WorldWideScience

Sample records for undersampled 3d projection

  1. Accelerating volumetric cine MRI (VC-MRI) using undersampling for real-time 3D target localization/tracking in radiation therapy: a feasibility study

    Science.gov (United States)

    Harris, Wendy; Yin, Fang-Fang; Wang, Chunhao; Zhang, You; Cai, Jing; Ren, Lei

    2018-01-01

    Purpose. To accelerate volumetric cine MRI (VC-MRI) using undersampled 2D-cine MRI to provide real-time 3D guidance for gating/target tracking in radiotherapy. Methods. 4D-MRI is acquired during patient simulation. One phase of the prior 4D-MRI is selected as the prior images, designated as MRIprior. The on-board VC-MRI at each time-step is considered a deformation of the MRIprior. The deformation field map is represented as a linear combination of the motion components extracted by principal component analysis from the prior 4D-MRI. The weighting coefficients of the motion components are solved by matching the corresponding 2D-slice of the VC-MRI with the on-board undersampled 2D-cine MRI acquired. Undersampled Cartesian and radial k-space acquisition strategies were investigated. The effects of k-space sampling percentage (SP) and distribution, tumor sizes and noise on the VC-MRI estimation were studied. The VC-MRI estimation was evaluated using XCAT simulation of lung cancer patients and data from liver cancer patients. Volume percent difference (VPD) and Center of Mass Shift (COMS) of the tumor volumes and tumor tracking errors were calculated. Results. For XCAT, VPD/COMS were 11.93  ±  2.37%/0.90  ±  0.27 mm and 11.53  ±  1.47%/0.85  ±  0.20 mm among all scenarios with Cartesian sampling (SP  =  10%) and radial sampling (21 spokes, SP  =  5.2%), respectively. When tumor size decreased, higher sampling rate achieved more accurate VC-MRI than lower sampling rate. VC-MRI was robust against noise levels up to SNR  =  20. For patient data, the tumor tracking errors in superior-inferior, anterior-posterior and lateral (LAT) directions were 0.46  ±  0.20 mm, 0.56  ±  0.17 mm and 0.23  ±  0.16 mm, respectively, for Cartesian-based sampling with SP  =  20% and 0.60  ±  0.19 mm, 0.56  ±  0.22 mm and 0.42  ±  0.15 mm, respectively, for

  2. An undersampling 14-bit cyclic ADC with over 100-dB SFDR

    Energy Technology Data Exchange (ETDEWEB)

    Li Weitao; Li Fule; Guo Dandan; Zhang Chun; Wang Zhihua, E-mail: liwt07@mails.tsinghua.edu.c [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2010-02-15

    A high linearity, undersampling 14-bit 357 kSps cyclic analog-to-digital convert (ADC) is designed for a radio frequency identification transceiver system. The passive capacitor error-average (PCEA) technique is adopted for high accuracy. An improved PCEA sampling network, capable of eliminating the crosstalk path of two pipelined stages, is employed. Opamp sharing and the removal of the front-end sample and hold amplifier are utilized for low power dissipation and small chip area. An additional digital calibration block is added to compensate for the error due to defective layout design. The presented ADC is fabricated in a 180 nm CMOS process, occupying 0.65 x 1.6 mm{sup 2}. The input of the undersampling ADC achieves 15.5 MHz with more than 90 dB spurious free dynamic range (SFDR), and the peak SFDR is as high as 106.4 dB with 2.431 MHz input. (semiconductor integrated circuits)

  3. SU-E-J-237: Real-Time 3D Anatomy Estimation From Undersampled MR Acquisitions

    Energy Technology Data Exchange (ETDEWEB)

    Glitzner, M; Lagendijk, J; Raaymakers, B; Crijns, S [University Medical Center Utrecht, Utrecht (Netherlands); Senneville, B Denis de [University Medical Center Utrecht, Utrecht (Netherlands); Mathematical Institute of Bordeaux, University of Bordeaux, Talence Cedex (France)

    2015-06-15

    Recent developments made MRI guided radiotherapy feasible. Performing simultaneous imaging during fractions can provide information about changing anatomy by means of deformable image registration for either immediate plan adaptations or accurate dose accumulation on the changing anatomy. In 3D MRI, however, acquisition time is considerable and scales with resolution. Furthermore, intra-scan motion degrades image quality.In this work, we investigate the sensitivity of registration quality on imageresolution: potentially, by employing spatial undersampling, the acquisition timeof MR images for the purpose of deformable image registration can be reducedsignificantly.On a volunteer, 3D-MR imaging data was sampled in a navigator-gated manner, acquiring one axial volume (360×260×100mm{sup 3}) per 3s during exhale phase. A T1-weighted FFE sequence was used with an acquired voxel size of (2.5mm{sup 3}) for a duration of 17min. Deformation vector fields were evaluated for 100 imaging cycles with respect to the initial anatomy using deformable image registration based on optical flow. Subsequently, the imaging data was downsampled by a factor of 2, simulating a fourfold acquisition speed. Displacements of the downsampled volumes were then calculated by the same process.In kidneyliver boundaries and the region around stomach/duodenum, prominent organ drifts could be observed in both the original and the downsampled imaging data. An increasing displacement of approximately 2mm was observed for the kidney, while an area around the stomach showed sudden displacements of 4mm. Comparison of the motile points over time showed high reproducibility between the displacements of high-resolution and downsampled volumes: over a 17min acquisition, the componentwise RMS error was not more than 0.38mm.Based on the synthetic experiments, 3D nonrigid image registration shows little sensitivity to image resolution and the displacement information is preserved even when halving the

  4. Reconstruction Algorithms in Undersampled AFM Imaging

    DEFF Research Database (Denmark)

    Arildsen, Thomas; Oxvig, Christian Schou; Pedersen, Patrick Steffen

    2016-01-01

    This paper provides a study of spatial undersampling in atomic force microscopy (AFM) imaging followed by different image reconstruction techniques based on sparse approximation as well as interpolation. The main reasons for using undersampling is that it reduces the path length and thereby...... the scanning time as well as the amount of interaction between the AFM probe and the specimen. It can easily be applied on conventional AFM hardware. Due to undersampling, it is then necessary to further process the acquired image in order to reconstruct an approximation of the image. Based on real AFM cell...... images, our simulations reveal that using a simple raster scanning pattern in combination with conventional image interpolation performs very well. Moreover, this combination enables a reduction by a factor 10 of the scanning time while retaining an average reconstruction quality around 36 dB PSNR...

  5. Free-breathing dynamic liver examination using a radial 3D T1-weighted gradient echo sequence with moderate undersampling for patients with limited breath-holding capacity

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbach, Benjamin, E-mail: benjamin.kaltenbach@kgu.de [Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt am Main (Germany); Roman, Andrei; Polkowski, Christoph; Gruber-Rouh, Tatjana [Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt am Main (Germany); Bauer, Ralf W. [Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt am Main (Germany); Divison of Radiology and Nuclear Medicine, Kantonsspital, St. Gallen (Switzerland); Hammerstingl, Renate; Vogl, Thomas J.; Zangos, Stephan [Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt am Main (Germany)

    2017-01-15

    Highlights: • Respiratory artifacts are a frequent problem in abdominal MR imaging. • Non-diagnostic examinations could be reduced using free-breathing us-radial-VIBE for dynamic liver examination in challenging patients. • Streak artifacts are characteristic for an undersampled radial acquisition but do not affect diagnostic validity. - Abstract: Purpose: To compare free-breathing radial VIBE with moderate undersampling (us-radial-VIBE) with a standard breathhold T1-weighted volumetric interpolated sequence (3D GRE VIBE) in patients unable to suspend respiration during dynamic liver examination. Material and methods: 23 consecutive patients underwent dynamic liver MR examination using the free-breathing us-radial-VIBE sequence as part of their oncologic follow-up. All patients were eligible for the free-breathing protocol due to severe respiratory artifacts at the planning or precontrast sequences. The us-radial-VIBE acquisitions were compared to the patientś last staging liver MRI including a standard breathhold 3D GRE VIBE. For an objective image evaluation, signal intensity (SI), image noise (IN), signal-to-noise ratio (SNR) and contrast-enhancement ratio (CER) were compared. Representative image quality parameters, including typical artifacts were independently, retrospectively and blindly scored by four readers. Results: Us-radial-VIBE had significant lower SNR (p < 0.0001) and higher IN (p < 0.0001), whereas SI did not differ (p = 0.62). Temporal resolution assessed with CER in the arterial phase showed higher values for us-radial-VIBE (p = 0.028). Subjective image quality parameters received generally slightly higher scores for 3D GRE VIBE. In a smaller subgroup comprising patients with severe respiratory artifacts also at reference breathhold 3D GRE VIBE examination, us-radial-VIBE showed significantly higher image quality scores. Furthermore, there were generally more severe respiratory artifacts in 3D GRE VIBE, whereas streaking was characteristic

  6. Accelerated three-dimensional cine phase contrast imaging using randomly undersampled echo planar imaging with compressed sensing reconstruction.

    Science.gov (United States)

    Basha, Tamer A; Akçakaya, Mehmet; Goddu, Beth; Berg, Sophie; Nezafat, Reza

    2015-01-01

    The aim of this study was to implement and evaluate an accelerated three-dimensional (3D) cine phase contrast MRI sequence by combining a randomly sampled 3D k-space acquisition sequence with an echo planar imaging (EPI) readout. An accelerated 3D cine phase contrast MRI sequence was implemented by combining EPI readout with randomly undersampled 3D k-space data suitable for compressed sensing (CS) reconstruction. The undersampled data were then reconstructed using low-dimensional structural self-learning and thresholding (LOST). 3D phase contrast MRI was acquired in 11 healthy adults using an overall acceleration of 7 (EPI factor of 3 and CS rate of 3). For comparison, a single two-dimensional (2D) cine phase contrast scan was also performed with sensitivity encoding (SENSE) rate 2 and approximately at the level of the pulmonary artery bifurcation. The stroke volume and mean velocity in both the ascending and descending aorta were measured and compared between two sequences using Bland-Altman plots. An average scan time of 3 min and 30 s, corresponding to an acceleration rate of 7, was achieved for 3D cine phase contrast scan with one direction flow encoding, voxel size of 2 × 2 × 3 mm(3) , foot-head coverage of 6 cm and temporal resolution of 30 ms. The mean velocity and stroke volume in both the ascending and descending aorta were statistically equivalent between the proposed 3D sequence and the standard 2D cine phase contrast sequence. The combination of EPI with a randomly undersampled 3D k-space sampling sequence using LOST reconstruction allows a seven-fold reduction in scan time of 3D cine phase contrast MRI without compromising blood flow quantification. Copyright © 2014 John Wiley & Sons, Ltd.

  7. SU-E-J-251: Fast MR-Based DRR Generation Using Highly Undersampled 3D Radial Trajectories

    International Nuclear Information System (INIS)

    Pereira, G; Traughber, B; Traughber, M; Hu, L; Su, K; Muzic, R

    2014-01-01

    Purpose: The construction of a digitally reconstructed radiograph (DRR) from a magnetic resonance image (MRI) is possible if the cortical bone signal can be acquired and separated from air and soft tissue. This may be accomplished by subtracting a long echo-time, in-phase, gradient echo (GRE) image volume from an ultra-short echo time free induction decay (FID) image to produce a bone-enhanced (BE) image that reveals cortical bone. One limitation of this approach is the length of time required for data acquisition, which can limit the quality of the DRRs due to patient and organ motion. This study aimed to significantly reduce the acquisition time without compromising DRR quality. Methods: Brain data were acquired from two volunteers using a 3T MR scanner (Ingenia, Philips Healthcare). The FID and GRE images were acquired in a single acquisition using a 3D radial readout sequence with the following parameters: TE1=0.142ms (ultra-short), TE2=2.197ms (nearly in-phase), 2*2*2mm3 isotropic voxels, 250*250*250mm3 FOV. To reduce the acquisition time, k-space was sampled at 75, 50 and 25% of a full 3D sphere . The TE2 image was subtracted from the TE1 image to generate the BE images. The BE images were used to generate DRRs using the Pinnacle treatment planning system (Philips-version 9.2). The quality of the DRRs was evaluated qualitatively by 5 board certified medical physicists for clinical usefulness. Results: The acquisition time for 75, 50 and 25% sampling schemes were 219s, 146s, and 73s, respectively, the latter of which was a four-fold reduction in scan time compared to a 300s fully-sampled acquisition. All DRRs obtained were of acceptable quality and were shown to have sufficient information for clinical 2D image matching. Conclusion: Undersampling k-space while maintaining the same range of frequency information results in significantly reduced scan time and clinically acceptable DRR image quality. Drs. B Traughber and R Muzic have research support from Philips

  8. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article ...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  9. Matrix completion-based reconstruction for undersampled magnetic resonance fingerprinting data.

    Science.gov (United States)

    Doneva, Mariya; Amthor, Thomas; Koken, Peter; Sommer, Karsten; Börnert, Peter

    2017-09-01

    An iterative reconstruction method for undersampled magnetic resonance fingerprinting data is presented. The method performs the reconstruction entirely in k-space and is related to low rank matrix completion methods. A low dimensional data subspace is estimated from a small number of k-space locations fully sampled in the temporal direction and used to reconstruct the missing k-space samples before MRF dictionary matching. Performing the iterations in k-space eliminates the need for applying a forward and an inverse Fourier transform in each iteration required in previously proposed iterative reconstruction methods for undersampled MRF data. A projection onto the low dimensional data subspace is performed as a matrix multiplication instead of a singular value thresholding typically used in low rank matrix completion, further reducing the computational complexity of the reconstruction. The method is theoretically described and validated in phantom and in-vivo experiments. The quality of the parameter maps can be significantly improved compared to direct matching on undersampled data. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Metrics for Diagnosing Undersampling in Monte Carlo Tally Estimates

    International Nuclear Information System (INIS)

    Perfetti, Christopher M.; Rearden, Bradley T.

    2015-01-01

    This study explored the potential of using Markov chain convergence diagnostics to predict the prevalence and magnitude of biases due to undersampling in Monte Carlo eigenvalue and flux tally estimates. Five metrics were applied to two models of pressurized water reactor fuel assemblies and their potential for identifying undersampling biases was evaluated by comparing the calculated test metrics with known biases in the tallies. Three of the five undersampling metrics showed the potential to accurately predict the behavior of undersampling biases in the responses examined in this study.

  11. Hexagonal undersampling for faster MRI near metallic implants.

    Science.gov (United States)

    Sveinsson, Bragi; Worters, Pauline W; Gold, Garry E; Hargreaves, Brian A

    2015-02-01

    Slice encoding for metal artifact correction acquires a three-dimensional image of each excited slice with view-angle tilting to reduce slice and readout direction artifacts respectively, but requires additional imaging time. The purpose of this study was to provide a technique for faster imaging around metallic implants by undersampling k-space. Assuming that areas of slice distortion are localized, hexagonal sampling can reduce imaging time by 50% compared with conventional scans. This work demonstrates this technique by comparisons of fully sampled images with undersampled images, either from simulations from fully acquired data or from data actually undersampled during acquisition, in patients and phantoms. Hexagonal sampling is also shown to be compatible with parallel imaging and partial Fourier acquisitions. Image quality was evaluated using a structural similarity (SSIM) index. Images acquired with hexagonal undersampling had no visible difference in artifact suppression from fully sampled images. The SSIM index indicated high similarity to fully sampled images in all cases. The study demonstrates the ability to reduce scan time by undersampling without compromising image quality. © 2014 Wiley Periodicals, Inc.

  12. Projection-slice theorem based 2D-3D registration

    Science.gov (United States)

    van der Bom, M. J.; Pluim, J. P. W.; Homan, R.; Timmer, J.; Bartels, L. W.

    2007-03-01

    In X-ray guided procedures, the surgeon or interventionalist is dependent on his or her knowledge of the patient's specific anatomy and the projection images acquired during the procedure by a rotational X-ray source. Unfortunately, these X-ray projections fail to give information on the patient's anatomy in the dimension along the projection axis. It would be very profitable to provide the surgeon or interventionalist with a 3D insight of the patient's anatomy that is directly linked to the X-ray images acquired during the procedure. In this paper we present a new robust 2D-3D registration method based on the Projection-Slice Theorem. This theorem gives us a relation between the pre-operative 3D data set and the interventional projection images. Registration is performed by minimizing a translation invariant similarity measure that is applied to the Fourier transforms of the images. The method was tested by performing multiple exhaustive searches on phantom data of the Circle of Willis and on a post-mortem human skull. Validation was performed visually by comparing the test projections to the ones that corresponded to the minimal value of the similarity measure. The Projection-Slice Theorem Based method was shown to be very effective and robust, and provides capture ranges up to 62 degrees. Experiments have shown that the method is capable of retrieving similar results when translations are applied to the projection images.

  13. LOTT RANCH 3D PROJECT

    International Nuclear Information System (INIS)

    Larry Lawrence; Bruce Miller

    2004-01-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  14. Undersampling strategies for compressed sensing accelerated MR spectroscopic imaging

    Science.gov (United States)

    Vidya Shankar, Rohini; Hu, Houchun Harry; Bikkamane Jayadev, Nutandev; Chang, John C.; Kodibagkar, Vikram D.

    2017-03-01

    Compressed sensing (CS) can accelerate magnetic resonance spectroscopic imaging (MRSI), facilitating its widespread clinical integration. The objective of this study was to assess the effect of different undersampling strategy on CS-MRSI reconstruction quality. Phantom data were acquired on a Philips 3 T Ingenia scanner. Four types of undersampling masks, corresponding to each strategy, namely, low resolution, variable density, iterative design, and a priori were simulated in Matlab and retrospectively applied to the test 1X MRSI data to generate undersampled datasets corresponding to the 2X - 5X, and 7X accelerations for each type of mask. Reconstruction parameters were kept the same in each case(all masks and accelerations) to ensure that any resulting differences can be attributed to the type of mask being employed. The reconstructed datasets from each mask were statistically compared with the reference 1X, and assessed using metrics like the root mean square error and metabolite ratios. Simulation results indicate that both the a priori and variable density undersampling masks maintain high fidelity with the 1X up to five-fold acceleration. The low resolution mask based reconstructions showed statistically significant differences from the 1X with the reconstruction failing at 3X, while the iterative design reconstructions maintained fidelity with the 1X till 4X acceleration. In summary, a pilot study was conducted to identify an optimal sampling mask in CS-MRSI. Simulation results demonstrate that the a priori and variable density masks can provide statistically similar results to the fully sampled reference. Future work would involve implementing these two masks prospectively on a clinical scanner.

  15. Testing the performance of beta diversity measures based on incidence data: the robustness to undersampling

    DEFF Research Database (Denmark)

    Bondoso Cardoso, Pedro Miguel; Borges, Paulo A. V.; Veech, Joseph A.

    2009-01-01

    computing beta diversity for selected pairs of samples. The robustness of these beta diversity accumulation curves was assessed for the purpose of finding the best measures for undersampled communities. Results The Harrison et al.ß-2 and the Williams ß-3 are particularly robust to undersampling...

  16. Reconstruction of Undersampled Atomic Force Microscopy Images

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Arildsen, Thomas; Østergaard, Jan

    2013-01-01

    Atomic force microscopy (AFM) is one of the most advanced tools for high-resolution imaging and manipulation of nanoscale matter. Unfortunately, standard AFM imaging requires a timescale on the order of seconds to minutes to acquire an image which makes it complicated to observe dynamic processes....... Moreover, it is often required to take several images before a relevant observation region is identified. In this paper we show how to significantly reduce the image acquisition time by undersampling. The reconstruction of an undersampled AFM image can be viewed as an inpainting, interpolating problem...... should be reconstructed using interpolation....

  17. M3D project for simulation studies of plasmas

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.; Sugiyama, L.E.

    1998-01-01

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes

  18. 3D FSE Cube and VIPR-aTR 3.0 Tesla magnetic resonance imaging predicts canine cranial cruciate ligament structural properties.

    Science.gov (United States)

    Racette, Molly; Al saleh, Habib; Waller, Kenneth R; Bleedorn, Jason A; McCabe, Ronald P; Vanderby, Ray; Markel, Mark D; Brounts, Sabrina H; Block, Walter F; Muir, Peter

    2016-03-01

    Estimation of cranial cruciate ligament (CrCL) structural properties in client-owned dogs with incipient cruciate rupture would be advantageous. The objective of this study was to determine whether magnetic resonance imaging (MRI) measurement of normal CrCL volume in an ex-vivo canine model predicts structural properties. Stifles from eight dogs underwent 3.0 Tesla 3D MRI. CrCL volume and normalized median grayscale values were determined using 3D Fast Spin Echo (FSE) Cube and Vastly under-sampled Isotropic PRojection (VIPR)-alternative repetition time (aTR) sequences. Stifles were then mechanically tested. After joint laxity testing, CrCL structural properties were determined, including displacement at yield, yield load, load to failure, and stiffness. Yield load and load to failure (R(2)=0.56, P 0.57, P <0.005). In conclusion, 3D MRI offers a predictive method for estimating canine CrCL structural properties. 3D MRI may be useful for monitoring CrCL properties in clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Algorithms for Reconstruction of Undersampled Atomic Force Microscopy Images Supplementary Material

    DEFF Research Database (Denmark)

    2017-01-01

    Two Jupyter Notebooks showcasing reconstructions of undersampled atomic force microscopy images. The reconstructions were obtained using a variety of interpolation and reconstruction methods.......Two Jupyter Notebooks showcasing reconstructions of undersampled atomic force microscopy images. The reconstructions were obtained using a variety of interpolation and reconstruction methods....

  20. Dynamic 3D MR-defecography

    Energy Technology Data Exchange (ETDEWEB)

    Ratz, V.; Wech, T.; Schindele, A.; Dierks, A.; Sauer, A.; Reibetanz, J.; Borzi, A.; Bley, T.; Koestler, H.

    2016-09-15

    Epidemiological studies have estimated the incidence of chronic constipation to be up to 27% of the general population. The gold standard to evaluate affected patients is the dynamic entero-colpo-cysto-defecography. In the clinical routine 2 D MR-defecography is also performed, but only one to three 2 D slices at a temporal footprint of about one second are acquired. To improve the detection of lateral localized pathologies, we developed and implemented dynamic 3 D MR-defecography. Each 3 D block consisted of seven slices with an in-plane spatial resolution of 1.3 x 1.3 mm{sup 2} to 2.3 x 2.3 mm{sup 2} and an image update rate between 0.8 s and 1.3 s. We used a fast bSSFP sequence with a modified stack-of-stars sampling scheme for data acquisition and a modified FISTA compressed sensing algorithm to reconstruct the undersampled datasets. We performed a study including 6 patients to optimize the acquisition parameters with respect to image quality.

  1. Dynamic 3D MR-defecography

    International Nuclear Information System (INIS)

    Ratz, V.; Wech, T.; Schindele, A.; Dierks, A.; Sauer, A.; Reibetanz, J.; Borzi, A.; Bley, T.; Koestler, H.

    2016-01-01

    Epidemiological studies have estimated the incidence of chronic constipation to be up to 27% of the general population. The gold standard to evaluate affected patients is the dynamic entero-colpo-cysto-defecography. In the clinical routine 2 D MR-defecography is also performed, but only one to three 2 D slices at a temporal footprint of about one second are acquired. To improve the detection of lateral localized pathologies, we developed and implemented dynamic 3 D MR-defecography. Each 3 D block consisted of seven slices with an in-plane spatial resolution of 1.3 x 1.3 mm 2 to 2.3 x 2.3 mm 2 and an image update rate between 0.8 s and 1.3 s. We used a fast bSSFP sequence with a modified stack-of-stars sampling scheme for data acquisition and a modified FISTA compressed sensing algorithm to reconstruct the undersampled datasets. We performed a study including 6 patients to optimize the acquisition parameters with respect to image quality.

  2. FANS-3D Users Guide (ESTEP Project ER 201031)

    Science.gov (United States)

    2016-08-01

    TECHNICAL DOCUMENT 3293 August 2016 FANS -3D User’s Guide (ESTEP Project ER-201031) Pei-Fang Wang SSC Pacific Hamn-Ching...1.1 THEORY AND NUMERICAL ALGORITHM OF FANS CODE ............................................. 1 2. FANS -3D SOFTWARE DOCUMENTATION AND EXECUTION...5 3. FANS -3D CODE PARALLELIZATION

  3. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation

    International Nuclear Information System (INIS)

    Jia Xun; Lou Yifei; Li Ruijiang; Song, William Y.; Jiang, Steve B.

    2010-01-01

    Purpose: Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersampled and noisy projection data so as to lower the imaging dose. Methods: The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. The authors developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multigrid technique is also employed. Results: It is found that 20-40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 s on an NVIDIA Tesla C1060 (NVIDIA, Santa Clara, CA) GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studies indicate that the algorithm enables the CBCT to be reconstructed under a scanning protocol with as low as 0.1 mA s/projection. Comparing with currently widely used full-fan head and neck scanning protocol of ∼360 projections with 0.4 mA s/projection, it is estimated that an overall 36-72 times dose reduction has been achieved in our fast CBCT reconstruction algorithm. Conclusions: This work indicates that the developed GPU-based CBCT reconstruction algorithm is capable of lowering imaging dose considerably. The high computation efficiency in this algorithm makes the iterative CBCT reconstruction approach applicable in real clinical environments.

  4. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation.

    Science.gov (United States)

    Jia, Xun; Lou, Yifei; Li, Ruijiang; Song, William Y; Jiang, Steve B

    2010-04-01

    Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersampled and noisy projection data so as to lower the imaging dose. The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. The authors developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multigrid technique is also employed. It is found that 20-40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 s on an NVIDIA Tesla C1060 (NVIDIA, Santa Clara, CA) GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studies indicate that the algorithm enables the CBCT to be reconstructed under a scanning protocol with as low as 0.1 mA s/projection. Comparing with currently widely used full-fan head and neck scanning protocol of approximately 360 projections with 0.4 mA s/projection, it is estimated that an overall 36-72 times dose reduction has been achieved in our fast CBCT reconstruction algorithm. This work indicates that the developed GPU-based CBCT reconstruction algorithm is capable of lowering imaging dose considerably. The high computation efficiency in this algorithm makes the iterative CBCT reconstruction approach applicable in real clinical environments.

  5. Fast 3D magnetic resonance fingerprinting for a whole-brain coverage.

    Science.gov (United States)

    Ma, Dan; Jiang, Yun; Chen, Yong; McGivney, Debra; Mehta, Bhairav; Gulani, Vikas; Griswold, Mark

    2018-04-01

    The purpose of this study was to accelerate the acquisition and reconstruction time of 3D magnetic resonance fingerprinting scans. A 3D magnetic resonance fingerprinting scan was accelerated by using a single-shot spiral trajectory with an undersampling factor of 48 in the x-y plane, and an interleaved sampling pattern with an undersampling factor of 3 through plane. Further acceleration came from reducing the waiting time between neighboring partitions. The reconstruction time was accelerated by applying singular value decomposition compression in k-space. Finally, a 3D premeasured B 1 map was used to correct for the B 1 inhomogeneity. The T 1 and T 2 values of the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology MRI phantom showed a good agreement with the standard values, with an average concordance correlation coefficient of 0.99, and coefficient of variation of 7% in the repeatability scans. The results from in vivo scans also showed high image quality in both transverse and coronal views. This study applied a fast acquisition scheme for a fully quantitative 3D magnetic resonance fingerprinting scan with a total acceleration factor of 144 as compared with the Nyquist rate, such that 3D T 1 , T 2 , and proton density maps can be acquired with whole-brain coverage at clinical resolution in less than 5 min. Magn Reson Med 79:2190-2197, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish.

    Directory of Open Access Journals (Sweden)

    Teresa Correia

    Full Text Available Optical projection tomography (OPT provides a non-invasive 3-D imaging modality that can be applied to longitudinal studies of live disease models, including in zebrafish. Current limitations include the requirement of a minimum number of angular projections for reconstruction of reasonable OPT images using filtered back projection (FBP, which is typically several hundred, leading to acquisition times of several minutes. It is highly desirable to decrease the number of required angular projections to decrease both the total acquisition time and the light dose to the sample. This is particularly important to enable longitudinal studies, which involve measurements of the same fish at different time points. In this work, we demonstrate that the use of an iterative algorithm to reconstruct sparsely sampled OPT data sets can provide useful 3-D images with 50 or fewer projections, thereby significantly decreasing the minimum acquisition time and light dose while maintaining image quality. A transgenic zebrafish embryo with fluorescent labelling of the vasculature was imaged to acquire densely sampled (800 projections and under-sampled data sets of transmitted and fluorescence projection images. The under-sampled OPT data sets were reconstructed using an iterative total variation-based image reconstruction algorithm and compared against FBP reconstructions of the densely sampled data sets. To illustrate the potential for quantitative analysis following rapid OPT data acquisition, a Hessian-based method was applied to automatically segment the reconstructed images to select the vasculature network. Results showed that 3-D images of the zebrafish embryo and its vasculature of sufficient visual quality for quantitative analysis can be reconstructed using the iterative algorithm from only 32 projections-achieving up to 28 times improvement in imaging speed and leading to total acquisition times of a few seconds.

  7. The ATLAS3D project - I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria

    Science.gov (United States)

    Cappellari, Michele; Emsellem, Eric; Krajnović, Davor; McDermid, Richard M.; Scott, Nicholas; Verdoes Kleijn, G. A.; Young, Lisa M.; Alatalo, Katherine; Bacon, R.; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie

    2011-05-01

    The ATLAS3D project is a multiwavelength survey combined with a theoretical modelling effort. The observations span from the radio to the millimetre and optical, and provide multicolour imaging, two-dimensional kinematics of the atomic (H I), molecular (CO) and ionized gas (Hβ, [O III] and [N I]), together with the kinematics and population of the stars (Hβ, Fe5015 and Mg b), for a carefully selected, volume-limited (1.16 × 105 Mpc3) sample of 260 early-type (elliptical E and lenticular S0) galaxies (ETGs). The models include semi-analytic, N-body binary mergers and cosmological simulations of galaxy formation. Here we present the science goals for the project and introduce the galaxy sample and the selection criteria. The sample consists of nearby (D 15°) morphologically selected ETGs extracted from a parent sample of 871 galaxies (8 per cent E, 22 per cent S0 and 70 per cent spirals) brighter than MK statistically representative of the nearby galaxy population. We present the size-luminosity relation for the spirals and ETGs and show that the ETGs in the ATLAS3D sample define a tight red sequence in a colour-magnitude diagram, with few objects in the transition from the blue cloud. We describe the strategy of the SAURON integral field observations and the extraction of the stellar kinematics with the pPXF method. We find typical 1σ errors of ΔV≈ 6 km s-1, Δσ≈ 7 km s-1, Δh3≈Δh4≈ 0.03 in the mean velocity, the velocity dispersion and Gauss-Hermite (GH) moments for galaxies with effective dispersion σe≳ 120 km s-1. For galaxies with lower σe (≈40 per cent of the sample) the GH moments are gradually penalized by pPXF towards zero to suppress the noise produced by the spectral undersampling and only V and σ can be measured. We give an overview of the characteristics of the other main data sets already available for our sample and of the ongoing modelling projects.

  8. BRDF-dependent accuracy of array-projection-based 3D sensors.

    Science.gov (United States)

    Heist, Stefan; Kühmstedt, Peter; Tünnermann, Andreas; Notni, Gunther

    2017-03-10

    In order to perform high-speed three-dimensional (3D) shape measurements with structured light systems, high-speed projectors are required. One possibility is an array projector, which allows pattern projection at several tens of kilohertz by switching on and off the LEDs of various slide projectors. The different projection centers require a separate analysis, as the intensity received by the cameras depends on the projection direction and the object's bidirectional reflectance distribution function (BRDF). In this contribution, we investigate the BRDF-dependent errors of array-projection-based 3D sensors and propose an error compensation process.

  9. Study of 3D solder-paste profilometer by dual digital fringe projection

    Science.gov (United States)

    Juan, Yi-Hua; Yih, Jeng-Nan; Cheng, Nai-Jen

    2013-09-01

    In a 3D profilometer by the fringe projection, the shadow will be produced inevitably, thus the fringes cannot be detected in the region of the shadow. In addition, a smooth surface or a metal surface produces the specular reflection, and then, no projection fringe can be recorded in the region of oversaturation on CCD. This paper reveals a proposed system for improved these defects and shows some preliminary improved 3D profiles by the proposed dual fringe projection. To obtain the profile of sample hided in the shadow and the oversaturation, this study used the dual-projection system by two projectors. This system adopted two different directions of fringe projection and illuminates them alternately, therefore, the shadow and the oversaturation produced in their corresponding locations. Two raw 3D profiles obtained from taking the dual-projection by the four-step phase-shift. A set of algorithms used to identify the pixels of the shadow and the oversaturation, and create an error-map. According to the error-map to compensate, two 3D profiles merged into an error-reduced 3D profile. We used the solder paste as a testing sample. After comparatively analyzing the 3D images obtained by our measurement system and by a contact stylus profilometer, the result shows that our measurement system can effectively reduce the error caused by shadows and oversaturation. Fringe projection system by using a projector is a non-contact, full field and quickly measuring system. The proposed dual-projection by dual-projectors can effectively reduce the shadow and the oversaturation errors and enhance the scope of application of the 3D contour detection, especially in the detection of precision structure parts with specular reflection.

  10. D and D projects trends

    International Nuclear Information System (INIS)

    Gay, Arnaud

    2012-01-01

    This series of slides presents: 1 - the Various types of needs and types of operations in any D and D project, 2 - the strong variety of nuclear units to dismantle, 3 - the D and D dependence on nuclear operators' strategy (Immediate/Deferred dismantling), 4 - the demand for D and D services with respect to the ageing of the nuclear fleet, 5 - the impacts to come on the D and D environment due to the Fukushima accident, 6 - the geographical dependence of D and D demands, 7 - the different D and D choices from nuclear operators in the supply chain management, 8 - the key levers in a D and D project performance, 9 - Some key competencies in D and D, 10 - Risk management for both clients and suppliers in a D and D project, 11 - AREVA involvement in Fukushima project as a key demonstration of a critical D and D project management

  11. Geometrically undistorted MRI in the presence of field inhomogeneities using compressed sensing accelerated broadband 3D phase encoded turbo spin-echo imaging

    International Nuclear Information System (INIS)

    Van Gorp, Jetse S; Bakker, Chris J G; Bouwman, Job G; Zijlstra, Frank; Seevinck, Peter R; Smink, Jouke

    2015-01-01

    In this study, we explore the potential of compressed sensing (CS) accelerated broadband 3D phase-encoded turbo spin-echo (3D-PE-TSE) for the purpose of geometrically undistorted imaging in the presence of field inhomogeneities. To achieve this goal 3D-PE-SE and 3D-PE-TSE sequences with broadband rf pulses and dedicated undersampling patterns were implemented on a clinical scanner. Additionally, a 3D multi-spectral spin-echo (ms3D-SE) sequence was implemented for reference purposes. First, we demonstrated the influence of susceptibility induced off-resonance effects on the spatial encoding of broadband 3D-SE, ms3D-SE, 3D-PE-SE and 3D-PE-TSE using a grid phantom containing a titanium implant (Δχ = 182 ppm) with x-ray CT as a gold standard. These experiments showed that the spatial encoding of 3D-PE-(T)SE was unaffected by susceptibility induced off-resonance effects, which caused geometrical distortions and/or signal hyper-intensities in broadband 3D-SE and, to a lesser extent, in ms3D-SE frequency encoded methods. Additionally, an SNR analysis was performed and the temporally resolved signal of 3D-PE-(T)SE sequences was exploited to retrospectively decrease the acquisition bandwidth and obtain field offset maps. The feasibility of CS acceleration was studied retrospectively and prospectively for the 3D-PE-SE sequence using an existing CS algorithm adapted for the reconstruction of 3D data with undersampling in all three phase encoded dimensions. CS was combined with turbo-acceleration by variable density undersampling and spherical stepwise T 2 weighting by randomly sorting consecutive echoes in predefined spherical k-space layers. The CS-TSE combination resulted in an overall acceleration factor of 60, decreasing the original 3D-PE-SE scan time from 7 h to 7 min. Finally, CS accelerated 3D-PE-TSE in vivo images of a titanium screw were obtained within 10 min using a micro-coil demonstrating the feasibility of geometrically undistorted MRI near severe

  12. 3D reconstruction of laser projective point with projection invariant generated from five points on 2D target.

    Science.gov (United States)

    Xu, Guan; Yuan, Jing; Li, Xiaotao; Su, Jian

    2017-08-01

    Vision measurement on the basis of structured light plays a significant role in the optical inspection research. The 2D target fixed with a line laser projector is designed to realize the transformations among the world coordinate system, the camera coordinate system and the image coordinate system. The laser projective point and five non-collinear points that are randomly selected from the target are adopted to construct a projection invariant. The closed form solutions of the 3D laser points are solved by the homogeneous linear equations generated from the projection invariants. The optimization function is created by the parameterized re-projection errors of the laser points and the target points in the image coordinate system. Furthermore, the nonlinear optimization solutions of the world coordinates of the projection points, the camera parameters and the lens distortion coefficients are contributed by minimizing the optimization function. The accuracy of the 3D reconstruction is evaluated by comparing the displacements of the reconstructed laser points with the actual displacements. The effects of the image quantity, the lens distortion and the noises are investigated in the experiments, which demonstrate that the reconstruction approach is effective to contribute the accurate test in the measurement system.

  13. 3D Hyperpolarized C-13 EPI with Calibrationless Parallel Imaging

    DEFF Research Database (Denmark)

    Gordon, Jeremy W.; Hansen, Rie Beck; Shin, Peter J.

    2018-01-01

    With the translation of metabolic MRI with hyperpolarized 13C agents into the clinic, imaging approaches will require large volumetric FOVs to support clinical applications. Parallel imaging techniques will be crucial to increasing volumetric scan coverage while minimizing RF requirements and tem...... strategies to accelerate and undersample hyperpolarized 13C data using 3D blipped EPI acquisitions and multichannel receive coils, and demonstrated its application in a human study of [1-13C]pyruvate metabolism....

  14. 3D virtual character reconstruction from projections: a NURBS-based approach

    Science.gov (United States)

    Triki, Olfa; Zaharia, Titus B.; Preteux, Francoise J.

    2004-05-01

    This work has been carried out within the framework of the industrial project, so-called TOON, supported by the French government. TOON aims at developing tools for automating the traditional 2D cartoon content production. This paper presents preliminary results of the TOON platform. The proposed methodology concerns the issues of 2D/3D reconstruction from a limited number of drawn projections, and 2D/3D manipulation/deformation/refinement of virtual characters. Specifically, we show that the NURBS-based modeling approach developed here offers a well-suited framework for generating deformable 3D virtual characters from incomplete 2D information. Furthermore, crucial functionalities such as animation and non-rigid deformation can be also efficiently handled and solved. Note that user interaction is enabled exclusively in 2D by achieving a multiview constraint specification method. This is fully consistent and compliant with the cartoon creator traditional practice and makes it possible to avoid the use of 3D modeling software packages which are generally complex to manipulate.

  15. Volumetric 3D display using a DLP projection engine

    Science.gov (United States)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  16. 2D-3D Registration of CT Vertebra Volume to Fluoroscopy Projection: A Calibration Model Assessment

    Directory of Open Access Journals (Sweden)

    P. Bifulco

    2010-01-01

    Full Text Available This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1 mm for displacements parallel to the fluoroscopic plane, and of order of 10 mm for the orthogonal displacement.

  17. Why 3D Print? The 21st-Century Skills Students Develop While Engaging in 3D Printing Projects

    Science.gov (United States)

    Trust, Torrey; Maloy, Robert W.

    2017-01-01

    The emergence of 3D printing has raised hopes and concerns about how it can be used effectively as an educational technology in school classrooms. This paper presents the results of a survey asking teachers from multiple grade levels and subject fields about the impact of 3D projects on student learning. Teachers were asked about the kinds of 3D…

  18. Open 3D Projects

    Directory of Open Access Journals (Sweden)

    Felician ALECU

    2010-01-01

    Full Text Available Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.

  19. A singular K-space model for fast reconstruction of magnetic resonance images from undersampled data.

    Science.gov (United States)

    Luo, Jianhua; Mou, Zhiying; Qin, Binjie; Li, Wanqing; Ogunbona, Philip; Robini, Marc C; Zhu, Yuemin

    2017-12-09

    Reconstructing magnetic resonance images from undersampled k-space data is a challenging problem. This paper introduces a novel method of image reconstruction from undersampled k-space data based on the concept of singularizing operators and a novel singular k-space model. Exploring the sparsity of an image in the k-space, the singular k-space model (SKM) is proposed in terms of the k-space functions of a singularizing operator. The singularizing operator is constructed by combining basic difference operators. An algorithm is developed to reliably estimate the model parameters from undersampled k-space data. The estimated parameters are then used to recover the missing k-space data through the model, subsequently achieving high-quality reconstruction of the image using inverse Fourier transform. Experiments on physical phantom and real brain MR images have shown that the proposed SKM method constantly outperforms the popular total variation (TV) and the classical zero-filling (ZF) methods regardless of the undersampling rates, the noise levels, and the image structures. For the same objective quality of the reconstructed images, the proposed method requires much less k-space data than the TV method. The SKM method is an effective method for fast MRI reconstruction from the undersampled k-space data. Graphical abstract Two Real Images and their sparsified images by singularizing operator.

  20. 3D fingerprint imaging system based on full-field fringe projection profilometry

    Science.gov (United States)

    Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili

    2014-01-01

    As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.

  1. Low-dose 4D cone-beam CT via joint spatiotemporal regularization of tensor framelet and nonlocal total variation

    Science.gov (United States)

    Han, Hao; Gao, Hao; Xing, Lei

    2017-08-01

    Excessive radiation exposure is still a major concern in 4D cone-beam computed tomography (4D-CBCT) due to its prolonged scanning duration. Radiation dose can be effectively reduced by either under-sampling the x-ray projections or reducing the x-ray flux. However, 4D-CBCT reconstruction under such low-dose protocols is prone to image artifacts and noise. In this work, we propose a novel joint regularization-based iterative reconstruction method for low-dose 4D-CBCT. To tackle the under-sampling problem, we employ spatiotemporal tensor framelet (STF) regularization to take advantage of the spatiotemporal coherence of the patient anatomy in 4D images. To simultaneously suppress the image noise caused by photon starvation, we also incorporate spatiotemporal nonlocal total variation (SNTV) regularization to make use of the nonlocal self-recursiveness of anatomical structures in the spatial and temporal domains. Under the joint STF-SNTV regularization, the proposed iterative reconstruction approach is evaluated first using two digital phantoms and then using physical experiment data in the low-dose context of both under-sampled and noisy projections. Compared with existing approaches via either STF or SNTV regularization alone, the presented hybrid approach achieves improved image quality, and is particularly effective for the reconstruction of low-dose 4D-CBCT data that are not only sparse but noisy.

  2. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.

    Science.gov (United States)

    Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z

    2018-06-01

    To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Two Eyes, 3D: A New Project to Study Stereoscopy in Astronomy Education

    Science.gov (United States)

    Price, Aaron; SubbaRao, M.; Wyatt, R.

    2012-01-01

    "Two Eyes, 3D" is a 3-year NSF funded research project to study the educational impacts of using stereoscopic representations in informal settings. The project funds two experimental studies. The first is focused on how children perceive various spatial qualities of scientific objects displayed in static 2D and 3D formats. The second is focused on how adults perceive various spatial qualities of scientific objects and processes displayed in 2D and 3D movie formats. As part of the project, two brief high-definition films about variable stars will be developed. Both studies will be mixed-method and look at prior spatial ability and other demographic variables as covariates. The project is run by the American Association of Variable Star Observers, Boston Museum of Science and the Adler Planetarium and Astronomy Museum with consulting from the California Academy of Sciences. Early pilot results will be presented. All films will be released into the public domain, as will the assessment software designed to run on tablet computers (iOS or Android).

  4. 3D DSA findings of uterine artery and its optimal projection position

    International Nuclear Information System (INIS)

    Lu Weifu; Zhang Aiwu; Zhou Chunze; Lu Dong; Xiao Jingkun; Wang Weiyu; Zhang Xingming; Zhang Zhengfeng; Hou Changlong

    2011-01-01

    Objective: to observe the origin site, anatomic features of uterine artery with 3D DSA and to discuss the optimal projection position in order to improve the success rate of super-selective catheterization of uterine artery. Methods: Prospective pelvic angiography was performed in 42 adult females (a total of 84 uterine arteries). 3D DSA was carried out with 206 ° rotation. 3D reconstruction of the obtained images was performed and the angiographic manifestations of the uterine artery were analyzed. The optimal projection position for the displaying of uterine artery was discussed. The quality of images obtained with the projection angle of 15 °-25 °, 25 °-35 ° and 35 °-45 ° was determined and the results were compared with each other. Results: The orifices of all 84 uterine arteries could be well demonstrated on 3D DSA images. The uterine artery was originated from the anterior trunk of internal iliac artery (n=58, 69%), from main stem of internal iliac artery (n=16, 19.1%), from internal pudenda artery (n=8, 9.5%) and from inferior gluteal artery (n=2, 2.4%). The best projection position to show the opening and route of the uterine artery was contralateral oblique view of 25-35 degrees (P<0.05). Conclusion: 3D DSA can clearly display the anatomy of the uterine artery, which is very helpful for the management of super-selective catheterization of uterine artery. The optimal projection position for uterine artery is contralateral oblique view of 25-35 degrees. (authors)

  5. Reconstruction strategy for echo planar spectroscopy and its application to partially undersampled imaging

    DEFF Research Database (Denmark)

    Hanson, L G; Schaumburg, K; Paulson, O B

    2000-01-01

    The most commonly encountered form of echo planar spectroscopy involves oscillating gradients in one spatial dimension during readout. Data are consequently not sampled on a Cartesian grid. A fast gridding algorithm applicable to this particular situation is presented. The method is optimal, i.......e., it performs as well as the full discrete Fourier transform for band limited signals while allowing for use of the fast Fourier transform. The method is demonstrated for reconstruction of data that are partially undersampled in the time domain. The advantages of undersampling are lower hardware requirements...

  6. Project Photofly: New 3d Modeling Online Web Service (case Studies and Assessments)

    Science.gov (United States)

    Abate, D.; Furini, G.; Migliori, S.; Pierattini, S.

    2011-09-01

    During summer 2010, Autodesk has released a still ongoing project called Project Photofly, freely downloadable from AutodeskLab web site until August 1 2011. Project Photofly based on computer-vision and photogrammetric principles, exploiting the power of cloud computing, is a web service able to convert collections of photographs into 3D models. Aim of our research was to evaluate the Project Photofly, through different case studies, for 3D modeling of cultural heritage monuments and objects, mostly to identify for which goals and objects it is suitable. The automatic approach will be mainly analyzed.

  7. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains.

    Science.gov (United States)

    Lewis, Tony E; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L; Buchan, Daniel W A; Chothia, Cyrus; Cuff, Alison; Dana, Jose M; Filippis, Ioannis; Gough, Julian; Hunter, Sarah; Jones, David T; Kelley, Lawrence A; Kleywegt, Gerard J; Minneci, Federico; Mitchell, Alex; Murzin, Alexey G; Ochoa-Montaño, Bernardo; Rackham, Owen J L; Smith, James; Sternberg, Michael J E; Velankar, Sameer; Yeats, Corin; Orengo, Christine

    2013-01-01

    Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).

  8. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas

  9. 3D sound in the telepresence project BEAMING

    DEFF Research Database (Denmark)

    Olesen, Søren Krarup; Markovic, Milos; Madsen, Esben

    2012-01-01

    three applications: A general purpose theatrical scene, a teaching situation and a medical patient-visiting-doctor scenario. The March 2012 project review deals with the teaching situation. This involves a single microphone recording followed by signal processing that reconstructs the spatial content......The involvement of Aalborg University in the EU project BEAMING will be presented. BEAMING deals with telepresence including multiple modalities; vision, haptics and audio, of which the latter is of main interest here. The setup consists of two types of locations: The Destination, where the Locals...... for the Visitor, 3D audio is provided through headphones. It is rendered based on the Locals' coordinates via a common Internet database including local positional tracking to ensure that information on the Visitor's head rotation has a minimum delay through the network. The BEAMING project currently addresses...

  10. The EISCAT_3D Project in Norway: E3DN

    Science.gov (United States)

    La Hoz, C.; Oksavik, K.

    2013-12-01

    EISCAT_3D (E3D) is a project to build the next generation of incoherent scatter radars endowed with 3-dimensional scalar and vector capabilities that will replace the current EISCAT radars in Northern Scandinavia. One active (transmitting) site in Norway and four passive (receiving) sites in the Nordic countries will provide 3-D vector imaging capabilities by rapid scanning and multi-beam forming. The unprecedented flexibility of the solid-state transmitter with high duty-cycle, arbitrary wave-forming and polarisation and its pulsed power of 10 MW will provide unrivalled experimental capabilities to investigate the highly non-stationary and non-homogeneous state of the polar upper atmosphere. Aperture Synthesis Imaging Radar (ASIR) will to endow E3D with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. The Norwegian scientific programme is inspired by the pioneer polar scientist Kristian Birkeland (picture) and includes pressing questions on polar upper atmospheric research, among others: (Q1) How to proceed beyond the present simplistic, static, stationary and homogeneous analysis of upper atmospheric and ionospheric processes? (Q2) How does space weather affect ionospheric processes and how to support modelling and space weather services? (Q3) How to advance fundamental plasma physics by employing the ionosphere as a natural plasma physics laboratory? (Q4) How does the influx of extraterrestrial material interact with the upper atmosphere and where does the material originate from? (Q5) How does solar activity couple from geospace into the lower atmosphere and climate system, and does this energy change the wave forcing of geospace from below? Kristian Birkeland, Norwegian scientist and pioneer in polar and auroral research.

  11. Case study of the 3D model in ANGRA 3 project

    International Nuclear Information System (INIS)

    Faloppa, Altair A.; Elias, Marcos V.

    2015-01-01

    The 3D modeling has been increasingly used in NPP - Nuclear Power Plant from its design to its life cycle management. This paper presents experiences and developments regarding the methods applied for 3D Model in the Angra 3 NPP design using proprietary software PDS® - Plant Design System, and complementary in-house software developed by ETN. A description of the adopted methodology in all disciplines such as piping, piping support, equipment, civil, steel structure, HVAC and electrical will be detailed. The PDS® system is a comprehensive, intelligent computer-aided design/engineering application for plant design, construction, and operations. The use of PDS® and the developed tools has resulted in optimization in the design process as well as the project execution. After the design phase during the erection, commissioning and start-up of the plant, the 3D Model will be strongly helpful to obtain basic data about plant components such as piping, supports, valves, equipment and pumps. They can be easily found, opened, visualized and their properties analyzed in seconds. A corresponding data-base can also provide several different information queries. Furthermore the detailed 3D Model in the as-built condition can be used during operation and in-service inspections, reducing maintenance costs and improving safety of workers. It can also be used as an additional tool in training new operators.(author)

  12. Case study of the 3D model in ANGRA 3 project

    Energy Technology Data Exchange (ETDEWEB)

    Faloppa, Altair A., E-mail: afaloppa@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Elias, Marcos V., E-mail: mvelias@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Departamento GTP-T; Widuch, Lutzian, E-mail: Lutzian.Widuch@areva.com [AREVA GmbH, Engineering Methods and CAD Tools, Erlangen (Germany)

    2015-07-01

    The 3D modeling has been increasingly used in NPP - Nuclear Power Plant from its design to its life cycle management. This paper presents experiences and developments regarding the methods applied for 3D Model in the Angra 3 NPP design using proprietary software PDS® - Plant Design System, and complementary in-house software developed by ETN. A description of the adopted methodology in all disciplines such as piping, piping support, equipment, civil, steel structure, HVAC and electrical will be detailed. The PDS® system is a comprehensive, intelligent computer-aided design/engineering application for plant design, construction, and operations. The use of PDS® and the developed tools has resulted in optimization in the design process as well as the project execution. After the design phase during the erection, commissioning and start-up of the plant, the 3D Model will be strongly helpful to obtain basic data about plant components such as piping, supports, valves, equipment and pumps. They can be easily found, opened, visualized and their properties analyzed in seconds. A corresponding data-base can also provide several different information queries. Furthermore the detailed 3D Model in the as-built condition can be used during operation and in-service inspections, reducing maintenance costs and improving safety of workers. It can also be used as an additional tool in training new operators.(author)

  13. Marker encoded fringe projection profilometry for efficient 3D model acquisition.

    Science.gov (United States)

    Budianto, B; Lun, P K D; Hsung, Tai-Chiu

    2014-11-01

    This paper presents a novel marker encoded fringe projection profilometry (FPP) scheme for efficient 3-dimensional (3D) model acquisition. Traditional FPP schemes can introduce large errors to the reconstructed 3D model when the target object has an abruptly changing height profile. For the proposed scheme, markers are encoded in the projected fringe pattern to resolve the ambiguities in the fringe images due to that problem. Using the analytic complex wavelet transform, the marker cue information can be extracted from the fringe image, and is used to restore the order of the fringes. A series of simulations and experiments have been carried out to verify the proposed scheme. They show that the proposed method can greatly improve the accuracy over the traditional FPP schemes when reconstructing the 3D model of objects with abruptly changing height profile. Since the scheme works directly in our recently proposed complex wavelet FPP framework, it enjoys the same properties that it can be used in real time applications for color objects.

  14. EISCAT Aperture Synthesis Imaging (EASI _3D) for the EISCAT_3D Project

    Science.gov (United States)

    La Hoz, Cesar; Belyey, Vasyl

    2012-07-01

    Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. The underlying physico-mathematical principles of the technique are the same as the technique employed in radioastronomy to image stellar objects; both require sophisticated inversion techniques to obtain reliable images.

  15. Image-Based Virtual Tours and 3d Modeling of Past and Current Ages for the Enhancement of Archaeological Parks: the Visualversilia 3d Project

    Science.gov (United States)

    Castagnetti, C.; Giannini, M.; Rivola, R.

    2017-05-01

    The research project VisualVersilia 3D aims at offering a new way to promote the territory and its heritage by matching the traditional reading of the document and the potential use of modern communication technologies for the cultural tourism. Recently, the research on the use of new technologies applied to cultural heritage have turned their attention mainly to technologies to reconstruct and narrate the complexity of the territory and its heritage, including 3D scanning, 3D printing and augmented reality. Some museums and archaeological sites already exploit the potential of digital tools to preserve and spread their heritage but interactive services involving tourists in an immersive and more modern experience are still rare. The innovation of the project consists in the development of a methodology for documenting current and past historical ages and integrating their 3D visualizations with rendering capable of returning an immersive virtual reality for a successful enhancement of the heritage. The project implements the methodology in the archaeological complex of Massaciuccoli, one of the best preserved roman site of the Versilia Area (Tuscany, Italy). The activities of the project briefly consist in developing: 1. the virtual tour of the site in its current configuration on the basis of spherical images then enhanced by texts, graphics and audio guides in order to enable both an immersive and remote tourist experience; 2. 3D reconstruction of the evidences and buildings in their current condition for documentation and conservation purposes on the basis of a complete metric survey carried out through laser scanning; 3. 3D virtual reconstructions through the main historical periods on the basis of historical investigation and the analysis of data acquired.

  16. Telecentric 3D profilometry based on phase-shifting fringe projection.

    Science.gov (United States)

    Li, Dong; Liu, Chunyang; Tian, Jindong

    2014-12-29

    Three dimensional shape measurement in the microscopic range becomes increasingly important with the development of micro manufacturing technology. Microscopic fringe projection techniques offer a fast, robust, and full-field measurement for field sizes from approximately 1 mm2 to several cm2. However, the depth of field is very small due to the imaging of non-telecentric microscope, which is often not sufficient to measure the complete depth of a 3D-object. And the calibration of phase-to-depth conversion is complicated which need a precision translation stage and a reference plane. In this paper, we propose a novel telecentric phase-shifting projected fringe profilometry for small and thick objects. Telecentric imaging extends the depth of field approximately to millimeter order, which is much larger than that of microscopy. To avoid the complicated phase-to-depth conversion in microscopic fringe projection, we develop a new system calibration method of camera and projector based on telecentric imaging model. Based on these, a 3D reconstruction of telecentric imaging is presented with stereovision aided by fringe phase maps. Experiments demonstrated the feasibility and high measurement accuracy of the proposed system for thick object.

