WorldWideScience

Sample records for underlying process physiologically

  1. What's the flux? Unraveling how CO2 fluxes from trees reflect underlying physiological processes

    Energy Technology Data Exchange (ETDEWEB)

    Trumbore, Susan E. [Max-Planck Institute for Biogeochemistry, Jena (Germany); Angert, Alon [Hebrew Univ. of Jerusalem (Israel). The Institute of Earth Sciences; Kunert, Norbert [Max-Planck Institute for Biogeochemistry, Jena (Germany); Muhr, Jan [Max-Planck Institute for Biogeochemistry, Jena (Germany); Chambers, Jeffrey Q. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Climate Sciences Dept.

    2012-12-18

    We report that the CO2 emitted from a stem is produced by physiological processes, but the challenge remains identifying what portion is produced by local tissues, which will facilitate much-needed mechanistic understanding of factors controlling autotrophic respiration.

  2. The Effect of a New Therapy for Children with Tics Targeting Underlying Cognitive, Behavioral, and Physiological Processes.

    Science.gov (United States)

    Leclerc, Julie B; O'Connor, Kieron P; J-Nolin, Gabrielle; Valois, Philippe; Lavoie, Marc E

    2016-01-01

    Tourette disorder (TD) is characterized by motor and vocal tics, and children with TD tend to present a lower quality of life than neurotypical children. This study applied a manualized treatment for childhood tics disorder, Facotik, to a consecutive case series of children aged 8-12 years. The Facotik therapy was adapted from the adult cognitive and psychophysiological program validated on a range of subtypes of tics. This approach aims to modify the cognitive-behavioral and physiological processes against which the tic occurs, rather than only addressing the tic behavior. The Facotik therapy lasted 12-14 weeks. Each week 90-min session contained 20 min of parental training. The therapy for children followed 10 stages including: awareness training; improving motor control; modifying style of planning; cognitive and behavioral restructuring; and relapse prevention. Thirteen children were recruited as consecutive referrals from the general population, and seven cases completed therapy and posttreatment measures. Overall results showed a significant decrease in symptom severity as measured by the YGTSS and the TSGS. However, there was a discrepancy between parent and child rating, with some children perceiving an increase in tics, possibly due to improvement of awareness along therapy. They were also individual changes on adaptive aspects of behavior as measured with the BASC-2, and there was variability among children. All children maintained or improved self-esteem posttreatment. The results confirm the conclusion of a previous pilot study, which contributed to the adaptation of the adult therapy. In summary, the Facotik therapy reduced tics in children. These results underline that addressing processes underlying tics may complement approaches that target tics specifically.

  3. The effect of a new therapy for children with tics targeting underlying cognitive, behavioral and physiological processes

    Directory of Open Access Journals (Sweden)

    Julie B. Leclerc

    2016-08-01

    Full Text Available Tourette disorder (TD is characterized by motor and vocal tics and children with TD tend to present a lower quality of life than neurotypical children. This study applied a manualized treatment for childhood tics disorder Facotik to a consecutive case series of children aged 8-12 years. The Facotik therapy was adapted from the adult Cognitive and Psychophysiological program validated on a range of subtypes of tics. This approach aims to modify the cognitive-behavioral and physiological processes against which the tic occurs rather than only addressing the tic behavior. The Facotik therapy lasted 12-14 weeks. Each week 90-minute session contained 20 minutes of parental training. The therapy for children followed 10 stages including: awareness training; improving motor control; modifying style of planning; cognitive and behavioral restructuring; and relapse prevention. Thirteen children were recruited as consecutive referrals from the general population and seven cases completed therapy and post-treatment measures. Overall results showed a significant decrease in symptom severity as measured by the YGTSS and the TSGS. However, there was a discrepancy between parent and child rating, with some children perceiving an increase in tics, possibly due to improvement of awareness along therapy. They were also individual changes on adaptive aspects of behavior as measured with the BASC-2, and there was variability among children. All children maintained or improved self-esteem post treatment. The results confirm the conclusion of a previous pilot study which contributed to the adaptation of the adult therapy. In summary, the Facotik therapy reduced tics in children. These results underline that addressing processes underlying tics may complement approaches which target tics specifically.

  4. Querying metabolism under different physiological constraints.

    Science.gov (United States)

    Cakmak, Ali; Ozsoyoglu, Gultekin; Hanson, Richard W

    2010-04-01

    Metabolism is a representation of the biochemical principles that govern the production, consumption, degradation, and biosynthesis of metabolites in living cells. Organisms respond to changes in their physiological conditions or environmental perturbations (i.e. constraints) via cooperative implementation of such principles. Querying inner working principles of metabolism under different constraints provides invaluable insights for both researchers and educators. In this paper, we propose a metabolism query language (MQL) and discuss its query processing. MQL enables researchers to explore the behavior of the metabolism with a wide-range of predicates including dietary and physiological condition specifications. The query results of MQL are enriched with both textual and visual representations, and its query processing is completely tailored based on the underlying metabolic principles.

  5. Physiological mechanisms underlying animal social behaviour.

    Science.gov (United States)

    Seebacher, Frank; Krause, Jens

    2017-08-19

    Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission-fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).

  6. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions

    Science.gov (United States)

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y.; Tahir, Muhammad N.; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N.; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that Se

  7. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions.

    Science.gov (United States)

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y; Tahir, Muhammad N; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize ( Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L -1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that

  8. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L. under Water Deficit Conditions

    Directory of Open Access Journals (Sweden)

    Fahim Nawaz

    2016-09-01

    Full Text Available Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium (Se supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L. under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity and water stress (60% field capacity conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing and was repeated after one week, whereas water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41% and enhanced relative water contents (30%, total chlorophyll (53%, carotenoid contents (60%, accumulation of total free amino acids (40% and activities of superoxide dismutase (53%, catalase (30%, peroxidase (27% and ascorbate peroxidase (27% with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15% and increased crude protein (47%, fibre (10%, nitrogen free extract (10% and Se content (36% but did not affect crude ash content in water stressed maize plants. We propose

  9. Physiological and proteomic evidences that domestication process differentially modulates the immune status of juvenile Eurasian perch (Perca fluviatilis) under chronic confinement stress.

    Science.gov (United States)

    Douxfils, J; Mathieu, C; Mandiki, S N M; Milla, S; Henrotte, E; Wang, N; Vandecan, M; Dieu, M; Dauchot, N; Pigneur, L-M; Li, X; Rougeot, C; Mélard, C; Silvestre, F; Van Doninck, K; Raes, M; Kestemont, P

    2011-12-01

    The current study aimed to evaluate the influence of domestication process on the stress response and subsequent immune modulation in Eurasian perch juveniles (Perca fluviatilis) submitted to chronic confinement. Briefly, F1 and F4 generations were confined into small-size tanks and sampled 7 and 55 days after stocking. Cortisol and glucose levels as well as lysozyme activity and immunoglobulin level were evaluated in the serum. Spleen Somatic Index and spleen ROS production were also measured. A proteomic analysis was performed on serum sampled on day 7. Finally, both generations were genetically characterized using a microsatellite approach. Globally, results revealed that chronic confinement did not elicit a typical stress response but resulted in a prolonged immune stimulation. Proteomic results suggested that domestication process influenced the immune status of perch submitted to chronic confinement as the F1 confined fish displayed lower abundance of C3 complement component, transferrin and Apolipoprotein E. Microsatellite data showed a strong genetic drift as well as reduced genetic diversity, allelic number and heterozygosity along with domestication process. The present work is the first to report that fish under domestication can develop an immune response, assessed by a combined approach, following recurrent challenges imposed by captive environment despite a reduced genetic variation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Pathways of the Maillard reaction under physiological conditions.

    Science.gov (United States)

    Henning, Christian; Glomb, Marcus A

    2016-08-01

    Initially investigated as a color formation process in thermally treated foods, nowadays, the relevance of the Maillard reaction in vivo is generally accepted. Many chronic and age-related diseases such as diabetes, uremia, atherosclerosis, cataractogenesis and Alzheimer's disease are associated with Maillard derived advanced glycation endproducts (AGEs) and α-dicarbonyl compounds as their most important precursors in terms of reactivity and abundance. However, the situation in vivo is very challenging, because Maillard chemistry is paralleled by enzymatic reactions which can lead to both, increases and decreases in certain AGEs. In addition, mechanistic findings established under the harsh conditions of food processing might not be valid under physiological conditions. The present review critically discusses the relevant α-dicarbonyl compounds as central intermediates of AGE formation in vivo with a special focus on fragmentation pathways leading to formation of amide-AGEs.

  11. Physiological arousal in processing recognition information

    Directory of Open Access Journals (Sweden)

    Guy Hochman

    2010-07-01

    Full Text Available The recognition heuristic (RH; Goldstein and Gigerenzer, 2002 suggests that, when applicable, probabilistic inferences are based on a noncompensatory examination of whether an object is recognized or not. The overall findings on the processes that underlie this fast and frugal heuristic are somewhat mixed, and many studies have expressed the need for considering a more compensatory integration of recognition information. Regardless of the mechanism involved, it is clear that recognition has a strong influence on choices, and this finding might be explained by the fact that recognition cues arouse affect and thus receive more attention than cognitive cues. To test this assumption, we investigated whether recognition results in a direct affective signal by measuring physiological arousal (i.e., peripheral arterial tone in the established city-size task. We found that recognition of cities does not directly result in increased physiological arousal. Moreover, the results show that physiological arousal increased with increasing inconsistency between recognition information and additional cue information. These findings support predictions derived by a compensatory Parallel Constraint Satisfaction model rather than predictions of noncompensatory models. Additional results concerning confidence ratings, response times, and choice proportions further demonstrated that recognition information and other cognitive cues are integrated in a compensatory manner.

  12. Infrasonic Stethoscope for Monitoring Physiological Processes

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor); Dimarcantonio, Albert L. (Inventor)

    2016-01-01

    An infrasonic stethoscope for monitoring physiological processes of a patient includes a microphone capable of detecting acoustic signals in the audible frequency bandwidth and in the infrasonic bandwidth (0.03 to 1000 Hertz), a body coupler attached to the body at a first opening in the microphone, a flexible tube attached to the body at a second opening in the microphone, and an earpiece attached to the flexible tube. The body coupler is capable of engagement with a patient to transmit sounds from the person, to the microphone and then to the earpiece.

  13. Earthing the Human Body Influences Physiologic Processes

    Science.gov (United States)

    Sokal, Karol

    2011-01-01

    Abstract Objectives This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments Five (5) experiments are presented: experiment 1—effect of earthing on calcium–phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2—effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3—effect of earthing on thyroid function (N = 12); experiment 4—effect of earthing on glucose concentration (N = 12); experiment 5—effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Results Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Conclusions Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium–phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems. PMID:21469913

  14. Physiology

    Science.gov (United States)

    Kay, Ian

    2008-01-01

    Underlying recent developments in health care and new treatments for disease are advances in basic medical sciences. This edition of "Webwatch" focuses on sites dealing with basic medical sciences, with particular attention given to physiology. There is a vast amount of information on the web related to physiology. The sites that are included here…

  15. Physiological and biochemical relationship under drought stress in ...

    African Journals Online (AJOL)

    Some statistical procedures like correlation, stepwise regression, factor analysis and cluster analysis were used to study the relationship between wheat grain yield and some physiological parameters under drought conditions. Results reveal that the ratio fv/fm of chlorophyll fluorescence is the most effective parameter to ...

  16. Automatic physiological waveform processing for FMRI noise correction and analysis.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    2008-03-01

    Full Text Available Functional MRI resting state and connectivity studies of brain focus on neural fluctuations at low frequencies which share power with physiological fluctuations originating from lung and heart. Due to the lack of automated software to process physiological signals collected at high magnetic fields, a gap exists in the processing pathway between the acquisition of physiological data and its use in fMRI software for both physiological noise correction and functional analyses of brain activation and connectivity. To fill this gap, we developed an open source, physiological signal processing program, called PhysioNoise, in the python language. We tested its automated processing algorithms and dynamic signal visualization on resting monkey cardiac and respiratory waveforms. PhysioNoise consistently identifies physiological fluctuations for fMRI noise correction and also generates covariates for subsequent analyses of brain activation and connectivity.

  17. Obsolescence : The underlying processes

    NARCIS (Netherlands)

    Thomsen, A.F.; Nieboer, N.E.T.; Van der Flier, C.L.

    2015-01-01

    Obsolescence, defined as the process of declining performance of buildings, is a serious threat for the value, the usefulness and the life span of housing properties. Thomsen and van der Flier (2011) developed a model in which obsolescence is categorised on the basis of two distinctions, namely

  18. Physiological and agronomical responses of Syrah grapevine under protected cultivation

    Directory of Open Access Journals (Sweden)

    Claudia Rita de Souza

    2015-01-01

    Full Text Available The performance of Syrah grapevine under protected cultivation with different plastic films was evaluated during 2012 and 2013 seasons in South of Minas Gerais State. Agronomical and physiological measurements were done on eight years old grapevines, grafted onto ‘1103 Paulsen’ rootstock cultivated under uncovered conditions, covered with transparent and with diffuse plastic films. Both plastic covers induced the highest shoot growth rate and specific leaf area. The diffuse plastic induced greater differences on leaf area, pruning weight and leaf chlorophyll content as compared to uncovered vines. Grapevines under diffuse plastic also had the lowest rates of photosynthesis, stomatal conductance and transpiration. Leaf starch, glucose and fructose contents were not affected by treatment, but leaf sucrose was reduced by transparent plastic. The leaf and stem water potential were higher under diffuse plastic. In 2013, grapevines under diffuse plastic showed the highest yields mainly due to decreased rot incidence and increased cluster weight. Furthermore, berries under diffuse plastic showed the highest anthocyanins concentration. The use of diffuse plastic induces more agronomical benefits to produce Syrah grape under protected cultivation.

  19. Gold nanoparticle interactions with endothelial cells cultured under physiological conditions.

    Science.gov (United States)

    Freese, C; Anspach, L; Deller, R C; Richards, S-J; Gibson, M I; Kirkpatrick, C J; Unger, R E

    2017-03-28

    PEGylated gold nanoparticles (AuNPs) have an extended circulation time after intravenous injection in vivo and exhibit favorable properties for biosensing, diagnostic imaging, and cancer treatment. No impact of PEGylated AuNPs on the barrier forming properties of endothelial cells (ECs) has been reported, but recent studies demonstrated that unexpected effects on erythrocytes are observed. Almost all studies to date have been with static-cultured ECs. Herein, ECs maintained under physiological cyclic stretch and flow conditions and used to generate a blood-brain barrier model were exposed to 20 nm PEGylated AuNPs. An evaluation of toxic effects, cell stress, the release profile of pro-inflammatory cytokines, and blood-brain barrier properties showed that even under physiological conditions no obvious effects of PEGylated AuNPs on ECs were observed. These findings suggest that 20 nm-sized, PEGylated AuNPs may be a useful tool for biomedical applications, as they do not affect the normal function of healthy ECs after entering the blood stream.

  20. Physiological processes related to the bee swarming

    Directory of Open Access Journals (Sweden)

    Jiří Svoboda

    2010-01-01

    Full Text Available One of the essential genetically subjected behaviours of a bee-colony is swarming. However, in the time of queen breeding and technical approach to colony division, swarming constitutes a problem in the effectiveness of controlled beekeeping and subsequently in decreasing of the attainable economic profits. The intensity of swarming is a polyfactorial phenomenon whose characteristic feature is seasonality (the availability of breed, course of weather so the swarming intensity is different in particular years. This study is connected with the research carried out at the Department of Zoo­lo­gy, Fisheries, Hydrobiology and Apiculture at Mendel University in Brno. The experiment focused on the relationship between the swarming and biological state of bee-colony was realized in three seasons of the period 2003–2005. Experimental bee-colonies were stimulated to the swarming fever by zoo-technical practices, at the same time the biological status of given bee-colony was observed. Within the process of marking of newly emerged workers there was observed their number continuously during the particular season. The samples of 3- and 4-week-old workers were instrumental to the analysis of the development of their hypopharyngeal glands. The study has proved that a bee-colonies building higher number of queen cells are likely expected to be in swarming fever, b 3-week-old workers have hypopharyngeal glands in higher stage of development than 4-week-old workers, c higher stage of swarming fever is closely correlated with higher stage of de­ve­lop­ment of hypopharyngeal glands. These facts can contribute to the comprehension of the reason and relationships of the swarming.

  1. Component processes underlying future thinking.

    Science.gov (United States)

    D'Argembeau, Arnaud; Ortoleva, Claudia; Jumentier, Sabrina; Van der Linden, Martial

    2010-09-01

    This study sought to investigate the component processes underlying the ability to imagine future events, using an individual-differences approach. Participants completed several tasks assessing different aspects of future thinking (i.e., fluency, specificity, amount of episodic details, phenomenology) and were also assessed with tasks and questionnaires measuring various component processes that have been hypothesized to support future thinking (i.e., executive processes, visual-spatial processing, relational memory processing, self-consciousness, and time perspective). The main results showed that executive processes were correlated with various measures of future thinking, whereas visual-spatial processing abilities and time perspective were specifically related to the number of sensory descriptions reported when specific future events were imagined. Furthermore, individual differences in self-consciousness predicted the subjective feeling of experiencing the imagined future events. These results suggest that future thinking involves a collection of processes that are related to different facets of future-event representation.

  2. Extracting vascular networks under physiological constraints via integer programming.

    Science.gov (United States)

    Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D; Xiao, Xianghui; Stock, Stuart R; Klohs, Jan; Székely, Gábor; Andres, Bjoern; Menze, Bjoern H

    2014-01-01

    We introduce an integer programming-based approach to vessel network extraction that enforces global physiological constraints on the vessel structure and learn this prior from a high-resolution reference network. The method accounts for both image evidence and geometric relationships between vessels by formulating and solving an integer programming problem. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating bifurcation angle and connectivity of the graph. We utilize a high-resolution micro computed tomography (μCT) dataset of a cerebrovascular corrosion cast to obtain a reference network, perform experiments on micro magnetic resonance angiography (μMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.

  3. Reconstructing cerebrovascular networks under local physiological constraints by integer programming.

    Science.gov (United States)

    Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D; Xiao, Xianghui; Stock, Stuart R; Klohs, Jan; Székely, Gábor; Andres, Bjoern; Menze, Bjoern H

    2015-10-01

    We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to a probabilistic model. Starting from an overconnected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (μCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of our probabilistic model and we perform experiments on in-vivo magnetic resonance microangiography (μMRA) images of mouse brains. We finally discuss properties of the networks obtained under different tracking and pruning approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Trypanosoma cruzi tryparedoxin II interacts with different peroxiredoxins under physiological and oxidative stress conditions.

    Science.gov (United States)

    Dias, L; Peloso, E F; Leme, A F P; Carnielli, C M; Pereira, C N; Werneck, C C; Guerrero, S; Gadelha, F R

    2018-01-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, has to cope with reactive oxygen and nitrogen species during its life cycle in order to ensure its survival and infection. The parasite detoxifies these species through a series of pathways centered on trypanothione that depend on glutathione or low molecular mass dithiol proteins such as tryparedoxins. These proteins transfer reducing equivalents to peroxidases, including mitochondrial and cytosolic peroxiredoxins, TcMPx and TcCPx, respectively. In T. cruzi two tryparedoxins have been identified, TXNI and TXNII with different intracellular locations. TXNI is a cytosolic protein while TXNII due to a C-terminal hydrophobic tail is anchored in the outer membrane of the mitochondrion, endoplasmic reticulum and glycosomes. TXNs have been suggested to be involved in a majority of biological processes ranging from redox mechanisms to protein translation. Herein, a comparison of the TXNII interactomes under physiological and oxidative stress conditions was examined. Under physiological conditions, apart from the proteins with unknown biological process annotation, the majority of the identified proteins are related to cell redox homeostasis and biosynthetic processes, while under oxidative stress conditions, are involved in stress response, cell redox homeostasis, arginine biosynthesis and microtubule based process. Interestingly, although TXNII interacts with both peroxiredoxins under physiological conditions, upon oxidative stress, TcMPx interaction prevails. The relevance of the interactions is discussed opening a new perspective of TXNII functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Physiological and molecular changes in barley and wheat under salinity.

    Science.gov (United States)

    Temel, Aslihan; Gozukirmizi, Nermin

    2015-03-01

    In this study, it was aimed to compare salinity-induced changes in barley (Hordeum vulgare L. cv. Bornova-92) and bread wheat (Triticum aestivum L. cv. Gerek-79). Seeds were germinated under saline conditions (0, 50, 100, 250, and 500 mM NaCl) for 2 days and recovered under non-saline conditions for 2 days. At the end of the salt treatment, germination, water content (WC), total soluble protein content, and catalase (CAT, EC 1.11.1.6) activity were affected in both species, while superoxide dismutase (SOD, EC 1.15.1.1) activity was affected in barley. Salinity affected WC, protein content, and CAT activity in both species, while it affected germination in barley and affected fresh weight and SOD activity in wheat after recovery. Physiological responses of both species were correlated. Expression of α-tubulin, Atls1, and Lls1 genes was down-regulated in barley after 250 mM NaCl treatment. HVA1 gene was highly (more than 50-fold) stimulated by salinity in barley. However, α-tubulin and Atls1 genes were down-regulated, and Lls1 gene was up-regulated in wheat after recovery from 250-mM NaCl treatment. Increase in HVA1 expression was not significant in wheat. The expression profiles of barley and wheat under salinity are different, and barley tended to regulate gene expression faster than wheat.

  6. Physiological reaction of men under excercise to radiant heat.

    Science.gov (United States)

    Furuya, T; Kubota, T

    1975-03-01

    To investigate the effect of the radiant heat on the human body in a hot environment, the subjects exposed their nude back to a radiant heat of 1.3 and 2.6 cal/cm-2. min, using the exsiccating infrared illuminators under a hot ambient condition of a temperature 31 degrees C, with a relative humidity of 55% and a 0.5 m/sec air flow. The 8 subjects were healthy male college students aged 20 to 25. The following results were obtained by estimating the physiological reactions to different degrees of radiant heat at rest for 60 minutes and during exercise for 30 minutes on a bicycle ergometer by 272 kg. m/min (or 600 kp. m/min). 1) The mean skin temperature, heart rate, respiration rate and body weight loss rate increased at rest in parallel with the degree of the radiant heat, and during exercise the mean skin temperature, heart rate, respiration rate, body weight loss rate and respiratory volume increased, but the NA+ LOSS RATE DECREASED. The regression equation was obtained to show the quantitative relationship between the degree of the radiant heat and the physiological body reactions. 2) By computing the Heat Tolerance Index by Inoue et al., it was clarified that the higher the degree of the radiant heat was, the smaller was the index. And as there was a close correlation between the indices both at rest and during exercise, it was suggested that for the evaluation of heat tolerance, the radiant heat by the infrared illuminators is applicable as additional heat loading besides hot water bathing or staying in a hot chamber.

  7. The Physiology of Exercise and the Process of Aging.

    Science.gov (United States)

    Mravetz, Patricia

    A physical fitness plan is considered desirable for young people, young adults, and especially older adults. This program for secondary level students focuses on the physiology of exercise and the process of aging, and stresses the need for physical fitness. Specific objectives include the following: (1) to let students become evaluators of their…

  8. Genomic and physiological perspectives on bioremediation processes at the FRC

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Erick; Leigh, Mary Beth; Hemme, Christopher; Gentry, Terry; Harzman, Christina; Wu, Weimin; Criddle, Craig S.; Zhou, Jizhong; Marsh, Terence; Tiedje, James M.

    2006-04-05

    A suite of molecular and physiological studies, including metal reduction assays, metagenomics, functional gene microarrays and community sequence analyses were applied to investigate organisms involved in bioremediation processes at the ERSP Field Research Center and to understand the effects of stress on the makeup and evolution of microbial communities to inform effective remediation strategies.

  9. The development of contour processing: evidence from physiology and psychophysics

    Science.gov (United States)

    Taylor, Gemma; Hipp, Daniel; Moser, Alecia; Dickerson, Kelly; Gerhardstein, Peter

    2014-01-01

    Object perception and pattern vision depend fundamentally upon the extraction of contours from the visual environment. In adulthood, contour or edge-level processing is supported by the Gestalt heuristics of proximity, collinearity, and closure. Less is known, however, about the developmental trajectory of contour detection and contour integration. Within the physiology of the visual system, long-range horizontal connections in V1 and V2 are the likely candidates for implementing these heuristics. While post-mortem anatomical studies of human infants suggest that horizontal interconnections reach maturity by the second year of life, psychophysical research with infants and children suggests a considerably more protracted development. In the present review, data from infancy to adulthood will be discussed in order to track the development of contour detection and integration. The goal of this review is thus to integrate the development of contour detection and integration with research regarding the development of underlying neural circuitry. We conclude that the ontogeny of this system is best characterized as a developmentally extended period of associative acquisition whereby horizontal connectivity becomes functional over longer and longer distances, thus becoming able to effectively integrate over greater spans of visual space. PMID:25071681

  10. The Development of Contour Processing: Evidence from Physiology and Psychophysics

    Directory of Open Access Journals (Sweden)

    Gemma eTaylor

    2014-07-01

    Full Text Available Object perception and pattern vision depend fundamentally upon the extraction of contours from the visual environment. In adulthood, contour or edge-level processing is supported by the Gestalt heuristics of proximity, collinearity and closure. Less is known, however, about the developmental trajectory of contour detection and contour integration. Within the physiology of the visual system, long-range horizontal connections in V1 and V2 are the likely candidates for implementing these heuristics. While post-mortem anatomical studies of human infants suggest that horizontal interconnections reach maturity by the second year of life, psychophysical research with infants and children suggests a considerably more protracted development. In the present review, data from infancy to adulthood will be discussed in order to track the development of contour detection and integration. The goal of this review is thus to integrate the development of contour detection and integration with research regarding the development of underlying neural circuitry. We conclude that the ontogeny of this system is best characterized as a developmentally extended period of associative acquisition whereby horizontal connectivity becomes functional over longer and longer distances, thus becoming able to effectively integrate over greater spans of visual space.

  11. Gonadotropins studies in female egyptian subjects under different physiological conditions

    International Nuclear Information System (INIS)

    El-Nabarawy, F.S.; Megahed, Y.M.; Ibrahim, M.

    2002-01-01

    This study is concerned with the role of the hypothalamic hypophyseal regulatory hormonal mechanisms in the control of gonadal secretions in a selected normal egyptian female subjects with varying ages under different physiological conditions. The study allowed precise definition of the modulator influence of a number of key factors triggering appropriate alteration in circulating serum levels of FSH and LH determined by IRMA technique in pre-pubertal female children (9-11), post-pubertal adolescents females (13-16). Adult married females (27-33) and post-menopausal (58-63). The levels of FSH and LH were increased markedly with age but children less than 11 years old had only nocturnal increase in levels of FSH (p.O.I) and LH(P< 0.001). post-pubertal aged girls had significant nocturnal elevation only of LH levels (P< 0.001), adult married females did not exhibit significant difference in gonadotropin concentrations. whereas significant elevation in FSH and LH levels (P<0.001) in post-menopausal females were observed

  12. Methods and systems for the processing of physiological signals

    International Nuclear Information System (INIS)

    Cosnac, B. de; Gariod, R.; Max, J.; Monge, V.

    1975-01-01

    This note is a general survey of the processing of physiological signals. After an introduction about electrodes and their limitations, the physiological nature of the main signals are shortly recalled. Different methods (signal averaging, spectral analysis, shape morphological analysis) are described as applications to the fields of magnetocardiography, electro-encephalography, cardiography, electronystagmography. As for processing means (single portable instruments and programmable), they are described through the example of application to rheography and to the Plurimat'S general system. As a conclusion the methods of signal processing are dominated by the morphological analysis of curves and by the necessity of a more important introduction of the statistical classification. As for the instruments, microprocessors will appear but specific operators linked to computer will certainly grow [fr

  13. Acquisition technology research of EEG and related physiological signals under +Gz acceleration.

    Science.gov (United States)

    Li, Y; Zhang, T; Deng, L; Wang, B

    2014-06-01

    With the continuous improvement of maneuvering performance of modern high-performance aircraft, the protection problem of flight personnel under high G acceleration, the development as well as research on monitoring system and the equipment for human physiological signals processing which include electroencephalogram (EEG) have become more and more important. Due to the particularity of +Gz experimental conditions, the high-risk of human experiments and the great difficulty of dynamic measurement, there is little research on the synchronous acquisition technology of EEG and related physiological signals under +Gz acceleration environment. We propose a framework to execute human experiments using the three-axial high-performance human centrifuge, develop reasonable operation mode and design a new experimental research method for EEG signal acquisition and variation characteristics on three-axial high-performance human centrifuge under the environment of +Gz acceleration. We also propose to build the synchronous real-time acquisition plan of EEG, electrocardiogram, brain blood pressure, ear pulse and related physiological signals under centrifuge +Gz acceleration with different equipments and methods. The good profiles of EEG, heart rate, brain blood pressure and ear pulse are obtained and analyzed comparatively. In addition, the FMS hop-by-hop continuous blood pressure and hemodynamic measurement system Portapres are successfully applied to the ambulatory blood pressure measure under centrifuge +Gz acceleration environment. The proposed methods establish the basis and have an important guiding significance for follow-up experiment development, EEG features spectral analysis and correlation research of all signals.

  14. Genetic and physiological controls of growth under water deficit.

    Science.gov (United States)

    Tardieu, François; Parent, Boris; Caldeira, Cecilio F; Welcker, Claude

    2014-04-01

    The sensitivity of expansive growth to water deficit has a large genetic variability, which is higher than that of photosynthesis. It is observed in several species, with some genotypes stopping growth in a relatively wet soil, whereas others continue growing until the lower limit of soil-available water. The responses of growth to soil water deficit and evaporative demand share an appreciable part of their genetic control through the colocation of quantitative trait loci as do the responses of the growth of different organs to water deficit. This result may be caused by common mechanisms of action discussed in this paper (particularly, plant hydraulic properties). We propose that expansive growth, putatively linked to hydraulic processes, determines the sink strength under water deficit, whereas photosynthesis determines source strength. These findings have large consequences for plant modeling under water deficit and for the design of breeding programs.

  15. Changes in physiological and some nutritional, nutraceuticals, chemical-physical, microbiological and sensory quality of minimally processed cactus pears cvs 'Bianca', 'Gialla' and 'Rossa' stored under passive modified atmosphere.

    Science.gov (United States)

    Palma, Amedeo; Continella, Alberto; La Malfa, Stefano; D'Aquino, Salvatore

    2018-03-01

    The objective of this study was to compare the overall quality changes of minimally processed cactus pears cvs 'Bianca', Gialla' and 'Rossa' stored at 4 °C for 10 days. Periodically in-package CO 2 , O 2 and C 2 H 4 were determined and fruit were assessed for overall quality changes (pH, acidity, sugars, phenolics, betacyanins and betaxanthines, antioxidant capacity, colour, firmness, microbiological population and sensory attributes). In a preliminary study three different polymeric films were tested to select the most suitable to design a package with a short lag time to achieve steady-state conditions. Results showed marked differences between measured in-package CO 2 and O 2 values and those calculated based on respiration of peeled fruit and film permeance to CO 2 and O 2 provided by manufactures. The sensory evaluation of packed fruit indicated in film BBT-Bolphane, which created a steady-state in-package partial pressure for CO 2 of 4.3-4.8 kPa and for O 2 of 4.8-5.5 kPa, as the best film. Results of in-package gas composition with the three cultivars were similar to those achieved in cv. 'Gialla' with the preliminary test. All measured qualitative parameters changed slightly over the storage period for all cultivars and followed the same trend, despite significant differences existing among cultivars. This study clearly showed a similar physiological behavior of minimally processed 'Bianca', 'Gialla' and 'Rossa' cactus pears. Storage conditions optimal for one cultivar fit well for the others; thus mixing fruit of different cultivars in a package designed for one specific cultivar does not lead to relevant deviation from expected results. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Physiological and biochemical relationship under drought stress in ...

    African Journals Online (AJOL)

    Yomi

    2012-01-24

    Jan 24, 2012 ... drought stress in wheat (Triticum aestivum) ... were used to study the relationship between wheat grain yield and some physiological parameters ..... Carves BF, Smith EL, England HO (1987). Regression and cluster analysis of environmental responses of hybrid and pure line winter wheat cultivars.

  17. Population dynamics can be more important than physiological limits for determining range shifts under climate change.

