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science's way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions' higher mean SAT and ACT scores. Socioeconomic factors of a) first-generation student, b) English as a native language, and c) interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders.

  1. Conceptions of the Nature of Science--Are They General or Context Specific?

    Science.gov (United States)

    Urhahne, Detlef; Kremer, Kerstin; Mayer, Juergen

    2011-01-01

    The study investigates the relationship between general and context-specific conceptions of the nature of science (NOS). The categorization scheme by Osborne et al. (J Res Sci Teach 40:692-720, "2003") served as the theoretical framework of the study. In the category "nature of scientific knowledge", the certainty, development, simplicity,…

  2. Study Habit, Self-Concept and Science Achievement of Public and ...

    African Journals Online (AJOL)

    This study compared study habit, self-concept and science achievement of students in public and private junior secondary schools in Ogun State, Nigeria. Twelve secondary schools were randomly selected from Egba and Ijebu divisions of the state. A sample of three hundred and sixty (360) students participated in the ...

  3. The Role of Drawing in Young Children's Construction of Science Concepts

    Science.gov (United States)

    Chang, Ni

    2012-01-01

    It has been observed that many young children like making marks on paper and that they enjoy the activity. It is also known that children's drawings are vehicles for expression and communication. Therefore, it would be logical and reasonable for teachers to incorporate children's drawings into building science concepts. To demonstrate how drawings…

  4. Spatial Foundations of Science Education: The Illustrative Case of Instruction on Introductory Geological Concepts

    Science.gov (United States)

    Liben, Lynn S.; Kastens, Kim A.; Christensen, Adam E.

    2011-01-01

    To study the role of spatial concepts in science learning, 125 college students with high, medium, or low scores on a horizontality (water-level) spatial task were given information about geological strike and dip using existing educational materials. Participants mapped an outcrop's strike and dip, a rod's orientation, pointed to a distant…

  5. Using "Slowmation" to Enable Preservice Primary Teachers to Create Multimodal Representations of Science Concepts

    Science.gov (United States)

    Hoban, Garry; Nielsen, Wendy

    2012-01-01

    Research has identified the value of students constructing their own representations of science concepts using modes such as writing, diagrams, 2-D and 3-D models, images or speech to communicate meaning. "Slowmation" (abbreviated from "Slow Animation") is a simplified way for students, such as preservice teachers, to make a narrated animation…

  6. Analyzing the Use of Concept Maps in Computer Science: A Systematic Mapping Study

    Science.gov (United States)

    dos Santos, Vinicius; de Souza, Érica F.; Felizardo, Katia R; Vijaykumar, Nandamudi L.

    2017-01-01

    Context: concept Maps (CMs) enable the creation of a schematic representation of a domain knowledge. For this reason, CMs have been applied in different research areas, including Computer Science. Objective: the objective of this paper is to present the results of a systematic mapping study conducted to collect and evaluate existing research on…

  7. Determining Science Student Teachers' Cognitive Structure on the Concept of "Food Chain"

    Science.gov (United States)

    Çinar, Derya

    2015-01-01

    The current study aims to determine science student teachers' cognitive structure on the concept of food chain. Qualitative research method was applied in this study. Fallacies detected in the pre-service teachers' conceptual structures are believed to result in students' developing misconceptions in their future classes and will adversely affect…

  8. The Effects of Computer-Aided Concept Cartoons and Outdoor Science Activities on Light Pollution

    Science.gov (United States)

    Aydin, Güliz

    2015-01-01

    The purpose of this study is to create an awareness of light pollution on seventh grade students via computer aided concept cartoon applications and outdoor science activities and to help them develop solutions; and to determine student opinions on the practices carried out. The study was carried out at a middle school in Mugla province of Aegean…

  9. The life of concepts: Georges Canguilhem and the history of science.

    Science.gov (United States)