  17. Estimation of the 3D positioning of anatomic structures from radiographic projection and volume knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Bifulco, P; Cesarelli, M; Roccasalva Firenze, M; Verso, E; Sansone, M; Bracale, M [University of Naples, Federico II, Electronic Engineering Department, Bioengineering Unit, Via Claudio, 21 - 80125 Naples (Italy)

    1999-12-31

    The aim of this study is to develop a method to estimate the 3D positioning of an anatomic structure using the knowledge of its volume (provided by CT or MRI) combined with a single radiographic projection. This method could be applied in stereotactic surgery or in the study of 3D body joints kinematics. The knowledge of the 3D anatomical structure, available from CT (or in future MRI) is used to estimate the orientation of the projection that better match the actual 2D available projection. For this purpose it was necessary to develop an algorithm to simulate the radiographic projections. The radiographic image formation process has been simulated utilizing the geometrical characteristics of a real radiographic device and the volumetric anatomical data of the patient, obtained by 3D diagnostic CT images. The position of the patient volume respect to the radiological device is estimated comparing the actual radiographic projection with those simulated, maximising a similarity index. To assess the estimation, the 3D positioning of a segmented vertebra has been used as a test volume. The assessment has been carried out only by means of simulation. Estimation errors have been statistically evaluated. Conditions of mispositioning and noise have been also considered. The results relative to the simulation show the feasibility of the method. From the analysis of the errors emerges that the searching procedure results robust respect to the addition of white Gaussian noise. (authors) 13 fers., 4 figs., 1 tabs.

  18. Estimation of the 3D positioning of anatomic structures from radiographic projection and volume knowledge

    International Nuclear Information System (INIS)

    Bifulco, P.; Cesarelli, M.; Roccasalva Firenze, M.; Verso, E.; Sansone, M.; Bracale, M.

    1998-01-01

    The aim of this study is to develop a method to estimate the 3D positioning of an anatomic structure using the knowledge of its volume (provided by CT or MRI) combined with a single radiographic projection. This method could be applied in stereotactic surgery or in the study of 3D body joints kinematics. The knowledge of the 3D anatomical structure, available from CT (or in future MRI) is used to estimate the orientation of the projection that better match the actual 2D available projection. For this purpose it was necessary to develop an algorithm to simulate the radiographic projections. The radiographic image formation process has been simulated utilizing the geometrical characteristics of a real radiographic device and the volumetric anatomical data of the patient, obtained by 3D diagnostic CT images. The position of the patient volume respect to the radiological device is estimated comparing the actual radiographic projection with those simulated, maximising a similarity index. To assess the estimation, the 3D positioning of a segmented vertebra has been used as a test volume. The assessment has been carried out only by means of simulation. Estimation errors have been statistically evaluated. Conditions of mispositioning and noise have been also considered. The results relative to the simulation show the feasibility of the method. From the analysis of the errors emerges that the searching procedure results robust respect to the addition of white Gaussian noise. (authors)

  19. SU-E-J-52: Validation of 3D Structure Projection Onto 2D DRR in Commercial Treatment Planning Systems.

    Science.gov (United States)

    Zhang, L; Court, L; Balter, P; Dong, L

    2012-06-01

    The use of structure overlay on setup DRRs can aid the image alignment procedure for daily image-guided setup procedures. However, the accuracy of a 3D region-of-interest (ROI) projected on a 2D digitally reconstructed radiograph (DRR) has rarely been evaluated quantitatively. The goal of this study is to test the accuracy of two commercial treatment planning systems (TPS) in producing overlay structures on setup DRRs. We designed a novel method to identify landmarks which were on the boundary of the projected ROI on a DRR. The 3D ROIvolume is composed of a stack of 2D curves. We first mathematically project each 2D curve onto a beams-eye-view (BEV) plane. Next, we detectthe boundary points of the projected curves. Those boundary points serve aslandmarks. Finally, we project the binary mask of the 3D ROI volume using ray tracing method onto the BEV plane. This projected binary mask is used to exclude the false landmarks. Once those landmarks are detected, wecompute the distance between the landmarks and ROI outlines from the TPS. We applied our validation method to 13 ROIs from a lung patient and 4 simulated ROIs on 2 BEV DRRs for two different TPS (Eclipse and Pinnacle). Average distance between the landmarks and ROIoutlines was 0.5mm for both Eclipse and Pinnacle approaches, which is close to the pixel resolution of the DRR. The maximum distance andaverage maximum distance was 2mm and 1 mm, respectively, for both TPS.The maximum distance occurred at points where the ROI curve has a sharpchange between slices. The accuracy of Eclipse and Pinnacle ROI projection method seems to be acceptable to within 1mm althoughprojection error can be as large as 2mm when structure shape has a sharp variation from one slice to the next. © 2012 American Association of Physicists in Medicine.

  20. Effect of 3D animation videos over 2D video projections in periodontal health education among dental students.

    Science.gov (United States)

    Dhulipalla, Ravindranath; Marella, Yamuna; Katuri, Kishore Kumar; Nagamani, Penupothu; Talada, Kishore; Kakarlapudi, Anusha

    2015-01-01

    There is limited evidence about the distinguished effect of 3D oral health education videos over conventional 2 dimensional projections in improving oral health knowledge. This randomized controlled trial was done to test the effect of 3 dimensional oral health educational videos among first year dental students. 80 first year dental students were enrolled and divided into two groups (test and control). In the test group, 3D animation and in the control group, regular 2D video projections pertaining to periodontal anatomy, etiology, presenting conditions, preventive measures and treatment of periodontal problems were shown. Effect of 3D animation was evaluated by using a questionnaire consisting of 10 multiple choice questions given to all participants at baseline, immediately after and 1month after the intervention. Clinical parameters like Plaque Index (PI), Gingival Bleeding Index (GBI), and Oral Hygiene Index Simplified (OHI-S) were measured at baseline and 1 month follow up. A significant difference in the post intervention knowledge scores was found between the groups as assessed by unpaired t-test (p3D animation videos are more effective over 2D videos in periodontal disease education and knowledge recall. The application of 3D animation results also demonstrate a better visual comprehension for students and greater health care outcomes.

  1. IMAGE-BASED VIRTUAL TOURS AND 3D MODELING OF PAST AND CURRENT AGES FOR THE ENHANCEMENT OF ARCHAEOLOGICAL PARKS: THE VISUALVERSILIA 3D PROJECT

    Directory of Open Access Journals (Sweden)

    C. Castagnetti

    2017-05-01

    Full Text Available The research project VisualVersilia 3D aims at offering a new way to promote the territory and its heritage by matching the traditional reading of the document and the potential use of modern communication technologies for the cultural tourism. Recently, the research on the use of new technologies applied to cultural heritage have turned their attention mainly to technologies to reconstruct and narrate the complexity of the territory and its heritage, including 3D scanning, 3D printing and augmented reality. Some museums and archaeological sites already exploit the potential of digital tools to preserve and spread their heritage but interactive services involving tourists in an immersive and more modern experience are still rare. The innovation of the project consists in the development of a methodology for documenting current and past historical ages and integrating their 3D visualizations with rendering capable of returning an immersive virtual reality for a successful enhancement of the heritage. The project implements the methodology in the archaeological complex of Massaciuccoli, one of the best preserved roman site of the Versilia Area (Tuscany, Italy. The activities of the project briefly consist in developing: 1. the virtual tour of the site in its current configuration on the basis of spherical images then enhanced by texts, graphics and audio guides in order to enable both an immersive and remote tourist experience; 2. 3D reconstruction of the evidences and buildings in their current condition for documentation and conservation purposes on the basis of a complete metric survey carried out through laser scanning; 3. 3D virtual reconstructions through the main historical periods on the basis of historical investigation and the analysis of data acquired.

  2. Accelerated 4D phase contrast MRI in skeletal muscle contraction.

    Science.gov (United States)

    Mazzoli, Valentina; Gottwald, Lukas M; Peper, Eva S; Froeling, Martijn; Coolen, Bram F; Verdonschot, Nico; Sprengers, Andre M; van Ooij, Pim; Strijkers, Gustav J; Nederveen, Aart J

    2018-03-05

    3D time-resolved (4D) phase contrast MRI can be used to study muscle contraction. However, 3D coverage with sufficient spatiotemporal resolution can only be achieved by interleaved acquisitions during many repetitions of the motion task, resulting in long scan times. The aim of this study was to develop a compressed sensing accelerated 4D phase contrast MRI technique for quantification of velocities and strain rate of the muscles in the lower leg during active plantarflexion/dorsiflexion. Nine healthy volunteers were scanned during active dorsiflexion/plantarflexion task. For each volunteer, we acquired a reference scan, as well as 4 different accelerated scans (k-space undersampling factors: 3.14X, 4.09X, 4.89X, and 6.41X) obtained using Cartesian Poisson disk undersampling schemes. The data was reconstructed using a compressed sensing pipeline. For each scan, velocity and strain rate values were quantified in the gastrocnemius lateralis, gastrocnemius medialis, tibialis anterior, and soleus. No significant differences in velocity values were observed as a function acceleration factor in the investigated muscles. The strain rate calculation resulted in one positive (s + ) and one negative (s - ) eigenvalue, whereas the third eigenvalue (s 3 ) was consistently 0 for all the acquisitions. No significant differences were observed for the strain rate eigenvalues as a function of acceleration factor. Data undersampling combined with compressed sensing reconstruction allowed obtainment of time-resolved phase contrast acquisitions with 3D coverage and quantitative information comparable to the reference scan. The 3D sensitivity of the method can help in understanding the connection between muscle architecture and muscle function in future studies. © 2018 International Society for Magnetic Resonance in Medicine.

  3. Block matching 3D random noise filtering for absorption optical projection tomography

    International Nuclear Information System (INIS)

    Fumene Feruglio, P; Vinegoni, C; Weissleder, R; Gros, J; Sbarbati, A

    2010-01-01

    Absorption and emission optical projection tomography (OPT), alternatively referred to as optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT), are recently developed three-dimensional imaging techniques with value for developmental biology and ex vivo gene expression studies. The techniques' principles are similar to the ones used for x-ray computed tomography and are based on the approximation of negligible light scattering in optically cleared samples. The optical clearing is achieved by a chemical procedure which aims at substituting the cellular fluids within the sample with a cell membranes' index matching solution. Once cleared the sample presents very low scattering and is then illuminated with a light collimated beam whose intensity is captured in transillumination mode by a CCD camera. Different projection images of the sample are subsequently obtained over a 360 0 full rotation, and a standard backprojection algorithm can be used in a similar fashion as for x-ray tomography in order to obtain absorption maps. Because not all biological samples present significant absorption contrast, it is not always possible to obtain projections with a good signal-to-noise ratio, a condition necessary to achieve high-quality tomographic reconstructions. Such is the case for example, for early stage's embryos. In this work we demonstrate how, through the use of a random noise removal algorithm, the image quality of the reconstructions can be considerably improved even when the noise is strongly present in the acquired projections. Specifically, we implemented a block matching 3D (BM3D) filter applying it separately on each acquired transillumination projection before performing a complete three-dimensional tomographical reconstruction. To test the efficiency of the adopted filtering scheme, a phantom and a real biological sample were processed. In both cases, the BM3D filter led to a signal-to-noise ratio increment of over 30 d

  4. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement.

    Science.gov (United States)

    Li, Dong; Kofman, Jonathan

    2014-04-21

    In fringe-projection 3D surface-shape measurement, image saturation results in incorrect intensities in captured images of fringe patterns, leading to phase and measurement errors. An adaptive fringe-pattern projection (AFPP) method was developed to adapt the maximum input gray level in projected fringe patterns to the local reflectivity of an object surface being measured. The AFPP method demonstrated improved 3D measurement accuracy by avoiding image saturation in highly-reflective surface regions while maintaining high intensity modulation across the entire surface. The AFPP method can avoid image saturation and handle varying surface reflectivity, using only two prior rounds of fringe-pattern projection and image capture to generate the adapted fringe patterns.

  5. External force back-projective composition and globally deformable optimization for 3-D coronary artery reconstruction

    International Nuclear Information System (INIS)

    Yang, Jian; Cong, Weijian; Fan, Jingfan; Liu, Yue; Wang, Yongtian; Chen, Yang

    2014-01-01

    The clinical value of the 3D reconstruction of a coronary artery is important for the diagnosis and intervention of cardiovascular diseases. This work proposes a method based on a deformable model for reconstructing coronary arteries from two monoplane angiographic images acquired from different angles. First, an external force back-projective composition model is developed to determine the external force, for which the force distributions in different views are back-projected to the 3D space and composited in the same coordinate system based on the perspective projection principle of x-ray imaging. The elasticity and bending forces are composited as an internal force to maintain the smoothness of the deformable curve. Second, the deformable curve evolves rapidly toward the true vascular centerlines in 3D space and angiographic images under the combination of internal and external forces. Third, densely matched correspondence among vessel centerlines is constructed using a curve alignment method. The bundle adjustment method is then utilized for the global optimization of the projection parameters and the 3D structures. The proposed method is validated on phantom data and routine angiographic images with consideration for space and re-projection image errors. Experimental results demonstrate the effectiveness and robustness of the proposed method for the reconstruction of coronary arteries from two monoplane angiographic images. The proposed method can achieve a mean space error of 0.564 mm and a mean re-projection error of 0.349 mm. (paper)

  6. Method of surface error visualization using laser 3D projection technology

    Science.gov (United States)

    Guo, Lili; Li, Lijuan; Lin, Xuezhu

    2017-10-01

    In the process of manufacturing large components, such as aerospace, automobile and shipping industry, some important mold or stamped metal plate requires precise forming on the surface, which usually needs to be verified, if necessary, the surface needs to be corrected and reprocessed. In order to make the correction of the machined surface more convenient, this paper proposes a method based on Laser 3D projection system, this method uses the contour form of terrain contour, directly showing the deviation between the actually measured data and the theoretical mathematical model (CAD) on the measured surface. First, measure the machined surface to get the point cloud data and the formation of triangular mesh; secondly, through coordinate transformation, unify the point cloud data to the theoretical model and calculate the three-dimensional deviation, according to the sign (positive or negative) and size of the deviation, use the color deviation band to denote the deviation of three-dimensional; then, use three-dimensional contour lines to draw and represent every coordinates deviation band, creating the projection files; finally, import the projection files into the laser projector, and make the contour line projected to the processed file with 1:1 in the form of a laser beam, compare the Full-color 3D deviation map with the projection graph, then, locate and make quantitative correction to meet the processing precision requirements. It can display the trend of the machined surface deviation clearly.

  7. Forensic aerial photography: projected 3-D exhibits facilitating rapid environmental justice

    Science.gov (United States)

    Pope, Robert A.

    2009-02-01

    Forensic stereoscopic analysis of historical aerial photography is successfully identifying the causes of environmental degradation, including erosion and unlawful releases of hazardous wastes into the environment. The photogrammetric evidence can successfully pinpoint the specific locations of undocumented hazardous waste landfills and other types of unlawful releases of chemicals and wastes into the environment, providing location data for targeted investigation, characterization, and subsequent remediation. The findings of these studies are being effectively communicated in a simple, memorable, and compelling way by projecting the three-dimensional (3-D) sequences of historical aerial photography utilizing polarized 3-D presentation methods.

  8. 3D Printing All-Aromatic Polyimides using Mask-Projection Stereolithography: Processing the Nonprocessable.

    Science.gov (United States)

    Hegde, Maruti; Meenakshisundaram, Viswanath; Chartrain, Nicholas; Sekhar, Susheel; Tafti, Danesh; Williams, Christopher B; Long, Timothy E

    2017-08-01

    High-performance, all-aromatic, insoluble, engineering thermoplastic polyimides, such as pyromellitic dianhydride and 4,4'-oxydianiline (PMDA-ODA) (Kapton), exhibit exceptional thermal stability (up to ≈600 °C) and mechanical properties (Young's modulus exceeding 2 GPa). However, their thermal resistance, which is a consequence of the all-aromatic molecular structure, prohibits processing using conventional techniques. Previous reports describe an energy-intensive sintering technique as an alternative technique for processing polyimides with limited resolution and part fidelity. This study demonstrates the unprecedented 3D printing of PMDA-ODA using mask-projection stereolithography, and the preparation of high-resolution 3D structures without sacrificing bulk material properties. Synthesis of a soluble precursor polymer containing photo-crosslinkable acrylate groups enables light-induced, chemical crosslinking for spatial control in the gel state. Postprinting thermal treatment transforms the crosslinked precursor polymer to PMDA-ODA. The dimensional shrinkage is isotropic, and postprocessing preserves geometric integrity. Furthermore, large-area mask-projection scanning stereolithography demonstrates the scalability of 3D structures. These unique high-performance 3D structures offer potential in fields ranging from water filtration and gas separation to automotive and aerospace technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data

    International Nuclear Information System (INIS)

    Spiegel, M; Hornegger, J; Redel, T; Struffert, T; Doerfler, A

    2011-01-01

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.

  10. 3D Projection on Physical Objects: Design Insights from Five Real Life Cases

    DEFF Research Database (Denmark)

    Dalsgaard, Peter; Halskov, Kim

    2011-01-01

    3D projection on physical objects is a particular kind of Augmented Reality that augments a physical object by projecting digital content directly onto it, rather than by using a mediating device, such as a mobile phone or a head- mounted display. In this paper, we present five cases in which we...

  11. 3D digital dynamic management of maintenance projects for nuclear power plant

    International Nuclear Information System (INIS)

    Wang Baizhong; Luo Yalin; Fang Hao; Ma Li; Zhang Jie; Wang Ruobing; Xie Min

    2005-01-01

    The whole process for the application of digital plant technique in the equipment transport in reactor building and the dynamic management of the spatial arrangement in Daya Bay Nuclear Power Station was introduced in the paper. The establishment of 3D digital Daya Bay plant, and the method and procedure to apply it in the nuclear power plant maintenance project have been discussed. This project utilizes the outer database to preserve the maintenance status of equipments, and avoids the damage or changing of the original 3D final model. Based on the maintenance procedure, the spatial arrangement and schedule for the maintenance of nuclear power station have been simulated and optimized for the whole process. This technique can simulate and optimize the arrangement and spatial arrangement for maintenance in limited space. It has been applied successfully in the reactor vessel head replacement for Unit 2 of Daya Bay NPP to shorten the time for key routes and the total time of this project by 16 hours and 92.5 hours, respectively. (author)

  12. 3-D tracking in a miniature time projection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Vahsen, S.E., E-mail: sevahsen@hawaii.edu [University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States); Hedges, M.T.; Jaegle, I.; Ross, S.J.; Seong, I.S.; Thorpe, T.N.; Yamaoka, J. [University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States); Kadyk, J.A.; Garcia-Sciveres, M. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2015-07-11

    The three-dimensional (3-D) detection of millimeter-scale ionization trails is of interest for detecting nuclear recoils in directional fast neutron detectors and in direction-sensitive searches for weakly interacting massive particles (WIMPs), which may constitute the Dark Matter of the universe. We report on performance characterization of a miniature gas target Time Projection Chamber (TPC) where the drift charge is avalanche-multiplied with Gas Electron Multipliers (GEMs) and detected with the ATLAS FE-I3 Pixel Application Specific Integrated Circuit (ASIC). We report on measurements of gain, gain resolution, point resolution, diffusion, angular resolution, and energy resolution with low-energy X-rays, cosmic rays, and alpha particles, using the gases Ar:CO{sub 2} (70:30) and He:CO{sub 2} (70:30) at atmospheric pressure. We discuss the implications for future, larger directional neutron and Dark Matter detectors. With an eye to designing and selecting components for these, we generalize our results into analytical expressions for detector performance whenever possible. We conclude by demonstrating the 3-D directional detection of a fast neutron source.

  13. The CHT2 Project: Diachronic 3d Reconstruction of Historic Sites

    Science.gov (United States)

    Guidi, G.; Micoli, L.; Gonizzi Barsanti, S.; Malik, U.

    2017-08-01

    Digital modelling archaeological and architectural monuments in their current state and in their presumed past aspect has been recognized not only as a way for explaining to the public the genesis of a historical site, but also as an effective tool for research. The search for historical sources, their proper analysis and interdisciplinary relationship between technological disciplines and the humanities are fundamental for obtaining reliable hypothetical reconstructions. This paper presents an experimental activity defined by the project Cultural Heritage Through Time - CHT2 (http://cht2-project.eu), funded in the framework of the Joint Programming Initiative on Cultural Heritage (JPI-CH) of the European Commission. Its goal is to develop time-varying 3D products, from landscape to architectural scale, deals with the implementation of the methodology on one of the case studies: the late Roman circus of Milan, built in the era when the city was the capital of the Western Roman Empire (286-402 A.D). The work presented here covers one of the cases in which the physical evidences have now been almost entirely disappeared. The diachronic reconstruction is based on a proper mix of quantitative data originated by 3D surveys at present time, and historical sources like ancient maps, drawings, archaeological reports, archaeological restrictions decrees and old photographs. Such heterogeneous sources have been first georeferenced and then properly integrated according to the methodology defined in the framework of the CHT2 project, to hypothesize a reliable reconstruction of the area in different historical periods.

  14. Non-Cartesian Parallel Imaging Reconstruction of Undersampled IDEAL Spiral 13C CSI Data

    DEFF Research Database (Denmark)

    Hansen, Rie Beck; Hanson, Lars G.; Ardenkjær-Larsen, Jan Henrik

    scan times based on spatial information inherent to each coil element. In this work, we explored the combination of non-cartesian parallel imaging reconstruction and spatially undersampled IDEAL spiral CSI1 acquisition for efficient encoding of multiple chemical shifts within a large FOV with high...

  15. Weighted regularized statistical shape space projection for breast 3D model reconstruction.

    Science.gov (United States)

    Ruiz, Guillermo; Ramon, Eduard; García, Jaime; Sukno, Federico M; Ballester, Miguel A González

    2018-05-02

    The use of 3D imaging has increased as a practical and useful tool for plastic and aesthetic surgery planning. Specifically, the possibility of representing the patient breast anatomy in a 3D shape and simulate aesthetic or plastic procedures is a great tool for communication between surgeon and patient during surgery planning. For the purpose of obtaining the specific 3D model of the breast of a patient, model-based reconstruction methods can be used. In particular, 3D morphable models (3DMM) are a robust and widely used method to perform 3D reconstruction. However, if additional prior information (i.e., known landmarks) is combined with the 3DMM statistical model, shape constraints can be imposed to improve the 3DMM fitting accuracy. In this paper, we present a framework to fit a 3DMM of the breast to two possible inputs: 2D photos and 3D point clouds (scans). Our method consists in a Weighted Regularized (WR) projection into the shape space. The contribution of each point in the 3DMM shape is weighted allowing to assign more relevance to those points that we want to impose as constraints. Our method is applied at multiple stages of the 3D reconstruction process. Firstly, it can be used to obtain a 3DMM initialization from a sparse set of 3D points. Additionally, we embed our method in the 3DMM fitting process in which more reliable or already known 3D points or regions of points, can be weighted in order to preserve their shape information. The proposed method has been tested in two different input settings: scans and 2D pictures assessing both reconstruction frameworks with very positive results. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. JANUS reactor d and d project

    International Nuclear Information System (INIS)

    Fellhauer, C. R.

    1998-01-01

    Argonne National Laboratory (ANL-E) has recently completed the decontamination and decommissioning (D and D) of the JANUS Reactor Facility located in Building 202. The 200 KW reactor operated from August 1963 to March 1992. The facility was used to study the effects of both high and low doses of fission neutrons in animals. There were two exposure rooms on opposite sides of the reactor and the reactor was therefore named after the two-faced Roman god. The High Dose Room was capable of specimen exposure at a dose rate of 3,600 rads per hour. During calendar year 1996 a detailed characterization of the facility was performed by ANL-E Health Physics personnel. ANL-E Analytical Services performed the required sample analysis. An Auditable Safety Analysis and an Environmental Assessment were completed. D and D plans, procedures and procurement documents were prepared and approved. A D and D subcontractor was selected and a firm, fixed price contract awarded for the field work and final survey effort. The D and D subcontractor was mobilized to ANL-E in January 1997. Electrical isolation of all reactor equipment and control panels was accomplished and the equipment removed. A total of 207,230 pounds (94,082 Kg) of lead shielding was removed, surveyed and sampled, and free-released for recycle. All primary and secondary piping was removed, size reduced and packaged for disposal or recycled as appropriate. The reactor vessel was removed, sized reduced and packaged as radioactive waste in April. The activated graphite block reflector was removed next, followed by the bioshield concrete and steel. All of this material was packaged as low level waste. Total low level radioactive waste generation was 4002.1 cubic feet (113.3 cubic meters). Mixed waste generation was 538 cubic feet (15.2 cubic meters). The Final Release Survey was completed in September. The project field work was completed in 38 weeks without any lost-time accidents, personnel contaminations or unplanned

  17. Enhancing breast projection in autologous reconstruction using the St Andrew's coning technique and 3D volumetric analysis.

    Science.gov (United States)

    Chae, Michael P; Rozen, Warren Matthew; Patel, Nakul Gamanlal; Hunter-Smith, David J; Ramakrishnan, Venkat

    2017-12-01

    An increasing number of women undergo mastectomy for breast cancer and post-mastectomy autologous breast reconstruction has been shown to significantly improve the psychosexual wellbeing of the patients. A goal of treatment is to achieve symmetry and projection to match the native breast, and/or the contralateral breast in the case of a unilateral reconstruction. Autologous reconstruction, particularly with the deep inferior epigastric artery perforator (DIEP) flap, is particularly advantageous as it can be manipulated to mimic the shape and turgor of the native breast. However, very few techniques of shaping the breast conus when insetting the DIEP flap to enhance aesthetic outcome have been reported to date. With the aide of three-dimension (3D) photography and 3D-printed mirrored image of the contralateral breast as a guide intraoperatively, we describe our St Andrew's coning technique to create a personalized flap projection. We report a prospective case series of 3 delayed unilateral breast reconstructions where symmetrization procedure to the contralateral breast was not indicated. Using a commercial 3D scanner (VECTRA XR, Canfield Scientific), the breast region was imaged. The mirrored image was 3D-printed in-house using a desktop 3D printer. In all cases, projection of the breast mound was able to be safely achieved, with a demonstrated central volume (or 'cone') able to be highlighted on imaging and a 3D printed breast. A 3D print of the contralateral breast was able to be used intraoperatively to guide the operative approach. The St Andrew's coning technique is a useful aesthetic maneuver for achieving breast projection during DIEP flap breast reconstruction, with 3D imaging techniques able to assist in perioperative assessment of breast volume.

  18. 3D Geo-Structures Visualization Education Project (3dgeostructuresvis.ucdavis.edu)

    Science.gov (United States)

    Billen, M. I.

    2014-12-01

    Students of field-based geology must master a suite of challenging skills from recognizing rocks, to measuring orientations of features in the field, to finding oneself (and the outcrop) on a map and placing structural information on maps. Students must then synthesize this information to derive meaning from the observations and ultimately to determine the three-dimensional (3D) shape of the deformed structures and their kinematic history. Synthesizing this kind of information requires sophisticated visualizations skills in order to extrapolate observations into the subsurface or missing (eroded) material. The good news is that students can learn 3D visualization skills through practice, and virtual tools can help provide some of that practice. Here I present a suite of learning modules focused at developing students' ability to imagine (visualize) complex 3D structures and their exposure through digital topographic surfaces. Using the software 3DVisualizer, developed by KeckCAVES (keckcaves.org) we have developed visualizations of common geologic structures (e.g., syncline, dipping fold) in which the rock is represented by originally flat-lying layers of sediment, each with a different color, which have been subsequently deformed. The exercises build up in complexity, first focusing on understanding the structure in 3D (penetrative understanding), and then moving to the exposure of the structure at a topographic surface. Individual layers can be rendered as a transparent feature to explore how the layer extends above and below the topographic surface (e.g., to follow an eroded fold limb across a valley). The exercises are provided using either movies of the visualization (which can also be used for examples during lectures), or the data and software can be downloaded to allow for more self-driven exploration and learning. These virtual field models and exercises can be used as "practice runs" before going into the field, as make-up assignments, as a field

  19. Simulations of Aperture Synthesis Imaging Radar for the EISCAT_3D Project

    Science.gov (United States)

    La Hoz, C.; Belyey, V.

    2012-12-01

    EISCAT_3D is a project to build the next generation of incoherent scatter radars endowed with multiple 3-dimensional capabilities that will replace the current EISCAT radars in Northern Scandinavia. Aperture Synthesis Imaging Radar (ASIR) is one of the technologies adopted by the EISCAT_3D project to endow it with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. This ability will open new research opportunities to map small structures associated with non-homogeneous, unstable processes such as aurora, summer and winter polar radar echoes (PMSE and PMWE), Natural Enhanced Ion Acoustic Lines (NEIALs), structures excited by HF ionospheric heating, meteors, space debris, and others. To demonstrate the feasibility of the antenna configurations and the imaging inversion algorithms a simulation of synthetic incoherent scattering data has been performed. The simulation algorithm incorporates the ability to control the background plasma parameters with non-homogeneous, non-stationary components over an extended 3-dimensional space. Control over the positions of a number of separated receiving antennas, their signal-to-noise-ratios and arriving phases allows realistic simulation of a multi-baseline interferometric imaging radar system. The resulting simulated data is fed into various inversion algorithms. This simulation package is a powerful tool to evaluate various antenna configurations and inversion algorithms. Results applied to realistic design alternatives of EISCAT_3D will be described.

  20. LandSIM3D: modellazione in real time 3D di dati geografici

    Directory of Open Access Journals (Sweden)

    Lambo Srl Lambo Srl

    2009-03-01

    Full Text Available LandSIM3D: realtime 3D modelling of geographic data LandSIM3D allows to model in 3D an existing landscape in a few hours only and geo-referenced offering great landscape analysis and understanding tools. 3D projects can then be inserted into the existing landscape with ease and precision. The project alternatives and impact can then be visualized and studied into their immediate environmental. The complex evolution of the landscape in the future can also be simulated and the landscape model can be manipulated interactively and better shared with colleagues. For that reason, LandSIM3D is different from traditional 3D imagery solutions, normally reserved for computer graphics experts. For more information about LandSIM3D, go to www.landsim3d.com.

  1. a Smartphone-Based 3d Pipeline for the Creative Industry - the Replicate EU Project

    Science.gov (United States)

    Nocerino, E.; Lago, F.; Morabito, D.; Remondino, F.; Porzi, L.; Poiesi, F.; Rota Bulo, S.; Chippendale, P.; Locher, A.; Havlena, M.; Van Gool, L.; Eder, M.; Fötschl, A.; Hilsmann, A.; Kausch, L.; Eisert, P.

    2017-02-01

    During the last two decades we have witnessed great improvements in ICT hardware and software technologies. Three-dimensional content is starting to become commonplace now in many applications. Although for many years 3D technologies have been used in the generation of assets by researchers and experts, nowadays these tools are starting to become commercially available to every citizen. This is especially the case for smartphones, that are powerful enough and sufficiently widespread to perform a huge variety of activities (e.g. paying, calling, communication, photography, navigation, localization, etc.), including just very recently the possibility of running 3D reconstruction pipelines. The REPLICATE project is tackling this particular issue, and it has an ambitious vision to enable ubiquitous 3D creativity via the development of tools for mobile 3D-assets generation on smartphones/tablets. This article presents the REPLICATE project's concept and some of the ongoing activities, with particular attention being paid to advances made in the first year of work. Thus the article focuses on the system architecture definition, selection of optimal frames for 3D cloud reconstruction, automated generation of sparse and dense point clouds, mesh modelling techniques and post-processing actions. Experiments so far were concentrated on indoor objects and some simple heritage artefacts, however, in the long term we will be targeting a larger variety of scenarios and communities.

  2. Underwater 3D Surface Measurement Using Fringe Projection Based Scanning Devices.

    Science.gov (United States)

    Bräuer-Burchardt, Christian; Heinze, Matthias; Schmidt, Ingo; Kühmstedt, Peter; Notni, Gunther

    2015-12-23

    In this work we show the principle of optical 3D surface measurements based on the fringe projection technique for underwater applications. The challenges of underwater use of this technique are shown and discussed in comparison with the classical application. We describe an extended camera model which takes refraction effects into account as well as a proposal of an effective, low-effort calibration procedure for underwater optical stereo scanners. This calibration technique combines a classical air calibration based on the pinhole model with ray-based modeling and requires only a few underwater recordings of an object of known length and a planar surface. We demonstrate a new underwater 3D scanning device based on the fringe projection technique. It has a weight of about 10 kg and the maximal water depth for application of the scanner is 40 m. It covers an underwater measurement volume of 250 mm × 200 mm × 120 mm. The surface of the measurement objects is captured with a lateral resolution of 150 μm in a third of a second. Calibration evaluation results are presented and examples of first underwater measurements are given.

  3. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy.

    Science.gov (United States)

    Ahmad, Moiz; Balter, Peter; Pan, Tinsu

    2011-10-01

    Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4-6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3-8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm

  4. Intensity-based bayesian framework for image reconstruction from sparse projection data

    International Nuclear Information System (INIS)

    Rashed, E.A.; Kudo, Hiroyuki

    2009-01-01

    This paper presents a Bayesian framework for iterative image reconstruction from projection data measured over a limited number of views. The classical Nyquist sampling rule yields the minimum number of projection views required for accurate reconstruction. However, challenges exist in many medical and industrial imaging applications in which the projection data is undersampled. Classical analytical reconstruction methods such as filtered backprojection (FBP) are not a good choice for use in such cases because the data undersampling in the angular range introduces aliasing and streak artifacts that degrade lesion detectability. In this paper, we propose a Bayesian framework for maximum likelihood-expectation maximization (ML-EM)-based iterative reconstruction methods that incorporates a priori knowledge obtained from expected intensity information. The proposed framework is based on the fact that, in tomographic imaging, it is often possible to expect a set of intensity values of the reconstructed object with relatively high accuracy. The image reconstruction cost function is modified to include the l 1 norm distance to the a priori known information. The proposed method has the potential to regularize the solution to reduce artifacts without missing lesions that cannot be expected from the a priori information. Numerical studies showed a significant improvement in image quality and lesion detectability under the condition of highly undersampled projection data. (author)

  5. FEASIBILITY COMPARISON OF AIRBORNE LASER SCANNING DATA AND 3D-POINT CLOUDS FORMED FROM UNMANNED AERIAL VEHICLE (UAV-BASED IMAGERY USED FOR 3D PROJECTING

    Directory of Open Access Journals (Sweden)

    I. I. Rilskiy

    2017-01-01

    Full Text Available New, innovative methods of aerial surveys have changed the approaches to information provision of projecting dramatically for the last 15 years. Nowadays there are at least two methods that claim to be the most efficient way for collecting geospatial data intended for projecting – the airborne laser scanning (LIDAR data and photogrammetrically processed unmanned aerial vehicle (UAV-based aerial imagery, forming 3D point clouds. But these materials are not identical to each other neither in precision, nor in completeness.Airborne laser scanning (LIDAR is normally being performed using manned aircrafts. LIDAR data are very precise, they allow us to achieve data about relief even overgrown with vegetation, or to collect laser reflections from wires, metal constructions and poles. UAV surveys are normally being performed using frame digital cameras (lightweight, full-frame, or mid-size. These cameras form images that are being processed using 3D photogrammetric software in automatic mode that allows one to generate 3D point cloud, which is used for building digital elevation models, surfaces, orthomosaics, etc.All these materials are traditionally being used for making maps and GIS data. LIDAR data have been popular in design work. Also there have been some attempts to use for the same purpose 3D-point clouds, formed by photogrammetric software from images acquired from UAVs.After comparison of the datasets from these two different types of surveying (surveys were made simultaneously on the same territory, it became possible to define some specific, typical for LIDAR or imagery-based 3D data. It can be mentioned that imagery-based 3D data (3D point clouds, formed in automatic mode using photogrammetry, are much worse than LIDAR data – both in terms of precision and completeness.The article highlights these differences and makes attempts at explaining the origin of these differences. 

  6. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  7. The research and development of module 3D designing system for nuclear power project based on the PDMS

    International Nuclear Information System (INIS)

    Lu Qinwu; Li Yi; Wu Xiangyong

    2012-01-01

    In order to meet the demand of implementing Modularization design in CPR1000 nuclear power projects, this study aims to develop, relying on CPR1000 nuclear power project, the self-reliant module 3D design system based on the PDMS. so as to offer a convenient and effective module 3D design tool for the designers. Satisfactory results have been achieved through the test and application of two design projects. The research and application have entered the domestic advanced level. (authors)

  8. High-Quality 3d Models and Their Use in a Cultural Heritage Conservation Project

    Science.gov (United States)

    Tucci, G.; Bonora, V.; Conti, A.; Fiorini, L.

    2017-08-01

    Cultural heritage digitization and 3D modelling processes are mainly based on laser scanning and digital photogrammetry techniques to produce complete, detailed and photorealistic three-dimensional surveys: geometric as well as chromatic aspects, in turn testimony of materials, work techniques, state of preservation, etc., are documented using digitization processes. The paper explores the topic of 3D documentation for conservation purposes; it analyses how geomatics contributes in different steps of a restoration process and it presents an overview of different uses of 3D models for the conservation and enhancement of the cultural heritage. The paper reports on the project to digitize the earthenware frieze of the Ospedale del Ceppo in Pistoia (Italy) for 3D documentation, restoration work support, and digital and physical reconstruction and integration purposes. The intent to design an exhibition area suggests new ways to take advantage of 3D data originally acquired for documentation and scientific purposes.

  9. A Dynamic Multi-Projection-Contour Approximating Framework for the 3D Reconstruction of Buildings by Super-Generalized Optical Stereo-Pairs.

    Science.gov (United States)

    Yan, Yiming; Su, Nan; Zhao, Chunhui; Wang, Liguo

    2017-09-19

    In this paper, a novel framework of the 3D reconstruction of buildings is proposed, focusing on remote sensing super-generalized stereo-pairs (SGSPs). As we all know, 3D reconstruction cannot be well performed using nonstandard stereo pairs, since reliable stereo matching could not be achieved when the image-pairs are collected at a great difference of views, and we always failed to obtain dense 3D points for regions of buildings, and cannot do further 3D shape reconstruction. We defined SGSPs as two or more optical images collected in less constrained views but covering the same buildings. It is even more difficult to reconstruct the 3D shape of a building by SGSPs using traditional frameworks. As a result, a dynamic multi-projection-contour approximating (DMPCA) framework was introduced for SGSP-based 3D reconstruction. The key idea is that we do an optimization to find a group of parameters of a simulated 3D model and use a binary feature-image that minimizes the total differences between projection-contours of the building in the SGSPs and that in the simulated 3D model. Then, the simulated 3D model, defined by the group of parameters, could approximate the actual 3D shape of the building. Certain parameterized 3D basic-unit-models of typical buildings were designed, and a simulated projection system was established to obtain a simulated projection-contour in different views. Moreover, the artificial bee colony algorithm was employed to solve the optimization. With SGSPs collected by the satellite and our unmanned aerial vehicle, the DMPCA framework was verified by a group of experiments, which demonstrated the reliability and advantages of this work.

  10. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  11. DLP-based 3D metrology by structured light or projected fringe technology for life sciences and industrial metrology

    Science.gov (United States)

    Frankowski, G.; Hainich, R.

    2009-02-01

    Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.

  12. EarthServer - an FP7 project to enable the web delivery and analysis of 3D/4D models

    Science.gov (United States)

    Laxton, John; Sen, Marcus; Passmore, James

    2013-04-01

    EarthServer aims at open access and ad-hoc analytics on big Earth Science data, based on the OGC geoservice standards Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS). The WCS model defines "coverages" as a unifying paradigm for multi-dimensional raster data, point clouds, meshes, etc., thereby addressing a wide range of Earth Science data including 3D/4D models. WCPS allows declarative SQL-style queries on coverages. The project is developing a pilot implementing these standards, and will also investigate the use of GeoSciML to describe coverages. Integration of WCPS with XQuery will in turn allow coverages to be queried in combination with their metadata and GeoSciML description. The unified service will support navigation, extraction, aggregation, and ad-hoc analysis on coverage data from SQL. Clients will range from mobile devices to high-end immersive virtual reality, and will enable 3D model visualisation using web browser technology coupled with developing web standards. EarthServer is establishing open-source client and server technology intended to be scalable to Petabyte/Exabyte volumes, based on distributed processing, supercomputing, and cloud virtualization. Implementation will be based on the existing rasdaman server technology developed. Services using rasdaman technology are being installed serving the atmospheric, oceanographic, geological, cryospheric, planetary and general earth observation communities. The geology service (http://earthserver.bgs.ac.uk/) is being provided by BGS and at present includes satellite imagery, superficial thickness data, onshore DTMs and 3D models for the Glasgow area. It is intended to extend the data sets available to include 3D voxel models. Use of the WCPS standard allows queries to be constructed against single or multiple coverages. For example on a single coverage data for a particular area can be selected or data with a particular range of pixel values. Queries on multiple surfaces can be

  13. Improving temporal resolution in fMRI using a 3D spiral acquisition and low rank plus sparse (L+S) reconstruction.

    Science.gov (United States)

    Petrov, Andrii Y; Herbst, Michael; Andrew Stenger, V

    2017-08-15

    Rapid whole-brain dynamic Magnetic Resonance Imaging (MRI) is of particular interest in Blood Oxygen Level Dependent (BOLD) functional MRI (fMRI). Faster acquisitions with higher temporal sampling of the BOLD time-course provide several advantages including increased sensitivity in detecting functional activation, the possibility of filtering out physiological noise for improving temporal SNR, and freezing out head motion. Generally, faster acquisitions require undersampling of the data which results in aliasing artifacts in the object domain. A recently developed low-rank (L) plus sparse (S) matrix decomposition model (L+S) is one of the methods that has been introduced to reconstruct images from undersampled dynamic MRI data. The L+S approach assumes that the dynamic MRI data, represented as a space-time matrix M, is a linear superposition of L and S components, where L represents highly spatially and temporally correlated elements, such as the image background, while S captures dynamic information that is sparse in an appropriate transform domain. This suggests that L+S might be suited for undersampled task or slow event-related fMRI acquisitions because the periodic nature of the BOLD signal is sparse in the temporal Fourier transform domain and slowly varying low-rank brain background signals, such as physiological noise and drift, will be predominantly low-rank. In this work, as a proof of concept, we exploit the L+S method for accelerating block-design fMRI using a 3D stack of spirals (SoS) acquisition where undersampling is performed in the k z -t domain. We examined the feasibility of the L+S method to accurately separate temporally correlated brain background information in the L component while capturing periodic BOLD signals in the S component. We present results acquired in control human volunteers at 3T for both retrospective and prospectively acquired fMRI data for a visual activation block-design task. We show that a SoS fMRI acquisition with an

  14. A regularized relaxed ordered subset list-mode reconstruction algorithm and its preliminary application to undersampling PET imaging

    International Nuclear Information System (INIS)

    Cao, Xiaoqing; Xie, Qingguo; Xiao, Peng

    2015-01-01

    List mode format is commonly used in modern positron emission tomography (PET) for image reconstruction due to certain special advantages. In this work, we proposed a list mode based regularized relaxed ordered subset (LMROS) algorithm for static PET imaging. LMROS is able to work with regularization terms which can be formulated as twice differentiable convex functions. Such a versatility would make LMROS a convenient and general framework for fulfilling different regularized list mode reconstruction methods. LMROS was applied to two simulated undersampling PET imaging scenarios to verify its effectiveness. Convex quadratic function, total variation constraint, non-local means and dictionary learning based regularization methods were successfully realized for different cases. The results showed that the LMROS algorithm was effective and some regularization methods greatly reduced the distortions and artifacts caused by undersampling. (paper)

  15. Supervision and technical coordination of the German activities in the 2D/3D-project

    International Nuclear Information System (INIS)

    Mayinger, F.

    1988-01-01

    The German Federal Minister for Research and Technology, the Japanese Atomic Energy Bureau, represented by the Japan Atomic Energy Research Institute (JAERI) and the United States Nuclear Regulatory Commission (USNRC) made a contract to cooperate in the field of nuclear safety research with the aim to improve and to guarantee the safety of water-cooled nuclear reactors on an international basis by joint research activities in the 2D/3D-project. The necessity for these research activities results from gaps in the status of knowledge for a best-estimate analysis in emergency core cooling, from the legally established duty to minimize the radioactive emission to the environment as consequence of an incident, and from the effort to optimize the safeguard systems of nuclear reactors continuously and steadily. The activities which were performed in the frame of this project concentrated on the coordination of the experimental and theoretical work, as well as on the technical supervision with respect to an efficient attainment of the internationally aspired research aim and to an optimal adjustment with respect to the emergency core cooling problems of pressurized water reactors. (orig.) [de

  16. A Non-Uniformly Under-Sampled Blade Tip-Timing Signal Reconstruction Method for Blade Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes.

  17. CLIC project R&D studies: the magnet system for the 3 TEV

    CERN Document Server

    Modena, Michele

    2017-01-01

    This Note presents the R&D activities done and coordinated by TE-MSC Group on the magnetic system for the CLIC (Compact Linear Collider) project. The main aspects investigated are: the magnetic system definition, basic design for all magnets (i.e. a CLIC Magnet Catalogue), powering and cost evaluation, advanced design and prototyping for the most critical magnet variants. The CLIC layout here considered is the one for the highest collision energy of 3 TeV. This layout was the one studied in detail as baseline for the CLIC Conceptual Design Report that was released in 2012. This Note summarize the activities of about 6 years (2010-2016) done with the contribution of CERN staff (part-time), the contribution of some CERN Project Associates sponsored by the CLIC Project and in collaboration with STCF Daresbury Laboratory (UK).

  18. Hyperbolic projections of siemens 3d-mlc leaf paths

    International Nuclear Information System (INIS)

    Menzies, N.

    2004-01-01

    Full text: The Siemens Primus linear accelerator has the option of being fitted with a multi-leaf collimator (3D-MLC) that is marketed as having 'double focus', to achieve a constant dose penumbra for all leaf settings. This is achieved by moving the leaves through arcs (similar to some conventional collimator jaws), as well as shaping the leaf side-faces as divergent planes from the x-ray source. One consequence of the mechanical design of the 3D-MLC is that as individual leaves are moved, their projections from the light / x-ray source to the treatment plane follow paths that are hyperbolic, as shown in the figure below. (The eccentricity of the hyperbola is a function of leaf number / distance from centre.) The trajectories of the MLC leaves were modelled (in a spreadsheet) using geometrical projections of the MLC leaves to the treatment plane, with construction details provided in Siemens documentation. The results were checked against the image of the leaf in the linac light field. This problem belongs to the class of conic sections in mathematics, where the intersection of a plane with both nappes of a double right circular cone results in a hyperbola. The good agreement between the model and the light field image provided confirmation of the MLC construction details. AS/NZS 4434.1:1996 (reproduced from IEC 976:1989) provides specifications for maximum deviation from orthogonality of adjacent edges, which can be interpreted for MLC collimators to parallelism of the direction of leaf travel and the adjacent collimator edge (e.g. Elekta ATS). However for the Siemens 'double focused' MLC, it is demonstrated that the geometrical construction of the MLC militates against the leaf image being used for this kind of test. It is also demonstrated that at last one commercial treatment planning system models the Siemens leaf trajectories linearly. The clinical significance of the error in this model is shown to be negligible. Copyright (2004) Australasian College of

  19. Full-parallax 3D display from stereo-hybrid 3D camera system

    Science.gov (United States)

    Hong, Seokmin; Ansari, Amir; Saavedra, Genaro; Martinez-Corral, Manuel

    2018-04-01

    In this paper, we propose an innovative approach for the production of the microimages ready to display onto an integral-imaging monitor. Our main contribution is using a stereo-hybrid 3D camera system, which is used for picking up a 3D data pair and composing a denser point cloud. However, there is an intrinsic difficulty in the fact that hybrid sensors have dissimilarities and therefore should be equalized. Handled data facilitate to generating an integral image after projecting computationally the information through a virtual pinhole array. We illustrate this procedure with some imaging experiments that provide microimages with enhanced quality. After projection of such microimages onto the integral-imaging monitor, 3D images are produced with great parallax and viewing angle.

  20. 3D-ICONS Ireland – fulfilling the potential of a rich 3D resource

    Directory of Open Access Journals (Sweden)

    Anthony Corns

    2017-03-01

    Full Text Available As a partner in the EU co-funded 3D-ICONS project, the Discovery Programme undertook the 3D documentation of some of the most iconic cultural heritage sites in Ireland. This pan-European project aimed to establish a complete pipeline for the production of 3D replicas of archaeological monuments and historic buildings, and to publish the content to Europeana for public access. The list of Irish icons range from wider cultural landscapes to smaller ornately carved stones and includes a wide range of chronological periods: from Neolithic rock art from 2500 BC to Derry's 17th-century fortifications. The primary digitisation methods include airborne laser scanning (ALS, phase-based terrestrial laser scanning (Faro Focus 3D and close range structured light scanning (Artec EVA. These are now mainstream approaches for surveying historic landscapes, structures and objects, generating precise, high-resolution point cloud data, primarily for viewing and interaction in proprietary software applications. The challenge was to convert these complex high-volume datasets into textured 3D models, retaining the geometric integrity of the original data. The article highlights the development of a pipeline to produce a lightweight 3D model that enables the public to interact with a photorealistic model based upon accurate survey and texture data. 3D-ICONS ended in January 2015, but a new website 3dicons.ie was launched to offer continued access to the Irish 3D models and associated content and media generated during the project. The article will consider the impact of this online content, particularly how it has been used as a teaching aid in secondary schools and how this may be extended in the future. It will also demonstrate how content from the project has been remodelled to develop an interactive and immersive experience for the great mound at Knowth, a development in partnership with the operators of the Brú na Bóinne visitor centre.

  1. Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals.

    Science.gov (United States)

    Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei

    2015-10-09

    The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments.

  2. Anti-spoof touchless 3D fingerprint recognition system using single shot fringe projection and biospeckle analysis

    Science.gov (United States)

    Chatterjee, Amit; Bhatia, Vimal; Prakash, Shashi

    2017-08-01

    Fingerprint is a unique, un-alterable and easily collected biometric of a human being. Although it is a 3D biological characteristic, traditional methods are designed to provide only a 2D image. This touch based mapping of 3D shape to 2D image losses information and leads to nonlinear distortions. Moreover, as only topographic details are captured, conventional systems are potentially vulnerable to spoofing materials (e.g. artificial fingers, dead fingers, false prints, etc.). In this work, we demonstrate an anti-spoof touchless 3D fingerprint detection system using a combination of single shot fringe projection and biospeckle analysis. For fingerprint detection using fringe projection, light from a low power LED source illuminates a finger through a sinusoidal grating. The fringe pattern modulated because of features on the fingertip is captured using a CCD camera. Fourier transform method based frequency filtering is used for the reconstruction of 3D fingerprint from the captured fringe pattern. In the next step, for spoof detection using biospeckle analysis a visuo-numeric algorithm based on modified structural function and non-normalized histogram is proposed. High activity biospeckle patterns are generated because of interaction of collimated laser light with internal fluid flow of the real finger sample. This activity reduces abruptly in case of layered fake prints, and is almost absent in dead or fake fingers. Furthermore, the proposed setup is fast, low-cost, involves non-mechanical scanning and is highly stable.

  3. Remote Collaborative 3D Printing - Process Investigation

    Science.gov (United States)

    2016-04-01

    COLLABORATIVE 3D PRINTING - PROCESS INVESTIGATION Cody M. Reese, PE CAD MODEL PRINT MODEL PRINT PREVIEW PRINTED PART AERIAL VIRTUAL This...REMOTE COLLABORATIVE 3D PRINTING - PROCESS INVESTIGATION 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Cody M. Reese...release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Remote Collaborative 3D Printing project is a collaboration between

  4. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    Science.gov (United States)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  5. Development of generic key performance indicators for PMBOK® using a 3D project integration model

    Directory of Open Access Journals (Sweden)

    Craig Langston

    2013-12-01

    Full Text Available Since Martin Barnes’ so-called ‘iron triangle’ circa 1969, much debate has occurred over how best to describe the fundamental constraints that underpin project success. This paper develops a 3D project integration model for PMBOK® comprising core constraints of scope, cost, time and risk as a basis to propose six generic key performance indicators (KPIs that articulate successful project delivery. These KPIs are defined as value, efficiency, speed, innovation, complexity and impact and can each be measured objectively as ratios of the core constraints. An overall KPI (denoted as s3/ctr is also derived. The aim in this paper is to set out the case for such a model and to demonstrate how it can be employed to assess the performance of project teams in delivering successful outcomes at various stages in the project life cycle. As part of the model’s development, a new PMBOK® knowledge area concerning environmental management is advanced.

  6. Why do I hear but not understand? Stochastic undersampling as a model of degraded neural encoding of speech

    Directory of Open Access Journals (Sweden)

    Enrique A Lopez-Poveda

    2014-10-01

    Full Text Available Hearing impairment is a serious disease with increasing prevalence. It is defined based on increased audiometric thresholds but increased thresholds are only partly responsible for the greater difficulty understanding speech in noisy environments experienced by some older listeners or by hearing-impaired listeners. Identifying the additional factors and mechanisms that impair intelligibility is fundamental to understanding hearing impairment but these factors remain uncertain. Traditionally, these additional factors have been sought in the way the speech spectrum is encoded in the pattern of impaired mechanical cochlear responses. Recent studies, however, are steering the focus toward impaired encoding of the speech waveform in the auditory nerve. In our recent work, we gave evidence that a significant factor might be the loss of afferent auditory nerve fibers, a pathology that comes with aging or noise overexposure. Our approach was based on a signal-processing analogy whereby the auditory nerve may be regarded as a stochastic sampler of the sound waveform and deafferentation may be described in terms of waveform undersampling. We showed that stochastic undersampling simultaneously degrades the encoding of soft and rapid waveform features, and that this degrades speech intelligibility in noise more than in quiet without significant increases in audiometric thresholds. Here, we review our recent work in a broader context and argue that the stochastic undersampling analogy may be extended to study the perceptual consequences of various different hearing pathologies and their treatment.

  7. 3D-Pathology: a real-time system for quantitative diagnostic pathology and visualisation in 3D

    Science.gov (United States)

    Gottrup, Christian; Beckett, Mark G.; Hager, Henrik; Locht, Peter

    2005-02-01

    This paper presents the results of the 3D-Pathology project conducted under the European EC Framework 5. The aim of the project was, through the application of 3D image reconstruction and visualization techniques, to improve the diagnostic and prognostic capabilities of medical personnel when analyzing pathological specimens using transmitted light microscopy. A fully automated, computer-controlled microscope system has been developed to capture 3D images of specimen content. 3D image reconstruction algorithms have been implemented and applied to the acquired volume data in order to facilitate the subsequent 3D visualization of the specimen. Three potential application fields, immunohistology, cromogenic in situ hybridization (CISH) and cytology, have been tested using the prototype system. For both immunohistology and CISH, use of the system furnished significant additional information to the pathologist.