    Science.gov (United States)

    Fordham, Damien A; Mellin, Camille; Russell, Bayden D; Akçakaya, Reşit H; Bradshaw, Corey J A; Aiello-Lammens, Matthew E; Caley, Julian M; Connell, Sean D; Mayfield, Stephen; Shepherd, Scoresby A; Brook, Barry W

    2013-10-01

    Evidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal-limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate-related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated by ENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate-dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction in AOO. The strongly non-linear relationship between abalone population size and AOO has important ramifications for the use of ENM predictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source-sink dynamics and dispersal-limitation. © 2013 John Wiley & Sons Ltd.

  18. Developing Physiologic Models for Emergency Medical Procedures Under Microgravity

    Science.gov (United States)

    Parker, Nigel; O'Quinn, Veronica

    2012-01-01

    Several technological enhancements have been made to METI's commercial Emergency Care Simulator (ECS) with regard to how microgravity affects human physiology. The ECS uses both a software-only lung simulation, and an integrated mannequin lung that uses a physical lung bag for creating chest excursions, and a digital simulation of lung mechanics and gas exchange. METI s patient simulators incorporate models of human physiology that simulate lung and chest wall mechanics, as well as pulmonary gas exchange. Microgravity affects how O2 and CO2 are exchanged in the lungs. Procedures were also developed to take into affect the Glasgow Coma Scale for determining levels of consciousness by varying the ECS eye-blinking function to partially indicate the level of consciousness of the patient. In addition, the ECS was modified to provide various levels of pulses from weak and thready to hyper-dynamic to assist in assessing patient conditions from the femoral, carotid, brachial, and pedal pulse locations.

  19. Urban plant physiology: adaptation-mitigation strategies under permanent stress.

    Science.gov (United States)

    Calfapietra, Carlo; Peñuelas, Josep; Niinemets, Ülo

    2015-02-01

    Urban environments that are stressful for plant function and growth will become increasingly widespread in future. In this opinion article, we define the concept of 'urban plant physiology', which focuses on plant responses and long term adaptations to urban conditions and on the capacity of urban vegetation to mitigate environmental hazards in urbanized settings such as air and soil pollution. Use of appropriate control treatments would allow for studies in urban environments to be comparable to expensive manipulative experiments. In this opinion article, we propose to couple two approaches, based either on environmental gradients or manipulated gradients, to develop the concept of urban plant physiology for assessing how single or multiple environmental factors affect the key environmental services provided by urban forests. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. On the Determination of Magnesium Degradation Rates under Physiological Conditions

    OpenAIRE

    Nidadavolu, Eshwara Phani Shubhakar; Feyerabend, Frank; Ebel, Thomas; Willumeit-R?mer, Regine; Dahms, Michael

    2016-01-01

    The current physiological in vitro tests of Mg degradation follow the procedure stated according to the ASTM standard. This standard, although useful in predicting the initial degradation behavior of an alloy, has its limitations in interpreting the same for longer periods of immersion in cell culture media. This is an important consequence as the alloy?s degradation is time dependent. Even if two different alloys show similar corrosion rates in a short term experiment, their degradation char...

  1. Physiological basis of barley yield under near optimal and stress conditions

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2004-01-01

    Full Text Available Average barley yield fall below its potential due to incidence of stresses. Water stress is the main environmental factor limiting yield. The component a priori more sensitive to most stresses is the amount of radiation absorbed. The effect of stresses influence on the total amount of radiation absorbed by barley crop during its vegetation and the photosynthetic efficiency of radiation conversion. Growth inhibition is accompanied by reductions in leaf and cell wall extensibility. Grain yield under drought conditions is source limited. Supply of assimilates to the developing inflorescence plays a critical role in establishing final grain number and grain size. Grain weight is negatively affected by drought, high temperature, and any other factors that may reduce grain filling duration and grain filling rate. Awns and glaucousness confer better performance of barley under drought stress conditions. Barley responds with an increased accumulation of a number of proteins when subjected to different stress inducing cell dehydration. Screening techniques that are able to identify desirable genotypes based on the evaluation of physiological traits related to stress evasion and stress resistance maybe useful in breeding barley for resistance to stress, particularly drought stress. Crop management and breeding can reduce the incidence of stress on yield. The effect of these practices is sustained by an understanding of their physiology. In this paper the physiological basis of the processes determining barley yield and the incidence of stresses on photosynthetic metabolism that determine grain yield of barley is discussed. .

  2. Glomerular filtration into the subpodocyte space is highly restricted under physiological perfusion conditions.

    Science.gov (United States)

    Neal, Christopher R; Muston, P Robert; Njegovan, David; Verrill, Rebecca; Harper, Steven J; Deen, William M; Bates, David O

    2007-12-01

    Production of urine is initiated by fluid and solute flux across the glomerular filtration barrier. Recent ultrastructural studies have shown that under extreme conditions of no filtration, or very high filtration, a restriction to flow is predicted in a space underneath the podocyte cell body or its processes, the subpodocyte space (SPS). The SPS covered up to two-thirds of the glomerular filtration barrier (GFB) surface. The magnitude of this restriction to flow suggested that it might be unlikely that filtration into and flow through the SPS would contribute significantly to total flow across the entire GFB under these conditions. To determine whether the SPS has similar properties under normal physiological conditions, we have carried out further three-dimensional reconstruction of rat glomeruli perfused at physiologically normal hydrostatic and colloid osmotic pressures. These reconstructions show that the sub-podocyte space is even more restricted under these conditions, with a mean height of the SPS of 0.34 microm, mean pathlength of 6.7 +/- 1.4 mum, a mean width of the SPS exit pore of 0.15 +/- 0.05 microm, and length of 0.25 +/- 0.05 microm. Mathematical modeling of this SPS based on a circular flow model predicts that the resistance of these dimensions is 2.47 times that of the glomerular filtration barrier and exquisitely sensitive to changes in the dimensions of the SPS exit pore (SEP), indicating that the SEP could be the principal regulator of the extravascular pressure in the SPS. This suggests a physiological role of the podocyte in the regulation of glomerular fluid flux across most of the GFB.

  3. Transcriptional coordination of physiological responses in Nannochloropsis oceanica CCMP1779 under light/dark cycles.

    Science.gov (United States)

    Poliner, Eric; Panchy, Nicholas; Newton, Linsey; Wu, Guangxi; Lapinsky, Andrew; Bullard, Blair; Zienkiewicz, Agnieszka; Benning, Christoph; Shiu, Shin-Han; Farré, Eva M

    2015-09-01

    Nannochloropsis oceanica CCMP1779 is a marine unicellular stramenopile and an emerging reference species for basic research on oleogenic microalgae with biotechnological relevance. We investigated its physiology and transcriptome under light/dark cycles. We observed oscillations in lipid content and a predominance of cell division in the first half of the dark phase. Globally, more than 60% of the genes cycled in N. oceanica CCMP1779, with gene expression peaking at different times of the day. Interestingly, the phase of expression of genes involved in certain biological processes was conserved across photosynthetic lineages. Furthermore, in agreement with our physiological studies we found the processes of lipid metabolism and cell division enriched in cycling genes. For example, there was tight coordination of genes involved in the lower part of glycolysis, fatty acid synthesis and lipid production at dawn preceding lipid accumulation during the day. Our results suggest that diel lipid storage plays a key role for N. oceanica CCMP1779 growth under natural conditions making this alga a promising model to gain a basic mechanistic understanding of triacylglycerol production in photosynthetic cells. Our data will help the formulation of new hypotheses on the role of cyclic gene expression in cell growth and metabolism in Nannochloropsis. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  4. Exertional rhabdomyolysis: physiological response or manifestation of an underlying myopathy?

    NARCIS (Netherlands)

    Scalco, R.S.; Snoeck, M.; Quinlivan, R.; Treves, S.; Laforet, P.; Jungbluth, H.; Voermans, N.C.

    2016-01-01

    Exertional rhabdomyolysis is characterised by muscle breakdown associated with strenuous exercise or normal exercise under extreme circumstances. Key features are severe muscle pain and sudden transient elevation of serum creatine kinase (CK) levels with or without associated myoglobinuria. Mild

  5. Influence of polyphenols on the physiological processes in the skin.

    Science.gov (United States)

    Ratz-Łyko, Anna; Arct, Jacek; Majewski, Sławomir; Pytkowska, Katarzyna

    2015-04-01

    In the last decade antioxidants from a group of polyphenols have been proposed as one of the most effective functional ingredients of anti-ageing properties that counteract the effects of oxidative damage to the skin. It has been shown that the use of polyphenols affects skin protection and mitigates inflammatory conditions of the skin. Numerous studies have confirmed that polyphenols by neutralizing free radicals, antioxidant activity and by their ability to chelate ions of transition metals can effectively reduce the level of nonprotein inflammatory mediators. The biological activity of polyphenols in the skin is primarily determined by their physicochemical properties and the ability to overcome the epidermal barrier as they try to reach appropriate receptors. This study reviews literature on the effects of polyphenols relating to the physiological processes in the skin and role of the major plant polyphenols in cosmetology and dermatology. Copyright © 2015 John Wiley & Sons, Ltd.

  6. On the Determination of Magnesium Degradation Rates under Physiological Conditions.

    Science.gov (United States)

    Nidadavolu, Eshwara Phani Shubhakar; Feyerabend, Frank; Ebel, Thomas; Willumeit-Römer, Regine; Dahms, Michael

    2016-07-28

    The current physiological in vitro tests of Mg degradation follow the procedure stated according to the ASTM standard. This standard, although useful in predicting the initial degradation behavior of an alloy, has its limitations in interpreting the same for longer periods of immersion in cell culture media. This is an important consequence as the alloy's degradation is time dependent. Even if two different alloys show similar corrosion rates in a short term experiment, their degradation characteristics might differ with increased immersion times. Furthermore, studies concerning Mg corrosion extrapolate the corrosion rate from a single time point measurement to the order of a year (mm/y), which might not be appropriate because of time dependent degradation behavior. In this work, the above issues are addressed and a new methodology of performing long-term immersion tests in determining the degradation rates of Mg alloys was put forth. For this purpose, cast and extruded Mg-2Ag and powder pressed and sintered Mg-0.3Ca alloy systems were chosen. DMEM Glutamax +10% FBS (Fetal Bovine Serum) +1% Penicillin streptomycin was used as cell culture medium. The advantages of such a method in predicting the degradation rates in vivo deduced from in vitro experiments are discussed.

  7. Human thermal physiological and psychological responses under different heating environments.

    Science.gov (United States)

    Wang, Zhaojun; Ning, Haoran; Ji, Yuchen; Hou, Juan; He, Yanan

    2015-08-01

    Anecdotal evidence suggests that many residents of severely cold areas of China who use floor heating (FH) systems feel warmer but drier compared to those using radiant heating (RH) systems. However, this phenomenon has not been verified experimentally. In order to validate the empirical hypothesis, and research the differences of human physiological and psychological responses in these two asymmetrical heating environments, an experiment was designed to mimic FH and RH systems. The subjects participating in the experiment were volunteer college-students. During the experiment, the indoor air temperature, air speed, relative humidity, globe temperature, and inner surface temperatures were measured, and subjects' heart rate, blood pressure and skin temperatures were recorded. The subjects were required to fill in questionnaires about their thermal responses during testing. The results showed that the subjects' skin temperatures, heart rate and blood pressure were significantly affected by the type of heating environment. Ankle temperature had greatest impact on overall thermal comfort relative to other body parts, and a slightly cool FH condition was the most pleasurable environment for sedentary subjects. The overall thermal sensation, comfort and acceptability of FH were higher than that of RH. However, the subjects of FH felt drier than that of RH, although the relative humidity in FH environments was higher than that of the RH environment. In future environmental design, the thermal comfort of the ankles should be scrutinized, and a FH cool condition is recommended as the most comfortable thermal environment for office workers. Consequently, large amounts of heating energy could be saved in this area in the winter. The results of this study may lead to more efficient energy use for office or home heating systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Exertional rhabdomyolysis: physiological response or manifestation of an underlying myopathy?

    Science.gov (United States)

    Scalco, Renata S; Snoeck, Marc; Quinlivan, Ros; Treves, Susan; Laforét, Pascal; Jungbluth, Heinz; Voermans, Nicol C

    2016-01-01

    Exertional rhabdomyolysis is characterised by muscle breakdown associated with strenuous exercise or normal exercise under extreme circumstances. Key features are severe muscle pain and sudden transient elevation of serum creatine kinase (CK) levels with or without associated myoglobinuria. Mild cases may remain unnoticed or undiagnosed. Exertional rhabdomyolysis is well described among athletes and military personnel, but may occur in anybody exposed to unaccustomed exercise. In contrast, exertional rhabdomyolysis may be the first manifestation of a genetic muscle disease that lowers the exercise threshold for developing muscle breakdown. Repeated episodes of exertional rhabdomyolysis should raise the suspicion of such an underlying disorder, in particular in individuals in whom the severity of the rhabdomyolysis episodes exceeds the expected response to the exercise performed. The present review aims to provide a practical guideline for the acute management and postepisode counselling of patients with exertional rhabdomyolysis, with a particular emphasis on when to suspect an underlying genetic disorder. The pathophysiology and its clinical features are reviewed, emphasising four main stepwise approaches: (1) the clinical significance of an acute episode, (2) risks of renal impairment, (3) clinical indicators of an underlying genetic disorders and (4) when and how to recommence sport activity following an acute episode of rhabdomyolysis. Genetic backgrounds that appear to be associated with both enhanced athletic performance and increased rhabdomyolysis risk are briefly reviewed. PMID:27900193

  9. Simulated firefighting task performance and physiology under very hot conditions

    Directory of Open Access Journals (Sweden)

    Brianna eLarsen

    2015-11-01

    Full Text Available Purpose: To assess the impact of very hot (45°C conditions on the performance of, and physiological responses to, a simulated firefighting manual-handling task compared to the same work in a temperate environment (18°C.Methods: 10 male volunteer firefighters performed a 3-hour protocol in both 18°C (CON and 45°C (VH. Participants intermittently performed 12 × 1-minute bouts of raking, 6 × 8-minute bouts of low-intensity stepping, and 6 × 20-minute rest periods. The area cleared during the raking task determined work performance. Core temperature, skin temperature, and heart rate were measured continuously. Participants also periodically rated their perceived exertion (RPE and thermal sensation. Firefighters consumed water ad libitum. Urine specific gravity and changes in body mass determined hydration status.Results: Firefighters raked 19% less debris during the VH condition. Core and skin temperature were 0.99 ± 0.20°C and 5.45 ± 0.53°C higher, respectively, during the VH trial, and heart rate was 14-36 beats.min-1 higher in the VH trial. Firefighters consumed 2950 ± 1034 mL of water in the VH condition, compared to 1290 ± 525 in the CON trial. Sweat losses were higher in the VH (1886 ± 474 mL compared to the CON trial (462 ± 392 mL, though both groups were hydrated upon protocol completion (USG < 1.020. Participants’ average RPE was higher in the VH (15.6 ± 0.9 compared to the CON trial (12.6 ± 0.9. Similarly, the firefighers' thermal sensation scores were significantly higher in the VH (6.4 ± 0.5 compared to the CON trial (4.4 ± 0.4.Conclusions: Despite the decreased work output and aggressive fluid replacement observed in the VH trial, firefighters’ experienced increases in thermal stress and exertion. Fire agencies should prioritise the health and safety of fire personnel in very hot temperatures, and consider the impact of reduced productivity on fire suppression efforts.

  10. Physiology and endocrine changes underlying human lactogenesis II.

    Science.gov (United States)

    Neville, M C; Morton, J

    2001-11-01

    Lactogenesis stage II, the onset of copious milk secretion, takes place during the first 4 d postpartum in women and involves a carefully programmed set of changes in milk composition and volume. The evidence is summarized that progesterone withdrawal at parturition provides the trigger for lactogenesis in the presence of high plasma concentrations of prolactin and adequate plasma concentrations of cortisol. Although the process is generally robust, delayed lactogenesis does occur with stressful deliveries and in poorly controlled diabetes. Failure of early removal of colostrum from the breast is associated with high milk sodium and poor prognosis for successful lactation in many women. We speculate that this problem may result from accumulation of a substance in the mammary alveolus that inhibits lactogenesis, even in the face of appropriate hormonal changes after parturition.

  11. Synchronized mammalian cell culture: part I--a physical strategy for synchronized cultivation under physiological conditions.

    Science.gov (United States)

    Barradas, Oscar Platas; Jandt, Uwe; Becker, Max; Bahnemann, Janina; Pörtner, Ralf; Zeng, An-Ping

    2015-01-01

    Conventional analysis and optimization procedures of mammalian cell culture processes mostly treat the culture as a homogeneous population. Hence, the focus is on cell physiology and metabolism, cell line development, and process control strategy. Impact on cultivations caused by potential variations in cellular properties between different subpopulations, however, has not yet been evaluated systematically. One main cause for the formation of such subpopulations is the progress of all cells through the cell cycle. The interaction of potential cell cycle specific variations in the cell behavior with large-scale process conditions can be optimally determined by means of (partially) synchronized cultivations, with subsequent population resolved model analysis. Therefore, it is desirable to synchronize a culture with minimal perturbation, which is possible with different yield and quality using physical selection methods, but not with frequently used chemical or whole-culture methods. Conventional nonsynchronizing methods with subsequent cell-specific, for example, flow cytometric analysis, can only resolve cell-limited effects of the cell cycle. In this work, we demonstrate countercurrent-flow centrifugal elutriation as a useful physical method to enrich mammalian cell populations within different phases of a cell cycle, which can be further cultivated for synchronized growth in bioreactors under physiological conditions. The presented combined approach contrasts with other physical selection methods especially with respect to the achievable yield, which makes it suitable for bioreactor scale cultivations. As shown with two industrial cell lines (CHO-K1 and human AGE1.HN), synchronous inocula can be obtained with overall synchrony degrees of up to 82% in the G1 phase, 53% in the S phase and 60% in the G2/M phase, with enrichment factors (Ysync) of 1.71, 1.79, and 4.24 respectively. Cells are able to grow with synchrony in bioreactors over several cell cycles. This

  12. Cryoelectrolysis—electrolytic processes in a frozen physiological saline medium

    Directory of Open Access Journals (Sweden)

    Franco Lugnani

    2017-01-01

    Full Text Available Background Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the ablation techniques of electrolytic ablation with cryosurgery. The goal of this study is to examine the hypothesis that electrolysis can take place in a frozen aqueous saline solution. Method To examine the hypothesis we performed a cryoelectrolytic ablation protocol in which electrolysis and cryosurgery are delivered simultaneously in a tissue simulant made of physiological saline gel with a pH dye. We measured current flow, voltage and extents of freezing and pH dye staining. Results Using optical measurements and measurements of currents, we have shown that electrolysis can occur in frozen physiological saline, at high subzero freezing temperatures, above the eutectic temperature of the frozen salt solution. It was observed that electrolysis occurs when the tissue resides at high subzero temperatures during the freezing stage and essentially throughout the entire thawing stage. We also found that during thawing, the frozen lesion temperature raises rapidly to high subfreezing values and remains at those values throughout the thawing stage. Substantial electrolysis occurs during the thawing stage. Another interesting finding is that electro-osmotic flows affect the process of cryoelectrolysis at the anode and cathode, in different ways. Discussion The results showing that electrical current flow and electrolysis occur in frozen saline solutions imply a mechanism involving ionic movement in the fluid concentrated saline solution channels between ice crystals, at high subfreezing temperatures. Temperatures higher than the eutectic are required for the brine to be fluid. The particular pattern of temperature and electrical currents during the thawing stage of frozen tissue, can be explained by the large amounts of energy that must be removed at the outer edge of the frozen lesion because of the solid/liquid phase transformation on that

  13. Detection of a novel, integrative aging process suggests complex physiological integration.

    Science.gov (United States)

    Cohen, Alan A; Milot, Emmanuel; Li, Qing; Bergeron, Patrick; Poirier, Roxane; Dusseault-Bélanger, Francis; Fülöp, Tamàs; Leroux, Maxime; Legault, Véronique; Metter, E Jeffrey; Fried, Linda P; Ferrucci, Luigi

    2015-01-01

    Many studies of aging examine biomarkers one at a time, but complex systems theory and network theory suggest that interpretations of individual markers may be context-dependent. Here, we attempted to detect underlying processes governing the levels of many biomarkers simultaneously by applying principal components analysis to 43 common clinical biomarkers measured longitudinally in 3694 humans from three longitudinal cohort studies on two continents (Women's Health and Aging I & II, InCHIANTI, and the Baltimore Longitudinal Study on Aging). The first axis was associated with anemia, inflammation, and low levels of calcium and albumin. The axis structure was precisely reproduced in all three populations and in all demographic sub-populations (by sex, race, etc.); we call the process represented by the axis "integrated albunemia." Integrated albunemia increases and accelerates with age in all populations, and predicts mortality and frailty--but not chronic disease--even after controlling for age. This suggests a role in the aging process, though causality is not yet clear. Integrated albunemia behaves more stably across populations than its component biomarkers, and thus appears to represent a higher-order physiological process emerging from the structure of underlying regulatory networks. If this is correct, detection of this process has substantial implications for physiological organization more generally.

  14. A Novel Approach for Dynamic Testing of Total Hip Dislocation under Physiological Conditions.

    Directory of Open Access Journals (Sweden)

    Sven Herrmann

    Full Text Available Constant high rates of dislocation-related complications of total hip replacements (THRs show that contributing factors like implant position and design, soft tissue condition and dynamics of physiological motions have not yet been fully understood. As in vivo measurements of excessive motions are not possible due to ethical objections, a comprehensive approach is proposed which is capable of testing THR stability under dynamic, reproducible and physiological conditions. The approach is based on a hardware-in-the-loop (HiL simulation where a robotic physical setup interacts with a computational musculoskeletal model based on inverse dynamics. A major objective of this work was the validation of the HiL test system against in vivo data derived from patients with instrumented THRs. Moreover, the impact of certain test conditions, such as joint lubrication, implant position, load level in terms of body mass and removal of muscle structures, was evaluated within several HiL simulations. The outcomes for a normal sitting down and standing up maneuver revealed good agreement in trend and magnitude compared with in vivo measured hip joint forces. For a deep maneuver with femoral adduction, lubrication was shown to cause less friction torques than under dry conditions. Similarly, it could be demonstrated that less cup anteversion and inclination lead to earlier impingement in flexion motion including pelvic tilt for selected combinations of cup and stem positions. Reducing body mass did not influence impingement-free range of motion and dislocation behavior; however, higher resisting torques were observed under higher loads. Muscle removal emulating a posterior surgical approach indicated alterations in THR loading and the instability process in contrast to a reference case with intact musculature. Based on the presented data, it can be concluded that the HiL test system is able to reproduce comparable joint dynamics as present in THR patients.

  15. Oxidative metabolism is associated with physiological disorders in fruits stored under multiple environmental stresses.

    Science.gov (United States)

    Lum, Geoffrey B; Shelp, Barry J; DeEll, Jennifer R; Bozzo, Gale G

    2016-04-01

    In combination with low temperature, controlled atmosphere storage and 1-methylcyclopropene (ethylene antagonist) application are used to delay senescence of many fruits and vegetables. Controlled atmosphere consists of low O2 and elevated CO2. When sub-optimal partial pressures are used, these practices represent multiple abiotic stresses that can promote the development of physiological disorders in pome fruit, including flesh browning and cavities, although there is some evidence for genetic differences in susceptibility. In the absence of surface disorders, fruit with flesh injuries are not easily distinguished from asymptomatic fruit until these are consumed. Oxidative stress metabolites tend to accumulate (e.g., γ-aminobutyrate) or rapidly decline (e.g., ascorbate and glutathione) in vegetative tissues exposed to hypoxic and/or elevated CO2 environments. Moreover, these phenomena can be associated with altered energy and redox status. Biochemical investigations of Arabidopsis and tomato plants with genetically-altered levels of enzymes associated with the γ-aminobutyrate shunt and the ascorbate-glutathione pathway indicate that these metabolic processes are functionally related and critical for dampening the oxidative burst in vegetative and fruit tissues, respectively. Here, we hypothesize that γ-aminobutyrate accumulation, as well energy and antioxidant depletion are associated with the development of physiological injury in pome fruit under multiple environmental stresses. An improved understanding of this relationship could assist in maintaining the quality of stored fruit. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Developmental and physiological challenges of octopus (Octopus vulgaris) early life stages under ocean warming.

    Science.gov (United States)

    Repolho, Tiago; Baptista, Miguel; Pimentel, Marta S; Dionísio, Gisela; Trübenbach, Katja; Lopes, Vanessa M; Lopes, Ana Rita; Calado, Ricardo; Diniz, Mário; Rosa, Rui

    2014-01-01

    The ability to understand and predict the effects of ocean warming (under realistic scenarios) on marine biota is of paramount importance, especially at the most vulnerable early life stages. Here we investigated the impact of predicted environmental warming (+3 °C) on the development, metabolism, heat shock response and antioxidant defense mechanisms of the early stages of the common octopus, Octopus vulgaris. As expected, warming shortened embryonic developmental time by 13 days, from 38 days at 18 °C to 25 days at 21 °C. Concomitantly, survival decreased significantly (~29.9 %). Size at hatching varied inversely with temperature, and the percentage of smaller premature paralarvae increased drastically, from 0 % at 18 °C to 17.8 % at 21 °C. The metabolic costs of the transition from an encapsulated embryo to a free planktonic form increased significantly with warming, and HSP70 concentrations and glutathione S-transferase activity levels were significantly magnified from late embryonic to paralarval stages. Yet, despite the presence of effective antioxidant defense mechanisms, ocean warming led to an augmentation of malondialdehyde levels (an indicative of enhanced ROS action), a process considered to be one of the most frequent cellular injury mechanisms. Thus, the present study provides clues about how the magnitude and rate of ocean warming will challenge the buffering capacities of octopus embryos and hatchlings' physiology. The prediction and understanding of the biochemical and physiological responses to warmer temperatures (under realistic scenarios) is crucial for the management of highly commercial and ecologically important species, such as O. vulgaris.

  17. Characteristics of a Dairy Process under Uncertainty

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    2007-01-01

    In this work, the characteristics of a dairy production process under diverse product uncertainties are investigated through a process simulation. The flexibility analysis method of Grossmann and his co-workers (Swaney and Grossmann, 1985) is applied through a process simulation tool, PRO/II. A new...

  18. Drilling force and temperature of bone under dry and physiological drilling conditions

    Science.gov (United States)

    Xu, Linlin; Wang, Chengyong; Jiang, Min; He, Huiyu; Song, Yuexian; Chen, Hanyuan; Shen, Jingnan; Zhang, Jiayong

    2014-11-01

    Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systematic study of mid- and high-speed drilling under dry and physiological conditions(injection of saline). Furthermore, there is no consensus on optimal drilling parameters. To study these parameters under dry and physiological drilling conditions, pig humerus bones are drilled with medical twist drills operated using a wide range of drilling speeds and feed rates. Drilling force and temperature are measured using a YDZ-II01W dynamometer and a NEC TVS-500EX thermal infrared imager, respectively, to evaluate internal bone damage. To evaluate drilling quality, bone debris and hole morphology are observed by SEM(scanning electron microscopy). Changes in drilling force and temperature give similar results during drilling such that the value of each parameter peaks just before the drill penetrates through the osteon of the compact bone into the trabeculae of the spongy bone. Drilling temperatures under physiological conditions are much lower than those observed under dry conditions, while a larger drilling force occurs under physiological conditions than dry conditions. Drilling speed and feed rate have a significant influence on drilling force, temperature, bone debris and hole morphology. The investigation of the effect of drilling force and temperature on internal bone damage reveals that a drilling speed of 4500 r/min and a feed rate of 50 mm/min are recommended for bone drilling under physiological conditions. Drilling quality peaks under these optimal parameter conditions. This paper proposes the optimal drilling parameters under mid- and high-speed surgical drilling, considering internal bone damage and drilling quality, which can be looked as a reference for surgeons performing orthopedic operations.

  19. Physiological Plasticity Is Important for Maintaining Sugarcane Growth under Water Deficit

    Directory of Open Access Journals (Sweden)

    Paulo E. R. Marchiori

    2017-12-01

    Full Text Available The water availability at early phenological stages is critical for crop establishment and sugarcane varieties show differential performance under drought. Herein, we evaluated the relative importance of morphological and physiological plasticity of young sugarcane plants grown under water deficit, testing the hypothesis that high phenotypic plasticity is associated with drought tolerance. IACSP95-5000 is a high yielding genotype and IACSP94-2094 has good performance under water limiting environments. Plants were grown in rhizotrons for 35 days under three water availabilities: high (soil water matric potential [Ψm] higher than -20 kPa; intermediate (Ψm reached -65 and -90 kPa at the end of experimental period and low (Ψm reached values lower than -150 kPa. Our data revealed that morphological and physiological responses of sugarcane to drought are dependent on genotype and intensity of water deficit. In general, IACSP95-5000 showed higher physiological plasticity given by leaf gas exchange and photochemical traits, whereas IACSP94-2094 showed higher morphological plasticity determined by changes in leaf area (LA and specific LA. As IACSP94-2094 accumulated less biomass than IACSP95-5000 under varying water availability, it is suggested that high morphological plasticity does not always represent an effective advantage to maintain plant growth under water deficit. In addition, our results revealed that sugarcane varieties face water deficit using distinct strategies based on physiological or morphological changes. When the effectiveness of those changes in maintaining plant growth under low water availability is taken into account, our results indicate that the physiological plasticity is more important than the morphological one in young sugarcane plants.

  20. Potassium applied under drought improves physiological and nutrient uptake performances of wheat (Triticum Aestivun L.)

    NARCIS (Netherlands)

    Raza, M.A.S.; Saleem, M.F.; Shah, G.M.; Jamil, M.; Khan, I.H.

    2013-01-01

    The physiological and nutrient uptake performance of two wheat (Triticum aestivum L.) cultivars (Lasani-2008 and Auqab-2000) to foliar application of 1% potassium (K) at three different growth stages (tillering, flower initiation and grain filling) was investigated under water limited environment in

  1. PHYSIOLOGICAL RESPONSES OF DWARF COCONUT PLANTS UNDER WATER DEFICIT IN SALT - AFFECTED SOILS

    Directory of Open Access Journals (Sweden)

    ALEXANDRE REUBER ALMEIDA DA SILVA

    2017-01-01

    Full Text Available The objective of this study was to characterize the physiological acclimation responses of young plants of the dwarf coconut cultivar ̳Jiqui Green‘ associated with tolerance to conditions of multiple abiotic stresses (drought and soil salinity, acting either independently or in combination. The study was conducted under controlled conditions and evaluated the following parameters: leaf gas exchange, quantum yield of chlorophyll a fluorescence, and relative contents of total chlorophyll (SPAD index. The experiment was conducted under a randomized block experimental design, in a split plot arrangement. In the plots, plants were exposed to different levels of water stress, by imposing potential crop evapotranspiration replacement levels equivalent to 100%, 80%, 60%, 40%, and 20%, whereas in subplots, plants were exposed to different levels of soil salinity (1.72, 6.25, 25.80, and 40.70 dS m - 1 . Physiological mechanisms were effectively limited when water deficit and salinity acted separately and/or together. Compared with soil salinity, water stress was more effective in reducing the measured physiological parameters. The magnitudes of the responses of plants to water supply and salinity depended on the intensity of stress and evaluation period. The physiological acclimation responses of plants were mainly related to stomatal regulation. The coconut tree has a number of physiological adjustment mechanisms that give the species partial tolerance to drought stress and/or salt, thereby enabling it to revegetate salinated areas, provided that its water requirements are at least partially met.

  2. Supporting chemical process design under uncertainty

    Directory of Open Access Journals (Sweden)

    A. Wechsung

    2010-09-01

    Full Text Available A major challenge in chemical process design is to make design decisions based on partly incomplete or imperfect design input data. Still, process engineers are expected to design safe, dependable and cost-efficient processes under these conditions. The complexity of typical process models limits intuitive engineering estimates to judge the impact of uncertain parameters on the proposed design. In this work, an approach to quantify the effect of uncertainty on a process design in order to enhance comparisons among different designs is presented. To facilitate automation, a novel relaxation-based heuristic to differentiate between numerical and physical infeasibility when simulations do not converge is introduced. It is shown how this methodology yields more details about limitations of a studied process design.

  3. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.