    Schmidgen, Henning

    2014-01-01

    Twelve years after his famous Essay on Some Problems Concerning the Normal and the Pathological (1943), the philosopher Georges Canguilhem (1904-1995) published a book-length study on the history of a single biological concept. Within France, his Formation of the Reflex Concept in the Seventeenth and Eighteenth Centuries (1955) contributed significantly to defining the "French style" of writing on the history of science. Outside of France, the book passed largely unnoticed. This paper re-reads Canguilhem's study of the reflex concept with respect to its historiographical and epistemological implications. Canguilhem defines concepts as complex and dynamic entities combining terms, definitions, and phenomena. As a consequence, the historiography of science becomes a rather complex task. It has to take into account textual and contextual aspects that develop independently of individual authors. In addition, Canguilhem stresses the connection between conceptual activities and other functions of organic individuals in their respective environments. As a result, biological concepts become tied to a biology of conceptual thinking, analogical reasoning, and technological practice. The paper argues that this seemingly circular structure is a major feature in Canguilhem's philosophical approach to the history of the biological sciences.

  10. The relationship between nature of science understandings and science self-efficacy beliefs of sixth grade students

    Science.gov (United States)

    Parker, Elisabeth Allyn

    Bandura (1986) posited that self-efficacy beliefs help determine what individuals do with the knowledge and skills they have and are critical determinants of how well skill and knowledge are acquired. Research has correlated self-efficacy beliefs with academic success and subject interest (Pajares, Britner, & Valiante, 2000). Similar studies report a decreasing interest by students in school science beginning in middle school claiming that they don't enjoy science because the classes are boring and irrelevant to their lives (Basu & Barton, 2007). The hypothesis put forth by researchers is that students need to observe models of how science is done, the nature of science (NOS), so that they connect with the human enterprise of science and thereby raise their self-efficacy (Britner, 2008). This study examined NOS understandings and science self-efficacy of students enrolled in a sixth grade earth science class taught with explicit NOS instruction. The research questions that guided this study were (a) how do students' self-efficacy beliefs change as compared with changes in their nature of science understandings?; and (b) how do changes in students' science self-efficacy beliefs vary with gender and ethnicity segregation? A mixed method design was employed following an embedded experimental model (Creswell & Plano Clark, 2007). As the treatment, five NOS aspects were first taught by the teachers using nonintegrated activities followed by integrated instructional approach (Khishfe, 2008). Students' views of NOS using the Views on Nature of Science (VNOS) (Lederman, Abd-El-Khalick, & Schwartz, 2002) along with their self-efficacy beliefs using three Likert-type science self-efficacy scales (Britner, 2002) were gathered. Changes in NOS understandings were determined by categorizing student responses and then comparing pre- and post-instructional understandings. To determine changes in participants' self-efficacy beliefs as measured by the three subscales, a multivariate

  11. Workshop on Friction: Understanding and Addressing Students' Difficulties in Learning Science through a Hermeneutical Perspective

    Science.gov (United States)

    Ha, Sangwoo; Lee, Gyoungho; Kalman, Calvin S.

    2013-01-01

    Hermeneutics is useful in science and science education by emphasizing the process of understanding. The purpose of this study was to construct a workshop based upon hermeneutical principles and to interpret students' learning in the workshop through a hermeneutical perspective. When considering the history of Newtonian mechanics, it could be…

  12. Developing Turkish Preservice Preschool Teachers' Attitudes and Understanding about Teaching Science through Play

    Science.gov (United States)

    Bulunuz, Mizrap

    2012-01-01

    This research studied the development of preservice teachers' understandings and attitudes about teaching science through playful experiences. Subjects were 94 senior preservice teachers in two sections of a science methods class on teaching preschool children. Data sources were semi-structured interviews and open-ended questionnaire at the…

  13. A Study to Understand the Role of Visual Arts in the Teaching and Learning of Science

    Science.gov (United States)

    Dhanapal, Saroja; Kanapathy, Ravi; Mastan, Jamilah

    2014-01-01

    This research was carried out to understand the role of visual arts in the teaching and learning of science among Grade 3 teachers and students. A mixture of qualitative and quantitative research design was used to discover the different perceptions of both teachers and students on the role of visual arts in science. The data for the research was…

  14. Impacts of Contextual and Explicit Instruction on Preservice Elementary Teachers' Understandings of the Nature of Science

    Science.gov (United States)

    Bell, Randy L.; Matkins, Juanita Jo; Gansneder, Bruce M.