  8. 3d-modelling workflows for trans-nationally shared geological models - first approaches from the project GeoMol

    Science.gov (United States)

    Rupf, Isabel

    2013-04-01

    To meet the EU's ambitious targets for carbon emission reduction, renewable energy production has to be strongly upgraded and made more efficient for grid energy storage. Alpine Foreland Basins feature a unique geological inventory which can contribute substantially to tackle these challenges. They offer a geothermal potential and storage capacity for compressed air, as well as space for underground storage of CO2. Exploiting these natural subsurface resources will strongly compete with existing oil and gas claims and groundwater issues. The project GeoMol will provide consistent 3-dimensional subsurface information about the Alpine Foreland Basins based on a holistic and transnational approach. Core of the project GeoMol is a geological framework model for the entire Northern Molasse Basin, complemented by five detailed models in pilot areas, also in the Po Basin, which are dedicated to specific questions of subsurface use. The models will consist of up to 13 litho-stratigraphic horizons ranging from the Cenozoic basin fill down to Mesozoic and late Paleozoic sedimentary rocks and the crystalline basement. More than 5000 wells and 28 000 km seismic lines serve as input data sets for the geological subsurface model. The data have multiple sources and various acquisition dates, and their interpretations have gone through several paradigm changes. Therefore, it is necessary to standardize the data with regards to technical parameters and content prior to further analysis (cf. Capar et al. 2013, EGU2013-5349). Each partner will build its own geological subsurface model with different software solutions for seismic interpretation and 3d-modelling. Therefore, 3d-modelling follows different software- and partner-specific workflows. One of the main challenges of the project is to ensure a seamlessly fitting framework model. It is necessary to define several milestones for cross border checks during the whole modelling process. Hence, the main input data set of the

  9. Advantages of using 3D design tools in the nuclear power plants projects

    International Nuclear Information System (INIS)

    Roldan, P.; Melendro, J.; Gomez, A.; Hermana, I.

    2011-01-01

    It there is anything that distinguished Iberdrola Ingeneria y Construccion, as part of the Iberdrola Group, it is its firm commitment to innovation and continuous improvement. This is the philosophy that led the company to its interest in three-dimensional design tools back when they were in an early stage of development : very little international implementation, lack of integration with other applications, absence of previous experiences to understand the best possible configuration for each case, etc. Nevertheless, the company was able to see the tremendous advantage of having a construction program in the early months of a project- a detailed program that could predict, and therefore avoid, the problems that, if not anticipated, would arise in the construction phase when they result in higher costs, longer timeframes and a multitude of complications. This is precisely what 3D design tools offer prediction and this has been proven in the latest combined cycle projects executed with these tools. A project executed without errors not only decreases cost and time overruns, but also necessarily increases the quality of the end result. Efficiency and quality: these are both basic goals of Iberdrola Ingenieria y Construccion. The knowledge of and skill in the use of these tools have grown at the same time that their development has reached increasingly higher levels. As a result, Iberdrola Ingenieria y Conctruccion now has extensive experience in the use of 3D design tools and is prepared for the future challenges posed by these tools, the capabilities of which have attained such heights that it is possible to take on one of the most technically challenging projects that exists a nuclear power plant. And we are ready. (Author)

  10. Real-time microscopic 3D shape measurement based on optimized pulse-width-modulation binary fringe projection

    Science.gov (United States)

    Hu, Yan; Chen, Qian; Feng, Shijie; Tao, Tianyang; Li, Hui; Zuo, Chao

    2017-07-01

    In recent years, tremendous progress has been made in 3D measurement techniques, contributing to the realization of faster and more accurate 3D measurement. As a representative of these techniques, fringe projection profilometry (FPP) has become a commonly used method for real-time 3D measurement, such as real-time quality control and online inspection. To date, most related research has been concerned with macroscopic 3D measurement, but microscopic 3D measurement, especially real-time microscopic 3D measurement, is rarely reported. However, microscopic 3D measurement plays an important role in 3D metrology and is indispensable in some applications in measuring micro scale objects like the accurate metrology of MEMS components of the final devices to ensure their proper performance. In this paper, we proposed a method which effectively combines optimized binary structured patterns with a number-theoretical phase unwrapping algorithm to realize real-time microscopic 3D measurement. A slight defocusing of our optimized binary patterns can considerably alleviate the measurement error based on four-step phase-shifting FPP, providing the binary patterns with a comparable performance to ideal sinusoidal patterns. The static measurement accuracy can reach 8 μm, and the experimental results of a vibrating earphone diaphragm reveal that our system can successfully realize real-time 3D measurement of 120 frames per second (FPS) with a measurement range of 8~\\text{mm}× 6~\\text{mm} in lateral and 8 mm in depth.

  11. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  12. Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data

    International Nuclear Information System (INIS)

    Huang, Jinhong; Guo, Li; Feng, Qianjin; Chen, Wufan; Feng, Yanqiu

    2015-01-01

    Image reconstruction from undersampled k-space data accelerates magnetic resonance imaging (MRI) by exploiting image sparseness in certain transform domains. Employing image patch representation over a learned dictionary has the advantage of being adaptive to local image structures and thus can better sparsify images than using fixed transforms (e.g. wavelets and total variations). Dictionary learning methods have recently been introduced to MRI reconstruction, and these methods demonstrate significantly reduced reconstruction errors compared to sparse MRI reconstruction using fixed transforms. However, the synthesis sparse coding problem in dictionary learning is NP-hard and computationally expensive. In this paper, we present a novel sparsity-promoting orthogonal dictionary updating method for efficient image reconstruction from highly undersampled MRI data. The orthogonality imposed on the learned dictionary enables the minimization problem in the reconstruction to be solved by an efficient optimization algorithm which alternately updates representation coefficients, orthogonal dictionary, and missing k-space data. Moreover, both sparsity level and sparse representation contribution using updated dictionaries gradually increase during iterations to recover more details, assuming the progressively improved quality of the dictionary. Simulation and real data experimental results both demonstrate that the proposed method is approximately 10 to 100 times faster than the K-SVD-based dictionary learning MRI method and simultaneously improves reconstruction accuracy. (paper)

  13. Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data.

    Science.gov (United States)

    Huang, Jinhong; Guo, Li; Feng, Qianjin; Chen, Wufan; Feng, Yanqiu

    2015-07-21

    Image reconstruction from undersampled k-space data accelerates magnetic resonance imaging (MRI) by exploiting image sparseness in certain transform domains. Employing image patch representation over a learned dictionary has the advantage of being adaptive to local image structures and thus can better sparsify images than using fixed transforms (e.g. wavelets and total variations). Dictionary learning methods have recently been introduced to MRI reconstruction, and these methods demonstrate significantly reduced reconstruction errors compared to sparse MRI reconstruction using fixed transforms. However, the synthesis sparse coding problem in dictionary learning is NP-hard and computationally expensive. In this paper, we present a novel sparsity-promoting orthogonal dictionary updating method for efficient image reconstruction from highly undersampled MRI data. The orthogonality imposed on the learned dictionary enables the minimization problem in the reconstruction to be solved by an efficient optimization algorithm which alternately updates representation coefficients, orthogonal dictionary, and missing k-space data. Moreover, both sparsity level and sparse representation contribution using updated dictionaries gradually increase during iterations to recover more details, assuming the progressively improved quality of the dictionary. Simulation and real data experimental results both demonstrate that the proposed method is approximately 10 to 100 times faster than the K-SVD-based dictionary learning MRI method and simultaneously improves reconstruction accuracy.

  14. 3D visualization of the initial Yersinia ruckeri infection route in rainbow trout (Oncorhynchus mykiss) by optical projection tomography

    DEFF Research Database (Denmark)

    Otani, Maki; Villumsen, Kasper Rømer; Kragelund Strøm, Helene

    2014-01-01

    , optical projection tomography (OPT), a novel three-dimensional (3D) bio-imaging technique, was applied. OPT not only enables the visualization of Y. ruckeri on mucosal surfaces but also the 3D spatial distribution in whole organs, without sectioning. Rainbow trout were infected by bath challenge exposure...

  15. 3D phase-shifting fringe projection system on the basis of a tailored free-form mirror.

    Science.gov (United States)

    Zwick, Susanne; Heist, Stefan; Steinkopf, Ralf; Huber, Sandra; Krause, Sylvio; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Notni, Gunther

    2013-05-10

    Phase-shifting fringe projection is an effective method to perform 3D shape measurements. Conventionally, fringe projection systems utilize a digital projector that images fringes into the measurement plane. The performance of such systems is limited to the visible spectral range, as most projectors experience technical limitations in UV or IR spectral ranges. However, for certain applications these spectral ranges are of special interest. We present a wideband fringe projector that has been developed on the basis of a picture generating beamshaping mirror. This mirror generates a sinusoidal fringe pattern in the measurement plane without any additional optical elements. Phase shifting is realized without any mechanical movement by a multichip LED. As the system is based on a single mirror, it is wavelength-independent in a wide spectral range and therefore applicable in UV and IR spectral ranges. We present the design and a realized setup of this fringe projection system and the characterization of the generated intensity distribution. Experimental results of 3D shape measurements are presented.

  16. Development of ball surface acoustic wave trace moisture analyzer using burst waveform undersampling circuit

    Science.gov (United States)

    Tsuji, Toshihiro; Oizumi, Toru; Fukushi, Hideyuki; Takeda, Nobuo; Akao, Shingo; Tsukahara, Yusuke; Yamanaka, Kazushi

    2018-05-01

    The measurement and control of trace moisture, where the water concentration is lower than 1 ppmv [-76.2 °C for the frost point (°CFP)], are essential for improving the yield rate of semiconductor devices and for ensuring their reliability. A ball surface acoustic wave (SAW) sensor with a sol-gel silica coating exhibited useful characteristics for a trace moisture analyzer (TMA) when the temperature drift of the delay time output was precisely compensated using two-frequency measurement (TFM), where the temperature-compensated relative delay time change (RDTC) was obtained by subtracting the RDTC at the fundamental frequency from that at the third harmonic frequency on an identical propagation path. However, the cost of the measurement circuit was a problem. In this study, a burst waveform undersampling (BUS) circuit based on the theory of undersampling measurement was developed as a practical means. The BUS circuit was useful for precise temperature compensation of the RDTC, and the ball SAW TMA was prototyped by calibrating the RDTC using a TMA based on cavity ring-down spectroscopy (CRDS), which is the most reliable method for trace moisture measurement. The ball SAW TMA outputted a similar concentration to that obtained by the CRDS TMA, and its response time at a set concentration in N2 with a flow rate of 1 l/min was about half that of the CRDS TMA, suggesting that moisture of -80 °CFP was measured within only 1 min. The detection limit at a signal-to-noise ratio of 3 was estimated to be 0.05 ppbv, comparable with that of the CRDS TMA. From these results, it was demonstrated that a practical ball SAW TMA can be realized using the developed BUS circuit.

  17. The 3D LAOKOON--Visual and Verbal in 3D Online Learning Environments.

    Science.gov (United States)

    Liestol, Gunnar

    This paper reports on a project where three-dimensional (3D) online gaming environments were exploited for the purpose of academic communication and learning. 3D gaming environments are media and meaning rich and can provide inexpensive solutions for educational purposes. The experiment with teaching and discussions in this setting, however,…

  18. The Avignon Bridge: a 3d Reconstruction Project Integrating Archaeological, Historical and Gemorphological Issues

    Science.gov (United States)

    Berthelot, M.; Nony, N.; Gugi, L.; Bishop, A.; De Luca, L.

    2015-02-01

    The history and identity of the Avignon's bridge is inseparable from that of the Rhône river. Therefore, in order to share the history and memory of the Rhône, it is essential to get to know this bridge and especially to identify and make visible the traces of its past, its construction, its interaction with the river dynamics, which greatly influenced his life. These are the objectives of the PAVAGE project that focuses on digitally surveying, modelling and re-visiting a heritage site of primary importance with the aim of virtually restoring the link between the two sides which, after the disappearance of the Roman bridge of Arles, constituted for a long time the only connection between Lyon or Vienna and the sea. Therefore, this project has an important geo-historical dimension for which geo-morphological and paleoenvironmental studies were implemented in connection with the latest digital simulation methods exploiting geographic information systems. By integrating knowledge and reflections of archaeologists, historians, geomorphologists, environmentalists, architects, engineers and computer scientists, the result of this project (which involved 5 laboratories during 4 years) is a 3D digital model covering an extension of 50 km2 achieved by integrating satellite imagery, UAV-based acquisitions, terrestrial laser scanning and photogrammetry, etc. Beyond the actions of scientific valorisation concerning the historical and geomorphological dimensions of the project, the results of this work of this interdisciplinary investigation and interpretation of this site are today integrated within a location-based augmented reality application allowing tourists to exploring the virtual reconstruction of the bridge and its environment through tablets inside the portion of territory covered by this project (between Avignon and Villeneuve-lez-Avignon). This paper presents the main aspects of the 3D virtual reconstruction approach.

  19. Impact of 2D/3D-project on LOCA-licensing analysis and reactor safety of PWRs

    International Nuclear Information System (INIS)

    Winkler, F.; Krebs, W.D.

    1989-01-01

    In the past LOCA-licensing analysis has included large conservatisms to compensate for the lack of detailed two phase flow and full scale experimental data. The 2D/3D-project was established to improve the data base in order to minimize the conservatisms required. The significant results and findings of the full scale Upper Plenum Test Facility (UPTF) and from the electrically heated Slab Core Test Facility (SCTF) were particularly useful for understanding the multidimensional phenomena in the primary system and in the core of a PWR. UPTF results were used to verify the TRAC-PF1 analysis of a PWR with combined ECC-Injection during the reflood phase of a large break-LOCA. Comparison of these results with results from classic licensing calculations quantifies the large safety margin in earlier licensing procedures and in reactor systems. (orig.)

  20. “TORINO 1911” PROJECT: A CONTRIBUTION OF A SLAM-BASED SURVEY TO EXTENSIVE 3D HERITAGE MODELING

    Directory of Open Access Journals (Sweden)

    F. Chiabrando

    2018-05-01

    Full Text Available In the framework of the digital documentation of complex environments the advanced Geomatics researches offers integrated solution and multi-sensor strategies for the 3D accurate reconstruction of stratified structures and articulated volumes in the heritage domain. The use of handheld devices for rapid mapping, both image- and range-based, can help the production of suitable easy-to use and easy-navigable 3D model for documentation projects. These types of reality-based modelling could support, with their tailored integrated geometric and radiometric aspects, valorisation and communication projects including virtual reconstructions, interactive navigation settings, immersive reality for dissemination purposes and evoking past places and atmospheres. The aim of this research is localized within the “Torino 1911” project, led by the University of San Diego (California in cooperation with the PoliTo. The entire project is conceived for multi-scale reconstruction of the real and no longer existing structures in the whole park space of more than 400,000 m2, for a virtual and immersive visualization of the Turin 1911 International “Fabulous Exposition” event, settled in the Valentino Park. Particularly, in the presented research, a 3D metric documentation workflow is proposed and validated in order to integrate the potentialities of LiDAR mapping by handheld SLAM-based device, the ZEB REVO Real Time instrument by GeoSLAM (2017 release, instead of TLS consolidated systems. Starting from these kind of models, the crucial aspects of the trajectories performances in the 3D reconstruction and the radiometric content from imaging approaches are considered, specifically by means of compared use of common DSLR cameras and portable sensors.

  1. A 3D Kinematic Measurement of Knee Prosthesis Using X-ray Projection Images

    Science.gov (United States)

    Hirokawa, Shunji; Ariyoshi, Shogo; Hossain, Mohammad Abrar

    We have developed a technique for estimating 3D motion of knee prosthesis from its 2D perspective projections. As Fourier descriptors were used for compact representation of library templates and contours extracted from the prosthetic X-ray images, the entire silhouette contour of each prosthetic component was required. This caused such a problem as our algorithm did not function when the silhouettes of tibio and femoral components overlapped with each other. Here we planned a novel method to overcome it; which was processed in two steps. First, the missing part of silhouette contour due to overlap was interpolated using a free-formed curvature such as Bezier. Then the first step position/orientation estimation was performed. In the next step, a clipping window was set in the projective coordinate so as to separate the overlapped silhouette drawn using the first step estimates. After that the localized library whose templates were clipped in shape was prepared and the second step estimation was performed. Computer model simulation demonstrated sufficient accuracies of position/orientation estimation even for overlapped silhouettes; equivalent to those without overlap.

  2. 3D palmprint and hand imaging system based on full-field composite color sinusoidal fringe projection technique.

    Science.gov (United States)

    Zhang, Zonghua; Huang, Shujun; Xu, Yongjia; Chen, Chao; Zhao, Yan; Gao, Nan; Xiao, Yanjun

    2013-09-01

    Palmprint and hand shape, as two kinds of important biometric characteristics, have been widely studied and applied to human identity recognition. The existing research is based mainly on 2D images, which lose the third-dimensional information. The biological features extracted from 2D images are distorted by pressure and rolling, so the subsequent feature matching and recognition are inaccurate. This paper presents a method to acquire accurate 3D shapes of palmprint and hand by projecting full-field composite color sinusoidal fringe patterns and the corresponding color texture information. A 3D imaging system is designed to capture and process the full-field composite color fringe patterns on hand surface. Composite color fringe patterns having the optimum three fringe numbers are generated by software and projected onto the surface of human hand by a digital light processing projector. From another viewpoint, a color CCD camera captures the deformed fringe patterns and saves them for postprocessing. After compensating for the cross talk and chromatic aberration between color channels, three fringe patterns are extracted from three color channels of a captured composite color image. Wrapped phase information can be calculated from the sinusoidal fringe patterns with high precision. At the same time, the absolute phase of each pixel is determined by the optimum three-fringe selection method. After building up the relationship between absolute phase map and 3D shape data, the 3D palmprint and hand are obtained. Color texture information can be directly captured or demodulated from the captured composite fringe pattern images. Experimental results show that the proposed method and system can yield accurate 3D shape and color texture information of the palmprint and hand shape.

  3. Citygml Modelling for Singapore 3d National Mapping

    Science.gov (United States)

    Soon, K. H.; Khoo, V. H. S.

    2017-10-01

    Since 2014, the Land Survey Division of Singapore Land Authority (SLA) has spearheaded a Whole-of-Government (WOG) 3D mapping project to create and maintain a 3D national map for Singapore. The implementation of the project is divided into two phases. The first phase of the project, which was based on airborne data collection, has produced 3D models for Relief, Building, Vegetation and Waterbody. This part of the work was completed in 2016. To complement the first phase, the second phase used mobile imaging and scanning technique. This phase is targeted to be completed by the mid of 2017 and is creating 3D models for Transportation, CityFurniture, Bridge and Tunnel. The project has extensively adopted the Open Geospatial Consortium (OGC)'s CityGML standard. Out of 10 currently supported thematic modules in CityGML 2.0, the project has implemented 8. The paper describes the adoption of CityGML in the project, and discusses challenges, data validations and management of the models.

  4. 3D ARCHITECTURAL VIDEOMAPPING

    Directory of Open Access Journals (Sweden)

    R. Catanese

    2013-07-01

    Full Text Available 3D architectural mapping is a video projection technique that can be done with a survey of a chosen building in order to realize a perfect correspondence between its shapes and the images in projection. As a performative kind of audiovisual artifact, the real event of the 3D mapping is a combination of a registered video animation file with a real architecture. This new kind of visual art is becoming very popular and its big audience success testifies new expressive chances in the field of urban design. My case study has been experienced in Pisa for the Luminara feast in 2012.

  5. A 3D modeling approach to complex faults with multi-source data

    Science.gov (United States)

    Wu, Qiang; Xu, Hua; Zou, Xukai; Lei, Hongzhuan

    2015-04-01

    Fault modeling is a very important step in making an accurate and reliable 3D geological model. Typical existing methods demand enough fault data to be able to construct complex fault models, however, it is well known that the available fault data are generally sparse and undersampled. In this paper, we propose a workflow of fault modeling, which can integrate multi-source data to construct fault models. For the faults that are not modeled with these data, especially small-scale or approximately parallel with the sections, we propose the fault deduction method to infer the hanging wall and footwall lines after displacement calculation. Moreover, using the fault cutting algorithm can supplement the available fault points on the location where faults cut each other. Increasing fault points in poor sample areas can not only efficiently construct fault models, but also reduce manual intervention. By using a fault-based interpolation and remeshing the horizons, an accurate 3D geological model can be constructed. The method can naturally simulate geological structures no matter whether the available geological data are sufficient or not. A concrete example of using the method in Tangshan, China, shows that the method can be applied to broad and complex geological areas.

  6. How Digital Autoradiography Technique can be useful for D and D projects?

    International Nuclear Information System (INIS)

    Fichet, Pascal; Haudebourg, Raphael

    2016-01-01

    For many stakeholders, it is obvious that radiological characterization is essential for D and D projects and all of them have its own specificities. Different types of techniques have been developed for characterizations not only by destructive methods but also by in situ investigations. Since 2010, the LASE laboratory, in charge of characterizations of different radionuclides that can be found in nuclear wastes, has developed the Digital Autoradiography (DA) technique. Today, DA technique is in routine use commercially for biological researches to obtain images of labelled molecules containing for example H-3, C-14, I-129,... i.e. radionuclides difficult to measure for D and D projects. The needs to investigate these hard to observe radionuclides are one of the R and D subjects for D and D proposed recently and highlighted by OECD. Up to now the R and D projects concerning Digital Autoradiography has been focused on mapping process in buildings under dismantling process and also on sampling procedures being essential before any destructive analysis. New developments are still going on to develop the technique and to modify technologies coming from biological researches. (authors)

  7. Characterizing 3D sensors using the 3D modulation transfer function

    Science.gov (United States)

    Kellner, Timo; Breitbarth, Andreas; Zhang, Chen; Notni, Gunther

    2018-03-01

    The fields of optical 3D measurement system applications are continuously expanding and becoming more and more diverse. To evaluate appropriate systems for various measurement tasks, comparable parameters are necessary, whereas the 3D modulation transfer function (3D-MTF) has been established as a further criterion. Its aim is the determination of the system response between the measurement of a straight, sharp-edged cube and its opposite ideal calculated one. Within the scope of this work simulations and practical investigations regarding the 3D-MTF’s influences and its main issues are specifically investigated. Therefore, different determined edge radii representing the high-frequency spectra lead to various decreasing 3D-MTF characteristics. Furthermore, rising sampling frequencies improve its maximum transfer value to a saturation point in dependence of the radius. To approve these results of previous simulations, three fringe projection scanners were selected to determine the diversity. As the best 3D-MTF characteristic, a saturated transfer value of H_3D( f_N, 3D) = 0.79 has been identified at a sufficient sampling frequency, which is reached at four times the Nyquist limit. This high 3D resolution can mainly be achieved due to an improved camera projector interaction. Additionally, too small sampling ratios lead to uncertainties in the edge function determination, while higher ratios do not show major improvements. In conclusion, the 3D-MTF algorithm has thus been practically verified and its repeatability as well as its robustness have been confirmed.

  8. A method of 2D/3D registration of a statistical mouse atlas with a planar X-ray projection and an optical photo.

    Science.gov (United States)

    Wang, Hongkai; Stout, David B; Chatziioannou, Arion F

    2013-05-01

    The development of sophisticated and high throughput whole body small animal imaging technologies has created a need for improved image analysis and increased automation. The registration of a digital mouse atlas to individual images is a prerequisite for automated organ segmentation and uptake quantification. This paper presents a fully-automatic method for registering a statistical mouse atlas with individual subjects based on an anterior-posterior X-ray projection and a lateral optical photo of the mouse silhouette. The mouse atlas was trained as a statistical shape model based on 83 organ-segmented micro-CT images. For registration, a hierarchical approach is applied which first registers high contrast organs, and then estimates low contrast organs based on the registered high contrast organs. To register the high contrast organs, a 2D-registration-back-projection strategy is used that deforms the 3D atlas based on the 2D registrations of the atlas projections. For validation, this method was evaluated using 55 subjects of preclinical mouse studies. The results showed that this method can compensate for moderate variations of animal postures and organ anatomy. Two different metrics, the Dice coefficient and the average surface distance, were used to assess the registration accuracy of major organs. The Dice coefficients vary from 0.31 ± 0.16 for the spleen to 0.88 ± 0.03 for the whole body, and the average surface distance varies from 0.54 ± 0.06 mm for the lungs to 0.85 ± 0.10mm for the skin. The method was compared with a direct 3D deformation optimization (without 2D-registration-back-projection) and a single-subject atlas registration (instead of using the statistical atlas). The comparison revealed that the 2D-registration-back-projection strategy significantly improved the registration accuracy, and the use of the statistical mouse atlas led to more plausible organ shapes than the single-subject atlas. This method was also tested with shoulder

  9. Hybrid animation integrating 2D and 3D assets

    CERN Document Server

    O'Hailey, Tina

    2010-01-01

    Artist imaginations continue to grow and stretch the boundaries of traditional animation. Successful animators adept and highly skilled in traditional animation mediums are branching out beyond traditional animation workflows and will often use multiple forms of animation in a single project. With the knowledge of 3D and 2D assets and the integration of multiple animation mediums into a single project, animators have a wealth of creative resources available for a project that is not limited to a specific animation medium, software package or workflow processs. Enhance a poignant scene by choos

  10. Computerized diagnostic data analysis and 3-D visualization

    International Nuclear Information System (INIS)

    Schuhmann, D.; Haubner, M.; Krapichler, C.; Englmeier, K.H.; Seemann, M.; Schoepf, U.J.; Gebicke, K.; Reiser, M.

    1998-01-01

    Purpose: To survey methods for 3D data visualization and image analysis which can be used for computer based diagnostics. Material and methods: The methods available are explained in short terms and links to the literature are presented. Methods which allow basic manipulation of 3D data are windowing, rotation and clipping. More complex methods for visualization of 3D data are multiplanar reformation, volume projections (MIP, semi-transparent projections) and surface projections. Methods for image analysis comprise local data transformation (e.g. filtering) and definition and application of complex models (e.g. deformable models). Results: Volume projections produce an impression of the 3D data set without reducing the data amount. This supports the interpretation of the 3D data set and saves time in comparison to any investigation which requires examination of all slice images. More advanced techniques for visualization, e.g. surface projections and hybrid rendering visualize anatomical information to a very detailed extent, but both techniques require the segmentation of the structures of interest. Image analysis methods can be used to extract these structures (e.g. an organ) from the image data. Discussion: At the present time volume projections are robust and fast enough to be used routinely. Surface projections can be used to visualize complex and presegmented anatomical features. (orig.) [de

  11. Low cost 3D-printing used in an undergraduate project: an integrating sphere for measurement of photoluminescence quantum yield

    International Nuclear Information System (INIS)

    Tomes, John J; Finlayson, Chris E

    2016-01-01

    We report upon the exploitation of the latest 3D printing technologies to provide low-cost instrumentation solutions, for use in an undergraduate level final-year project. The project addresses prescient research issues in optoelectronics, which would otherwise be inaccessible to such undergraduate student projects. The experimental use of an integrating sphere in conjunction with a desktop spectrometer presents opportunities to use easily handled, low cost materials as a means to illustrate many areas of physics such as spectroscopy, lasers, optics, simple circuits, black body radiation and data gathering. Presented here is a 3rd year undergraduate physics project which developed a low cost (£25) method to manufacture an experimentally accurate integrating sphere by 3D printing. Details are given of both a homemade internal reflectance coating formulated from readily available materials, and a robust instrument calibration method using a tungsten bulb. The instrument is demonstrated to give accurate and reproducible experimental measurements of luminescence quantum yield of various semiconducting fluorophores, in excellent agreement with literature values. (paper)

  12. Low cost 3D-printing used in an undergraduate project: an integrating sphere for measurement of photoluminescence quantum yield

    Science.gov (United States)

    Tomes, John J.; Finlayson, Chris E.

    2016-09-01

    We report upon the exploitation of the latest 3D printing technologies to provide low-cost instrumentation solutions, for use in an undergraduate level final-year project. The project addresses prescient research issues in optoelectronics, which would otherwise be inaccessible to such undergraduate student projects. The experimental use of an integrating sphere in conjunction with a desktop spectrometer presents opportunities to use easily handled, low cost materials as a means to illustrate many areas of physics such as spectroscopy, lasers, optics, simple circuits, black body radiation and data gathering. Presented here is a 3rd year undergraduate physics project which developed a low cost (£25) method to manufacture an experimentally accurate integrating sphere by 3D printing. Details are given of both a homemade internal reflectance coating formulated from readily available materials, and a robust instrument calibration method using a tungsten bulb. The instrument is demonstrated to give accurate and reproducible experimental measurements of luminescence quantum yield of various semiconducting fluorophores, in excellent agreement with literature values.

  13. Highly-accelerated self-gated free-breathing 3D cardiac cine MRI: validation in assessment of left ventricular function.

    Science.gov (United States)

    Liu, Jing; Feng, Li; Shen, Hsin-Wei; Zhu, Chengcheng; Wang, Yan; Mukai, Kanae; Brooks, Gabriel C; Ordovas, Karen; Saloner, David

    2017-08-01

    This work presents a highly-accelerated, self-gated, free-breathing 3D cardiac cine MRI method for cardiac function assessment. A golden-ratio profile based variable-density, pseudo-random, Cartesian undersampling scheme was implemented for continuous 3D data acquisition. Respiratory self-gating was achieved by deriving motion signal from the acquired MRI data. A multi-coil compressed sensing technique was employed to reconstruct 4D images (3D+time). 3D cardiac cine imaging with self-gating was compared to bellows gating and the clinical standard breath-held 2D cine imaging for evaluation of self-gating accuracy, image quality, and cardiac function in eight volunteers. Reproducibility of 3D imaging was assessed. Self-gated 3D imaging provided an image quality score of 3.4 ± 0.7 vs 4.0 ± 0 with the 2D method (p = 0.06). It determined left ventricular end-systolic volume as 42.4 ± 11.5 mL, end-diastolic volume as 111.1 ± 24.7 mL, and ejection fraction as 62.0 ± 3.1%, which were comparable to the 2D method, with bias ± 1.96 × SD of -0.8 ± 7.5 mL (p = 0.90), 2.6 ± 3.3 mL (p = 0.84) and 1.4 ± 6.4% (p = 0.45), respectively. The proposed 3D cardiac cine imaging method enables reliable respiratory self-gating performance with good reproducibility, and provides comparable image quality and functional measurements to 2D imaging, suggesting that self-gated, free-breathing 3D cardiac cine MRI framework is promising for improved patient comfort and cardiac MRI scan efficiency.

  14. A general approach to flaw simulation in castings by superimposing projections of 3D models onto real X-ray images

    International Nuclear Information System (INIS)

    Hahn, D.; Mery, D.

    2003-01-01

    In order to evaluate the sensitivity of defect inspection systems, it is convenient to examine simulated data. This gives the possibility to tune the parameters of the inspection method and to test the performance of the system in critical cases. In this paper, a practical method for the simulation of defects in radioscopic images of aluminium castings is presented. The approach simulates only the flaws and not the whole radioscopic image of the object under test. A 3D mesh is used to model a flaw with complex geometry, which is projected and superimposed onto real radioscopic images of a homogeneous object according to the exponential attenuation law for X- rays. The new grey value of a pixel, where the 3D flaw is projected, depends only on four parameters: (a) the grey value of the original X-ray image without flaw; (b) the linear absorption coefficient of the examined material; (c) the maximal thickness observable in the radioscopic image; and (d) the length of the intersection of the 3D flaw with the modelled X-ray beam, that is projected into the pixel. A simulation of a complex flaw modelled as a 3D mesh can be performed in any position of the castings by using the algorithm described in this paper. This allows the evaluation of the performance of defect inspection systems in cases where the detection is known to be difficult. In this paper, we show experimental results on real X-ray images of aluminium wheels, in which 3D flaws like blowholes, cracks and inclusions are simulated

  15. 3D Graphics with Spreadsheets

    Directory of Open Access Journals (Sweden)

    Jan Benacka

    2009-06-01

    Full Text Available In the article, the formulas for orthographic parallel projection of 3D bodies on computer screen are derived using secondary school vector algebra. The spreadsheet implementation is demonstrated in six applications that project bodies with increasing intricacy – a convex body (cube with non-solved visibility, convex bodies (cube, chapel with solved visibility, a coloured convex body (chapel with solved visibility, and a coloured non-convex body (church with solved visibility. The projections are revolvable in horizontal and vertical plane, and they are changeable in size. The examples show an unusual way of using spreadsheets as a 3D computer graphics tool. The applications can serve as a simple introduction to the general principles of computer graphics, to the graphics with spreadsheets, and as a tool for exercising stereoscopic vision. The presented approach is usable at visualising 3D scenes within some topics of secondary school curricula as solid geometry (angles and distances of lines and planes within simple bodies or analytic geometry in space (angles and distances of lines and planes in E3, and even at university level within calculus at visualising graphs of z = f(x,y functions. Examples are pictured.

  16. Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity.

    Science.gov (United States)

    Lee, Karen J I; Calder, Grant M; Hindle, Christopher R; Newman, Jacob L; Robinson, Simon N; Avondo, Jerome J H Y; Coen, Enrico S

    2017-01-01

    Optical projection tomography (OPT) is a well-established method for visualising gene activity in plants and animals. However, a limitation of conventional OPT is that the specimen upper size limit precludes its application to larger structures. To address this problem we constructed a macro version called Macro OPT (M-OPT). We apply M-OPT to 3D live imaging of gene activity in growing whole plants and to visualise structural morphology in large optically cleared plant and insect specimens up to 60 mm tall and 45 mm deep. We also show how M-OPT can be used to image gene expression domains in 3D within fixed tissue and to visualise gene activity in 3D in clones of growing young whole Arabidopsis plants. A further application of M-OPT is to visualise plant-insect interactions. Thus M-OPT provides an effective 3D imaging platform that allows the study of gene activity, internal plant structures and plant-insect interactions at a macroscopic scale. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction

    Science.gov (United States)

    Hollingsworth, Kieren Grant

    2015-11-01

    MRI is often the most sensitive or appropriate technique for important measurements in clinical diagnosis and research, but lengthy acquisition times limit its use due to cost and considerations of patient comfort and compliance. Once an image field of view and resolution is chosen, the minimum scan acquisition time is normally fixed by the amount of raw data that must be acquired to meet the Nyquist criteria. Recently, there has been research interest in using the theory of compressed sensing (CS) in MR imaging to reduce scan acquisition times. The theory argues that if our target MR image is sparse, having signal information in only a small proportion of pixels (like an angiogram), or if the image can be mathematically transformed to be sparse then it is possible to use that sparsity to recover a high definition image from substantially less acquired data. This review starts by considering methods of k-space undersampling which have already been incorporated into routine clinical imaging (partial Fourier imaging and parallel imaging), and then explains the basis of using compressed sensing in MRI. The practical considerations of applying CS to MRI acquisitions are discussed, such as designing k-space undersampling schemes, optimizing adjustable parameters in reconstructions and exploiting the power of combined compressed sensing and parallel imaging (CS-PI). A selection of clinical applications that have used CS and CS-PI prospectively are considered. The review concludes by signposting other imaging acceleration techniques under present development before concluding with a consideration of the potential impact and obstacles to bringing compressed sensing into routine use in clinical MRI.

  18. Iterative feature refinement for accurate undersampled MR image reconstruction

    Science.gov (United States)

    Wang, Shanshan; Liu, Jianbo; Liu, Qiegen; Ying, Leslie; Liu, Xin; Zheng, Hairong; Liang, Dong

    2016-05-01

    Accelerating MR scan is of great significance for clinical, research and advanced applications, and one main effort to achieve this is the utilization of compressed sensing (CS) theory. Nevertheless, the existing CSMRI approaches still have limitations such as fine structure loss or high computational complexity. This paper proposes a novel iterative feature refinement (IFR) module for accurate MR image reconstruction from undersampled K-space data. Integrating IFR with CSMRI which is equipped with fixed transforms, we develop an IFR-CS method to restore meaningful structures and details that are originally discarded without introducing too much additional complexity. Specifically, the proposed IFR-CS is realized with three iterative steps, namely sparsity-promoting denoising, feature refinement and Tikhonov regularization. Experimental results on both simulated and in vivo MR datasets have shown that the proposed module has a strong capability to capture image details, and that IFR-CS is comparable and even superior to other state-of-the-art reconstruction approaches.

  19. Iterative feature refinement for accurate undersampled MR image reconstruction

    International Nuclear Information System (INIS)

    Wang, Shanshan; Liu, Jianbo; Liu, Xin; Zheng, Hairong; Liang, Dong; Liu, Qiegen; Ying, Leslie

    2016-01-01

    Accelerating MR scan is of great significance for clinical, research and advanced applications, and one main effort to achieve this is the utilization of compressed sensing (CS) theory. Nevertheless, the existing CSMRI approaches still have limitations such as fine structure loss or high computational complexity. This paper proposes a novel iterative feature refinement (IFR) module for accurate MR image reconstruction from undersampled K-space data. Integrating IFR with CSMRI which is equipped with fixed transforms, we develop an IFR-CS method to restore meaningful structures and details that are originally discarded without introducing too much additional complexity. Specifically, the proposed IFR-CS is realized with three iterative steps, namely sparsity-promoting denoising, feature refinement and Tikhonov regularization. Experimental results on both simulated and in vivo MR datasets have shown that the proposed module has a strong capability to capture image details, and that IFR-CS is comparable and even superior to other state-of-the-art reconstruction approaches. (paper)

  20. Recognition of Symmetric 3D Bodies

    Czech Academy of Sciences Publication Activity Database

    Suk, Tomáš; Flusser, Jan

    2014-01-01

    Roč. 6, č. 3 (2014), s. 722-757 ISSN 2073-8994 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : rotation symmetry * reflection symmetry * 3D complex moments * 3D rotation invariants Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.826, year: 2014 http://library.utia.cas.cz/separaty/2014/ZOI/suk-0431156.pdf

  1. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... are (vx, vy, vz) = (-0.03, 95, 1.0) ± (9, 6, 1) cm/s compared with the expected (0, 96, 0) cm/s. Afterwards, 3D vector flow images from a cross-sectional plane of the vessel are presented. The out of plane velocities exhibit the expected 2D circular-symmetric parabolic shape. The experimental results...... verify that the 3D TO method estimates the complete 3D velocity vectors, and that the method is suitable for 3D vector flow imaging....

  2. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  3. Abusir 3D survey 2015

    Directory of Open Access Journals (Sweden)

    Yukinori Kawae

    2016-12-01

    Full Text Available In 2015, in collaboration with the Czech Institute of Egyptology, we, a Japanese consortium, initiated the Abusir 3D Survey (A-3DS for the 3D documentation of the site’s pyramids, which have not been updated since the time of the architectural investigations of Vito Maragioglio and Celeste Rinaldi in the 1960s to the 1970s. The first season of our project focused on the exterior of Neferirkare’s pyramid, the largest pyramid at Abusir. By developing a strategic mathematical 3D survey plan, step-by-step 3D documentation to suit specific archaeological needs, and producing a new display method for the 3D data, we successfully measured the dimensions of the pyramid in a cost-effective way.

  4. IGUANA A high-performance 2D and 3D visualisation system

    CERN Document Server

    Alverson, G; Muzaffar, S; Osborne, I; Taylor, L; Tuura, L A

    2004-01-01

    The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high- performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, sl...

  5. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    DEFF Research Database (Denmark)

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah

    2014-01-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using...... method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban...... objects. In this research, the authors propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA...

  6. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field.

  7. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California

    International Nuclear Information System (INIS)

    1996-10-01

    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field

  8. 3D painting documentation: evaluation of conservation conditions with 3D imaging and ranging techniques

    Directory of Open Access Journals (Sweden)

    D. Abate

    2014-06-01

    Full Text Available The monitoring of paintings, both on canvas and wooden support, is a crucial issue for the preservation and conservation of this kind of artworks. Many environmental factors (e.g. humidity, temperature, illumination, etc., as well as bad conservation practices (e.g. wrong restorations, inappropriate locations, etc., can compromise the material conditions over time and deteriorate an artwork. The article presents an on-going project realized by a multidisciplinary team composed by the ENEA UTICT 3D GraphLab, the 3D Optical Metrology Unit of the Bruno Kessler Foundation and the Soprintendenza per i Beni Storico Artistici ed Etnoantropologici of Bologna (Italy. The goal of the project is the multi-temporal 3D documentation and monitoring of paintings – at the moment in bad conservation’s situation - and the provision of some metrics to quantify the deformations and damages.

  9. The WEBD project: a research of new methodologies for a distant-learning 3D system prototype.

    Science.gov (United States)

    Cemenasco, A F; Bianchi, C C; Tornincasa, S; Bianchi, S D

    2004-11-01

    To create and to spread a new interactive multimedia instrument, based upon virtual reality technologies, that allows both the running simulation of machines and equipment and the reproduction via Web of complex three-dimensional (3D) anatomical models such as the skull. There were two main aspects of the project, one of design engineering and the other biomedical engineering, for the creation of "artificial" and anatomical objects. The former were made with 3D Studio Max R4 by Autodesk, San Rafael, CA, while the latter were created starting from real bones scanned with a CT system or a surface scanner and elaborated with different programs (3D Studio Max R4, Scenebuilder by Viewpoint, New York, NY and Spinfire by Actify, San Francisco, CA). The 3D models were to be integrated into web modules and had to respect file limits while preserving a sufficient definition. Two systems of evaluation were used, a questionnaire on a selected sample and an external evaluation by a different university. The Viewpoint format offers the best interactivity and size reduction (up to 96% from the original 3D model). The created modules included production of radiological images, rapid prototyping, and anatomy. The complete "3D Distant Learning Prototype" is available at www.webd.etsii.upm.es. The software currently available permits the construction of interactive modules. The verification on the selected sample and the evaluation by the University of Naples show that the structure is well organized and that the integration of the 3D models meets the requirements.

  10. FINAL REPORT FOR THE DIII-D RADIATIVE DIVERTOR PROJECT

    International Nuclear Information System (INIS)

    O'NEIL, RC; STAMBAUGH, RD

    2002-01-01

    OAK A271 FINAL REPORT FOR THE DIII-D RADIATIVE DIVERTOR PROJECT. The Radiative Divertor Project originated in 1993 when the DIII-D Five Year Plan for the period 1994--1998 was prepared. The Project Information Sheet described the objective of the project as ''to demonstrate dispersal of divertor power by a factor of then with sufficient diagnostics and modeling to extend the results to ITER and TPX''. Key divertor components identified were: (1) Carbon-carbon and graphite armor tiles; (2) The divertor structure providing a gas baffle and cooling; and (3) The divertor cryopumps to pump fuel and impurities

  11. 3D silicon breast surface mapping via structured light profilometry

    Science.gov (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Shahimin, M. M.; Alcain, J. B.; Lai, S. L.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Digital fringe projection technique is one of the promising optical methods for 3D surface imaging as it demonstrates non contact and non invasive characteristics. The potential of this technique matches the requirement for human body evaluation, as it is vital for disease diagnosis and for treatment option selection. Thus, the digital fringe projection has addressed this requirement with its wide clinical related application and studies. However, the application of this technique for 3D surface mapping of the breast is very minimal. Hence, in this work, the application of digital fringe projection for 3D breast surface mapping is reported. Phase shift fringe projection technique was utilized to perform the 3D breast surface mapping. Maiden results have confirmed the feasibility of using the digital fringe projection method for 3D surface mapping of the breast and it can be extended for breast cancer detection.

  12. Results of the European research project 'Improving the effectiveness of cancer treatment with 3D Brachytherapy'

    International Nuclear Information System (INIS)

    Solc, J.; Sochor, V.; Selbach, H.-J.; Aubineau-Laniec, I.; Lourenco, V.; Gabris, F.; Grindborg, J.-E.; Kosunen, A.; Jarvinen, H.; Sipila, P.; Gouldstone, C.; Sander, T.; Sharpe, P.; Zeman, J.; Portugal, L.; Rodrigues, M.; Carlsson Tedgren, A.; Pooter de, M

    2011-01-01

    The project iMERA + T2.J06 'Improving the effectiveness of cancer treatment using 3D brachytherapy' was solved in the period 2008-2011 in collaboration of metrology institutes from 10 European Union countries, including participation of the Czech Republic. Its main objective was to create a means to ensure metrological quantity absorbed dose in water from brachyterapeutical (BT) sources enabling more accurate assessment of therapeutic benefit than using existing dosimetry protocols that are based on the quantity kerma in the air. This project is discussed on the poster.

  13. EFFECT OF DIGITAL FRINGE PROJECTION PARAMETERS ON 3D RECONSTRUCTION ACCURACY

    Directory of Open Access Journals (Sweden)

    A. Babaei

    2013-09-01

    This paper aims to evaluate different parameters which affect the accuracy of the final results. For this purpose, some test were designed and implemented. These tests assess the number of phase shifts, spatial frequency of the fringe pattern, light condition, noise level of images, and the color and material of target objects on the quality of resulted phase map. The evaluation results demonstrate that digital fringe projection method is capable of obtaining depth map of complicated object with high accuracy. The contrast test results showed that this method is able to work under different ambient light condition; although at places with high light condition will not work properly. The results of implementation on different objects with various materials, color and shapes demonstrate the high capability of this method of 3D reconstruction.

  14. Development of 3D and 4D Bridge Models and Plans

    Science.gov (United States)

    2018-05-28

    Since 2012, MDOT has been leading national efforts to modernize design development with 3D modeling. Early focus on roadway projects yielded streamlined plan production and digital data for construction. As MDOT pivots to 3D model-centric design, nat...

  15. Conceptual Configuration of Pharmaceutical Plants in 3D

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde; Larsen, Bent Dalgaard; Gjøl, Mikkel

    2007-01-01

    In the conceptual design phase of pharmaceutical plants as much as 80%-90% of the total cost of a project is committed. It is therefore essential that the chosen concept is viable. Configuration and 3D models can help validate the decisions made in the conceptual design process. Designing 3D models...... is a complex task and requires skilled users. We demonstrate that a simple 2D/3D configuration tool can support conceptualizing of pharmaceutical plants. Present paper reports on preliminary results from a full scale implementation project at a Danish engineering company....

  16. On Geometric and Algebraic Aspects of 3D Affine and Projective Structures from Perspective 2D Views

    Science.gov (United States)

    1993-07-01

    June 1992. an ideal lint (has no image ,n /th rteal plane) and [5] O.D. Faugeras. Q.T. Luong, and S.J. Maybank . uhich maps non-collhnearpoints A. B.C...projection for tire. Italy, .lune 1992. any giei aftin( transformation of the plane. [6 O.D. Faugeras and S. Maybank . Motion from point matches

  17. 3D Printing the Complete CubeSat

    Science.gov (United States)

    Kief, Craig

    2015-01-01

    The 3D Printing the Complete CubeSat project is designed to advance the state-of-the-art in 3D printing for CubeSat applications. Printing in 3D has the potential to increase reliability, reduce design iteration time and provide greater design flexibility in the areas of radiation mitigation, communications, propulsion, and wiring, among others. This project is investigating the possibility of including propulsion systems into the design of printed CubeSat components. One such concept, an embedded micro pulsed plasma thruster (mPPT), could provide auxiliary reaction control propulsion for a spacecraft as a means to desaturate momentum wheels.

  18. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory, EMSP Project No. 73836

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, F. Dale; Sogade, John

    2004-12-14

    This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28

  19. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... a channel limited 2-D transducer array and the conventional 3-D beamforming technique, Parallel Beamforming. The first part of the scientific contributions demonstrate that 3-D synthetic aperture imaging achieves a better image quality than the Parallel Beamforming technique. Data were obtained using both...

  20. Distributed 3-D iterative reconstruction for quantitative SPECT

    International Nuclear Information System (INIS)

    Ju, Z.W.; Frey, E.C.; Tsui, B.M.W.

    1995-01-01

    The authors describe a distributed three dimensional (3-D) iterative reconstruction library for quantitative single-photon emission computed tomography (SPECT). This library includes 3-D projector-backprojector pairs (PBPs) and distributed 3-D iterative reconstruction algorithms. The 3-D PBPs accurately and efficiently model various combinations of the image degrading factors including attenuation, detector response and scatter response. These PBPs were validated by comparing projection data computed using the projectors with that from direct Monte Carlo (MC) simulations. The distributed 3-D iterative algorithms spread the projection-backprojection operations for all the projection angles over a heterogeneous network of single or multi-processor computers to reduce the reconstruction time. Based on a master/slave paradigm, these distributed algorithms provide dynamic load balancing and fault tolerance. The distributed algorithms were verified by comparing images reconstructed using both the distributed and non-distributed algorithms. Computation times for distributed 3-D reconstructions running on up to 4 identical processors were reduced by a factor approximately 80--90% times the number of the processors participating, compared to those for non-distributed 3-D reconstructions running on a single processor. When combined with faster affordable computers, this library provides an efficient means for implementing accurate reconstruction and compensation methods to improve quality and quantitative accuracy in SPECT images

  1. 3D Rainbow Particle Tracking Velocimetry

    Science.gov (United States)

    Aguirre-Pablo, Andres A.; Xiong, Jinhui; Idoughi, Ramzi; Aljedaani, Abdulrahman B.; Dun, Xiong; Fu, Qiang; Thoroddsen, Sigurdur T.; Heidrich, Wolfgang

    2017-11-01

    A single color camera is used to reconstruct a 3D-3C velocity flow field. The camera is used to record the 2D (X,Y) position and colored scattered light intensity (Z) from white polyethylene tracer particles in a flow. The main advantage of using a color camera is the capability of combining different intensity levels for each color channel to obtain more depth levels. The illumination system consists of an LCD projector placed perpendicularly to the camera. Different intensity colored level gradients are projected onto the particles to encode the depth position (Z) information of each particle, benefiting from the possibility of varying the color profiles and projected frequencies up to 60 Hz. Chromatic aberrations and distortions are estimated and corrected using a 3D laser engraved calibration target. The camera-projector system characterization is presented considering size and depth position of the particles. The use of these components reduces dramatically the cost and complexity of traditional 3D-PTV systems.

  2. 2D virtual texture on 3D real object with coded structured light

    Science.gov (United States)

    Molinier, Thierry; Fofi, David; Salvi, Joaquim; Gorria, Patrick

    2008-02-01

    Augmented reality is used to improve color segmentation on human body or on precious no touch artifacts. We propose a technique to project a synthesized texture on real object without contact. Our technique can be used in medical or archaeological application. By projecting a suitable set of light patterns onto the surface of a 3D real object and by capturing images with a camera, a large number of correspondences can be found and the 3D points can be reconstructed. We aim to determine these points of correspondence between cameras and projector from a scene without explicit points and normals. We then project an adjusted texture onto the real object surface. We propose a global and automatic method to virtually texture a 3D real object.

  3. Vitamin D Pooling Project

    Science.gov (United States)

    The Vitamin D Pooling Project of Rarer Cancers brought together investigators from 10 cohorts to conduct a large prospective epidemiologic study of the association between vitamin D status and seven rarer cancers.

  4. A 3d game in python

    OpenAIRE

    Xu, Minghui

    2014-01-01

    3D game has widely been accepted and loved by many game players. More and more different kinds of 3D games were developed to feed people’s needs. The most common programming language for development of 3D game is C++ nowadays. Python is a high-level scripting language. It is simple and clear. The concise syntax could speed up the development cycle. This project was to develop a 3D game using only Python. The game is about how a cat lives in the street. In order to live, the player need...

  5. Seamless 3D interaction for virtual tables, projection planes, and CAVEs

    Science.gov (United States)

    Encarnacao, L. M.; Bimber, Oliver; Schmalstieg, Dieter; Barton, Robert J., III

    2000-08-01

    The Virtual Table presents stereoscopic graphics to a user in a workbench-like setting. This device shares with other large- screen display technologies (such as data walls and surround- screen projection systems) the lack of human-centered unencumbered user interfaces and 3D interaction technologies. Such shortcomings present severe limitations to the application of virtual reality (VR) technology to time- critical applications as well as employment scenarios that involve heterogeneous groups of end-users without high levels of computer familiarity and expertise. Traditionally such employment scenarios are common in planning-related application areas such as mission rehearsal and command and control. For these applications, a high grade of flexibility with respect to the system requirements (display and I/O devices) as well as to the ability to seamlessly and intuitively switch between different interaction modalities and interaction are sought. Conventional VR techniques may be insufficient to meet this challenge. This paper presents novel approaches for human-centered interfaces to Virtual Environments focusing on the Virtual Table visual input device. It introduces new paradigms for 3D interaction in virtual environments (VE) for a variety of application areas based on pen-and-clipboard, mirror-in-hand, and magic-lens metaphors, and introduces new concepts for combining VR and augmented reality (AR) techniques. It finally describes approaches toward hybrid and distributed multi-user interaction environments and concludes by hypothesizing on possible use cases for defense applications.

  6. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    Science.gov (United States)

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    Documentation of archaeological excavation sites with conventional methods and tools such as hand drawings, measuring tape and archaeological notes is time consuming. This process is prone to human errors and the quality of the documentation depends on the qualification of the archaeologist on site. Use of modern technology and methods in 3D surveying and 3D robotics facilitate and improve this process. Computer-aided systems and databases improve the documentation quality and increase the speed of data acquisition. 3D laser scanning is the state of the art in modelling archaeological excavation sites, historical sites and even entire cities or landscapes. Modern laser scanners are capable of data acquisition of up to 1 million points per second. This provides a very detailed 3D point cloud of the environment. 3D point clouds and 3D models of an excavation site provide a better representation of the environment for the archaeologist and for documentation. The point cloud can be used both for further studies on the excavation and for the presentation of results. This paper introduces a Computer aided system for labelling archaeological excavations in 3D (CASTLE3D). Consisting of a set of tools for recording and georeferencing the 3D data from an excavation site, CASTLE3D is a novel documentation approach in industrial archaeology. It provides a 2D and 3D visualisation of the data and an easy-to-use interface that enables the archaeologist to select regions of interest and to interact with the data in both representations. The 2D visualisation and a 3D orthogonal view of the data provide cuts of the environment that resemble the traditional hand drawings. The 3D perspective view gives a realistic view of the environment. CASTLE3D is designed as an easy-to-use on-site semantic mapping tool for archaeologists. Each project contains a predefined set of semantic information that can be used to label findings in the data. Multiple regions of interest can be joined under

  7. 3D Modeling Techniques for Print and Digital Media

    Science.gov (United States)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  8. GPU acceleration of 3D forward and backward projection using separable footprints for X-ray CT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng; Fessler, Jeffrey A. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Electrical Engineering and Computer Science

    2011-07-01

    Iterative 3D image reconstruction methods can improve image quality over conventional filtered back projection (FBP) in X-ray computed tomography. However, high computational costs deter the routine use of iterative reconstruction clinically. The separable footprint method for forward and back-projection simplifies the integrals over a detector cell in a way that is quite accurate and also has a relatively efficient CPU implementation. In this project, we implemented the separable footprints method for both forward and backward projection on a graphics processing unit (GPU) with NVDIA's parallel computing architecture (CUDA). This paper describes our GPU kernels for the separable footprint method and simulation results. (orig.)

  9. Helium-3 MR q-space imaging with radial acquisition and iterative highly constrained back-projection.

    Science.gov (United States)

    O'Halloran, Rafael L; Holmes, James H; Wu, Yu-Chien; Alexander, Andrew; Fain, Sean B

    2010-01-01

    An undersampled diffusion-weighted stack-of-stars acquisition is combined with iterative highly constrained back-projection to perform hyperpolarized helium-3 MR q-space imaging with combined regional correction of radiofrequency- and T1-related signal loss in a single breath-held scan. The technique is tested in computer simulations and phantom experiments and demonstrated in a healthy human volunteer with whole-lung coverage in a 13-sec breath-hold. Measures of lung microstructure at three different lung volumes are evaluated using inhaled gas volumes of 500 mL, 1000 mL, and 1500 mL to demonstrate feasibility. Phantom results demonstrate that the proposed technique is in agreement with theoretical values, as well as with a fully sampled two-dimensional Cartesian acquisition. Results from the volunteer study demonstrate that the root mean squared diffusion distance increased significantly from the 500-mL volume to the 1000-mL volume. This technique represents the first demonstration of a spatially resolved hyperpolarized helium-3 q-space imaging technique and shows promise for microstructural evaluation of lung disease in three dimensions. Copyright (c) 2009 Wiley-Liss, Inc.

  10. Towards a 3D geo-information standard in the Netherlands

    NARCIS (Netherlands)

    Stoter, J.E.; Reuvers, M.; Vosselman, G.; Goos, J.; Van Berlo, L.; Zlatanova, S.; Verbree, E.; Klooster, R.