    Science.gov (United States)

    Pandey, Renu; Zinta, Gaurav; AbdElgawad, Hamada; Ahmad, Altaf; Jain, Vanita; Janssens, Ivan A

    2015-01-01

    Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P

  4. Transcriptomes Reveal Genetic Signatures Underlying Physiological Variations Imposed by Different Fermentation Conditions in Lactobacillus plantarum

    Science.gov (United States)

    Bongers, Roger S.; van Bokhorst-van de Veen, Hermien; Wiersma, Anne; Overmars, Lex; Marco, Maria L.; Kleerebezem, Michiel

    2012-01-01

    Lactic acid bacteria (LAB) are utilized widely for the fermentation of foods. In the current post-genomic era, tools have been developed that explore genetic diversity among LAB strains aiming to link these variations to differential phenotypes observed in the strains investigated. However, these genotype-phenotype matching approaches fail to assess the role of conserved genes in the determination of physiological characteristics of cultures by environmental conditions. This manuscript describes a complementary approach in which Lactobacillus plantarum WCFS1 was fermented under a variety of conditions that differ in temperature, pH, as well as NaCl, amino acid, and O2 levels. Samples derived from these fermentations were analyzed by full-genome transcriptomics, paralleled by the assessment of physiological characteristics, e.g., maximum growth rate, yield, and organic acid profiles. A data-storage and -mining suite designated FermDB was constructed and exploited to identify correlations between fermentation conditions and industrially relevant physiological characteristics of L. plantarum, as well as the associated transcriptome signatures. Finally, integration of the specific fermentation variables with the transcriptomes enabled the reconstruction of the gene-regulatory networks involved. The fermentation-genomics platform presented here is a valuable complementary approach to earlier described genotype-phenotype matching strategies which allows the identification of transcriptome signatures underlying physiological variations imposed by different fermentation conditions. PMID:22802930

  5. Physiological and Transcriptional Changes of Three Citrus Rootstock Seedlings under Iron Deficiency

    Directory of Open Access Journals (Sweden)

    Lina Fu

    2017-06-01

    Full Text Available Iron is an essential micronutrient for plants, and plants have evolved adaptive mechanisms to improve iron acquisition from soils. Grafting on iron deficiency-tolerant rootstock is an effective strategy to prevent iron deficiency-chlorosis in fruit-tree crops. To determine the mechanisms underlying iron uptake in iron deficiency, two iron deficiency-tolerant citrus rootstocks, Zhique (ZQ and Xiangcheng (XC, as well as iron deficiency-sensitive rootstock trifoliate orange (TO seedlings were studied. Plants were grown in hydroponics system for 100 days, having 50 μM iron (control and 0 μM iron (iron deficiency nutrient solution. Under iron deficiency, more obvious visual symptoms of iron chlorosis were observed in the leaves of TO, whereas slight symptoms were observed in ZQ and XC. This was further supported by the lower chlorophyll concentration in the leaves of TO than in leaves of ZQ and XC. Ferrous iron showed no differences among the three citrus rootstock roots, whereas ferrous iron was significantly higher in leaves of ZQ and XC than TO. The specific iron absorption rate and leaf iron proportion were significantly higher in ZQ and XC than in TO, suggesting the iron deficiency tolerance can be explained by increased iron uptake in roots of ZQ and XC, allowed by subsequent translocation to shoots. In transcriptome analysis, 29, 298, and 500 differentially expressed genes (DEGs in response to iron deficiency were identified in ZQ, XC, and TO, respectively (Fold change ≥ 2 and Probability ≥ 0.8 were used as thresholds to identify DEGs. A Gene Ontology analysis suggested that several genotype-specific biological processes are involved in response to iron deficiency. Genes associated with cell wall biosynthesis, ethylene and abscisic acid signal transduction pathways were involved in iron deficiency responses in citrus rootstocks. The results of this study provide a basis for future analyses of the physiological and molecular mechanisms of

  6. Phycoerythrin averts intracellular ROS generation and physiological functional decline in eukaryotes under oxidative stress.

    Science.gov (United States)

    Sonani, Ravi R; Rastogi, Rajesh P; Singh, Niraj K; Thadani, Jaymesh; Patel, Puja J; Kumar, Jitendra; Tiwari, Anand K; Devkar, Ranjitsinh V; Madamwar, Datta

    2017-03-01

    In vitro antioxidant virtue and life-prolonging effect of phycoerythrin (PE; a pigment protein isolated from Phormidium sp. A09DM) have been revealed in our previous reports (Sonani et al. in Age 36:9717, 2014a; Sonani et al. in Process Biochem 49:1757-1766, 2014b). It has been hypothesized that the PE expands life span of Caenorhabditis elegans (bears large resemblance with human aging pathways) due to its antioxidant virtue. This hypothesis is tested in present study by checking the effect of PE on intracellular reactive oxygen species (ROS) generation and associated physiological deformities using mouse and human skin fibroblasts, C. elegans, and Drosophila melanogaster Oregon R + and by divulging PE's structural attributes responsible for its antioxidant asset. PE treatment displayed noteworthy decrease of 67, 48, and 77 % in ROS level in mouse fibroblast (3T3-L1), human fibroblast, and C. elegans N2, respectively, arisen under chemical-induced oxidative stress. PE treatment delayed the development of paraquat-induced Alzheimer phenotype by 14.5 % in C. elegans CL4176. Furthermore, PE improved the locomotion of D. melanogaster Oregon R + under oxidative stress with simultaneous up-regulation in super-oxide dismutase and catalase activities. The existence of 52 Glu + Asp + His + Thr residues (having metal ion sequestration capacity), 5 phycoerythrobilin chromophores (potential electron exchangers) in PE's primary structure, and significant hydrophobic patches on the surface of its α- and β-subunits are supposed to collectively contribute in the antioxidant virtues of PE. Altogether, results support the hypothesis that it is the PE's antioxidant asset, which is responsible for its life-prolonging effect and thus could be exploited in the therapeutics of ROS-associated abnormalities including aging and neurodegeneration in eukaryotes.

  7. Enhanced growth, yield and physiological characteristics of rice under elevated carbon dioxide

    Science.gov (United States)

    Abzar, A.; Ahmad, Wan Juliana Wan; Said, Mohd Nizam Mohd; Doni, Febri; Zaidan, Mohd Waznul Adly Mohd; Fathurahman, Zain, Che Radziah Che Mohd

    2018-04-01

    Carbon dioxide (CO2) is rapidly increasing in the atmosphere. It is an essential element for photosynthesis which attracts attention among scientists on how plants will perform in the rising CO2 level. Rice as one of the most important staple food in the world has been studied on the growth responses under elevated CO2. The present research was carried out to determine the growth and physiology of rice in elevated CO2 condition. This research was carried out using complete randomized design with elevated (800 ppm) and ambient CO2. Results showed that growth parameters such as plant height, tillers and number of leaves per plant were increased by elevated CO2. The positive changes in plant physiology when exposed to high CO2 concentration includes significant change (p<0.05) in yield parameters such as panicle number, grain number per panicle, biomass and 1000 grain weight under the elevated CO2 of 800 ppm.

  8. Physiological and Proteomic Analysis in Chloroplasts of Solanum lycopersicum L. under Silicon Efficiency and Salinity Stress

    OpenAIRE

    Muneer, Sowbiya; Park, Yoo Gyeong; Manivannan, Abinaya; Soundararajan, Prabhakaran; Jeong, Byoung Ryong

    2014-01-01

    Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si) supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycope...

  9. Effects of Chitosan Spraying on Physiological Characteristics of Ferula flabelliloba (Apiaceae Under Drought Stress

    Directory of Open Access Journals (Sweden)

    Gh. Taheri

    2016-02-01

    Full Text Available Introduction Ferula flabelliloba Rech. F. & Aell., (Apiaceae, a perennial plant with medicinal value, is one of important soil protective grown in Binalood mountains. Decreased precipitation in the previous years caused plants subjected to drought stress condition. Drought stress limits the growth and productivity of plants more than any other environmental factors. Drought stress can alter plant light absorption and consumption processes and increases production of reactive oxygen species (ROS. ROS is responsible for lipid peroxidation and associated injury to membranes, nucleic acids, proteins and enzymes. To detoxify ROS, plants develop different types of antioxidants to reduce oxidative damage and confer drought tolerance. ROS scavengers are either non- enzymatic (ascorbate, glutathione, flavonoids, alkaloids, carotenoids and phenolic compound or enzymatic containing superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase. The activity of these antioxidants and enzymes allows short-term acclimation to temporary water deficit, but these biochemicals cannot overcome the effects of extreme or prolonged drought. Chitosan is a natural biopolymer formed by low alkaline deacetylation of chitin, an important component of the exoskeletons of crustaceans such as crab, crawfish and shrimp. Chitosan can affect plant physiology and gene expression, hence these materials can increase the plant resistant to many unfavorable environmental condition. The biological properties of chitosan have led to use it for various purposes. Chitosan has been used as plant protectant against fungi, bacteria and viruses, to improve soil fertility and to stimulate plant defense system. Thus, it seems that chitosan is a promising material for improving plant growth, especially under drought stress conditions where water deficit limits plant growth and establishment. In the present study, the effects of chitosan as foliar spraying of F. flabelliloba

  10. Simulation of Plant Physiological Process Using Fuzzy Variables

    Science.gov (United States)

    Daniel L. Schmoldt

    1991-01-01

    Qualitative modelling can help us understand and project effects of multiple stresses on trees. It is not practical to collect and correlate empirical data for all combinations of plant/environments and human/climate stresses, especially for mature trees in natural settings. Therefore, a mechanistic model was developed to describe ecophysiological processes. This model...

  11. Measurement of pharyngeal sensory cortical processing: technique and physiologic implications

    Directory of Open Access Journals (Sweden)

    Ringelstein E Bernd

    2009-07-01

    Full Text Available Abstract Background Dysphagia is a major complication of different diseases affecting both the central and peripheral nervous system. Pharyngeal sensory impairment is one of the main features of neurogenic dysphagia. Therefore an objective technique to examine the cortical processing of pharyngeal sensory input would be a helpful diagnostic tool in this context. We developed a simple paradigm to perform pneumatic stimulation to both sides of the pharyngeal wall. Whole-head MEG was employed to study changes in cortical activation during this pharyngeal stimulation in nine healthy subjects. Data were analyzed by means of synthetic aperture magnetometry (SAM and the group analysis of individual SAM data was performed using a permutation test. Results Our results revealed bilateral activation of the caudolateral primary somatosensory cortex following sensory pharyngeal stimulation with a slight lateralization to the side of stimulation. Conclusion The method introduced here is simple and easy to perform and might be applicable in the clinical setting. The results are in keeping with previous findings showing bihemispheric involvement in the complex task of sensory pharyngeal processing. They might also explain changes in deglutition after hemispheric strokes. The ipsilaterally lateralized processing is surprising and needs further investigation.

  12. Signals and Systems in Biomedical Engineering Signal Processing and Physiological Systems Modeling

    CERN Document Server

    Devasahayam, Suresh R

    2013-01-01

    The use of digital signal processing is ubiquitous in the field of physiology and biomedical engineering. The application of such mathematical and computational tools requires a formal or explicit understanding of physiology. Formal models and analytical techniques are interlinked in physiology as in any other field. This book takes a unitary approach to physiological systems, beginning with signal measurement and acquisition, followed by signal processing, linear systems modelling, and computer simulations. The signal processing techniques range across filtering, spectral analysis and wavelet analysis. Emphasis is placed on fundamental understanding of the concepts as well as solving numerical problems. Graphs and analogies are used extensively to supplement the mathematics. Detailed models of nerve and muscle at the cellular and systemic levels provide examples for the mathematical methods and computer simulations. Several of the models are sufficiently sophisticated to be of value in understanding real wor...

  13. Salt- and pH-Triggered Helix-Coil Transition of Ionic Polypeptides under Physiology Conditions.

    Science.gov (United States)

    Yuan, Jingsong; Zhang, Yi; Sun, Yue; Cai, Zhicheng; Yang, Lijiang; Lu, Hua

    2018-03-26

    Controlling the helix-coil transition of polypeptides under physiological conditions is an attractive way toward smart functional materials. Here we report the synthesis of a series of tertiary amine-functionalized ethylene glycol (EGx)-linked polypeptide electrolytes with their secondary structures tunable under physiological conditions. The resultant polymers, denoted as P(EGxDMA-Glu) (x =1, 2, and 3), show excellent aqueous solubility (> 10 mg/mL) regardless of their charge states. Unlike poly-L-lysine that can form helix only at pH above 10, P(EGxDMA-Glu) undergo a pH-dependent helix-coil switch with their transition points within physiological range (~ pH 5.3-6.5). Meanwhile, P(EGxDMA-Glu) exhibit unusual salt-induced helical conformation presumably owing to the unique properties of EGx linkers. Together, the current work highlights the importance of fine-tuning the linker chemistry in achieving conformation-switchable polypeptides, and represents a facile approach towards stimuli-responsive biopolymers for advanced biological applications.

  14. Physiological characters of soybean cultivars with application of nitrogen sources under dry land conditions

    Science.gov (United States)

    Hasanah, Y.; Nisa, T. C.; Hapsoh; Hanum, H.

    2018-02-01

    The objective of this study was to evaluate the influence of nutrient N management on physiological characteristics of three different soybean cultivars under dry land conditions. The study was conducted under dry lands of Desa Sambirejo (Langkat Regency) in the dry season. The study was conducted with a Randomize Block Design with two factors and three replication. The research was used a randomized block design with 2 factors and 3 replications. The first factor was soybean cultivars (Anjasmoro, Wilis, Sinabung). The second factor was N source, with Urea (50 kg/ha), Bradyrhizobium sp., farmyard manure (10 ton/ha), a combination of Bradyrhizobium sp. + farmyard manure (5 ton/ha) and a control with no N. The parameter observed in this study was the content of root N, shoot Nitrogen, shoot Phosphor, shoot Potassium and total of chlorophyll content. The results suggest that Anjasmoro and Sinabung cultivars had higher physiological characteristics (root N, shoot P and shoot K) compared to Wilis. Nitrogen source of Urea gave a higher physiological characteristics (content of root N, shoot Phosphor and shoot Potassium) compared to different treatment of N source in this study. The interaction between Anjasmoro cultivar and Urea gave the highest of content of shoot Phosphor and shoot Potassium, otherwise the interaction between Sinabung cultivar and Bradyrhizobium sp. gave the highest of content of shoot Nitrogen.

  15. Stability of auditory discrimination and novelty processing in physiological aging.

    Science.gov (United States)

    Raggi, Alberto; Tasca, Domenica; Rundo, Francesco; Ferri, Raffaele

    2013-01-01

    Complex higher-order cognitive functions and their possible changes with aging are mandatory objectives of cognitive neuroscience. Event-related potentials (ERPs) allow investigators to probe the earliest stages of information processing. N100, Mismatch negativity (MMN) and P3a are auditory ERP components that reflect automatic sensory discrimination. The aim of the present study was to determine if N100, MMN and P3a parameters are stable in healthy aged subjects, compared to those of normal young adults. Normal young adults and older participants were assessed using standardized cognitive functional instruments and their ERPs were obtained with an auditory stimulation at two different interstimulus intervals, during a passive paradigm. All individuals were within the normal range on cognitive tests. No significant differences were found for any ERP parameters obtained from the two age groups. This study shows that aging is characterized by a stability of the auditory discrimination and novelty processing. This is important for the arrangement of normative for the detection of subtle preclinical changes due to abnormal brain aging.

  16. Stability of Auditory Discrimination and Novelty Processing in Physiological Aging

    Directory of Open Access Journals (Sweden)

    Alberto Raggi

    2013-01-01

    Full Text Available Complex higher-order cognitive functions and their possible changes with aging are mandatory objectives of cognitive neuroscience. Event-related potentials (ERPs allow investigators to probe the earliest stages of information processing. N100, Mismatch negativity (MMN and P3a are auditory ERP components that reflect automatic sensory discrimination. The aim of the present study was to determine if N100, MMN and P3a parameters are stable in healthy aged subjects, compared to those of normal young adults. Normal young adults and older participants were assessed using standardized cognitive functional instruments and their ERPs were obtained with an auditory stimulation at two different interstimulus intervals, during a passive paradigm. All individuals were within the normal range on cognitive tests. No significant differences were found for any ERP parameters obtained from the two age groups. This study shows that aging is characterized by a stability of the auditory discrimination and novelty processing. This is important for the arrangement of normative for the detection of subtle preclinical changes due to abnormal brain aging.

  17. Conservation physiology can inform threat assessment and recovery planning processes for threatened species

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Walton, Sarah; Delle Palme, Caleigh A.

    2017-01-01

    Conservation physiology has emerged as a discipline with many success stories. Yet, it is unclear how conservation physiology is currently integrated into the activities of bodies such as the IUCN and other agencies/organizations/bodies which undertake international, national, or regional species...... threat assessments and work with partners to develop recovery plans. Here we argue that conservation physiology has much to offer for the threat assessment process and outline the ways in which this can be operationalized. For instance, conservation physiology is effective at revealing causal...... emerging threats. When a population or species is deemed “threatened” and recovery plans are needed, physiology can be used to predict how organisms will respond to the conservation intervention and future threats. For example, if a recovery plan was focused on translocation, understanding how to safely...

  18. Relationship between Aflatoxin Contamination and Physiological Responses of Corn Plants under Drought and Heat Stress

    Directory of Open Access Journals (Sweden)

    Nacer Bellaloui

    2012-11-01

    Full Text Available Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54 at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination.

  19. Meeting the multiscale challenge: representing physiology processes over ApiNATOMY circuits using bond graphs.

    Science.gov (United States)

    de Bono, B; Safaei, S; Grenon, P; Hunter, P

    2018-02-06

    We introduce, and provide examples of, the application of the bond graph formalism to explicitly represent biophysical processes between and within modular biological compartments in ApiNATOMY. In particular, we focus on modelling scenarios from acid-base physiology to link distinct process modalities as bond graphs over an ApiNATOMY circuit of multiscale compartments. The embedding of bond graphs onto ApiNATOMY compartments provides a semantically and mathematically explicit basis for the coherent representation, integration and visualisation of multiscale physiology processes together with the compartmental topology of those biological structures that convey these processes.

  20. The purinergic component of human bladder smooth muscle cells’ proliferation and contraction under physiological stretch

    Energy Technology Data Exchange (ETDEWEB)

    Wazir, Romel; Luo, De-Yi; Tian, Ye; Yue, Xuan; Li, Hong; Wang, Kun-Jie, E-mail: kunjiewangatscu@163.com

    2013-07-26

    Highlights: •Stretch induces proliferation and contraction. •Optimum applied stretch in vitro is 5% and 10% equibiaxial stretching respectively. •Expression of P2X1 and P2X2 is upregulated after application of stretch. •P2X2 is possibly more susceptible to stretch related changes. •Purinoceptors functioning may explain conditions with atropine resistance. -- Abstract: Objective: To investigate whether cyclic stretch induces proliferation and contraction of human smooth muscle cells (HBSMCs), mediated by P2X purinoceptor 1 and 2 and the signal transduction mechanisms of this process. Methods: HBSMCs were seeded on silicone membrane and stretched under varying parameters; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (Frequency: 0.05 Hz, 0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz). 5-Bromo-2-deoxyuridine assay was employed for proliferative studies. Contractility of the cells was determined using collagen gel contraction assay. After optimal physiological stretch was established; P2X1 and P2X2 were analyzed by real time polymerase chain reaction and Western Blot. Specificity of purinoceptors was maintained by employing specific inhibitors; (NF023 for P2X1, and A317491for P2X2), in some experiments. Results: Optimum proliferation and contractility were observed at 5% and 10% equibiaxial stretching respectively, applied at a frequency of 0.1 Hz; At 5% stretch, proliferation increased from 0.837 ± 0.026 (control) to 1.462 ± 0.023%, p < 0.05. Mean contraction at 10% stretching increased from 31.7 ± 2.3%, (control) to 78.28 ±1.45%, p < 0.05. Expression of P2X1 and P2X2 was upregulated after application of stretch. Inhibition had effects on proliferation (1.232 ± 0.051, p < 0.05 NF023) and (1.302 ± 0.021, p < 0.05 A314791) while contractility was markedly reduced (68.24 ± 2.31, p < 0.05 NF023) and (73.2 ± 2.87, p < 0.05 A314791). These findings shows that mechanical stretch can promote magnitude-dependent proliferative and contractile modulation of HBSMCs in

  1. Anatomic and physiological modifications in seedlings of Coffea arabica cultivar Siriema under drought conditions

    Directory of Open Access Journals (Sweden)

    Emanuelle Ferreira Melo

    2014-02-01

    Full Text Available Due to the weather changes prognostic for the coming years, the understanding of water deficit and physiological responses of plants to drought becomes an important requirement in order to develop technologies such as mechanisms to assist plants to cope with longer drought periods, which will be essential to maintenance of Brazilian and worldwide production. This study aimed to evaluate ecophysiological and anatomical aspects as well as the nitrate reductase activity in Siriema coffee seedlings subjected to four treatments: Daily irrigated, non-irrigated, re-irrigated 24 hours and re-irrigated 48 hours after different stress periods. Non-irrigation promoted a reduction in leaf water potential being accented from the ninth day of evaluation onwards. Re-irrigation promoted a partial recovery of the plant water potential. Non-irrigated plants showed an increase in stomatal resistance and reduction of transpiration and nitrate reductase activity. In the roots, there was a decrease in nitrate reductase activity under water stress. Leaf anatomical modifications were significant only for the adaxial surface epidermis and palisade parenchyma thickness, this latter characteristic being higher in control plants. Stomatal density and polar and equatorial diameter ratios showed the highest values in plants under water stress. In the roots, differences only in the cortex thickness being bigger in the non-irrigated treatment could be observed. Therefore, Siriema coffee plants under water stress show physiological, biochemical and anatomical modifications that contribute to the tolerance of this genotype to these conditions.

  2. Physiological responses of Indian jujube (Ziziphus mauritiana Lamk.) fruit to storage temperature under modified atmosphere packaging.

    Science.gov (United States)

    Jat, Laxman; Pareek, Sunil; Shukla, Kunj B

    2013-06-01

    The effect of storage temperature on physiological responses in Indian jujube (Ziziphus mauritiana Lamk. cv. Gola) fruit was investigated. Freshly harvested fruits at physiological maturity characterised by colour-turning stage were stored at ambient temperature, 12 and 6 °C for 21, 35 and 35 days respectively. Headspace O2, CO2 and C2H4, moisture content, respiration, ethylene production, firmness, tristimulus colour, chroma, hue angle and chilling injury index were monitored during fruit storage. Rates of respiration and ethylene production increased after 1 week of storage at ambient temperature, while peaks were observed after 2 weeks at 12 and 6 °C. Headspace O2 decreased continuously during storage, while CO2 and C2H4 increased at all storage temperatures. Moisture content and firmness also decreased during storage. Hunter L* values increased during storage, which correlated with the darkening of fruit colour. Fruit stored at ambient temperature did not show any chilling injury symptoms, while chilling injury appeared on day 28 under 12 °C storage and on day 21 under 6 °C storage. Indian jujube fruit showed high rates of respiration and ethylene production that were significantly affected by different storage temperatures. Lower temperatures increased the shelf life of the fruit, but chilling injury was a problem under 6 °C storage. Indian jujube fruit could be stored at 6 °C for up to 35 days if chilling injury could be alleviated. © 2012 Society of Chemical Industry.

  3. PHYSIOLOGICAL AND SANITARY QUALITIES OF MAIZE LANDRACE SEEDS STORED UNDER TWO CONDITIONS

    Directory of Open Access Journals (Sweden)

    Raquel Stefanello

    2015-08-01

    Full Text Available The preservation of seed quality during the storage period depends not only on the conditions during production and harvesting but also on the storage and maintenance of appropriate storage product conditions. Thus, the aim of this study was to evaluate the physiological and sanitary qualities of maize landrace seeds stored under two conditions. The maize seed batch varieties Oito carreiras, Cabo roxo and Lombo baio were used. Tests included germination, first count, cold test, accelerated aging and sanity. Based on the results it was concluded that the physiological quality of these seed varieties decreased with the storage period. The major fungi identified in the maize seeds during storage were from the genera Aspergillus, Fusarium and Penicillium, which caused deterioration and reduction of the physiological quality. Storage using a paper bag at a temperature of 10 °C did not prevent the deterioration of maize seeds but was more effective at preserving the quality of the seed compared with a plastic bag at room temperature.

  4. Physiological quality of seed and seedling performance of crambe genotypes under water stress

    Directory of Open Access Journals (Sweden)

    Fernando H. B. Machado

    Full Text Available ABSTRACT Water stress is a condition that causes physiological changes in different species and even genotypes of the same species. One of the osmotic agents most used to simulate this condition is polyethylene glycol 6000. The aim of this study was to evaluate the effects of water stress on the physiological quality of seeds and performance of seedlings of crambe genotypes. A completely randomized design was used, in a factorial scheme with two genotypes (one cultivar and one line and five osmotic potentials simulated with aqueous solutions of polyethylene glycol 6000 (control = 0, -0.25, -0.50, -1.0, -1.50 MPa, with four replicates of 50 seeds per treatment. The effects of the treatments were evaluated by means of germination, first count, germination speed index and fresh and dry matter of seedlings. The physiological quality of seeds and the performance of crambe seedlings are negatively affected under water stress from -0.25 MPa on. Seeds of the genotype FMSCR 1101 have greater tolerance to drought stress, regardless of the osmotic potential used.

  5. Physiological response and productivity of safflower lines under water deficit and rehydration.

    Science.gov (United States)

    Bortolheiro, Fernanda P A P; Silva, Marcelo A

    2017-01-01

    Water deficit is one of the major stresses affecting plant growth and productivity worldwide. Plants induce various morphological, physiological, biochemical and molecular changes to adapt to the changing environment. Safflower (Carthamus tinctorius L.), a potential oil producer, is highly adaptable to various environmental conditions, such as lack of rainfall and temperatures. The objective of this work was to study the physiological and production characteristics of six safflower lines in response to water deficit followed by rehydration. The experiment was conducted in a protected environment and consisted of 30 days of water deficit followed by 18 days of rehydration. A differential response in terms of photosynthetic pigments, electrolyte leakage, water potential, relative water content, grain yield, oil content, oil yield and water use efficiency was observed in the six lines under water stress. Lines IMA 04, IMA 10, IMA 14 showed physiological characteristics of drought tolerance, with IMA 14 and IMA 16 being the most productive after water deficit. IMA 02 and IMA 21 lines displayed intermediate characteristics of drought tolerance. It was concluded that the lines responded differently to water deficit stress, showing considerable genetic variation and influence to the environment.

  6. Variation of saponin contents and physiological status in Quillaja saponaria under different environmental conditions.

    Science.gov (United States)

    Grandón, Angélica S; Espinosa, B Miguel; Ríos, Darcy L; Sánchez, O Manuel; Sáez, C Katia; Hernández, S Víctor; Becerra, A José

    2013-12-01

    Quillaja saponaria (Quillay), an evergreen tree found in Chile, is one of the main sources of saponins. Quillaja saponins have hypocholesterolaemic, anticarcinogenic, antioxidant and pesticidal properties, and are used as adjuvants for vaccines. Samples of Quillay growing at three zones in O'Higgins Region, Chile (Coastal, Central and Mountain zones) were analyzed for content of saponins and physiological status. The results revealed differences in the content of saponins depending on the zone of sample collection. The highest contents were found in samples from the Mountain zone, where the highest saponin contents were accompanied by the lowest foliar nitrogen contents, the highest antioxidant activity and the highest carotenoid contents. The results suggest a physiological and adaptive mechanism of saponins in plants to survive under unfavourable environmental conditions. The results have important implications for a theoretical basis for the design of a reasonable harvest, to avoid the cost of poor quality material, and also to provide a sustainable use and conservation of this important species. Further research on the effects of stress will improve our understanding of the saponins production and their physiological functions in plants, whereas they have generally been studied for their biological and chemical applications.

  7. Aversiveness of sounds in phocid seals: psycho-physiological factors, learning processes and motivation.

    Science.gov (United States)

    Götz, Thomas; Janik, Vincent M

    2010-05-01

    Aversiveness of sounds and its underlying physiological mechanisms in mammals are poorly understood. In this study we tested the influence of psychophysical parameters, motivation and learning processes on the aversiveness of anthropogenic underwater noise in phocid seals (Halichoerus grypus and Phoca vitulina). We compared behavioural responses of seals to playbacks of sounds based on a model of sensory unpleasantness for humans, sounds from acoustic deterrent devices and sounds with assumed neutral properties in different contexts of food motivation. In a captive experiment with food presentation, seals habituated quickly to all sound types presented at normalised received levels of 146 dB re. 1 microPa (r.m.s., root mean square). However, the fast habituation of avoidance behaviour was also accompanied by a weak sensitisation process affecting dive times and place preference in the pool. Experiments in the wild testing animals without food presentation revealed differential responses of seals to different sound types. We observed avoidance behaviour at received levels of 135-144 dB re. 1 microPa (sensation levels of 59-79 dB). In this experiment, sounds maximised for 'roughness' perceived as unpleasant by humans also caused the strongest avoidance responses in seals, suggesting that sensory pleasantness may be the result of auditory processing that is not restricted to humans. Our results highlight the importance of considering the effects of acoustic parameters other than the received level as well as animal motivation and previous experience when assessing the impacts of anthropogenic noise on animals.

  8. The physiological variations of adaptation mechaniam in Glycine soja seedlings under saline and alkaline stresses

    International Nuclear Information System (INIS)

    Shao, S.; Li, M.; Yang, D.

    2016-01-01

    The seedlings of Glycine soja were treated with varying saline stress and alkaline stress. The growth, photosynthesis and concentrations of inorganic ions in tissue sap of stressed seedlings were measured to elucidate the mechanism of saline and alkaline stress (high pH) damage to G. soja, and the differences between physiological adaptive mechanism to alkaline stress and saline stress. Our experimental data showed alkalinity had a more severe effects on G. soja seedlings than salinity in the similar concentration, severely inhibited shoot and root growth, and photosynthesis. Diurnal change of pN showed the bimodal curves getting less obvious and transformed to be single peak with increasing stress intensity which might be an efficient energy-conserving strategy for G. soja to adapt to saline and alkaline stress. Na+/K+ were all increased, with greater degrees of increasing under alkaline than under saline stress, cations and anions were almost not accumulated under high alkaline stress, while the influx of superfluous Na+ can be balanced by the accumulation of Cl-, SO42-, H2PO4- in root under saline stress. This indicated that the roots of G. soja were injured so severely that couldn't absorb Na+ and keep ion balance under high alkaline stress including high-pH stress, which might lead to greater accumulation of Na+ in leaves under alkaline stress than that under saline stress, and then sharply reduced the growth and photosynthesis. pN of G. soja seedlings was promoted under low concentration saline and alkaline stresses. Na+/K+ were significant lower in leaves compare with that in roots, and a large amount of Na+ was accumulated in stems of G. soja seedlings under both stresses. Under alkaline stress, the K+, NO3-, Mg2+ and Ca2+ contents in leaves were increased with increasing Na+, and maintain high water content in root. Our results showed obvious differences between physiological adaptive mechanisms to saline stress and alkaline stress. This study would

  9. Mineralization of bone-related SaOS-2 cells under physiological hypoxic conditions.

    Science.gov (United States)

    Müller, Werner E G; Schröder, Heinz C; Tolba, Emad; Diehl-Seifert, Bärbel; Wang, Xiaohong

    2016-01-01

    Inorganic polyphosphate (polyP) is a physiological energy-rich polymer with multiple phosphoric anhydride bonds. In cells such as bone-forming osteoblasts, glycolysis is the main pathway generating metabolic energy in the form of ATP. In the present study, we show that, under hypoxic culture conditions, the growth/viability of osteoblast-like SaOS-2 cells is not impaired. The addition of polyP to those cells, administered as amorphous calcium polyP nanoparticles (aCa-polyP-NP; approximate size 100 nm), significantly increased the proliferation of the cells. In the presence of polyP, the cells produce significant levels of lactate, the end product of anaerobic glycolysis. Under those conditions, an eight-fold increase in the steady-state level of the membrane-associated carbonic anhydrase IX is found, as well as a six-fold induction of the hypoxia-inducible factor 1. Consequently, biomineral formation onto the SaOS-2 cells decreases under low oxygen tension. If the polyP nanoparticles are added to the cells, the degree of mineralization is enhanced. These changes had been measured also in human mesenchymal stem cells. The assumption that the bicarbonate, generated by the carbonic anhydrase in the presence of polyP under low oxygen, is deposited as a constituent of the bioseeds formed during initial hydroxyapatite formation is corroborated by the identification of carbon besides of calcium, oxygen and phosphorus in the initial biomineral deposit onto the cells using the sensitive technology of high-resolution energy dispersive spectrometry mapping. Based on these data, we conclude that polyP is required for the supply of metabolic energy during bone mineral formation under physiological, hypoxic conditions, acting as a 'metabolic fuel' for the cells to grow. © 2015 FEBS.