    2011-01-01

    This mixed-methods investigation compared the relative impacts of instructional approach and context of nature of science instruction on preservice elementary teachers' understandings. The sample consisted of 75 preservice teachers enrolled in four sections of an elementary science methods course. Independent variables included instructional…

  15. Descriptive Understandings of the Nature of Science: Examining the Consensual and Family Resemblance Approaches

    Science.gov (United States)

    do Nascimento Rocha, Maristela; Gurgel, Ivã

    2017-01-01

    This paper performs a critical analysis of the consensual and family resemblance approaches to the nature of science. Despite the debate that surrounds them, between a pragmatic consensus and a more comprehensive understanding, both approaches have in common the goal of helping students to "internalize" knowledge about science in a…

  16. Enhancing Laos Students' Understanding of Nature of Science in Physics Learning about Atom for Peace

    Science.gov (United States)

    Sengdala, Phoxay; Yuenyong, Chokchai

    2014-01-01

    This paper aimed to study of Grade 12 students' understanding of nature of science in learning about atom for peace through science technology and society (STS) approach. Participants were 51 Grade 12 who study in Thongphong high school Vientiane Capital City Lao PDR, 1st semester of 2012 academic year. This research regarded interpretive…

  17. Prospective Elementary Teachers' Understanding of the Nature of Science and Perceptions of the Classroom Learning Environment

    Science.gov (United States)

    Martin-Dunlop, Catherine S.

    2013-01-01

    This study investigated prospective elementary teachers' understandings of the nature of science and explored associations with their guided-inquiry science learning environment. Over 500 female students completed the Nature of Scientific Knowledge Survey (NSKS), although only four scales were analyzed-Creative, Testable, Amoral, and Unified. The…

  18. The Effect of Using the History of Sciences on Conceptual Understanding and Intrinsic Motivation

    Science.gov (United States)

    Blizak, Djanette

    2017-01-01

    This study investigates the effect of using the history of science in teaching geometrical optics on the motivation and conceptual understanding of first year university students. For this purpose, 54 students were randomly selected, then divided into two groups: the experimental group was taught by using history of science before traditional…

  19. Understanding Korean Transnational Girls in High School Science Classes: Beyond the Model Minority Stereotype

    Science.gov (United States)

    Ryu, Minjung

    2015-01-01

    This study examines six Korean transnational girls enrolled in two advanced placement (AP) biology classes to understand their experiences in science classrooms at the intersection of race, language, and gender. Confronting the model minority stereotype for Asian students, which is particularly salient in science, technology, engineering, and…

  20. Driven by Beliefs: Understanding Challenges Physical Science Teachers Face When Integrating Engineering and Physics

    Science.gov (United States)

    Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.

    2014-01-01

    It is difficult to ignore the increased use of technological innovations in today's world, which has led to various calls for the integration of engineering into K-12 science standards. The need to understand how engineering is currently being brought to science classrooms is apparent and necessary in order to address these calls for integration.…

  1. Developing an Understanding of Higher Education Science and Engineering Learning Communities

    Science.gov (United States)

    Coll, Richard K.; Eames, Chris

    2008-01-01

    This article sets the scene for this special issue of "Research in Science & Technological Education", dedicated to understanding higher education science and engineering learning communities. We examine what the literature has to say about the nature of, and factors influencing, higher education learning communities. A discussion of…

  2. Turkish Primary Science Teacher Candidates' Understandings of Global Warming and Ozone Layer Depletion

    Science.gov (United States)