    2010-01-01

    This paper presents the ongoing research project in The Netherlands in which a large number of stakeholders are realising a 3D testbed based on selected use cases and test areas. The findings of the project will result in a Proof of Concept for a 3D Geoinformation standard and a 3D data

  11. A generic approach for 3D SDI in The Netherlands

    NARCIS (Netherlands)

    Stoter, J.; Brink, L. van den; Vosselman, G.; Goos, J.; Zlatanova, S.; Verbree, E.; Klooster, R.; Berlo, L. van; Vestjens, G.; Reuvers, M.; Thorn, S.

    2011-01-01

    This paper presents a research project in The Netherlands in which a large number of stakeholders are collaborating on a 3D test bed, selected use cases and a test area to push 3D applications in the Netherlands. The project studies and realizes a proof of oncept for a 3D Spatial Data

  12. A method for under-sampled ecological network data analysis: plant-pollination as case study

    Directory of Open Access Journals (Sweden)

    Peter B. Sorensen

    2012-01-01

    Full Text Available In this paper, we develop a method, termed the Interaction Distribution (ID method, for analysis of quantitative ecological network data. In many cases, quantitative network data sets are under-sampled, i.e. many interactions are poorly sampled or remain unobserved. Hence, the output of statistical analyses may fail to differentiate between patterns that are statistical artefacts and those which are real characteristics of ecological networks. The ID method can support assessment and inference of under-sampled ecological network data. In the current paper, we illustrate and discuss the ID method based on the properties of plant-animal pollination data sets of flower visitation frequencies. However, the ID method may be applied to other types of ecological networks. The method can supplement existing network analyses based on two definitions of the underlying probabilities for each combination of pollinator and plant species: (1, pi,j: the probability for a visit made by the i’th pollinator species to take place on the j’th plant species; (2, qi,j: the probability for a visit received by the j’th plant species to be made by the i’th pollinator. The method applies the Dirichlet distribution to estimate these two probabilities, based on a given empirical data set. The estimated mean values for pi,j and qi,j reflect the relative differences between recorded numbers of visits for different pollinator and plant species, and the estimated uncertainty of pi,j and qi,j decreases with higher numbers of recorded visits.

  13. Patient-specific 3D models created by 3D imaging system or bi-planar imaging coupled with Moiré-Fringe projections: a comparative study of accuracy and reliability on spinal curvatures and vertebral rotation data.

    Science.gov (United States)

    Hocquelet, Arnaud; Cornelis, François; Jirot, Anna; Castaings, Laurent; de Sèze, Mathieu; Hauger, Olivier

    2016-10-01

    The aim of this study is to compare the accuracy and reliability of spinal curvatures and vertebral rotation data based on patient-specific 3D models created by 3D imaging system or by bi-planar imaging coupled with Moiré-Fringe projections. Sixty-two consecutive patients from a single institution were prospectively included. For each patient, frontal and sagittal calibrated low-dose bi-planar X-rays were performed and coupled simultaneously with an optical Moiré back surface-based technology. The 3D reconstructions of spine and pelvis were performed independently by one radiologist and one technician in radiology using two different semi-automatic methods using 3D radio-imaging system (method 1) or bi-planar imaging coupled with Moiré projections (method 2). Both methods were compared using Bland-Altman analysis, and reliability using intraclass correlation coefficient (ICC). ICC showed good to very good agreement. Between the two techniques, the maximum 95 % prediction limits was -4.9° degrees for the measurements of spinal coronal curves and less than 5° for other parameters. Inter-rater reliability was excellent for all parameters across both methods, except for axial rotation with method 2 for which ICC was fair. Method 1 was faster for reconstruction time than method 2 for both readers (13.4 vs. 20.7 min and 10.6 vs. 13.9 min; p = 0.0001). While a lower accuracy was observed for the evaluation of the axial rotation, bi-planar imaging coupled with Moiré-Fringe projections may be an accurate and reliable tool to perform 3D reconstructions of the spine and pelvis.

  14. KNOW-BLADE task-3.3 report: Rotor blade computations with 3D vortex generators

    DEFF Research Database (Denmark)

    Johansen, J.; Sørensen, Niels N.; Reck, M.

    2005-01-01

    The present report describes the work done in work package WP3.3: Aerodynamic Accessories in 3D in the EC project KNOW-BLADE. Vortex generators (VGs) are modelled in 3D Navier-Stokes solvers and applied on the flow around an airfoil and a wind turbineblade. Three test cases have been investigated...

  15. Dynamic stall and 3D effects

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Thor, S.E. [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    1996-12-01

    The JOULE II project `Dynamic stall and 3D effects` started in January 1994 and was completed in September 1995. The objective of the project has been to increase the understanding of the three-dimensional and unsteady aerodynamics of stall controlled HAWT`s. The objectives have also been to develop `engineering models` suitable for inclusion into aero-elastic codes. The project included the participation of 13 parties within Europe. This paper describes an overview of the work carried out within the project and key results. 3 refs, 4 figs

  16. Coal-fired MHD combustor development project: Phase 3D

    Science.gov (United States)

    1985-05-01

    This fourth quarterly technical progress report of the Coal-Fired MHD Combustor Development Project (Phase 3D) presents the accomplishments during the period February 1 to April 30, 1985. The scope of work covered by this quarterly report encompasses development work on the 50 MW/sub t/ combustor related to test support at the CDIF, assembly and checkout of first and second stage hardware, second stage design verification testing, designs for a continuous slag rejector and low preheat inlet section, and planning for power train testing. Progress includes the following: assembly and checkout of the second first stage, two second stages, and PEM was completed and the hardware was shipped to CDIF and FETS; integration of first and second stage hardware on the FETS Cell No. 2 test stand was completed, cold flow functional tests were performed, and hot fire checkout testing was initiated; assembly of the continuous slag rejector test set-up was 70% completed; the low preheat air inlet section Preliminary Design Review was held (work on the detail design was initiated and is 85% complete); and the Users' Manual was updated to include material for the second stage and final revisions to the power train test plan were made.

  17. Projection-slice theorem based 2D-3D registration

    NARCIS (Netherlands)

    Bom, van der M.J.; Pluim, J.P.W.; Homan, R.; Timmer, J.; Bartels, L.W.; Pluim, J.P.W.; Reinhardt, J.M.

    2007-01-01

    In X-ray guided procedures, the surgeon or interventionalist is dependent on his or her knowledge of the patient's specific anatomy and the projection images acquired during the procedure by a rotational X-ray source. Unfortunately, these X-ray projections fail to give information on the patient's

  18. Discriminative motif discovery via simulated evolution and random under-sampling.

    Directory of Open Access Journals (Sweden)

    Tao Song

    Full Text Available Conserved motifs in biological sequences are closely related to their structure and functions. Recently, discriminative motif discovery methods have attracted more and more attention. However, little attention has been devoted to the data imbalance problem, which is one of the main reasons affecting the performance of the discriminative models. In this article, a simulated evolution method is applied to solve the multi-class imbalance problem at the stage of data preprocessing, and at the stage of Hidden Markov Models (HMMs training, a random under-sampling method is introduced for the imbalance between the positive and negative datasets. It is shown that, in the task of discovering targeting motifs of nine subcellular compartments, the motifs found by our method are more conserved than the methods without considering data imbalance problem and recover the most known targeting motifs from Minimotif Miner and InterPro. Meanwhile, we use the found motifs to predict protein subcellular localization and achieve higher prediction precision and recall for the minority classes.

  19. Discriminative motif discovery via simulated evolution and random under-sampling.

    Science.gov (United States)

    Song, Tao; Gu, Hong

    2014-01-01

    Conserved motifs in biological sequences are closely related to their structure and functions. Recently, discriminative motif discovery methods have attracted more and more attention. However, little attention has been devoted to the data imbalance problem, which is one of the main reasons affecting the performance of the discriminative models. In this article, a simulated evolution method is applied to solve the multi-class imbalance problem at the stage of data preprocessing, and at the stage of Hidden Markov Models (HMMs) training, a random under-sampling method is introduced for the imbalance between the positive and negative datasets. It is shown that, in the task of discovering targeting motifs of nine subcellular compartments, the motifs found by our method are more conserved than the methods without considering data imbalance problem and recover the most known targeting motifs from Minimotif Miner and InterPro. Meanwhile, we use the found motifs to predict protein subcellular localization and achieve higher prediction precision and recall for the minority classes.

  20. Dark Matter Time Projection Chamber : Recent R&D Results

    Science.gov (United States)

    Battat, J. B. R.; Ahlen, S.; Chernicoff, M.; Deaconu, C.; Dujmic, D.; Dushkin, A.; Fisher, P.; Henderson, S.; Inglis, A.; Kaboth, A.; Kirsch, L.; Lopez, J. P.; Monroe, J.; Ouyang, H.; Sciolla, G.; Tomita, H.; Wellenstein, H.

    2012-02-01

    The Dark Matter Time Projection Chamber collaboration recently reported a dark matter limit obtained with a 10 liter time projection chamber filled with CF4 gas. The 10 liter detector was capable of 2D tracking (perpendicular to the drift direction) and 2D fiducialization, and only used information from two CCD cameras when identifying tracks and rejecting backgrounds. Since that time, the collaboration has explored the potential benefits of photomultiplier tube and electronic charge readout to achieve 3D tracking, and particle identification for background rejection. The latest results of this effort is described here.

  1. General solution of undersampling frequency conversion and its optimization for parallel photodisplacement imaging.

    Science.gov (United States)

    Nakata, Toshihiko; Ninomiya, Takanori

    2006-10-10

    A general solution of undersampling frequency conversion and its optimization for parallel photodisplacement imaging is presented. Phase-modulated heterodyne interference light generated by a linear region of periodic displacement is captured by a charge-coupled device image sensor, in which the interference light is sampled at a sampling rate lower than the Nyquist frequency. The frequencies of the components of the light, such as the sideband and carrier (which include photodisplacement and topography information, respectively), are downconverted and sampled simultaneously based on the integration and sampling effects of the sensor. A general solution of frequency and amplitude in this downconversion is derived by Fourier analysis of the sampling procedure. The optimal frequency condition for the heterodyne beat signal, modulation signal, and sensor gate pulse is derived such that undesirable components are eliminated and each information component is converted into an orthogonal function, allowing each to be discretely reproduced from the Fourier coefficients. The optimal frequency parameters that maximize the sideband-to-carrier amplitude ratio are determined, theoretically demonstrating its high selectivity over 80 dB. Preliminary experiments demonstrate that this technique is capable of simultaneous imaging of reflectivity, topography, and photodisplacement for the detection of subsurface lattice defects at a speed corresponding to an acquisition time of only 0.26 s per 256 x 256 pixel area.

  2. Three-dimensional dictionary-learning reconstruction of (23)Na MRI data.

    Science.gov (United States)

    Behl, Nicolas G R; Gnahm, Christine; Bachert, Peter; Ladd, Mark E; Nagel, Armin M

    2016-04-01

    To reduce noise and artifacts in (23)Na MRI with a Compressed Sensing reconstruction and a learned dictionary as sparsifying transform. A three-dimensional dictionary-learning compressed sensing reconstruction algorithm (3D-DLCS) for the reconstruction of undersampled 3D radial (23)Na data is presented. The dictionary used as the sparsifying transform is learned with a K-singular-value-decomposition (K-SVD) algorithm. The reconstruction parameters are optimized on simulated data, and the quality of the reconstructions is assessed with peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The performance of the algorithm is evaluated in phantom and in vivo (23)Na MRI data of seven volunteers and compared with nonuniform fast Fourier transform (NUFFT) and other Compressed Sensing reconstructions. The reconstructions of simulated data have maximal PSNR and SSIM for an undersampling factor (USF) of 10 with numbers of averages equal to the USF. For 10-fold undersampling, the PSNR is increased by 5.1 dB compared with the NUFFT reconstruction, and the SSIM by 24%. These results are confirmed by phantom and in vivo (23)Na measurements in the volunteers that show markedly reduced noise and undersampling artifacts in the case of 3D-DLCS reconstructions. The 3D-DLCS algorithm enables precise reconstruction of undersampled (23)Na MRI data with markedly reduced noise and artifact levels compared with NUFFT reconstruction. Small structures are well preserved. © 2015 Wiley Periodicals, Inc.

  3. 3D based integrated support concept for improving safety and cost-efficiency of nuclear decommissioning projects

    International Nuclear Information System (INIS)

    Szoeke, Istvan

    2016-01-01

    New concepts enabled by emerging computing technologies based on 3D simulation, virtual (VR) and augmented reality (AR), advanced user interfaces (UI), mobile and wearable computing devices, and geographical information systems have great potential for improving nuclear decommissioning strategies. Such techniques offer very effective new opportunities for improving early characterisation and strategical decision making, knowledge management, on-site management of radiological waste, and regulatory compliance. In addition, such methods allow for an effective training of foreseen decommissioning workers to begin during operation and transition phase without disturbance to normal operation of the plant. Improved plant information systems enabled by 3D simulation, advanced user interface, and mobile computing technologies, offer better ways for acquiring and managing the radiological and other plant information that are required for informed decision making in the early planning phase of decommissioning activities. User friendly, realistic management and visualisation of available radiological information, and results of radiological data analyses, allows decision makers to have a better understanding of the radiological conditions expected when decontamination and dismantling work starts, without high need for physical presence in the environment. Such functionalities, combined with capabilities for easy evaluation of possible decommissioning (decontamination, dismantling) options allow decision makers to make informed decisions, and enable a seamless communication (common language) within a multidisciplinary decommissioning planning team. Support systems, enabled by modern information technologies are expected to improve information and knowledge management in decommissioning projects, especially during transition from the operation phase. Traditionally, inefficient transfer of knowledge from the design and operation phase, results in suboptimal work strategies and

  4. Hybrid 3D-2D printing for bone scaffolds fabrication

    Science.gov (United States)

    Seleznev, V. A.; Prinz, V. Ya

    2017-02-01

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.

  5. Conceptual Development af a 3D Product Configuration Model

    DEFF Research Database (Denmark)

    Skauge, Jørn

    2006-01-01

    in the development of IT-systems that support the procedures in companies and in the building industry. In other words, it is a knowledge-based system that helps companies in their daily work. The aim of the project has been to develop and examine conceptual ideas about 3D modelling configurator used in the company......’s production of steel fire sliding doors. The development of the 3D digital model is based on practical rather than theoretical research. The result of the research is a prototype digital 3D model to be presented live.......Paper. This project deals with 3D product configuration of a digital building element which has been developed as a prototype in cooperation between a product manufacturer and a research institution in Denmark. The project falls within the concept of product modelling which is more and more used...

  6. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  7. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.

    Science.gov (United States)

    Li, Ruijiang; Jia, Xun; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B

    2010-06-01

    To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, new DVFs can be generated, which, when applied on the reference image, lead to new volumetric images. A volumetric image can then be reconstructed from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. The algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. The training data were generated using a realistic and dynamic mathematical phantom with ten breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude. The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 s (range: 0.17 and 0.35 s). The authors have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.

  8. Extended 3D Line Segments from RGB-D Data for Pose Estimation

    DEFF Research Database (Denmark)

    Buch, Anders Glent; Jessen, Jeppe Barsøe; Kraft, Dirk

    2013-01-01

    We propose a method for the extraction of complete and rich symbolic line segments in 3D based on RGB-D data. Edges are detected by combining cues from the RGB image and the aligned depth map. 3D line segments are then reconstructed by back-projecting 2D line segments and intersecting this with l...... this with local surface patches computed from the 3D point cloud. Different edge types are classified using the new enriched representation and the potential of this representation for the task of pose estimation is demonstrated....

  9. Progressive attenuation fields: Fast 2D-3D image registration without precomputation

    International Nuclear Information System (INIS)

    Rohlfing, Torsten; Russakoff, Daniel B.; Denzler, Joachim; Mori, Kensaku; Maurer, Calvin R. Jr.

    2005-01-01

    Computation of digitally reconstructed radiograph (DRR) images is the rate-limiting step in most current intensity-based algorithms for the registration of three-dimensional (3D) images to two-dimensional (2D) projection images. This paper introduces and evaluates the progressive attenuation field (PAF), which is a new method to speed up DRR computation. A PAF is closely related to an attenuation field (AF). A major difference is that a PAF is constructed on the fly as the registration proceeds; it does not require any precomputation time, nor does it make any prior assumptions of the patient pose or limit the permissible range of patient motion. A PAF effectively acts as a cache memory for projection values once they are computed, rather than as a lookup table for precomputed projections like standard AFs. We use a cylindrical attenuation field parametrization, which is better suited for many medical applications of 2D-3D registration than the usual two-plane parametrization. The computed attenuation values are stored in a hash table for time-efficient storage and access. Using clinical gold-standard spine image data sets from five patients, we demonstrate consistent speedups of intensity-based 2D-3D image registration using PAF DRRs by a factor of 10 over conventional ray casting DRRs with no decrease of registration accuracy or robustness

  10. Two Eyes, 3D: Stereoscopic Design Principles

    Science.gov (United States)

    Price, Aaron; Subbarao, M.; Wyatt, R.

    2013-01-01

    Two Eyes, 3D is a NSF-funded research project about how people perceive highly spatial objects when shown with 2D or stereoscopic ("3D") representations. As part of the project, we produced a short film about SN 2011fe. The high definition film has been rendered in both 2D and stereoscopic formats. It was developed according to a set of stereoscopic design principles we derived from the literature and past experience producing and studying stereoscopic films. Study participants take a pre- and post-test that involves a spatial cognition assessment and scientific knowledge questions about Type-1a supernovae. For the evaluation, participants use iPads in order to record spatial manipulation of the device and look for elements of embodied cognition. We will present early results and also describe the stereoscopic design principles and the rationale behind them. All of our content and software is available under open source licenses. More information is at www.twoeyes3d.org.

  11. 3-D discrete analytical ridgelet transform.

    Science.gov (United States)

    Helbert, David; Carré, Philippe; Andres, Eric

    2006-12-01

    In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient.

  12. The 3D Elevation Program and America's infrastructure

    Science.gov (United States)

    Lukas, Vicki; Carswell, Jr., William J.

    2016-11-07

    Infrastructure—the physical framework of transportation, energy, communications, water supply, and other systems—and construction management—the overall planning, coordination, and control of a project from beginning to end—are critical to the Nation’s prosperity. The American Society of Civil Engineers has warned that, despite the importance of the Nation’s infrastructure, it is in fair to poor condition and needs sizable and urgent investments to maintain and modernize it, and to ensure that it is sustainable and resilient. Three-dimensional (3D) light detection and ranging (lidar) elevation data provide valuable productivity, safety, and cost-saving benefits to infrastructure improvement projects and associated construction management. By providing data to users, the 3D Elevation Program (3DEP) of the U.S. Geological Survey reduces users’ costs and risks and allows them to concentrate on their mission objectives. 3DEP includes (1) data acquisition partnerships that leverage funding, (2) contracts with experienced private mapping firms, (3) technical expertise, lidar data standards, and specifications, and (4) most important, public access to high-quality 3D elevation data. The size and breadth of improvements for the Nation’s infrastructure and construction management needs call for an efficient, systematic approach to acquiring foundational 3D elevation data. The 3DEP approach to national data coverage will yield large cost savings over individual project-by-project acquisitions and will ensure that data are accessible for other critical applications.

  13. IGUANA: a high-performance 2D and 3D visualisation system

    Energy Technology Data Exchange (ETDEWEB)

    Alverson, G. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Eulisse, G. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Muzaffar, S. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Osborne, I. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Taylor, L. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)]. E-mail: lucas.taylor@cern.ch; Tuura, L.A. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)

    2004-11-21

    The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high-performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, slicing, lighting or animation, as well as multiple linked views with OpenInventor, and describe them in this paper. We give details on how to edit object appearance efficiently and easily, and even dynamically as a function of object properties, with instant visual feedback to the user.

  14. IGUANA: a high-performance 2D and 3D visualisation system

    International Nuclear Information System (INIS)

    Alverson, G.; Eulisse, G.; Muzaffar, S.; Osborne, I.; Taylor, L.; Tuura, L.A.

    2004-01-01

    The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high-performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, slicing, lighting or animation, as well as multiple linked views with OpenInventor, and describe them in this paper. We give details on how to edit object appearance efficiently and easily, and even dynamically as a function of object properties, with instant visual feedback to the user

  15. Dose fractionation theorem in 3-D reconstruction (tomography)

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, R.M. [Lawrence Berkeley National Lab., CA (United States)

    1997-02-01

    It is commonly assumed that the large number of projections for single-axis tomography precludes its application to most beam-labile specimens. However, Hegerl and Hoppe have pointed out that the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. Thus a statistically significant 3-D image can be computed from statistically insignificant projections, as along as the total dosage that is distributed among these projections is high enough that it would have resulted in a statistically significant projection, if applied to only one image. We have tested this critical theorem by simulating the tomographic reconstruction of a realistic 3-D model created from an electron micrograph. The simulations verify the basic conclusions of high absorption, signal-dependent noise, varying specimen contrast and missing angular range. Furthermore, the simulations demonstrate that individual projections in the series of fractionated-dose images can be aligned by cross-correlation because they contain significant information derived from the summation of features from different depths in the structure. This latter information is generally not useful for structural interpretation prior to 3-D reconstruction, owing to the complexity of most specimens investigated by single-axis tomography. These results, in combination with dose estimates for imaging single voxels and measurements of radiation damage in the electron microscope, demonstrate that it is feasible to use single-axis tomography with soft X-ray microscopy of frozen-hydrated specimens.

  16. Dose fractionation theorem in 3-D reconstruction (tomography)

    International Nuclear Information System (INIS)

    Glaeser, R.M.

    1997-01-01

    It is commonly assumed that the large number of projections for single-axis tomography precludes its application to most beam-labile specimens. However, Hegerl and Hoppe have pointed out that the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. Thus a statistically significant 3-D image can be computed from statistically insignificant projections, as along as the total dosage that is distributed among these projections is high enough that it would have resulted in a statistically significant projection, if applied to only one image. We have tested this critical theorem by simulating the tomographic reconstruction of a realistic 3-D model created from an electron micrograph. The simulations verify the basic conclusions of high absorption, signal-dependent noise, varying specimen contrast and missing angular range. Furthermore, the simulations demonstrate that individual projections in the series of fractionated-dose images can be aligned by cross-correlation because they contain significant information derived from the summation of features from different depths in the structure. This latter information is generally not useful for structural interpretation prior to 3-D reconstruction, owing to the complexity of most specimens investigated by single-axis tomography. These results, in combination with dose estimates for imaging single voxels and measurements of radiation damage in the electron microscope, demonstrate that it is feasible to use single-axis tomography with soft X-ray microscopy of frozen-hydrated specimens

  17. 3D reconstruction of coronary arteries from 2D angiographic projections using non-uniform rational basis splines (NURBS for accurate modelling of coronary stenoses.

    Directory of Open Access Journals (Sweden)

    Francesca Galassi

    Full Text Available Assessment of coronary stenosis severity is crucial in clinical practice. This study proposes a novel method to generate 3D models of stenotic coronary arteries, directly from 2D coronary images, and suitable for immediate assessment of the stenosis severity.From multiple 2D X-ray coronary arteriogram projections, 2D vessels were extracted. A 3D centreline was reconstructed as intersection of surfaces from corresponding branches. Next, 3D luminal contours were generated in a two-step process: first, a Non-Uniform Rational B-Spline (NURBS circular contour was designed and, second, its control points were adjusted to interpolate computed 3D boundary points. Finally, a 3D surface was generated as an interpolation across the control points of the contours and used in the analysis of the severity of a lesion. To evaluate the method, we compared 3D reconstructed lesions with Optical Coherence Tomography (OCT, an invasive imaging modality that enables high-resolution endoluminal visualization of lesion anatomy.Validation was performed on routine clinical data. Analysis of paired cross-sectional area discrepancies indicated that the proposed method more closely represented OCT contours than conventional approaches in luminal surface reconstruction, with overall root-mean-square errors ranging from 0.213mm2 to 1.013mm2, and maximum error of 1.837mm2. Comparison of volume reduction due to a lesion with corresponding FFR measurement suggests that the method may help in estimating the physiological significance of a lesion.The algorithm accurately reconstructed 3D models of lesioned arteries and enabled quantitative assessment of stenoses. The proposed method has the potential to allow immediate analysis of the stenoses in clinical practice, thereby providing incremental diagnostic and prognostic information to guide treatments in real time and without the need for invasive techniques.

  18. 3DVEM Software Modules for Efficient Management of Point Clouds and Photorealistic 3d Models

    Science.gov (United States)

    Fabado, S.; Seguí, A. E.; Cabrelles, M.; Navarro, S.; García-De-San-Miguel, D.; Lerma, J. L.

    2013-07-01

    Cultural heritage managers in general and information users in particular are not usually used to deal with high-technological hardware and software. On the contrary, information providers of metric surveys are most of the times applying latest developments for real-life conservation and restoration projects. This paper addresses the software issue of handling and managing either 3D point clouds or (photorealistic) 3D models to bridge the gap between information users and information providers as regards the management of information which users and providers share as a tool for decision-making, analysis, visualization and management. There are not many viewers specifically designed to handle, manage and create easily animations of architectural and/or archaeological 3D objects, monuments and sites, among others. 3DVEM - 3D Viewer, Editor & Meter software will be introduced to the scientific community, as well as 3DVEM - Live and 3DVEM - Register. The advantages of managing projects with both sets of data, 3D point cloud and photorealistic 3D models, will be introduced. Different visualizations of true documentation projects in the fields of architecture, archaeology and industry will be presented. Emphasis will be driven to highlight the features of new userfriendly software to manage virtual projects. Furthermore, the easiness of creating controlled interactive animations (both walkthrough and fly-through) by the user either on-the-fly or as a traditional movie file will be demonstrated through 3DVEM - Live.

  19. ATLAS & Google — "Data Ocean" R&D Project

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    ATLAS is facing several challenges with respect to their computing requirements for LHC Run-3 (2020-2023) and HL-LHC runs (2025-2034). The challenges are not specific for ATLAS or/and LHC, but common for HENP computing community. Most importantly, storage continues to be the driving cost factor and at the current growth rate cannot absorb the increased physics output of the experiment. Novel computing models with a more dynamic use of storage and computing resources need to be considered. This project aims to start an R&D project for evaluating and adopting novel IT technologies for HENP computing. ATLAS and Google plan to launch an R&D project to integrate Google cloud resources (Storage and Compute) to the ATLAS distributed computing environment. After a series of teleconferences, a face-to-face brainstorming meeting in Denver, CO at the Supercomputing 2017 conference resulted in this proposal for a first prototype of the "Data Ocean" project. The idea is threefold: (a) to allow ATLAS to explore the...

  20. Advantages of using 3D design tools in the nuclear power plants projects; Ventajas del uso de herramientas de diseno 3D en los proyectos de centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, P.; Melendro, J.; Gomez, A.; Hermana, I.

    2011-07-01

    It there is anything that distinguished Iberdrola Ingeneria y Construccion, as part of the Iberdrola Group, it is its firm commitment to innovation and continuous improvement. This is the philosophy that led the company to its interest in three-dimensional design tools back when they were in an early stage of development : very little international implementation, lack of integration with other applications, absence of previous experiences to understand the best possible configuration for each case, etc. Nevertheless, the company was able to see the tremendous advantage of having a construction program in the early months of a project- a detailed program that could predict, and therefore avoid, the problems that, if not anticipated, would arise in the construction phase when they result in higher costs, longer time frames and a multitude of complications. This is precisely what 3D design tools offer prediction and this has been proven in the latest combined cycle projects executed with these tools. A project executed without errors not only decreases cost and time overruns, but also necessarily increases the quality of the end result. Efficiency and quality: these are both basic goals of Iberdrola Ingenieria y Construccion. The knowledge of and skill in the use of these tools have grown at the same time that their development has reached increasingly higher levels. As a result, Iberdrola Ingenieria y Conctruccion now has intensive experience in the use of 3D design tools and is preprared for the future challenges posed by these tools, the capabilities of which have attained such heights that it is possible to take on one of the most technically challenging projects that exists a nuclear power plant. And we are ready. (Author)

  1. Comparison of calibration strategies for optical 3D scanners based on structured light projection using a new evaluation methodology

    Science.gov (United States)

    Bräuer-Burchardt, Christian; Ölsner, Sandy; Kühmstedt, Peter; Notni, Gunther

    2017-06-01

    In this paper a new evaluation strategy for optical 3D scanners based on structured light projection is introduced. It can be used for the characterization of the expected measurement accuracy. Compared to the procedure proposed in the VDI/VDE guidelines for optical 3D measurement systems based on area scanning it requires less effort and provides more impartiality. The methodology is suitable for the evaluation of sets of calibration parameters, which mainly determine the quality of the measurement result. It was applied to several calibrations of a mobile stereo camera based optical 3D scanner. The performed calibrations followed different strategies regarding calibration bodies and arrangement of the observed scene. The results obtained by the different calibration strategies are discussed and suggestions concerning future work on this area are given.

  2. Benefits From R and D For D and D Projects Preparation

    International Nuclear Information System (INIS)

    Georges, Christine; Boucher, Lionel; Charton, Frederic; Soulabaille, Yves

    2016-01-01

    CEA (French Alternative Energies and Atomic Energy Commission) is both the operator of important nuclear facilities all over the nuclear cycle, in charge of major new built or Decommissioning and Dismantling (D and D) projects and a R and D group with dynamic policy of technology transfer. The position of CEA in D and D is unique because of the number and the wide diversity of facilities under decommissioning, with some high level of contamination. Innovative solutions are being developed in 6 main axes to protect the operators, to minimize the overall costs and the volumes of waste, especially used when preparing D and D operations: Investigations in the facilities, Radiological measurement of waste, Technologies for hostile environment, Decontamination of soils and structures, Waste treatment and conditioning and Methods and Information Technology (IT) Tools for project and waste management. The last developments are shown and examples of industrial applications given. CEA is willing to share actions in partnership with other operators or with industrials dealing with the same problems to solve. (authors)

  3. Reduced aliasing artifacts using shaking projection k-space sampling trajectory

    Science.gov (United States)

    Zhu, Yan-Chun; Du, Jiang; Yang, Wen-Chao; Duan, Chai-Jie; Wang, Hao-Yu; Gao, Song; Bao, Shang-Lian

    2014-03-01

    Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T2 imaging. They are less sensitive to flow and motion artifacts, and support fast imaging with short echo times. However, aliasing and streaking artifacts are two main sources which degrade radial imaging quality. For a given fixed number of k-space projections, data distributions along radial and angular directions will influence the level of aliasing and streaking artifacts. Conventional radial k-space sampling trajectory introduces an aliasing artifact at the first principal ring of point spread function (PSF). In this paper, a shaking projection (SP) k-space sampling trajectory was proposed to reduce aliasing artifacts in MR images. SP sampling trajectory shifts the projection alternately along the k-space center, which separates k-space data in the azimuthal direction. Simulations based on conventional and SP sampling trajectories were compared with the same number projections. A significant reduction of aliasing artifacts was observed using the SP sampling trajectory. These two trajectories were also compared with different sampling frequencies. A SP trajectory has the same aliasing character when using half sampling frequency (or half data) for reconstruction. SNR comparisons with different white noise levels show that these two trajectories have the same SNR character. In conclusion, the SP trajectory can reduce the aliasing artifact without decreasing SNR and also provide a way for undersampling reconstruction. Furthermore, this method can be applied to three-dimensional (3D) hybrid or spherical radial k-space sampling for a more efficient reduction of aliasing artifacts.

  4. Reduced aliasing artifacts using shaking projection k-space sampling trajectory

    International Nuclear Information System (INIS)

    Zhu Yan-Chun; Yang Wen-Chao; Wang Hao-Yu; Gao Song; Bao Shang-Lian; Du Jiang; Duan Chai-Jie

    2014-01-01

    Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T2 imaging. They are less sensitive to flow and motion artifacts, and support fast imaging with short echo times. However, aliasing and streaking artifacts are two main sources which degrade radial imaging quality. For a given fixed number of k-space projections, data distributions along radial and angular directions will influence the level of aliasing and streaking artifacts. Conventional radial k-space sampling trajectory introduces an aliasing artifact at the first principal ring of point spread function (PSF). In this paper, a shaking projection (SP) k-space sampling trajectory was proposed to reduce aliasing artifacts in MR images. SP sampling trajectory shifts the projection alternately along the k-space center, which separates k-space data in the azimuthal direction. Simulations based on conventional and SP sampling trajectories were compared with the same number projections. A significant reduction of aliasing artifacts was observed using the SP sampling trajectory. These two trajectories were also compared with different sampling frequencies. A SP trajectory has the same aliasing character when using half sampling frequency (or half data) for reconstruction. SNR comparisons with different white noise levels show that these two trajectories have the same SNR character. In conclusion, the SP trajectory can reduce the aliasing artifact without decreasing SNR and also provide a way for undersampling reconstruction. Furthermore, this method can be applied to three-dimensional (3D) hybrid or spherical radial k-space sampling for a more efficient reduction of aliasing artifacts

  5. In Depth: Interactive Copyright Education for 3D Objects

    Directory of Open Access Journals (Sweden)

    Camille Thomas

    2018-03-01

    Full Text Available The growth of makerspaces and 3D services in libraries means new opportunities to utilize library expertise, partnerships, and exemptions to inform patrons about copyright in creative environments. Wide access to 3D printing, trademarks, and patents are relevant topics, but this paper only focuses on copyright. Little to no literature has been produced about how to educate makers about copyright for 3D objects. This paper will present a framework to encourage creators of 3D objects to analyze and interpret copyright information for their own purposes. It also discusses the process of designing and embedding learning tools into the database for SHAPES, a project for inter-library loans of 3D renderings. NOTE: New information about the methods and progress of this project has been added since the Kraemer Copyright Conference.

  6. Tailoring engineering activities to D and D projects - 16056

    International Nuclear Information System (INIS)

    Negin, Charles A.; Urland, Charles S.; Szilagyi, Andrew P.; Collazo, Yvette T.; Santos, Joseph K.; Gladden, John B.

    2009-01-01

    Engineering is an important element of Deactivation and Decommissioning (D and D) project technical planning, scheduling, estimating, and execution. Understanding the scope of engineering and related design, deciding when in a project's schedule these activities should be conducted, and specifying the products to be generated from each engineering task are important management functions. These subjects are addressed in a guidance report developed by the U.S. Department of Energy (DOE) described in this paper. (authors)

  7. VLC-beacon detection with an under-sampled ambient light sensor

    Science.gov (United States)

    Green, Jacob; Pérez-Olivas, Huetzin; Martínez-Díaz, Saúl; García-Márquez, Jorge; Domínguez-González, Carlos; Santiago-Montero, Raúl; Guan, Hongyu; Rozenblat, Marc; Topsu, Suat

    2017-08-01

    LEDs will replace in a near future the current worldwide lighting mainly due to their low production-cost and energy-saving assets. Visible light communications (VLC) will turn gradually the existing lighting network into a communication network. Nowadays VLC transceivers can be found in some commercial centres in Europe; some of them broadcast continuously an identification tag that contains its coordinate position. In such a case, the transceiver acts as a geolocation beacon. Nevertheless, mobile transceivers represent a challenge in the VLC communication chain, as smartphones have not integrated yet a VLC customized detection stage. In order to make current smartphones capable to detect VLC broadcasted signals, their Ambient Light Sensor (ALS) is adapted as a VLC detector. For this to be achieved, lighting transceivers need to adapt their modulation scheme. For instance, frequencies representing start bit, 1, and 0 logic values can be set to avoid flicker from illumination and to permit detecting the under-sampled signal. Decoding the signal requires a multiple steps real-time signal processing as shown here.

  8. Wearable 3D measurement

    Science.gov (United States)

    Manabe, Yoshitsugu; Imura, Masataka; Tsuchiya, Masanobu; Yasumuro, Yoshihiro; Chihara, Kunihiro

    2003-01-01

    Wearable 3D measurement realizes to acquire 3D information of an objects or an environment using a wearable computer. Recently, we can send voice and sound as well as pictures by mobile phone in Japan. Moreover it will become easy to capture and send data of short movie by it. On the other hand, the computers become compact and high performance. And it can easy connect to Internet by wireless LAN. Near future, we can use the wearable computer always and everywhere. So we will be able to send the three-dimensional data that is measured by wearable computer as a next new data. This paper proposes the measurement method and system of three-dimensional data of an object with the using of wearable computer. This method uses slit light projection for 3D measurement and user"s motion instead of scanning system.

  9. Creating computer aided 3D model of spleen and kidney based based on Visible Human Project

    International Nuclear Information System (INIS)

    Aldur, Muhammad M.

    2005-01-01

    To investigate the efficacy of computer aided 3-dimensional (3D) reconstruction technique on visualization and modeling of gross anatomical structures with an affordable methodology applied on the spleen and kidney. From The Visible Human Project Dataset cryosection images, developed by the National Library of Medicine, the spleen and kidney sections were preferred to be used due to their highly distinct contours. The software used for the reconstruction were Surf Driver 3.5.3 for Mac and Cinema 4D X L version 7.1 for Mac OS X. This study was carried out in May 2004 at the Department of Anatomy, Hacettepe University, Ankara, Turkey. As a result of this study, it is determined that these 2 programs could be effectively used both for 3D modeling of the mentioned organs and volumetric analyses on these models. It is also seen that it is possible to hold the physical models of these gross anatomical digital ones with stereolithography technique by means of the data exchange file format provided by the program and present such images as anaglyph. Surf Driver 3.5.3 for Mac OS and Cinema 4 DXL version 7.1 for Mac OS X can be used effectively for reconstruction of gross anatomical structures from serial parallel sections with distinct contours such as spleen and kidney and the animation of models. These software constitute a highly effective way of getting volumetric calculations, spatial relations and morphometrical measurements of reconstructed structures. (author)

  10. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  11. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  12. The use of 3D contrast-enhanced CT reconstructions to project images of vascular rings and coarctation of the aorta.

    Science.gov (United States)

    Di Sessa, Thomas G; Di Sessa, Peter; Gregory, Bill; Vranicar, Mark

    2009-01-01

    Aortic arch and pulmonary artery anomalies make up a group of vascular structures that have complex three-dimensional (3D) shapes. Tortuosity as well as hypoplasia or atresia of segments of the aortic arch or pulmonary artery makes the conventional two-dimensional (2D) imaging difficult. Nine patients with native coarctation or recoarctation and 4 patients with a vascular ring had a CT scan as a part of their clinical evaluation. There were 7 males. The mean age was 11.7 years. (range 19 days to 29 years) The mean weight was 22.7 kg (range 3.3-139.0 kg). The dicom data from contrast CT scans were converted by the Amira software package into a 3D image. The areas of interest were selected. The images were then projected in 3D on a standard video monitor and could be rotated 360 degrees in any dimension. Adequate CT scans and 3D reconstructions were obtained in 12 of 13 patients. There were 85-1,044 slices obtained in the adequate studies. We could not reconstruct a 3D image from a patient's CT scan that had only 22 slices. The anatomy defined by 3D was compared to 2D CT imaging and confirmed by cardiac catheterization or direct visualization in the operating room in the 12 patients with adequate 3D reconstructions. In 5 of 12 patients, 3D reconstructions provided valuable spatial information not observed in the conventional 2D scans. We believe that 3D reconstruction of contrast-enhanced CT scans of these complex structures provides additional valuable information that is helpful in the decision-making process.

  13. Breast Radiation Dose With CESM Compared With 2D FFDM and 3D Tomosynthesis Mammography.

    Science.gov (United States)

    James, Judy R; Pavlicek, William; Hanson, James A; Boltz, Thomas F; Patel, Bhavika K

    2017-02-01

    We aimed to compare radiation dose received during contrast-enhanced spectral mammography (CESM) using high- and low-energy projections with radiation dose received during 2D full field digital mammography (FFDM) and 3D tomosynthesis on phantoms and patients with varying breast thickness and density. A single left craniocaudal projection was chosen to determine the doses for 6214 patients who underwent 2D FFDM, 3662 patients who underwent 3D tomosynthesis, and 173 patients who underwent CESM in this retrospective study. Dose measurements were also collected in phantoms with composition mimicking nondense and dense breast tissue. Average glandular dose (AGD) ± SD was 3.0 ± 1.1 mGy for CESM exposures at a mean breast thickness of 63 mm. At this thickness, the dose was 2.1 mGy from 2D FFDM and 2.5 mGy from 3D tomosynthesis. The nondense phantom had a mean AGD of 1.0 mGy with 2D FFDM, 1.3 mGy with 3D tomosynthesis, and 1.6 mGy with CESM. The dense breast phantom had a mean AGD of 1.3 mGy with 2D FFDM, 1.4 mGy with 3D tomosynthesis, and 2.1 mGy with CESM. At a compressed thickness of 4.5 cm, radiation exposure from CESM was approximately 25% higher in dense breast phantoms than in nondense breast phantoms. The dose in the dense phantom at a compressed thickness of 6 cm was approximately 42% higher than the dose in the nondense phantom at a compressed thickness of 4.5 cm. CESM was found to increase AGD at a mean breast thickness of 63 mm by approximately 0.9 mGy and 0.5 mGy compared with 2D FFDM and 3D tomosynthesis, respectively. Of note, CESM provides a standard image (similar to 2D FFDM) that is obtained using the low-energy projection. Overall, the AGD from CESM falls below the dose limit of 3 mGy set by Mammography Quality Standards Act regulations.

  14. The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models

    Science.gov (United States)

    Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain

    2014-05-01

    The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail

  15. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard

    2004-01-01

    . In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality...... and shadowing effects or with weather phenomena serving a level of realism and providing depth cues. The rendered objects and scenes are graphically accessible through the interface where immersive or non-immersive monitors in different sizes and shapes are relevant. Through the user interface, users can...

  16. 3D FaceCam: a fast and accurate 3D facial imaging device for biometrics applications

    Science.gov (United States)

    Geng, Jason; Zhuang, Ping; May, Patrick; Yi, Steven; Tunnell, David

    2004-08-01

    Human faces are fundamentally three-dimensional (3D) objects, and each face has its unique 3D geometric profile. The 3D geometric features of a human face can be used, together with its 2D texture, for rapid and accurate face recognition purposes. Due to the lack of low-cost and robust 3D sensors and effective 3D facial recognition (FR) algorithms, almost all existing FR systems use 2D face images. Genex has developed 3D solutions that overcome the inherent problems in 2D while also addressing limitations in other 3D alternatives. One important aspect of our solution is a unique 3D camera (the 3D FaceCam) that combines multiple imaging sensors within a single compact device to provide instantaneous, ear-to-ear coverage of a human face. This 3D camera uses three high-resolution CCD sensors and a color encoded pattern projection system. The RGB color information from each pixel is used to compute the range data and generate an accurate 3D surface map. The imaging system uses no moving parts and combines multiple 3D views to provide detailed and complete 3D coverage of the entire face. Images are captured within a fraction of a second and full-frame 3D data is produced within a few seconds. This described method provides much better data coverage and accuracy in feature areas with sharp features or details (such as the nose and eyes). Using this 3D data, we have been able to demonstrate that a 3D approach can significantly improve the performance of facial recognition. We have conducted tests in which we have varied the lighting conditions and angle of image acquisition in the "field." These tests have shown that the matching results are significantly improved when enrolling a 3D image rather than a single 2D image. With its 3D solutions, Genex is working toward unlocking the promise of powerful 3D FR and transferring FR from a lab technology into a real-world biometric solution.

  17. Getting started in 3D with Maya

    CERN Document Server

    Watkins, Adam

    2012-01-01

    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  18. The business impact and value of 3-D seismic

    International Nuclear Information System (INIS)

    Aylor, W.K.

    1996-01-01

    3-D Seismic has had a profound and lasting impact on the hydrocarbon exploration and production industry. It is a technology which is often excellent at assessing the risk associated with trap definition, seal and reservoir distribution, the very parameters which are the most critical to optimizing the economics associated with E and P projects. This paper discusses Amoco Corporation's experience with 3-D Seismic when used for new field rate acceleration, older field extension, and wildcat exploration. Its emphasis is on assessing the value added by 3-D by reviewing recent E and P experiences in a post-appraisal mode and then in applying the lessons learned from these analyses and case histories to potential new projects. This work is significant because it first assesses the impact 3-D has had on a large number of business situations at Amoco; that is, it is based on data collected on159 3-D surveys acquired at Amoco between 1991--1994. Second, it uses the data collected from these surveys and applies the business improvements observed in the data to typical international business opportunities to quantify, in expected value $ terms, the value that the technology brings to an average project. Finally, it looks at project economics not only from an oil company perspective, but from the standpoint of a host government, with a discussion of insights and implications of the data, economics and techniques utilized

  19. WP5 Evaluation: D54-D55 Evaluation Results V2 (V3)

    NARCIS (Netherlands)

    Van Rosmalen, Peter

    2011-01-01

    Van Rosmalen, P. (2010, 19 May). WP5 Evaluation: D54-D55 Evaluation Results V2 (V3). Presentation at idSpace Final Review, Heerlen, The Netherlands: Open University of the Netherlands. idSpace-project.

  20. 3D-shape of objects with straight line-motion by simultaneous projection of color coded patterns

    Science.gov (United States)

    Flores, Jorge L.; Ayubi, Gaston A.; Di Martino, J. Matías; Castillo, Oscar E.; Ferrari, Jose A.

    2018-05-01

    In this work, we propose a novel technique to retrieve the 3D shape of dynamic objects by the simultaneous projection of a fringe pattern and a homogeneous light pattern which are both coded in two of the color channels of a RGB image. The fringe pattern, red channel, is used to retrieve the phase by phase-shift algorithms with arbitrary phase-step, while the homogeneous pattern, blue channel, is used to match pixels from the test object in consecutive images, which are acquired at different positions, and thus, to determine the speed of the object. The proposed method successfully overcomes the standard requirement of projecting fringes of two different frequencies; one frequency to extract object information and the other one to retrieve the phase. Validation experiments are presented.

  1. Design Application Translates 2-D Graphics to 3-D Surfaces

    Science.gov (United States)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  2. TRANSITION FROM 2D TO 3D WITH GEOGEBRA

    Directory of Open Access Journals (Sweden)

    MARIA MIHAILOVA

    2014-12-01

    Full Text Available This article presents the definition of projection plane, its importance for the geometry constructions used in civil engineering and comparative analysis of three opportunities for creating a three dimensional basis, used in drawing such a plane. First method consists of transforming affine and orthonormal coordinates and its application in GeoGebra is presented. Second method, using combination of spherical and polar coordinates in space, is introduced. The third suggested method is an application of descriptive geometry for transforming 2D to 3D and a new method of forming a plane of projection, which will be used later in the reviewed example below. The example shows how GeoGebra software can be used in technical drawing used in civil engineering.

  3. Species undersampling in tropical bat surveys: effects on emerging biodiversity patterns.

    Science.gov (United States)

    Meyer, Christoph F J; Aguiar, Ludmilla M S; Aguirre, Luis F; Baumgarten, Julio; Clarke, Frank M; Cosson, Jean-François; Estrada Villegas, Sergio; Fahr, Jakob; Faria, Deborah; Furey, Neil; Henry, Mickaël; Jenkins, Richard K B; Kunz, Thomas H; Cristina MacSwiney González, M; Moya, Isabel; Pons, Jean-Marc; Racey, Paul A; Rex, Katja; Sampaio, Erica M; Stoner, Kathryn E; Voigt, Christian C; von Staden, Dietrich; Weise, Christa D; Kalko, Elisabeth K V

    2015-01-01

    Undersampling is commonplace in biodiversity surveys of species-rich tropical assemblages in which rare taxa abound, with possible repercussions for our ability to implement surveys and monitoring programmes in a cost-effective way. We investigated the consequences of information loss due to species undersampling (missing subsets of species from the full species pool) in tropical bat surveys for the emerging patterns of species richness (SR) and compositional variation across sites. For 27 bat assemblage data sets from across the tropics, we used correlations between original data sets and subsets with different numbers of species deleted either at random, or according to their rarity in the assemblage, to assess to what extent patterns in SR and composition in data subsets are congruent with those in the initial data set. We then examined to what degree high sample representativeness (r ≥ 0·8) was influenced by biogeographic region, sampling method, sampling effort or structural assemblage characteristics. For SR, correlations between random subsets and original data sets were strong (r ≥ 0·8) with moderate (ca. 20%) species loss. Bias associated with information loss was greater for species composition; on average ca. 90% of species in random subsets had to be retained to adequately capture among-site variation. For nonrandom subsets, removing only the rarest species (on average c. 10% of the full data set) yielded strong correlations (r > 0·95) for both SR and composition. Eliminating greater proportions of rare species resulted in weaker correlations and large variation in the magnitude of observed correlations among data sets. Species subsets that comprised ca. 85% of the original set can be considered reliable surrogates, capable of adequately revealing patterns of SR and temporal or spatial turnover in many tropical bat assemblages. Our analyses thus demonstrate the potential as well as limitations for reducing survey effort and streamlining

  4. 3D Stereoscopic Visualization of Fenestrated Stent Grafts

    International Nuclear Information System (INIS)

    Sun Zhonghua; Squelch, Andrew; Bartlett, Andrew; Cunningham, Kylie; Lawrence-Brown, Michael

    2009-01-01

    The purpose of this study was to present a technique of stereoscopic visualization in the evaluation of patients with abdominal aortic aneurysm treated with fenestrated stent grafts compared with conventional 2D visualizations. Two patients with abdominal aortic aneurysm undergoing fenestrated stent grafting were selected for inclusion in the study. Conventional 2D views including axial, multiplanar reformation, maximum-intensity projection, and volume rendering and 3D stereoscopic visualizations were assessed by two experienced reviewers independently with regard to the treatment outcomes of fenestrated repair. Interobserver agreement was assessed with Kendall's W statistic. Multiplanar reformation and maximum-intensity projection visualizations were scored the highest in the evaluation of parameters related to the fenestrated stent grafting, while 3D stereoscopic visualization was scored as valuable in the evaluation of appearance (any distortions) of the fenestrated stent. Volume rendering was found to play a limited role in the follow-up of fenestrated stent grafting. 3D stereoscopic visualization adds additional information that assists endovascular specialists to identify any distortions of the fenestrated stents when compared with 2D visualizations.

  5. Advancement of 31P Magnetic Resonance Spectroscopy Using GRAPPA Reconstruction on a 3D Volume

    Science.gov (United States)

    Clevenger, Tony

    The overall objective of this research is to improve currently available metabolic imaging techniques for clinical use in monitoring and predicting treatment response to radiation therapy in liver cancer. Liver metabolism correlates with inflammatory and neoplastic liver diseases, which alter the intracellular concentration of phosphorus- 31 (31P) metabolites [1]. It is assumed that such metabolic changes occur prior to physical changes of the tissue. Therefore, information on regional changes of 31P metabolites in the liver, obtained by Magnetic Resonance Spectroscopic Imaging (MRSI) [1,2], can help in diagnosis and follow-up of various liver diseases. Specifically, there appears to be an immediate need of this technology for both the assessment of tumor response in patients with Hepatocellular Carcinoma (HCC) treated with Stereotactic Body Radiation Therapy (SBRT) [3--5], as well as assessment of radiation toxicity, which can result in worsening liver dysfunction [6]. Pilot data from our lab has shown that 31P MRSI has the potential to identify treatment response five months sooner than conventional methods [7], and to assess the biological response of liver tissue to radiation 24 hours post radiation therapy [8]. While this data is very promising, commonly occurring drawbacks for 31P MRSI are patient discomfort due to long scan times and prone positioning within the scanner, as well as reduced data quality due to patient motion and respiration. To further advance the full potential of 31P MRSI as a clinical diagnostic tool in the management of liver cancer, this PhD research project had the following aims: I) Reduce the long acquisition time of 3D 31P MRS by formulating and imple- menting an appropriate GRAPPA undersampling scheme and reconstruction on a clinical MRI scanner II) Testing and quantitative validation of GRAPPA reconstruction on 3D 31P MRSI on developmental phantoms and healthy volunteers At completion, this work should considerably advance 31P MRSI

  6. R&D Project Valuation Considering Changes of Economic Environment: A Case of a Pharmaceutical R&D Project

    Directory of Open Access Journals (Sweden)

    Jung Ho Park

    2018-03-01

    Full Text Available R&D project valuation is important for effective R&D portfolio management through decision making, related to the firm’s R&D productivity, sustainable management. In particular, scholars have emphasized the necessities of capturing option value in R&D and developed methods of real option valuation. However, despite suggesting various real option models, there are few studies on simultaneously employing mean-reverting stochastic process and Markov regime switching to describe the evolution of cash flow and to reflect time-varying parameters resulting from changes of economic environment. Therefore, we suggest a mean-reverting binomial lattice model under Markov regime switching and apply it to evaluate clinical development with project cases of the pharmaceutical industry. This study finds that decision making can be different according to the regime condition, thus the suggested model can capture risks caused by the uncertainty of the economic environment, represented by regime switching. Further, this study simulates the model according to rate parameter from 0.00 to 1.00 and risk-free interest rates for regimes 1 and 2 from ( r 1 = 4%, r 2 = 2% to ( r 1 = 7%, r 2 = 5%, and confirms the rigidity of the model. Therefore, in practice, the mean-reverting binomial lattice model under Markov regime switching proposed in this study for R&D project valuation contributes to assisting company R&D project managers make effective decision making considering current economic environment and future changes.

  7. 3D Digitisation and Visualisation of the Vače Situla

    Directory of Open Access Journals (Sweden)

    Gregor Vidmar

    2013-09-01

    Full Text Available EXTENDED ABSTRACT:The project of 3D digitisation and visualisation of the Vače situla was implemented at the beginning of 2011 in cooperation with the National Museum of Slovenia where the situla is kept and the company MFC.2 which, among other services, develops and implements 3 D digitisation and visualisation projects. The purpose of the project was to digitise and visualise a famous and precious piece of cultural heritage and to  1. show what modern 3D shape and texture scanning technologies allow us to do,  2. show how to ensure safety and reach high quality in digitising cultural heritage objects.  3. measure the added value of the 3 D visualisation of cultural heritage as a powerful tool for preservation, conservation, research, education, knowledge sharing and promotion of cultural heritage objects. Furthermore, the aims of the project were:  1. 3D capture of the shape and texture of the situla using the 3D scanning method.  2. 3D image of the situla and its details with expert descriptions.  3. 3D stereoscopic projection of the situla viewed with 3D glasses and with the possibility of controlling it remotely.  4. 3D animation giving professional interpretation of certain facts about the situla.  5. Public presentation of the project results on Slovenian cultural holiday, 8th February 2011, at the National Museum of Slovenia. The 3D capture of the shape and texture of the situla was carried out using the white light 3D scanning method followed by 3D flesh animation to show the object and its details. A touch screen was used to provide user access to the content. Reality based model enabled vertical rotation of the situla as well as the interactive display of individual engravings. By clicking a situla detail a photo with an extensive professional explanation of the scene was displayed in a new browser window. For attractive public presentation of the exhibition a 3D stereoscopic animation of the situla rotating and seemingly

  8. Immersive 3D geovisualisation in higher education

    Science.gov (United States)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2014-05-01

    Through geovisualisation we explore spatial data, we analyse it towards a specific questions, we synthesise results, and we present and communicate them to a specific audience (MacEachren & Kraak 1997). After centuries of paper maps, the means to represent and visualise our physical environment and its abstract qualities have changed dramatically since the 1990s - and accordingly the methods how to use geovisualisation in teaching. Whereas some people might still consider the traditional classroom as ideal setting for teaching and learning geographic relationships and its mapping, we used a 3D CAVE (computer-animated virtual environment) as environment for a problem-oriented learning project called "GEOSimulator". Focussing on this project, we empirically investigated, if such a technological advance like the CAVE make 3D visualisation, including 3D geovisualisation, not only an important tool for businesses (Abulrub et al. 2012) and for the public (Wissen et al. 2008), but also for educational purposes, for which it had hardly been used yet. The 3D CAVE is a three-sided visualisation platform, that allows for immersive and stereoscopic visualisation of observed and simulated spatial data. We examined the benefits of immersive 3D visualisation for geographic research and education and synthesized three fundamental technology-based visual aspects: First, the conception and comprehension of space and location does not need to be generated, but is instantaneously and intuitively present through stereoscopy. Second, optical immersion into virtual reality strengthens this spatial perception which is in particular important for complex 3D geometries. And third, a significant benefit is interactivity, which is enhanced through immersion and allows for multi-discursive and dynamic data exploration and knowledge transfer. Based on our problem-oriented learning project, which concentrates on a case study on flood risk management at the Wilde Weisseritz in Germany, a river

  9. Multichannel algorithm for fast 3D reconstruction

    International Nuclear Information System (INIS)

    Rodet, Thomas; Grangeat, Pierre; Desbat, Laurent

    2002-01-01

    Some recent medical imaging applications such as functional imaging (PET and SPECT) or interventional imaging (CT fluoroscopy) involve increasing amounts of data. In order to reduce the image reconstruction time, we develop a new fast 3D reconstruction algorithm based on a divide and conquer approach. The proposed multichannel algorithm performs an indirect frequential subband decomposition of the image f to be reconstructed (f=Σf j ) through the filtering of the projections Rf. The subband images f j are reconstructed on a downsampled grid without information suppression. In order to reduce the computation time, we do not backproject the null filtered projections and we downsample the number of projections according to the Shannon conditions associated with the subband image. Our algorithm is based on filtering and backprojection operators. Using the same algorithms for these basic operators, our approach is three and a half times faster than a classical FBP algorithm for a 2D image 512x512 and six times faster for a 3D image 32x512x512. (author)

  10. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes.