  10. Physiological mechanisms contributing to increased water-use efficiency in winter wheat under organic fertilization.

    Science.gov (United States)

    Wang, Linlin; Wang, Shiwen; Chen, Wei; Li, Hongbing; Deng, Xiping

    2017-01-01

    Improving the efficiency of resource utilization has received increasing research attention in recent years. In this study, we explored the potential physiological mechanisms underlying improved grain yield and water-use efficiency of winter wheat (Triticum aestivum L.) following organic fertilizer application. Two wheat cultivars, ChangHan58 (CH58) and XiNong9871 (XN9871), were grown under the same nitrogen (N) fertilizer rate (urea-N, CK; and manure plus urea-N, M) and under two watering regimes (WW, well-watered; and WS, water stress) imposed after anthesis. The M fertilizer treatment had a higher Pn and lower gs and Tr than CK under both water conditions, in particular, it significantly increased WRC and Ψw, and decreased EWLR and MDA under WS. Also, the M treatment increased post-anthesis N uptake by 81.4 and 16.4% under WS and WW, thus increasing post-anthesis photosynthetic capacity and delaying leaf senescence. Consequently, the M treatment increased post-anthesis DM accumulation under WS and WW by 51.5 and 29.6%, WUEB by 44.5 and 50.9%, grain number per plant by 11.5 and 12.2% and 1000-grain weight by 7.3 and 3.6%, respectively, compared with CK. The grain yield under M treatment increased by 23 and 15%, and water use efficiency (WUEg) by 25 and 23%, respectively. The increased WUE under organic fertilizer treatment was due to elevated photosynthesis and decreased Tr and gs. Our results suggest that the organic fertilizer treatment enabled plants to use water more efficiently under drought stress.

  11. Predicting invasive species impacts on hydrological processes: the consequences of plant physiology for landscape processes

    CSIR Research Space (South Africa)

    Le Maitre, David C

    2004-01-01

    Full Text Available attention, despite growing evidence of their significance. The wide range in plant growth forms and physiology among invading species suggests that estimation of the hydrological impacts could be difficult. The concept of limits to evaporation was developed...

  12. Physiological Signal Processing for Individualized Anti-nociception Management During General Anesthesia: a Review.

    Science.gov (United States)

    De Jonckheere, J; Bonhomme, V; Jeanne, M; Boselli, E; Gruenewald, M; Logier, R; Richebé, P

    2015-08-13

    The aim of this paper is to review existing technologies for the nociception / anti-nociception balance evaluation during surgery under general anesthesia. General anesthesia combines the use of analgesic, hypnotic and muscle-relaxant drugs in order to obtain a correct level of patient non-responsiveness during surgery. During the last decade, great efforts have been deployed in order to find adequate ways to measure how anesthetic drugs affect a patient's response to surgical nociception. Nowadays, though some monitoring devices allow obtaining information about hypnosis and muscle relaxation, no gold standard exists for the nociception / anti-nociception balance evaluation. Articles from the PubMed literature search engine were reviewed. As this paper focused on surgery under general anesthesia, articles about nociception monitoring on conscious patients, in post-anesthesia care unit or in intensive care unit were not considered. In this article, we present a review of existing technologies for the nociception / anti-nociception balance evaluation, which is based in all cases on the analysis of the autonomous nervous system activity. Presented systems, based on sensors and physiological signals processing algorithms, allow studying the patients' reaction regarding anesthesia and surgery. Some technological solutions for nociception / antinociception balance monitoring were described. Though presented devices could constitute efficient solutions for individualized anti-nociception management during general anesthesia, this review of current literature emphasizes the fact that the choice to use one or the other mainly relies on the clinical context and the general purpose of the monitoring.

  13. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions

    International Nuclear Information System (INIS)

    Gumí-Audenis, B.; Carlà, F.; Vitorino, M. V.; Panzarella, A.; Porcar, L.; Boilot, M.; Guerber, S.; Bernard, P.; Rodrigues, M. S.; Sanz, F.; Giannotti, M. I.; Costa, L.

    2015-01-01

    The performance of a custom atomic force microscope for grazing-incidence X-ray experiments on hydrated soft and biological samples is presented. A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions

  14. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gumí-Audenis, B. [ESRF, The European Synchrotron, Grenoble (France); Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Carlà, F. [ESRF, The European Synchrotron, Grenoble (France); Vitorino, M. V. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Panzarella, A. [ESRF, The European Synchrotron, Grenoble (France); Porcar, L. [Institut Laue-Langevin, Grenoble (France); Boilot, M. [ORTEC, Marseille (France); Guerber, S. [CEA, LETI Grenoble (France); Bernard, P. [ESRF, The European Synchrotron, Grenoble (France); Rodrigues, M. S. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Sanz, F.; Giannotti, M. I. [Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Costa, L., E-mail: luca.costa@esrf.fr [ESRF, The European Synchrotron, Grenoble (France)

    2015-09-30

    The performance of a custom atomic force microscope for grazing-incidence X-ray experiments on hydrated soft and biological samples is presented. A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions.

  15. The changes in the ecology and physiology of soil invertebrates under influences of radioactive contamination

    International Nuclear Information System (INIS)

    Maksimova, S.

    2006-01-01

    The soil biota is important in building and maintaining soil structure and fertility. Invertebrates are ideal as potential bio indicators of the environmental impact of radioactive contamination: they are widely distributed, often abundant and generally thought of as having low dispersive capacity. They can use as test organisms to detect the side-effects of radioactive contamination. The long-term analysis of ecological and physiological after-effects and biodiversity changes had been studied in the zone of radioactive contamination. Material was collected in the Gomel Region (Belarus), 30 km away from the CNPP in 1986-2004 applying usual pedobiological techniques (soil samples and Barber's pitfall traps) at reference points subjected to radioactive contamination. Soil samples were collected at 0 to 25 cm depth. Samples were taken in locations, which had received considerable radionuclide contaminations. These sites differed in contamination by the composition of fall-out, the forms of radionuclide content in soils, their intake into trophic chains and accumulation in animal and plant organisms. The impacts have been investigated at the: 1) organism and population levels , in terms of individual life histories (birth rate, growth, mortality) or species selection; 2) at the community level: to species diversity and to effects on trophic structure. The invertebrates were determined to species or genera, including juvenile stages. Radioactive contamination caused a distinct decrease in species number; the dominance structure of the community changed. The saprophagous are especially sensitive to environmental disturbances. An initial sharp reduction of animal biodiversity and simplification of the community structure of soil fauna were observed, followed by a long-term process of returning to the initial parameters. Changes in hemolymph, necroses of epithelium and cell structure in connective tissue were registered. The most drastic after-effects were manifested in

  16. Survival, physical and physiological changes of Taenia hydatigena eggs under different conditions of water stress.

    Science.gov (United States)

    Sánchez Thevenet, Paula; Alvarez, Hector Manuel; Basualdo, Juan Angel

    2017-06-01

    Taenia hydatigena eggs were investigated for morphological and physiological changes under water stress conditions. Fresh eggs were exposed at 31%, 47% and 89% of relative humidity (RH), and survival, size and ultrastructural changes were accounted up to 365 days of exposition. The article shows how each RH environment affects the vitality of the eggs. Results of this study suggest that T. hydatigena eggs have mechanisms to withstand water stress, indicating that the eggs clustering improves protection against desiccation, and that endogenous metabolism using triacylglycerols play an important role in the maintenance of embryo vitality under low, medium and high relative humidity conditions. This contributes to understanding the water stress resistance mechanism in eggs belonging to Taeniidae family. The findings shown herein have provided a basis to better comprehend basic biology and epidemiology of the cysticercosis caused by T. hydatigena. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions.

    Science.gov (United States)

    Albergaria, Helena; Arneborg, Nils

    2016-03-01

    Winemaking, brewing and baking are some of the oldest biotechnological processes. In all of them, alcoholic fermentation is the main biotransformation and Saccharomyces cerevisiae the primary microorganism. Although a wide variety of microbial species may participate in alcoholic fermentation and contribute to the sensory properties of end-products, the yeast S. cerevisiae invariably dominates the final stages of fermentation. The ability of S. cerevisiae to outcompete other microbial species during alcoholic fermentation processes, such as winemaking, has traditionally been ascribed to its high fermentative power and capacity to withstand the harsh environmental conditions, i.e. high levels of ethanol and organic acids, low pH values, scarce oxygen availability and depletion of certain nutrients. However, in recent years, several studies have raised evidence that S. cerevisiae, beyond its remarkable fitness for alcoholic fermentation, also uses defensive strategies mediated by different mechanisms, such as cell-to-cell contact and secretion of antimicrobial peptides, to combat other microorganisms. In this paper, we review the main physiological features underlying the special aptitude of S. cerevisiae for alcoholic fermentation and discuss the role of microbial interactions in its dominance during alcoholic fermentation, as well as its relevance for winemaking.

  18. Fuel corrosion processes under waste disposal conditions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1999-09-01

    Under the oxidizing conditions likely to be encountered in the Yucca Mountain Repository, fuel dissolution is a corrosion process involving the coupling of the anodic dissolution of the fuel with the cathodic reduction of oxidants available within the repository. The oxidants potentially available to drive fuel corrosion are environmental oxygen, supplied by the transport through the permeable rock of the mountain and molecular and radical species produced by the radiolysis of available aerated water. The mechanism of these coupled anodic and cathodic reactions is reviewed in detail. While gaps in understanding remain, many kinetic features of these reactions have been studied in considerable detail, and a reasonably justified mechanism for fuel corrosion is available. The corrosion rate is determined primarily by environmental factors rather than the properties of the fuel. Thus, with the exception of increase in rate due to an increase in surface area, pre-oxidation of the fuel has little effect on the corrosion rate

  19. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions

    International Nuclear Information System (INIS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2014-01-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb 14 C-DDT, 14 C-phenanthrene (Phe), 14 C-perfluorooctanoic acid (PFOA) and 14 C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. Highlights: • PVC and PE (200–250 μm) were able to sorb phenanthrene, DDT, PFOA and DEHP. • Desorption rates were faster using a gut surfactant compared to seawater alone. • Desorption rates were further enhanced at lower pH and higher temperature. • Plastic-POPs were ranked according to their potential to cause “harm”. -- Desorption rates of sorbed POPs from plastics were substantially enhanced under gut conditions specific of warm blooded organisms, suggesting potential transfer following ingestion

  20. The morphology, physiology and nutritional quality of lettuce grown under hypobaria and hypoxia

    Science.gov (United States)

    Tang, Yongkang; Gao, Feng; Guo, Shuangsheng; Li, Fang

    2015-07-01

    The objectives of this research were to investigate the morphological, physiological and nutritional characteristics of lettuce plants (Lactuca sativa L. cv. Rome) under hypobaric and hypoxic conditions. Plants were grown under two levels of total pressures (101 and 30 kPa) and three levels of oxygen partial pressures (21, 6 and 2 kPa) for 20 days. Hypoxia (6 or 2 kPa) not only significantly inhibited the growth of lettuce plants by decreasing biomass, leaf area, root/shoot ratio, water content, the contents of minerals and organic compounds (vitamin C, crude protein and crude fat), but also destroyed the ultrastructure of mitochondria and chloroplast. The activities of catalase and total superoxide dismutase, the contents of glutathione and the total antioxidant capacity significantly decreased due to hypoxia. Hypobaria (30 kPa) did not markedly enhance the biomass, but it increased leaf area, root/shoot ratio and relative water content. Hypobaria also decreased the contents of total phenols, malondialdehyde and total carbohydrate and protected the ultrastructure of mitochondria and chloroplast under hypoxia. Furthermore, the activities of catalase and total superoxide dismutase, the contents of minerals and organic compounds markedly increased under hypobaria. This study demonstrates that hypobaria (30 kPa) does not increase the growth of lettuce plants, but it enhances plant's stress resistance and nutritional quality under hypoxia.

  1. On the interpretation of the independent components underlying the abdominal phonogram: a study of their physiological relevance

    International Nuclear Information System (INIS)

    Jiménez-González, A; James, C J

    2012-01-01

    Recorded by positioning a sensitive acoustic sensor over the maternal womb, the abdominal phonogram is a signal that contains valuable information for foetal surveillance (e.g. heart rate), which is hidden by maternal and environmental sources. To recover such information, previous work used single-channel independent component analysis (SCICA) to separate the abdominal phonogram into statistically independent components (ICs) that, once acquired, must be objectively associated with the real sources underlying the abdominal phonogram—either physiological or environmental. This is a typical challenge for blind source separation methodologies and requires further research on the signals of interest to find a suitable solution. Here, we have conducted a joint study on 75 sets of ICs by means of statistical, spectral, complexity and time-structure analysis methods. As a result, valuable and consistent characteristics of the components separated from the abdominal phonogram by SCICA have been revealed: (1) the ICs are spectrally disjoint and sorted according to their frequency content, (2) only the ICs with lower frequency content present strong regular patterns and (3) such regular patterns are driven by well-known physiological processes given by the maternal breathing rate, the maternal heart rate and the foetal heart rate. This information was so promising that it has been used in current work for automatic classification of ICs and recovery of the traces of the physiological sources underlying the abdominal phonogram. Future work will look for the extraction of information useful for surveillance (e.g. heart rate), not only about foetal well-being, but also about maternal condition. (paper)

  2. Pulse wave analysis in a 180-degree curved artery model: Implications under physiological and non-physiological inflows

    Science.gov (United States)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    Systolic and diastolic blood pressures, pulse pressures, and left ventricular hypertrophy contribute to cardiovascular risks. Increase of arterial stiffness due to aging and hypertension is an important factor in cardiovascular, chronic kidney and end-stage-renal-diseases. Pulse wave analysis (PWA) based on arterial pressure wave characteristics, is well established in clinical practice for evaluation of arterial distensibility and hypertension. The objective of our exploratory study in a rigid 180-degree curved artery model was to evaluate arterial pressure waveforms. Bend upstream conditions were measured using a two-component, two-dimensional, particle image velocimeter (2C-2D PIV). An ultrasonic transit-time flow meter and a catheter with a MEMS-based solid state pressure sensor, capable of measuring up to 20 harmonics of the observed pressure waveform, monitored flow conditions downstream of the bend. Our novel continuous wavelet transform algorithm (PIVlet 1.2), in addition to detecting coherent secondary flow structures is used to evaluate arterial pulse wave characteristics subjected to physiological and non-physiological inflows. Results of this study will elucidate the utility of wavelet transforms in arterial function evaluation and pulse wave speed. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  3. Physiological and biochemical assisted screening of wheat varieties under partial rhizosphere drying.

    Science.gov (United States)

    Raza, Muhammad Aown Sammar; Ahmad, Salman; Saleem, Muhammad Farrukh; Khan, Imran Haider; Iqbal, Rashid; Zaheer, Muhammad Saqlain; Haider, Imran; Ali, Muhammad

    2017-07-01

    Wheat is one of the major staple food of the world, which is badly affected by water deficit stress. To fulfill the dietary needs of increasing population with depleting water resources there is need to adopt technologies which result in sufficient crop yield with less water consumption. One of them is partial root zone drying (PRD). Keeping in view these conditions, a wire house experiment was conducted at University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur during 2015, to screen out the different wheat genotypes for PRD. Five approved local wheat cultivars (V 1 = Galaxy-2013, V 2 = Punjab-2011, V 3  = Faisalabad-2008, V 4  = Lasani-2008 and V 5  = V.8200) and two irrigation levels (I 1  = control irrigation and I 2  = PRD irrigation) with completely randomized design having four replications were used in the experiment. Among the varieties Galaxy-2013 performed the best and attained maximum plant height, leaf area, stomatal conductance, photosynthesis, total sugars, proline contents and antioxidant enzymes activities and minimum values of all growth and physiological parameters were recorded in variety V.8200. For irrigation levels, higher values of growth, physiological and water related parameters were recorded in control treatment (I 1 ) except leaf water potential, osmotic potential, total sugars and proline contents. However enzymes activities were higher under PRD treatment for all varieties. It was concluded that Galaxy-2013 was the most compatible and V.8200 was the most susceptible variety under PRD condition, respectively and more quality traits and enzymatic activities were recorded under PRD condition as compared to control treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress.

    Science.gov (United States)

    Muneer, Sowbiya; Ko, Chung Ho; Wei, Hao; Chen, Yuze; Jeong, Byoung Ryong

    2016-01-01

    Grafting is an established practice for asexual propagation in horticultural and agricultural crops. The study on graft unions has become of interest for horticulturists using proteomic and genomic techniques to observe transfer of genetic material and signal transduction pathways from root to shoot and shoot to root. Another reason to study the graft unions was potentially to observe resistance against abiotic stresses. Using physiological and proteomic analyses, we investigated graft unions (rootstock and scions) of tomato genotypes exposed to standard-normal (23/23 and 25/18°C day/night) and high-low temperatures (30/15°C day/night). Graft unions had varied responses to the diverse temperatures. High-low temperature, but not standard-normal temperature, induced the production of reactive oxygen species (ROS) in the form of H2O2 and O2-1 in rootstock and scions. However, the expression of many cell protection molecules was also induced, including antioxidant enzymes and their immunoblots, which also show an increase in their activities such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The graft interfaces thus actively defend against stress by modifying their physiological and proteomic responses to establish a new cellular homeostasis. As a result, many proteins for cellular defense were regulated in graft unions under diverse temperature, in addition to the regulation of photosynthetic proteins, ion binding/transport proteins, and protein synthesis. Moreover, biomass, hardness, and vascular transport activity were evaluated to investigate the basic connectivity between rootstock and scions. Our study provides physiological evidence of the grafted plants' response to diverse temperature. Most notably, our study provides novel insight into the mechanisms used to adapt the diverse temperature in graft unions (rootstock/scion).

  5. Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress.

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    Full Text Available Grafting is an established practice for asexual propagation in horticultural and agricultural crops. The study on graft unions has become of interest for horticulturists using proteomic and genomic techniques to observe transfer of genetic material and signal transduction pathways from root to shoot and shoot to root. Another reason to study the graft unions was potentially to observe resistance against abiotic stresses. Using physiological and proteomic analyses, we investigated graft unions (rootstock and scions of tomato genotypes exposed to standard-normal (23/23 and 25/18°C day/night and high-low temperatures (30/15°C day/night.Graft unions had varied responses to the diverse temperatures. High-low temperature, but not standard-normal temperature, induced the production of reactive oxygen species (ROS in the form of H2O2 and O2-1 in rootstock and scions. However, the expression of many cell protection molecules was also induced, including antioxidant enzymes and their immunoblots, which also show an increase in their activities such as superoxide dismutase (SOD, catalase (CAT, and ascorbate peroxidase (APX. The graft interfaces thus actively defend against stress by modifying their physiological and proteomic responses to establish a new cellular homeostasis. As a result, many proteins for cellular defense were regulated in graft unions under diverse temperature, in addition to the regulation of photosynthetic proteins, ion binding/transport proteins, and protein synthesis. Moreover, biomass, hardness, and vascular transport activity were evaluated to investigate the basic connectivity between rootstock and scions.Our study provides physiological evidence of the grafted plants' response to diverse temperature. Most notably, our study provides novel insight into the mechanisms used to adapt the diverse temperature in graft unions (rootstock/scion.

  6. Escherichia coli under Ionic Silver Stress: An Integrative Approach to Explore Transcriptional, Physiological and Biochemical Responses.

    Science.gov (United States)

    Saulou-Bérion, Claire; Gonzalez, Ignacio; Enjalbert, Brice; Audinot, Jean-Nicolas; Fourquaux, Isabelle; Jamme, Frédéric; Cocaign-Bousquet, Muriel; Mercier-Bonin, Muriel; Girbal, Laurence

    2015-01-01

    For a better understanding of the systemic effect of sub-lethal micromolar concentrations of ionic silver on Escherichia coli, we performed a multi-level characterization of cells under Ag+-mediated stress using an integrative biology approach combining physiological, biochemical and transcriptomic data. Physiological parameters, namely bacterial growth and survival after Ag+ exposure, were first quantified and related to the accumulation of intracellular silver, probed for the first time by nano secondary ion mass spectroscopy at sub-micrometer lateral resolution. Modifications in E. coli biochemical composition were evaluated under Ag+-mediated stress by in situ synchrotron Fourier-transform infrared microspectroscopy and a comprehensive transcriptome response was also determined. Using multivariate statistics, correlations between the physiological parameters, the extracellular concentration of AgNO3 and the intracellular silver content, gene expression profiles and micro-spectroscopic data were investigated. We identified Ag+-dependent regulation of gene expression required for growth (e.g. transporter genes, transcriptional regulators, ribosomal proteins), for ionic silver transport and detoxification (e.g. copA, cueO, mgtA, nhaR) and for coping with various types of stress (dnaK, pspA, metA,R, oxidoreductase genes). The silver-induced shortening of the acyl chain of fatty acids, mostly encountered in cell membrane, was highlighted by microspectroscopy and correlated with the down-regulated expression of genes involved in fatty acid transport (fadL) and synthesis/modification of lipid A (lpxA and arnA). The increase in the disordered secondary structure of proteins in the presence of Ag+ was assessed through the conformational shift shown for amides I and II, and further correlated with the up-regulated expression of peptidase (hfq) and chaperone (dnaJ), and regulation of transpeptidase expression (ycfS and ycbB). Interestingly, as these transpeptidases act on

  7. Escherichia coli under Ionic Silver Stress: An Integrative Approach to Explore Transcriptional, Physiological and Biochemical Responses.

    Directory of Open Access Journals (Sweden)

    Claire Saulou-Bérion

    Full Text Available For a better understanding of the systemic effect of sub-lethal micromolar concentrations of ionic silver on Escherichia coli, we performed a multi-level characterization of cells under Ag+-mediated stress using an integrative biology approach combining physiological, biochemical and transcriptomic data. Physiological parameters, namely bacterial growth and survival after Ag+ exposure, were first quantified and related to the accumulation of intracellular silver, probed for the first time by nano secondary ion mass spectroscopy at sub-micrometer lateral resolution. Modifications in E. coli biochemical composition were evaluated under Ag+-mediated stress by in situ synchrotron Fourier-transform infrared microspectroscopy and a comprehensive transcriptome response was also determined. Using multivariate statistics, correlations between the physiological parameters, the extracellular concentration of AgNO3 and the intracellular silver content, gene expression profiles and micro-spectroscopic data were investigated. We identified Ag+-dependent regulation of gene expression required for growth (e.g. transporter genes, transcriptional regulators, ribosomal proteins, for ionic silver transport and detoxification (e.g. copA, cueO, mgtA, nhaR and for coping with various types of stress (dnaK, pspA, metA,R, oxidoreductase genes. The silver-induced shortening of the acyl chain of fatty acids, mostly encountered in cell membrane, was highlighted by microspectroscopy and correlated with the down-regulated expression of genes involved in fatty acid transport (fadL and synthesis/modification of lipid A (lpxA and arnA. The increase in the disordered secondary structure of proteins in the presence of Ag+ was assessed through the conformational shift shown for amides I and II, and further correlated with the up-regulated expression of peptidase (hfq and chaperone (dnaJ, and regulation of transpeptidase expression (ycfS and ycbB. Interestingly, as these

  8. Threshold Research on Highway Length under Typical Landscape Patterns Based on Drivers’ Physiological Performance

    Directory of Open Access Journals (Sweden)

    Xia Zhao

    2015-01-01

    Full Text Available The appropriately landscaped highway scenes may not only help improve road safety and comfort but also help protect ecological environment. Yet there is very little research data on highway length threshold with consideration of distinctive landscape patterns. Against this backdrop, the paper aims to quantitatively analyze highway landscape’s effect on driving behavior based on drivers’ physiological performance and quantify highway length thresholds under three typical landscape patterns, namely, “open,” “semiopen,” and “vertical” ones. The statistical analysis was based on data collected in a driving simulator and electrocardiograph. Specifically, vehicle-related data, ECG data, and supplemental subjective stress perception were collected. The study extracted two characteristic indices, lane deviation and LF/HF, and extrapolated the drivers’ U-shaped physiological response to landscape patterns. Models on highway length were built based on LF/HF’s variation trend with highway length. The results revealed that the theoretical highway length threshold tended to increase when the landscape pattern was switched to open, semiopen, and vertical ones. And the reliability and accuracy of the results were validated by questionnaires and field operational tests. Findings from this research will assist practitioners in taking active environmental countermeasures pertaining to different roadside landscape patterns.

  9. Myoglobin extraction from mammalian skeletal muscle and oxygen affinity determination under physiological conditions.

    Science.gov (United States)

    Wright, Traver J; Davis, Randall W

    2015-03-01

    An accurate determination of myoglobin (Mb) oxygen affinity (P50) can be difficult due to hemoglobin (Hb) contamination and autoxidation of Mb to metMb which is incapable of binding oxygen. To reduce Mb autoxidation, P50 is often measured at refrigerated temperatures. However, the temperature dependent shift in Mb oxygen affinity results in a greater oxygen affinity (lower P50) at colder temperatures than occurs at physiological temperature (ca. 37-39°C) for birds and mammals. Utilizing the temperature dependent pH shift of Tris buffer, we developed novel methods to extract Mb from vertebrate muscle samples and remove Hb contamination while minimizing globin autoxidation. Cow (Bos taurus) muscle tissue (n=5) was homogenized in buffer to form a Mb solution, and Hb contamination was removed using anion exchange chromatography. A TCS Hemox Blood Analyzer was then used to quickly generate an oxygen dissociation curve for the extracted Mb. The oxygen affinity of extracted bovine Mb was compared to commercially available horse heart Mb. The oxygen affinity of extracted cow Mb (P50=3.72±0.16 mmHg) was not statistically different from commercially prepared horse heart Mb (P50=3.71±0.10 mmHg). With high yield Mb extraction and fast generation of an oxygen dissociation curve, it was possible to consistently determine Mb P50 under physiologically relevant conditions for endothermic vertebrates. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Changes in the Physiological Parameters of SbPIP1-Transformed Wheat Plants under Salt Stress

    Directory of Open Access Journals (Sweden)

    G. H. Yu

    2015-01-01

    Full Text Available The SbPIP1 gene is a new member of the plasma membrane major intrinsic gene family cloned from the euhalophyte Salicornia bigelovii Torr. In order to understand the physiological responses in plants that are mediated by the SbPIP1 gene, SbPIP1-overexpressing wheat lines and WT plants of the wheat cv. Ningmai 13 were treated with salt stress. Several physiological parameters, such as the proline content, the malondialdehyde (MDA content, and the content of soluble sugars and proteins, were compared between SbPIP1-transformed lines and WT plants under normal growth or salt stress conditions. The results indicate that overexpression of the SbPIP1 gene can increase the accumulation of the osmolyte proline, decrease the MDA content, and enhance the soluble sugar biosynthesis in the early period but has no influence on the regulation of soluble protein biosynthesis in wheat. The results suggest that SbPIP1 contributes to salt tolerance by facilitating the accumulation of the osmolyte proline, increasing the antioxidant response, and increasing the biosynthesis of soluble sugar in the early period. These results indicate SbPIP1 plays an important role in the salt stress response. Overexpression of SbPIP1 might be used to improve the salt tolerance of important crop plants.

  11. Physiological-metabolic variables of caloric stress in cows under silvopastoral and prairie without trees

    International Nuclear Information System (INIS)

    Barragan Hernandez, Wilson Andres; Cajas-Giron, Yasmin Socorro; Mahecha-Ledesma, Lilliana

    2015-01-01

    Changes in physiological and metabolic parameters were assessed as indicators of caloric stress of cows under grazing were investigated. The study was developed at the Centro de Investigacion Corpoica Turipana, Region Caribe, Cerete, Colombia, during the years 2011-2012. Temperature (T) and relative humidity (H), and in animals: rectal temperature (RT), skin temperature (TP), respiratory rate (RF) and acid-base status were determined. The variables were measured in the morning (6:00 h) and in the afternoon (13:00 h). Effect of treatment on environmental temperature was found with 7 and 6% less temperature in p-Arbur-Arbor and p-Arbor, respectively, compared with the grass treatment. There was an effect of time (p <0.05) on T and H and interaction treatment x hour on T (p <0.05). The variables TP and FR recorded effect (p <0.05) of treatment, time and treatment interaction x hour (6:00/13:00 h). A positive effect of the show from trees was shown in the system on the physiological variables. The negative effects observed in treatment without shade of trees had minimal repercussion in metabolic alterations, evidencing homeostatic responses in the animal before the stressful environmental conditions evaluated. (author) [es

  12. OF PHYSIOLOGICAL REACTIONS AND PHYSIOLOGICAL STRAIN IN HEALTHY MEN UNDER HEAT STRESS IN DRY AND STEAM HEAT SAUNAS

    Directory of Open Access Journals (Sweden)

    W. Pilch

    2014-07-01

    Full Text Available The aim of the paper was to follow up major physiological reactions, provoked by heat stress during dry and wet sauna baths. A physical strain index and subjective estimation of heat comfort of subjects who had not taken sauna baths before was also evaluated. Ten healthy males aged 25-28 underwent a dry sauna bath and then after a one-month break they underwent a steam sauna bath. Each time, they entered the sauna chamber 3 times for 15 minutes with five-minute breaks. During breaks they cooled their bodies with a cold shower and then rested in a sitting position. Before and after the baths, body mass and blood pressure were measured. Rectal temperature and heart rate were monitored during the baths. The physiological strain index (PSI and cumulative heat strain index (CHSI were calculated. Subjects assessed heat comfort by Bedford’s scale. Greater body mass losses were observed after the dry sauna bath compared to the wet sauna (-0.72 vs. -0.36 kg respectively. However, larger increases in rectal temperature and heart rate were observed during the wet sauna bath (38.8% and 21.2% respectively. Both types of sauna baths caused elevation of systolic blood pressure, but changes were greater after the dry one. Diastolic pressure was reduced similarly. Subjective feelings of heat comfort as well as PSI (4.83 ± 0.29 vs. 5.7 ± 0.28 and CHSI (76.3 ± 18.4 vs. 144.6 ± 21.7 were greater during the wet sauna bath. It can be concluded that due to high humidity and reduction of thermoregulation mechanisms, the wet sauna is more stressful for the organism than the dry sauna, where the temperature is higher with low humidity. Both observed indexes (PSI and CHSI could be appropriate for objective assessment of heat strain during passive heating of the organism.

  13. Comparison of physiological reactions and physiological strain in healthy men under heat stress in dry and steam heat saunas.

    Science.gov (United States)

    Pilch, W; Szygula, Z; Palka, T; Pilch, P; Cison, T; Wiecha, S; Tota, L

    2014-06-01

    The aim of the paper was to follow up major physiological reactions, provoked by heat stress during dry and wet sauna baths. A physical strain index and subjective estimation of heat comfort of subjects who had not taken sauna baths before was also evaluated. Ten healthy males aged 25-28 underwent a dry sauna bath and then after a one-month break they underwent a steam sauna bath. Each time, they entered the sauna chamber 3 times for 15 minutes with five-minute breaks. During breaks they cooled their bodies with a cold shower and then rested in a sitting position. Before and after the baths, body mass and blood pressure were measured. Rectal temperature and heart rate were monitored during the baths. The physiological strain index (PSI) and cumulative heat strain index (CHSI) were calculated. Subjects assessed heat comfort by Bedford's scale. Greater body mass losses were observed after the dry sauna bath compared to the wet sauna (-0.72 vs. -0.36 kg respectively). However, larger increases in rectal temperature and heart rate were observed during the wet sauna bath (38.8% and 21.2% respectively). Both types of sauna baths caused elevation of systolic blood pressure, but changes were greater after the dry one. Diastolic pressure was reduced similarly. Subjective feelings of heat comfort as well as PSI (4.83 ± 0.29 vs. 5.7 ± 0.28) and CHSI (76.3 ± 18.4 vs. 144.6 ± 21.7) were greater during the wet sauna bath. It can be concluded that due to high humidity and reduction of thermoregulation mechanisms, the wet sauna is more stressful for the organism than the dry sauna, where the temperature is higher with low humidity. Both observed indexes (PSI and CHSI) could be appropriate for objective assessment of heat strain during passive heating of the organism.

  14. Physiological Aspects of Aging. Module A-5. Block A. Basic Knowledge of the Aging Process.

    Science.gov (United States)

    Harvey, Dexter; Cap, Orest

    This instructional module on physiological aspects of aging is one in a block of 10 modules designed to provide the human services worker who works with older adults with basic information regarding the aging process. An introduction provides an overview of the module content. A listing of general objectives follows. Nine sections present…

  15. The aquadeb project (phase i): Analysing the physiological flexibility processes by using dynamic energy budgets.

    NARCIS (Netherlands)

    Alunno-Bruscia, M.; v.d. Veer, H.; Kooijman, S.A.L.M.