    Yalcin, Fatma Aggul; Yalcin, Mehmet

    2017-01-01

    The purpose of the study was to explore Turkish primary science teacher candidates' understanding of global warming and ozone layer depletion. In the study, as the research approach the survey method was used. The sample consisted of one hundred eighty nine third grade science teacher candidates. Data was collected using the tool developed by the…

  3. Using Example Generation to Explore Students' Understanding of the Concepts of Linear Dependence/Independence in Linear Algebra

    Science.gov (United States)

    Aydin, Sinan

    2014-01-01

    Linear algebra is a basic mathematical subject taught in mathematics and science depar-tments of universities. The teaching and learning of this course has always been difficult. This study aims to contribute to the research in linear algebra education, focusing on linear dependence and independence concepts. This was done by introducing…

  4. Exploring the practicing-connections hypothesis: using gesture to support coordination of ideas in understanding a complex statistical concept.

    Science.gov (United States)

    Son, Ji Y; Ramos, Priscilla; DeWolf, Melissa; Loftus, William; Stigler, James W

    2018-01-01

    In this article, we begin to lay out a framework and approach for studying how students come to understand complex concepts in rich domains. Grounded in theories of embodied cognition, we advance the view that understanding of complex concepts requires students to practice, over time, the coordination of multiple concepts, and the connection of this system of concepts to situations in the world. Specifically, we explore the role that a teacher's gesture might play in supporting students' coordination of two concepts central to understanding in the domain of statistics: mean and standard deviation. In Study 1 we show that university students who have just taken a statistics course nevertheless have difficulty taking both mean and standard deviation into account when thinking about a statistical scenario. In Study 2 we show that presenting the same scenario with an accompanying gesture to represent variation significantly impacts students' interpretation of the scenario. Finally, in Study 3 we present evidence that instructional videos on the internet fail to leverage gesture as a means of facilitating understanding of complex concepts. Taken together, these studies illustrate an approach to translating current theories of cognition into principles that can guide instructional design.

  5. Prospective Elementary Teacher Understandings of Pest-Related Science and Agricultural Education Benchmarks.

    Science.gov (United States)

    Trexler, Cary J.; Heinze, Kirk L.

    2001-01-01

    Clinical interviews with eight preservice elementary teachers elicited their understanding of pest-related benchmarks. Those with out-of-school experience were better able to articulate their understanding. Many were unable to make connections between scientific, societal and technological concepts. (Contains 39 references.) (SK)

  6. Urban Elementary Students' Conceptions of Learning Goals for Agricultural Science and Technology

    Science.gov (United States)

    Trexler, Cary J.; Hess, Alexander J.; Hayes, Kathryn N.

    2013-01-01

    Nationally, both science and agricultural education professional organizations have identified agriculture as a fundamental technology to be studied by students, with the goal of achieving an understanding of the agri-food system necessary for democratic participation. Benchmarks representing the content that K-12 children need to understand about…

  7. Effect of science magic applied in interactive lecture demonstrations on conceptual understanding

    Science.gov (United States)

    Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny

    2017-08-01

    Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic is higher than students who received lesson with ILD without science magic . Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.

  8. Influence of Cultural Belief and Values on Secondary School Students' Understanding of Atmospheric Related Physics Concepts

    Science.gov (United States)

    Bello, Theodora Olufunke

    2015-01-01

    The study identified the different cultural concepts that secondary school students' believe in and determined the belief and idea of students about the cultural concepts. It also investigated students' source of information about the cultural concepts and determined the influence of these cultural believes on students' academic performance in…

  9. Using Concept Mapping to Improve Poor Readers' Understanding of Expository Text

    Science.gov (United States)

    Morfidi, Eleni; Mikropoulos, Anastasios; Rogdaki, Aspasia

    2018-01-01

    The present study examined whether the use of concept mapping is more effective in teaching expository material in comparison to a traditional, lecture only, approach. Its objective was threefold. First, to determine if multimedia concept mapping produces differential learning outcomes compared to digital text-based concept mapping. Secondly, to…