    Science.gov (United States)

    Zhong, Zichun; Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun; Mao, Weihua

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  11. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes

    Directory of Open Access Journals (Sweden)

    Zichun Zhong

    2016-01-01

    Full Text Available By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  12. Development and comparison of projection and image space 3D nodule insertion techniques

    Science.gov (United States)

    Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Samei, Ehsan

    2016-04-01

    This study aimed to develop and compare two methods of inserting computerized virtual lesions into CT datasets. 24 physical (synthetic) nodules of three sizes and four morphologies were inserted into an anthropomorphic chest phantom (LUNGMAN, KYOTO KAGAKU). The phantom was scanned (Somatom Definition Flash, Siemens Healthcare) with and without nodules present, and images were reconstructed with filtered back projection and iterative reconstruction (SAFIRE) at 0.6 mm slice thickness using a standard thoracic CT protocol at multiple dose settings. Virtual 3D CAD models based on the physical nodules were virtually inserted (accounting for the system MTF) into the nodule-free CT data using two techniques. These techniques include projection-based and image-based insertion. Nodule volumes were estimated using a commercial segmentation tool (iNtuition, TeraRecon, Inc.). Differences were tested using paired t-tests and R2 goodness of fit between the virtually and physically inserted nodules. Both insertion techniques resulted in nodule volumes very similar to the real nodules (values were all <0.97 for both insertion techniques. These data imply that these techniques can confidently be used as a means of inserting virtual nodules in CT datasets. These techniques can be instrumental in building hybrid CT datasets composed of patient images with virtually inserted nodules.

  13. The 3D cadastre prototype and pilot in the Russian Federation

    NARCIS (Netherlands)

    Vandysheva, N.; Sapelnikov, S.; Van Oosterom, P.J.M.; De Vries, M.E.; Spiering, B.; Wouters, R.; Hoogeveen, A.; Penkov, V.

    2012-01-01

    This paper presents the developed prototype and the planned pilot of the on-going project on 3D cadastre modelling in the Russian Federation. The aim of this project is to provide guidance in the development of 3D Cadastral registration and to create favourable legal and institutional conditions for

  14. Sensor performance as a function of sampling (d) and optical blur (Fλ)

    NARCIS (Netherlands)

    Bijl, P.; Hogervorst, M.A.

    2009-01-01

    Detector sampling and optical blur are two major factors affecting Target Acquisition (TA) performance with modern EO and IR systems. In order to quantify their relative significance, we simulated five realistic LWIR and MWIR sensors from very under-sampled (detector pitch d >> diffraction blur Fλ)

  15. Towards tracer dose reduction in PET studies: Simulation of dose reduction by retrospective randomized undersampling of list-mode data.

    Science.gov (United States)

    Gatidis, Sergios; Würslin, Christian; Seith, Ferdinand; Schäfer, Jürgen F; la Fougère, Christian; Nikolaou, Konstantin; Schwenzer, Nina F; Schmidt, Holger

    2016-01-01

    Optimization of tracer dose regimes in positron emission tomography (PET) imaging is a trade-off between diagnostic image quality and radiation exposure. The challenge lies in defining minimal tracer doses that still result in sufficient diagnostic image quality. In order to find such minimal doses, it would be useful to simulate tracer dose reduction as this would enable to study the effects of tracer dose reduction on image quality in single patients without repeated injections of different amounts of tracer. The aim of our study was to introduce and validate a method for simulation of low-dose PET images enabling direct comparison of different tracer doses in single patients and under constant influencing factors. (18)F-fluoride PET data were acquired on a combined PET/magnetic resonance imaging (MRI) scanner. PET data were stored together with the temporal information of the occurrence of single events (list-mode format). A predefined proportion of PET events were then randomly deleted resulting in undersampled PET data. These data sets were subsequently reconstructed resulting in simulated low-dose PET images (retrospective undersampling of list-mode data). This approach was validated in phantom experiments by visual inspection and by comparison of PET quality metrics contrast recovery coefficient (CRC), background-variability (BV) and signal-to-noise ratio (SNR) of measured and simulated PET images for different activity concentrations. In addition, reduced-dose PET images of a clinical (18)F-FDG PET dataset were simulated using the proposed approach. (18)F-PET image quality degraded with decreasing activity concentrations with comparable visual image characteristics in measured and in corresponding simulated PET images. This result was confirmed by quantification of image quality metrics. CRC, SNR and BV showed concordant behavior with decreasing activity concentrations for measured and for corresponding simulated PET images. Simulation of dose

  16. A new design and rationale for 3D orthogonally oversampled k-space trajectories.

    Science.gov (United States)

    Pipe, James G; Zwart, Nicholas R; Aboussouan, Eric A; Robison, Ryan K; Devaraj, Ajit; Johnson, Kenneth O

    2011-11-01

    A novel center-out 3D trajectory for sampling magnetic resonance data is presented. The trajectory set is based on a single Fermat spiral waveform, which is substantially undersampled in the center of k-space. Multiple trajectories are combined in a "stacked cone" configuration to give very uniform sampling throughout a "hub," which is very efficient in terms of gradient performance and uniform trajectory spacing. The fermat looped, orthogonally encoded trajectories (FLORET) design produces less gradient-efficient trajectories near the poles, so multiple orthogonal hub designs are shown. These multihub designs oversample k-space twice with orthogonal trajectories, which gives unique properties but also doubles the minimum scan time for critical sampling of k-space. The trajectory is shown to be much more efficient than the conventional stack of cones trajectory, and has nearly the same signal-to-noise ratio efficiency (but twice the minimum scan time) as a stack of spirals trajectory. As a center-out trajectory, it provides a shorter minimum echo time than stack of spirals, and its spherical k-space coverage can dramatically reduce Gibbs ringing. Copyright © 2011 Wiley Periodicals, Inc.

  17. Project Selection for NASA's R&D Programs

    Science.gov (United States)

    Jones, Harry

    2005-01-01

    The purpose of NASA s Research and Development (R&D) programs is to provide advanced human support technologies for the Exploration Systems Mission Directorate (ESMD). The new technologies must be sufficiently attractive and proven to be selectable for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are likely options for flight. The R&D programs must select an array of technology development projects, manage them, and either terminate or continue them, so as to maximize the delivered number of potentially usable advanced human support technologies. This paper proposes an effective project selection methodology to help manage NASA R&D project portfolios.

  18. Radiation exposure with 3D rotational angiography of the skull

    International Nuclear Information System (INIS)

    Gosch, D.; Deckert, F.; Schulz, T.; Kahn, T.; Kurze, W.; Patz, A.

    2006-01-01

    Purpose: determination and comparison of radiation exposure for examinations of the skull with unsubtracted 3D rotational angiography (3D RA) and 2D digital subtraction angiography (2D DSA). Materials and methods: measurements were carried out with a skull of an Alderson phantom for 3D RA and for 2D DSA in p.a. and lateral projections using an Innova 4100 angiography system with a digital flat panel detector from GE Healthcare. 45 thermoluminescent dosimeters TLD 100H from Harshaw were placed inside the phantom to measure organ doses. In addition the dose area product was recorded and the effective dose was calculated using the Monte Carlo program PCXMC. Results: for a biplanar DSA run (lateral and p.a. projection), the organ doses were 4 to 5 times higher and the effective dose was 4 times higher than for a 3D RA even though the number of images for the two DSA runs was only half of that for 3D RA. Conclusion: the radiation exposure for unsubtracted 3D RA using a flat panel detector is significantly lower than for biplanar DSA. Using 3D RA in place of 2D DSA can reduce the radiation exposure of patients in neuroradiology procedures. (orig.)

  19. 3D printing with RepRap cookbook

    CERN Document Server

    Salinas, Richard

    2014-01-01

    A systematic guide consisting of over 100 recipes which focus on helping you understand the process of 3D printing using RepRap machines. The book aims at providing professionals with a series of working recipes to help make their fuzzy notions into real, saleable projects/objects using 3D printing technology. This book is for novice designers and artists who own a RepRap-based 3D printer, have fundamental knowledge of its working, and who desire to gain better mastery of the printing process. For the more experienced user, it will provide a handy visual resource, with side-by-side comparisons

  20. The Digital Space Shuttle, 3D Graphics, and Knowledge Management

    Science.gov (United States)

    Gomez, Julian E.; Keller, Paul J.

    2003-01-01

    The Digital Shuttle is a knowledge management project that seeks to define symbiotic relationships between 3D graphics and formal knowledge representations (ontologies). 3D graphics provides geometric and visual content, in 2D and 3D CAD forms, and the capability to display systems knowledge. Because the data is so heterogeneous, and the interrelated data structures are complex, 3D graphics combined with ontologies provides mechanisms for navigating the data and visualizing relationships.

  1. 3D Data Acquisition Platform for Human Activity Understanding

    Science.gov (United States)

    2016-03-02

    SECURITY CLASSIFICATION OF: In this project, we incorporated motion capture devices, 3D vision sensors, and EMG sensors to cross validate...multimodality data acquisition, and address fundamental research problems of representation and invariant description of 3D data, human motion modeling and...applications of human activity analysis, and computational optimization of large-scale 3D data. The support for the acquisition of such research

  2. Brandenburg 3D - a comprehensive 3D Subsurface Model, Conception of an Infrastructure Node and a Web Application

    Science.gov (United States)

    Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim

    2014-05-01

    The Energiewende and the increasing scarcity of raw materials will lead to an intensified utilization of the subsurface in Germany. Within this context, geological 3D modeling is a fundamental approach for integrated decision and planning processes. Initiated by the development of the European Geospatial Infrastructure INSPIRE, the German State Geological Offices started digitizing their predominantly analog archive inventory. Until now, a comprehensive 3D subsurface model of Brandenburg did not exist. Therefore the project B3D strived to develop a new 3D model as well as a subsequent infrastructure node to integrate all geological and spatial data within the Geodaten-Infrastruktur Brandenburg (Geospatial Infrastructure, GDI-BB) and provide it to the public through an interactive 2D/3D web application. The functionality of the web application is based on a client-server architecture. Server-sided, all available spatial data is published through GeoServer. GeoServer is designed for interoperability and acts as the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) standard that provides the interface that allows requests for geographical features. In addition, GeoServer implements, among others, the high performance certified compliant Web Map Service (WMS) that serves geo-referenced map images. For publishing 3D data, the OGC Web 3D Service (W3DS), a portrayal service for three-dimensional geo-data, is used. The W3DS displays elements representing the geometry, appearance, and behavior of geographic objects. On the client side, the web application is solely based on Free and Open Source Software and leans on the JavaScript API WebGL that allows the interactive rendering of 2D and 3D graphics by means of GPU accelerated usage of physics and image processing as part of the web page canvas without the use of plug-ins. WebGL is supported by most web browsers (e.g., Google Chrome, Mozilla Firefox, Safari, and Opera). The web

  3. Feedback from D and D projects - Improvement through preparation

    International Nuclear Information System (INIS)

    Sykora, Alexandra; Arnold, Hans-Uwe; Clement, Gilles

    2016-01-01

    This paper describes feedback from AREVA's experience in all stages of decommissioning projects (from end of life to greenfield), focusing on the recommendations for initial actions to be taken early in the project and in the preparation phase. Such initiatives can be summarized in the following four points: (i) Build a strong and specific Decommissioning Team composed of the plant staff together with D and D specialists that shall take the lead and promote the culture change within the remaining staff; (ii) Insist on pre-work as well as real-time Radiological Characterization to optimize waste production; (iii) Develop a tailored Decommissioning Manual streamlined from the legacy Operation Manual (that is no longer appropriate); (iv) Replace the plant's legacy support systems (e.g. ventilation, water treatment, electricity, lighting etc.) with modular and lighter systems better fit for the D and D purpose and allowing to accelerate the cutting and knocking down ('straight backwards') operations. (authors)

  4. Recovering task fMRI signals from highly under-sampled data with low-rank and temporal subspace constraints.

    Science.gov (United States)

    Chiew, Mark; Graedel, Nadine N; Miller, Karla L

    2018-07-01

    Recent developments in highly accelerated fMRI data acquisition have employed low-rank and/or sparsity constraints for image reconstruction, as an alternative to conventional, time-independent parallel imaging. When under-sampling factors are high or the signals of interest are low-variance, however, functional data recovery can be poor or incomplete. We introduce a method for improving reconstruction fidelity using external constraints, like an experimental design matrix, to partially orient the estimated fMRI temporal subspace. Combining these external constraints with low-rank constraints introduces a new image reconstruction model that is analogous to using a mixture of subspace-decomposition (PCA/ICA) and regression (GLM) models in fMRI analysis. We show that this approach improves fMRI reconstruction quality in simulations and experimental data, focusing on the model problem of detecting subtle 1-s latency shifts between brain regions in a block-design task-fMRI experiment. Successful latency discrimination is shown at acceleration factors up to R = 16 in a radial-Cartesian acquisition. We show that this approach works with approximate, or not perfectly informative constraints, where the derived benefit is commensurate with the information content contained in the constraints. The proposed method extends low-rank approximation methods for under-sampled fMRI data acquisition by leveraging knowledge of expected task-based variance in the data, enabling improvements in the speed and efficiency of fMRI data acquisition without the loss of subtle features. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Analysis of 3D crack propagation by microfocus computed tomography

    International Nuclear Information System (INIS)

    Ao Bo; Chen Fuxing; Deng Cuizhen; Zeng Yabin

    2014-01-01

    The three-point bending test of notched specimens of 2A50 forging aluminum was performed by high frequency fatigue tester, and the surface cracks of different stages were analyzed and contrasted by SEM. The crack was reconstructed by microfocus computed tomography, and its size, position and distribution were visually displayed through 3D visualization. The crack propagation behaviors were researched through gray value and position of crack front of 2D CT images in two adjacent stages, and the results show that crack propagation is irregular. The projection image of crack was obtained if crack of two stages projected onto the reference plane respectively, a significant increase of new crack propagation was observed compared with the previous projection of crack, and the distribution curve of crack front of two stages was displayed. The 3D increment distribution of the crack front propagation was obtained through the 3D crack analysis of two stages. (authors)

  6. The future of 3D printing technology in biomedicine

    OpenAIRE

    Iraj Nabipour

    2015-01-01

    3D printing, one of the hottest cutting-edge interdisciplinary technologies, is projected to have revenue of $8.4 billion in 2020. #D printing technology will implement the concept of personalized medicine in medical healthcare industry and pharmaceutical fabrication. Organ printing, which it is defined as computer-aided, jet based 3D tissue-engineering of living human organs, is an interesting and challengeable field for 3D printing. Customized implants and prostheses can be produced in any ...

  7. A fast, accurate, and automatic 2D-3D image registration for image-guided cranial radiosurgery

    International Nuclear Information System (INIS)

    Fu Dongshan; Kuduvalli, Gopinath

    2008-01-01

    The authors developed a fast and accurate two-dimensional (2D)-three-dimensional (3D) image registration method to perform precise initial patient setup and frequent detection and correction for patient movement during image-guided cranial radiosurgery treatment. In this method, an approximate geometric relationship is first established to decompose a 3D rigid transformation in the 3D patient coordinate into in-plane transformations and out-of-plane rotations in two orthogonal 2D projections. Digitally reconstructed radiographs are generated offline from a preoperative computed tomography volume prior to treatment and used as the reference for patient position. A multiphase framework is designed to register the digitally reconstructed radiographs with the x-ray images periodically acquired during patient setup and treatment. The registration in each projection is performed independently; the results in the two projections are then combined and converted to a 3D rigid transformation by 2D-3D geometric backprojection. The in-plane transformation and the out-of-plane rotation are estimated using different search methods, including multiresolution matching, steepest descent minimization, and one-dimensional search. Two similarity measures, optimized pattern intensity and sum of squared difference, are applied at different registration phases to optimize accuracy and computation speed. Various experiments on an anthropomorphic head-and-neck phantom showed that, using fiducial registration as a gold standard, the registration errors were 0.33±0.16 mm (s.d.) in overall translation and 0.29 deg. ±0.11 deg. (s.d.) in overall rotation. The total targeting errors were 0.34±0.16 mm (s.d.), 0.40±0.2 mm (s.d.), and 0.51±0.26 mm (s.d.) for the targets at the distances of 2, 6, and 10 cm from the rotation center, respectively. The computation time was less than 3 s on a computer with an Intel Pentium 3.0 GHz dual processor

  8. A simple method for 3D lesion reconstruction from two projected angiographic images: implementation to a stereotactic radiotherapy treatment planning system

    International Nuclear Information System (INIS)

    Theodorou, K.; Kappas, C.; Gaboriaud, G.; Mazal, A.D.; Petrascu, O.; Rosenwald, J.C.

    1997-01-01

    Introduction: The most used imaging modality for diagnosis and localisation of arteriovenous malformations (AVMs) treated with stereotactic radiotherapy is angiography. The fact that the angiographic images are projected images imposes the need of the 3D reconstruction of the lesion. This, together with the 3D head anatomy from CT images could provide all the necessary information for stereotactic treatment planning. We have developed a method to combine the complementary information provided by angiography and 2D computerized tomography, matching the reconstructed AVM structure with the reconstructed head of the patient. Materials and methods: The ISIS treatment planning system, developed at Institute Curie, has been used for image acquisition, stereotactic localisation and 3D visualisation. A series of CT slices are introduced in the system as well as two orthogonal angiographic projected images of the lesion. A simple computer program has been developed for the 3D reconstruction of the lesion and for the superposition of the target contour on the CT slices of the head. Results and conclusions: In our approach we consider that the reconstruction can be made if the AVM is approximated with a number of adjacent ellipses. We assessed the method comparing the values of the reconstructed and the actual volumes of the target using linear regression analysis. For treatment planning purposes we overlapped the reconstructed AVM on the CT slices of the head. The above feature is to our knowledge a feature that the majority of the commercial stereotactic radiotherapy treatment planning system could not provide. The implementation of the method into ISIS TPS shows that we can reliably approximate and visualize the target volume

  9. 3D Geovisualization & Stylization to Manage Comprehensive and Participative Local Urban Plans

    Science.gov (United States)

    Brasebin, M.; Christophe, S.; Jacquinod, F.; Vinesse, A.; Mahon, H.

    2016-10-01

    3D geo-visualization is more and more used and appreciated to support public participation, and is generally used to present predesigned planned projects. Nevertheless, other participatory processes may benefit from such technology such as the elaboration of urban planning documents. In this article, we present one of the objectives of the PLU++ project: the design of a 3D geo-visualization system that eases the participation concerning local urban plans. Through a pluridisciplinary approach, it aims at covering the different aspects of such a system: the simulation of built configurations to represent regulation information, the efficient stylization of these objects to make people understand their meanings and the interaction between 3D simulation and stylization. The system aims at being adaptive according to the participation context and to the dynamic of the participation. It will offer the possibility to modify simulation results and the rendering styles of the 3D representations to support participation. The proposed 3D rendering styles will be used in a set of practical experiments in order to test and validate some hypothesis from past researches of the project members about 3D simulation, 3D semiotics and knowledge about uses.

  10. Virtual patient 3D dose reconstruction using in air EPID measurements and a back-projection algorithm for IMRT and VMAT treatments.

    Science.gov (United States)

    Olaciregui-Ruiz, Igor; Rozendaal, Roel; van Oers, René F M; Mijnheer, Ben; Mans, Anton

    2017-05-01

    At our institute, a transit back-projection algorithm is used clinically to reconstruct in vivo patient and in phantom 3D dose distributions using EPID measurements behind a patient or a polystyrene slab phantom, respectively. In this study, an extension to this algorithm is presented whereby in air EPID measurements are used in combination with CT data to reconstruct 'virtual' 3D dose distributions. By combining virtual and in vivo patient verification data for the same treatment, patient-related errors can be separated from machine, planning and model errors. The virtual back-projection algorithm is described and verified against the transit algorithm with measurements made behind a slab phantom, against dose measurements made with an ionization chamber and with the OCTAVIUS 4D system, as well as against TPS patient data. Virtual and in vivo patient dose verification results are also compared. Virtual dose reconstructions agree within 1% with ionization chamber measurements. The average γ-pass rate values (3% global dose/3mm) in the 3D dose comparison with the OCTAVIUS 4D system and the TPS patient data are 98.5±1.9%(1SD) and 97.1±2.9%(1SD), respectively. For virtual patient dose reconstructions, the differences with the TPS in median dose to the PTV remain within 4%. Virtual patient dose reconstruction makes pre-treatment verification based on deviations of DVH parameters feasible and eliminates the need for phantom positioning and re-planning. Virtual patient dose reconstructions have additional value in the inspection of in vivo deviations, particularly in situations where CBCT data is not available (or not conclusive). Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Studsvik`s fuel R and D projects

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M [Studsvik Nuclearr AB, Nykoping (Sweden)

    1997-08-01

    The report reviews some recently performed, ongoing and planned fuel R and D projects, executed by Studsvik Nuclear AB, a subsidiary of Studsvik AB. Data from these projects are used as experimental support for fuel modelling at high burnup. Much of Studsvik Nuclear`s R and D work has been concentrated on fuel testing, which can be made in the R2 test reactor with high precision under realistic water reactor conditions. This type of work started in the early 1960s. The fuel testing projects executed at Studsvik have been organized under three different types of sponsorship: International (multilateral) fuel projects: jointly sponsored internationally on a world-wide basis, with project information remaining restricted to the project participants throughout the project`s duration and for some pre-determined time after project completion; Bilateral fuel projects: sponsored by one single organization, or a few co-operating organizations, with project information remaining restricted to the sponsor, sometimes published later; in-house R and D work: sponsored by Studsvik Nuclear. The fuel testing activities can be divided into a number of well-defined steps as follows: Base irradiation, performed in a power reactor, or in Studsvik`s R2 test reactor; power ramping and/or other in-pile measurements, performed in Studsvik`s R2 test reactor. Non-destructive testing between different phases of an experiment, performed in Studsvik`s R2 reactor pool, or in Studsvik`s Hot Cell Laboratory; destructive post-irradiation examinations, performed in Studsvik`s Hot Cell Laboratory, or in the sponsor`s hot cell laboratory. 47 refs, 2 tabs.

  12. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging.

    Science.gov (United States)

    Yan, Hao; Zhen, Xin; Folkerts, Michael; Li, Yongbao; Pan, Tinsu; Cervino, Laura; Jiang, Steve B; Jia, Xun

    2014-07-01

    4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3-0.5 mm for patients 1-3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1-1.5 min per phase. High-quality 4D-CBCT imaging based

  13. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hao; Folkerts, Michael; Jiang, Steve B., E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu; Jia, Xun, E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 (United States); Zhen, Xin [Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515 (China); Li, Yongbao [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 and Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Pan, Tinsu [Department of Imaging Physics, The University of Texas, MD Anderson Cancer Center, Houston, Texas 77030 (United States); Cervino, Laura [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States)

    2014-07-15

    Purpose: 4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. Methods: The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. Results: The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3–0.5 mm for patients 1–3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1–1.5 min per phase

  14. Remote laboratory for phase-aided 3D microscopic imaging and metrology

    Science.gov (United States)

    Wang, Meng; Yin, Yongkai; Liu, Zeyi; He, Wenqi; Li, Boqun; Peng, Xiang

    2014-05-01

    In this paper, the establishment of a remote laboratory for phase-aided 3D microscopic imaging and metrology is presented. Proposed remote laboratory consists of three major components, including the network-based infrastructure for remote control and data management, the identity verification scheme for user authentication and management, and the local experimental system for phase-aided 3D microscopic imaging and metrology. The virtual network computer (VNC) is introduced to remotely control the 3D microscopic imaging system. Data storage and management are handled through the open source project eSciDoc. Considering the security of remote laboratory, the fingerprint is used for authentication with an optical joint transform correlation (JTC) system. The phase-aided fringe projection 3D microscope (FP-3DM), which can be remotely controlled, is employed to achieve the 3D imaging and metrology of micro objects.

  15. 3D Pit Stop Printing

    Science.gov (United States)

    Wright, Lael; Shaw, Daniel; Gaidds, Kimberly; Lyman, Gregory; Sorey, Timothy

    2018-01-01

    Although solving an engineering design project problem with limited resources or structural capabilities of materials can be part of the challenge, students making their own parts can support creativity. The authors of this article found an exciting solution: 3D printers are not only one of several tools for making but also facilitate a creative…

  16. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.

    Science.gov (United States)

    Chen, Yucong; Zhao, Junli; Deng, Qingqiong; Duan, Fuqing

    2017-01-01

    Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.

  17. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.

    Directory of Open Access Journals (Sweden)

    Yucong Chen

    Full Text Available Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF for the reference craniofacial model. Second, the thin-plate spline transform (TPST is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.

  18. Experiment for Integrating Dutch 3d Spatial Planning and Bim for Checking Building Permits

    Science.gov (United States)

    van Berlo, L.; Dijkmans, T.; Stoter, J.

    2013-09-01

    This paper presents a research project in The Netherlands in which several SMEs collaborated to create a 3D model of the National spatial planning information. This 2D information system described in the IMRO data standard holds implicit 3D information that can be used to generate an explicit 3D model. The project realized a proof of concept to generate a 3D spatial planning model. The team used the model to integrate it with several 3D Building Information Models (BIMs) described in the open data standard Industry Foundation Classes (IFC). Goal of the project was (1) to generate a 3D BIM model from spatial planning information to be used by the architect during the early design phase, and (2) allow 3D checking of building permits. The team used several technologies like CityGML, BIM clash detection and GeoBIM to explore the potential of this innovation. Within the project a showcase was created with a part of the spatial plan from the city of The Hague. Several BIM models were integrated in the 3D spatial plan of this area. A workflow has been described that demonstrates the benefits of collaboration between the spatial domain and the AEC industry in 3D. The research results in a showcase with conclusions and considerations for both national and international practice.

  19. The ATLAS(3D) project : VII. A new look at the morphology of nearby galaxies: the kinematic morphology-density relation

    NARCIS (Netherlands)

    Cappellari, Michele; Emsellem, Eric; Krajnovic, Davor; McDermid, Richard M.; Serra, Paolo; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, M.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    In Paper I of this series we introduced a volume-limited parent sample of 871 galaxies from which we extracted the ATLAS(3D) sample of 260 early-type galaxies (ETGs). In Papers II and III we classified the ETGs using their stellar kinematics, in a way that is nearly insensitive to the projection

  20. The ATLAS3D project - VII. A new look at the morphology of nearby galaxies: the kinematic morphology-density relation

    NARCIS (Netherlands)

    Cappellari, Michele; Emsellem, Eric; Krajnović, Davor; McDermid, Richard M.; Serra, Paolo; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    In Paper I of this series we introduced a volume-limited parent sample of 871 galaxies from which we extracted the ATLAS3D sample of 260 early-type galaxies (ETGs). In Papers II and III we classified the ETGs using their stellar kinematics, in a way that is nearly insensitive to the projection

  1. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections

    International Nuclear Information System (INIS)

    Zhang, You; Yin, Fang-Fang; Ren, Lei; Segars, W. Paul

    2013-01-01

    Purpose: To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy.Methods: Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes to the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and “ground-truth” onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy.Results: For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)/COMS (±S.D.) between lesions in prior images and “ground-truth” onboard images were 136.11% (±42.76%)/15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD/COMS between the lesion

  2. Reconstruction, Processing and Display of 3D-Images

    International Nuclear Information System (INIS)

    Lenz, R.

    1986-01-01

    In the last few years a number of methods have been developed which can produce true 3D images, volumes of density values. We review two of these techniques (confocal microscopy and X-ray tomography) which were used in the reconstruction of some of our images. The other images came from transmission electron microscopes, gammacameras and magnetic resonance scanners. A new algorithm is suggested which uses projection onto convex sets to improve the depth resolution in the microscopy case. Since we use a TV-monitor as display device we have to project 3D volumes to 2D images. We use the following type of projections: reprojections, range images, colorcoded depth and shaded surface displays. Shaded surface displays use the surface gradient to compute the gray value in the projection. We describe how this gradient can be computed from the range image and from the original density volume. Normally we compute a whole series of projections where the volume is rotated some degrees between two projections. In a separate display session we can display these images in stereo and motion. We describe how noise reduction filters, gray value transformations, geometric manipulations, gradient filters, texture filters and binary techniques can be used to remove uninteresting points from the volume. Finally, a filter design strategy is developed which is based on the optimal basis function approach by Hummel. We show that for a large class of patterns, in images of arbitrary dimensions, the optimal basis functions are rotation-invariant operators as introduced by Danielsson in the 2D case. We also describe how the orientation of a pattern can be computed from its feature vector. (With 107 refs.) (author)

  3. Initial investment to 3D printing technologies in a construction company

    Directory of Open Access Journals (Sweden)

    Cernohorsky, Zdenek

    2017-06-01

    Full Text Available This article deals with an initial investment to 3D printing technologies in a construction company. The investment refers to the use of building information models and their integration with 3D printing technology within a construction company. In the first part, there will be discussed an introduction of 3D printing scheme in a construction company from a lifecycle perspective in general. As a part of this scheme, the ideal variant of an initial investment will be considered a.k.a a pilot project. In the second part, there will be a more detailed discussion of the pilot project, more about each activities which should be its parts and which should analyze cost categories. These categories will be about particular lifecycle stages of the pilot project. In the third part, a summary is done. This article could be a handout for a construction company in a term of an initial investment to 3D printing.

  4. 4onse D1.3 - Project Identity Manual

    OpenAIRE

    Cannata Massimiliano; Strigaro Daniele

    2016-01-01

    This document describes the corporate identity which has been developed for the 4onse project. The corporate identity consists of logo for the overall project and templates for written and presentation materials and printed communication materials.

  5. VIRTUAL ANTI-BULLYING VILLAGE PROJECT FOR COPING WITH BULLYING AND CYBERBULLYING WITHIN A 3D VIRTUAL LEARNING ENVIRONMENT: EVALUATION RESEARCH

    Directory of Open Access Journals (Sweden)

    Dorit Olenik Shemesh

    2014-12-01

    Full Text Available The current study aims to evaluate the implementation of a unique educational project- The Virtual Anti-Bullying Village for Kids and Teens (ABV4KIDS that was designed and operated by the European Commission. A 3D virtual environment as an innovative, international project for adolescents, focused on knowledge acquisition and new ways of coping with bullying and cyberbullying. Sixty seventh graders-Israeli adolescents-completed five questionnaires before and after the project to assess its impacts regarding cyberbullying and socio-emotional variables. They evaluated the project as important, enjoyable, and increasing their knowledge about cyberbullying, but expressed a need for more practical tools for coping. At the end of the project, the control group reported more cyberbullying experiences, as well as a decrease in social support, whereas the research group reported no changes in cyberbullying experiences and in socio-emotional aspects.

  6. 基于彩色条纹投影术的三维形貌测量%3D shape measurement based on colour fringe projection techniques

    Institute of Scientific and Technical Information of China (English)

    白雪飞; 张宗华

    2017-01-01

    物体表面三维形貌数据的获取在智能制造、航空航天、文物保护、医疗卫生、远程教育等领域有着广泛的应用.三维形貌数据的获取受限于系统硬件的性能,特别是现有数字投影系统的投影速度,无法快速测得物体面形的三维形貌.彩色成像和投影系统的出现,为并行多颜色通道三维成像系统提供了新的研究方向.详细综述了基于彩色条纹投影术的三维形貌数据测量研究的现状.具体包括彩色条纹投影术的基本原理、彩色条纹调制和解调相关技术、三维成像系统的标定、以及未来的研究方向.接着给出几个利用彩色条纹投影术获取物体表面三维形貌和彩色纹理的实例.为彩色条纹投影术测量物体表面三维形貌数据提供了详尽的综述,并指明了未来潜在的研究新方向.%3D shape acquisition of object surface has been widely used in the fields of intelligent manufacturing,aerospace,cultural relics protection,health care,remote education,and so on.Due to the limitation of hardware performance,especially the projection speed of existing digital projection system,3D shape of object can not be obtained quickly.Hence,the appearance of color imaging and projection system provides a new research direction for 3D imaging system of parallel color channel.This paper reviews the status of 3D shape measurement techniques by projecting and capturing colour fringe pattern images on the object surface in detail.The principle of colour fringe projection technique,the modulation and demodulation of colour fringe pattern,the calibration of 3D imaging system and the directions for future research are analyzed.Moreover,several case studies are illustrated to obtain the 3D shape and colour texture using colour fringe projection techniques.This paper summarizes the 3D shape measurement techniques based on colour fringe pattern images on the object surface elaborately,and the challenging issues and

  7. CROSSPLOT-3/CON-3D, 3-D and Stereoscopic Computer-Aided Design Graphics

    International Nuclear Information System (INIS)

    Grotch, S.L.

    1986-01-01

    Description of program or function: CROSSPLOT3 is a general three- dimensional point plotting program which generates scatterplots of a data matrix from any user-specified viewpoint. Images can be rotated for a movie-like effect enhancing stereo perception. A number of features can be invoked by the user including: color, class distinction, flickering, sectioning, projections to grid surfaces, and drawing a plane. Plots may be viewed in real time as they are generated. CON3D generates three-dimensional surfaces plus contours on a lower plane from either data on a rectangular grid or an analytical function z=f(x,y). The user may choose any viewing perspective. Plots may be generated in color with many refinements under user control

  8. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence

    Directory of Open Access Journals (Sweden)

    Chunrong Mi

    2017-01-01

    Full Text Available Species distribution models (SDMs have become an essential tool in ecology, biogeography, evolution and, more recently, in conservation biology. How to generalize species distributions in large undersampled areas, especially with few samples, is a fundamental issue of SDMs. In order to explore this issue, we used the best available presence records for the Hooded Crane (Grus monacha, n = 33, White-naped Crane (Grus vipio, n = 40, and Black-necked Crane (Grus nigricollis, n = 75 in China as three case studies, employing four powerful and commonly used machine learning algorithms to map the breeding distributions of the three species: TreeNet (Stochastic Gradient Boosting, Boosted Regression Tree Model, Random Forest, CART (Classification and Regression Tree and Maxent (Maximum Entropy Models. In addition, we developed an ensemble forecast by averaging predicted probability of the above four models results. Commonly used model performance metrics (Area under ROC (AUC and true skill statistic (TSS were employed to evaluate model accuracy. The latest satellite tracking data and compiled literature data were used as two independent testing datasets to confront model predictions. We found Random Forest demonstrated the best performance for the most assessment method, provided a better model fit to the testing data, and achieved better species range maps for each crane species in undersampled areas. Random Forest has been generally available for more than 20 years and has been known to perform extremely well in ecological predictions. However, while increasingly on the rise, its potential is still widely underused in conservation, (spatial ecological applications and for inference. Our results show that it informs ecological and biogeographical theories as well as being suitable for conservation applications, specifically when the study area is undersampled. This method helps to save model-selection time and effort, and allows robust and rapid

  9. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence.

    Science.gov (United States)

    Mi, Chunrong; Huettmann, Falk; Guo, Yumin; Han, Xuesong; Wen, Lijia

    2017-01-01

    Species distribution models (SDMs) have become an essential tool in ecology, biogeography, evolution and, more recently, in conservation biology. How to generalize species distributions in large undersampled areas, especially with few samples, is a fundamental issue of SDMs. In order to explore this issue, we used the best available presence records for the Hooded Crane ( Grus monacha , n  = 33), White-naped Crane ( Grus vipio , n  = 40), and Black-necked Crane ( Grus nigricollis , n  = 75) in China as three case studies, employing four powerful and commonly used machine learning algorithms to map the breeding distributions of the three species: TreeNet (Stochastic Gradient Boosting, Boosted Regression Tree Model), Random Forest, CART (Classification and Regression Tree) and Maxent (Maximum Entropy Models). In addition, we developed an ensemble forecast by averaging predicted probability of the above four models results. Commonly used model performance metrics (Area under ROC (AUC) and true skill statistic (TSS)) were employed to evaluate model accuracy. The latest satellite tracking data and compiled literature data were used as two independent testing datasets to confront model predictions. We found Random Forest demonstrated the best performance for the most assessment method, provided a better model fit to the testing data, and achieved better species range maps for each crane species in undersampled areas. Random Forest has been generally available for more than 20 years and has been known to perform extremely well in ecological predictions. However, while increasingly on the rise, its potential is still widely underused in conservation, (spatial) ecological applications and for inference. Our results show that it informs ecological and biogeographical theories as well as being suitable for conservation applications, specifically when the study area is undersampled. This method helps to save model-selection time and effort, and allows robust and rapid

  10. The rendering context for stereoscopic 3D web

    Science.gov (United States)

    Chen, Qinshui; Wang, Wenmin; Wang, Ronggang

    2014-03-01

    3D technologies on the Web has been studied for many years, but they are basically monoscopic 3D. With the stereoscopic technology gradually maturing, we are researching to integrate the binocular 3D technology into the Web, creating a stereoscopic 3D browser that will provide users with a brand new experience of human-computer interaction. In this paper, we propose a novel approach to apply stereoscopy technologies to the CSS3 3D Transforms. Under our model, each element can create or participate in a stereoscopic 3D rendering context, in which 3D Transforms such as scaling, translation and rotation, can be applied and be perceived in a truly 3D space. We first discuss the underlying principles of stereoscopy. After that we discuss how these principles can be applied to the Web. A stereoscopic 3D browser with backward compatibility is also created for demonstration purposes. We take advantage of the open-source WebKit project, integrating the 3D display ability into the rendering engine of the web browser. For each 3D web page, our 3D browser will create two slightly different images, each representing the left-eye view and right-eye view, both to be combined on the 3D display to generate the illusion of depth. And as the result turns out, elements can be manipulated in a truly 3D space.

  11. Holographic Image Plane Projection Integral 3D Display, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need for a 3D virtual reality environment providing scientific data visualization without special user devices, Physical Optics Corporation...

  12. 3D Groundwater flow model at the Upper Rhine Graben scale to delineate preferential target areas for geothermal projects

    Science.gov (United States)

    Armandine Les Landes, Antoine; Guillon, Théophile; Peter-Borie, Mariane; Rachez, Xavier

    2017-04-01

    (DFN) and 3D elements to simulate groundwater flow in the 3D regional fault network and in sedimentary deposits, respectively. Firstly, the geometry of the 3D fracture network and its hydraulic connections with 3D elements (sedimentary cover) is built in accordance with the tectonic history and based on geological and geophysical evidences. Secondly, data from previous studies and site-specific geological knowledge provide information on the fault zones family sets and on respective hydraulic properties. Then, from the simulated 3D groundwater flow model and based on a particle tracking methodology, groundwater flow paths are constructed. The regional groundwater flow paths results are extracted and analysed to delineate preferential zones to explore at finer scale and so to define the potential positions of the exploration wells. This work is conducted in the framework of the IMAGE project (Integrated Methods for Advanced Geothermal Exploration, grant agreement No. 608553), which aims to develop new methods for better siting of exploitation wells.

  13. Digital Dentistry — 3D Printing Applications

    Directory of Open Access Journals (Sweden)

    Zaharia Cristian

    2017-03-01

    Full Text Available Three-dimensional (3D printing is an additive manufacturing method in which a 3D item is formed by laying down successive layers of material. 3D printers are machines that produce representations of objects either planned with a CAD program or scanned with a 3D scanner. Printing is a method for replicating text and pictures, typically with ink on paper. We can print different dental pieces using different methods such as selective laser sintering (SLS, stereolithography, fused deposition modeling, and laminated object manufacturing. The materials are certified for printing individual impression trays, orthodontic models, gingiva mask, and different prosthetic objects. The material can reach a flexural strength of more than 80 MPa. 3D printing takes the effectiveness of digital projects to the production phase. Dental laboratories are able to produce crowns, bridges, stone models, and various orthodontic appliances by methods that combine oral scanning, 3D printing, and CAD/CAM design. Modern 3D printing has been used for the development of prototypes for several years, and it has begun to find its use in the world of manufacturing. Digital technology and 3D printing have significantly elevated the rate of success in dental implantology using custom surgical guides and improving the quality and accuracy of dental work.

  14. Improving 3d Spatial Queries Search: Newfangled Technique of Space Filling Curves in 3d City Modeling

    Science.gov (United States)

    Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.

    2013-09-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its

  15. Aerial 3D display by use of a 3D-shaped screen with aerial imaging by retro-reflection (AIRR)

    Science.gov (United States)

    Kurokawa, Nao; Ito, Shusei; Yamamoto, Hirotsugu

    2017-06-01

    The purpose of this paper is to realize an aerial 3D display. We design optical system that employs a projector below a retro-reflector and a 3D-shaped screen. A floating 3D image is formed with aerial imaging by retro-reflection (AIRR). Our proposed system is composed of a 3D-shaped screen, a projector, a quarter-wave retarder, a retro-reflector, and a reflective polarizer. Because AIRR forms aerial images that are plane-symmetric of the light sources regarding the reflective polarizer, the shape of the 3D screen is inverted from a desired aerial 3D image. In order to expand viewing angle, the 3D-shaped screen is surrounded by a retro-reflector. In order to separate the aerial image from reflected lights on the retro- reflector surface, the retro-reflector is tilted by 30 degrees. A projector is located below the retro-reflector at the same height of the 3D-shaped screen. The optical axis of the projector is orthogonal to the 3D-shaped screen. Scattered light on the 3D-shaped screen forms the aerial 3D image. In order to demonstrate the proposed optical design, a corner-cube-shaped screen is used for the 3D-shaped screen. Thus, the aerial 3D image is a cube that is floating above the reflective polarizer. For example, an aerial green cube is formed by projecting a calculated image on the 3D-shaped screen. The green cube image is digitally inverted in depth by our developed software. Thus, we have succeeded in forming aerial 3D image with our designed optical system.

  16. 3D unstructured mesh discontinuous finite element hydro

    International Nuclear Information System (INIS)

    Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.

    1995-01-01

    The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D

  17. Target localization of 3D versus 4D cone beam computed tomography in lipiodol-guided stereotactic radiotherapy of hepatocellular carcinomas.

    Science.gov (United States)

    Chan, Mark; Chiang, Chi Leung; Lee, Venus; Cheung, Steven; Leung, Ronnie; Wong, Matthew; Lee, Frankle; Blanck, Oliver

    2017-01-01

    Aim of this study was to comparatively evaluate the accuracy of respiration-correlated (4D) and uncorrelated (3D) cone beam computed tomography (CBCT) in localizing lipiodolized hepatocellular carcinomas during stereotactic body radiotherapy (SBRT). 4D-CBCT scans of eighteen HCCs were acquired during free-breathing SBRT following trans-arterial chemo-embolization (TACE) with lipiodol. Approximately 1320 x-ray projections per 4D-CBCT were collected and phase-sorted into ten bins. A 4D registration workflow was followed to register the reconstructed time-weighted average CBCT with the planning mid-ventilation (MidV) CT by an initial bone registration of the vertebrae and then tissue registration of the lipiodol. For comparison, projections of each 4D-CBCT were combined to synthesize 3D-CBCT without phase-sorting. Using the lipiodolized tumor, uncertainties of the treatment setup estimated from the absolute and relative lipiodol position to bone were analyzed separately for 4D- and 3D-CBCT. Qualitatively, 3D-CBCT showed better lipiodol contrast than 4D-CBCT primarily because of a tenfold increase of projections used for reconstruction. Motion artifact was observed to subside in 4D-CBCT compared to 3D-CBCT. Group mean, systematic and random errors estimated from 4D- and 3D-CBCT agreed to within 1 mm in the cranio-caudal (CC) and 0.5 mm in the anterior-posterior (AP) and left-right (LR) directions. Systematic and random errors are largest in the CC direction, amounting to 4.7 mm and 3.7 mm from 3D-CBCT and 5.6 mm and 3.8 mm from 4D-CBCT, respectively. Safety margin calculated from 3D-CBCT and 4D-CBCT differed by 2.1, 0.1 and 0.0 mm in the CC, AP, and LR directions. 3D-CBCT is an adequate alternative to 4D-CBCT when lipoid is used for localizing HCC during free-breathing SBRT. Similar margins are anticipated with 3D- and 4D-CBCT.

  18. A novel approach for a 2D/3D image registration routine for medical tool navigation in minimally invasive vascular interventions

    Energy Technology Data Exchange (ETDEWEB)

    Schwerter, Michael [Forschungszentrum Juelich (Germany). Inst. of Neuroscience and Medicine (INM-4) - Medical Imaging Physics; Lietzmann, Florian; Schad, Lothar R. [Heidelberg Univ., Medical Faculty Mannheim (Germany). Computer Assisted Clinical Medicine

    2016-11-01

    Minimally invasive interventions are frequently aided by 2D projective image guidance. To facilitate the navigation of medical tools within the patient, information from preoperative 3D images can supplement interventional data. This work describes a novel approach to perform a 3D CT data registration to a single interventional native fluoroscopic frame. The goal of this procedure is to recover and visualize a current 2D interventional tool position in its corresponding 3D dataset. A dedicated routine was developed and tested on a phantom. The 3D position of a guidewire inserted into the phantom could successfully be reconstructed for varying 2D image acquisition geometries. The scope of the routine includes projecting the CT data into the plane of the fluoroscopy. A subsequent registration of the real and virtual projections is performed with an accuracy within the range of 1.16 ± 0.17 mm for fixed landmarks. The interventional tool is extracted from the fluoroscopy and matched to the corresponding part of the projected and transformed arterial vasculature. A root mean square error of up to 0.56 mm for matched point pairs is reached. The desired 3D view is provided by backprojecting the matched guidewire through the CT array. Due to its potential to reduce patient dose and treatment times, the proposed routine has the capability of reducing patient stress at lower overall treatment costs.

  19. EEG-based cognitive load of processing events in 3D virtual worlds is lower than processing events in 2D displays.

    Science.gov (United States)

    Dan, Alex; Reiner, Miriam

    2017-12-01

    Interacting with 2D displays, such as computer screens, smartphones, and TV, is currently a part of our daily routine; however, our visual system is built for processing 3D worlds. We examined the cognitive load associated with a simple and a complex task of learning paper-folding (origami) by observing 2D or stereoscopic 3D displays. While connected to an electroencephalogram (EEG) system, participants watched a 2D video of an instructor demonstrating the paper-folding tasks, followed by a stereoscopic 3D projection of the same instructor (a digital avatar) illustrating identical tasks. We recorded the power of alpha and theta oscillations and calculated the cognitive load index (CLI) as the ratio of the average power of frontal theta (Fz.) and parietal alpha (Pz). The results showed a significantly higher cognitive load index associated with processing the 2D projection as compared to the 3D projection; additionally, changes in the average theta Fz power were larger for the 2D conditions as compared to the 3D conditions, while alpha average Pz power values were similar for 2D and 3D conditions for the less complex task and higher in the 3D state for the more complex task. The cognitive load index was lower for the easier task and higher for the more complex task in 2D and 3D. In addition, participants with lower spatial abilities benefited more from the 3D compared to the 2D display. These findings have implications for understanding cognitive processing associated with 2D and 3D worlds and for employing stereoscopic 3D technology over 2D displays in designing emerging virtual and augmented reality applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A 3d model for geo-information in the netherlands

    NARCIS (Netherlands)

    Verbree, E.; Stoter, J.; Zlatanova, S.; Haan, G. de; Reuvers, M.; Vosselman, G.; Goos, J.; Berlo, L. van; Klooster, R.

    2010-01-01

    This paper presents the work in progress of a research project that aims at establishing a reference model for 3D geo-information in the Netherlands. The research project is initiated by four national organizations: 1) Ministry of Housing, Spatial Planning and the Environment, 2) Kadaster, 3)

  1. An external interface for processing 3-D holographic and X-ray images

    International Nuclear Information System (INIS)

    Jueptner, W.; Kreis, T.

    1989-01-01

    The aim of the ESPRIT project 898 is the development of an external interface system, that links physically generated 3-D images to inspection and analysis procedures. While this has to be a general and flexible system, it is used in this project for holographic interferograms and X-ray radiographs for applications in areas such as real time testing and inspection and 3-D measurment. For this task, optical and electronic methods have to be combined in order to extract the relevant information from multiple 3-D images. A further aim of the project is the automation of the holographic interferometry and the X-ray radioscopy for on-line testing in the manufacturing process. (orig./HP)

  2. Project X Accelerator R and D Plan

    International Nuclear Information System (INIS)

    2008-01-01

    Project X is a high intensity proton facility conceived to support a world-leading program in neutrino and flavor physics over the next two decades at Fermilab. Project X is an integral part of the Fermilab Roadmap as described in the Fermilab Steering Group Report. Project X is based on an 8 GeV superconducting H-linac, paired with the existing (but modified) Main Injector and Recycler Ring, to provide in excess of 2 MW of beam power throughout the energy range 60-120 GeV, simultaneous with at least 100 kW of beam power at 8 GeV. The linac utilizes technology in common with the ILC over the energy range 0.6-8.0 GeV. Beam current parameters can be made identical to ILC resulting in identical rf generation and distribution systems. This alignment of ILC and Project X technologies allows for a shared development effort. The initial 0.6 GeV of the linac draws heavily on technology developed by Argonne National Laboratory for a facility for rare isotope beams. It is anticipated that the exact configuration and operating parameters of the linac will be defined through the R and D program and will retain alignment with the ILC plan as it evolves over this period. Utilization of the Recycler Ring as an H - stripper and accumulator ring is the key element that provides the flexibility to operate the linac with the same beam parameters as the ILC. The linac operates at 5 Hz with a total of 5.6 x 10 13 H - ions delivered per pulse. H - are stripped at injection into the Recycler in a manner that 'paints' the beam both transversely and longitudinally to reduce space charge forces. Following the 1 ms injection, the orbit moves off the stripping foil and circulates for 200 msec, awaiting the next injection. Following three such injections a total of 1.7 x 10 14 protons are transferred in a single turn to the Main Injector. These protons are then accelerated to 120 GeV and fast extracted to a neutrino target. The Main Injector cycle takes 1.4 seconds, producing approximately 2.3

  3. Image based 3D city modeling : Comparative study

    Directory of Open Access Journals (Sweden)

    S. P. Singh

    2014-06-01

    Full Text Available 3D city model is a digital representation of the Earth’s surface and it’s related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India. This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can’t do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good

  4. Poaching Museum Collections using Digital 3D Technologies

    Directory of Open Access Journals (Sweden)

    Sarah Younan

    2015-12-01

    Full Text Available This paper investigates the creative engagement with digital 3D models of museum artefacts and gives insight into new uses of museum collections enabled by digital scanning, editing and 3D printing technologies. Digital 3D models of museum artefacts are malleable and increasingly easy to use. Additionally, freely available 3D software has made 3D scanning, editing and manufacturing possible for non-specialists. These technologies allow users to create new artworks through the creation and transformation of digital replicas of museum artefacts. Examples of creative works, taken from two case studies that involve the creative use of digital reproductions of museum artefacts are presented in this paper. These projects are illustrative of a larger trend: the digital ‘poaching’ of heritage artefacts. This paper examines how digital 3D technologies can foster creative forms of museum engagement, democratise access to museum collections and engage users with personal forms of museum experience.

  5. Developing 3D Imaging Programmes-Workflow and Quality Control

    OpenAIRE

    Hess, M.; Robson, S.; Serpico, M.; Amati, G.; Pridden, I.; Nelson, T.

    2016-01-01

    This article reports on a successful project for 3D imaging research, digital applications, and use of new technologies in the museum. The article will focus on the development and implementation of a viable workflow for the production of high-quality 3D models of museum objects, based on the 3D laser scanning and photogrammetry of selected ancient Egyptian artefacts. The development of a robust protocol for the complete process chain for imaging cultural heritage artefacts, from the acquisit...

  6. Evaluation of 3-D Laser Scanning Equipment : 2018 Final Report

    Science.gov (United States)

    2018-05-01

    As a follow-up to ICT Project R27-030, Evaluation of 3-D Laser Scanning, this report provides findings of an evaluation of 3-D laser scanning equipment to determine the tangible costs versus benefits and the manpower savings realized by using the equ...

  7. Application of 3D CADDS model to design and engineering for constructability improvement

    International Nuclear Information System (INIS)

    Cho, U.Y.; Park, C.C.; Choy, E.

    1998-01-01

    The use of three dimensional (3D) computer-aided design and drafting system (CADDS) model along with the associated information management system in engineering phases of large projects is well established and yielding significant improvements in project cost, schedule and quality. The information contained in these models can also be utilized in plant construction site for construction schedule review, installation procedure review, interference check, and visual communication tool to the utility owner when the visual and spatial information contained in the 3D models is integrated with other plant information. This paper will describe the application of 3D models and the associated databases in the construction process of CANDU HWR heavy water reactors. Some examples on the use of 3D CADD models in CANDU projects will be presented

  8. Managing uncertainty during r&d projects: a case study

    NARCIS (Netherlands)

    Wouters, Marc; Roorda, Berend; Gal, Ruud

    2011-01-01

    Firms make signifi cant investments in R&D projects, yet the economic return is often diffi cult to predict because of signifi cant technological and commercial uncertainty. We present an innovative and practical method for managing R&D projects, and we discuss its application to a large R&D

  9. Forensic 3D Scene Reconstruction

    International Nuclear Information System (INIS)

    LITTLE, CHARLES Q.; PETERS, RALPH R.; RIGDON, J. BRIAN; SMALL, DANIEL E.

    1999-01-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene

  10. Experimental Satellite Phase 3D before Launch

    Directory of Open Access Journals (Sweden)

    J. Sebesta

    1999-04-01

    Full Text Available To build a satellite can be a dream for many engineers. We are happy that we can participate in the AMSAT PHASE 3D project. Our responsibility is very high because one of our on-board receivers is the main one of the command link and will never be switched off. The project is also a very good opportunity for our students to meet satellite technology.

  11. USING AFFORDABLE DATA CAPTURING DEVICES FOR AUTOMATIC 3D CITY MODELLING

    Directory of Open Access Journals (Sweden)

    B. Alizadehashrafi

    2017-11-01

    Full Text Available In this research project, many movies from UTM Kolej 9, Skudai, Johor Bahru (See Figure 1 were taken by AR. Drone 2. Since the AR drone 2.0 has liquid lens, while flying there were significant distortions and deformations on the converted pictures of the movies. Passive remote sensing (RS applications based on image matching and Epipolar lines such as Agisoft PhotoScan have been tested to create the point clouds and mesh along with 3D models and textures. As the result was not acceptable (See Figure 2, the previous Dynamic Pulse Function based on Ruby programming language were enhanced and utilized to create the 3D models automatically in LoD3. The accuracy of the final 3D model is almost 10 to 20 cm. After rectification and parallel projection of the photos based on some tie points and targets, all the parameters were measured and utilized as an input to the system to create the 3D model automatically in LoD3 in a very high accuracy.

  12. Using Affordable Data Capturing Devices for Automatic 3d City Modelling

    Science.gov (United States)

    Alizadehashrafi, B.; Abdul-Rahman, A.