    2009-01-01

    The European Research Project AquaDEB (2007-2011, http://www.ifremer.fr/aquadeb/) is joining skills and expertise of some French and Dutch research institutes and universities to analyse the physiological flexibility of aquatic organisms and to link it to ecological and evolutionary processes within

  16. From good to bad : Intravital imaging of the hijack of physiological processes by cancer cells

    NARCIS (Netherlands)

    Suijkerbuijk, Saskia J.E.; van Rheenen, Jacco

    2017-01-01

    Homeostasis of tissues is tightly regulated at the cellular, tissue and organismal level. Interestingly, tumor cells have found ways to hijack many of these physiological processes at all the different levels. Here we review how intravital microscopy techniques have provided new insights into our

  17. Physiological and molecular responses to bariatric surgery: markers or mechanisms underlying T2DM resolution?

    Science.gov (United States)

    Hutch, Chelsea R; Sandoval, Darleen A

    2017-03-01

    Bariatric surgery is currently the most effective treatment for obesity and associated comorbidities, including rapid resolution of type 2 diabetes mellitus (T2DM). Although the weight loss itself has substantial impact, bariatric surgery also has weight loss-independent effects on T2DM. Several variations of bariatric surgery exist, including the widely studied Roux-en-Y gastric bypass and vertical sleeve gastrectomy. The success of both of these bariatric surgeries was originally attributed to restrictive and malabsorptive modes of action; however, mounting evidence from both human and animal studies implicates mechanisms beyond surgery-induced mechanical changes to the gastrointestinal (GI) system. In fact, with bariatric surgery comes a spectrum of physiological responses, including postprandial enhancement of gut peptide and bile acids levels, restructuring of microbial composition, and changes in GI function and morphology. Although many of these processes are also essential for glucoregulation, the independent role of each in the success of surgery is still an open question. In this review, we explore whether these changes are necessary for the improvements in body mass and glucose homeostasis or whether they are simply markers of the physiological effect of surgery. © 2016 New York Academy of Sciences.

  18. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress.

    Science.gov (United States)

    Muneer, Sowbiya; Park, Yoo Gyeong; Manivannan, Abinaya; Soundararajan, Prabhakaran; Jeong, Byoung Ryong

    2014-11-26

    Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si) supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L.) were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis) revealed a high sensitivity of multiprotein complex proteins (MCPs) such as photosystems I (PSI) and II (PSII) to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs) were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome expression

  19. Physiological and Proteomic Analysis in Chloroplasts of Solanum lycopersicum L. under Silicon Efficiency and Salinity Stress

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-11-01

    Full Text Available Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L. were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis revealed a high sensitivity of multiprotein complex proteins (MCPs such as photosystems I (PSI and II (PSII to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome

  20. PhysioSpace: relating gene expression experiments from heterogeneous sources using shared physiological processes.

    Directory of Open Access Journals (Sweden)

    Michael Lenz

    Full Text Available Relating expression signatures from different sources such as cell lines, in vitro cultures from primary cells and biopsy material is an important task in drug development and translational medicine as well as for tracking of cell fate and disease progression. Especially the comparison of large scale gene expression changes to tissue or cell type specific signatures is of high interest for the tracking of cell fate in (trans- differentiation experiments and for cancer research, which increasingly focuses on shared processes and the involvement of the microenvironment. These signature relation approaches require robust statistical methods to account for the high biological heterogeneity in clinical data and must cope with small sample sizes in lab experiments and common patterns of co-expression in ubiquitous cellular processes. We describe a novel method, called PhysioSpace, to position dynamics of time series data derived from cellular differentiation and disease progression in a genome-wide expression space. The PhysioSpace is defined by a compendium of publicly available gene expression signatures representing a large set of biological phenotypes. The mapping of gene expression changes onto the PhysioSpace leads to a robust ranking of physiologically relevant signatures, as rigorously evaluated via sample-label permutations. A spherical transformation of the data improves the performance, leading to stable results even in case of small sample sizes. Using PhysioSpace with clinical cancer datasets reveals that such data exhibits large heterogeneity in the number of significant signature associations. This behavior was closely associated with the classification endpoint and cancer type under consideration, indicating shared biological functionalities in disease associated processes. Even though the time series data of cell line differentiation exhibited responses in larger clusters covering several biologically related patterns, top scoring

  1. Effect of Salicylic Acid on the Growth and Physiological Characteristics of Maize under Stress Conditions

    International Nuclear Information System (INIS)

    Manzoor, K.; Ilyas, N.; Batool, N.; Arshad, M.; Ahmad, B.

    2015-01-01

    Salicylic acid (SA) is a naturally occurring signaling molecule and growth regulator that enhances plant growth particularly in stress conditions. The present study was planned to evaluate the effects of different levels of SA on maize growth under drought and salt stress conditions. An experiment was conducted to test the morphological, physiological and biochemical changes in two cultivar of maize D-1184 and TG-8250. Varying levels of salicylic acid, i.e. 5mM, 10mM and 15mM were applied through foliar method. Exogenous applications of salicylic acid were done after 20 days of germination of the maize plants. Salicylic acid significantly affects root and shoot dry matter under drought and salt stress. Foliar application of SA significantly increased proline concentration (11 percentage and 12 percentage), amino acid accumulation (25 percentage and 18 percentage), relative water (17 percentage and 14 percentage) and Chlorophyll content. Overall, it can be concluded that SA at lower concentration is effective to minimize the effect of stress conditions. Maize cultivar TG-8250 showed better tolerance under drought and salt stress condition as compared to D-1184 cultivar. (author)

  2. Physiological aspects of seedling development of coffee grown under colored screens

    International Nuclear Information System (INIS)

    Henrique, Paola de Castro; Alves, Jose Donizeti; Livramento, Darlan Einstein do; Goulart, Patricia de Fatima Pereira

    2011-01-01

    The objective of this work was to evaluate the physiological aspects of the development of coffee seedlings grown under colored screens with different spectral characteristics. Seedlings of Catucai Amarelo 2SL, in the stage known as 'orelha de onca', were arranged in a randomized block design, with five replicates, under structures individually covered with blue, white, gray, black or red screens with 50% shade. Four months after, evaluations were done for seedling growth, pigment content of the leaves, total soluble sugars and starch contents of the leaves and roots. The red screen was the most effective in promoting growth in four out of the seven studied traits: plant height, leaf area and leaf dry weight and total dry matter. For the other characteristics, there was no difference among the screens. The pigment analysis showed that, except for the gray screen, the other ones did not differ for this trait. In leaves, the red screen promoted higher levels of carbohydrates and starch. At the root, carbohydrate contents were higher under the red and black screens. Among the five screen colors, the red one was the most efficient in the production of coffee seedlings with higher vigor and quality, with outstanding carbohydrate contents and biomass. (author)

  3. Dextran-based self-healing hydrogels formed by reversible diels-alder reaction under physiological conditions.

    Science.gov (United States)

    Wei, Zhao; Yang, Jian Hai; Du, Xiao Jing; Xu, Feng; Zrinyi, Miklos; Osada, Yoshihito; Li, Fei; Chen, Yong Mei

    2013-09-01

    A dextran-based self-healing hydrogel is prepared by reversible Diels-Alder reaction under physiological conditions. Cytocompatible fulvene-modified dextran as main polymer chains and dichloromaleic-acid-modified poly(ethylene glycol) as cross-linkers are used. Both macro- and microscopic observation as well as the rheological recovery test confirm the self-healing property of the dextran-l-poly(ethylene glycol) hydrogels ("l" means "linked-by"). In addition, scanning electrochemical microscopy is used to qualitatively and quantitatively in situ track the self-healing process of the hydrogel for the first time. It is found that the longitudinal depth of scratch on hydrogel surface almost completely healed at 37 °C after 7 h. This work represents a facile approach for fabrication of polysaccharide self-healing hydrogel, which can be potentially used in several biomedical fields. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cholesterol as a modifying agent of the neurovascular unit structure and function under physiological and pathological conditions.

    Science.gov (United States)

    Czuba, Ewelina; Steliga, Aleksandra; Lietzau, Grażyna; Kowiański, Przemysław

    2017-08-01

    The brain, demanding constant level of cholesterol, precisely controls its synthesis and homeostasis. The brain cholesterol pool is almost completely separated from the rest of the body by the functional blood-brain barrier (BBB). Only a part of cholesterol pool can be exchanged with the blood circulation in the form of the oxysterol metabolites such, as 27-hydroxycholesterol (27-OHC) and 24S-hydroxycholesterol (24S-OHC). Not only neurons but also blood vessels and neuroglia, constituting neurovascular unit (NVU), are crucial for the brain cholesterol metabolism and undergo precise regulation by numerous modulators, metabolites and signal molecules. In physiological conditions maintaining the optimal cholesterol concentration is important for the energetic metabolism, composition of cell membranes and myelination. However, a growing body of evidence indicates the consequences of the cholesterol homeostasis dysregulation in several pathophysiological processes. There is a causal relationship between hypercholesterolemia and 1) development of type 2 diabetes due to long-term high-fat diet consumption, 2) significance of the oxidative stress consequences for cerebral amyloid angiopathy and neurodegenerative diseases, 3) insulin resistance on progression of the neurodegenerative brain diseases. In this review, we summarize the current state of knowledge concerning the cholesterol influence upon functioning of the NVU under physiological and pathological conditions.

  5. Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation.

    Science.gov (United States)

    Xue, Qingwu; Zhu, Zixi; Musick, Jack T; Stewart, B A; Dusek, Donald A

    2006-02-01

    Deficit irrigation in winter wheat has been practiced in the areas with limited irrigation water resources. The objectives of this study were to (i) understand the physiological basis for determinations of grain yield and water-use efficiency in grain yield (WUE) under deficit irrigation; and (ii) investigate the effect of deficit irrigation on dry matter accumulation and remobilization of pre-anthesis carbon reserves during grain filling. A field experiment was conducted in the Southern High Plains of the USA and winter wheat (cv. TAM 202) was grown on Pullman clay loam soil (fine mixed thermic Torretic Paleustoll). Treatments consisted of rain-fed, deficit irrigation from jointing to the middle of grain filling, and full irrigation. The physiological measurements included leaf water potential, net photosynthetic rate (Pn), stomatal conductance (Gs), and leaf area index. The rain-fed treatment had the lowest seasonal evapotranspiration (ET), biomass, grain yield, harvest index (HI) and WUE as a result of moderate to severe water stress from jointing to grain filling. Irrigation application increased seasonal ET, and ET increased as irrigation frequency increased. The seasonal ET increased 20% in one-irrigation treatments between jointing and anthesis, 32-46% in two-irrigation treatments, and 67% in three- and full irrigation treatments. Plant biomass, grain yield, HI and WUE increased as the result of increased ET. The increased yield under irrigation was mainly contributed by the increased number of spikes, and seeds per square meter and per spike. Among the irrigation treatments, grain yield increased significantly but the WUE increased slightly as irrigation frequency increased. The increased WUE under deficit irrigation was contributed by increased HI. Water stress during grain filling reduced Pn and Gs, and accelerated leaf senescence. However, the water stress during grain filling induced remobilization of pre-anthesis carbon reserves to grains, and the

  6. Electrical characteristics of an electronic control device under a physiologic load: a brief report.

    Science.gov (United States)

    Dawes, Donald M; Ho, Jeffrey D; Kroll, Mark W; Miner, James R

    2010-03-01

    Law enforcement officers use electronic control devices (ECDs), such as the TASER X26 (TASER International, Inc., Scottsdale, AZ, USA), to control resisting subjects. Some of the debate on the safety of the devices has centered on the electrical characteristics of the devices. The electrical characteristics published by TASER International have historically based on discharges into a 400 Omega resistor. There are no studies that the authors are aware of that report the electrical characteristics under a physiologic load. In this study, we make an initial attempt to determine the electrical characteristics of the TASER X26 during a 5-second exposure in human volunteers. Subjects received an exposure to the dry, bare chest (top probe), and abdomen (bottom probe) with a standard TASER X26 in the probe deployment mode for 5 seconds. There were 10-11 pulse captures during the 5 seconds. Resistance was calculated using the sum of the absolute values of the instantaneous voltage measurements divided by the sum of the absolute values of the instantaneous current measurements (Ohm's Law). For the eight subjects, the mean spread between top and bottom probes was 12.1 inches (30.7 cm). The mean resistance was 602.3 Omega, with a range of 470.5-691.4 Omega. The resistance decreased slightly over the 5-second discharge with a mean decrease of 8.0%. The mean rectified charge per pulse was 123.0 microC. The mean main phase charge per pulse was 110.5 microC. The mean pulse width was 126.9 micros. The mean voltage per pulse was 580.1 V. The mean current per pulse was 0.97 A. The average peak main phase voltage was 1899.2 V and the average peak main phase current was 3.10 A. The mean tissue resistance was 602.3 Omega in this study. There was a decrease in resistance of 8% over the 5-second exposure. This physiologic load is different than the 400 Omega laboratory load used historically by the manufacturer. We recommend future characterization of these devices use a physiologic load

  7. Ability of sat-1 to transport sulfate, bicarbonate, or oxalate under physiological conditions.

    Science.gov (United States)

    Krick, Wolfgang; Schnedler, Nina; Burckhardt, Gerhard; Burckhardt, Birgitta C

    2009-07-01

    Tubular reabsorption of sulfate is achieved by the sodium-dependent sulfate transporter, NaSi-1, located at the apical membrane, and the sulfate-anion exchanger, sat-1, located at the basolateral membrane. To delineate the physiological role of rat sat-1, [(35)S]sulfate and [(14)C]oxalate uptake into sat-1-expressing oocytes was determined under various experimental conditions. Influx of [(35)S]sulfate was inhibited by bicarbonate, thiosulfate, sulfite, and oxalate, but not by sulfamate and sulfide, in a competitive manner with K(i) values of 2.7 +/- 1.3 mM, 101.7 +/- 9.7 microM, 53.8 +/- 10.9 microM, and 63.5 +/- 38.7 microM, respectively. Vice versa, [(14)C]oxalate uptake was inhibited by sulfate with a K(i) of 85.9 +/- 9.5 microM. The competitive type of inhibition indicates that these compounds are most likely substrates of sat-1. Physiological plasma bicarbonate concentrations (25 mM) reduced sulfate and oxalate uptake by more than 75%. Simultaneous application of sulfate, bicarbonate, and oxalate abolished sulfate as well as oxalate uptake. These data and electrophysiological studies using a two-electrode voltage-clamp device provide evidence that sat-1 preferentially works as an electroneutral sulfate-bicarbonate or oxalate-bicarbonate exchanger. In kidney proximal tubule cells, sat-1 likely completes sulfate reabsorption from the ultrafiltrate across the basolateral membrane in exchange for bicarbonate. In hepatocytes, oxalate extrusion is most probably mediated either by an exchange for sulfate or bicarbonate.

  8. Uropathogenic Escherichia coli Express Type 1 Fimbriae Only in Surface Adherent Populations Under Physiological Growth Conditions.

    Science.gov (United States)

    Stærk, Kristian; Khandige, Surabhi; Kolmos, Hans Jørn; Møller-Jensen, Jakob; Andersen, Thomas Emil

    2016-02-01

    Most uropathogenic Escherichia coli (UPEC) strains harbor genes encoding adhesive type 1 fimbria (T1F). T1F is a key factor for successful establishment of urinary tract infection. However, UPEC strains typically do not express T1F in the bladder urine, and little is understood about its induction in vivo. A flow chamber infection model was used to grow UPEC under conditions simulating distinct infection niches in the bladder. Type 1 fimbriation on isolated UPEC was subsequently determined by yeast cell agglutination and immunofluorescence microscopy, and the results were correlated with the ability to adhere to and invade cultured human bladder cells. Although inactive during planktonic growth in urine, T1F expression occurs when UPEC settles on and infects bladder epithelial cells or colonizes catheters. As a result, UPEC in these sessile populations enhances bladder cell adhesion and invasion potential. Only T1F-negative UPEC are subsequently released to the urine, thus limiting T1F expression to surface-associated UPEC alone. Our results demonstrate that T1F expression is strictly regulated under physiological growth conditions with increased expression during surface growth adaptation and infection of uroepithelial cells. This leads to separation of UPEC into low-expression planktonic populations and high-expression sessile populations. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  9. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress

    Science.gov (United States)

    Gengmao, Zhao; Shihui, Li; Xing, Sun; Yizhou, Wang; Zipan, Chang

    2015-08-01

    Silicon(Si) is the only element which can enhance the resistance to multiple stresses. However, the role of silicon in medicinal plants under salt stress is not yet understood. This experiment was conducted to study the effects of silicon addition on the growth, osmotic adjustments, photosynthetic characteristics, chloroplast ultrastructure and Chlorogenic acid (CGA) production of Honeysuckle plant (Lonicera japonica L.) under salt-stressed conditions. Salinity exerted an adverse effect on the plant fresh weight and dry weight, whilst 0.5 g L-1 K2SiO3·nH2O addition obviously improved the plant growth. Although Na+ concentration in plant organs was drastically increased with increasing salinity, higher levels of K+/Na+ ratio was obtained after K2SiO3·nH2O addition. Salinity stress induced the destruction of the chloroplast envelope; however, K2SiO3·nH2O addition counteracted the adverse effect by salinity on the structure of the photosynthetic apparatus. K2SiO3·nH2O addition also enhanced the activities of superoxide dismutase and catalase. To sum up, exogenous Si plays a key role in enhancing its resistance to salt stresses in physiological base, thereby improving the growth and CGA production of Honeysuckle plant.

  10. [Effects of exogenous silicon on physiological characteristics of cucumber seedlings under ammonium stress].

    Science.gov (United States)

    Gao, Qing-Hai; Wang, Ya-Kun; Lu, Xiao-Min; Jia, Shuang-Shuang

    2014-05-01

    The present study evaluated the effects of exogenous silicon on growth and physiological characteristics of hydroponically cultured cucumber seedlings under ammonium stress. The results showed that the growth, especially the aerial part growth of cucumber seedlings cultured with ammonium were significantly inhibited than those with nitrate, especially after treatment for 10 d, the aerial part fresh mass of cucumber seedlings were reduced 6.17 g per plant. The accumulation of reactive oxygen species (ROS) was also promoted in cucumber seedlings under ammonium, and the contents of O2*- and H2O2 were significantly increased in cucumber leaves. With the exogenous silicon treatment, the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) were significantly improved, the ability to remove reactive oxygen species was enhanced, the contents of O2*- and H2O2 were significantly reduced in cucumber leaves, decreasing the reactive oxygen damage to the cell membrane, and the ratio of electrolyte leakage and the content of MDA in cucumber leaves. Also, with exogenous silicon treatment, the plasma membrane and activity of vacuolar membrane H(+)-ATP was significantly increased, transport capacity of intracellular proton was improved, and the level of ammonium in cucumber body was significantly reduced, thereby reducing the toxicity of ammonium. In conclusion, exogenous silicon could relieve ammonium stress, by increasing the antioxidant enzyme activity, H(+)-ATP activity, and decreasing the ammonium content in cucumber seedlings.

  11. The importance of physiological traits in wheat breeding under irrigation and drought stress

    Directory of Open Access Journals (Sweden)

    Kandić Vesna

    2009-01-01

    Full Text Available The correlation analysis and the path coefficient analysis were applied to wheat data set with the objective to determine the effect of five physiological traits (early vigor, early maturity, leaf senescence, flag leaf area and total biomass per plant on grain yield under irrigation and drought stress conditions. The data set consisted of 100 divergent genotypes tested in four-year field trials. Highly significant correlations were found between grain yield, early vigor and total biomass per plant in both treatments. A highly negative correlation was detected between grain yield and days to flowering, as well as, between grain yield and leaf senescence in both treatments. The path analysis revealed a highly significant direct effect of days to anthesis and total biomass per plant on grain yield. Early vigor, leaf senescence and the flag leaf area had a significant indirect effect on grain yield via days to anthesis and total biomass per plant. Early vigor, early maturity and leaf senescence were found to be suitable for wheat breeding under different moisture regimes. These traits can be evaluated quickly and easily, and thus they can be used for the evaluation of large populations.

  12. Hydrogel efficiency and physiological responses of seedless citrus cultivars seedlings under water deficit

    Directory of Open Access Journals (Sweden)

    Ester Alice Ferreira

    2014-04-01

    Full Text Available Water is a limiting factor in citrus development which makes hydric replacement a common practice in plantations where its distribution is scarce. The hydroretentor gel has been one of the available technologies for water supply to plants and may also be an alternative that contributes to the rational use of water for planting citrus seedlings. This study evaluated the efficiency of hydrogel as an alternative to minimize the effects of water deficit in seedlings of seedless cultivars of tangerines ('Ortanique', 'Okitsu' and 'Clemenules' and oranges ('Navelina', 'Navelate' and 'Lanelate', all grafted on Poncirus trifoliata. The experiment was carried out in a greenhouse, in a randomized blocks design, where plants with hydrogel were compared to plants under conventional irrigation and also to plants under water deficit, in a triple factorial arrangement. The rates of carbon liquid assimilation, stomatal conductance and transpiration and the ratio between internal and external CO2 concentrations were evaluated. It was verified that the effect of the hydrogel for maintaining the hydric status of citrus seedlings is variable and dependent on physiological mechanisms of response to water deficit. There was no response of 'Ortanique' and 'Navelate'seedlings to the hydrogel application. The hydrogel promoted the recovering and maintenance of the hydric status of 'Okitsu', 'Clemenules', 'Navelina' and 'Lanelate' seedlings, however, these cultivars were sensitive to changes in the water status, with considerable reduction of gas exchange.

  13. Flexibility of Physiological Traits Underlying Inter-Individual Growth Differences in Intertidal and Subtidal Mussels Mytilusgalloprovincialis.

    Directory of Open Access Journals (Sweden)

    María José Fernández-Reiriz

    Full Text Available Mussel seed (Mytilusgalloprovincialis gathered from the intertidal and subtidal environments of a Galician embayment (NW, Spain were maintained in the laboratory during five months to select fast (F and slow (S growing mussels. The physiological basis underlying inter-individual growth variations were compared for F and S mussels from both origins. Fast growing seemed to be a consequence of greater energy intake (20% higher clearance and ingestion rate and higher food absorption rate coupled with low metabolic costs. The enhanced energy absorption (around 65% higher resulted in 3 times higher Scope for Growth in F mussels (20.5±4.9 J h(-1 than S individuals (7.3±1.1 J h(-1. The higher clearance rate of F mussels appears to be linked with larger gill filtration surface compared to S mussels. Intertidal mussels showed higher food acquisition and absorption per mg of organic weight (i.e. mass-specific standardization than subtidal mussels under the optimal feeding conditions of the laboratory. However, the enhanced feeding and digestive rates were not enough to compensate for the initial differences in tissue weight between mussels of similar shell length collected from the intertidal and subtidal environments. At the end of the experiment, subtidal individuals had higher gill efficiency, which probably lead to higher total feeding and absorption rates relative to intertidal individuals.

  14. Physiological behaviors and recovery responses of four galician grapevine (Vitis vinifera L. cultivars under water stress

    Directory of Open Access Journals (Sweden)

    Islam M. T.

    2012-11-01

    Full Text Available Gas exchange parameters and chlorophyll fluorescence of four pot grown Galician grapevines (Vitis vinifera L. cv. Albariño, Brancellao, Godello and Treixadura were examined under different levels of water stress in greenhouse. After extreme stress, gas exchange recovery responses were evaluated. Average ΨPD for control and stressed plants were -0.4MPa and -1.45MPa respectively. All varieties showed gradual declining of all gas exchange parameters (gs, E and A with increasing of stress periods. Under stressed conditions, Albariño and Godello showed higher CO2 assimilation rate. At the end of stress period leaf defoliation was found in Albariño and Brancellao. Gas exchange recovery was higher for both Godello and Treixadura. A better response of auxiliary bud recovery was present in Albariño than in Brancellao. Close correlations between water stress and gas exchange parameters were found and it varies on genotype. Albariño, Godello and Treixadura followed same diurnal patterns of gas exchange rate for control and stressed plant respectively. Diurnal pattern of CO2 assimilation rate of all tested varieties followed gs and E. Only Brancellao showed treatment effect on mid-day Fv/Fm. Among four varieties photoinhibition was only found in Brancellao. At stressed condition physiological responses of grapevines were genotype depended.

  15. Differential Physiological Responses of Portuguese Bread Wheat (Triticum aestivum L. Genotypes under Aluminium Stress

    Directory of Open Access Journals (Sweden)

    Ana Luísa Garcia-Oliveira

    2016-12-01

    Full Text Available The major limitation of cereal production in acidic soils is aluminium (Al phytotoxicity which inhibits root growth. Recent evidence indicates that different genotypes within the same species have evolved different mechanisms to cope with this stress. With these facts in mind, root responses of two highly Al tolerant Portuguese bread wheat genotypes—Barbela 7/72/92 and Viloso mole—were investigated along with check genotype Anahuac (Al sensitive, using different physiological and histochemical assays. All the assays confirmed that Barbela 7/72/92 is much more tolerant to Al phytotoxicity than Viloso Mole. Our results demonstrate that the greater tolerance to Al phytotoxicity in Barbela 7/72/92 than in Viloso Mole relies on numerous factors, including higher levels of organic acid (OAs efflux, particularly citrate efflux. This might be associated with the lower accumulation of Al in the root tips, restricting the Al-induced lipid peroxidation and the consequent plasma membrane integrity loss, thus allowing better root regrowth under Al stress conditions. Furthermore, the presence of root hairs in Barbela 7/72/92 might also help to circumvent Al toxicity by facilitating a more efficient uptake of water and nutrients, particularly under Al stress on acid soils. In conclusion, our findings confirmed that Portuguese bread wheat genotype Barbela 7/72/92 represents an alternative source of Al tolerance in bread wheat and could potentially be used to improve the wheat productivity in acidic soils.

  16. Local adaptation to altitude underlies divergent thermal physiology in tropical killifishes of the genus Aphyosemion.

    Directory of Open Access Journals (Sweden)

    David J McKenzie

    Full Text Available In watersheds of equatorial West Africa, monophyletic groups of killifish species (genus Aphyosemion occur in discrete altitudinal ranges, low altitude species (LA, sea level to ∼350 m or high altitude species (HA, 350 to 900 m. We investigated the hypothesis that local adaptation to altitude by the LA and HA species would be revealed as divergent effects of temperature on their physiological energetics. Two species from each group (mass ∼350 mg were acclimated to 19, 25 and 28°C, with 19 and 28°C estimated to be outside the thermal envelope for LA or HA, respectively, in the wild. Wild-caught animals (F0 generation were compared with animals raised in captivity at 25°C (F1 generation to investigate the contribution of adaptation versus plasticity. Temperature significantly increased routine metabolic rate in all groups and generations. However, LA and HA species differed in the effects of temperature on their ability to process a meal. At 25°C, the specific dynamic action (SDA response was completed within 8 h in all groups, but acclimation to temperatures beyond the thermal envelope caused profound declines in SDA performance. At 19°C, the LA required ∼14 h to complete the SDA, whereas the HA required only ∼7 h. The opposite effect was observed at 28°C. This effect was evident in both F0 and F1. Reaction norms for effects of temperature on SDA therefore revealed a trade-off, with superior performance at warmer temperatures by LA being associated with inferior performance at cooler temperatures, and vice-versa in HA. The data indicate that divergent physiological responses to temperature in the LA and HA species reflect local adaptation to the thermal regime in their habitat, and that local adaptation to one thermal environment trades off against performance in another.

  17. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Samantha Sheller

    Full Text Available At term, the signals of fetal maturity and feto-placental tissue aging prompt uterine readiness for delivery by transitioning quiescent myometrium to an active stage. It is still unclear how the signals reach the distant myometrium. Exosomes are a specific type of extracellular vesicle (EVs that transport molecular signals between cells, and are released from a wide range of cells, including the maternal and fetal cells. In this study, we hypothesize that i exosomes act as carriers of signals in utero-placental compartments and ii exosomes reflect the physiologic status of the origin cells. The primary aims of this study were to determine exosomal contents in exosomes derived from primary amnion epithelial cells (AEC. We also determined the effect of oxidative stress on AEC derived exosomal cargo contents. AEC were isolated from amniotic membrane obtained from normal, term, not in labor placentae at delivery, and culture under standard conditions. Oxidative stress was induced using cigarette smoke extract for 48 hours. AEC-conditioned media were collected and exosomes isolated by differential centrifugations. Both growth conditions (normal and oxidative stress induced produced cup shaped exosomes of around 50 nm, expressed exosomes enriched markers, such as CD9, CD63, CD81 and HSC70, embryonic stem cell marker Nanog, and contained similar amounts of cell free AEC DNA. Using confocal microscopy, the colocalization of histone (H 3, heat shock protein (HSP 70 and activated form of pro-senescence and term parturition associated marker p38 mitogen activated protein kinase (MAPK (P-p38 MAPK co-localized with exosome enrich marker CD9. HSP70 and P-p38 MAPK were significantly higher in exosomes from AEC grown under oxidative stress conditions than standard conditions (p<0.05. Finally, mass spectrometry and bioinformatics analysis identified 221 different proteins involved in immunomodulatory response and cell-to-cell communication. This study determined

  18. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    International Nuclear Information System (INIS)

    Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira; Shigeno, Keiji; Nakamura, Tatsuo

    2012-01-01

    Highlights: ► Very rapid generation of human iPS cells under optimized conditions. ► Five chemical inhibitors under hypoxia boosted reprogramming. ► We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of i

  19. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidenori [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Hashimoto, Yoshiya [Department of Biomaterials, Osaka Dental University, 8-1, Hanazonocho, Kuzuha, Hirakatashi, Osaka 573-1121 (Japan); Nakada, Akira; Shigeno, Keiji [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly

  20. Traces of unconscious mental processes in introspective reports and physiological responses.

    Directory of Open Access Journals (Sweden)

    Leonid Ivonin

    Full Text Available Unconscious mental processes have recently started gaining attention in a number of scientific disciplines. One of the theoretical frameworks for describing unconscious processes was introduced by Jung as a part of his model of the psyche. This framework uses the concept of archetypes that represent prototypical experiences associated with objects, people, and situations. Although the validity of Jungian model remains an open question, this framework is convenient from the practical point of view. Moreover, archetypes found numerous applications in the areas of psychology and marketing. Therefore, observation of both conscious and unconscious traces related to archetypal experiences seems to be an interesting research endeavor. In a study with 36 subjects, we examined the effects of experiencing conglomerations of unconscious emotions associated with various archetypes on the participants' introspective reports and patterns of physiological activations. Our hypothesis for this experiment was that physiological data may predict archetypes more precisely than introspective reports due to the implicit nature of archetypal experiences. Introspective reports were collected using the Self-Assessment Manikin (SAM technique. Physiological measures included cardiovascular, electrodermal, respiratory responses and skin temperature of the subjects. The subjects were stimulated to feel four archetypal experiences and four explicit emotions by means of film clips. The data related to the explicit emotions served as a reference in analysis of archetypal experiences. Our findings indicated that while prediction models trained on the collected physiological data could recognize the archetypal experiences with accuracy of 55 percent, similar models built based on the SAM data demonstrated performance of only 33 percent. Statistical tests enabled us to confirm that physiological observations are better suited for observation of implicit psychological constructs

  1. Traces of Unconscious Mental Processes in Introspective Reports and Physiological Responses

    Science.gov (United States)

    Ivonin, Leonid; Chang, Huang-Ming; Diaz, Marta; Catala, Andreu; Chen, Wei; Rauterberg, Matthias

    2015-01-01

    Unconscious mental processes have recently started gaining attention in a number of scientific disciplines. One of the theoretical frameworks for describing unconscious processes was introduced by Jung as a part of his model of the psyche. This framework uses the concept of archetypes that represent prototypical experiences associated with objects, people, and situations. Although the validity of Jungian model remains an open question, this framework is convenient from the practical point of view. Moreover, archetypes found numerous applications in the areas of psychology and marketing. Therefore, observation of both conscious and unconscious traces related to archetypal experiences seems to be an interesting research endeavor. In a study with 36 subjects, we examined the effects of experiencing conglomerations of unconscious emotions associated with various archetypes on the participants’ introspective reports and patterns of physiological activations. Our hypothesis for this experiment was that physiological data may predict archetypes more precisely than introspective reports due to the implicit nature of archetypal experiences. Introspective reports were collected using the Self-Assessment Manikin (SAM) technique. Physiological measures included cardiovascular, electrodermal, respiratory responses and skin temperature of the subjects. The subjects were stimulated to feel four archetypal experiences and four explicit emotions by means of film clips. The data related to the explicit emotions served as a reference in analysis of archetypal experiences. Our findings indicated that while prediction models trained on the collected physiological data could recognize the archetypal experiences with accuracy of 55 percent, similar models built based on the SAM data demonstrated performance of only 33 percent. Statistical tests enabled us to confirm that physiological observations are better suited for observation of implicit psychological constructs like archetypes

  2. Traces of unconscious mental processes in introspective reports and physiological responses.

    Science.gov (United States)

    Ivonin, Leonid; Chang, Huang-Ming; Diaz, Marta; Catala, Andreu; Chen, Wei; Rauterberg, Matthias

    2015-01-01

    Unconscious mental processes have recently started gaining attention in a number of scientific disciplines. One of the theoretical frameworks for describing unconscious processes was introduced by Jung as a part of his model of the psyche. This framework uses the concept of archetypes that represent prototypical experiences associated with objects, people, and situations. Although the validity of Jungian model remains an open question, this framework is convenient from the practical point of view. Moreover, archetypes found numerous applications in the areas of psychology and marketing. Therefore, observation of both conscious and unconscious traces related to archetypal experiences seems to be an interesting research endeavor. In a study with 36 subjects, we examined the effects of experiencing conglomerations of unconscious emotions associated with various archetypes on the participants' introspective reports and patterns of physiological activations. Our hypothesis for this experiment was that physiological data may predict archetypes more precisely than introspective reports due to the implicit nature of archetypal experiences. Introspective reports were collected using the Self-Assessment Manikin (SAM) technique. Physiological measures included cardiovascular, electrodermal, respiratory responses and skin temperature of the subjects. The subjects were stimulated to feel four archetypal experiences and four explicit emotions by means of film clips. The data related to the explicit emotions served as a reference in analysis of archetypal experiences. Our findings indicated that while prediction models trained on the collected physiological data could recognize the archetypal experiences with accuracy of 55 percent, similar models built based on the SAM data demonstrated performance of only 33 percent. Statistical tests enabled us to confirm that physiological observations are better suited for observation of implicit psychological constructs like archetypes than

  3. Physiological and cytokine response to acute exercise under hypoxic conditions: a pilot study.

    Science.gov (United States)

    Lira, Fábio S; Lemos, Valdir A; Bittar, Irene G; Caris, Aline V; Dos Santos, Ronaldo V; Tufik, Sergio; Zagatto, Alessandro M; de Souza, Claudio T; Pimentel, Gustavo D; De Mello, Marco T

    2017-04-01

    Studies have demonstrated that exercise in hypoxia situations induces a cytotoxicity effects. However, the cytokines participation in this condition is remaining unknown. Thus, the aim the present study was to evaluate physiological parameters and inflammatory profiles in response to acute exercise after five hours of hypoxic conditions. Fourteen healthy men were distributed randomly into two groups: normoxic exercise (N.=7) and hypoxic exercise (N.=7). All volunteers were blinded to the protocol. Initially, all subjects were submitted to chamber normobaric in a room fitted for altitude simulations of up to 4500 m, equivalent to a barometric pressure of 433 mmHg. All analyses began at 7:00 a.m. and was maintained for 5 hours; the fraction of inspired oxygen (FiO2) was 13.5%. The groups began a 60-minute session of physical exercise starting at 11:00 a.m., at 50% of peak VO2 (50% VO2peak). Blood was collected for cytokine analysis in the morning upon waking, before the 60-minute exercise session and immediately thereafter. The heart rate during 60 minutes' exercise training was significantly increased in both exercise groups (Pexercise (Pexercise, significant increases were found for IL-1ra and IL-10 under hypoxic conditions (Pexercise performance in hypoxic conditions can promotes early inflammatory response, leads for immunosuppression state.