  10. Using Metasynthesis to Develop Sensitising Concepts to Understand Torres Strait Islander Migration

    Directory of Open Access Journals (Sweden)

    Vinnitta Patricia Mosby

    2013-03-01

    Full Text Available Emerging research indicates that more and more Indigenous peoples will be forced to migrate due to climate change. Current responses focus on mitigation and adaptation strategies. One such group, Torres Strait Islander people are already moving for other reasons and existing vulnerabilities compound levels of disadvantage when moving. It will be important to understand Torres Strait Islander people’s experiences of contemporary movements in order to inform policy development and facilitate the process of migration and resettlement as movement increases. A synthesis of existing studies would allow the development of sensitising concepts that could inform future research in the Torres Strait Islander context. This article presents a metasynthesis of six qualitative studies of the experiences of different Indigenous and minority groups at various stages of migration, displacement and resettlement. Articles were selected on contemporary movements (2001-2011 and importantly the inclusion of first person voice. Reciprocal translation was used to synthesise common themes and a core construct. The overarching construct that became apparent from the metasynthesis was ‘continuity of being’ through staying connected to self, family and culture. Three themes emerged: ‘freedom to be’, ‘staying close’ and ‘forming anchor’. These were enacted through people valuing their personal, social, religious and political freedom and recognising the importance of maintaining or forming strong social and family networks. When researching the experiences of Torres Strait Islanders it will be necessary to focus on motivations for moving, and understand the processes for staying connected to kin and homeland in order to achieve the desired outcomes of successful resettlement under conditions of uncertainty.

  11. Uexküllian Umwelt as science and as ideology: the light and the dark side of a concept.

    Science.gov (United States)

    Stella, Marco; Kleisner, Karel

    2010-06-01

    The concept of Umwelt, in particular the interpretation originally developed by Jakob von Uexküll, played an important role in the development of biological thought of the first half of the twentieth century. The theory of Umwelt (Umweltlehre) was one of the most original ideas that appeared in German biology at that time. It was the first attempt to introduce subjectivity into a science about organisms; it laid down the foundations of behavioural research and inspired the development of ethology. However, the theory of Umwelt has also been used to support more sinister activities and even some dangerous ideologies. The concept of Umwelt is of interest not only to historians: within some intellectual circles, it is still broadly used today. Our aim was to analyse the notion's historic development within the context of biological thought of the first half of the 20th century. In particular, we focus (1) on how the concept was adopted and adapted for various, often widely diverging purposes; (2) on interactions between the Umweltlehre and other contemporary worldviews. We argue that in order to understand the developments that occurred in twentieth century biology, one needs to properly appreciate the role which Umweltlehre played in these. Even more importantly, the Umweltlehre is a worldview that influenced not only science but also politics and social affairs. In this respect it functioned rather like a number of other scientific and ideological frameworks of that time, such as Synthetic Darwinism.

  12. Understanding Mathematic Concept in Relation and Function Method through Active Learning Type Group to Group Distributed LKS

    Science.gov (United States)

    Kudri, F.; Rahmi, R.; Haryono, Y.

    2018-04-01

    This research is motivated by the lack of understanding of mathematical concepts students and teachers have not familiarize students discussed in groups. This researchaims to determine whether an understanding of mathematical concepts junior class VIII SMPN 2 in Ranah Batahan Kabupaten Pasaman Barat by applying active learning strategy group to group types with LKS better than conventional learning. The type of research is experimental the design of randomized trials on the subject. The population in the study were all students VIII SMPN 2 Ranah Batahan Kabupaten Pasaman Barat in year 2012/2013 which consists of our class room experiment to determine the grade and control class with do nerandomly, so that classes VIII1 elected as a experiment class and class VIII4 as a control class. The instruments used in the test empirically understanding mathematical concepts are shaped by the essay with rt=0,82 greater than rt=0,468 means reliable tests used. The data analysis technique used is the test with the help of MINITAB. Based on the results of the data analisis known that both of the sample are normal and homogenity in real rate α = 0,05, so the hypothesis of this research is received. So, it can be concluded students’ understanding mathematical concept applied the active Group to Group learning strategy with LKS is better than the students’ understanding mathematical concept with Conventional Learning.