    2017-11-01

    In this research project, many movies from UTM Kolej 9, Skudai, Johor Bahru (See Figure 1) were taken by AR. Drone 2. Since the AR drone 2.0 has liquid lens, while flying there were significant distortions and deformations on the converted pictures of the movies. Passive remote sensing (RS) applications based on image matching and Epipolar lines such as Agisoft PhotoScan have been tested to create the point clouds and mesh along with 3D models and textures. As the result was not acceptable (See Figure 2), the previous Dynamic Pulse Function based on Ruby programming language were enhanced and utilized to create the 3D models automatically in LoD3. The accuracy of the final 3D model is almost 10 to 20 cm. After rectification and parallel projection of the photos based on some tie points and targets, all the parameters were measured and utilized as an input to the system to create the 3D model automatically in LoD3 in a very high accuracy.

  13. 3D Information System of Historical Site – Proposal and Realisation of a Functional Prototype

    Directory of Open Access Journals (Sweden)

    J. Hodač

    2005-01-01

    Full Text Available The development of methods for 3D data acquisition, together with progress in information technologies raises the question of creating and using 3D models and 3D information systems (IS of historical sites and buildings. This paper presents the current state of the “Live Theatre” project. The theme of the project is the proposal and realisation of a 3D IS of the baroque theatre at Eeský Krumlov castle (UNESCO site.The project is divided into three main stages – creation of a 3D model, proposal of a conception for a 3D IS, and realisation of a functional prototype. 3D data was acquired by means of photogrammetric and surveying methods. An accurate 3D model (photo-realistic, textured was built up with MicroStation CAD system. The proposal of a conception of a 3D IS was the main outcome of the author’s dissertation. The essential feature of the proposed conception is the creation of subsystems targeted on three spheres – management, research and presentation of the site. The functionality of each subsystem is connected with its related sphere; however, each subsystem uses the same database. The present stage of the project involves making a functional prototype (with sample data. During this stage we are working on several basic technological topics. At present we are concerned with 3D data, its formats, format conversions (e.g. DGN _ VRML and its connection to other types of data. After that, we will be seeking a convenient technical solution based on network technologies (Internet and an appropriate layout for the data (database. The project is being carried out in close co-operation with the administration of the castle and some other partners. This stage of the project will be completed in December 2005.A functional prototype and the information acquired by testing it will form the basis for the final proposal of a complex IS of a historical site. The final proposal and appropriate technology will be the outcome of the project. The

  14. Optical fabrication of lightweighted 3D printed mirrors

    Science.gov (United States)

    Herzog, Harrison; Segal, Jacob; Smith, Jeremy; Bates, Richard; Calis, Jacob; De La Torre, Alyssa; Kim, Dae Wook; Mici, Joni; Mireles, Jorge; Stubbs, David M.; Wicker, Ryan

    2015-09-01

    Direct Metal Laser Sintering (DMLS) and Electron Beam Melting (EBM) 3D printing technologies were utilized to create lightweight, optical grade mirrors out of AlSi10Mg aluminum and Ti6Al4V titanium alloys at the University of Arizona in Tucson. The mirror prototypes were polished to meet the λ/20 RMS and λ/4 P-V surface figure requirements. The intent of this project was to design topologically optimized mirrors that had a high specific stiffness and low surface displacement. Two models were designed using Altair Inspire software, and the mirrors had to endure the polishing process with the necessary stiffness to eliminate print-through. Mitigating porosity of the 3D printed mirror blanks was a challenge in the face of reconciling new printing technologies with traditional optical polishing methods. The prototypes underwent Hot Isostatic Press (HIP) and heat treatment to improve density, eliminate porosity, and relieve internal stresses. Metal 3D printing allows for nearly unlimited topological constraints on design and virtually eliminates the need for a machine shop when creating an optical quality mirror. This research can lead to an increase in mirror mounting support complexity in the manufacturing of lightweight mirrors and improve overall process efficiency. The project aspired to have many future applications of light weighted 3D printed mirrors, such as spaceflight. This paper covers the design/fab/polish/test of 3D printed mirrors, thermal/structural finite element analysis, and results.

  15. The FTU-D project

    International Nuclear Information System (INIS)

    Barbato, E.; Bruschi, A.; Candela, G.

    2001-01-01

    A modification of the FTU tokamak (toroidal field B T =8T, plasma current I P =1.6MA, minor radius a=0.3m, major radius R=0.93m) is proposed in order to extend the FTU operation to strongly shaped plasmas (FTU-D: R=1m, a=0.18-0.2m, elongation κ=1.6, triangularity δ up to δ=0.8). FTU has a circular vacuum vessel and was built to produce circular plasmas, however unbalancing the currents in the windings of the air core transformer a plasma shaping can be produced. Single Null (SN) and Double Null (DN) equilibria have been studied with a maximum current in the range 0.350-0.450 MA. The scientific aim of the project is the investigation of the advanced tokamak operation, characterised by the simultaneous achievement of high β N (normalised beta) and high bootstrap current fraction (f B ) in regimes with high-energy confinement obtained by current and pressure profile control. The main features of FTU-D, with respect to other existing tokamaks, are the high magnetic field (B T =5-2.5T), the high density and aspect ratio value (A=R/a=5-6) and the possibility of investigating regimes with dominant electron heating. (author)

  16. Precise 3D Track Reconstruction Algorithm for the ICARUS T600 Liquid Argon Time Projection Chamber Detector

    Directory of Open Access Journals (Sweden)

    M. Antonello

    2013-01-01

    Full Text Available Liquid Argon Time Projection Chamber (LAr TPC detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach to 3D reconstruction for the LAr TPC with a practical application to the track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of stopping particle tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.

  17. The future of 3D printing technology in biomedicine

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2015-07-01

    Full Text Available 3D printing, one of the hottest cutting-edge interdisciplinary technologies, is projected to have revenue of $8.4 billion in 2020. #D printing technology will implement the concept of personalized medicine in medical healthcare industry and pharmaceutical fabrication. Organ printing, which it is defined as computer-aided, jet based 3D tissue-engineering of living human organs, is an interesting and challengeable field for 3D printing. Customized implants and prostheses can be produced in any imaginable geometry through the translation of radiological images of patients into digital.stl 3D print files. The creation of anatomical models based on the patient’s pathological conditions using 3D printing technologies would provide good models for training and to design surgical approaches. Hence, 3D printing not only will transform medical healthcare industry but also promises new converging technologies in the field of regenerative medicine.

  18. A combined system for 3D printing cybersecurity

    Science.gov (United States)

    Straub, Jeremy

    2017-06-01

    Previous work has discussed the impact of cybersecurity breaches on 3D printed objects. Multiple attack types that could weaken objects, make them unsuitable for certain applications and even create safety hazards have been presented. This paper considers a visible light sensing-based verification system's efficacy as a means of thwarting cybersecurity threats to 3D printing. This system detects discrepancies between expected and actual printed objects (based on an independent pristine CAD model). Whether reliance on an independent CAD model is appropriate is also considered. The future of 3D printing is projected and the importance of cybersecurity in this future is discussed.

  19. Guide on Project Web Access of SFR R and D and Technology Monitoring System

    International Nuclear Information System (INIS)

    Lee, Dong Uk; Won, Byung Chool; Lee, Yong Bum; Kim, Young In; Hahn, Do Hee

    2008-09-01

    The SFR R and D and technology monitoring system based on the MS enterprise project management is developed for systematic effective management of 'Development of Basic Key Technologies for Gen IV SFR' project which was performed under the Mid- and Long-term Nuclear R and D Program sponsored by the Ministry of Education, Science and Technology. This system is a tool for project management based on web access. Therefore this manual is a detailed guide for Project Web Access(PWA). Section 1 describes the common guide for using of system functions such as project server 2007 client connection setting, additional outlook function setting etc. The section 2 describes the guide for system administrator. It is described the guide for project management in section 3, 4

  20. Guide on Project Web Access of SFR R and D and Technology Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Uk; Won, Byung Chool; Lee, Yong Bum; Kim, Young In; Hahn, Do Hee

    2008-09-15

    The SFR R and D and technology monitoring system based on the MS enterprise project management is developed for systematic effective management of 'Development of Basic Key Technologies for Gen IV SFR' project which was performed under the Mid- and Long-term Nuclear R and D Program sponsored by the Ministry of Education, Science and Technology. This system is a tool for project management based on web access. Therefore this manual is a detailed guide for Project Web Access(PWA). Section 1 describes the common guide for using of system functions such as project server 2007 client connection setting, additional outlook function setting etc. The section 2 describes the guide for system administrator. It is described the guide for project management in section 3, 4.

  1. A beginner's guide to 3D printing 14 simple toy designs to get you started

    CERN Document Server

    Rigsby, Mike

    2014-01-01

    A Beginner''s Guide to 3D Printing is the perfect resource for those who would like to experiment with 3D design and manufacturing, but have little or no technical experience with the standard software. Author Mike Rigsby leads readers step-by-step through 15 simple toy projects, each illustrated with screen caps of Autodesk 123D Design, the most common free 3D software available. The projects are later described using Sketchup, another free popular software package. Beginning with basics projects that will take longer to print than design, readers are then given instruction on more advanced t

  2. Binary pattern analysis for 3D facial action unit detection

    NARCIS (Netherlands)

    Sandbach, Georgia; Zafeiriou, Stefanos; Pantic, Maja

    2012-01-01

    In this paper we propose new binary pattern features for use in the problem of 3D facial action unit (AU) detection. Two representations of 3D facial geometries are employed, the depth map and the Azimuthal Projection Distance Image (APDI). To these the traditional Local Binary Pattern is applied,

  3. Using optically scanned 3D data in the restoration of Michelangelo's David

    Science.gov (United States)

    Scopigno, Roberto; Cignoni, Paolo; Callieri, Marco; Ganovelli, Fabio; Impoco, G.; Pingi, P.; Ponchio, F.

    2003-10-01

    Modern 3D scanning technologies allow to reconstruct 3D digital representations of Cultural Heritage artifacts in a semi-automatic way, characterized by very high accuracy and wealth of details. The availability of an accurate digital representation opens several possibilities of utilization to experts (restorers, archivists, museum curators), or to ordinary people (students, museum visitors). 3D scanned data are commonly used for the production of animations, interactive visualizations, or virtual reality applications. A much more exciting opportunity is to use these data in the restoration of Cultural Heritage artworks. The integration between 3D graphic and restoration represents an open research field where many new supporting tools are required; the David restoration project has given several starting points and guidelines to the definition and development of innovative solutions. Digital 3D models can be used in two different but not subsidiary modes: as an instrument for the execution of specific investigations and as a supporting media for the archival and integration of all the restoration-related information, gathered with the different studies and analysis performed on the artwork. In this paper we present some recent work done in the framework of the Michelangelo's David restoration project. A 3D model of the David was reconstructed by the Digital Michelangelo Project, using laser-based 3D scanning technology. We have developed some tools to make those data accessible and useful in the restoration. Preliminary results are reported here together with some directions for further research.

  4. Correction of patient motion in cone-beam CT using 3D-2D registration

    Science.gov (United States)

    Ouadah, S.; Jacobson, M.; Stayman, J. W.; Ehtiati, T.; Weiss, C.; Siewerdsen, J. H.

    2017-12-01

    Cone-beam CT (CBCT) is increasingly common in guidance of interventional procedures, but can be subject to artifacts arising from patient motion during fairly long (~5-60 s) scan times. We present a fiducial-free method to mitigate motion artifacts using 3D-2D image registration that simultaneously corrects residual errors in the intrinsic and extrinsic parameters of geometric calibration. The 3D-2D registration process registers each projection to a prior 3D image by maximizing gradient orientation using the covariance matrix adaptation-evolution strategy optimizer. The resulting rigid transforms are applied to the system projection matrices, and a 3D image is reconstructed via model-based iterative reconstruction. Phantom experiments were conducted using a Zeego robotic C-arm to image a head phantom undergoing 5-15 cm translations and 5-15° rotations. To further test the algorithm, clinical images were acquired with a CBCT head scanner in which long scan times were susceptible to significant patient motion. CBCT images were reconstructed using a penalized likelihood objective function. For phantom studies the structural similarity (SSIM) between motion-free and motion-corrected images was  >0.995, with significant improvement (p  values of uncorrected images. Additionally, motion-corrected images exhibited a point-spread function with full-width at half maximum comparable to that of the motion-free reference image. Qualitative comparison of the motion-corrupted and motion-corrected clinical images demonstrated a significant improvement in image quality after motion correction. This indicates that the 3D-2D registration method could provide a useful approach to motion artifact correction under assumptions of local rigidity, as in the head, pelvis, and extremities. The method is highly parallelizable, and the automatic correction of residual geometric calibration errors provides added benefit that could be valuable in routine use.

  5. A 3D imaging system integrating photoacoustic and fluorescence orthogonal projections for anatomical, functional and molecular assessment of rodent models

    Science.gov (United States)

    Brecht, Hans P.; Ivanov, Vassili; Dumani, Diego S.; Emelianov, Stanislav Y.; Anastasio, Mark A.; Ermilov, Sergey A.

    2018-03-01

    We have developed a preclinical 3D imaging instrument integrating photoacoustic tomography and fluorescence (PAFT) addressing known deficiencies in sensitivity and spatial resolution of the individual imaging components. PAFT is designed for simultaneous acquisition of photoacoustic and fluorescence orthogonal projections at each rotational position of a biological object, enabling direct registration of the two imaging modalities. Orthogonal photoacoustic projections are utilized to reconstruct large (21 cm3 ) volumes showing vascularized anatomical structures and regions of induced optical contrast with spatial resolution exceeding 100 µm. The major advantage of orthogonal fluorescence projections is significant reduction of background noise associated with transmitted or backscattered photons. The fluorescence imaging component of PAFT is used to boost detection sensitivity by providing low-resolution spatial constraint for the fluorescent biomarkers. PAFT performance characteristics were assessed by imaging optical and fluorescent contrast agents in tissue mimicking phantoms and in vivo. The proposed PAFT technology will enable functional and molecular volumetric imaging using fluorescent biomarkers, nanoparticles, and other photosensitive constructs mapped with high fidelity over robust anatomical structures, such as skin, central and peripheral vasculature, and internal organs.

  6. 3D reconstruction of tensors and vectors

    International Nuclear Information System (INIS)

    Defrise, Michel; Gullberg, Grant T.

    2005-01-01

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields

  7. Novel 3D geometry and models of the lower regions of large trees for use in carbon accounting of primary forests.

    Science.gov (United States)

    Dean, Christopher; Kirkpatrick, Jamie B; Osborn, Jon; Doyle, Richard B; Fitzgerald, Nicholas B; Roxburgh, Stephen H

    2018-03-01

    There is high uncertainty in the contribution of land-use change to anthropogenic climate change, especially pertaining to below-ground carbon loss resulting from conversion of primary-to-secondary forest. Soil organic carbon (SOC) and coarse roots are concentrated close to tree trunks, a region usually unmeasured during soil carbon sampling. Soil carbon estimates and their variation with land-use change have not been correspondingly adjusted. Our aim was to deduce allometric equations that will allow improvement of SOC estimates and tree trunk carbon estimates, for primary forest stands that include large trees in rugged terrain. Terrestrial digital photography, photogrammetry and GIS software were used to produce 3D models of the buttresses, roots and humus mounds of large trees in primary forests dominated by Eucalyptus regnans in Tasmania. Models of 29, in situ eucalypts were made and analysed. 3D models of example eucalypt roots, logging debris, rainforest tree species, fallen trees, branches, root and trunk slices, and soil profiles were also derived. Measurements in 2D, from earlier work, of three buttress 'logs' were added to the data set. The 3D models had high spatial resolution. The modelling allowed checking and correction of field measurements. Tree anatomical detail was formulated, such as buttress shape, humus volume, root volume in the under-sampled zone and trunk hollow area. The allometric relationships developed link diameter at breast height and ground slope, to SOC and tree trunk carbon, the latter including a correction for senescence. These formulae can be applied to stand-level carbon accounting. The formulae allow the typically measured, inter-tree SOC to be corrected for not sampling near large trees. The 3D models developed are irreplaceable, being for increasingly rare, large trees, and they could be useful to other scientific endeavours.

  8. 3D-CT angiography. Intracranial arterial lesions

    Energy Technology Data Exchange (ETDEWEB)

    Asato, Mikio; Tong, X.Q.; Tamura, Shozo [Miyazaki Medical Coll., Kiyotake (Japan)] [and others

    1997-06-01

    Since its introduction, three dimensional CT angiography (3D-CTA) on spiral (helical) CT has played an important role in clinical imaging. Initially it was reported to be useful in depicting aortic abnormalities, afterwards the merit in detecting intracranial aneurysm by 3D-CTA was also described. We have investigated the usefullness of 3D-CTA in detecting patients of intracranial aneurysm as well as arterio-venous malformation (AVM), Moyamoya disease and stenosis of middle cerebral artery, meanwhile the MR angiography (MRA) and digital subtraction angiography (DSA) examination of these patients were also studied as comparison to the 3D-CTA results. The sensitivity and specificity on investigating intracranial aneurysm were similar with other reports so far. 3D-CTA was possible to identify the feeding artery, nidus and draining vein of AVM, although DSA showed higher detectability. Occlusion of internal carotid artery and post-operative anastomosis in Moyamoya disease were all demonstrated by 3D-CTA, however the Moyamoya collaterals were shown better on MRA. 3D-CTA revealed the site of stenosis of middle cerebral artery in all of our cases, but in general maximum intensity projection (MIP) images can provide more exact information about the degree of stenosis. Five years has passed since the emergence of spiral CT and utilizing of 3D-CTA in clinical applications. With the development of hard and soft ware in the near future, it is possible to delineate more small vessels by 3D-CTA. We predict that 3D-CTA would be widely used for detecting vasculature of the whole body, and may take the place of conventional angiography in many cases. (author)

  9. 2D and 3D multimodality cardiac imagery: application for the coronarography/SPECT/PET-CT; Imagerie cardiaque multimodalites 2D et 3D: application a la coronarographie/tomoscintigraphie/TEP-CT

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Hernandez, J.M

    2006-06-15

    Coronarography and tomo-scintigraphy (SPECT, Single Photon Emission Tomography) are two imaging techniques used broadly for the diagnosis of cardiovascular diseases. The first modality consists of X-ray image sequences visualizing each, in a same plane, the coronary arteries located on the front and the back side of the heart. The X-ray images give anatomical information relating to the arterial tree and highlight eventual artery narrowing (stenoses). The SPECT modality (nuclear imaging) provide a 3-dimensional (3D) representation of the myocardial volume perfusion. This functional information authorizes the visualization of myocardial regions suffering from irrigation defaults. The aim of the presented work is to superimpose (in the 3D space) the functional and anatomical information in order to establish the visual link between arterial lesions and their consequence in terms of irrigation defaults. In the 3D representation chosen to facilitate the diagnosis, the structure of a schematic arterial tree and the stenoses are placed onto the perfusion volume. The initial data consist of a list of points representative for the arterial tree (start and end points of arterial segments, bifurcations, stenoses, etc) and marked by coronary-graphs on the X-ray images of the different incidences. The perfusion volume is then projected under the incidences of the coronary-graphic images. A registration algorithm superimposing the X-ray images and the corresponding SPECT projections provides the parameters of the geometrical transformations bringing the points marked in the X rays images in equivalent positions in the 2-dimensional SPECT images. A 3D reconstruction algorithm is then used to place the arterial points and the stenoses on the perfusion volume and build a schematic tree acting as landmark for the clinician. A 28 patient database was used to realize 40 3D superimposition of anatomical-functional data. These reconstructions have shown that the 3D representation is

  10. Registration-based Reconstruction of Four-dimensional Cone Beam Computed Tomography

    DEFF Research Database (Denmark)

    Christoffersen, Christian; Hansen, David Christoffer; Poulsen, Per Rugaard

    2013-01-01

    We present a new method for reconstruction of four-dimensional (4D) cone beam computed tomography from an undersampled set of X-ray projections. The novelty of the proposed method lies in utilizing optical flow based registration to facilitate that each temporal phase is reconstructed from the full...

  11. 3-D display of magnetic resonance images by use of multiplex holography

    International Nuclear Information System (INIS)

    Oshita, Hiroshi; Yokoi, Shigeki; Toriwaki, Jun-ichiro; Matsuo, Michimasa.

    1987-01-01

    In this paper, we study the method of generating a true 3-D image from MRI multiple slices by using the multiplex holography. The purpose in our method is to display effectively the density information distributed in the 3-D space. For making a multiplex hologram any projected image in each direction from multiple slices should be computed. We study computer processing for producing images of good quality from the viewpoint of displaying the density distribution in the 3-D space clearly and discriminating lesions from normal tissues. The following two kinds of processing are studied. (1) Projection: To generate fastly projections of good quality, the following subjects are examined. 1. Computation method of density values on a projected image from an original slice image. 2. Methods for projection of multiple slices. 3. Interpolation of slices between original neighbouring slices. 4. Composition of several sets of multiple slices in different directions. (2) Image enahancement: To enhance depth feeling of slices and density values in lesions, the following methods are studied. 1. Enhancement of depth feeling by a weighted sum of slices. 2. Slice enhancement by multiplying the particular slices by weights. 3. Lesion enhancement by thresholding. 4. Lesion enhancement by operations between images with different imaging parameters. The following are the results ; projected images of the quality good enough for constructing a multiplex hologram can be obtained by the simple method proposed in this paper, using four sets of multiple slices in four different directions. The enhancement technique mentioned above was proved to be effective for improving the understandability of 3-D information. (author)

  12. 3D Rigid Registration by Cylindrical Phase Correlation Method

    Czech Academy of Sciences Publication Activity Database

    Bican, Jakub; Flusser, Jan

    2009-01-01

    Roč. 30, č. 10 (2009), s. 914-921 ISSN 0167-8655 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/1593 Grant - others:GAUK(CZ) 48908 Institutional research plan: CEZ:AV0Z10750506 Keywords : 3D registration * correlation methods * Image registration Subject RIV: BD - Theory of Information Impact factor: 1.303, year: 2009 http://library.utia.cas.cz/separaty/2009/ZOI/bican-3d digit registration by cylindrical phase correlation method.pdf

  13. 3D Fourier synthesis of a new X-ray picture identical in projection to a previous picture

    International Nuclear Information System (INIS)

    Carlsson, P.E.

    1993-01-01

    A central problem in diagnostic radiology is to compare a new X-ray picture with a previous picture and from this comparison be able to decide if anatomical changes have occurred in the patient or not. It is of primary interest that these pictures are identical in projection. If not it is difficult to decide with confidence if differences between the pictures are due to anatomical changes or differences in their projection geometry. In this thesis we present a non invasive method that makes it possible to find the relative changes in the projection geometry between the exposure of a previous picture and a new picture. The method presented is based on the projection slice theorem (central section theorem). Instead of an elaborate search for a single new picture a pre-planned set of pictures are exposed from a circular orbit above the patient. By using 3D Fourier transform techniques we are able to synthesize a new X-ray picture from this set of pictures that is identical in projection to the previous one. The method has certain limits. Those are as follows: *The X-ray focus position must always be at a fixed distance from the image plane. *The object may only be translated parallel to the image plane and rotated around axes perpendicular to this plane. Under those restrictions, we may treat divergent projection pictures as if they are generated by a parallel projection of a scaled object. The unknown rotation and translation of the object in the previous case are both retrieved in two different procedures and compensated for. Experiments on synthetic data has proved that the method is working even in the presence of severe noise

  14. Method for 3D profilometry measurement based on contouring moire fringe

    Science.gov (United States)

    Shi, Zhiwei; Lin, Juhua

    2007-12-01

    3D shape measurement is one of the most active branches of optical research recently. A method of 3D profilometry measurement by the combination of Moire projection method and phase-shifting technology based on SCM (Single Chip Microcomputer) control is presented in the paper. Automatic measurement of 3D surface profiles can be carried out by applying this method with high speed and high precision.

  15. Visualizing measurement for 3D smooth density distributions by means of linear programming

    International Nuclear Information System (INIS)

    Tayama, Norio; Yang, Xue-dong

    1994-01-01

    This paper is concerned with a theoretical possibility of a new visualizing measurement method based on an optimum 3D reconstruction from a few selected projections. A theory of optimum 3D reconstruction by a linear programming is discussed, utilizing a few projections for sampled 3D smooth-density-distribution model which satisfies the condition of the 3D sampling theorem. First by use of the sampling theorem, it is shown that we can set up simultaneous simple equations which corresponds to the case of the parallel beams. Then we solve the simultaneous simple equations by means of linear programming algorithm, and we can get an optimum 3D density distribution images with minimum error in the reconstruction. The results of computer simulation with the algorithm are presented. (author)

  16. Design tool for TOF and SL based 3D cameras.

    Science.gov (United States)

    Bouquet, Gregory; Thorstensen, Jostein; Bakke, Kari Anne Hestnes; Risholm, Petter

    2017-10-30

    Active illumination 3D imaging systems based on Time-of-flight (TOF) and Structured Light (SL) projection are in rapid development, and are constantly finding new areas of application. In this paper, we present a theoretical design tool that allows prediction of 3D imaging precision. Theoretical expressions are developed for both TOF and SL imaging systems. The expressions contain only physically measurable parameters and no fitting parameters. We perform 3D measurements with both TOF and SL imaging systems, showing excellent agreement between theoretical and measured distance precision. The theoretical framework can be a powerful 3D imaging design tool, as it allows for prediction of 3D measurement precision already in the design phase.

  17. Constructing and Representing: a New Project for 3d Surveying of Yazilikaya - HATTUŠA

    Science.gov (United States)

    Repola, L.; Marazzi, M.; Tilia, S.

    2017-05-01

    Within the cooperation project between the University Suor Orsola Benincasa of Naples and the archaeological mission in Hattuša of the German Archaeological Institute of Istanbul, directed by Andreas Schachner, in agreement with the Turkish Ministry of Culture and Tourism, the workgroup of the University of Naples, has carried out, in September 2015, a first survey campaign of the whole rocky site of Yazılıkaya. The experimentation has been finalized at constructing a global 3D territorial and monumental model of the site, capable that is, through the application of differing scanning procedures, according to the different components (topography, rocky complex, the cultural spaces therein, complex of sculptural reliefs, inscriptions accompanying the divine representations), of virtually reproducing in detail, for safegaurd, exhibition and study purposes (in particular from an epigraphical and historic-artistic point of view) all the aspects characterizing the artefact and not completely visible to the naked eye today.

  18. An Approach to Develop 3d Geo-Dbms Topological Operators by Re-Using Existing 2d Operators

    Science.gov (United States)

    Xu, D.; Zlatanova, S.

    2013-09-01

    Database systems are continuously extending their capabilities to store, process and analyse 3D data. Topological relationships which describe the interaction of objects in space is one of the important spatial issues. However, spatial operators for 3D objects are still insufficient. In this paper we present the development of a new 3D topological function to distinguish intersections of 3D planar polygons. The development uses existing 2D functions in the DBMS and two geometric transformations (rotation and projection). This function is tested for a real dataset to detect overlapping 3D city objects. The paper presents the algorithms and analyses the challenges. Suggestions for improvements of the current algorithm as well as possible extensions to handle more 3D topological cases are discussed at the end.

  19. Extracting valley-ridge lines from point-cloud-based 3D fingerprint models.

    Science.gov (United States)

    Pang, Xufang; Song, Zhan; Xie, Wuyuan

    2013-01-01

    3D fingerprinting is an emerging technology with the distinct advantage of touchless operation. More important, 3D fingerprint models contain more biometric information than traditional 2D fingerprint images. However, current approaches to fingerprint feature detection usually must transform the 3D models to a 2D space through unwrapping or other methods, which might introduce distortions. A new approach directly extracts valley-ridge features from point-cloud-based 3D fingerprint models. It first applies the moving least-squares method to fit a local paraboloid surface and represent the local point cloud area. It then computes the local surface's curvatures and curvature tensors to facilitate detection of the potential valley and ridge points. The approach projects those points to the most likely valley-ridge lines, using statistical means such as covariance analysis and cross correlation. To finally extract the valley-ridge lines, it grows the polylines that approximate the projected feature points and removes the perturbations between the sampled points. Experiments with different 3D fingerprint models demonstrate this approach's feasibility and performance.

  20. Thermal Protection System Materials (TPSM): 3D MAT

    Data.gov (United States)

    National Aeronautics and Space Administration — The 3D MAT Project seeks to design and develop a game changing Woven Thermal Protection System (TPS) technology tailored to meet the needs of the Orion Multi-Purpose...

  1. Fusion of Terrestrial and Airborne Laser Data for 3D modeling Applications

    Science.gov (United States)

    Mohammed, Hani Mahmoud

    This thesis deals with the 3D modeling phase of the as-built large BIM projects. Among several means of BIM data capturing, such as photogrammetric or range tools, laser scanners have been one of the most efficient and practical tool for a long time. They can generate point clouds with high resolution for 3D models that meet nowadays' market demands. The current 3D modeling projects of as-built BIMs are mainly focused on using one type of laser scanner data, such as Airborne or Terrestrial. According to the literatures, no significant (few) efforts were made towards the fusion of heterogeneous laser scanner data despite its importance. The importance of the fusion of heterogeneous data arises from the fact that no single type of laser data can provide all the information about BIM, especially for large BIM projects that are existing on a large area, such as university buildings, or Heritage places. Terrestrial laser scanners are able to map facades of buildings and other terrestrial objects. However, they lack the ability to map roofs or higher parts in the BIM project. Airborne laser scanner on the other hand, can map roofs of the buildings efficiently and can map only small part of the facades. Short range laser scanners can map the interiors of the BIM projects, while long range scanners are used for mapping wide exterior areas in BIM projects. In this thesis the long range laser scanner data obtained in the Stop-and-Go mapping mode, the short range laser scanner data, obtained in a fully static mapping mode, and the airborne laser data are all fused together to bring a complete effective solution for a large BIM project. Working towards the 3D modeling of BIM projects, the thesis framework starts with the registration of the data, where a new fast automatic registration algorithm were developed. The next step is to recognize the different objects in the BIM project (classification), and obtain 3D models for the buildings. The last step is the development of an

  2. 3D rotation invariants of Gaussian-Hermite moments

    Czech Academy of Sciences Publication Activity Database

    Yang, Bo; Flusser, Jan; Suk, Tomáš

    2015-01-01

    Roč. 54, č. 1 (2015), s. 18-26 ISSN 0167-8655 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Rotation invariants * Orthogonal moments * Gaussian–Hermite moments * 3D moment invariants Subject RIV: IN - Informatics, Computer Science Impact factor: 1.586, year: 2015 http://library.utia.cas.cz/separaty/2014/ZOI/yang-0438325.pdf

  3. 3D and 4D Simulations for Landscape Reconstruction and Damage Scenarios: GIS Pilot Applications

    Science.gov (United States)

    Pesaresi, Cristano; Van Der Schee, Joop; Pavia, Davide

    2017-01-01

    The project "3D and 4D Simulations for Landscape Reconstruction and Damage Scenarios: GIS Pilot Applications" has been devised with the intention to deal with the demand for research, innovation and applicative methodology on the part of the international programme, requiring concrete results to increase the capacity to know, anticipate…

  4. A modern approach to storing of 3D geometry of objects in machine engineering industry

    Science.gov (United States)

    Sokolova, E. A.; Aslanov, G. A.; Sokolov, A. A.

    2017-02-01

    3D graphics is a kind of computer graphics which has absorbed a lot from the vector and raster computer graphics. It is used in interior design projects, architectural projects, advertising, while creating educational computer programs, movies, visual images of parts and products in engineering, etc. 3D computer graphics allows one to create 3D scenes along with simulation of light conditions and setting up standpoints.

  5. 3D computed tomography using a microfocus X-ray source: Analysis of artifact formation in the reconstructed images using simulated as well as experimental projection data

    International Nuclear Information System (INIS)

    Krimmel, S.; Stephan, J.; Baumann, J.

    2005-01-01

    The scope of this contribution is to identify and to quantify the influence of different parameters on the formation of image artifacts in X-ray computed tomography (CT) resulting for example, from beam hardening or from partial lack of information using 3D cone beam CT. In general, the reconstructed image quality depends on a number of acquisition parameters concerning the X-ray source (e.g. X-ray spectrum), the geometrical setup (e.g. cone beam angle), the sample properties (e.g. absorption characteristics) and the detector properties. While it is difficult to distinguish the influence of different effects clearly in experimental projection data, they can be selected individually with the help of simulated projection data by varying the parameter set. The reconstruction of the 3D data set is performed with the filtered back projection algorithm according to Feldkamp, Davis and Kress for experimental as well as for simulated projection data. The experimental data are recorded with an industrial microfocus CT system which features a focal spot size of a few micrometers and uses a digital flat panel detector for data acquisition

  6. Waste management aspects of decontamination and decommissioning (D ampersand D) projects

    International Nuclear Information System (INIS)

    Becker, B.D.

    1993-01-01

    History shows that waste management concepts have generally been overlooked during the planning stages of most projects and experiments. This is resulting,in the generation of vast amounts of waste during the clean up or D ampersand D of these facilities. Managers are not only being frustrated in their waste minimization efforts (a relatively new concept) but are also facing the prospect of not being able to dispose of the waste materials at all. At the least, managers are having to budget extraordinary amounts of time, money, and effort in defending their positions that the waste materials are not only humanly and environmentally safe, but that the waste materials are in fact what management says they are. The following discussion will attempt to provide some guidance to D ampersand D managers to help them avoid many of the common pitfalls associated with the ultimate disposal of the materials generated during these projects

  7. Configurable 3D rotational X-ray reconstruction

    NARCIS (Netherlands)

    Nguyen, Xuan Huy

    2012-01-01

    This report is one of the deliverables of the project "Configurable 3D Rotational X-ray Reconstruction", carried out by the author as the final part of the Professional Doctorate in Engineering (PDEng) degree program in Software Technology provided by Eindhoven University of Technology and Stan

  8. Refined 3d-3d correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; Loon, Mark van [Mathematical Institute, University of Oxford, Andrew Wiles Building,Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom)

    2017-04-28

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N=2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N=2 theories constructed from boundary conditions and interfaces in a 4d N=2{sup ∗} theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-’t Hooft loops in the 4d N=2{sup ∗} theory. In the presence of a mass parameter for the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  9. EarthServer - 3D Visualization on the Web

    Science.gov (United States)

    Wagner, Sebastian; Herzig, Pasquale; Bockholt, Ulrich; Jung, Yvonne; Behr, Johannes

    2013-04-01

    EarthServer (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, is a project to enable the management, access and exploration of massive, multi-dimensional datasets using Open GeoSpatial Consortium (OGC) query and processing language standards like WCS 2.0 and WCPS. To this end, a server/client architecture designed to handle Petabyte/Exabyte volumes of multi-dimensional data is being developed and deployed. As an important part of the EarthServer project, six Lighthouse Applications, major scientific data exploitation initiatives, are being established to make cross-domain, Earth Sciences related data repositories available in an open and unified manner, as service endpoints based on solutions and infrastructure developed within the project. Clients technology developed and deployed in EarthServer ranges from mobile and web clients to immersive virtual reality systems, all designed to interact with a physically and logically distributed server infrastructure using exclusively OGC standards. In this contribution, we would like to present our work on a web-based 3D visualization and interaction client for Earth Sciences data using only technology found in standard web browsers without requiring the user to install plugins or addons. Additionally, we are able to run the earth data visualization client on a wide range of different platforms with very different soft- and hardware requirements such as smart phones (e.g. iOS, Android), different desktop systems etc. High-quality, hardware-accelerated visualization of 3D and 4D content in standard web browsers can be realized now and we believe it will become more and more common to use this fast, lightweight and ubiquitous platform to provide insights into big datasets without requiring the user to set up a specialized client first. With that in mind, we will also point out some of the limitations we encountered using current web technologies. Underlying the EarthServer web client

  10. 3D laser imaging for ODOT interstate network at true 1-mm resolution.

    Science.gov (United States)

    2014-12-01

    With the development of 3D laser imaging technology, the latest iteration of : PaveVision3D Ultra can obtain true 1mm resolution 3D data at full-lane coverage in all : three directions at highway speed up to 60MPH. This project provides rapid survey ...

  11. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis

    National Research Council Canada - National Science Library

    Carson, Paul

    1997-01-01

    This project is to improve the diagnosis and management of patients with breast cancer through development and evaluation of 3D ultrasound imaging and quantification techniques emphasizing vascularity...

  12. Integration of DYN3D inside the NURESIM platform

    International Nuclear Information System (INIS)

    Gomez T, A. M.; Sanchez E, V. H.; Kliem, S.; Gommlich, A.; Rohde, U.

    2010-10-01

    The NURISP project (Nuclear Reactor Integrated Simulation Project) is focused on the further development of the European Nuclear Reactor Simulation (NURESIM) platform for advanced numerical reactor design and safety analysis tools. NURESIM is based on an open source platform - called SALOME - that offers flexible and powerful capabilities for pre- and post processing as well as for coupling of multi-physics and multi-scale solutions. The developments within the NURISP project are concentrated in the areas of reactors, physics, thermal hydraulics, multi-physics, and sensitivity and uncertainty methodologies. The aim is to develop experimentally validated advanced simulation tools including capabilities for uncertainty and sensitivity quantification. A unique feature of NURESIM is the flexibility in selecting the solvers for the area of interest and the interpolation and mapping schemes according to the problem under consideration. The Sub Project 3 (S P3) of NURISP is focused on the development of multi-physics methodologies at different scales and covering different physical fields (neutronics, thermal hydraulics and pin mechanics). One of the objectives of S P3 is the development of multi-physics methodologies beyond the state-of-the-art for improved prediction of local safety margins and design at pin-by-pin scale. The Karlsruhe Institute of Technology and the Research Center Dresden-Rossendorf are involved in the integration of the reactor dynamics code DYN3D into the SALOME platform for coupling with a thermal hydraulic sub-channel code (FLICA4) at fuel assembly and pin level. In this paper, the main capabilities of the SALOME platform, the steps for the integration process of DYN3D as well as selected preliminary results obtained for the DYN3D/FLICA4 coupling are presented and discussed. Finally the next steps for the validation of the coupling scheme at fuel assembly and pin basis are given. (Author)

  13. Simulator sickness analysis of 3D video viewing on passive 3D TV

    Science.gov (United States)

    Brunnström, K.; Wang, K.; Andrén, B.

    2013-03-01

    The MPEG 3DV project is working on the next generation video encoding standard and in this process a call for proposal of encoding algorithms was issued. To evaluate these algorithm a large scale subjective test was performed involving Laboratories all over the world. For the participating Labs it was optional to administer a slightly modified Simulator Sickness Questionnaire (SSQ) from Kennedy et al (1993) before and after the test. Here we report the results from one Lab (Acreo) located in Sweden. The videos were shown on a 46 inch film pattern retarder 3D TV, where the viewers were using polarized passive eye-glasses to view the stereoscopic 3D video content. There were 68 viewers participating in this investigation in ages ranges from 16 to 72, with one third females. The questionnaire was filled in before and after the test, with a viewing time ranging between 30 min to about one and half hour, which is comparable to a feature length movie. The SSQ consists of 16 different symptoms that have been identified as important for indicating simulator sickness. When analyzing the individual symptoms it was found that Fatigue, Eye-strain, Difficulty Focusing and Difficulty Concentrating were significantly worse after than before. SSQ was also analyzed according to the model suggested by Kennedy et al (1993). All in all this investigation shows a statistically significant increase in symptoms after viewing 3D video especially related to visual or Oculomotor system.

  14. 3D seismic surveys for shallow targets

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.C.; Stewart, R.R.; Bertram, M.B. [Calgary Univ., AB (Canada). Dept. of Geoscience, Consortium for Research in Elastic Wave Exploration Seismology

    2008-07-01

    Although 3D seismic surveys are generally used to map deep hydrocarbon plays, this study demonstrated that they can be useful for characterizing shallow targets, such as oilsands deposits. A high-resolution 3D seismic survey was undertaken to map shallow stratigraphy near Calgary, Alberta. The project demonstrated the efficacy of reflection seismic surveys for shallow targets ranging from 100 to 500 metres. The purpose of the program was to map shallow stratigraphy and structure to depths of up to 500m, and to investigate shallow aquifers in the study area. The results of the survey illustrated the opportunity that 3D seismic surveys provide for mapping shallow reflectors and the acquisition geometry needed to image them. Applications include mapping the distribution of shallow aquifers, delineating shallow coals and investigating oilsands deposits. 2 refs., 5 figs.

  15. Strategies for the structural analysis of multi-protein complexes: lessons from the 3D-Repertoire project.

    Science.gov (United States)

    Collinet, B; Friberg, A; Brooks, M A; van den Elzen, T; Henriot, V; Dziembowski, A; Graille, M; Durand, D; Leulliot, N; Saint André, C; Lazar, N; Sattler, M; Séraphin, B; van Tilbeurgh, H

    2011-08-01

    Structural studies of multi-protein complexes, whether by X-ray diffraction, scattering, NMR spectroscopy or electron microscopy, require stringent quality control of the component samples. The inability to produce 'keystone' subunits in a soluble and correctly folded form is a serious impediment to the reconstitution of the complexes. Co-expression of the components offers a valuable alternative to the expression of single proteins as a route to obtain sufficient amounts of the sample of interest. Even in cases where milligram-scale quantities of purified complex of interest become available, there is still no guarantee that good quality crystals can be obtained. At this step, protein engineering of one or more components of the complex is frequently required to improve solubility, yield or the ability to crystallize the sample. Subsequent characterization of these constructs may be performed by solution techniques such as Small Angle X-ray Scattering and Nuclear Magnetic Resonance to identify 'well behaved' complexes. Herein, we recount our experiences gained at protein production and complex assembly during the European 3D Repertoire project (3DR). The goal of this consortium was to obtain structural information on multi-protein complexes from yeast by combining crystallography, electron microscopy, NMR and in silico modeling methods. We present here representative set case studies of complexes that were produced and analyzed within the 3DR project. Our experience provides useful insight into strategies that are more generally applicable for structural analysis of protein complexes. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Deploying innovative technologies to improve DOE D ampersand D project baselines

    International Nuclear Information System (INIS)

    Rose, R.W.

    1997-05-01

    The insertion of innovative technologies to replace baseline technologies used in cost estimation and planning of DOE D ampersand D projects is considered a high risk endeavor by project and programmatic decision makers. It is almost always considered safer to go with the open-quotes devil you knowclose quotes than use a new or untried technology, methodology or system. The decision on the specific technology to be utilized to remediate a problem is often made months or years in advance of execution, and the highly proscriptive documentation of agreements necessary to obtain stakeholder and regulator approval of remedial plans is often counterproductive to considering improved technologies

  17. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  18. Managing and delivering of 3D geo data across institutions has a web based solution - intermediate results of the project GeoMol.

    Science.gov (United States)

    Gietzel, Jan; Schaeben, Helmut; Gabriel, Paul

    2014-05-01

    The increasing relevance of geological information for policy and economy at transnational level has recently been recognized by the European Commission, who has called for harmonized information related to reserves and resources in the EU Member States. GeoMol's transnational approach responds to that, providing consistent and seamless 3D geological information of the Alpine Foreland Basins based on harmonized data and agreed methodologies. However, until recently no adequate tool existed to ensure full interoperability among the involved GSOs and to distribute the multi-dimensional information of a transnational project facing diverse data policy, data base systems and software solutions. In recent years (open) standards describing 2D spatial data have been developed and implemented in different software systems including production environments for 2D spatial data (like regular 2D-GI-Systems). Easy yet secured access to the data is of upmost importance and thus priority for any spatial data infrastructure. To overcome limitations conditioned by highly sophisticated and platform dependent geo modeling software packages functionalities of a web portals can be utilized. Thus, combining a web portal with a "check-in-check-out" system allows distributed organized editing of data and models but requires standards for the exchange of 3D geological information to ensure interoperability. Another major concern is the management of large models and the ability of 3D tiling into spatially restricted models with refined resolution, especially when creating countrywide models . Using GST ("Geosciences in Space and Time") developed initially at TU Bergakademie Freiberg and continuously extended by the company GiGa infosystems, incorporating these key issues and based on an object-relational data model, it is possible to check out parts or whole models for edits and check in again after modification. GST is the core of GeoMol's web-based collaborative environment designed to

  19. Spacecraft 3D Augmented Reality Mobile App

    Science.gov (United States)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  20. Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources

    Science.gov (United States)

    Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.

    2015-12-01

    Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.

  1. 3D-mallien muokkaus 3D-tulostamista varten CAD-ohjelmilla

    OpenAIRE

    Lehtimäki, Jarmo

    2013-01-01

    Insinöörityössäni käsitellään 3D-mallien tulostamista ja erityisesti 3D-mallien mallintamista niin, että kappaleiden valmistaminen 3D-tulostimella onnistuisi mahdollisimman hyvin. Työ tehtiin Prohoc Oy:lle, joka sijaitsee Vaasassa. 3D-tulostuspalveluun tuli jatkuvasti 3D-malleja, joiden tulostuksessa oli ongelmia. Työssäni tutkin näiden ongelmien syntyä ja tein ohjeita eri 3D-mallinnusohjelmille, joiden tarkoituksena on auttaa tekemään helpommin tulostettavia 3D-malleja. Työhön kuului myös et...

  2. 3D imaging, 3D printing and 3D virtual planning in endodontics.

    Science.gov (United States)

    Shah, Pratik; Chong, B S

    2018-03-01

    The adoption and adaptation of recent advances in digital technology, such as three-dimensional (3D) printed objects and haptic simulators, in dentistry have influenced teaching and/or management of cases involving implant, craniofacial, maxillofacial, orthognathic and periodontal treatments. 3D printed models and guides may help operators plan and tackle complicated non-surgical and surgical endodontic treatment and may aid skill acquisition. Haptic simulators may assist in the development of competency in endodontic procedures through the acquisition of psycho-motor skills. This review explores and discusses the potential applications of 3D printed models and guides, and haptic simulators in the teaching and management of endodontic procedures. An understanding of the pertinent technology related to the production of 3D printed objects and the operation of haptic simulators are also presented.

  3. Bologna 3D: la pianificazione partecipata del Piano Strutturale Comunale

    Directory of Open Access Journals (Sweden)

    Andrea Deiana

    2008-03-01

    Full Text Available Bologna 3D: the Municipal Structural Plan partecipated planning The Bologna Municipality used 3D GIS solutions by Skyline for opening to citizens the decision process which leaded to its new urban plan (PSC: 3D prospective is enhancing understanding of territory strategical planning, even to nontechnical and common people. A Skyline 3D terrain, produced in TerraBuilder environment from 10 meters DTM and from 50 centimeters per pixel colour imagery, is served online by TerraGate streaming server as basis layer for the delivering of interactive 3D GIS applications made using TerraExplorer Pro’s authoring environment, integrating all the significant GIS layers and various informations into many 3D projects, now also available online by installing the free plugin TerraExplorer Viewer.

  4. Bologna 3D: la pianificazione partecipata del Piano Strutturale Comunale

    Directory of Open Access Journals (Sweden)

    Andrea Deiana

    2008-03-01

    Full Text Available Bologna 3D: the Municipal Structural Plan partecipated planningThe Bologna Municipality used 3D GIS solutions by Skyline for opening to citizens the decision process which leaded to its new urban plan (PSC: 3D prospective is enhancing understanding of territory strategical planning, even to nontechnical and common people. A Skyline 3D terrain, produced in TerraBuilder environment from 10 meters DTM and from 50 centimeters per pixel colour imagery, is served online by TerraGate streaming server as basis layer for the delivering of interactive 3D GIS applications made using TerraExplorer Pro’s authoring environment, integrating all the significant GIS layers and various informations into many 3D projects, now also available online by installing the free plugin TerraExplorer Viewer.

  5. 3D CAD ON Qinshan CANDU project

    International Nuclear Information System (INIS)

    Goland, D.

    2000-01-01

    This paper briefly describe AECL's work in applying computer-aided engineering tools to the Qinshan CANDU project. The main thrust of this paper is to introduce the major CAD software tools and their use in civil design, process design and EI and C design. Other special software tools and non-CAD tools and their applications are also briefly introduced. (author)

  6. A 3d-3d appetizer

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Du; Ye, Ke [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125 (United States)

    2016-11-02

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T[L(p,1)] and the partition function of complex Chern-Simons theory on L(p,1). In particular, for p=1, we show how the familiar S{sup 3} partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p,1)] becomes a constant independent of p. In addition, we study T[L(p,1)] on the squashed three-sphere S{sub b}{sup 3}. This enables us to see clearly, at the level of partition function, to what extent G{sub ℂ} complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  7. R and D project and informatization

    International Nuclear Information System (INIS)

    1996-10-01

    This book deals with present situation and view of research and development project by industry, which includes general machinery industry, the steel industry, non ferrous metal industry, petrochemistry industry, auto industry, shipbuilding industry, aerospace engineering industry, daily supplies industry, fine chemistry industry, the ceramic industry, plate glass industry, biology life industry, electron industry, information industry, and semiconductor industry. It also describes project management of R and D and informatization of industry.367

  8. Automatic intensity-based 3D-to-2D registration of CT volume and dual-energy digital radiography for the detection of cardiac calcification

    Science.gov (United States)

    Chen, Xiang; Gilkeson, Robert; Fei, Baowei

    2007-03-01

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DR) for the detection of coronary artery calcification. CT is an established tool for the diagnosis of coronary artery diseases (CADs). Dual-energy digital radiography could be a cost-effective alternative for screening coronary artery calcification. In order to utilize CT as the "gold standard" to evaluate the ability of DR images for the detection and localization of calcium, we developed an automatic intensity-based 3D-to-2D registration method for 3D CT volumes and 2D DR images. To generate digital rendering radiographs (DRR) from the CT volumes, we developed three projection methods, i.e. Gaussian-weighted projection, threshold-based projection, and average-based projection. We tested normalized cross correlation (NCC) and normalized mutual information (NMI) as similarity measurement. We used the Downhill Simplex method as the search strategy. Simulated projection images from CT were fused with the corresponding DR images to evaluate the localization of cardiac calcification. The registration method was evaluated by digital phantoms, physical phantoms, and clinical data sets. The results from the digital phantoms show that the success rate is 100% with mean errors of less 0.8 mm and 0.2 degree for both NCC and NMI. The registration accuracy of the physical phantoms is 0.34 +/- 0.27 mm. Color overlay and 3D visualization of the clinical data show that the two images are registered well. This is consistent with the improvement of the NMI values from 0.20 +/- 0.03 to 0.25 +/- 0.03 after registration. The automatic 3D-to-2D registration method is accurate and robust and may provide a useful tool to evaluate the dual-energy DR images for the detection of coronary artery calcification.

  9. FPGA Implementation of a Simple 3D Graphics Pipeline

    Directory of Open Access Journals (Sweden)

    Vladimir Kasik

    2015-01-01

    Full Text Available Conventional methods for computing 3D projects are nowadays usually implemented on standard or graphics processors. The performance of these devices is limited especially by the used architecture, which to some extent works in a sequential manner. In this article we describe a project which utilizes parallel computation for simple projection of a wireframe 3D model. The algorithm is optimized for a FPGA-based implementation. The design of the numerical logic is described in VHDL with the use of several basic IP cores used especially for computing trigonometric functions. The implemented algorithms allow smooth rotation of the model in two axes (azimuth and elevation and a change of the viewing angle. Tests carried out on a FPGA Xilinx Spartan-6 development board have resulted in real-time rendering at over 5000fps. In the conclusion of the article, we discuss additional possibilities for increasing the computational output in graphics applications via the use of HPC (High Performance Computing.

  10. D5.3 Interaction between currents, wave, structure and subsoil

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Sumer, B. Mutlu; Schouten, Jan-Joost

    2015-01-01

    This chapter gives an introduction to deliverable D5.3 - Interaction between currents, waves, structure and subsoil – with respect to the MERMAID project. The deliverable focuses on the conditions in European waters such as the four sites that is addressed in the MERMAID project. The most important...

  11. AUTOMATIC 3D MAPPING USING MULTIPLE UNCALIBRATED CLOSE RANGE IMAGES

    Directory of Open Access Journals (Sweden)

    M. Rafiei

    2013-09-01

    Full Text Available Automatic three-dimensions modeling of the real world is an important research topic in the geomatics and computer vision fields for many years. By development of commercial digital cameras and modern image processing techniques, close range photogrammetry is vastly utilized in many fields such as structure measurements, topographic surveying, architectural and archeological surveying, etc. A non-contact photogrammetry provides methods to determine 3D locations of objects from two-dimensional (2D images. Problem of estimating the locations of 3D points from multiple images, often involves simultaneously estimating both 3D geometry (structure and camera pose (motion, it is commonly known as structure from motion (SfM. In this research a step by step approach to generate the 3D point cloud of a scene is considered. After taking images with a camera, we should detect corresponding points in each two views. Here an efficient SIFT method is used for image matching for large baselines. After that, we must retrieve the camera motion and 3D position of the matched feature points up to a projective transformation (projective reconstruction. Lacking additional information on the camera or the scene makes the parallel lines to be unparalleled. The results of SfM computation are much more useful if a metric reconstruction is obtained. Therefor multiple views Euclidean reconstruction applied and discussed. To refine and achieve the precise 3D points we use more general and useful approach, namely bundle adjustment. At the end two real cases have been considered to reconstruct (an excavation and a tower.

  12. Highly-stretchable 3D-architected Mechanical Metamaterials

    Science.gov (United States)

    Jiang, Yanhui; Wang, Qiming

    2016-09-01

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.

  13. Quasi 3D dosimetry (EPID, conventional 2D/3D detector matrices)

    International Nuclear Information System (INIS)

    Bäck, A

    2015-01-01

    Patient specific pretreatment measurement for IMRT and VMAT QA should preferably give information with a high resolution in 3D. The ability to distinguish complex treatment plans, i.e. treatment plans with a difference between measured and calculated dose distributions that exceeds a specified tolerance, puts high demands on the dosimetry system used for the pretreatment measurements and the results of the measurement evaluation needs a clinical interpretation. There are a number of commercial dosimetry systems designed for pretreatment IMRT QA measurements. 2D arrays such as MapCHECK ® (Sun Nuclear), MatriXX Evolution (IBA Dosimetry) and OCTAVIOUS ® 1500 (PTW), 3D phantoms such as OCTAVIUS ® 4D (PTW), ArcCHECK ® (Sun Nuclear) and Delta 4 (ScandiDos) and software for EPID dosimetry and 3D reconstruction of the dose in the patient geometry such as EPIDose TM (Sun Nuclear) and Dosimetry Check TM (Math Resolutions) are available. None of those dosimetry systems can measure the 3D dose distribution with a high resolution (full 3D dose distribution). Those systems can be called quasi 3D dosimetry systems. To be able to estimate the delivered dose in full 3D the user is dependent on a calculation algorithm in the software of the dosimetry system. All the vendors of the dosimetry systems mentioned above provide calculation algorithms to reconstruct a full 3D dose in the patient geometry. This enables analyzes of the difference between measured and calculated dose distributions in DVHs of the structures of clinical interest which facilitates the clinical interpretation and is a promising tool to be used for pretreatment IMRT QA measurements. However, independent validation studies on the accuracy of those algorithms are scarce. Pretreatment IMRT QA using the quasi 3D dosimetry systems mentioned above rely on both measurement uncertainty and accuracy of calculation algorithms. In this article, these quasi 3D dosimetry systems and their use in patient specific

  14. Introduction to 3D Graphics through Excel

    Science.gov (United States)

    Benacka, Jan

    2013-01-01

    The article presents a method of explaining the principles of 3D graphics through making a revolvable and sizable orthographic parallel projection of cuboid in Excel. No programming is used. The method was tried in fourteen 90 minute lessons with 181 participants, which were Informatics teachers, undergraduates of Applied Informatics and gymnasium…

  15. 3-D model-based vehicle tracking.