  4. The physiology underlying Roux-en-Y gastric bypass: a status report

    Science.gov (United States)

    Bueter, Marco

    2014-01-01

    Obesity and its related comorbidities can be detrimental for the affected individual and challenge public health systems worldwide. Currently, the only available treatment options leading to clinically significant and maintained body weight loss and reduction in obesity-related morbidity and mortality are based on surgical interventions. This review will focus on two main clinical effects of Roux-en-Y gastric bypass (RYGB), namely body weight loss and change in eating behavior. Animal experiments designed to understand the underlying physiological mechanisms of these post-gastric bypass effects will be discussed. Where appropriate, reference will also be made to vertical sleeve gastrectomy. While caloric malabsorption and mechanical restriction seem not to be major factors in this respect, alterations in gut hormone levels are invariably found after RYGB. However, their causal role in RYGB effects on eating and body weight has recently been challenged. Other potential factors contributing to the RYGB effects include increased bile acid concentrations and an altered composition of gut microbiota. RYGB is further associated with remarkable changes in preference for different dietary components, such as a decrease in the preference for high fat or sugar. It needs to be noted, however, that in many cases, the question about the necessity of these alterations for the success of bariatric surgery procedures remains unanswered. PMID:25253084

  5. Effects of Nitroxin Fertilizer on Physiological Characters Forage Millet under Irrigation Cessation

    Directory of Open Access Journals (Sweden)

    Mohammad Darbani

    2017-12-01

    Full Text Available An experiment in the split plot factorial design using the randomized complete block design was conducted in Damghan, Semnan Province, Iran in the cropping year 2012-2013 to study the effects of irrigation cessation (based on the phenological stages of the plants on physiological characteristics of forage millet cultivars. The treatments included three irrigation levels (the control with full irrigation, irrigation cessation when flowering started, and irrigation cessation when flowering ended in the main plots, and applying nitroxinbiofertilizer (+ and not applying nitroxinbiofertilizer (control and forage millet cultivars (Bastan, Pishahang, and Isfahan in the subplots. The maximum water-soluble carbohydrates contents were observed in the cultivar Bastan (8.91%, respectively, the highest contents of fiber and water (74.17 and 48.83%, respectively in the treatment of irrigation cessation when flowering started, and the largest proline concentration (1.90 mol/g-1ww-1 in the treatment of irrigation cessation when flowering started. Millet tolerated high levels of drought under conditions of irrigation cessation and Nitroxin, as a biological fertilizer, was useful in producing a good quality crop. The very rapid growth of millet, its short growing season, drought tolerance, unique feature with regard to harvest time, and its response to nitroxinbiofertilizer can help to expand its cultivation in arid and semi-arid regions of Iran.

  6. Growth, physiological response and phytoremoval capability of two willow clones exposed to ibuprofen under hydroponic culture.

    Science.gov (United States)

    Iori, Valentina; Zacchini, Massimo; Pietrini, Fabrizio

    2013-11-15

    Ibuprofen (IBU) is one of the most widespread pharmaceuticals in the aquatic ecosystem, despite the high removal rate that occurs in wastewater treatment plants. Phytoremediation represents a technology to improve the performance of existing wastewater treatment. This study was conducted under hydroponics to evaluate the ability of Salicaceae plants to tolerate and reduce IBU concentration in contaminated water. To this end, we combined growth, physiological and biochemical data to study the effects of different IBU concentrations on two clones of Salix alba L. Data demonstrated that clone SS5 was more tolerant and showed a higher ability to reduce IBU concentration in the solution than clone SP3. The high tolerance to IBU shown by SS5 was likely due to several mechanisms including the capacity to maintain an elevated photosynthetic activity and an efficient antioxidative defence. These results illustrate the remarkable potential of willow to phytoremediate IBU-contaminated waters in natural and constructed wetlands. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. [Physiological response and bioaccumulation of Panax notoginseng to cadmium under hydroponic].

    Science.gov (United States)

    Li, Zi-wei; Yang, Ye; Cui, Xiu-ming; Liao, Pei-ran; Ge, Jin; Wang, Cheng-xiao; Yang, Xiao-yan; Liu, Da-hui

    2015-08-01

    The physiological response and bioaccumulation of 2-year-old Panax notoginseng to cadmium stress was investigated under a hydroponic experiment with different cadmium concentrations (0, 2.5, 5, 10 μmol · L(-1)). Result showed that low concentration (2.5 μmol · L(-1)) of cadmium could stimulate the activities of SOD, POD, APX in P. notoginseng, while high concentration (10 μmol · L(-1)) treatment made activities of antioxidant enzyme descended obviously. But, no matter how high the concentration of cadmium was, the activities of CAT were inhibited. The Pn, Tr, Gs in P. notoginseng decreased gradually with the increase of cadmium concentration, however Ci showed a trend from rise to decline. The enrichment coefficients of different parts in P. notoginseng ranked in the order of hair root > root > rhizome > leaf > stem, and all enrichment coefficients decreased with the increase of concentration of cadmium treatments; while the cadmium content in different parts of P. notoginseng and the transport coefficients rose. To sum up, cadmium could affect antioxidant enzyme system and photosynthetic system of P. notoginseng; P. notoginseng had the ability of cadmium enrichment, so we should plant it in suitable place reduce for reducing the absorption of cadmium; and choose medicinal parts properly to lessen cadmium intake.

  8. Silicon induced improvement in morpho-physiological traits of maize (zea mays l.) under water deficit

    International Nuclear Information System (INIS)

    Amin, M.; Ahmad, R.; Basra, S.M.A.; Murtaza, G.

    2014-01-01

    Current water scarcity is an emerging issue in semi-arid regions like Pakistan and cause of deterioration in productivity of crops to reduce crop yield all over the world. Silicon is known to be better against the deleterious effects of drought on plant growth and development. A pot study was conducted to evaluate the effect of Si nutrition (0, 50, 100 and 150 mg/kg) on the growth of a relatively drought tolerant (P-33H25) and sensitive (FH-810) maize hybrids. Two levels of soil water content were used viz. 100 and 60% of field capacity. Water deficit condition in soil significantly reduced morphological and physiological attributes of maize plants. Silicon application significantly improved the plant height, leaf area per plant, primary root length, dry matter of shoot and roots and plant dry matter, water relation and gas exchange characteristics of both maize cultivars under water deficit condition. Poor growth of drought stressed plants was significantly improved with Si application. The silicon fertilized (100 mg/kg) drought stressed plants of hybrid P-33H25 produced maximum (21.68% more) plant dry matter as compared to plants that were not provided with silicon nutrition. Nonetheless, silicon application (150 mg/kg) resulted in maximum increase (26.03%) in plant dry weight of hybrid FH-810 plants that were grown under limited moisture supply i.e., 60% FC. In conclusion silicon application to drought stressed maize plants was better to improve the growth and dry matter could be attributed to improved osmotic adjustment, photosynthetic rate and lowered transpiration. (author)

  9. Working under the PJVA gas processing agreement

    International Nuclear Information System (INIS)

    Collins, S.

    1996-01-01

    The trend in the natural gas industry is towards custom processing. New gas reserves tend to be smaller and in tighter reservoirs than in the past. This has resulted in plants having processing and transportation capacity available to be leased to third parties. Major plant operators and owners are finding themselves in the business of custom processing in a more focused way. Operators recognize that the dilution of operating costs can result in significant benefits to the plant owners as well as the third party processor. The relationship between the gas processor and the gas producer as they relate to the Petroleum Joint Venture Association (PJVA) Gas Processing Agreement were discussed. Details of the standard agreement that clearly defines the responsibilities of the third party producer and the processor were explained. In addition to outlining obligations of the parties, it also provides a framework for fee negotiation. It was concluded that third party processing can lower facility operating costs, extend facility life, and keep Canadian gas more competitive in holding its own in North American gas markets

  10. Anticipatory processes under academic stress: an ERP study.

    Science.gov (United States)

    Duan, Hongxia; Yuan, Yiran; Yang, Can; Zhang, Liang; Zhang, Kan; Wu, Jianhui

    2015-03-01

    It is well known that preparing for and taking high-stakes exams has a significant influence on the emotional and physiological wellbeing of exam-takers, but few studies have investigated the resulting cognitive changes. The current study examined the effect of examination-induced academic stress on anticipation in information processing. Anticipation was indexed using the contingent negative variation (CNV). Electroencephalograms (EEG) were collected from 42 participants using the classic S1-S2 paradigm. These participants were preparing for the Chinese National Postgraduate Entrance Exam (NPEE). EEGs were also collected from 21 age-matched, non-exam comparison participants. The levels of perceived stress and state anxiety were higher and both the initial CNV (iCNV) and the late CNV (lCNV) were more negative in the exam group than in the non-exam group. These results suggest that participants under academic stress experienced greater anticipation of upcoming events. More important, for the non-exam group, state anxiety was positively related to both the iCNV and lCNV amplitude, and this correlation existed when trait anxiety was controlled; however, there was no such relationship in the exam group. These results suggested that the cortical anticipatory activity in the high-stressed exam group reached the maximum ceiling, leaving little room for transient increases in state anxiety. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Combined effects of drought stress and npk foliar spray on growth, physiological processes and nutrient uptake in wheat

    International Nuclear Information System (INIS)

    Shabir, R.N.; Waraocj, E.A.

    2015-01-01

    The present study investigated the effects of supplemental foliar nitrogen (N), phosphorous (P) and potassium (K) spray, alone or in various combinations, on physiological processes and nutrients uptake in wheat under water deficit conditions. The study comprised of two phases; during the first phase, ten local wheat (Triticum aestivum L.) genotypes were evaluated for their response to PEG-6000 induced osmotic stress. One drought tolerant (Bhakkar-2002) and sensitive (Shafaq-2006) genotype selected from screening experiments were used in the second phase to determine the individual and combined effects of N, P and K foliar spray on physiological mechanisms in wheat under drought stress. The results revealed that limited water supply significantly reduced germination, growth and uptake of N, P and K. Supplemental foliar fertilisation of these macronutrients alone or in different combinations significantly improved the water relations, gas exchange characteristics and nutrient contents in both the genotypes. Bhakkar-2002 maintained higher turgor, net CO/sub 2/ assimilation rate (Pn), transpiration rate (E), stomatal conductance (gs) and accumulated more N, P and K in shoot than Shafaq-2006. The foliar spray of NPK in combination was effective in improving wheat growth under both well-watered and water-deficit conditions. (author)

  12. Identification and characterization of contrasting sunflower genotypes to early leaf senescence process combining molecular and physiological studies (Helianthus annuus L.).

    Science.gov (United States)

    López Gialdi, A I; Moschen, S; Villán, C S; López Fernández, M P; Maldonado, S; Paniego, N; Heinz, R A; Fernandez, P

    2016-09-01

    Leaf senescence is a complex mechanism ruled by multiple genetic and environmental variables that affect crop yields. It is the last stage in leaf development, is characterized by an active decline in photosynthetic rate, nutrients recycling and cell death. The aim of this work was to identify contrasting sunflower inbred lines differing in leaf senescence and to deepen the study of this process in sunflower. Ten sunflower genotypes, previously selected by physiological analysis from 150 inbred genotypes, were evaluated under field conditions through physiological, cytological and molecular analysis. The physiological measurement allowed the identification of two contrasting senescence inbred lines, R453 and B481-6, with an increase in yield in the senescence delayed genotype. These findings were confirmed by cytological and molecular analysis using TUNEL, genomic DNA gel electrophoresis, flow sorting and gene expression analysis by qPCR. These results allowed the selection of the two most promising contrasting genotypes, which enables future studies and the identification of new biomarkers associated to early senescence in sunflower. In addition, they allowed the tuning of cytological techniques for a non-model species and its integration with molecular variables. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Obsolescence – understanding the underlying processes

    NARCIS (Netherlands)

    Thomsen, A.F.

    2017-01-01

    Obsolescence, defined as the process of declining performance of buildings, is a serious threat for the value, the usefulness and the life span of built properties. Thomsen and van der Flier (2011) developed a model in which obsolescence is categorised on the basis of two distinctions, i.e. between

  14. Rice Physiology

    Science.gov (United States)

    P.A. Counce; Davidi R. Gealy; Shi-Jean Susana Sung

    2002-01-01

    Physiology occurs tn physical space through chemical reactions constrained by anatomy and morphology, yet guided by genetics. Physiology has been called the logic of life. Genes encode structural and fimcdonal proteins. These proteins are subsequently processed to produce enzymes that direct and govern the biomechanical processes involved in the physiology of the...

  15. Serum Response Factor (SRF mediated gene activity in physiological and pathological processes of neuronal motility

    Directory of Open Access Journals (Sweden)

    Bernd eKnoll

    2011-12-01

    Full Text Available In recent years, the transcription factor SRF (serum response factor was shown to contribute to various physiological processes linked to neuronal motility. The latter include cell migration, axon guidance and e.g. synapse function relying on cytoskeletal dynamics, neurite outgrowth, axonal and dendritic differentiation, growth cone motility and neurite branching. SRF teams up with MRTFs (myocardin related transcription factors and TCFs (ternary complex factors to mediate cellular actin cytoskeletal dynamics and the immediate-early gene (IEG response, a bona fide indicator of neuronal activation. Herein, I will discuss how SRF and cofactors might modulate physiological processes of neuronal motility. Further, potential mechanisms engaged by neurite growth promoting molecules and axon guidance cues to target SRF’s transcriptional machinery in physiological neuronal motility will be presented. Of note, altered cytoskeletal dynamics and rapid initiation of an IEG response are a hallmark of injured neurons in various neurological disorders. Thus, SRF and its MRTF and TCF cofactors might emerge as a novel trio modulating peripheral and central axon regeneration.

  16. Bundled tungsten oxide nanowires under thermal processing

    International Nuclear Information System (INIS)

    Sun Shibin; Zhao Yimin; Xia Yongde; Zhu Yanqiu; Zou Zengda; Min Guanghui

    2008-01-01

    Ultra-thin W 18 O 49 nanowires were initially obtained by a simple solvothermal method using tungsten chloride and cyclohexanol as precursors. Thermal processing of the resulting bundled nanowires has been carried out in air in a tube furnace. The morphology and phase transformation behavior of the as-synthesized nanowires as a function of annealing temperature have been characterized by x-ray diffraction and electron microscopy. The nanostructured bundles underwent a series of morphological evolution with increased annealing temperature, becoming straighter, larger in diameter, and smaller in aspect ratio, eventually becoming irregular particles with size up to 5 μm. At 500 deg. C, the monoclinic W 18 O 49 was completely transformed to monoclinic WO 3 phase, which remains stable at high processing temperature. After thermal processing at 400 deg. C and 450 deg. C, the specific surface areas of the resulting nanowires dropped to 110 m 2 g -1 and 66 m 2 g -1 respectively, compared with that of 151 m 2 g -1 for the as-prepared sample. This study may shed light on the understanding of the geometrical and structural evolution occurring in nanowires whose working environment may involve severe temperature variations

  17. Involvement of microRNAs in physiological and pathological processes in the lung

    Directory of Open Access Journals (Sweden)

    Kriegova Eva

    2010-11-01

    Full Text Available Abstract To date, at least 900 different microRNA (miRNA genes have been discovered in the human genome. These short, single-stranded RNA molecules originate from larger precursor molecules that fold to produce hairpin structures, which are subsequently processed by ribonucleases Drosha/Pasha and Dicer to form mature miRNAs. MiRNAs play role in the posttranscriptional regulation of about one third of human genes, mainly via degradation of target mRNAs. Whereas the target mRNAs are often involved in the regulation of diverse physiological processes ranging from developmental timing to apoptosis, miRNAs have a strong potential to regulate fundamental biological processes also in the lung compartment. However, the knowledge of the role of miRNAs in physiological and pathological conditions in the lung is still limited. This review, therefore, summarizes current knowledge of the mechanism, function of miRNAs and their contribution to lung development and homeostasis. Besides the involvement of miRNAs in pulmonary physiological conditions, there is evidence that abnormal miRNA expression may lead to pathological processes and development of various pulmonary diseases. Next, the review describes current state-of-art on the miRNA expression profiles in smoking-related diseases including lung cancerogenesis, in immune system mediated pulmonary diseases and fibrotic processes in the lung. From the current research it is evident that miRNAs may play role in the posttranscriptional regulation of key genes in human pulmonary diseases. Further studies are, therefore, necessary to explore miRNA expression profiles and their association with target mRNAs in human pulmonary diseases.

  18. Physiological responses and differential gene expression in Prunus rootstocks under iron deficiency conditions.

    Science.gov (United States)

    Gonzalo, María José; Moreno, María Ángeles; Gogorcena, Yolanda

    2011-06-15

    Two Prunus rootstocks, the Myrobalan plum P 2175 and the interspecific peach-almond hybrid, Felinem, were studied to characterize their biochemical and molecular responses induced under iron-Deficient conditions. Plants of both genotypes were submitted to different treatments using a hydroponic system that permitted removal of Fe from the nutrient solution. Control plants were grown in 90 μM Fe (III)-EDTA, Deficient plants were grown in an iron free solution, and plants submitted to an Inductor treatment were resupplied with 180 μM Fe (III)-EDTA over 1 and 2 days after a period of 4 or 15 days of growth on an iron-free solution. Felinem increased the activity of the iron chelate reductase (FC-R) in the Inductor treatment after 4 days of iron deprivation. In contrast, P 2175 did not show any response after at least 15 days without iron. The induction of the FC-R activity in this genotype was coincident in time with the medium acidification. These results suggest two different mechanisms of iron chlorosis tolerance in both Strategy I genotypes. Felinem would use the iron reduction as the main mechanism to capture the iron from the soil, and in P 2175, the mechanism of response would be slower and start with the acidification of the medium synchronized with the gradual loss of chlorophyll in leaves. To better understand the control of these responses at the molecular level, the differential expression of PFRO2, PIRT1 and PAHA2 genes involved in the reductase activity, the iron transport in roots, and the proton release, respectively, were analyzed. The expression of these genes, estimated by quantitative real-time PCR, was different between genotypes and among treatments. The results were in agreement with the physiological responses observed. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. A dynamic artificial gastrointestinal system for studying the behavior of orally administered drug dosage forms under various physiological conditions

    NARCIS (Netherlands)

    Blanquet, S.; Zeijdner, E.; Beyssac, E.; Meunier, J.-P.; Denis, S.; Havenaar, R.; Alric, M.

    2004-01-01

    Purpose. The purpose of this study was to demonstrate the potential of a dynamic, multicompartmental in vitro system simulating the human stomach and small intestine (TIM-1) for studying the behavior of oral drug dosage forms under various physiological gastrointestinal conditions. Methods. Two

  20. Life under water: physiological adaptations to diving and living at sea.

    Science.gov (United States)

    Castellini, Michael

    2012-07-01

    This review covers the field of diving physiology by following a chronological approach and focusing heavily on marine mammals. Because the study of modern diving physiology can be traced almost entirely to the work of Laurence Irving in the 1930s, this particular field of physiology is different than most in that it did not derive from multiple laboratories working at many locations or on different aspects of a similar problem. Because most of the physiology principles still used today were first formulated by Irving, it is important to the study of this field that the sequence of thought is examined as a progression of theory. The review covers the field in roughly decadal blocks and traces ideas as they were first suggested, tested, modified and in some cases, abandoned. Because diving physiology has also been extremely dependent on new technologies used in the development of diving recorders, a chronological approach fits well with advances in electronics and mechanical innovation. There are many species that dive underwater as part of their natural behavior, but it is mainly the marine mammals (seals, sea lions, and whales) that demonstrate both long duration and dives to great depth. There have been many studies on other diving species including birds, snakes, small aquatic mammals, and humans. This work examines these other diving species as appropriate and a listing of reviews and relevant literature on these groups is included at the end. © 2012 American Physiological Society. Compr Physiol 2:1853-1872, 2012.

  1. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions.

    Directory of Open Access Journals (Sweden)

    Mauro Tiso

    Full Text Available The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in

  2. Learning objects as coadjuvants in the human physiology teaching-learning process

    Directory of Open Access Journals (Sweden)

    Marcus Vinícius Lara

    2014-08-01

    Full Text Available The use of Information and Communication Technologies (ICTs in the academic environment of biomedical area has gained much importance, both for their ability to complement the understanding of the subject obtained in the classroom, is the ease of access, or makes more pleasure the learning process, since these tools are present in everyday of the students and use a simple language. Considering that, this study aims to report the experience of building learning objects in human physiology as a tool for learning facilitation, and discuss the impact of this teaching methodology

  3. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions

    NARCIS (Netherlands)

    Bantz, C.; Koshkina, O.; Lang, T.; Galla, H.J.; Kirkpatrick, C.J.; Stauber, R.H.; Maskos, M.

    2014-01-01

    Due to the recent widespread application of nanomaterials to biological systems, a careful consideration of their physiological impact is required. This demands an understanding of the complex processes at the bio-nano interface. Therefore, a comprehensive and accurate characterization of the

  4. Physiological reactions in goat breeds maintained under shade, sun and partially shaded areas

    Directory of Open Access Journals (Sweden)

    Luís Fernando Dias Medeiros

    2015-12-01

    Full Text Available ABSTRACT. Medeiros L.F.D., Rodrigues V.C., Vieira D.H., Souza S.L.G. de, Neto O.C., Figueiredo N. de, Pinto C.F.D., Miranda A.L. & Violento C.B. [Physiological reactions in goat breeds maintained under shade, sun and partially shaded areas.] Reações fisiológicas de cabras em diferentes ambientes e coeficiente de tolerância ao calor em cabritos. Revista Brasileira de Medicina Veterinária, 37(4:286-296, 2015. Departamento de Reprodução e Avaliação Animal, Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, Seropédica, RJ 23851-970, Brasil. E-mail: diasmedeiros@yahoo.com.br The experiment was carried out to measure the effects of thermal stress on the rectal temperature (RT and respiratory frequency (RF, in animals of Boer and Saanen breeds, under the conditions of hot and humid climate of city of Rio de Janeiro, Baixada Fluminense, South East Region of Brazil; also the heat tolerance coefficient (HTC of Amakiri e Funcho was applied on pure and crossbreeds kids. The goats were divided into three groups, each group consisting of four females from each breed group. Each group was subjected to different surroundings, constituted by three experimental treatment: treatment A, with a sun protected enclosed area; treatment B, a sun exposed area without covering; and treatment C, area with a 50% covered section and a 50% sun exposed area, which permitted free circulation of the goats. A Balanced Latin Square was used. The RT and RF of the goats, in the afternoon periods (l5h00, were higher, than in the morning periods (09h00. The animals kept in the sun presented much higher results, especially in the afternoon periods, than the animals in the other two confinement areas. There were no differences in the RT and RF of the groups maintained in the shade or in partially covered area. There were differences in the RT and RF measurements between the two breeds, in the morning periods and in the afternoon periods

  5. No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Johansen, Lars Dan; Jensen, Anders Asbjørn

    2009-01-01

    GPRC6A is a seven transmembrane receptor mediating signaling by a wide range of L-alpha-amino-acids, a signaling augmented by the divalent cations Ca2+ and Mg2+. GPRC6A transcripts are detected in numerous mammalian tissues, but the physiological role of the receptor is thus far elusive. Analogou...

  6. Reading under the Skin: Physiological Activation during Reading in Children with Dyslexia and Typical Readers

    Science.gov (United States)

    Tobia, Valentina; Bonifacci, Paola; Ottaviani, Cristina; Borsato, Thomas; Marzocchi, Gian Marco

    2016-01-01

    The aim of this study was to investigate physiological activation during reading and control tasks in children with dyslexia and typical readers. Skin conductance response (SCR) recorded during four tasks involving reading aloud, reading silently, and describing illustrated stories aloud and silently was compared for children with dyslexia (n =…

  7. Research on the Computer System to Monitor the Physiological Parameter under Nuclear Radiation Environment

    International Nuclear Information System (INIS)

    Wang Ji; Xie Shiyi; Ren Xiaoli; Shen Yuli

    2009-01-01

    In view of special monitoring equipment wiring complexity and not checking potential health risks currently. Methods To propose monitoring platform of automatic wearing physiology based on wireless sensor network (WSN), and nodes include multi-physiological parameter intelligent sensors such as respiration, ECG and position, movement, temperature of body. Network gateway completed the data remote transmission accurately by using GPRS communication mode. Researched simulation system developed network gateway by XT5 and nodes used punctate series sensors such as MICA2 and MICA2DOT of Crossbow Company. when experimenter wore the special monitoring the collected information of physiology and location was accurately transmitted to the monitoring point that was 500 kilometers away, thereafter terminal computer visually supervised the transmitted information of volunteers. The system stably operates at operating frequency 2.4 GHz bands, transmit power-5 dB, data rate 40 Kbps or so. The principial result shows: The located monitoring of real-time dynamic physiology was carried out for the system prototype worn on the supervisor's physical corresponding parts. The system is suitable for application in Nuclear Radiation Environment. (authors)

  8. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions

    DEFF Research Database (Denmark)

    Nilsson, C.; Harwigsson, I.; Becker, K.

    2010-01-01

    Totally porous lipid-based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas (R), 6.7 cm effective length). In the absence...

  9. RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc.

    Directory of Open Access Journals (Sweden)

    Andrea Ariani

    Full Text Available Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1 probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees.

  10. Effect of Trinexapac-Ethyl on Physiological and Morphological Characteristics of Tall Fescue Var Rebel under Irrigation Free Conditions

    OpenAIRE

    M. H. Sheikh Mohamadi; N. Etemadi; A. Nikbakht

    2015-01-01

    Drought Stress is one of the most important limiting factors in plants growth and development. Growth regulator, Trinexapac-ethyl, might improve drought stress resistance via reducing stem growth and improving osmotic adjustments. In present study Trinexapac-ethyl effect on some tall fescue var Rebel physiological and morphological traits under irrigation free conditions was studied. So, an experiment was carried out as factorial in completely randomized design in three replicates in Research...

  11. Ecto-ATPase inhibition: ATP and adenosine release under physiological and ischemic in vivo conditions in the rat striatum.

    Science.gov (United States)

    Melani, Alessia; Corti, Francesca; Stephan, Holger; Müller, Christa E; Donati, Chiara; Bruni, Paola; Vannucchi, Maria Giuliana; Pedata, Felicita

    2012-01-01

    In the central nervous system (CNS) ATP and adenosine act as transmitters and neuromodulators on their own receptors but it is still unknown which part of extracellular adenosine derives per se from cells and which part is formed from the hydrolysis of released ATP. In this study extracellular concentrations of adenosine and ATP from the rat striatum were estimated by the microdialysis technique under in vivo physiological conditions and after focal ischemia induced by medial cerebral artery occlusion. Under physiological conditions, adenosine and ATP concentrations were in the range of 130 nmol/L and 40 nmol/L, respectively. In the presence of the novel ecto-ATPase inhibitor, PV4 (100 nmol/L), the extracellular concentration of ATP increased 12-fold to ~360 nmol/L but the adenosine concentration was not altered. This demonstrates that, under physiological conditions, adenosine is not a product of extracellular ATP. In the first 4h after ischemia, adenosine increased to ~690 nmol/L and ATP to ~50 nmol/L. In the presence of PV4 the extracellular concentration of ATP was in the range of 450 nmol/L and a significant decrease in extracellular adenosine (to ~270 nmol/L) was measured. The contribution of extracellular ATP to extracellular adenosine was maximal in the first 20 min after ischemia onset. Furthermore we demonstrated, by immunoelectron microscopy, the presence of the concentrative nucleoside transporter CNT2 on plasma and vesicle membranes isolated from the rat striatum. These results are in favor that adenosine is transported in vesicles and is released in an excitation-secretion manner under in vivo physiological conditions. Early after ischemia, extracellular ATP is hydrolyzed by ecto-nucleotidases which significantly contribute to the increase in extracellular adenosine. To establish the contribution of extracellular ATP to adenosine might constitute the basis for devising a correct putative purinergic strategy aimed at protection from ischemic damage

  12. Physiological and Morphological Responses of Phaseolus vulgaris Caused by Mercury Stress under Lab Conditions

    Directory of Open Access Journals (Sweden)

    Jot Sharma

    2014-07-01

    Full Text Available One of the many new risks that effecting the early societies is the continuous exposure to pollutants, namely, heavy metals. Mercury (Hg is perhaps the metal which has attracted the most attention in soil science and plant nutrition due to its potential toxicity to ecosystem. In the present study, the toxic effect of mercury was determined by morphological and physiological parameter on plant Phaseolus vulgaris. In germination studies, parameters such as germination percentage, root length, and shoot length were decreased with increasing dose of mercuric chloride (HgCl2 concentrations. Mercury also showed inhibition property towards physiological parameters such as chlorophyll, protein, nitrate, and endogenous pool. Higher concentrations of HgCl2 were found to be more toxic.

  13. Formation process of Malaysian modern architecture under influence of nationalism

    OpenAIRE

    宇高, 雄志; 山崎, 大智

    2001-01-01

    This paper examines the Formation Process of Malaysian Modern Architecture under Influence of Nationalism,through the process of independence of Malaysia. The national style as "Malaysian national architecture" which hasengaged on background of political environment under the post colonial situation. Malaysian urban design is alsodetermined under the balance of both of ethnic culture and the national culture. In Malaysia, they decided to choosethe Malay ethnic culture as the national culture....