  13. The acrophysis: a unifying concept for understanding enchondral bone growth and its disorders. II. Abnormal growth

    International Nuclear Information System (INIS)

    Oestreich, Alan E.

    2004-01-01

    In order to discuss and illustrate the effects common to normal and abnormal enchondral bone at the physes and at all other growth plates of the developing child, the term ''acrophysis'' was proposed. Acrophyses include the growth plates of secondary growth centers including carpals and tarsals and apophyses, and the growth plates at the nonphyseal ends of small tubular bones. Abnormalities at acrophyseal sites are analogous to those at the physeal growth plates and their metaphyses. For example, changes relating to the zone of provisional calcification (ZPC) are often important to the demonstration of such similarities. Lead lines were an early example of the concept of analogy from abnormality due to physeal and to acrophyseal disturbance. The ZPC is a key factor in understanding patterns of rickets and its healing. Examples (including hypothyroidism, scurvy and other osteoporosis, Ollier disease, achondroplasia, and osteopetrosis, as well as the family of frostbite, Kashin-Beck disease, and rat bite fever) illustrate the acrophysis principle and in turn their manifestations are explained by that principle. (orig.)

  14. The acrophysis: a unifying concept for understanding enchondral bone growth and its disorders. II. Abnormal growth

    Energy Technology Data Exchange (ETDEWEB)

    Oestreich, Alan E. [Department of Radiology, Cincinnati Children' s Hospital Medical Center, 3333 Burnet Avenue, OH 45229-3039, Cincinnati (United States)

    2004-03-01

    In order to discuss and illustrate the effects common to normal and abnormal enchondral bone at the physes and at all other growth plates of the developing child, the term ''acrophysis'' was proposed. Acrophyses include the growth plates of secondary growth centers including carpals and tarsals and apophyses, and the growth plates at the nonphyseal ends of small tubular bones. Abnormalities at acrophyseal sites are analogous to those at the physeal growth plates and their metaphyses. For example, changes relating to the zone of provisional calcification (ZPC) are often important to the demonstration of such similarities. Lead lines were an early example of the concept of analogy from abnormality due to physeal and to acrophyseal disturbance. The ZPC is a key factor in understanding patterns of rickets and its healing. Examples (including hypothyroidism, scurvy and other osteoporosis, Ollier disease, achondroplasia, and osteopetrosis, as well as the family of frostbite, Kashin-Beck disease, and rat bite fever) illustrate the acrophysis principle and in turn their manifestations are explained by that principle. (orig.)

  15. Lost in translation: Discourses, boundaries and legitimacy in the public understanding of science in the UK

    Science.gov (United States)

    Lock, Simon Jay

    2008-07-01

    This thesis documents the historical development of debates around the public understanding of science in the UK from 1985 until 2005. Testimonies from key actors involved in the evolution of the recent public understanding of science arena, and an examination of documentary evidence, have been used to map out how this issue was problematised by scientists in the mid-1980s, and how it has developed into a contested field of activity, political interest and academic research. I propose that this historical period can be broadly understood in four phases each characterised by a dominant discourse of the public understanding of science. I examine how, within each phase, the various groups involved have engaged in boundary work: rhetorically constructing, and mobilising, ideas of 'science', 'the public', and the perceived 'problem' in the relationship between the two, in the pursuit of defining and legitimating themselves and these definitions of the relationship between science and public. Phase I is characterised as a rhetorical re-framing of earlier 'problems' of the public understanding of science by scientists and scientific institutions in the context of the 1980s. Phase II is dominated by the boundary work between scientists and social scientists as they contended for legitimacy and authority over competing discourses of public understanding of science and the institutionalisation of PUS activity and research. Phase III is characterised by a variety of discursive formulations of the 'problem' of PUS following the House of Lords report (2000) and a subsequent change in the rhetoric of public understanding of science to one of public engagement. Phase IV is dominated by the language of 'upstream engagement' and identifies the political interest in managing science's relationship with the public and the social scientific responses to this.