    Science.gov (United States)

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  16. 3D MR cisternography to identify distal dural rings. Comparison of 3D-CISS and 3D-SPACE sequences

    International Nuclear Information System (INIS)

    Watanabe, Yoshiyuki; Makidono, Akari; Nakamura, Miho; Saida, Yukihisa

    2011-01-01

    The distal dural ring (DDR) is an anatomical landmark used to distinguish intra- and extradural aneurysms. We investigated identification of the DDR using 2 three-dimensional (3D) magnetic resonance (MR) cisternography sequences-3D constructive interference in steady state (CISS) and 3D sampling perfection with application optimized contrasts using different flip angle evolutions (SPACE)-at 3.0 tesla. Ten healthy adult volunteers underwent imaging with 3D-CISS, 3D-SPACE, and time-of-flight (TOF) MR angiography (TOF-MRA) sequences at 3.0T. We analyzed DDR identification and internal carotid artery (ICA) signal intensity and classified the shape of the carotid cave. We identified the DDR using both 3D-SPACE and 3D-CISS, with no significant difference between the sequences. Visualization of the outline of the ICA in the cavernous sinus (CS) was significantly clearer with 3D-SPACE than 3D-CISS. In the CS and petrous portions, signal intensity was lower with 3D-SPACE, and the flow void was poor with 3D-CISS in some subjects. We identified the DDR with both 3D-SPACE and 3D-CISS, but the superior contrast of the ICA in the CS using 3D-SPACE suggests the superiority of this sequence for evaluating the DDR. (author)

  17. 3D-MR myelography (3D-MRM) for the diagnosis of lumbal nerve root compression syndrome. A comparison with conventional myelography

    International Nuclear Information System (INIS)

    Eberhardt, K.E.W.; Hollenbach, H.P.; Huk, W.J.

    1994-01-01

    65 patients with nerve root compression syndrome were examined using a new type of MR-technique, which is comparable to the conventional X-ray myelography. The results of the prospective case study were compared with previous clinical experiences (1). For the examinations a 1.0 T whole body MR-system (Siemens Magnetom Impact) was used. A strong T 2 *-weighted 3D-FISP sequence (TR=73 ms, TE=21 ms, α=7 ) was applied in sagittal orientation using a circularly polarized oval spine coil. To obtain fat suppression a frequency selective 1-3-3-1 prepulse was applied prior to the imaging sequence. The acquired 3D-data set was evaluated using a Maximum Intensity Projection (MIP) program. Our results confirmed earlier experiences which showed that the diagnostic sensitivity of 3D-MR myelography (3D-MRM) is comparable to that of conventional X-ray myelography. In cases of severe spinal canal stenosis and spondylolisthesis, and in cases of postoperative scar tissue with nerve root compressions, the sensitivity of the 3D-MRM is higher as compared to that of conventional X-ray myelography. (orig.) [de

  18. 3D delivered dose assessment using a 4DCT-based motion model

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Mishra, Pankaj, E-mail: wcai@lroc.harvard.edu, E-mail: jhlewis@lroc.harvard.edu; Lewis, John H., E-mail: wcai@lroc.harvard.edu, E-mail: jhlewis@lroc.harvard.edu [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Seco, Joao [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-06-15

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  19. 3D delivered dose assessment using a 4DCT-based motion model

    International Nuclear Information System (INIS)

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Mishra, Pankaj; Lewis, John H.; Seco, Joao

    2015-01-01

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  20. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  1. Head Tracked Multi User Autostereoscopic 3D Display Investigations

    OpenAIRE

    Brar, Rajwinder Singh

    2012-01-01

    The research covered in this thesis encompasses a consideration of 3D television requirements and a survey of stereoscopic and autostereoscopic methods. This confirms that although there is a lot of activity in this area, very little of this work could be considered suitable for television. The principle of operation, design of the components of the optical system and evaluation of two EU-funded (MUTED & HELIUM3D projects) glasses-free (autostereoscopic) displays is described. Four iterati...

  2. 3D composite image, 3D MRI, 3D SPECT, hydrocephalus

    International Nuclear Information System (INIS)

    Mito, T.; Shibata, I.; Sugo, N.; Takano, M.; Takahashi, H.

    2002-01-01

    The three-dimensional (3D)SPECT imaging technique we have studied and published for the past several years is an analytical tool that permits visual expression of the cerebral circulation profile in various cerebral diseases. The greatest drawback of SPECT is that the limitation on precision of spacial resolution makes intracranial localization impossible. In 3D SPECT imaging, intracranial volume and morphology may vary with the threshold established. To solve this problem, we have produced complimentarily combined SPECT and helical-CT 3D images by means of general-purpose visualization software for intracranial localization. In hydrocephalus, however, the key subject to be studied is the profile of cerebral circulation around the ventricles of the brain. This suggests that, for displaying the cerebral ventricles in three dimensions, CT is a difficult technique whereas MRI is more useful. For this reason, we attempted to establish the profile of cerebral circulation around the cerebral ventricles by the production of combined 3D images of SPECT and MRI. In patients who had shunt surgery for hydrocephalus, a difference between pre- and postoperative cerebral circulation profiles was assessed by a voxel distribution curve, 3D SPECT images, and combined 3D SPECT and MRI images. As the shunt system in this study, an Orbis-Sigma valve of the automatic cerebrospinal fluid volume adjustment type was used in place of the variable pressure type Medos valve currently in use, because this device requires frequent changes in pressure and a change in pressure may be detected after MRI procedure. The SPECT apparatus used was PRISM3000 of the three-detector type, and 123I-IMP was used as the radionuclide in a dose of 222 MBq. MRI data were collected with an MAGNEXa+2 with a magnetic flux density of 0.5 tesla under the following conditions: field echo; TR 50 msec; TE, 10 msec; flip, 30ueK; 1 NEX; FOV, 23 cm; 1-mm slices; and gapless. 3D images are produced on the workstation TITAN

  3. Experiment for integrating dutch 3D spatial planning and BIM for checking building permits

    NARCIS (Netherlands)

    Berlo, L.A.H.M. van; Dijkmans, T.J.A.; Stoter, J.

    2013-01-01

    This paper presents a research project in The Netherlands in which several SMEs collaborated to create a 3D model of the National spatial planning information. This 2D information system described in the IMRO data standard holds implicit 3D information that can be used to generate an explicit 3D

  4. Experiment for inegrating Dutch 3D spatial planning and BIM for checking building permits

    NARCIS (Netherlands)

    Van Berlo, L.; Dijkmans, T.; Stoter, J.E.

    2013-01-01

    This paper presents a research project in The Netherlands in which several SMEs collaborated to create a 3D model of the National spatial planning information. This 2D information system described in the IMRO data standard holds implicit 3D information that can be used to generate an explicit 3D

  5. Characterization of the capillary network in skeletal muscles from 3D data

    Czech Academy of Sciences Publication Activity Database

    Eržen, I.; Janáček, Jiří; Kubínová, Lucie

    2011-01-01

    Roč. 60, č. 1 (2011), s. 1-13 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) MEB090910; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509 Keywords : capillaries * skeletal muscle * confocal microscopy * stereology * 3D analysis * 3D visualization Subject RIV: BO - Biophysics Impact factor: 1.555, year: 2011

  6. Fluorescence detector for capillary separations fabricated by 3D printing

    Czech Academy of Sciences Publication Activity Database

    Přikryl, Jan; Foret, František

    2014-01-01

    Roč. 86, č. 24 (2014), s. 11951-11956 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GBP206/12/G014; GA MŠk(CZ) EE2.3.20.0182 Grant - others:GA AV ČR(CZ) M200311201 Institutional support: RVO:68081715 Keywords : 3D print * additive manufacturing * fluorescence * LIF * LED Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014

  7. 3D Printing and 3D Bioprinting in Pediatrics.

    Science.gov (United States)

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  8. 3D Printing and 3D Bioprinting in Pediatrics

    OpenAIRE

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-01-01

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  9. A comparison of reconstruction methods for undersampled atomic force microscopy images

    International Nuclear Information System (INIS)

    Luo, Yufan; Andersson, Sean B

    2015-01-01

    Non-raster scanning and undersampling of atomic force microscopy (AFM) images is a technique for improving imaging rate and reducing the amount of tip–sample interaction needed to produce an image. Generation of the final image can be done using a variety of image processing techniques based on interpolation or optimization. The choice of reconstruction method has a large impact on the quality of the recovered image and the proper choice depends on the sample under study. In this work we compare interpolation through the use of inpainting algorithms with reconstruction based on optimization through the use of the basis pursuit algorithm commonly used for signal recovery in compressive sensing. Using four different sampling patterns found in non-raster AFM, namely row subsampling, spiral scanning, Lissajous scanning, and random scanning, we subsample data from existing images and compare reconstruction performance against the original image. The results illustrate that inpainting generally produces superior results when the image contains primarily low frequency content while basis pursuit is better when the images have mixed, but sparse, frequency content. Using support vector machines, we then classify images based on their frequency content and sparsity and, from this classification, develop a fast decision strategy to select a reconstruction algorithm to be used on subsampled data. The performance of the classification and decision test are demonstrated on test AFM images. (paper)

  10. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    International Nuclear Information System (INIS)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies. (paper)

  11. Influence of Camera Setting on Vehicle-to-Vehicle VLC Employing Undersampled Phase Shift On-Off Keying

    Directory of Open Access Journals (Sweden)

    S. Vitek

    2017-12-01

    Full Text Available This paper focuses on the performance analysis of a camera based vehicle-to-vehicle visible light communication system employing undersampled phase shift on-off keying modulation under interference scenario. Two Nissan Qashqai front lights with daylight running light emitting diodes based lamps are used for communications. The bit error rate (BER performance of the proposed system is experimentally measured for a transmission span up to 24m focusing mostly on the side interference due to reflections. Based on experimental data we demonstrate reduction of the system performance due to the side reflection and illumination of the detector by other light sources which has to taken into account during further data processing. We provide with further statistics for particular shuter speed and transmitter power setting and discus BER improvement especially to meet FEC via the method of adaptive region of interest.

  12. A Methodology for Collective Evaluation and Selection of Industrial R&D Projects

    OpenAIRE

    Muhittin Oral; Ossama Kettani; Pascal Lang

    1991-01-01

    This paper proposes a methodology for evaluating and selecting R&D projects in a collective decision setting, especially useful at sectorial and national levels. It consists of two major phases: Evaluation and Selection. The evaluation process repeatedly uses mathematical programming models to determine the "relative values" of a given R&D project from the viewpoint of the other R&D projects. The selection process of R&D projects is based on these "relative values" and is done through a model...

  13. See-through 3D technology for augmented reality

    Science.gov (United States)

    Lee, Byoungho; Lee, Seungjae; Li, Gang; Jang, Changwon; Hong, Jong-Young

    2017-06-01

    Augmented reality is recently attracting a lot of attention as one of the most spotlighted next-generation technologies. In order to get toward realization of ideal augmented reality, we need to integrate 3D virtual information into real world. This integration should not be noticed by users blurring the boundary between the virtual and real worlds. Thus, ultimate device for augmented reality can reconstruct and superimpose 3D virtual information on the real world so that they are not distinguishable, which is referred to as see-through 3D technology. Here, we introduce our previous researches to combine see-through displays and 3D technologies using emerging optical combiners: holographic optical elements and index matched optical elements. Holographic optical elements are volume gratings that have angular and wavelength selectivity. Index matched optical elements are partially reflective elements using a compensation element for index matching. Using these optical combiners, we could implement see-through 3D displays based on typical methodologies including integral imaging, digital holographic displays, multi-layer displays, and retinal projection. Some of these methods are expected to be optimized and customized for head-mounted or wearable displays. We conclude with demonstration and analysis of fundamental researches for head-mounted see-through 3D displays.

  14. In-process 3D geometry reconstruction of objects produced by direct light projection

    DEFF Research Database (Denmark)

    Andersen, Ulrik Vølcker; Pedersen, David Bue; Hansen, Hans Nørgaard

    2013-01-01

    al. 2011), this method has shown its potential with 3D printing (3DP) and selective laser sintering additive manufacturing processes, where it is possible to directly capture the geometrical features of each individual layer during a build job using a digital camera. When considering the process...... equipment such as coordinate measuring machines cannot be verified easily. This problem is addressed by developing an in-line reverse engineering and 3D reconstruction method that allows a true-to-scale reconstruction of a part being additively manufactured. In earlier works (Pedersen et al. 2010; Hansen et...

  15. LATIS3D The Gold Standard for Laser-Tissue-Interaction Modeling

    CERN Document Server

    London, R A; Gentile, N A; Kim, B M; Makarewicz, A M; Vincent, L; Yang, Y B

    2000-01-01

    The goal of this LDRD project has been to create LATIS3D--the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications.

  16. LATIS3D: The Gold Standard for Laser-Tissue-Interaction Modeling

    International Nuclear Information System (INIS)

    London, R.A.; Makarewicz, A.M.; Kim, B.M.; Gentile, N.A.; Yang, Y.B.; Brlik, M.; Vincent, L.

    2000-01-01

    The goal of this LDRD project has been to create LATIS3D--the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications

  17. DSA volumetric 3D reconstructions of intracranial aneurysms: A pictorial essay

    Science.gov (United States)

    Cieściński, Jakub; Serafin, Zbigniew; Strześniewski, Piotr; Lasek, Władysław; Beuth, Wojciech

    2012-01-01

    Summary A gold standard of cerebral vessel imaging remains the digital subtraction angiography (DSA) performed in three projections. However, in specific clinical cases, many additional projections are required, or a complete visualization of a lesion may even be impossible with 2D angiography. Three-dimensional (3D) reconstructions of rotational angiography were reported to improve the performance of DSA significantly. In this pictorial essay, specific applications of this technique are presented in the management of intracranial aneurysms, including: preoperative aneurysm evaluation, intraoperative imaging, and follow-up. Volumetric reconstructions of 3D DSA are a valuable tool for cerebral vessels imaging. They play a vital role in the assessment of intracranial aneurysms, especially in evaluation of the aneurysm neck and the aneurysm recanalization. PMID:22844309

  18. 3D RoboMET Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Madison, Jonathan D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Susan, Donald F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kilgo, Alice C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The goal of this project is to generate 3D microstructural data by destructive and non-destructive means and provide accompanying characterization and quantitative analysis of such data. This work is a continuing part of a larger effort to relate material performance variability to microstructural variability. That larger effort is called “Predicting Performance Margins” or PPM. In conjunction with that overarching initiative, the RoboMET.3D™ is a specific asset of Center 1800 and is an automated serialsectioning system for destructive analysis of microstructure, which is called upon to provide direct customer support to 1800 and non-1800 customers. To that end, data collection, 3d reconstruction and analysis of typical and atypical microstructures have been pursued for the purposes of qualitative and quantitative characterization with a goal toward linking microstructural defects and/or microstructural features with mechanical response. Material systems examined in FY15 include precipitation hardened 17-4 steel, laser-welds of 304L stainless steel, thermal spray coatings of 304L and geological samples of sandstone.

  19. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second

    Science.gov (United States)

    Zuo, Chao; Tao, Tianyang; Feng, Shijie; Huang, Lei; Asundi, Anand; Chen, Qian

    2018-03-01

    Fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time, we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.

  20. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  1. Plasma and milk concentrations of vitamin D3 and 25-hydroxy vitamin D3 following intravenous injection of vitamin D3 or 25-hydroxy vitamin D3.

    OpenAIRE

    Hidiroglou, M; Knipfel, J E

    1984-01-01

    Plasma levels of vitamin D3 or 25-hydroxyvitamin D3 in ewes after administration of a single massive intravenous dose of vitamin D3 (2 X 10(6) IU) or 25-hydroxy vitamin D3 (5 mg) were determined at zero, one, two, three, five, ten and 20 days postinjection. In six ewes injected with vitamin D3 conversion of vitamin D3 to 25-hydroxy vitamin D3 resulted in a six-fold increase in the plasma 25-hydroxy vitamin D3 level within one day. Elevated levels were maintained until day 10 but by day 20 a s...

  2. 2D/3D registration using a rotation-invariant cost function based on Zernike moments

    Science.gov (United States)

    Birkfellner, Wolfgang; Yang, Xinhui; Burgstaller, Wolfgang; Baumann, Bernard; Jacob, Augustinus L.; Niederer, Peter F.; Regazzoni, Pietro; Messmer, Peter

    2004-05-01

    We present a novel in-plane rotation invariant cost function for 2D/3D registration utilizing projection-invariant transformation properties and the decomposition of the X-ray nad the DRR under comparision into orhogonal Zernike moments. As a result, only five dof have to be optimized, and the number of iteration necessary for registration can be significantly reduced. Results in a phantom study show that an accuracy of approximately 0.7° and 2 mm can be achieved using this method. We conclude that reduction of coupled dof and usage of linear independent coefficients for cost function evaluation provide intersting new perspectives for the field of 2D/3D registration.

  3. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography

    International Nuclear Information System (INIS)

    Park, Justin C; Li, Jonathan G; Liu, Chihray; Lu, Bo; Zhang, Hao; Chen, Yunmei; Fan, Qiyong

    2015-01-01

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR).In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the

  4. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.

    Science.gov (United States)

    Park, Justin C; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G; Liu, Chihray; Lu, Bo

    2015-12-07

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm 'the common mask guided image reconstruction' (c-MGIR).In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and 'well' solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the algorithm

  5. The 3D Elevation Program national indexing scheme

    Science.gov (United States)

    Thatcher, Cindy A.; Heidemann, Hans Karl; Stoker, Jason M.; Eldridge, Diane F.

    2017-11-02

    The 3D Elevation Program (3DEP) of the U.S. Geological Survey (USGS) acquires high-resolution elevation data for the Nation. This program has been operating under an opportunity-oriented approach, acquiring light detection and ranging (lidar) projects of varying sizes scattered across the United States. As a result, the national 3DEP elevation layer is subject to data gaps or unnecessary overlap between adjacent collections. To mitigate this problem, 3DEP is adopting a strategic, systematic approach to national data acquisition that will create efficiencies in efforts to achieve nationwide elevation data coverage and help capture additional Federal and non-Federal investments resulting from advance awareness of proposed acquisitions and partnership opportunities. The 3DEP Working Group, an interagency group managed by the USGS, has agreed that all future 3DEP collections within the lower 48 States should be coordinated by using a 1-kilometer by 1-kilometer tiling scheme for the conterminous United States. Fiscal Year 2018 is being considered a transition year, and in Fiscal Year 2019 the national indexing scheme will be fully implemented, so that all 3DEP-supported projects will be acquired and delivered in the national indexing scheme and projected into the Albers Equal Area projection

  6. Delaunay algorithm and principal component analysis for 3D visualization of mitochondrial DNA nucleoids by Biplane FPALM/dSTORM

    Czech Academy of Sciences Publication Activity Database

    Alán, Lukáš; Špaček, Tomáš; Ježek, Petr

    2016-01-01

    Roč. 45, č. 5 (2016), s. 443-461 ISSN 0175-7571 R&D Projects: GA ČR(CZ) GA13-02033S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : 3D object segmentation * Delaunay algorithm * principal component analysis * 3D super-resolution microscopy * nucleoids * mitochondrial DNA replication Subject RIV: BO - Biophysics Impact factor: 1.472, year: 2016

  7. Effects of 1-D versus 3-D velocity models on moment tensor inversion in the Dobrá Voda area in the Little Carpathians region, Slovakia

    Czech Academy of Sciences Publication Activity Database

    Jechumtálová, Zuzana; Bulant, P.

    2014-01-01

    Roč. 18, č. 3 (2014), s. 511-531 ISSN 1383-4649 R&D Projects: GA ČR GAP210/10/1728 EU Projects: European Commission(XE) 230669 - AIM Institutional support: RVO:67985530 Keywords : ray tracing * 1-D and 3-D velocity models * earthquake mechanism * amplitude inversion * Dobrá Voda earthquakes Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.386, year: 2014

  8. 2D-3D registration for cranial radiation therapy using a 3D kV CBCT and a single limited field-of-view 2D kV radiograph.

    Science.gov (United States)

    Munbodh, Reshma; Knisely, Jonathan Ps; Jaffray, David A; Moseley, Douglas J

    2018-05-01

    algorithms using a single 2D kV radiograph with similarity measure and image view point. There was no significant difference in mean TRE between ICC LL , MLG LL , ICC (AP and LL combined), MLG (AP and LL combined), and the 3D-3D registration algorithm despite the smaller FOV used for the 2D-3D registration. While submillimeter registration accuracy was obtained with both ICC and MLG using a single 2D kV radiograph, combining the results from the two projection views resulted in a significantly smaller (P≤0.05) mean TRE. Our results indicate that it is possible to achieve submillimeter registration accuracy with both ICC and MLG using either single or dual limited FOV 2D kV radiographs of the head in the AP and LL views. The registration accuracy suggests that the 2D-3D registration solutions presented are suitable for the estimation of patient setup errors not only during conventional brain radiation therapy, but also during stereotactic procedures and proton radiation therapy where tighter setup margins are required. © 2018 American Association of Physicists in Medicine.

  9. SAMA: A Method for 3D Morphological Analysis.

    Directory of Open Access Journals (Sweden)

    Tessie Paulose

    Full Text Available Three-dimensional (3D culture models are critical tools for understanding tissue morphogenesis. A key requirement for their analysis is the ability to reconstruct the tissue into computational models that allow quantitative evaluation of the formed structures. Here, we present Software for Automated Morphological Analysis (SAMA, a method by which epithelial structures grown in 3D cultures can be imaged, reconstructed and analyzed with minimum human intervention. SAMA allows quantitative analysis of key features of epithelial morphogenesis such as ductal elongation, branching and lumen formation that distinguish different hormonal treatments. SAMA is a user-friendly set of customized macros operated via FIJI (http://fiji.sc/Fiji, an open-source image analysis platform in combination with a set of functions in R (http://www.r-project.org/, an open-source program for statistical analysis. SAMA enables a rapid, exhaustive and quantitative 3D analysis of the shape of a population of structures in a 3D image. SAMA is cross-platform, licensed under the GPLv3 and available at http://montevil.theobio.org/content/sama.

  10. Automated Prescription of Oblique Brain 3D MRSI

    Science.gov (United States)

    Ozhinsky, Eugene; Vigneron, Daniel B.; Chang, Susan M.; Nelson, Sarah J.

    2012-01-01

    Two major difficulties encountered in implementing Magnetic Resonance Spectroscopic Imaging (MRSI) in a clinical setting are limited coverage and difficulty in prescription. The goal of this project was to completely automate the process of 3D PRESS MRSI prescription, including placement of the selection box, saturation bands and shim volume, while maximizing the coverage of the brain. The automated prescription technique included acquisition of an anatomical MRI image, optimization of the oblique selection box parameters, optimization of the placement of OVS saturation bands, and loading of the calculated parameters into a customized 3D MRSI pulse sequence. To validate the technique and compare its performance with existing protocols, 3D MRSI data were acquired from 6 exams from 3 healthy volunteers. To assess the performance of the automated 3D MRSI prescription for patients with brain tumors, the data were collected from 16 exams from 8 subjects with gliomas. This technique demonstrated robust coverage of the tumor, high consistency of prescription and very good data quality within the T2 lesion. PMID:22692829

  11. 3-D Whole-Core Transport Calculation with 3D/2D Rotational Plane Slicing Method

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Han Jong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Use of the method of characteristics (MOC) is very popular due to its capability of heterogeneous geometry treatment and widely used for 2-D core calculation, but direct extension of MOC to 3-D core is not so attractive due to huge calculational cost. 2-D/1-D fusion method was very successful for 3-D calculation of current generation reactor types (highly heterogeneous in radial direction but piece-wise homogeneous in axial direction). In this paper, 2-D MOC concept is extended to 3-D core calculation with little modification of an existing 2-D MOC code. The key idea is to suppose 3-D geometry as a set of many 2-D planes like a phone-directory book. Dividing 3-D structure into a large number of 2-D planes and solving each plane with a simple 2-D SN transport method would give the solution of a 3-D structure. This method was developed independently at KAIST but it is found that this concept is similar with that of 'plane tracing' in the MCCG-3D code. The method developed was tested on the 3-D C5G7 OECD/NEA benchmark problem and compared with the 2-D/1-D fusion method. Results show that the proposed method is worth investigating further. A new approach to 3-D whole-core transport calculation is described and tested. By slicing 3-D structure along characteristic planes and solving each 2-D plane problem, we can get 3-D solution. The numerical test results indicate that the new method is comparable with the 2D/1D fusion method and outperforms other existing methods. But more fair comparison should be done in similar discretization level.

  12. Medical image reconstruction. A conceptual tutorial

    International Nuclear Information System (INIS)

    Zeng, Gengsheng Lawrence

    2010-01-01

    ''Medical Image Reconstruction: A Conceptual Tutorial'' introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l 0 -minimization are also included. (orig.)

  13. Forensic 3D documentation of skin injuries

    DEFF Research Database (Denmark)

    Villa, Chiara

    2017-01-01

    An accurate and precise documentation of injuries is fundamental in a forensic pathological context. Photographs and manual measurements are taken of all injuries during autopsies, but ordinary photography projects a 3D wound on a 2D space. Using technologies such as photogrammetry, it is possible...... methods (p > 0.05). The results of intra- and inter-observer tests indicated perfect agreement between the observers with mean value differences of ≤ 0.02 cm. This study demonstrated the validity of using photogrammetry for documentation of injuries in a forensic pathological context. Importantly...

  14. From 2D to 3D turbulence through 2D3C configurations

    Science.gov (United States)

    Buzzicotti, Michele; Biferale, Luca; Linkmann, Moritz

    2017-11-01

    We study analytically and numerically the geometry of the nonlinear interactions and the resulting energy transfer directions of 2D3C flows. Through a set of suitably designed Direct Numerical Simulations we also study the coupling between several 2D3C flows, where we explore the transition between 2D and fully 3D turbulence. In particular, we find that the coupling of three 2D3C flows on mutually orthogonal planes subject to small-scale forcing leads to a stationary 3D out-of-equilibrium dynamics at the energy containing scales where the inverse cascade is directly balanced by a forward cascade carried by a different subsets of interactions. ERC AdG Grant No 339032 NewTURB.

  15. 3D Space Shift from CityGML LoD3-Based Multiple Building Elements to a 3D Volumetric Object

    Directory of Open Access Journals (Sweden)

    Shen Ying

    2017-01-01

    Full Text Available In contrast with photorealistic visualizations, urban landscape applications, and building information system (BIM, 3D volumetric presentations highlight specific calculations and applications of 3D building elements for 3D city planning and 3D cadastres. Knowing the precise volumetric quantities and the 3D boundary locations of 3D building spaces is a vital index which must remain constant during data processing because the values are related to space occupation, tenure, taxes, and valuation. To meet these requirements, this paper presents a five-step algorithm for performing a 3D building space shift. This algorithm is used to convert multiple building elements into a single 3D volumetric building object while maintaining the precise volume of the 3D space and without changing the 3D locations or displacing the building boundaries. As examples, this study used input data and building elements based on City Geography Markup Language (CityGML LoD3 models. This paper presents a method for 3D urban space and 3D property management with the goal of constructing a 3D volumetric object for an integral building using CityGML objects, by fusing the geometries of various building elements. The resulting objects possess true 3D geometry that can be represented by solid geometry and saved to a CityGML file for effective use in 3D urban planning and 3D cadastres.

  16. 3D image restoration for confocal microscopy: toward a wavelet deconvolution for the study of complex biological structures

    Science.gov (United States)

    Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats

    2000-05-01

    Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.

  17. KNOWLEDGE AND VALORIZATION OF HISTORICAL SITES THROUGH 3D DOCUMENTATION AND MODELING

    Directory of Open Access Journals (Sweden)

    E. Farella

    2016-06-01

    Full Text Available The paper presents the first results of an interdisciplinary project related to the 3D documentation, dissemination, valorization and digital access of archeological sites. Beside the mere 3D documentation aim, the project has two goals: (i to easily explore and share via web references and results of the interdisciplinary work, including the interpretative process and the final reconstruction of the remains; (ii to promote and valorize archaeological areas using reality-based 3D data and Virtual Reality devices. This method has been verified on the ruins of the archeological site of Pausilypon, a maritime villa of Roman period (Naples, Italy. Using Unity3D, the virtual tour of the heritage site was integrated and enriched with the surveyed 3D data, text documents, CAAD reconstruction hypotheses, drawings, photos, etc. In this way, starting from the actual appearance of the ruins (panoramic images, passing through the 3D digital surveying models and several other historical information, the user is able to access virtual contents and reconstructed scenarios, all in a single virtual, interactive and immersive environment. These contents and scenarios allow to derive documentation and geometrical information, understand the site, perform analyses, see interpretative processes, communicate historical information and valorize the heritage location.

  18. Educational use of 3D models and photogrammetry content: the Europeana space project for Cypriot UNESCO monuments

    Science.gov (United States)

    Ioannides, M.; Chatzigrigoriou, P.; Bokolas, V.; Nikolakopoulou, V.; Athanasiou, V.

    2016-08-01

    Digital heritage data are now more accessible through crowdsourcing platforms, social media and blogs. At the same time, evolving technology on 3D modelling, laser scanning and 3D reconstruction is constantly upgrading and multiplying the information that we can use from heritage digitalisation. The question of reusing the information in different aspects rises. Educators and students are potential users of the digital content; developing for them an adaptable environment for applications and services is our challenge. One of the main objective of the EU Europeana Space project is the development of a holistic approach for educating people (grown ups and kids) on Monuments that are listed at UNESCO world heritage list, in Cyprus. The challenge was the use of Europeana Data (Pictures and the 3D objects) in a way that the information on the platform would be comprehensible by the users. Most of the data have little metadata information and they lack history and cultural value description (semantics). The proposed model ction is based on the cross cultural approach which responds to the multicultural features of present era but at the same time to the contemporary pedagogical and methodological directions. The system uses all innovative digital heritage resources, in order to help the user, in a UX friendly way, to learn about the different phases of the monument, the history, the pathology state, the architectural value and the conservation stage. The result is a responsive platform, accessible through smart devices and desktop computers, (in the frame of "Bring Your Own Device" a.k.a. BYOD) where every Monument is a different course and every course is addressed to different age groups (from elementary level to adults' vocational training).

  19. Effect of 24,25-dihydroxyvitamin D3 on 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] metabolism in vitamin D-deficient rats infused with 1,25-(OH)2D3

    International Nuclear Information System (INIS)

    Yamato, H.; Matsumoto, T.; Fukumoto, S.; Ikeda, K.; Ishizuka, S.; Ogata, E.

    1989-01-01

    Previous studies revealed that administration of 24,25-dihydroxyvitamin D3 [24,25-(OH)2D3] to calcium (Ca)-deficient rats causes a dose-dependent reduction in markedly elevated serum 1,25-(OH)2D3 level. Although the results suggested that the metabolism of 1,25-(OH)2D3 was accelerated by 24,25-(OH)2D3, those experiments could not define whether the enhanced metabolism of 1,25-(OH)2D3 played a role in the reduction in the serum 1,25-(OH)2D3 level. In the present study, in order to address this issue more specifically, serum 1,25-(OH)2D3 was maintained solely by exogenous administration through miniosmotic pumps of 1,25-(OH)2D3 into vitamin D-deficient rats. Thus, by measuring the serum 1,25-(OH)2D3 concentration, the effect of 24,25-(OH)2D3 on the MCR of 1,25-(OH)2D3 could be examined. Administration of 24,25-(OH)2D3 caused a dose-dependent enhancement in the MCR of 1,25-(OH)2D3, and 1 microgram/100 g rat.day 24,25-(OH)2D3, which elevated serum 24,25-(OH)2D3 to 8.6 +/- 1.3 ng/ml, significantly increased MCR and suppressed serum levels of 1,25-(OH)2D3. The effect of 24,25-(OH)2D3 on 1,25-(OH)2D3 metabolism developed with a rapid time course, and the recovery of iv injected [1 beta-3H]1,25-(OH)2D3 in blood was significantly reduced within 1 h. In addition, there was an increase in radioactivity in the water-soluble fraction of serum as well as in urine, suggesting that 1,25-(OH)2D3 is rapidly degraded to a water-soluble metabolite(s). Furthermore, the reduction in serum 1,25-(OH)2D3 was associated with a reduction in both serum and urinary Ca levels. Because the conversion of [3H]24,25-(OH)2D3 to [3H]1,24,25-(OH)2D3 or other metabolites was minimal in these rats, 24,25-(OH)2D3 appears to act without being converted into other metabolites. These results demonstrate that 24,25-(OH)2D3 rapidly stimulates the metabolism of 1,25-(OH)2D3 and reduces its serum level

  20. 3D surface reconstruction using optical flow for medical imaging

    International Nuclear Information System (INIS)

    Weng, Nan; Yang, Yee-Hong; Pierson, R.

    1996-01-01

    The recovery of a 3D model from a sequence of 2D images is very useful in medical image analysis. Image sequences obtained from the relative motion between the object and the camera or the scanner contain more 3D information than a single image. Methods to visualize the computed tomograms can be divided into two approaches: the surface rendering approach and the volume rendering approach. A new surface rendering method using optical flow is proposed. Optical flow is the apparent motion in the image plane produced by the projection of the real 3D motion onto 2D image. In this paper, the object remains stationary while the scanner undergoes translational motion. The 3D motion of an object can be recovered from the optical flow field using additional constraints. By extracting the surface information from 3D motion, it is possible to get an accurate 3D model of the object. Both synthetic and real image sequences have been used to illustrate the feasibility of the proposed method. The experimental results suggest that the proposed method is suitable for the reconstruction of 3D models from ultrasound medical images as well as other computed tomograms

  1. D.3.3 PLOT Persuasive Learning Design Framework

    DEFF Research Database (Denmark)

    Gram-Hansen, Sandra Burri

    2012-01-01

    In this third and final deliverable of WP3: Persuasive Learning Designs, the theoretical cross field between persuasion and learning and the practical analysis of the technological learning tools and products which are currently related to the PLOT project, namely the GLOMaker and the 3ET tool......, are linked together as persuasive learning designs are defined and exemplified through the four e-PLOT cases. Based on the literary study of D.3.1 as well as the subsequent discussions and reflections regarding the theoretical foundation and practical application of persuasive learning technologies......-PLOT work cases. In conclusion, the report presents a number of suggestions regarding the improvement of the two learning tools, which from a theoretical perspective will enhance the persuasive potential, and which can be taken into consideration in WP4 and 5....

  2. SU-D-12A-05: Iterative Reconstruction Techniques to Enable Intrinsic Respiratory Gated CT in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, T; Sun, N; Tan, S [Huazhong University of Science and Technology, Wuhan, Hubei (China); Liu, Y; Mistry, N [University of Maryland School of Medicine, Baltimore, MD (United States)

    2014-06-01

    Purpose: Longitudinal studies of lung function in mice need the ability to image different phases of ventilation in free-breathing mice using retrospective gating. However, retrospective gating often produces under-sampled and uneven angular samples, resulting in severe reconstruction artifacts when using traditional FDK based reconstruction algorithms. We wanted to demonstrate the utility of iterative reconstruction method to enable intrinsic respiratory gating in small-animal CT. Methods: Free-breathing mice were imaged using a Siemens Inveon PET/micro-CT system. Evenly distributed projection images were acquired at 360 angles. Retrospective respiratory gating was performed using an intrinsic marker based on the average intensity in a region covering the diaphragm. Projections were classified into 4 and 6 phases (finer temporal resolution) resulting in 138 and 67 projections respectively. Reconstruction was carried out using 3 Methods: conventional FDK, iterative penalized least-square (PWLS) with total variation (TV), and PWLS with edge-preserving penalty. The performance of the methods was compared using contrast-to-noise (CNR) in a region of interest (ROI). Line profile through a specific region was plotted to evaluate the preserving of edges. Results: In both the cases with 4 and 6 phases, inadequate and non-uniform angular sampling results in artifacts using conventional FDK. However, such artifacts are minimized using both the iterative methods. Using both 4 and 6 phases, the iterative techniques outperformed FDK in terms of CNR and maintaining sharp edges. This is further evidenced especially with increased artifacts using FDK for 6 phases. Conclusion: This work indicates fewer artifacts and better image details can be achieved with iterative reconstruction methods in non-uniform under-sampled reconstruction. Using iterative methods can enable free-breathing intrinsic respiratory gating in small-animal CT. Further studies are needed to compare the

  3. Fashion Design and Presentation using 3D Digital Prototyping : Experiences, Opinions and Knowledge

    NARCIS (Netherlands)

    Miles, Rachel

    2013-01-01

    The short-term aim of this R&D project (financed by the Centre of Expertise Creative Industries) is to develop a virtually simulated textile database that renders 3D visual representations of these fabrics. The idea is for this database to be open source and be able to interface with 3D design

  4. [Applications of 2D and 3D landscape pattern indices in landscape pattern analysis of mountainous area at county level].

    Science.gov (United States)

    Lu, Chao; Qi, Wei; Li, Le; Sun, Yao; Qin, Tian-Tian; Wang, Na-Na

    2012-05-01

    Landscape pattern indices are the commonly used tools for the quantitative analysis of landscape pattern. However, the traditional 2D landscape pattern indices neglect the effects of terrain on landscape, existing definite limitations in quantitatively describing the landscape patterns in mountains areas. Taking the Qixia City, a typical mountainous and hilly region in Shandong Province of East China, as a case, this paper compared the differences between 2D and 3D landscape pattern indices in quantitatively describing the landscape patterns and their dynamic changes in mountainous areas. On the basis of terrain structure analysis, a set of landscape pattern indices were selected, including area and density (class area and mean patch size), edge and shape (edge density, landscape shape index, and fractal dimension of mean patch), diversity (Shannon's diversity index and evenness index) , and gathering and spread (contagion index). There existed obvious differences between the 3D class area, mean patch area, and edge density and the corresponding 2D indices, but no significant differences between the 3D landscape shape index, fractal dimension of mean patch, and Shannon' s diversity index and evenness index and the corresponding 2D indices. The 3D contagion index and 2D contagion index had no difference. Because the 3D landscape pattern indices were calculated by using patch surface area and surface perimeter whereas the 2D landscape pattern indices were calculated by adopting patch projective area and projective perimeter, the 3D landscape pattern indices could be relative accurate and efficient in describing the landscape area, density and borderline, in mountainous areas. However, there were no distinct differences in describing landscape shape, diversity, and gathering and spread between the 3D and 2D landscape pattern indices. Generally, by introducing 3D landscape pattern indices to topographic pattern, the description of landscape pattern and its dynamic

  5. SMART 3D SUBSURFACE CONTAMINANT CHARACTERIZATION AT THE BGRR DEC OMMISSIONING PROJECT

    International Nuclear Information System (INIS)

    HEISER, J.; KALB, P.; SULLIVAN, T.; MILIAN, L.

    2002-01-01

    The Brookhaven Graphite Research Reactor is currently on an accelerated decommissioning schedule with a completion date projected for 2005. The accelerated schedule combines characterization with removal actions for the various systems and structures. A major project issue involves characterization of the soils beneath contaminated Below Grade Ducts (BGD), the main air ducts connecting the exhaust plenums with the Fan House. The air plenums experienced water intrusion during BGRR operations and after shutdown. The water intrusions were attributed to rainwater leaks into degraded parts of the system, and to internal cooling water system leaks. If the characterization could provide enough information to show that soil contamination surrounding the BGD is either below cleanup guidelines or is very localized and can be ''surgically removed'' at a reasonable cost, the ducts may be decontaminated and left in place. This will provide significant savings compared to breaking up the 170-ft. long concrete duct, shipping the projected 9,000 m 3 of waste off-site and disposing of it in an approved site

  6. 3D MODELLING AND VISUALIZATION BASED ON THE UNITY GAME ENGINE – ADVANTAGES AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    I. Buyuksalih

    2017-11-01

    Full Text Available 3D City modelling is increasingly popular and becoming valuable tools in managing big cities. Urban and energy planning, landscape, noise-sewage modelling, underground mapping and navigation are among the applications/fields which really depend on 3D modelling for their effectiveness operations. Several research areas and implementation projects had been carried out to provide the most reliable 3D data format for sharing and functionalities as well as visualization platform and analysis. For instance, BIMTAS company has recently completed a project to estimate potential solar energy on 3D buildings for the whole Istanbul and now focussing on 3D utility underground mapping for a pilot case study. The research and implementation standard on 3D City Model domain (3D data sharing and visualization schema is based on CityGML schema version 2.0. However, there are some limitations and issues in implementation phase for large dataset. Most of the limitations were due to the visualization, database integration and analysis platform (Unity3D game engine as highlighted in this paper.

  7. To select the best tool for generating 3D maintenance data and to set the detailed process for obtaining the 3D maintenance data

    Science.gov (United States)

    Prashanth, B. N.; Roy, Kingshuk

    2017-07-01

    Three Dimensional (3D) maintenance data provides a link between design and technical documentation creating interactive 3D graphical training and maintenance material. It becomes difficult for an operator to always go through huge paper manuals or come running to the computer for doing maintenance of a machine which makes the maintenance work fatigue. Above being the case, a 3D animation makes maintenance work very simple since, there is no language barrier. The research deals with the generation of 3D maintenance data of any given machine. The best tool for obtaining the 3D maintenance is selected and the tool is analyzed. Using the same tool, a detailed process for extracting the 3D maintenance data for any machine is set. This project aims at selecting the best tool for obtaining 3D maintenance data and to select the detailed process for obtaining 3D maintenance data. 3D maintenance reduces use of big volumes of manuals which creates human errors and makes the work of an operator fatiguing. Hence 3-D maintenance would help in training and maintenance and would increase productivity. 3Dvia when compared with Cortona 3D and Deep Exploration proves to be better than them. 3Dvia is good in data translation and it has the best renderings compared to the other two 3D maintenance software. 3Dvia is very user friendly and it has various options for creating 3D animations. Its Interactive Electronic Technical Publication (IETP) integration is also better than the other two software. Hence 3Dvia proves to be the best software for obtaining 3D maintenance data of any machine.

  8. 3-D portal image analysis in clinical practice: an evaluation of 2-D and 3-D analysis techniques as applied to 30 prostate cancer patients

    International Nuclear Information System (INIS)

    Remeijer, Peter; Geerlof, Erik; Ploeger, Lennert; Gilhuijs, Kenneth; Herk, Marcel van; Lebesque, Joos V.

    2000-01-01

    analysis, and 6% for the 3-D analysis. Conclusion: True 3-D analysis of setup errors for a group of 30 patients with prostate cancer demonstrated that setup rotations are rather small. The deformation of the projected anatomy in portal images caused by out-of-plane rotations leads to a reduced 2-D registration accuracy. For rotations larger than 3 deg. this effect can be quite pronounced, making 3-D registration the preferred method. Furthermore, the automatic 3-D registration has a higher success rate, most likely because this technique uses more information compared to the 2-D method

  9. Getting the most D and D ''know how'' before starting to plan your decommissioning project

    International Nuclear Information System (INIS)

    Boing, L. E.

    1999-01-01

    Over the last 20 years, the Decommissioning Program of the ANL-East Site has successfully decommissioned numerous facilities including: three research reactors (a 100 MW BWR, a smaller 250 kW biological irradiation reactor and a 10 kW research reactor), a critical assembly, a suite of 61 plutonium gloveboxes in 9 laboratories, a fuels fabrication facility and several non-reactor (waste management and operations) facilities. In addition, extensive decontamination work was performed on 5 hot cells formerly used in a joint ANL/US Navy R and D program. Currently the D and D of the CP-5 research reactor is underway as is planning for several other future D and D projects. The CP-5 facility was also used as a test bed for the evaluation of select evolving D and D technologies to ascertain their value for use in future D and D projects

  10. Economic perspectives on 3D printing

    OpenAIRE

    Weller, Christian

    2015-01-01

    Additive Manufacturing (AM), or colloquially “3D Printing”, has been referred to as a technology that has the potential to pave the path towards a new industrial revolution. Although scholars have comprehensively investigated technological aspects of AM, economic discussions remain scarce. Trying to substantiate the current media hype surrounding AM with analytical and empirical findings, the goal of this research project is to discuss economic implications of AM technology. This is why in Pa...

  11. IGLANCE: interactive free viewpoint for 3D TV

    NARCIS (Netherlands)

    Zinger, S.; Do, Q.L.; Ruijters, D.; With, de P.H.N.

    2010-01-01

    The iGLANCE project aims at making interactive free viewpoint selection possible in 3D TV broadcasted media. This means that the viewer can select and interactively change the viewpoint of a stereoscopic streamed video. The interactivity is enabled by broad-casting a number of video streams from

  12. RAG-3D: a search tool for RNA 3D substructures

    Science.gov (United States)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-01-01

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  13. 3-D Imaging Systems for Agricultural Applications—A Review

    Directory of Open Access Journals (Sweden)

    Manuel Vázquez-Arellano

    2016-04-01

    Full Text Available Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture.

  14. Total Variation-Based Reduction of Streak Artifacts, Ring Artifacts and Noise in 3D Reconstruction from Optical Projection Tomography

    Czech Academy of Sciences Publication Activity Database

    Michálek, Jan

    2015-01-01

    Roč. 21, č. 6 (2015), s. 1602-1615 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LH13028; GA ČR(CZ) GA13-12412S Institutional support: RVO:67985823 Keywords : optical projection tomography * microscopy * artifacts * total variation * data mismatch Subject RIV: EA - Cell Biology Impact factor: 1.730, year: 2015

  15. Determination of the 3d34d and 3d35s configurations of Fe V

    International Nuclear Information System (INIS)

    Azarov, V.I.

    2001-01-01

    The analysis of the spectrum of four times ionized iron, Fe V, has led to the determination of the 3d 3 4d and 3d 3 5s configurations. From 975 classified lines in the region 645-1190 A we have established 123 of 168 theoretically possible 3d 3 4d levels and 26 of 38 possible 3d 3 5s levels. The estimated accuracy of values of energy levels of these two configurations is about 0.7 cm -1 and 1.0 cm -1 , respectively. The level structure of the system of the 3d 4 , 3d 3 4s, 3d 3 4d and 3d 3 5s configurations has been theoretically interpreted and the energy parameters have been determined by a least squares fit to the observed levels. A comparison of parameters in Cr III and Fe V ions is given. (orig.)

  16. Licensing Review in R+D Projects

    OpenAIRE

    Alessandro, Orsi

    2014-01-01

    FOSS packages are becoming ever more present in R&D projects carried out a variety of entities, including large corporations. I will focus on how legal risks associated with the use of FOSS licenses can be assessed and discuss measures directed to risk mitigation.

  17. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Directory of Open Access Journals (Sweden)

    Kim Jae G

    2011-12-01

    Full Text Available Abstract Background Despite its superb lateral resolution, flat-panel-detector (FPD based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis

  18. Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Science.gov (United States)

    2011-01-01

    Background Despite its superb lateral resolution, flat-panel-detector (FPD) based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence. Methods In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI) are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT. Results We have measured contrast-to-noise ratio (CNR) from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis images reconstructed by

  19. Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas

    Science.gov (United States)

    Medley, S. S.; Liu, D.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.

    2016-02-01

    A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a ‘beam-in-a-box’ model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.

  20. Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Medley, S. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy; Gorelenkova, M. V. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Heidbrink, W. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy; Stagner, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy

    2016-01-12

    A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a 'beam-in-a-box' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.

  1. 3D Integration for Superconducting Qubits

    Science.gov (United States)

    Rosenberg, Danna; Kim, David; Yost, Donna-Ruth; Mallek, Justin; Yoder, Jonilyn; Das, Rabindra; Racz, Livia; Hover, David; Weber, Steven; Kerman, Andrew; Oliver, William

    Superconducting qubits are a prime candidate for constructing a large-scale quantum processor due to their lithographic scalability, speed, and relatively long coherence times. Moving beyond the few qubit level, however, requires the use of a three-dimensional approach for routing control and readout lines. 3D integration techniques can be used to construct a structure where the sensitive qubits are shielded from a potentially-lossy readout and interconnect chip by an intermediate chip with through-substrate vias, with indium bump bonds providing structural support and electrical conductivity. We will discuss our work developing 3D-integrated coupled qubits, focusing on the characterization of 3D integration components and the effects on qubit performance and design. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  2. Making the most of LCA in technical inter-organisational R&D projects

    DEFF Research Database (Denmark)

    Sandin, Gustav; Clancy, Gunilla; Heimersson, Sara

    2014-01-01

    In technical Research and Development (R&D) projects, a Life Cycle Assessment (LCA) of the technology under development is sometimes carried out. Particularly in inter-organisational R&D projects, the roles of LCAs tend to be unclear and arbitrary, and as a consequence, LCA work is not adequately...... designed for the needs of the project. There is a need for research on how to choose an appropriate role for LCA in such projects and how to plan LCA work accordingly. We have identified some possible roles of LCA in inter-organisational R&D projects and used experiences from LCA work in different...... such projects to identify four project characteristics that are decisive for what roles the LCA can have. The project characteristics are: (i) the project's potential influence on environmental impacts, (ii) the degrees of freedom available for the technical direction of the project, (iii) the project...

  3. Digital 3D Borobudur – Integration of 3D surveying and modeling techniques

    Directory of Open Access Journals (Sweden)

    D. Suwardhi

    2015-08-01

    Full Text Available The Borobudur temple (Indonesia is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.

  4. Axionic D3-D7 Inflation

    CERN Document Server

    Burgess, C P; Postma, M

    2009-01-01

    We study the motion of a D3 brane moving within a Type IIB string vacuum compactified to 4D on K3 x T_2/Z_2 in the presence of D7 and O7 planes. We work within the effective 4D supergravity describing how the mobile D3 interacts with the lightest bulk moduli of the compactification, including the effects of modulus-stabilizing fluxes. We seek inflationary solutions to the resulting equations, performing our search numerically in order to avoid resorting to approximate parameterizations of the low-energy potential. We consider uplifting from D-terms and from the supersymmetry-breaking effects of anti-D3 branes. We find examples of slow-roll inflation (with anti-brane uplifting) with the mobile D3 moving along the toroidal directions, falling towards a D7-O7 stack starting from the antipodal point. The inflaton turns out to be a linear combination of the brane position and the axionic partner of the K3 volume modulus, and the similarity of the potential along the inflaton direction with that of racetrack inflat...

  5. 3D Volume Rendering and 3D Printing (Additive Manufacturing).

    Science.gov (United States)

    Katkar, Rujuta A; Taft, Robert M; Grant, Gerald T

    2018-07-01

    Three-dimensional (3D) volume-rendered images allow 3D insight into the anatomy, facilitating surgical treatment planning and teaching. 3D printing, additive manufacturing, and rapid prototyping techniques are being used with satisfactory accuracy, mostly for diagnosis and surgical planning, followed by direct manufacture of implantable devices. The major limitation is the time and money spent generating 3D objects. Printer type, material, and build thickness are known to influence the accuracy of printed models. In implant dentistry, the use of 3D-printed surgical guides is strongly recommended to facilitate planning and reduce risk of operative complications. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  7. 3D Modeling and Printing in History/Social Studies Classrooms: Initial Lessons and Insights

    Science.gov (United States)

    Maloy, Robert; Trust, Torrey; Kommers, Suzan; Malinowski, Allison; LaRoche, Irene

    2017-01-01

    This exploratory study examines the use of 3D technology by teachers and students in four middle school history/social studies classrooms. As part of a university-developed 3D Printing 4 Teaching & Learning project, teachers integrated 3D modeling and printing into curriculum topics in world geography, U.S. history, and government/civics.…

  8. Gipsy 3D : Analysis, Visualization and Vo-Tools

    NARCIS (Netherlands)

    Ruiz, J. E.; Santander-Vela, J. D.; Espigares, V.; Verdes-Montenegro, L.; Hulst, J. M. van der

    2009-01-01

    The scientific goals of the AMIGA project are based on the analysis of a significant amount of spectroscopic 3D data. In order to perform this work we present an initiative to develop a new VO compliant package, including present core applications and tasks offered by the Groningen Image Processing

  9. 3D dictionary learning based iterative cone beam CT reconstruction

    Directory of Open Access Journals (Sweden)

    Ti Bai

    2014-03-01

    Full Text Available Purpose: This work is to develop a 3D dictionary learning based cone beam CT (CBCT reconstruction algorithm on graphic processing units (GPU to improve the quality of sparse-view CBCT reconstruction with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms of 3 × 3 × 3 was trained from a large number of blocks extracted from a high quality volume image. On the basis, we utilized cholesky decomposition based orthogonal matching pursuit algorithm to find the sparse representation of each block. To accelerate the time-consuming sparse coding in the 3D case, we implemented the sparse coding in a parallel fashion by taking advantage of the tremendous computational power of GPU. Conjugate gradient least square algorithm was adopted to minimize the data fidelity term. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with tight frame (TF by performing reconstructions on a subset data of 121 projections. Results: Compared to TF based CBCT reconstruction that shows good overall performance, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, remove more streaking artifacts and also induce less blocky artifacts. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppress the noise, and hence to achieve high quality reconstruction under the case of sparse view. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential clinical application.-------------------------------Cite this article as: Bai T, Yan H, Shi F, Jia X, Lou Y, Xu Q, Jiang S, Mou X. 3D dictionary learning based iterative cone beam CT reconstruction. Int J Cancer Ther Oncol 2014; 2(2:020240. DOI: 10

  10. OMEGAPIX 3D integrated circuit prototype dedicated to the ATLAS upgrade Super LHC pixel project

    CERN Document Server

    Thienpont, D; de La Taille, C; Seguin-Moreau, N; Martin-Chassard, G; Guo b, Y

    2009-01-01

    In late 2008, an international consortium for development of vertically integrated (3D) readout electronics was created to explore features available from this technology. In this paper, the OMEGAPIX circuit is presented. It is the first front-end ASIC prototype designed at LAL in 3D technology. It has been submitted on May 2009. At first, a short reminder of 3D technology is presented. Then the IC design is explained: analogue tier, digital tier and testability.

  11. Filters in 2D and 3D Cardiac SPECT Image Processing

    Directory of Open Access Journals (Sweden)

    Maria Lyra

    2014-01-01

    Full Text Available Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast.

  12. 3D RECONSTRUCTION OF ANCIENT EGYPTIAN ROCK-CUT TOMBS: THE CASE OF M.I.D.A.N.05.

    OpenAIRE

    Nabil, M.; Betrò, M.; Metwally, M. N.

    2013-01-01

    In this paper we present an on-going work to reconstruct a 3D model of M.I.D.A.N.05., an ancient Egyptian tomb located in Luxor. The reconstruction aims at producing a high quality 3D model of the tomb to help in archaeological investigation and other scientific uses. We present details about the different stages of the used reconstruction pipeline, the results so far, and the evaluation of the results in view of the project objectives.

  13. 3D RECONSTRUCTION OF ANCIENT EGYPTIAN ROCK-CUT TOMBS: THE CASE OF M.I.D.A.N.05.

    Directory of Open Access Journals (Sweden)

    M. Nabil

    2013-07-01

    Full Text Available In this paper we present an on-going work to reconstruct a 3D model of M.I.D.A.N.05., an ancient Egyptian tomb located in Luxor. The reconstruction aims at producing a high quality 3D model of the tomb to help in archaeological investigation and other scientific uses. We present details about the different stages of the used reconstruction pipeline, the results so far, and the evaluation of the results in view of the project objectives.

  14. Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM)

    International Nuclear Information System (INIS)

    Brücker, C; Hess, D; Kitzhofer, J

    2013-01-01

    Scanning PIV as introduced by Brücker (1995 Exp. Fluids 19 255–63, 1996a Appl. Sci. Res. 56 157–79) has been successfully applied in the last 20 years to different flow problems where the frame rate was sufficient to ensure a ‘frozen’ field condition. The limited number of parallel planes however leads typically to an under-sampling in the scan direction in depth; therefore, the spatial resolution in depth is typically considerably lower than the spatial resolution in the plane of the laser sheet (depth resolution = scan shift Δz ≫ pixel unit in object space). In addition, a partial volume averaging effect due to the thickness of the light sheet must be taken into account. Herein, the method is further developed using a high-resolution scanning in combination with a Gaussian regression technique to achieve an isotropic representation of the tracer particles in a voxel-based volume reconstruction with cuboidal voxels. This eliminates the partial volume averaging effect due to light sheet thickness and leads to comparable spatial resolution of the particle field reconstructions in x-, y- and z-axes. In addition, advantage of voxel-based processing with estimations of translation, rotation and shear/strain is taken by using a 3D least-squares matching method, well suited for reconstruction of grey-level pattern fields. The method is discussed in this paper and used to investigate the ring vortex instability at Re = 2500 within a measurement volume of roughly 75 × 75 × 50 mm 3 with a spatial resolution of 100 µm/voxel (750 × 750 × 500 voxel elements). The volume has been scanned with a number of 100 light sheets and scan rates of 10 kHz. The results show the growth of the Tsai–Widnall azimuthal instabilities accompanied with a precession of the axis of the vortex ring. Prior to breakdown, secondary instabilities evolve along the core with streamwise oriented striations. The front stagnation point's streamwise distance to the core starts to decrease

  15. Dynamic scattering theory for dark-field electron holography of 3D strain fields

    International Nuclear Information System (INIS)

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain–reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. - Author-Highlights: • We derive a simple dynamic scattering formalism for dark field electron holography based on a perturbative two-beam theory. • The formalism facilitates the projection of 3D strain fields by a simple weighting integral. • The weighted projection depends analytically on the diffraction order, the excitation error and the specimen thickness. • The weighting integral formalism represents an important prerequisite towards the development of tomographic strain reconstruction techniques

  16. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.