  14. Physiological and behavioral differences in sensory processing: a comparison of children with autism spectrum disorder and sensory modulation disorder.

    Science.gov (United States)

    Schoen, Sarah A; Miller, Lucy J; Brett-Green, Barbara A; Nielsen, Darci M

    2009-01-01

    A high incidence of sensory processing difficulties exists in children with Autism Spectrum Disorder (ASD) and children with Sensory Modulation Disorder (SMD). This is the first study to directly compare and contrast these clinical disorders. Sympathetic nervous system markers of arousal and reactivity were utilized in a laboratory paradigm that administered a series of sensory challenges across five sensory domains. The Short Sensory Profile, a standardized parent-report measure, provided a measure of sensory-related behaviors. Physiological arousal and sensory reactivity were lower in children with ASD whereas reactivity after each sensory stimulus was higher in SMD, particularly to the first stimulus in each sensory domain. Both clinical groups had significantly more sensory-related behaviors than typically developing children, with contrasting profiles. The ASD group had more taste/smell sensitivity and sensory under-responsivity while the SMD group had more atypical sensory seeking behavior. This study provides preliminary evidence distinguishing sympathetic nervous system functions and sensory-related behaviors in Autism Spectrum Disorder and Sensory Modulation Disorder. Differentiating the physiology and sensory symptoms in clinical groups is essential to the provision of appropriate interventions.

  15. Physiological and behavioral differences in sensory processing: a comparison of children with Autism Spectrum Disorder and Sensory Modulation Disorder

    Directory of Open Access Journals (Sweden)

    Sarah A Schoen

    2009-11-01

    Full Text Available A high incidence of sensory processing difficulties exists in children with Autism Spectrum Disorder (ASD and children with idiopathic Sensory Modulation Disorder (SMD. This is the first study to directly compare and contrast these clinical disorders. Sympathetic nervous system markers of arousal and reactivity were utilized in a laboratory paradigm that administered a series of sensory challenges across five sensory domains. The Short Sensory Profile, a standardized parent-report measure, provided a measure of sensory-related behaviors. Physiological arousal and sensory reactivity were lower in children with ASD whereas reactivity after each sensory stimulus was higher in SMD, particularly to the first stimulus in each sensory domain. Both clinical groups had significantly more sensory-related behaviors than typically developing children, with contrasting profiles. The ASD group had more taste/smell sensitivity and sensory under-responsivity while the SMD group had more atypical sensory seeking behavior. This study provides preliminary evidence distinguishing sympathetic nervous system functions and sensory-related behaviors in Autism Spectrum Disorder and Sensory Modulation Disorder. Differentiating the physiology and sensory symptoms in clinical groups is essential to the provision of appropriate interventions.

  16. Physiological and Behavioral Differences in Sensory Processing: A Comparison of Children with Autism Spectrum Disorder and Sensory Modulation Disorder

    Science.gov (United States)

    Schoen, Sarah A.; Miller, Lucy J.; Brett-Green, Barbara A.; Nielsen, Darci M.

    2009-01-01

    A high incidence of sensory processing difficulties exists in children with Autism Spectrum Disorder (ASD) and children with Sensory Modulation Disorder (SMD). This is the first study to directly compare and contrast these clinical disorders. Sympathetic nervous system markers of arousal and reactivity were utilized in a laboratory paradigm that administered a series of sensory challenges across five sensory domains. The Short Sensory Profile, a standardized parent-report measure, provided a measure of sensory-related behaviors. Physiological arousal and sensory reactivity were lower in children with ASD whereas reactivity after each sensory stimulus was higher in SMD, particularly to the first stimulus in each sensory domain. Both clinical groups had significantly more sensory-related behaviors than typically developing children, with contrasting profiles. The ASD group had more taste/smell sensitivity and sensory under-responsivity while the SMD group had more atypical sensory seeking behavior. This study provides preliminary evidence distinguishing sympathetic nervous system functions and sensory-related behaviors in Autism Spectrum Disorder and Sensory Modulation Disorder. Differentiating the physiology and sensory symptoms in clinical groups is essential to the provision of appropriate interventions. PMID:19915733

  17. Numerical Simulation of Hemodynamic and Physiological Responses of Human Cardiovascular and Respiratory System under Drugs Administration

    Czech Academy of Sciences Publication Activity Database

    Převorovská, Světlana; Maršík, František

    2004-01-01

    Roč. 4, č. 4 (2004), s. 295-304 ISSN 1567-8822 R&D Projects: GA ČR(CZ) GA106/03/1073; GA ČR(CZ) GA106/03/0958 Institutional research plan: CEZ:AV0Z2076919 Keywords : human cardiovascular and respiratory system * baroreflex and chemoreflex control * physiologically based pharmacokinetic model Subject RIV: BK - Fluid Dynamics

  18. Anatomic and physiological modifications in seedlings of Coffea arabica cultivar Siriema under drought conditions

    OpenAIRE

    Melo,Emanuelle Ferreira; Fernandes-Brum,Christiane Noronha; Pereira,Fabrício José; Castro,Evaristo Mauro de; Chalfun-Júnior,Antonio

    2014-01-01

    Due to the weather changes prognostic for the coming years, the understanding of water deficit and physiological responses of plants to drought becomes an important requirement in order to develop technologies such as mechanisms to assist plants to cope with longer drought periods, which will be essential to maintenance of Brazilian and worldwide production. This study aimed to evaluate ecophysiological and anatomical aspects as well as the nitrate reductase activity in Siriema coffee seedlin...

  19. Evaluation by fluorescence resonance energy transfer of the stability of nonviral gene delivery vectors under physiological conditions.

    Science.gov (United States)

    Itaka, Keiji; Harada, Atsushi; Nakamura, Kozo; Kawaguchi, Hiroshi; Kataoka, Kazunori

    2002-01-01

    The stability in physiological medium of polyplex- and lipoplex-type nonviral gene vectors was evaluated by detecting the conformational change of complexed plasmid DNA (pDNA) labeled simultaneously with fluorescein (energy donor) and X-rhodamine (energy acceptor) through fluorescence resonance energy transfer (FRET). Upon mixing with cationic components, such as LipofectAMINE, poly(L-lysine), and poly(ethylene glycol)-poly(L-lysine) block copolymer (PEG-PLys), the fluorescence spectrum of doubly labeled pDNA underwent a drastic change due to the occurrence of FRET between the donor-acceptor pair on pDNA taking a globular conformation (condensed state) through complexation. The measurement was carried out also in the presence of 20% serum, under which conditions FRET from condensed pDNA was clearly monitored without interference from coexisting components in the medium, allowing evaluation of the condensed state of pDNA in nonviral gene vectors under physiological conditions. Serum addition immediately induced a sharp decrease in FRET for the LipofectAMINE/pDNA (lipoplex) system, which was consistent with the sharp decrease in the transfection efficiency of the lipoplex system in serum-containing medium. In contrast, the PEG-PLys/pDNA polyplex (polyion complex micelle) system maintained appreciable transfection efficiency even in serum-containing medium, and FRET efficiency remained constant for up to 12 h, indicating the high stability of the polyion complex micelle under physiological conditions.

  20. Magnitude-dependent proliferation and contractility modulation of human bladder smooth muscle cells under physiological stretch.

    Science.gov (United States)

    Luo, De-Yi; Wazir, Romel; Du, Caigan; Tian, Ye; Yue, Xuan; Wei, Tang-Qiang; Wang, Kun-Jie

    2015-11-01

    The purpose of this study was to describe and test a kind of stretch pattern which is based on modified BOSE BioDynamic system to produce optimum physiological stretch during bladder cycle. Moreover, we aimed to emphasize the effects of physiological stretch's amplitude upon proliferation and contractility of human bladder smooth muscle cells (HBSMCs). HBSMCs were seeded onto silicone membrane and subjected to stretch simulating bladder cycle at the range of stretches and time according to customized software on modified BOSE BioDynamic bioreactor. Morphological changes were assessed using immunofluorescence and confocal laser scanning microscope. Cell proliferation and cell viability were determined by BrdU incorporation assay and Cell Counting Kit-8, respectively. Contractility of the cells was determined using collagen gel contraction assay. RT-PCR was used to assess phenotypic and contractility markers. HBSMCs were found to show morphologically spindle-shaped and orientation at various elongations in the modified bioreactor. Stretch-induced proliferation and viability depended on the magnitude of stretch, and stretches also regulate contractility and contraction markers in a magnitude-dependent manner. We described and tested a kind of stretch pattern which delivers physiological stretch implemented during bladder cycle. The findings also showed that mechanical stretch can promote magnitude-dependent morphological, proliferative and contractile modulation of HBSMCs in vitro.

  1. Kaolin modulates ABA and IAA dynamics and physiology of grapevine under Mediterranean summer stress.

    Science.gov (United States)

    Dinis, L-T; Bernardo, S; Luzio, A; Pinto, G; Meijón, M; Pintó-Marijuan, M; Cotado, A; Correia, C; Moutinho-Pereira, J

    2018-01-01

    The foliar exogenous application of kaolin, a radiation-reflecting inert mineral, has proven to be an effective short-term climate change mitigation strategy for Mediterranean vineyards. In this work, we address the hypothesis that kaolin could improve both the hormonal dynamics and physiological responses of grapevines growing in Douro Region, northern Portugal. For this purpose, the leaf water potential, gas exchange and chlorophyll a fluorescence parameters were monitored, as well as the abscisic acid (ABA) and indole-3-acetic acid (IAA) quantification and immunolocalization were assessed. The study revealed a slight decrease in ABA and an increase in IAA in the kaolin treatment, which in turn were associated with the improvement of physiological performance. A month after spraying, kaolin improves the water potential respectively, 30% and 17% in the predawn and midday periods. Besides, plants treated with kaolin showed higher values of stomatal conductance, net CO 2 assimilation rate and intrinsic water use efficiency. Kaolin also ameliorates the effective PSII efficiency (67%), as well as the maximum quantum efficiency of photosystem II and the photosynthetic electron transport rate (>73%). These results were consistent with the higher photochemical quenching and the lower non-photochemical quenching observed in treated leaves and with the better performance obtained by the JIP test parameters. Physiological and hormonal analysis confirmed that kaolin effectively enhance grapevine summer stress tolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Physiological contribution of P2X receptors in postreceptoral signal processing in the mouse retina.

    Science.gov (United States)

    Ichinohe, Sho; Ishii, Toshiyuki; Takahashi, Hiroshi; Kaneda, Makoto

    2017-02-01

    ATP activates P2X receptors and acts as a neurotransmitter in the nervous system. We have previously reported that P2X receptors modulate the firing rate of retinal ganglion cells. Since many subtypes of P2X receptors are distributed in the mouse retina, it is likely that the modulatory effects of P2X receptor-mediated signaling can occur at multiple synaptic levels in the retina. In this study, we investigated whether P2X receptors expressed between the photoreceptor layer and the inner nuclear layer in the mouse retina were physiologically functional, by electroretinography (ERG). In the combined rod-cone ERG and the scotopic ERG, intravitreal injection of PPADS, an antagonist of P2X receptors, had no effects on the amplitude of the a-wave, but decreased the amplitude of the b-wave. In the photopic ERG, intravitreal injection of PPADS significantly decreased the amplitude of both the a-wave and the b-wave. In ex vivo recordings, a decrease in the b-wave amplitude was observed at 20μM PPADS, confirming that the inhibition of the b-wave by intravitreal injection of PPADS is due to the inhibition of P2X receptors. Our findings suggest that P2X receptor-mediated signaling has a physiological effect in both the rod and the cone pathways in postreceptoral processing. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  3. Urban pollution of sediments: Impact on the physiology and burrowing activity of tubificid worms and consequences on biogeochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Pigneret, M., E-mail: mathilde.pigneret@univ-lyon1.fr [LEHNA, UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622 Villeurbanne (France); Mermillod-Blondin, F.; Volatier, L.; Romestaing, C. [LEHNA, UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622 Villeurbanne (France); Maire, E.; Adrien, J. [MATEIS, UMR CNRS 5510, INSA de Lyon, 25 avenue Jean Capelle, 69621 Villeurbanne (France); Guillard, L.; Roussel, D.; Hervant, F. [LEHNA, UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622 Villeurbanne (France)

    2016-10-15

    In urban areas, infiltration basins are designed to manage stormwater runoff from impervious surfaces and allow the settling of associated pollutants. The sedimentary layer deposited at the surface of these structures is highly organic and multicontaminated (mainly heavy metals and hydrocarbons). Only few aquatic species are able to maintain permanent populations in such an extreme environment, including the oligochaete Limnodrilus hoffmeisteri. Nevertheless, the impact of urban pollutants on these organisms and the resulting influence on infiltration basin functioning remain poorly studied. Thus, the aim of this study was to determine how polluted sediments could impact the survival, the physiology and the bioturbation activity of L. hoffmeisteri and thereby modify biogeochemical processes occurring at the water-sediment interface. To this end, we conducted laboratory incubations of worms, in polluted sediments from infiltration basins or slightly polluted sediments from a stream. Analyses were performed to evaluate physiological state and burrowing activity (X-ray micro-tomography) of worms and their influences on biogeochemical processes (nutrient fluxes, CO{sub 2} and CH{sub 4} degassing rates) during 30-day long experiments. Our results showed that worms exhibited physiological responses to cope with high pollution levels, including a strong ability to withstand the oxidative stress linked to contamination with heavy metals. We also showed that the presence of urban pollutants significantly increased the burrowing activity of L. hoffmeisteri, demonstrating the sensitivity and the relevance of such a behavioural response as biomarker of sediment toxicity. In addition, we showed that X-ray micro-tomography was an adequate technique for accurate and non-invasive three-dimensional investigations of biogenic structures formed by bioturbators. The presence of worms induced stimulations of nutrient fluxes and organic matter recycling (between + 100% and 200% of CO

  4. Sodium replacement of potassium in physiological processes of olive trees (var. Barnea) as affected by drought.

    Science.gov (United States)

    Erel, Ran; Ben-Gal, Alon; Dag, Arnon; Schwartz, Amnon; Yermiyahu, Uri

    2014-10-01

    Potassium (K) is a macro-nutrient understood to play a role in the physiological performance of plants under drought. In some plant species, sodium (Na) can partially substitute K. Although a beneficial role of Na is well established, information regarding its nutritional role in trees is scant and its function under conditions of drought is not fully understood. The objective of the present study was to evaluate the role of K and its possible replacement by Na in olive's (Olea europaea L.) response to drought. Young and bearing olive trees were grown in soilless culture and exposed to gradual drought. In the presence of Na, trees were tolerant of extremely low K concentrations. Depletion of K and Na resulted in ∼50% reduction in CO2 assimilation rate when compared with sufficiently fertilized control plants. Sodium was able to replace K and recover the assimilation rate to nearly optimum level. The inhibitory effect of K deficiency on photosynthesis was more pronounced under high stomatal conductance. Potassium was not found to facilitate drought tolerance mechanisms in olives. Moreover, stomatal control machinery was not significantly impaired by K deficiency, regardless of water availability. Under drought, leaf water potential was affected by K and Na. High environmental K and Na increased leaf starch content and affected the soluble carbohydrate profile in a similar manner. These results identify olive as a species capable of partly replacing K by Na. The nutritional effect of K and Na was shown to be independent of plant water status. The beneficial effect of Na on photosynthesis and carbohydrates under insufficient K indicates a positive role of Na in metabolism and photosynthetic reactions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  6. Short-term adaptation to a simple motor task: a physiological process preserved in multiple sclerosis.

    Science.gov (United States)

    Mancini, L; Ciccarelli, O; Manfredonia, F; Thornton, J S; Agosta, F; Barkhof, F; Beckmann, C; De Stefano, N; Enzinger, C; Fazekas, F; Filippi, M; Gass, A; Hirsch, J G; Johansen-Berg, H; Kappos, L; Korteweg, T; Manson, S C; Marino, S; Matthews, P M; Montalban, X; Palace, J; Polman, C; Rocca, M; Ropele, S; Rovira, A; Wegner, C; Friston, K; Thompson, A; Yousry, T

    2009-04-01

    Short-term adaptation indicates the attenuation of the functional MRI (fMRI) response during repeated task execution. It is considered to be a physiological process, but it is unknown whether short-term adaptation changes significantly in patients with brain disorders, such as multiple sclerosis (MS). In order to investigate short-term adaptation during a repeated right-hand tapping task in both controls and in patients with MS, we analyzed the fMRI data collected in a large cohort of controls and MS patients who were recruited into a multi-centre European fMRI study. Four fMRI runs were acquired for each of the 55 controls and 56 MS patients at baseline and 33 controls and 26 MS patients at 1-year follow-up. The externally cued (1 Hz) right hand tapping movement was limited to 3 cm amplitude by using at all sites (7 at baseline and 6 at follow-up) identically manufactured wooden frames. No significant differences in cerebral activation were found between sites. Furthermore, our results showed linear response adaptation (i.e. reduced activation) from run 1 to run 4 (over a 25 minute period) in the primary motor area (contralateral more than ipsilateral), in the supplementary motor area and in the primary sensory cortex, sensory-motor cortex and cerebellum, bilaterally. This linear activation decay was the same in both control and patient groups, did not change between baseline and 1-year follow-up and was not influenced by the modest disease progression observed over 1 year. These findings confirm that the short-term adaptation to a simple motor task is a physiological process which is preserved in MS.

  7. CHANGES OF SELECTED PHYSIOLOGICAL INDICES IN MEN UNDER THE INFLUENCE OF THERMAL HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Prystupa Tetyana

    2010-01-01

    Full Text Available The research objective is defining the influence of exposure to heat during the Finnish sauna treatment in the morning hours on selected physiological indices in men, who were monitored during a series of three sauna treatments in a row. 74 healthy men took part in the studies. Body weight and its composition was diagnosed with the help of TANITA BODY COMPOSITION ANALYZER TBF-300 based on bioelectrical impedance analysis. The conducted research confirm the hypothesis about the positive effect of the Finnish sauna on the body mass components, such as body mass, BMI, TBW (kg and % body fat.

  8. A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions

    Directory of Open Access Journals (Sweden)

    Marie eViolet

    2014-03-01

    Full Text Available Nucleic acid protection is a substantial challenge for neurons, which are continuously exposed to oxidative stress in the brain. Neurons require powerful mechanisms to protect DNA and RNA integrity and ensure their functionality and longevity. Beside its well known role in microtubule dynamics, we recently discovered that Tau is also a key nuclear player in the protection of neuronal genomic DNA integrity under reactive oxygen species (ROS-inducing heat stress (HS conditions in primary neuronal cultures. In this report, we analyzed the capacity of Tau to protect neuronal DNA integrity in vivo in adult mice under physiological and HS conditions. We designed an in vivo mouse model of hyperthermia/HS to induce a transient increase in ROS production in the brain. Comet and TUNEL assays demonstrated that Tau protected genomic DNA in adult cortical and hippocampal neurons in vivo under physiological conditions in wild-type and Tau-deficient (KO-Tau mice. HS increased DNA breaks in KO-Tau neurons. Notably, KO-Tau hippocampal neurons in the CA1 subfield restored DNA integrity after HS more weakly than the dentate gyrus neurons. The formation of phosphorylated histone H2AX foci, a double-strand break marker, was observed in KO-Tau neurons only after HS, indicating that Tau deletion did not trigger similar DNA damage under physiological or HS conditions. Moreover, genomic DNA and cytoplasmic and nuclear RNA integrity were altered under HS in hippocampal neurons exhibiting Tau deficiency, which suggests that Tau also modulates RNA metabolism. Our results suggest that Tau alterations lead to a loss of its nucleic acid safeguarding functions and participate in the accumulation of DNA and RNA oxidative damage observed in the Alzheimer’s disease brain.

  9. Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses.

    Science.gov (United States)

    Cheng, Zhi-Wei; Chen, Zi-Yan; Yan, Xing; Bian, Yan-Wei; Deng, Xiong; Yan, Yue-Ming

    2018-01-06

    Drought stress, a major abiotic stress, commonly occurs in metal-contaminated environments and affects crop growth and yield. In this study, we performed the first integrated phenotypic, physiological, and proteomic analysis of Brachypodium distachyon L. seedling leaves under polyethylene glycol (PEG) mock osmotic stress, cadmium (Cd 2+ ), and their combined stresses. Combined osmotic and Cd 2+ stress had more significant effects than each individual stress on seedling growth, and the physiological traits and ultrastructures of leaves. Totally 117 differentially accumulated protein (DAP) spots detected by two-dimensional difference gel electrophoresis (2D-DIGE) were identified, and representing 89 unique proteins under individual and combined stresses. These DAPs were involved in photosynthesis/respiration (34%), energy and carbon metabolism (21%), stress/defense/detoxification (13%), protein folding and degradation (12%), and amino acid metabolism (7%). Principal component analysis (PCA) revealed that DAPs from the Cd 2+ and combined stresses grouped much closer than those from osmotic stress, indicating Cd 2+ and combined stresses resulted in more changes to the leaf proteome than osmotic stress alone. Protein-protein interaction analyses showed that a 14-3-3 centered sub-network could play important roles in responses to abiotic stresses. An overview pathway of proteome metabolic changes in Bd21 seedling leaves under combined stresses is proposed, representing a synergistic responsive network and underlying response and defense mechanisms. Drought stress is one of the major abiotic stresses, which commonly occurs in metal-contaminated environments, and affects crop growth and yield performance. We performed the first integrated phenotypic, physiological and proteomic analysis of Brachypodium distachyon L. seedling leaves under drought (PEG), cadmium (Cd 2+ ) and their combined stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Physiological quality of soybean seeds under different yield environments and plant density

    Directory of Open Access Journals (Sweden)

    Felipe A. Baron

    Full Text Available ABSTRACT Yield potential of agricultural fields associated with plant spatial arrangement could determine the physiological quality of soybean (Glycine max L. seeds. Thus, this study aimed to evaluate the physiological quality of soybean seeds from different yield environments and plant densities. Experiments were carried out in Boa Vista das Missões-RS, Brazil, during the 2014/2015 growing season. Yield environments were delineated by overlapping yield maps from the 2008, 2009/2010 and 2011/2012 growing seasons. The experimental design was a randomized complete block in a 2 x 5 factorial arrangement with two yield environments (low and high and five plant densities, with four replicates. Two varieties were tested: Brasmax Ativa RR (10, 15, 20, 25 and 30 plants m-1 and Nidera 5909 RR (5, 10, 15, 20 and 25 plants m-1. After harvested, the seeds were analysed as following: first count index, germination, abnormal seedlings, dead seeds, electrical conductivity, accelerate aging test, root length, hypocotyl length and seedling length. The spatial variability of seed vigor in the production field could be reduced by adjusting plant density, but the adjustment should consider the variety. Harvest according to yield environment is a strategy to separate lots of seeds with higher vigor, originated from high-yield environments.

  11. Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress.

    Science.gov (United States)

    Huang, Renhui; Pan, Mingfang; Wan, Cuixiang; Shah, Nagendra P; Tao, Xueying; Wei, Hua

    2016-02-01

    Acid tolerance responses (ATR) in Lactobacillus plantarum ZDY2013 were investigated at physiological and molecular levels. A comparison of composition of cell membrane fatty acids (CMFA) between acid-challenged and unchallenged cells showed that acid adaptation evoked a significantly higher percentage of saturated fatty acids and cyclopropane fatty acids in acid-challenged than in unchallenged cells. In addition, reverse transcription-quantitative PCR analysis in acid-adapted cells at different pH values (ranging from 3.0 to 4.0) indicated that several genes were differently regulated, including those related to proton pumps, amino acid metabolism, sugar metabolism, and class I and class III stress response pathways. Expression of genes involved in fatty acid synthesis and production of alkali was significantly upregulated. Upon exposure to pH 4.5 for 2 h, a higher survival rate (higher viable cell count) of Lactobacillus plantarum ZDY2013 was achieved following an additional challenge to 40 mM hydrogen peroxide for 60 min, but no difference in survival rate of cells was found with further challenge to heat, ethanol, or salt. Therefore, we concluded that the physiological and metabolic changes of acid-treated cells of Lactobacillus plantarum ZDY2013 help the cells resist damage caused by acid, and further initiated global response signals to bring the whole cell into a state of defense to other stress factors, especially hydrogen peroxide. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Physiological Responses of Water-Polo Players Under Different Tactical Strategie

    Directory of Open Access Journals (Sweden)

    Petros G. Botonis, Argyris G. Toubekis

    2015-01-01

    Full Text Available The aim of this study was to investigate the effect of defense tactical strategy on physiological responses characterizing playing intensity in water-polo game. In the first part of the study, fourteen players were assigned to defending (n = 7 and offending (n = 7 groups and participated in nine 4-min plays applying three different defending systems: press, static-zone and zone-press, in front of the defense court of one goalpost. In the second part, 18 players participated in nine different real full court water-polo games consisting of 3X15min of live-time playing periods. Both in defense court plays and real games, the three defense systems were played in a counterbalanced order and heart rate (HR was continuously recorded. Additionally, in defense court plays, blood lactate concentration (La was measured at the end of each 4-min period. Mean HR within defense court plays was higher in press (153 ± 10 beats.min-1 than in static-zone (140 ± 11 beats.min-1 and zone-press (143 ± 16 beats.min-1, p 0.05. Defenders and offenders showed similar HR and La responses across the tactical modes. In conclusion, defense tactical strategies affect physiological responses within a part of the game but do not affect the overall playing intensity of a real water-polo game. Tactical strategies similarly affect offenders and defenders.

  13. Stability of prebiotic, laminaran oligosaccharide under food processing conditions

    Science.gov (United States)

    Chamidah, A.

    2018-04-01

    Prebiotic stability tests on laminaran oligosaccharide under food processing conditions were urgently performed to determine the ability of prebiotics deal with processing. Laminaran, oligosaccharide is produced from enzymatic hydrolysis. To further apply this prebiotic, it is necessary to test its performance on food processing. Single prebiotic or in combination with probiotic can improve human digestive health. The effectiveness evaluation of prebiotic should be taken into account in regards its chemical and functional stabilities. This study aims to investigate the stability of laminaran, oligosaccharide under food processing condition.

  14. Proton-coupled electron transfer promotes the reduction of ferrylmyoglobin by uric acid under physiological conditions

    DEFF Research Database (Denmark)

    de Zawadzki, Andressa; Cardoso, Daniel R.; Skibsted, Leif Horsfelt

    2017-01-01

    The hypervalent muscle pigment ferrylmyoglobin, MbFe(IV)]O, is not reduced by urate monoanions at physiological conditions despite a strong driving force of around 30 kJ mol1 while for low pH, uric acid was found to reduce protonated ferrylmyoglobin, MbFe(IV)]O,H+, efficiently in a bimolecular...... reaction with k1 ¼ 1.1 0.1 103 L mol1 s1, DH‡ ¼ 66.1 0.1 kJ mol1 and DS‡ ¼ 35.2 0.2 J mol1 K1. For intermediate pH, like for anaerobic muscles and for meat, proton-oupled electron transfer occurs in a transition state, {MbFe(IV)]O/H+/urate}‡, which is concluded to be formed from uric acid and Mb...... in uric acid concentration may serve as an inherent protection against radical formation by ferrylmyoglobin...

  15. Physiological and biochemical responses of two maize cultivars (Corralejo and Tlaltizapon under salt stress

    Directory of Open Access Journals (Sweden)

    T. Amdouni

    2014-08-01

    Full Text Available The aim of the present work was to study the effect of different concentrations of NaCl (0, 50 and 100mM in two cultivars of maize (Corralejo and Tlaltizapan, on their nutritional and photosynthetic comportment. The measures focused on the physiological parameters (growth weight, hydration and nutritional status of plants and biochemical (chlorophyll, PEPC activity, activity of some anti-oxidant enzymes and lipid peroxidation. Analysis of morphological parameters showed a yellowing of the extremity of leaves, at 100 mM of NaCl. These visual symptoms are associated with a decrease of chlorophyll. A decrease in potential growth was found in two cultivars, but less significant in Corralejo. The best salt tolerance of the latter was due to a better hydration of the leaves, to a lesser accumulation of Na+ and Cl- in its leaves and a better selectivity K/Na. To identify the biochemical characteristics associated with the physiological behavior, we conducted measures activity of PEPC, the protein, catalase and peroxidase on the fourth leaf from the bottom. A negative correlation between the activity of PEPC and Na+ amount was found at 50 mM in the sensitive cultivar and at 100 mM of NaCl in tolerant cultivar Corralejo. Furthermore, the antioxidant response was marked by a greater accumulation of malondialdehyde, in Tlaltizapan at 100 mM of NaCl. At the same concentration, catalase peroxidase and SOD activities weren't decreased in this cultivar. This suggests that salt has created a stress oxidative state only in Tlaltizapan leaves. These results showed a better performance of Corralejo cultivar compared to Tlaltizapan cultivar, at 50 and 100 mM of NaCl.

  16. Physiological responses of camel calves to weaning stress with absence of dams under group or individual rearing system

    International Nuclear Information System (INIS)

    Farghaly, H.M.A; Abdel-Fattah, M.S.; Hashem, A.L.S.; Azamel, A.A.

    2012-01-01

    The present study was performed to investigate the effects of weaning stress, rearing system and probiotics supplementation on live body weight, LBW; total feed intake, TFI, water consumption, WC, average daily gain, ADG and growth rate, GR, plasma cortisol and thyroid hormones concentrations during weaning period. This study was carried out at Maryout Research Station of the Desert Research Center, 35 km southwest of Alexandria, Egypt. Ten Maghraby breed camel calves were separated from their dams at 280 days of age with initial LBW of 236.76±0.22 kg. The duration of the study was 35 days and divided into five weeks; first week served as pre-weaning period followed by four weeks served as post-weaning period. Camel calves were weaned using calf-dam contact off system (calves were completely separated from their dams at all times during weaning process) under two rearing systems (6 calves penned in two groups and 4 calves penned in complete isolation, each alone in 4 replicates). Half of calves in each type of rearing system were supplemented with probiotics while the others were not-supplemented with probiotics. The results showed that maternal and milk deprivation affect significantly LBW, TWG, ADG and GR during post-weaning period (28 days), where grouped and isolated calves were different significantly in LBW, TWG and ADG, during the first two weeks post-weaning, but not different significantly in GR (1.66%) at the end of weaning period (28 days). However, grouped calves were more endurance (less responsive) to weaning stress along weaning period. The beneficial effect of probiotics supplementation on TFI was more pronounced from d14 till d28 post-weaning for both grouped and isolated-housed calves. The results showed also that completely social isolation was more pronounced as a stressful condition, this was indicated by the physiological changes which were considered indicative for a higher state of stress, such as an acute release of cortisol hormone and

  17. Response of sunflower hybrids to different nitrogen levels for physiological and agronomical traits under field conditions

    International Nuclear Information System (INIS)

    Baig, D.; Abbasi, F.M.; Ahmed, H.; Qamar, M.; Khan, M.A.

    2016-01-01

    Sunflower occupies main position among oil seed crops in Pakistan. Mostly indigenous sunflower hybrids are cultivated which give low achene and fodder yields. The issue related with these hybrids ascribed to lack of information about use of inputs and cultural practices. Judicious nitrogen use and suitable high yielding hybrid play key role in increasing sunflower productivity. Protein is the basic requirement of the metabolic processes for the vegetative, reproductive growth and yield of the crop. The protein is wholly dependent upon the amount of nitrogen fertilization available in soil for the plant use. A two year study was conducted in 2012 and 2013 at National Agricultural Research Centre (NARC), Islamabad, Pakistan. The experiment was aimed to evaluate the effect of different nitrogen (N) levels (N = 0 kgha , N = 60 kgha , N = 0 1 2 -1 -1 -1 -1 80 kgha , N3 = 120 kgha , N4 = 180 kgha and N5 = 240 kgha ) on two sunflower hybrids, SMH-0907 and SMH-0917 to optimize the N levels for obtaining maximum yield on sustainable basis. Both hybrids were kept in the main plot while N levels in the sub plot in a randomized complete block design with three replications. -1 The results showed that the number of achene head , 100-achene weight and achene yield increased with increased N application. The increased levels of N -1 also enhanced the achene yield. The maximum achene yield (3170.8 kg ha ) was -1 -1 recorded at 180 kg N ha followed by 240 kg N ha . Minimum achene yield (2115 kg -1 ha ) was observed in control treatment (N ). Polynomial regression line showed 0-1 that the rate of yield increase was higher up to 180 kg N ha and become slow-1 thereafter. The hybrid SMH-0907 produced more achene (2736 kg ha ) as compared -1 to the hybrid SMH-0917 (2694 kg ha ). Results revealed that economized application of different doses of N can boost up the yield in both sunflower hybrids SMH-0907 and SMH-0917. These findings could be helpful in rationalizing most valuable inputs

  18. Attentional and physiological processing of food images in functional dyspepsia patients: A pilot study.

    Science.gov (United States)

    Lee, In-Seon; Preissl, Hubert; Giel, Katrin; Schag, Kathrin; Enck, Paul

    2018-01-23

    The food-related behavior of functional dyspepsia has been attracting more interest of late. This pilot study aims to provide evidence of the physiological, emotional, and attentional aspects of food processing in functional dyspepsia patients. The study was performed in 15 functional dyspepsia patients and 17 healthy controls after a standard breakfast. We measured autonomic nervous system activity using skin conductance response and heart rate variability, emotional response using facial electromyography, and visual attention using eyetracking during the visual stimuli of food/non-food images. In comparison to healthy controls, functional dyspepsia patients showed a greater craving for food, a decreased intake of food, more dyspeptic symptoms, lower pleasantness rating of food images (particularly of high fat), decreased low frequency/high frequency ratio of heart rate variability, and suppressed total processing time of food images. There were no significant differences of skin conductance response and facial electromyography data between groups. The results suggest that high level cognitive functions rather than autonomic and emotional mechanisms are more liable to function differently in functional dyspepsia patients. Abnormal dietary behavior, reduced subjective rating of pleasantness and visual attention to food should be considered as important pathophysiological characteristics in functional dyspepsia.