  16. Seeking missing pieces in science concept assessments: Reevaluating the Brief Electricity and Magnetism Assessment through Rasch analysis

    Science.gov (United States)

    Ding, Lin

    2014-02-01

    Discipline-based science concept assessments are powerful tools to measure learners' disciplinary core ideas. Among many such assessments, the Brief Electricity and Magnetism Assessment (BEMA) has been broadly used to gauge student conceptions of key electricity and magnetism (E&M) topics in college-level introductory physics courses. Differing from typical concept inventories that focus only on one topic of a subject area, BEMA covers a broad range of topics in the electromagnetism domain. In spite of this fact, prior studies exclusively used a single aggregate score to represent individual students' overall understanding of E&M without explicating the construct of this assessment. Additionally, BEMA has been used to compare traditional physics courses with a reformed course entitled Matter and Interactions (M&I). While prior findings were in favor of M&I, no empirical evidence was sought to rule out possible differential functioning of BEMA that may have inadvertently advantaged M&I students. In this study, we used Rasch analysis to seek two missing pieces regarding the construct and differential functioning of BEMA. Results suggest that although BEMA items generally can function together to measure the same construct of application and analysis of E&M concepts, several items may need further revision. Additionally, items that demonstrate differential functioning for the two courses are detected. Issues such as item contextual features and student familiarity with question settings may underlie these findings. This study highlights often overlooked threats in science concept assessments and provides an exemplar for using evidence-based reasoning to make valid inferences and arguments.

  17. Seeking missing pieces in science concept assessments: Reevaluating the Brief Electricity and Magnetism Assessment through Rasch analysis

    Directory of Open Access Journals (Sweden)

    Lin Ding

    2014-02-01

    Full Text Available Discipline-based science concept assessments are powerful tools to measure learners’ disciplinary core ideas. Among many such assessments, the Brief Electricity and Magnetism Assessment (BEMA has been broadly used to gauge student conceptions of key electricity and magnetism (E&M topics in college-level introductory physics courses. Differing from typical concept inventories that focus only on one topic of a subject area, BEMA covers a broad range of topics in the electromagnetism domain. In spite of this fact, prior studies exclusively used a single aggregate score to represent individual students’ overall understanding of E&M without explicating the construct of this assessment. Additionally, BEMA has been used to compare traditional physics courses with a reformed course entitled Matter and Interactions (M&I. While prior findings were in favor of M&I, no empirical evidence was sought to rule out possible differential functioning of BEMA that may have inadvertently advantaged M&I students. In this study, we used Rasch analysis to seek two missing pieces regarding the construct and differential functioning of BEMA. Results suggest that although BEMA items generally can function together to measure the same construct of application and analysis of E&M concepts, several items may need further revision. Additionally, items that demonstrate differential functioning for the two courses are detected. Issues such as item contextual features and student familiarity with question settings may underlie these findings. This study highlights often overlooked threats in science concept assessments and provides an exemplar for using evidence-based reasoning to make valid inferences and arguments.

  18. Data-Intensive Science Meets Inquiry-Driven Pedagogy: Interactive Big Data Exploration, Threshold Concepts, and Liminality

    Science.gov (United States)

    Ramachandran, R.; Nair, U. S.; Word, A.