    1996-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data

  17. planSOEC. R and D and commercialization roadmap for SOEC electrolysis. R and D of SOEC stacks with improved durability. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Richter, A.; Friis Pedersen, C.; Nielsen, Jens Ulrik [Topsoe Fuel Cells A/S, Kgs. Lyngby (Denmark); Mogensen, M.; Hoejgaard Jensen, S.; Ming Chen [Technical Univ. of Denmark. Fuel Cells and Solid State Chemistry Div., DTU Risoe Campus, Roskilde (Denmark); Sloth, M. [H2 Logic A/S, Herning (Denmark)

    2011-05-15

    The project has been divided into two parts: PART 1: Formulation of a R and D and commercialization roadmap for SOEC electrolysis. PART 2: Conducting R and D of SOEC stacks with improved durability. The purpose of Part 1 has been to develop a R and D and commercialisation roadmap for hydrogen and CO production plants based on the solid oxide electrolysis cell (SOEC) technology. SOEC technology is still on an early R and D stage but years of extensive R and D within SOFC technology provides a strong platform for an accelerated commercialisation. However, in order to guide the future SOEC R and D activities towards reaching commercial market requirements a detailed roadmap is necessary. An overall strategy for R and D of various electrolysis technologies in Denmark already exists{sup 2}, formulated in the Hydrogen Production working group in the Danish Hydrogen and Fuel Cell Partnership. The SOEC roadmap developed as part of the planSOEC project supplements the overall strategy, by conducting an updated analysis of state-of-the-art. Also planSOEC provides a detailed analysis of requirements for different market applications for SOEC, which enables formulation of precise and detailed R and D targets. The objectives of Part 2 in this project were multiple: 1) To investigate durability of solid oxide cells (SOCs) and stack components under industrially relevant (''harsh'') electrolysis operating conditions; 2) to investigate performance of standard TOFC (Topsoe Fuel Cell A/S) SOC stacks (based on state-of-the-art solid oxide cells) under mild electrolysis operating conditions ({<=}0.75 A/cm{sup 2}); 3) to further develop SOEC stack computer models available at Riso DTU and TOFC. Accordingly four lines of work were carried out in the here reported project: 1) Investigation of corrosion resistance of interconnect alloys. 2) Cell and stack element testing. 3) SOEC stack testing. 4) SOEC stack modeling. (LN)

  18. Recent trends in bioinks for 3D printing.

    Science.gov (United States)

    Gopinathan, Janarthanan; Noh, Insup

    2018-01-01

    The worldwide demand for the organ replacement or tissue regeneration is increasing steadily. The advancements in tissue engineering and regenerative medicine have made it possible to regenerate such damaged organs or tissues into functional organ or tissue with the help of 3D bioprinting. The main component of the 3D bioprinting is the bioink, which is crucial for the development of functional organs or tissue structures. The bioinks used in 3D printing technology require so many properties which are vital and need to be considered during the selection. Combination of different methods and enhancements in properties are required to develop more successful bioinks for the 3D printing of organs or tissue structures. This review consists of the recent state-of-art of polymer-based bioinks used in 3D printing for applications in tissue engineering and regenerative medicine. The subsection projects the basic requirements for the selection of successful bioinks for 3D printing and developing 3D tissues or organ structures using combinations of bioinks such as cells, biomedical polymers and biosignals. Different bioink materials and their properties related to the biocompatibility, printability, mechanical properties, which are recently reported for 3D printing are discussed in detail. Many bioinks formulations have been reported from cell-biomaterials based bioinks to cell-based bioinks such as cell aggregates and tissue spheroids for tissue engineering and regenerative medicine applications. Interestingly, more tunable bioinks, which are biocompatible for live cells, printable and mechanically stable after printing are emerging with the help of functional polymeric biomaterials, their modifications and blending of cells and hydrogels. These approaches show the immense potential of these bioinks to produce more complex tissue/organ structures using 3D bioprinting in the future.

  19. 3D Virtual Reality for Teaching Astronomy

    Science.gov (United States)

    Speck, Angela; Ruzhitskaya, L.; Laffey, J.; Ding, N.

    2012-01-01

    We are developing 3D virtual learning environments (VLEs) as learning materials for an undergraduate astronomy course, in which will utilize advances both in technologies available and in our understanding of the social nature of learning. These learning materials will be used to test whether such VLEs can indeed augment science learning so that it is more engaging, active, visual and effective. Our project focuses on the challenges and requirements of introductory college astronomy classes. Here we present our virtual world of the Jupiter system and how we plan to implement it to allow students to learn course material - physical laws and concepts in astronomy - while engaging them into exploration of the Jupiter's system, encouraging their imagination, curiosity, and motivation. The VLE can allow students to work individually or collaboratively. The 3D world also provides an opportunity for research in astronomy education to investigate impact of social interaction, gaming features, and use of manipulatives offered by a learning tool on students’ motivation and learning outcomes. Use of this VLE is also a valuable source for exploration of how the learners’ spatial awareness can be enhanced by working in 3D environment. We will present the Jupiter-system environment along with a preliminary study of the efficacy and usability of our Jupiter 3D VLE.

  20. Dose reduction in chest CT: Comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yoshitake, E-mail: yamada@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Jinzaki, Masahiro, E-mail: jinzaki@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hosokawa, Takahiro, E-mail: hosokawa@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Tanami, Yutaka, E-mail: tanami@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Sugiura, Hiroaki, E-mail: hsugiura@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Abe, Takayuki, E-mail: tabe@z5.keio.jp [Center for Clinical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Kuribayashi, Sachio, E-mail: skuribay@a5.keio.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2012-12-15

    Objectives: To assess the effectiveness of adaptive iterative dose reduction (AIDR) and AIDR 3D in improving the image quality in low-dose chest CT (LDCT). Materials and methods: Fifty patients underwent standard-dose chest CT (SDCT) and LDCT simultaneously, performed under automatic exposure control with noise index of 19 and 38 (for a 2-mm slice thickness), respectively. The SDCT images were reconstructed with filtered back projection (SDCT-FBP images), and the LDCT images with FBP, AIDR and AIDR 3D (LDCT-FBP, LDCT-AIDR and LDCT-AIDR 3D images, respectively). On all the 200 lung and 200 mediastinal image series, objective image noise and signal-to-noise ratio (SNR) were measured in several regions, and two blinded radiologists independently assessed the subjective image quality. Wilcoxon's signed rank sum test with Bonferroni's correction was used for the statistical analyses. Results: The mean dose reduction in LDCT was 64.2% as compared with the dose in SDCT. LDCT-AIDR 3D images showed significantly reduced objective noise and significantly increased SNR in all regions as compared to the SDCT-FBP, LDCT-FBP and LDCT-AIDR images (all, P ≤ 0.003). In all assessments of the image quality, LDCT-AIDR 3D images were superior to LDCT-AIDR and LDCT-FBP images. The overall diagnostic acceptability of both the lung and mediastinal LDCT-AIDR 3D images was comparable to that of the lung and mediastinal SDCT-FBP images. Conclusions: AIDR 3D is superior to AIDR. Intra-individual comparisons between SDCT and LDCT suggest that AIDR 3D allows a 64.2% reduction of the radiation dose as compared to SDCT, by substantially reducing the objective image noise and increasing the SNR, while maintaining the overall diagnostic acceptability.

  1. Shape: A 3D Modeling Tool for Astrophysics.

    Science.gov (United States)

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  2. Quantization of conical spaces in 3D gravity

    Czech Academy of Sciences Publication Activity Database

    Raeymaekers, Joris

    2015-01-01

    Roč. 2015, č. 3 (2015), 060 ISSN 1029-8479 R&D Projects: GA ČR(CZ) GA14-31689S Institutional support: RVO:68378271 Keywords : AdS-CFT correspondence * models of quantum gravity * conformal and W symmetry * higher spin gravity Subject RIV: BE - Theoretical Physics Impact factor: 6.023, year: 2015

  3. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    Directory of Open Access Journals (Sweden)

    Saeed Seyyedi

    2013-01-01

    Full Text Available Digital breast tomosynthesis (DBT is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART and total variation regularized reconstruction techniques (ART+TV are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM values.

  4. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    Science.gov (United States)

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  5. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  6. 3D IBFV : hardware-accelerated 3D flow visualization

    NARCIS (Netherlands)

    Telea, A.C.; Wijk, van J.J.

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique presented by van Wijk (2001) for 2D flow visualization in two main directions. First, we decompose the 3D

  7. Linearized FUN3D for Rapid Aeroelastic and Aeroservoelastic Design and Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this Phase I project is to develop a hybrid approach in FUN3D, referred herein to as the Linearized FUN3D, for rapid aeroelastic and...

  8. Real-Time 3D Profile Measurement Using Structured Light

    International Nuclear Information System (INIS)

    Xu, L; Zhang, Z J; Ma, H; Yu, Y J

    2006-01-01

    The paper builds a real-time system of 3D profile measurement using structured-light imaging. It allows a hand-held object to rotate free in the space-time coded light field, which is projected by the projector. The surface of measured objects with projected coded light is imaged; the system shows surface reconstruction results of objects online. This feedback helps user to adjust object's pose in the light field according to the dismissed or error data, which would achieve the integrality of data used in reconstruction. This method can acquire denser data cloud and have higher reconstruction accuracy and efficiency. According to the real-time requirements, the paper presents the non-restricted light plane modelling which suits stripe structured light system, designs the three-frame stripes space-time coded pattern, and uses the advance ICP algorithms to acquire 3D data alignment from multiple view

  9. Interactive 3d Landscapes on Line

    Science.gov (United States)

    Fanini, B.; Calori, L.; Ferdani, D.; Pescarin, S.

    2011-09-01

    The paper describes challenges identified while developing browser embedded 3D landscape rendering applications, our current approach and work-flow and how recent development in browser technologies could affect. All the data, even if processed by optimization and decimation tools, result in very huge databases that require paging, streaming and Level-of-Detail techniques to be implemented to allow remote web based real time fruition. Our approach has been to select an open source scene-graph based visual simulation library with sufficient performance and flexibility and adapt it to the web by providing a browser plug-in. Within the current Montegrotto VR Project, content produced with new pipelines has been integrated. The whole Montegrotto Town has been generated procedurally by CityEngine. We used this procedural approach, based on algorithms and procedures because it is particularly functional to create extensive and credible urban reconstructions. To create the archaeological sites we used optimized mesh acquired with laser scanning and photogrammetry techniques whereas to realize the 3D reconstructions of the main historical buildings we adopted computer-graphic software like blender and 3ds Max. At the final stage, semi-automatic tools have been developed and used up to prepare and clusterise 3D models and scene graph routes for web publishing. Vegetation generators have also been used with the goal of populating the virtual scene to enhance the user perceived realism during the navigation experience. After the description of 3D modelling and optimization techniques, the paper will focus and discuss its results and expectations.

  10. INTERACTIVE 3D LANDSCAPES ON LINE

    Directory of Open Access Journals (Sweden)

    B. Fanini

    2012-09-01

    Full Text Available The paper describes challenges identified while developing browser embedded 3D landscape rendering applications, our current approach and work-flow and how recent development in browser technologies could affect. All the data, even if processed by optimization and decimation tools, result in very huge databases that require paging, streaming and Level-of-Detail techniques to be implemented to allow remote web based real time fruition. Our approach has been to select an open source scene-graph based visual simulation library with sufficient performance and flexibility and adapt it to the web by providing a browser plug-in. Within the current Montegrotto VR Project, content produced with new pipelines has been integrated. The whole Montegrotto Town has been generated procedurally by CityEngine. We used this procedural approach, based on algorithms and procedures because it is particularly functional to create extensive and credible urban reconstructions. To create the archaeological sites we used optimized mesh acquired with laser scanning and photogrammetry techniques whereas to realize the 3D reconstructions of the main historical buildings we adopted computer-graphic software like blender and 3ds Max. At the final stage, semi-automatic tools have been developed and used up to prepare and clusterise 3D models and scene graph routes for web publishing. Vegetation generators have also been used with the goal of populating the virtual scene to enhance the user perceived realism during the navigation experience. After the description of 3D modelling and optimization techniques, the paper will focus and discuss its results and expectations.

  11. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-01-01

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  12. Targeted 2D/3D registration using ray normalization and a hybrid optimizer

    International Nuclear Information System (INIS)

    Dey, Joyoni; Napel, Sandy

    2006-01-01

    X-ray images are often used to guide minimally invasive procedures in interventional radiology. The use of a preoperatively obtained 3D volume can enhance the visualization needed for guiding catheters and other surgical devices. However, for intraoperative usefulness, the 3D dataset needs to be registered to the 2D x-ray images of the patient. We investigated the effect of targeting subvolumes of interest in the 3D datasets and registering the projections with C-arm x-ray images. We developed an intensity-based 2D/3D rigid-body registration using a Monte Carlo-based hybrid algorithm as the optimizer, using a single view for registration. Pattern intensity (PI) and mutual information (MI) were two metrics tested. We used normalization of the rays to address the problems due to truncation in 3D necessary for targeting. We tested the algorithm on a C-arm x-ray image of a pig's head and a 3D dataset reconstructed from multiple views of the C-arm. PI and MI were comparable in performance. For two subvolumes starting with a set of initial poses from +/-15 mm in x, from +/-3 mm (random), in y and z and +/-4 deg in the three angles, the robustness was 94% for PI and 91% for MI, with accuracy of 2.4 mm (PI) and 2.6 mm (MI), using the hybrid algorithm. The hybrid optimizer, when compared with a standard Powell's direction set method, increased the robustness from 59% (Powell) to 94% (hybrid). Another set of 50 random initial conditions from [+/-20] mm in x,y,z and [+/-10] deg in the three angles, yielded robustness of 84% (hybrid) versus 38% (Powell) using PI as metric, with accuracies 2.1 mm (hybrid) versus 2.0 mm (Powell)

  13. A recipe for consistent 3D management of velocity data and time-depth conversion using Vel-IO 3D

    Science.gov (United States)

    Maesano, Francesco E.; D'Ambrogi, Chiara

    2017-04-01

    .g. depth of the markers on wells). The workflow and Vel-IO 3D tool have been developed and tested for the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain (Northern Italy) in the frame of the European funded Project GeoMol. The study area was covered by a dense dataset of seismic lines (ca. 12000 km) and exploration wells (130 drilling), mainly deriving from oil and gas exploration activities. The interpretation of the seismic dataset leads to the construction of a 3D model in time domain that has been depth converted using Vel-IO 3D, with a 4 layer-cake 3D instantaneous velocity model. The resulting final 3D geological model, composed of 15 horizons and 150 faults, has been used for basin analysis at regional scale, for geothermal assessment, and for the update of the seismotectonic knowledge of the Po Plain. The Vel-IO 3D has been further used for the depth conversion of the accretionary prism of the Calabrian subduction (Southern Italy) and for a basin scale analysis of the Po Plain Plio-Pleistocene evolution. Maesano F.E. and D'Ambrogi C., (2017), Computers and Geosciences, doi: 10.1016/j.cageo.2016.11.013 Vel-IO 3D is available at: https://github.com/framae80/Vel-IO3D

  14. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.; Pomphrey, N.; Sugiyama, L.E.

    1997-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data

  15. Acute D2/D3 dopaminergic agonism but chronic D2/D3 antagonism prevents NMDA antagonist neurotoxicity.

    Science.gov (United States)

    Farber, Nuri B; Nemmers, Brian; Noguchi, Kevin K

    2006-09-15

    Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor, most likely by producing disinhibtion in complex circuits, acutely produce psychosis and cognitive disturbances in humans, and neurotoxicity in rodents. Studies examining NMDA Receptor Hypofunction (NRHypo) neurotoxicity in animals, therefore, may provide insights into the pathophysiology of psychotic disorders. Dopaminergic D2 and/or D3 agents can modify psychosis over days to weeks, suggesting involvement of these transmitter system(s). We studied the ability of D2/D3 agonists and antagonists to modify NRHypo neurotoxicity both after a one-time acute exposure and after chronic daily exposure. Here we report that D2/D3 dopamine agonists, probably via D3 receptors, prevent NRHypo neurotoxicity when given acutely. The protective effect with D2/D3 agonists is not seen after chronic daily dosing. In contrast, the antipsychotic haloperidol does not affect NRHypo neurotoxicity when given acutely at D2/D3 doses. However, after chronic daily dosing of 1, 3, or 5 weeks, haloperidol does prevent NRHypo neurotoxicity with longer durations producing greater protection. Understanding the changes that occur in the NRHypo circuit after chronic exposure to dopaminergic agents could provide important clues into the pathophysiology of psychotic disorders.

  16. Investigating dynamic stall, 3-D and rotational effects on wind turbine blades by means of an unsteady quasi-3D Navier-Stokes solver

    Energy Technology Data Exchange (ETDEWEB)

    Chaviaropoulos, P.K. [CRES-Center for Renewable Energy Sources, Pikermi Attiki (Greece)

    1997-08-01

    The blade element codes provide surprisingly accurate predictions of the aerodynamic loads provided that they are `fed` with proper lift and drag - incidence curves for the profiles mounted on the rotor blades. The evident question is how one can obtain such data. It is common experience that the use of the mostly available steady two-dimensional profile data may lead to serious discrepancies between measured and simulated loads. Although several correction techniques have been proposed as a remedy during the last years, from simplified dynamic stall models suitably tuned for wind turbines to 3-D correction schemes for profile data, the problem is by no means over-passed. Especially for the three-dimensional effects it seems that part of the difficulty is due to our limited understanding of the physical mechanism which is responsible for the extra loading of the inner part of the blades. Recognizing the importance of the above aspects two relevant Joule projects have been launched, the concluded `Dynamic Stall and 3-D Effects` JOU2-CT93-0345 and the ongoing `VISCWIND` JOR3-CT95-0007 project. Part of the activities in the first and all the activities in the second project are devoted to the identification and quantification of the dynamic stall and three-dimensional effects experienced by the wind turbine blades using Navier-Stokes computations. The contribution of CRES in these two projects is briefly presented in this paper. (EG)

  17. 3D laser scanning in plant and pipeline engineering; 3D-Laserscanning im Anlagen- und Rohrleitungsbau

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T. [Kaeser und Reiner, Ingenieurbuero fuer Vermessung und Geoinformation, Fellbach (Germany)

    2006-05-15

    3D laser scanning has been in use for a number of years now in the fields of surveying, building and factory planning. Laser scanning can, however, provide a highly supportive and helpful tool for the plant and piping designer, too. The benefits of this technology are relevant wherever the geometry of existing systems and subsystems needs to be registered and recorded. This may be the case in planning changes (basic and detail engineering), collision checks, documentation, plant relocations and visual?display projects. (orig.)

  18. Correlates of circulating 25-hydroxyvitamin D: Cohort Consortium Vitamin D Pooling Project of Rarer Cancers.

    Science.gov (United States)

    McCullough, Marjorie L; Weinstein, Stephanie J; Freedman, D Michal; Helzlsouer, Kathy; Flanders, W Dana; Koenig, Karen; Kolonel, Laurence; Laden, Francine; Le Marchand, Loic; Purdue, Mark; Snyder, Kirk; Stevens, Victoria L; Stolzenberg-Solomon, Rachael; Virtamo, Jarmo; Yang, Gong; Yu, Kai; Zheng, Wei; Albanes, Demetrius; Ashby, Jason; Bertrand, Kimberly; Cai, Hui; Chen, Yu; Gallicchio, Lisa; Giovannucci, Edward; Jacobs, Eric J; Hankinson, Susan E; Hartge, Patricia; Hartmuller, Virginia; Harvey, Chinonye; Hayes, Richard B; Horst, Ronald L; Shu, Xiao-Ou

    2010-07-01

    Low vitamin D status is common globally and is associated with multiple disease outcomes. Understanding the correlates of vitamin D status will help guide clinical practice, research, and interpretation of studies. Correlates of circulating 25-hydroxyvitamin D (25(OH)D) concentrations measured in a single laboratory were examined in 4,723 cancer-free men and women from 10 cohorts participating in the Cohort Consortium Vitamin D Pooling Project of Rarer Cancers, which covers a worldwide geographic area. Demographic and lifestyle characteristics were examined in relation to 25(OH)D using stepwise linear regression and polytomous logistic regression. The prevalence of 25(OH)D concentrations less than 25 nmol/L ranged from 3% to 36% across cohorts, and the prevalence of 25(OH)D concentrations less than 50 nmol/L ranged from 29% to 82%. Seasonal differences in circulating 25(OH)D were most marked among whites from northern latitudes. Statistically significant positive correlates of 25(OH)D included male sex, summer blood draw, vigorous physical activity, vitamin D intake, fish intake, multivitamin use, and calcium supplement use. Significant inverse correlates were body mass index, winter and spring blood draw, history of diabetes, sedentary behavior, smoking, and black race/ethnicity. Correlates varied somewhat within season, race/ethnicity, and sex. These findings help identify persons at risk for low vitamin D status for both clinical and research purposes.

  19. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, Eman, E-mail: eman.shaheen@uzleuven.be; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van [Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  20. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-01-01

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  1. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis.

    Science.gov (United States)

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Dance, David R; Young, Kenneth C; Van Ongeval, Chantal

    2014-08-01

    This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly suggestive for malignancy (BIRADS 5

  2. WE-AB-BRA-08: Correction of Patient Motion in C-Arm Cone-Beam CT Using 3D-2D Registration

    International Nuclear Information System (INIS)

    Ouadah, S; Jacobson, M; Stayman, JW; Siewerdsen, JH; Ehtiati, T

    2016-01-01

    Purpose: Intraoperative C-arm cone-beam CT (CBCT) is subject to artifacts arising from patient motion during the fairly long (∼5–20 s) scan times. We present a fiducial free method to mitigate motion artifacts using 3D-2D image registration that simultaneously corrects residual errors in geometric calibration. Methods: A 3D-2D registration process was used to register each projection to DRRs computed from the 3D image by maximizing gradient orientation (GO) using the CMA-ES optimizer. The resulting rigid 6 DOF transforms were applied to the system projection matrices, and a 3D image was reconstructed via model-based image reconstruction (MBIR, which accommodates the resulting noncircular orbit). Experiments were conducted using a Zeego robotic C-arm (20 s, 200°, 496 projections) to image a head phantom undergoing various types of motion: 1) 5° lateral motion; 2) 15° lateral motion; and 3) 5° lateral motion with 10 mm periodic inferior-superior motion. Images were reconstructed using a penalized likelihood (PL) objective function, and structural similarity (SSIM) was measured for axial slices of the reconstructed images. A motion-free image was acquired using the same protocol for comparison. Results: There was significant improvement (p 0.99, indicating near identity to the motion-free reference. The point spread function (PSF) measured from a wire in the phantom was restored to that of the reference in each case. Conclusion: The 3D-2D registration method provides a robust framework for mitigation of motion artifacts and is expected to hold for applications in the head, pelvis, and extremities with reasonably constrained operative setup. Further improvement can be achieved by incorporating multiple rigid components and non-rigid deformation within the framework. The method is highly parallelizable and could in principle be run with every acquisition. Research supported by National Institutes of Health Grant No. R01-EB-017226 and academic

  3. The Effect of Stereoscopic ("3D") vs. 2D Presentation on Learning through Video and Film

    Science.gov (United States)

    Price, Aaron; Kasal, E.

    2014-01-01

    Two Eyes, 3D is a NSF-funded research project into the effects of stereoscopy on learning of highly spatial concepts. We report final results on one study of the project which tested the effect of stereoscopic presentation on learning outcomes of two short films about Type 1a supernovae and the morphology of the Milky Way. 986 adults watched either film, randomly distributed between stereoscopic and 2D presentation. They took a pre-test and post-test that included multiple choice and drawing tasks related to the spatial nature of the topics in the film. Orientation of the answering device was also tracked and a spatial cognition pre-test was given to control for prior spatial ability. Data collection took place at the Adler Planetarium's Space Visualization Lab and the project is run through the AAVSO.

  4. Time-lapse seismic - repeatability versus usefulness and 2D versus 3D

    Science.gov (United States)

    Landro, M.

    2017-12-01

    Time-lapse seismic has developed rapidly over the past decades, especially for monitoring of oil and gas reservoirs and subsurface storage of CO2. I will review and discuss some of the critical enabling factors for the commercial success of this technology. It was early realized that how well we are able to repeat our seismic experiment is crucial. However, it is always a question of detectability versus repeatability. For marine seismic, there are several factors limiting the repeatability: Weather conditions, positioning of sources and receivers and so on. I will discuss recent improvements in both acquisition and processing methods over the last decade. It is well known that repeated 3D seismic data is the most accurate tool for reservoir monitoring purposes. However, several examples show that 2D seismic data may be used for monitoring purposes despite lower repeatability. I will use examples from an underground blow out in the North Sea, and repeated 2D seismic lines acquired before and after the Tohoku earthquake in 2011 to illustrate this. A major challenge when using repeated 2D seismic for subsurface monitoring purposes is the lack of 3D calibration points and significantly less amount of data. For marine seismic acquisition, feathering issues and crossline dip effects become more critical compared to 3D seismic acquisition. Furthermore, the uncertainties arising from a non-ideal 2D seismic acquisition are hard to assess, since the 3D subsurface geometry has not been mapped. One way to shed more light on this challenge is to use 3D time lapse seismic modeling testing various crossline dips or geometries. Other ways are to use alternative data sources, such as bathymetry, time lapse gravity or electromagnetic data. The end result for all time-lapse monitoring projects is an interpretation associated with uncertainties, and for the 2D case these uncertainties are often large. The purpose of this talk is to discuss how to reduces and control these

  5. Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings

    Science.gov (United States)

    Tsai, F.; Chang, H.; Lin, Y.-W.

    2017-08-01

    This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.

  6. ‘‘Lend a Hand’’ Project Helps Students: Improved Spatial Visualization Skills Through Engaging in Hands-On 3-D Printed Prosthetics Project During a 9th Grade Engineering Course

    OpenAIRE

    Smith, Shaunna; Talley, Kimberly

    2018-01-01

    Research shows that high spatial ability is linked to success and persistence in STEM. Empirical investigations often report a gender gap in favor of male students. The purpose of this research study was to assess changes to 9th grade engineering students’ spatial visualization skills through engagement in a nine-week collaborative 3-D printed prosthetics project embedded within their existing ‘‘Beginning Concepts of Engineering’’ course curriculum. Using concurrent mixed methods, this study ...

  7. Aspects of defects in 3d-3d correspondence

    International Nuclear Information System (INIS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-01-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0) theory of type A_N_−_1 on a 3-manifold M. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,ℂ)) on M and a 3d N=2 theory T_N[M]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N>2. We also highlight the non-Abelian description of the 3d N=2T_N[M] theory with defect included, when such a description is available. This paper is a companion to our shorter paper http://dx.doi.org/10.1088/1751-8113/49/30/30LT02, which summarizes our main results.

  8. Transient simulations in WWER-1000-comparison between DYN3D-ATHLET and DYN3D-RELAP5

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.; Kozmenkov, Y.; Mittag, S.; Rohde, U.; Weiss, F.P.

    2003-01-01

    Simulations of a real transient of an operating WWER-1000 power plant have been performed using DYN3D-ATHLET (Gru95) and DYN3D-RELAP5 (Koy01) code systems in the frame of activities aimed at a validation of the neutronic / thermal-hydraulic coupled codes. The transient initiated by a main coolant pump switching off, when three of the four main coolant pumps of the plant are in operation (scenario of the VALCO project) is chosen for the simulation. The same models of the plant (except the core nodalization) but two different libraries of macroscopic cross-sections have been used in compared calculations. Additionally, the compared code systems are based on the different / external and internal / coupling techniques. This paper contains a brief description of the coupled codes and the plant model as well as a comparison between the results from simulations (Authors)

  9. Making Things See 3D vision with Kinect, Processing, Arduino, and MakerBot

    CERN Document Server

    Borenstein, Greg

    2012-01-01

    This detailed, hands-on guide provides the technical and conceptual information you need to build cool applications with Microsoft's Kinect, the amazing motion-sensing device that enables computers to see. Through half a dozen meaty projects, you'll learn how to create gestural interfaces for software, use motion capture for easy 3D character animation, 3D scanning for custom fabrication, and many other applications. Perfect for hobbyists, makers, artists, and gamers, Making Things See shows you how to build every project with inexpensive off-the-shelf components, including the open source P

  10. Monoplane 3D-2D registration of cerebral angiograms based on multi-objective stratified optimization

    Science.gov (United States)

    Aksoy, T.; Špiclin, Ž.; Pernuš, F.; Unal, G.

    2017-12-01

    Registration of 3D pre-interventional to 2D intra-interventional medical images has an increasingly important role in surgical planning, navigation and treatment, because it enables the physician to co-locate depth information given by pre-interventional 3D images with the live information in intra-interventional 2D images such as x-ray. Most tasks during image-guided interventions are carried out under a monoplane x-ray, which is a highly ill-posed problem for state-of-the-art 3D to 2D registration methods. To address the problem of rigid 3D-2D monoplane registration we propose a novel multi-objective stratified parameter optimization, wherein a small set of high-magnitude intensity gradients are matched between the 3D and 2D images. The stratified parameter optimization matches rotation templates to depth templates, first sampled from projected 3D gradients and second from the 2D image gradients, so as to recover 3D rigid-body rotations and out-of-plane translation. The objective for matching was the gradient magnitude correlation coefficient, which is invariant to in-plane translation. The in-plane translations are then found by locating the maximum of the gradient phase correlation between the best matching pair of rotation and depth templates. On twenty pairs of 3D and 2D images of ten patients undergoing cerebral endovascular image-guided intervention the 3D to monoplane 2D registration experiments were setup with a rather high range of initial mean target registration error from 0 to 100 mm. The proposed method effectively reduced the registration error to below 2 mm, which was further refined by a fast iterative method and resulted in a high final registration accuracy (0.40 mm) and high success rate (> 96%). Taking into account a fast execution time below 10 s, the observed performance of the proposed method shows a high potential for application into clinical image-guidance systems.

  11. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    Science.gov (United States)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

  12. D3-??????????????????????? ? ???? ?????????? ?2 ?????? ?????? ?????

    OpenAIRE

    ?????????, ????; ???????, ???????; ??????, ?????????; ?????????????, ????; ??????, ??????

    2011-01-01

    ????? ?????? ??????? ????? ????? ??????????? ?????? ?????? ????? ? ?????? ? ???????? ????? ?????????. ?????????? ???????????? ?????? ?? ?2 ?????? ?????? ????? ??????? ?? D3 ???????????????? ??????? ??????????? ?????? ????????? ????? ?????????? ??? ??? ??????????. ? ????? ????????????? ??????????? ??? ????????? ????????????? ?????????? ???? ?????????? ?????????? ????? ????????? ?????? ???????? ?? D3-????????????????? ???????.

  13. 3D Shape Modeling Using High Level Descriptors

    DEFF Research Database (Denmark)

    Andersen, Vedrana

    features like thorns, bark and scales. Presented here is a simple method for easy modeling, transferring and editing that kind of texture. The method is an extension of the height-field texture, but incorporates an additional tilt of the height field. Related to modeling non-heightfield textures, a part...... of my work involved developing feature-aware resizing of models with complex surfaces consisting of underlying shape and a distinctive texture detail. The aim was to deform an object while preserving the shape and size of the features.......The goal of this Ph.D. project is to investigate and improve the methods for describing the surface of 3D objects, with focus on modeling geometric texture on surfaces. Surface modeling being a large field of research, the work done during this project concentrated around a few smaller areas...

  14. GEOSPATIAL DATA PROCESSING FOR 3D CITY MODEL GENERATION, MANAGEMENT AND VISUALIZATION

    Directory of Open Access Journals (Sweden)

    I. Toschi

    2017-05-01

    Full Text Available Recent developments of 3D technologies and tools have increased availability and relevance of 3D data (from 3D points to complete city models in the geospatial and geo-information domains. Nevertheless, the potential of 3D data is still underexploited and mainly confined to visualization purposes. Therefore, the major challenge today is to create automatic procedures that make best use of available technologies and data for the benefits and needs of public administrations (PA and national mapping agencies (NMA involved in “smart city” applications. The paper aims to demonstrate a step forward in this process by presenting the results of the SENECA project (Smart and SustaiNablE City from Above – http://seneca.fbk.eu. State-of-the-art processing solutions are investigated in order to (i efficiently exploit the photogrammetric workflow (aerial triangulation and dense image matching, (ii derive topologically and geometrically accurate 3D geo-objects (i.e. building models at various levels of detail and (iii link geometries with non-spatial information within a 3D geo-database management system accessible via web-based client. The developed methodology is tested on two case studies, i.e. the cities of Trento (Italy and Graz (Austria. Both spatial (i.e. nadir and oblique imagery and non-spatial (i.e. cadastral information and building energy consumptions data are collected and used as input for the project workflow, starting from 3D geometry capture and modelling in urban scenarios to geometry enrichment and management within a dedicated webGIS platform.

  15. Geospatial Data Processing for 3d City Model Generation, Management and Visualization

    Science.gov (United States)

    Toschi, I.; Nocerino, E.; Remondino, F.; Revolti, A.; Soria, G.; Piffer, S.

    2017-05-01

    Recent developments of 3D technologies and tools have increased availability and relevance of 3D data (from 3D points to complete city models) in the geospatial and geo-information domains. Nevertheless, the potential of 3D data is still underexploited and mainly confined to visualization purposes. Therefore, the major challenge today is to create automatic procedures that make best use of available technologies and data for the benefits and needs of public administrations (PA) and national mapping agencies (NMA) involved in "smart city" applications. The paper aims to demonstrate a step forward in this process by presenting the results of the SENECA project (Smart and SustaiNablE City from Above - http://seneca.fbk.eu). State-of-the-art processing solutions are investigated in order to (i) efficiently exploit the photogrammetric workflow (aerial triangulation and dense image matching), (ii) derive topologically and geometrically accurate 3D geo-objects (i.e. building models) at various levels of detail and (iii) link geometries with non-spatial information within a 3D geo-database management system accessible via web-based client. The developed methodology is tested on two case studies, i.e. the cities of Trento (Italy) and Graz (Austria). Both spatial (i.e. nadir and oblique imagery) and non-spatial (i.e. cadastral information and building energy consumptions) data are collected and used as input for the project workflow, starting from 3D geometry capture and modelling in urban scenarios to geometry enrichment and management within a dedicated webGIS platform.

  16. 3D recovery of human gaze in natural environments

    Science.gov (United States)

    Paletta, Lucas; Santner, Katrin; Fritz, Gerald; Mayer, Heinz

    2013-01-01

    The estimation of human attention has recently been addressed in the context of human robot interaction. Today, joint work spaces already exist and challenge cooperating systems to jointly focus on common objects, scenes and work niches. With the advent of Google glasses and increasingly affordable wearable eye-tracking, monitoring of human attention will soon become ubiquitous. The presented work describes for the first time a method for the estimation of human fixations in 3D environments that does not require any artificial landmarks in the field of view and enables attention mapping in 3D models. It enables full 3D recovery of the human view frustum and the gaze pointer in a previously acquired 3D model of the environment in real time. The study on the precision of this method reports a mean projection error ≈1.1 cm and a mean angle error ≈0.6° within the chosen 3D model - the precision does not go below the one of the technical instrument (≈1°). This innovative methodology will open new opportunities for joint attention studies as well as for bringing new potential into automated processing for human factors technologies.

  17. 32 CFR 644.3 - Navigation Projects.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Navigation Projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation Projects. (a) Land to be acquired in fee. All... construction and borrow areas. (3) In navigation-only projects, the right to permanently flood should be...

  18. 3D silicon strip detectors

    International Nuclear Information System (INIS)

    Parzefall, Ulrich; Bates, Richard; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kuehn, Susanne; Lozano, Manuel; Pahn, Gregor; Parkes, Chris; Pellegrini, Giulio; Pennicard, David; Piemonte, Claudio; Ronchin, Sabina; Szumlak, Tomasz; Zoboli, Andrea; Zorzi, Nicola

    2009-01-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10 15 N eq /cm 2 , which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10 15 N eq /cm 2 . The tests were performed with three systems: a highly focused IR-laser with 5μm spot size to make position-resolved scans of the charge collection efficiency, an Sr 90 β-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the results obtained with 3D-STC-modules.

  19. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  20. Photoaffinity labeling of serum vitamin D binding protein by 3-deoxy-3-azido-25-hydroxyvitamin D3

    International Nuclear Information System (INIS)

    Link, R.P.; Kutner, A.; Schnoes, H.K.; DeLuca, H.F.

    1987-01-01

    3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3

  1. Modelat BIM d’un equipament esportiu existent mitjançant escanejat 3D

    OpenAIRE

    Gaspar Martin, Laura

    2015-01-01

    El projecte contempla la elaboració d’un modelat BIM "asbuilt" d’un equipament esportiu existent de uns 55000m2 de superfície per uns 48 m d'alçada màxima. El procés a partir del qual es farà el modelat serà mitjançant els núvols de punts aportats per l'escanejat d’un làser 3D i fotos de 360 graus. El projecte contindrà tot el procés d’elaboració des de la recaptació de punts mitjançant làser 3D i fotos que ens passa una empresa col•laboradora, els quals nosaltres modifiquem pe...

  2. 3D for free using the Mac's standard apps : converting raw 3D text files to QuickDraw 3D's 3DMF format using AppleScript

    NARCIS (Netherlands)

    Djajadiningrat, J.P.

    2003-01-01

    This article introduces you to the basics of 3D files in general and the 3D Metafile (3DMF), QuickDraw 3D's native 3D format, in particular. It shows how you can use AppleScript to easily convert a raw 3D text file into a 3DMF readable by the QuickDraw 3D Viewer or any other QuickDraw 3D compatible

  3. 3D vs 2D laparoscopic systems: Development of a performance quantitative validation model.

    Science.gov (United States)

    Ghedi, Andrea; Donarini, Erica; Lamera, Roberta; Sgroi, Giovanni; Turati, Luca; Ercole, Cesare

    2015-01-01

    The new technology ensures 3D laparoscopic vision by adding depth to the traditional two dimensions. This realistic vision gives the surgeon the feeling of operating in real space. Hospital of Treviglio-Caravaggio isn't an university or scientific institution; in 2014 a new 3D laparoscopic technology was acquired therefore it led to evaluation of the of the appropriateness in term of patient outcome and safety. The project aims at achieving the development of a quantitative validation model that would ensure low cost and a reliable measure of the performance of 3D technology versus 2D mode. In addition, it aims at demonstrating how new technologies, such as open source hardware and software and 3D printing, could help research with no significant cost increase. For these reasons, in order to define criteria of appropriateness in the use of 3D technologies, it was decided to perform a study to technically validate the use of the best technology in terms of effectiveness, efficiency and safety in the use of a system between laparoscopic vision in 3D and the traditional 2D. 30 surgeons were enrolled in order to perform an exercise through the use of laparoscopic forceps inside a trainer. The exercise consisted of having surgeons with different level of seniority, grouped by type of specialization (eg. surgery, urology, gynecology), exercising videolaparoscopy with two technologies (2D and 3D) through the use of a anthropometric phantom. The target assigned to the surgeon was that to pass "needle and thread" without touching the metal part in the shortest time possible. The rings selected for the exercise had each a coefficient of difficulty determined by depth, diameter, angle from the positioning and from the point of view. The analysis of the data collected from the above exercise has mathematically confirmed that the 3D technique ensures a learning curve lower in novice and greater accuracy in the performance of the task with respect to 2D.

  4. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  5. Three-dimensional imaging using computer-generated holograms synthesized from 3-D Fourier spectra

    International Nuclear Information System (INIS)

    Yatagai, Toyohiko; Miura, Ken-ichi; Sando, Yusuke; Itoh, Masahide

    2008-01-01

    Computer-generated holograms(CGHs) synthesized from projection images of real existing objects are considered. A series of projection images are recorded both vertically and horizontally with an incoherent light source and a color CCD. According to the principles of computer tomography(CT), the 3-D Fourier spectrum is calculated from several projection images of objects and the Fresnel CGH is synthesized using a part of the 3-D Fourier spectrum. This method has following advantages. At first, no-blur reconstructed images in any direction are obtained owing to two-dimensionally scanning in recording. Secondarily, since not interference fringes but simple projection images of objects are recorded, a coherent light source is not necessary. Moreover, when a color CCD is used in recording, it is easily possible to record and reconstruct colorful objects. Finally, we demonstrate reconstruction of biological objects.

  6. Three-dimensional imaging using computer-generated holograms synthesized from 3-D Fourier spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yatagai, Toyohiko; Miura, Ken-ichi; Sando, Yusuke; Itoh, Masahide [University of Tsukba, Institute of Applied Physics, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan)], E-mail: yatagai@cc.utsunomiya-u.ac.jp

    2008-11-01

    Computer-generated holograms(CGHs) synthesized from projection images of real existing objects are considered. A series of projection images are recorded both vertically and horizontally with an incoherent light source and a color CCD. According to the principles of computer tomography(CT), the 3-D Fourier spectrum is calculated from several projection images of objects and the Fresnel CGH is synthesized using a part of the 3-D Fourier spectrum. This method has following advantages. At first, no-blur reconstructed images in any direction are obtained owing to two-dimensionally scanning in recording. Secondarily, since not interference fringes but simple projection images of objects are recorded, a coherent light source is not necessary. Moreover, when a color CCD is used in recording, it is easily possible to record and reconstruct colorful objects. Finally, we demonstrate reconstruction of biological objects.

  7. Optimizing 4DCBCT projection allocation to respiratory bins

    International Nuclear Information System (INIS)

    O’Brien, Ricky T; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J

    2014-01-01

    4D cone beam computed tomography (4DCBCT) is an emerging image guidance strategy used in radiotherapy where projections acquired during a scan are sorted into respiratory bins based on the respiratory phase or displacement. 4DCBCT reduces the motion blur caused by respiratory motion but increases streaking artefacts due to projection under-sampling as a result of the irregular nature of patient breathing and the binning algorithms used. For displacement binning the streak artefacts are so severe that displacement binning is rarely used clinically. The purpose of this study is to investigate if sharing projections between respiratory bins and adjusting the location of respiratory bins in an optimal manner can reduce or eliminate streak artefacts in 4DCBCT images. We introduce a mathematical optimization framework and a heuristic solution method, which we will call the optimized projection allocation algorithm, to determine where to position the respiratory bins and which projections to source from neighbouring respiratory bins. Five 4DCBCT datasets from three patients were used to reconstruct 4DCBCT images. Projections were sorted into respiratory bins using equispaced, equal density and optimized projection allocation. The standard deviation of the angular separation between projections was used to assess streaking and the consistency of the segmented volume of a fiducial gold marker was used to assess motion blur. The standard deviation of the angular separation between projections using displacement binning and optimized projection allocation was 30%–50% smaller than conventional phase based binning and 59%–76% smaller than conventional displacement binning indicating more uniformly spaced projections and fewer streaking artefacts. The standard deviation in the marker volume was 20%–90% smaller when using optimized projection allocation than using conventional phase based binning suggesting more uniform marker segmentation and less motion blur. Images

  8. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  9. 3D movies for teaching seafloor bathymetry, plate tectonics, and ocean circulation in large undergraduate classes

    Science.gov (United States)

    Peterson, C. D.; Lisiecki, L. E.; Gebbie, G.; Hamann, B.; Kellogg, L. H.; Kreylos, O.; Kronenberger, M.; Spero, H. J.; Streletz, G. J.; Weber, C.

    2015-12-01

    Geologic problems and datasets are often 3D or 4D in nature, yet projected onto a 2D surface such as a piece of paper or a projection screen. Reducing the dimensionality of data forces the reader to "fill in" that collapsed dimension in their minds, creating a cognitive challenge for the reader, especially new learners. Scientists and students can visualize and manipulate 3D datasets using the virtual reality software developed for the immersive, real-time interactive 3D environment at the KeckCAVES at UC Davis. The 3DVisualizer software (Billen et al., 2008) can also operate on a desktop machine to produce interactive 3D maps of earthquake epicenter locations and 3D bathymetric maps of the seafloor. With 3D projections of seafloor bathymetry and ocean circulation proxy datasets in a virtual reality environment, we can create visualizations of carbon isotope (δ13C) records for academic research and to aid in demonstrating thermohaline circulation in the classroom. Additionally, 3D visualization of seafloor bathymetry allows students to see features of seafloor most people cannot observe first-hand. To enhance lessons on mid-ocean ridges and ocean basin genesis, we have created movies of seafloor bathymetry for a large-enrollment undergraduate-level class, Introduction to Oceanography. In the past four quarters, students have enjoyed watching 3D movies, and in the fall quarter (2015), we will assess how well 3D movies enhance learning. The class will be split into two groups, one who learns about the Mid-Atlantic Ridge from diagrams and lecture, and the other who learns with a supplemental 3D visualization. Both groups will be asked "what does the seafloor look like?" before and after the Mid-Atlantic Ridge lesson. Then the whole class will watch the 3D movie and respond to an additional question, "did the 3D visualization enhance your understanding of the Mid-Atlantic Ridge?" with the opportunity to further elaborate on the effectiveness of the visualization.

  10. VPython: Python plus Animations in Stereo 3D

    Science.gov (United States)

    Sherwood, Bruce

    2004-03-01

    Python is a modern object-oriented programming language. VPython (http://vpython.org) is a combination of Python (http://python.org), the Numeric module from LLNL (http://www.pfdubois.com/numpy), and the Visual module created by David Scherer, all of which have been under continuous development as open source projects. VPython makes it easy to write programs that generate real-time, navigable 3D animations. The Visual module includes a set of 3D objects (sphere, cylinder, arrow, etc.), tools for creating other shapes, and support for vector algebra. The 3D renderer runs in a parallel thread, and animations are produced as a side effect of computations, freeing the programmer to concentrate on the physics. Applications include educational and research visualization. In the Fall of 2003 Hugh Fisher at the Australian National University, John Zelle at Wartburg College, and I contributed to a new stereo capability of VPython. By adding a single statement to an existing VPython program, animations can be viewed in true stereo 3D. One can choose several modes: active shutter glasses, passive polarized glasses, or colored glasses (e.g. red-cyan). The talk will demonstrate the new stereo capability and discuss the pros and cons of various schemes for display of stereo 3D for a large audience. Supported in part by NSF grant DUE-0237132.

  11. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  12. 3DSEM: A 3D microscopy dataset

    Directory of Open Access Journals (Sweden)

    Ahmad P. Tafti

    2016-03-01

    Full Text Available The Scanning Electron Microscope (SEM as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. Keywords: 3D microscopy dataset, 3D microscopy vision, 3D SEM surface reconstruction, Scanning Electron Microscope (SEM

  13. ERASMUS-F: pathfinder for an E-ELT 3D instrumentation

    Science.gov (United States)

    Kelz, Andreas; Roth, Martin M.; Bacon, Roland; Bland-Hawthorn, Joss; Nicklas, Harald E.; Bryant, Julia J.; Colless, Matthew; Croom, Scott; Ellis, Simon; Fleischmann, Andreas; Gillingham, Peter; Haynes, Roger; Hopkins, Andrew; Kosmalski, Johan; O'Byrne, John W.; Olaya, Jean-Christophe; Rambold, William N.; Robertson, Gordon

    2010-07-01

    ERASMUS-F is a pathfinder study for a possible E-ELT 3D-instrumentation, funded by the German Ministry for Education and Research (BMBF). The study investigates the feasibility to combine a broadband optical spectrograph with a new generation of multi-object deployable fibre bundles. The baseline approach is to modify the spectrograph of the Multi-Unit Spectroscopic Explorer (MUSE), which is a VLT integral-field instrument using slicers, with a fibre-fed input. Taking advantage of recent developments in astrophotonics, it is planed to equip such an instrument with fused fibre bundles (hexabundles) that offer larger filling factors than dense-packed classical fibres. The overall project involves an optical and mechanical design study, the specifications of a software package for 3Dspectrophotometry, based upon the experiences with the P3d Data Reduction Software and an investigation of the science case for such an instrument. As a proof-of-concept, the study also involves a pathfinder instrument for the VLT, called the FIREBALL project.

  14. Projecting light beams with 3D waveguide arrays

    Science.gov (United States)

    Crespi, Andrea; Bragheri, Francesca

    2017-01-01

    Free-space light beams with complex intensity patterns, or non-trivial phase structure, are demanded in diverse fields, ranging from classical and quantum optical communications, to manipulation and imaging of microparticles and cells. Static or dynamic spatial light modulators, acting on the phase or intensity of an incoming light wave, are the conventional choices to produce beams with such non-trivial characteristics. However, interfacing these devices with optical fibers or integrated optical circuits often requires difficult alignment or cumbersome optical setups. Here we explore theoretically and with numerical simulations the potentialities of directly using the output of engineered three-dimensional waveguide arrays, illuminated with linearly polarized light, to project light beams with peculiar structures. We investigate through a collection of illustrative configurations the far field distribution, showing the possibility to achieve orbital angular momentum, or to produce elaborate intensity or phase patterns with several singularity points. We also simulate the propagation of the projected beam, showing the possibility to concentrate light. We note that these devices should be at reach of current technology, thus perspectives are open for the generation of complex free-space optical beams from integrated waveguide circuits.

  15. Educational Material for 3D Visualization of Spine Procedures: Methods for Creation and Dissemination.

    Science.gov (United States)

    Cramer, Justin; Quigley, Edward; Hutchins, Troy; Shah, Lubdha

    2017-06-01

    Spine anatomy can be difficult to master and is essential for performing spine procedures. We sought to utilize the rapidly expanding field of 3D technology to create freely available, interactive educational materials for spine procedures. Our secondary goal was to convey lessons learned about 3D modeling and printing. This project involved two parallel processes: the creation of 3D-printed physical models and interactive digital models. We segmented illustrative CT studies of the lumbar and cervical spine to create 3D models and then printed them using a consumer 3D printer and a professional 3D printing service. We also included downloadable versions of the models in an interactive eBook and platform-independent web viewer. We then provided these educational materials to residents with a pretest and posttest to assess efficacy. The "Spine Procedures in 3D" eBook has been downloaded 71 times as of October 5, 2016. All models used in the book are available for download and printing. Regarding test results, the mean exam score improved from 70 to 86%, with the most dramatic improvement seen in the least experienced trainees. Participants reported increased confidence in performing lumbar punctures after exposure to the material. We demonstrate the value of 3D models, both digital and printed, in learning spine procedures. Moreover, 3D printing and modeling is a rapidly expanding field with a large potential role for radiologists. We have detailed our process for creating and sharing 3D educational materials in the hopes of motivating and enabling similar projects.

  16. 3D And 4D Cloud Lifecycle Investigations Using Innovative Scanning Radar Analysis Methods. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kollias, Pavlos [Stony Brook Univ., NY (United States)

    2017-04-23

    With the vast upgrades to the ARM program radar measurement capabilities in 2010 and beyond, our ability to probe the 3D structure of clouds and associated precipitation has increased dramatically. This project build on the PI's and co-I's expertisein the analysis of radar observations. The first research thrust aims to document the 3D morphological (as depicted by the radar reflectivity structure) and 3D dynamical (cloud$-$scale eddies) structure of boundary layer clouds. Unraveling the 3D dynamical structure of stratocumulus and shallow cumulus clouds requires decomposition of the environmental wind contribution and particle sedimentation velocity from the observed radial Doppler velocity. The second thrust proposes to unravel the mechanism of cumulus entrainment (location, scales) and its impact on microphysics utilizing radar measurements from the vertically pointing and new scanning radars at the ARM sites. The third research thrust requires the development of a cloud$-$tracking algorithm that monitors the properties of cloud.

  17. Automatic inventory of components by laser 3D scanner; Inventario de automatico de componentes mediante laser escaner 3D

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Garcia, R.; Munoz Prieto, C.; Sarti Fernandez, F.

    2014-07-01

    One of the existing needs in nuclear decommissioning projects is to provide an inventory of components to be dismantled, which is available from its spatial location and elements that exist in your environment. The Laser scanner technology is a system of data acquisition that allows 3D models composed of millions of points, it's models with pinpoint accuracy and are available in a very short space of time. (Author)

  18. 3D FT-IR imaging spectroscopy of phase-separation in a poly(3-hydroxybutyrate)/poly(L-lactic acid) blend

    Science.gov (United States)

    Miriam Unger; Julia Sedlmair; Heinz W. Siesler; Carol Hirschmugl; Barbara Illman

    2014-01-01

    In the present study, 3D FT-IR spectroscopic imaging measurements were applied to study the phase separation of a poly(3-hydroxybutyrate) (PHB)/poly(L-lactic acid) (PLA) (50:50 wt.%) polymer blend film. While in 2D projection imaging the z-dependent information is overlapped, thereby complicating the analysis, FT-IR spectro-micro-tomography,...

  19. Phase correction for three-dimensional (3D) diffusion-weighted interleaved EPI using 3D multiplexed sensitivity encoding and reconstruction (3D-MUSER).

    Science.gov (United States)

    Chang, Hing-Chiu; Hui, Edward S; Chiu, Pui-Wai; Liu, Xiaoxi; Chen, Nan-Kuei

    2018-05-01

    Three-dimensional (3D) multiplexed sensitivity encoding and reconstruction (3D-MUSER) algorithm is proposed to reduce aliasing artifacts and signal corruption caused by inter-shot 3D phase variations in 3D diffusion-weighted echo planar imaging (DW-EPI). 3D-MUSER extends the original framework of multiplexed sensitivity encoding (MUSE) to a hybrid k-space-based reconstruction, thereby enabling the correction of inter-shot 3D phase variations. A 3D single-shot EPI navigator echo was used to measure inter-shot 3D phase variations. The performance of 3D-MUSER was evaluated by analyses of point-spread function (PSF), signal-to-noise ratio (SNR), and artifact levels. The efficacy of phase correction using 3D-MUSER for different slab thicknesses and b-values were investigated. Simulations showed that 3D-MUSER could eliminate artifacts because of through-slab phase variation and reduce noise amplification because of SENSE reconstruction. All aliasing artifacts and signal corruption in 3D interleaved DW-EPI acquired with different slab thicknesses and b-values were reduced by our new algorithm. A near-whole brain single-slab 3D DTI with 1.3-mm isotropic voxel acquired at 1.5T was successfully demonstrated. 3D phase correction for 3D interleaved DW-EPI data is made possible by 3D-MUSER, thereby improving feasible slab thickness and maximum feasible b-value. Magn Reson Med 79:2702-2712, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Cultural differences and process adaptation in international R&D project management

    DEFF Research Database (Denmark)

    Li, Xing; Li, J. Z.

    2009-01-01

    In the era of globalization, Western companies have started to explore China as a source of technology. Yet, Western R&D project management processes in China are frequently facing many problems. Some of the problems can be conceptualized by analyzing a number of known cultural contrasts between ...... project success. At the same time, lessons and recommendations on the adaptability to Chinese style business and management interactions will be drawn from the case study for international companies that locate R&D projects in China.......In the era of globalization, Western companies have started to explore China as a source of technology. Yet, Western R&D project management processes in China are frequently facing many problems. Some of the problems can be conceptualized by analyzing a number of known cultural contrasts between...