    2014-12-01

    Threshold concepts in any discipline are the core concepts an individual must understand in order to master a discipline. By their very nature, these concepts are troublesome, irreversible, integrative, bounded, discursive, and reconstitutive. Although grasping threshold concepts can be extremely challenging for each learner as s/he moves through stages of cognitive development relative to a given discipline, the learner's grasp of these concepts determines the extent to which s/he is prepared to work competently and creatively within the field itself. The movement of individuals from a state of ignorance of these core concepts to one of mastery occurs not along a linear path but in iterative cycles of knowledge creation and adjustment in liminal spaces - conceptual spaces through which learners move from the vaguest awareness of concepts to mastery, accompanied by understanding of their relevance, connectivity, and usefulness relative to questions and constructs in a given discipline. With the explosive growth of data available in atmospheric science, driven largely by satellite Earth observations and high-resolution numerical simulations, paradigms such as that of data-intensive science have emerged. These paradigm shifts are based on the growing realization that current infrastructure, tools and processes will not allow us to analyze and fully utilize the complex and voluminous data that is being gathered. In this emerging paradigm, the scientific discovery process is driven by knowledge extracted from large volumes of data. In this presentation, we contend that this paradigm naturally lends to inquiry-driven pedagogy where knowledge is discovered through inductive engagement with large volumes of data rather than reached through traditional, deductive, hypothesis-driven analyses. In particular, data-intensive techniques married with an inductive methodology allow for exploration on a scale that is not possible in the traditional classroom with its typical

  19. The Science Operations Concept for the ExoMars 2016 Trace Gas Orbiter

    Science.gov (United States)

    Frew, D.

    2014-04-01

    The ExoMars 2016 Science Operations Centre (SOC) based at the European Space Astronomy Centre is responsible for coordinating the science planning activities for the Trace Gas Orbiter. Science planning will involve all members of the ExoMars 2016 science ground segment (SGS), namely the SOC at ESAC, the Russian SOC at IKI, the orbiter instrument teams and the science management of the 2016 mission represented by the science working team (SWT) that is chaired by the project scientist. The science operations concept for the mission builds on the legacy inherited from previous ESA planetary missions, in particular from Mars Express for the core plan validation aspects and from the Smart-1 lunar mission for the opportunity analysis and longterm planning approach. Further concept drivers have been derived from the ExoMars 2016 mission profile in the areas of orbit predictability, instrument design and the usage of TGO as a relay for surface assets including the ExoMars 2018 rover. This paper will give an over view of the entire uplink planning process as it is conducted over 3 distinct planning cycles. The Long Term Plan (LTP) establishes the baseline science plan and demonstrates the operational feasibility of meeting the mission science goals formulated by the science working team (SWT) at science management level. The LTP has a planning horizon of 6 months. Each month of the baseline science plan is refined with the instrument teams within the Medium Term Plan (MTP) to converge on a frozen attitude request and resource envelopes for all of the observations in the plan. During the Short Term Planning cycle the SOC will iterate with the teams to finalise the commanding for all of the observations in the plan for the coming week. The description of the uplink planning process will focus on two key areas that are common to all of the planning cycles mentioned above: • Science Plan Abstraction: Interacting with the science plan at the appropriate level of abstraction to

  20. A surfeit of science: The "CSI effect" and the media appropriation of the public understanding of science.

    Science.gov (United States)

    Cole, Simon A

    2015-02-01

    Over the past decade, popular media has promulgated claims that the television program CSI and its spinoffs and imitators have had a pernicious effect on the public understanding of forensic science, the so-called "CSI effect." This paper analyzes those media claims by documenting the ways in which the media claims that CSI "distorts" an imagined "reality." It shows that the media appropriated the analytic stance usually adopted by science advocates, portraying the CSI effect as a social problem in science communication. This appropriation was idiosyncratic in that it posited, as a social problem, a "surfeit" of knowledge and positive imagery about science, rather than the more familiar "deficits." In addition, the media simultaneously appropriated both "traditional" and "critical" PUS discourses. Despite this apparent contradiction, the paper concludes that, in both discourses, the media and its expert informants insist upon their hegemony over "the public" to articulate the "reality" of forensic science. © The Author(s) 2013.