  19. Tumor image signatures and habitats: a processing pipeline of multimodality metabolic and physiological images.

    Science.gov (United States)

    You, Daekeun; Kim, Michelle M; Aryal, Madhava P; Parmar, Hemant; Piert, Morand; Lawrence, Theodore S; Cao, Yue

    2018-01-01

    To create tumor "habitats" from the "signatures" discovered from multimodality metabolic and physiological images, we developed a framework of a processing pipeline. The processing pipeline consists of six major steps: (1) creating superpixels as a spatial unit in a tumor volume; (2) forming a data matrix [Formula: see text] containing all multimodality image parameters at superpixels; (3) forming and clustering a covariance or correlation matrix [Formula: see text] of the image parameters to discover major image "signatures;" (4) clustering the superpixels and organizing the parameter order of the [Formula: see text] matrix according to the one found in step 3; (5) creating "habitats" in the image space from the superpixels associated with the "signatures;" and (6) pooling and clustering a matrix consisting of correlation coefficients of each pair of image parameters from all patients to discover subgroup patterns of the tumors. The pipeline was applied to a dataset of multimodality images in glioblastoma (GBM) first, which consisted of 10 image parameters. Three major image "signatures" were identified. The three major "habitats" plus their overlaps were created. To test generalizability of the processing pipeline, a second image dataset from GBM, acquired on the scanners different from the first one, was processed. Also, to demonstrate the clinical association of image-defined "signatures" and "habitats," the patterns of recurrence of the patients were analyzed together with image parameters acquired prechemoradiation therapy. An association of the recurrence patterns with image-defined "signatures" and "habitats" was revealed. These image-defined "signatures" and "habitats" can be used to guide stereotactic tissue biopsy for genetic and mutation status analysis and to analyze for prediction of treatment outcomes, e.g., patterns of failure.

  20. Processes underlying treatment success and failure in assertive community treatment.

    Science.gov (United States)

    Stull, Laura G; McGrew, John H; Salyers, Michelle P

    2012-02-01

    Processes underlying success and failure in assertive community treatment (ACT), a widely investigated treatment model for persons with severe mental illness, are poorly understood. The purpose of the current study was to examine processes in ACT by (1) understanding how consumers and staff describe the processes underlying treatment success and failure and (2) comparing processes identified by staff and consumers. Investigators conducted semi-structured interviews with 25 staff and 23 consumers from four ACT teams. Both staff and consumers identified aspects of the ACT team itself as the most critical in the process of consumer success. For failure, consumers identified consumer characteristics as most critical and staff identified lack of social relationships. Processes underlying failure were not viewed as merely the opposite of processes underlying success. In addition, there was notable disagreement between staff and consumers on important processes. Findings overlap with critical ingredients identified in previous studies, including aspects of the ACT team, social involvement and employment. In contrast to prior studies, there was little emphasis on hospitalizations and greater emphasis on not abusing substances, obtaining wants and desires, and consumer characteristics.

  1. Dispute settlement process under GATT/WTO diplomatic or judicial ...

    African Journals Online (AJOL)

    This paper probes the mechanisms of the dispute resolution process under the World Trade Organisation (WTO) and the General Agreement on Tariff and Trade (GATT). It tries to analyse the evolution of the dispute process which was initially based on diplomatic procedures and gives an account of its evolution and ...

  2. Analysis of physiological (pao/sub 2/, pulse and blood pressure) changes during modified ect under general anaesthesia

    International Nuclear Information System (INIS)

    Shah, M.; Shah, H.A.; Shah, F.S.

    2015-01-01

    To study the changes in physiological parameters i e PAO2, pulse and blood pressure changes during ECT under GA. Study Design: Quasi-experimental study. Place and Duration of Study: Department of Psychiatry and Department of Anaesthesiology, Combined Military Hospital Abbottabad from Sep 2009 to Feb 2010. Patients and Methods: A total of 50 patients with depression were given four separate ECT sessions each. All patients were anaesthetized using propofol 180-200 mg I/V and suxamethonium 50 mg i e 0.75-1 mg per kg I/V without atropine. They were stratified according to physiological changes including PAO2, pulse and blood pressure at 1, 2 and 5 min after ECT. Oxygen saturation was measured using a pulse oximeter, which measures saturations in the range of 65-100%. Results: Age range was 19-65 years; mean 46 years (SD+-13). Mean diastolic BP before ECT was 84.72 that decreased post ECT ie 78.02 and 77.46 and 74.44 at interval of 1, 2 and 5 minute respectively. Post-ECT pulse and PAO2 behaved similarly. Post ECT systolic BP decreased at 1 and 5 minutes. Pulse rate decreased after ECT. Conclusion: ECT under propofol is one of the most effective and safe modality of treatment for psychiatric patients under the supervision of qualified psychiatrists and anaesthesiologists and it gives more stable hemodynamic changes. (author)

  3. Biochemical, microbiological and physiological changes in Jamun (Syzyium cumini L.) kept for long term storage under modified atmosphere packaging.

    Science.gov (United States)

    Rai, Deepak Raj; Chadha, Sonia; Kaur, Maninder P; Jaiswal, Pranita; Patil, Ramabhau T

    2011-06-01

    Jamun or Indian blackberry (Syzygium cumini L.) is a minor and highly perishable fruit enriched with flavonoids, essential oils, anthocyanins phenolic compounds and other antioxidants. The quantitative and qualitative losses in this seasonal fruit are tremendous and can be reduced by appropriate packaging and storage techniques which have not been applied hitherto. This study was undertaken to extend the shelf-life as well as to assess the biochemical, microbiological and physiological changes in jamun fruit under perforated and non-perforated modified atmosphere (MA) conditions. Fruits were stored under differential MA in macro-perforated (1 and 2 perforations, 0.3 mm dia. each) and non-perforated polypropylene (PP) film packages (Thickness: 35 μm, bag area: 0.036 m(2)) at 5 °C and 75% relative humidity (RH) for 23 days. Sachets containing white silica gel beads were placed inside all the packages to check water accumulation, if any. Different physiological, biochemical and microbiological characteristics which generally affect the post-harvest life of the produce were monitored during the storage period. Results of the study suggested most of the subjectively and objectively determined qualitative parameters to be retained satisfactorily under macro-perforated packaging treatments. Further, the microbiological analysis, surmised that the fruits could be stored for long term using packages with 1 macro-perforation.

  4. Target Detection, Identification, and Marksmanship Under Various Types of Physiological Strain

    National Research Council Canada - National Science Library

    Tikuisis, Peter

    2006-01-01

    .... Using a small arms trainer (SAT), target detection, identification, and engagement were tested under a variety of conditions including heat and cold exposure, fatiguing exercise, and sleep deprivation, with caffeine intervention...

  5. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress

    OpenAIRE

    Gengmao, Zhao; Shihui, Li; Xing, Sun; Yizhou, Wang; Zipan, Chang

    2015-01-01

    Silicon(Si) is the only element which can enhance the resistance to multiple stresses. However, the role of silicon in medicinal plants under salt stress is not yet understood. This experiment was conducted to study the effects of silicon addition on the growth, osmotic adjustments, photosynthetic characteristics, chloroplast ultrastructure and Chlorogenic acid (CGA) production of Honeysuckle plant (Lonicera japonica L.) under salt-stressed conditions. Salinity exerted an adverse effect on th...

  6. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress*

    OpenAIRE

    Guan, Ya-jing; Hu, Jin; Wang, Xian-ju; Shao, Chen-xia

    2009-01-01

    Low temperature stress during germination and early seedling growth is an important constraint of global production of maize. The effects of seed priming with 0.25%, 0.50%, and 0.75% (w/v) chitosan solutions at 15 °C on the growth and physiological changes were investigated using two maize (Zea mays L.) inbred lines, HuangC (chilling-tolerant) and Mo17 (chilling-sensitive). While seed priming with chitosan had no significant effect on germination percentage under low temperature stress, it en...

  7. Physiological performance of sesame seeds under the water stress at different temperatures

    Directory of Open Access Journals (Sweden)

    Dayana Silva de Medeiros

    2015-10-01

    Full Text Available Sesame (Sesamum indicum L. shows great economic potential because it can be explored by the national as well as the international market. It can be grown in the second season when it is subject to less favorable weather conditions such as drought during the sowing and emergence. Given this the objective was to evaluate the effect of water stress induced by polyethylene glycol solutions (PEG 6000 at different temperatures in order to asses the physiological quality of sesame seeds. In this work, were used PEG 6000 with different osmotic potentials (0.0 control and (-0.2, –0.4, –0.6, –0.8, –1.0 –1,2 and –1.4 MPa at temperatures of 25, 30 and 35 °C. For determine the effect of the treatments it was evaluated seed germination and vigor (first count and length of the primary root and shoot, in a completely randomized, with four replications. The sesame seeds are affected by water stress, with significant reductions in germination and vigor. A temperature of 30 °C favored the germination performance in less restrictive water potentials.

  8. Optimum compression to ventilation ratios in CPR under realistic, practical conditions: a physiological and mathematical analysis.

    Science.gov (United States)

    Babbs, Charles F; Kern, Karl B

    2002-08-01

    To develop and evaluate a practical formula for the optimum ratio of compressions to ventilations in cardiopulmonary resuscitation (CPR). The optimum value of a variable is that for which a desired result is maximized. Here the desired result is assumed to be either oxygen delivery to peripheral tissues or a combination of oxygen delivery and waste product removal. Equations describing oxygen delivery and blood flow during CPR as functions of the number of compressions and the number of ventilations delivered over time were developed from principles of classical physiology. These equations were solved explicitly in terms of the compression/ventilation ratio and evaluated for a wide range of conditions using Monte Carlo simulations. As the compression to ventilation ratio was increased from 0 to 50 or more, both oxygen delivery and the combination of oxygen delivery with blood flow increased to maximum values and then gradually declined. For variables typical of standard CPR as taught and specified in international guidelines, maximum values occurred at compression/ventilation ratios near 30:2. For variables typical of actual lay rescuer performance in the field, maximal values occurred at compression/ventilation ratios near 60:2. Current guidelines overestimate the need for ventilation during standard CPR by two to four-fold. Blood flow and oxygen delivery to the periphery can be improved by eliminating interruptions of chest compression for these unnecessary ventilations.

  9. Cellular and physiological mechanisms underlying blood flow regulation in the retina choroid in health disease

    Science.gov (United States)

    Kur, Joanna; Newman, Eric A.; Chan-Ling, Tailoi

    2012-01-01

    We review the cellular and physiological mechanisms responsible for the regulation of blood flow in the retina and choroid in health and disease. Due to the intrinsic light sensitivity of the retina and the direct visual accessibility of fundus blood vessels, the eye offers unique opportunities for the non-invasive investigation of mechanisms of blood flow regulation. The ability of the retinal vasculature to regulate its blood flow is contrasted with the far more restricted ability of the choroidal circulation to regulate its blood flow by virtue of the absence of glial cells, the markedly reduced pericyte ensheathment of the choroidal vasculature, and the lack of intermediate filaments in choroidal pericytes. We review the cellular and molecular components of the neurovascular unit in the retina and choroid, techniques for monitoring retinal and choroidal blood flow, responses of the retinal and choroidal circulation to light stimulation, the role of capillaries, astrocytes and pericytes in regulating blood flow, putative signaling mechanisms mediating neurovascular coupling in the retina, and changes that occur in the retinal and choroidal circulation during diabetic retinopathy, age-related macular degeneration, glaucoma, and Alzheimer's disease. We close by discussing issues that remain to be explored. PMID:22580107

  10. Physiological and Molecular Changes in Various Biological Organisms Cultured under Simulated Microgravity Conditions

    Science.gov (United States)

    Udave, Ceasar

    2017-01-01

    Microgravity is one of the most import factors in space flight where its impact on living biological organisms is concerned. Many different ailments have been reported in astronauts such as spaceflight related osteopenia, cardiovascular concerns, and loss of eye sight. In order to understand why µg causes these issues we must understand what is happening at the most basic of biological structures, the cell. The work done in this report is a culmination of contributions made to a much larger project. The project seeks to understand how cellular physiology is changing in SMG conditions and use this knowledge to feed into a follow-up study on the genetic changes that are seen in SMG environments. Cells were imaged using confocal microscopy after 20hrs and 48hrs in a 3D clinostat called the Gravite. Lengths, widths, heights, and total cell areas were measured using an image analysis software package ImageJ. There were significant differences in lengths and widths of cell nuclei, and total area of cell coverage. The report then discusses some of the problems with the testing apparatus and how 3D printing technology may be used to create better sample holders for the 3D clinostat.

  11. RESPONSE OF RICE (ORYZA SATIVA L. UNDER ELEVATED TEMPERATURE AT EARLY GROWTH STAGE: PHYSIOLOGICAL MARKERS

    Directory of Open Access Journals (Sweden)

    Muhammad Kazim Ali

    2013-08-01

    Full Text Available A reliable and rapid assessment technique, for evaluation of cultivars having potential to combat harsh environmental conditions is imperative. This experiment was carried out to screen 8 local (Pakistan accessions of rice at early growth stage (germination and seedling at control and heat shock for different time periods (24, 48, 72 h. Heat stress indices, including promptness index (P.I. and germination stress index (G.S.I., were used to explore thermotolerance at germination stage. At seedling stage, relative membrane permeability (RMP were assessed through measurement of electrolyte leakage (EC, melondialdehyde (MDA and production of hydrogen peroxide. It is observed that heat stress delayed germination and decreased germination percentage at germination stage. However cultivars showed significantly different response. Among all, "Kanwal-95" showed more thermotolerance in terms of maximum number of germination as well as in speediness to germination. Physiological indicators manifested, increased electrolyte leakage is associated with increased level of lipid peroxidation and hydrogen peroxide. It can be concluded that antioxidants enzymes could play major role in thermotolerance by scavenging free radicals to protect lipid peroxidation consequently improve cell membrane thermostability. Results analysis revealed that these indicators were simple and accurate selection criteria to assess heat stress effect and can be adopted to save resources and time of formers.

  12. Silicon Regulates Potential Genes Involved in Major Physiological Processes in Plants to Combat Stress

    Directory of Open Access Journals (Sweden)

    Abinaya Manivannan

    2017-08-01

    Full Text Available Silicon (Si, the quasi-essential element occurs as the second most abundant element in the earth's crust. Biological importance of Si in plant kingdom has become inevitable particularly under stressed environment. In general, plants are classified as high, medium, and low silicon accumulators based on the ability of roots to absorb Si. The uptake of Si directly influence the positive effects attributed to the plant but Si supplementation proves to mitigate stress and recover plant growth even in low accumulating plants like tomato. The application of Si in soil as well as soil-less cultivation systems have resulted in the enhancement of quantitative and qualitative traits of plants even under stressed environment. Silicon possesses several mechanisms to regulate the physiological, biochemical, and antioxidant metabolism in plants to combat abiotic and biotic stresses. Nevertheless, very few reports are available on the aspect of Si-mediated molecular regulation of genes with potential role in stress tolerance. The recent advancements in the era of genomics and transcriptomics have opened an avenue for the determination of molecular rationale associated with the Si amendment to the stress alleviation in plants. Therefore, the present endeavor has attempted to describe the recent discoveries related to the regulation of vital genes involved in photosynthesis, transcription regulation, defense, water transport, polyamine synthesis, and housekeeping genes during abiotic and biotic stress alleviation by Si. Furthermore, an overview of Si-mediated modulation of multiple genes involved in stress response pathways such as phenylpropanoid pathway, jasmonic acid pathway, ABA-dependent or independent regulatory pathway have been discussed in this review.

  13. Silicon Regulates Potential Genes Involved in Major Physiological Processes in Plants to Combat Stress.

    Science.gov (United States)

    Manivannan, Abinaya; Ahn, Yul-Kuyn

    2017-01-01

    Silicon (Si), the quasi-essential element occurs as the second most abundant element in the earth's crust. Biological importance of Si in plant kingdom has become inevitable particularly under stressed environment. In general, plants are classified as high, medium, and low silicon accumulators based on the ability of roots to absorb Si. The uptake of Si directly influence the positive effects attributed to the plant but Si supplementation proves to mitigate stress and recover plant growth even in low accumulating plants like tomato. The application of Si in soil as well as soil-less cultivation systems have resulted in the enhancement of quantitative and qualitative traits of plants even under stressed environment. Silicon possesses several mechanisms to regulate the physiological, biochemical, and antioxidant metabolism in plants to combat abiotic and biotic stresses. Nevertheless, very few reports are available on the aspect of Si-mediated molecular regulation of genes with potential role in stress tolerance. The recent advancements in the era of genomics and transcriptomics have opened an avenue for the determination of molecular rationale associated with the Si amendment to the stress alleviation in plants. Therefore, the present endeavor has attempted to describe the recent discoveries related to the regulation of vital genes involved in photosynthesis, transcription regulation, defense, water transport, polyamine synthesis, and housekeeping genes during abiotic and biotic stress alleviation by Si. Furthermore, an overview of Si-mediated modulation of multiple genes involved in stress response pathways such as phenylpropanoid pathway, jasmonic acid pathway, ABA-dependent or independent regulatory pathway have been discussed in this review.

  14. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles.

    Science.gov (United States)

    Majumdar, Sanghamitra; Peralta-Videa, Jose R; Trujillo-Reyes, Jesica; Sun, Youping; Barrios, Ana C; Niu, Genhua; Margez, Juan P Flores-; Gardea-Torresdey, Jorge L

    2016-11-01

    Soil organic matter plays a major role in determining the fate of the engineered nanomaterials (ENMs) in the soil matrix and effects on the residing plants. In this study, kidney bean plants were grown in soils varying in organic matter content and amended with 0-500mg/kg cerium oxide nanoparticles (nano-CeO2) under greenhouse condition. After 52days of exposure, cerium accumulation in tissues, plant growth and physiological parameters including photosynthetic pigments (chlorophylls and carotenoids), net photosynthesis rate, transpiration rate, and stomatal conductance were recorded. Additionally, catalase and ascorbate peroxidase activities were measured to evaluate oxidative stress in the tissues. The translocation factor of cerium in the nano-CeO2 exposed plants grown in organic matter enriched soil (OMES) was twice as the plants grown in low organic matter soil (LOMS). Although the leaf cover area increased by 65-111% with increasing nano-CeO2 concentration in LOMS, the effect on the physiological processes were inconsequential. In OMES leaves, exposure to 62.5-250mg/kg nano-CeO2 led to an enhancement in the transpiration rate and stomatal conductance, but to a simultaneous decrease in carotenoid contents by 25-28%. Chlorophyll a in the OMES leaves also decreased by 27 and 18% on exposure to 125 and 250mg/kg nano-CeO2. In addition, catalase activity increased in LOMS stems, and ascorbate peroxidase increased in OMES leaves of nano-CeO2 exposed plants, with respect to control. Thus, this study provides clear evidence that the properties of the complex soil matrix play decisive roles in determining the fate, bioavailability, and biological transport of ENMs in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Proteomic analysis of injured storage roots in cassava (Manihot esculenta Crantz) under postharvest physiological deterioration.

    Science.gov (United States)

    Qin, Yuling; Djabou, Astride Stéphanie Mouafi; An, Feifei; Li, Kaimian; Li, Zhaogui; Yang, Long; Wang, Xiaojing; Chen, Songbi

    2017-01-01

    Postharvest physiological deterioration (PPD) is a global challenge in the improvement of cassava value chain. However, how to reduce cassava spoilage and reveal the mechanism of injured cassava storage roots in response to PPD were poorly understood. In the present study, we investigated the activities of antioxidant enzymes of cassava injured storage roots in PPD-susceptible (SC9) and PPD-tolerant (QZ1) genotypes at the time-points from 0h to 120h, and further analyzed their proteomic changes using two-dimensional electrophoresis (2-DE) in combination with MALDI-TOF-MS/MS. Ninety-nine differentially expressed proteins were identified from SC9 and QZ1 genotypes in the pairwise comparison of 24h/0h, 48h/0h, 72h/0h and 96h/0h. Of those proteins were associated with 13 biological functions, in which carbohydrate and energy metabolism related proteins were the biggest amount differential proteins in both genotypes, followed by chaperones, DNA and RNA metabolism, and defense system. We speculated that SOD in combination with CAT activities would be the first line of defense against PPD to support PPD-tolerant cassava varieties. The four hub proteins including CPN60B, LOS2, HSC70-1 and CPN20B, produced from the network of protein-protein interaction, will be the candidate key proteins linked with PPD. This study provides a new clue to improve cassava PPD-tolerant varieties and would be helpful to much better understand the molecular mechanism of PPD of cassava injured storage roots.

  16. Physiological characteristics of Plantago major under SO2exposure as affected by foliar iron spray.

    Science.gov (United States)

    Mohasseli, Vahid; Khoshgoftarmanesh, Amir Hossein; Shariatmadari, Hossein

    2017-08-01

    Sulfur dioxide (SO 2 ) is considered as a main air pollutant in industrialized areas that can damage vegetation. In the present study, we investigated how exposure to SO 2 and foliar application of iron (Fe) would affect certain physiological characteristics of Plantago major. The plant seedlings exposed or unexposed to SO 2 (3900 μg m -3 ) were non-supplemented or supplemented with Fe (3 g L -1 ) as foliar spray. Plants were exposed to SO 2 for 6 weeks in 100 × 70 × 70 cm chambers. Fumigation of plants with SO 2 was performed for 3 h daily for 3 days per week (alternate day). Lower leaf Fe concentration in the plants exposed to SO 2 at no added Fe treatment was accompanied with incidence of chlorosis symptoms and reduced chlorophyll concentration. No visible chlorotic symptoms were observed on the SO 2 -exposed plants supplied with Fe that accumulated higher Fe in their leaves. Both at with and without added Fe treatments, catalase (CAT) and peroxidase (POD) activity was higher in the plants fumigated with SO 2 in comparison with those non-fumigated with SO 2 . Foliar application of Fe was also effective in increasing activity of antioxidant enzymes CAT and POD. Exposure to SO 2 led to reduced cellulose but enhanced lignin content of plant leaf cell wall. The results obtained showed that foliar application of Fe was effective in reducing the effects of exposure to SO 2 on cell wall composition. In contrast to SO 2 , application of Fe increased cellulose while decreased lignin content of the leaf cell wall. This might be due to reduced oxidative stress induced by SO 2 in plants supplied with Fe compared with those unsupplied with Fe.

  17. Proteomic analysis of injured storage roots in cassava (Manihot esculenta Crantz under postharvest physiological deterioration.

    Directory of Open Access Journals (Sweden)

    Yuling Qin

    Full Text Available Postharvest physiological deterioration (PPD is a global challenge in the improvement of cassava value chain. However, how to reduce cassava spoilage and reveal the mechanism of injured cassava storage roots in response to PPD were poorly understood. In the present study, we investigated the activities of antioxidant enzymes of cassava injured storage roots in PPD-susceptible (SC9 and PPD-tolerant (QZ1 genotypes at the time-points from 0h to 120h, and further analyzed their proteomic changes using two-dimensional electrophoresis (2-DE in combination with MALDI-TOF-MS/MS. Ninety-nine differentially expressed proteins were identified from SC9 and QZ1 genotypes in the pairwise comparison of 24h/0h, 48h/0h, 72h/0h and 96h/0h. Of those proteins were associated with 13 biological functions, in which carbohydrate and energy metabolism related proteins were the biggest amount differential proteins in both genotypes, followed by chaperones, DNA and RNA metabolism, and defense system. We speculated that SOD in combination with CAT activities would be the first line of defense against PPD to support PPD-tolerant cassava varieties. The four hub proteins including CPN60B, LOS2, HSC70-1 and CPN20B, produced from the network of protein-protein interaction, will be the candidate key proteins linked with PPD. This study provides a new clue to improve cassava PPD-tolerant varieties and would be helpful to much better understand the molecular mechanism of PPD of cassava injured storage roots.

  18. Gene expression profiling of dendritic cells in different physiological stages under Cordyceps sinensis treatment.

    Directory of Open Access Journals (Sweden)

    Chia-Yang Li

    Full Text Available Cordyceps sinensis (CS has been commonly used as herbal medicine and a health supplement in China for over two thousand years. Although previous studies have demonstrated that CS has benefits in immunoregulation and anti-inflammation, the precise mechanism by which CS affects immunomodulation is still unclear. In this study, we exploited duplicate sets of loop-design microarray experiments to examine two different batches of CS and analyze the effects of CS on dendritic cells (DCs, in different physiology stages: naïve stage and inflammatory stage. Immature DCs were treated with CS, lipopolysaccharide (LPS, or LPS plus CS (LPS/CS for two days, and the gene expression profiles were examined using cDNA microarrays. The results of two loop-design microarray experiments showed good intersection rates. The expression level of common genes found in both loop-design microarray experiments was consistent, and the correlation coefficients (Rs, were higher than 0.96. Through intersection analysis of microarray results, we identified 295 intersecting significantly differentially expressed (SDE genes of the three different treatments (CS, LPS, and LPS/CS, which participated mainly in the adjustment of immune response and the regulation of cell proliferation and death. Genes regulated uniquely by CS treatment were significantly involved in the regulation of focal adhesion pathway, ECM-receptor interaction pathway, and hematopoietic cell lineage pathway. Unique LPS regulated genes were significantly involved in the regulation of Toll-like receptor signaling pathway, systemic lupus erythematosus pathway, and complement and coagulation cascades pathway. Unique LPS/CS regulated genes were significantly involved in the regulation of oxidative phosphorylation pathway. These results could provide useful information in further study of the pharmacological mechanisms of CS. This study also demonstrates that with a rigorous experimental design, the biological effects

  19. Gene expression profiling of dendritic cells in different physiological stages under Cordyceps sinensis treatment.

    Science.gov (United States)

    Li, Chia-Yang; Chiang, Chi-Shiun; Cheng, Wei-Chung; Wang, Shu-Chi; Cheng, Hung-Tsu; Chen, Chaang-Ray; Shu, Wun-Yi; Tsai, Min-Lung; Hseu, Ruey-Shyang; Chang, Cheng-Wei; Huang, Chao-Ying; Fang, Shih-Hua; Hsu, Ian C

    2012-01-01

    Cordyceps sinensis (CS) has been commonly used as herbal medicine and a health supplement in China for over two thousand years. Although previous studies have demonstrated that CS has benefits in immunoregulation and anti-inflammation, the precise mechanism by which CS affects immunomodulation is still unclear. In this study, we exploited duplicate sets of loop-design microarray experiments to examine two different batches of CS and analyze the effects of CS on dendritic cells (DCs), in different physiology stages: naïve stage and inflammatory stage. Immature DCs were treated with CS, lipopolysaccharide (LPS), or LPS plus CS (LPS/CS) for two days, and the gene expression profiles were examined using cDNA microarrays. The results of two loop-design microarray experiments showed good intersection rates. The expression level of common genes found in both loop-design microarray experiments was consistent, and the correlation coefficients (Rs), were higher than 0.96. Through intersection analysis of microarray results, we identified 295 intersecting significantly differentially expressed (SDE) genes of the three different treatments (CS, LPS, and LPS/CS), which participated mainly in the adjustment of immune response and the regulation of cell proliferation and death. Genes regulated uniquely by CS treatment were significantly involved in the regulation of focal adhesion pathway, ECM-receptor interaction pathway, and hematopoietic cell lineage pathway. Unique LPS regulated genes were significantly involved in the regulation of Toll-like receptor signaling pathway, systemic lupus erythematosus pathway, and complement and coagulation cascades pathway. Unique LPS/CS regulated genes were significantly involved in the regulation of oxidative phosphorylation pathway. These results could provide useful information in further study of the pharmacological mechanisms of CS. This study also demonstrates that with a rigorous experimental design, the biological effects of a complex

  20. [Determination of physiological indices in Albizzia julibrissin Durazz seedlings under alkaline stress with visible spectrophotometry].

    Science.gov (United States)

    Zhou, Jian; Zhang, Lin; Yuan, De-Yi; Qi, An-Guo

    2008-02-01

    There is a large area of saline-alkali soil in our country, and soil alkalization is always a problem affecting urban gardening. To examine the capacity of alkaline resistance of Albizzia julibrissin Durazz seedlings, the contents of MDA, soluble sugar and proline, and the activity of POD and SOD in Albizzia julibrissin durazz tree body were measured by means of visible spectrophotometry. Also, the change patterns of the five indexes with different treatment concentration and time were analyzed. Attempts were then made to elucidate the physiological mechanism of how alkaline stress affects the growth of the Albizzia julibrissin durazz tree, which could provide theoretical foundation for planting and gardening and an approach to dealing with the difficulties in planting and gardening in saline and alkaline area. The results showed that with the increase in Na2 CO3 concentration, the contents of MDA and soluble sugar in the leaves slowly ascended when the treatment concentration was lower than 75 mmol x L(-1), and then rapidly increased when the treatment concentration was higher than 75 mmol x L(-1); There were significant differences between different treatments. Proline content exhibited the same change pattern with MDA and soluble sugar. It slowly ascended when the treatment concentration was lower than 100 mmol x L(-1), whereas it sharply increased when the treatment concentration was above 100 mmol x L(-1); The changes in SOD and POD were similar, showing a unimodal pattern. However, the treatment concentration corresponding to the maximum of SOD and POD was 50 and 75 mmol x L(-1), respectively. With the changes in stress time, in addition, the contents of MDA treated with the same concentration increased gradually. However, praline, soluble sugar, SOD and POD changed irregularly. These results indicated that Albizzia julibrissin Durazz could resist the alkaline stress by modulating values of physical indexes such as the contents of MDA, soluble sugar and

  1. Social and reproductive physiology and behavior of the Neotropical cichlid fish Cichlasoma dimerus under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Felipe Alonso

    Full Text Available In this work we describe for the first time the social and reproductive behavior of the Neotropical fish Cichlasoma dimerus (Heckel, 1840 [Perciformes: Cichlidae], endemic to the Paraná River basin, using a comprehensive-integral approach, including morphological and physiological features. This substrate breeding fish has biparental care of the fry and presents a dominance hierarchy that determines access to breeding territories among males, and to males with territories among females. Gregarious behavior associated with a pale body color, was observed before reproductive behaviors started. Afterwards, a dominance hierarchy was established through aggressive interactions. Territorial individuals had bright body color patterns and non territorial an opaque grey one. Black ventral coloration was associated with reproductive individuals. Courtship displays, which were similar to threatening displays, had the common effect of increasing the visible area of the individual. The dominant male was always the largest one suggesting that size is probably a major factor determining the hierarchy establishment and that these intra-sexually selected traits may have been reinforced by inter-sexual selection. Reproductive males had higher pituitary levels of β-follicle stimulating hormone (β-FSH and somatolactin (SL than non reproductive ones, while no differences were found among females. No differences were found among male gonadosomatic indexes. Non reproductive individuals had higher plasma cortisol levels for both sexes. It is possible that dominant reproductive individuals may be inhibiting reproduction of subordinate fish through physical contact, increasing their cortisol levels and diminishing FSH and SL pituitary content. However, this was not reflected as an inhibition at the gonadal level in our experimental design.

  2. Halophytic Companion Plants Improve Growth and Physiological Parameters of Tomato Plants Grown under Salinity

    International Nuclear Information System (INIS)

    Karakas, S.; Cullu, M. A.; Kaya, C.; Dikilitas, M.

    2016-01-01

    Salinity becomes a major concern when soil salt concentration becomes excessive in growth medium. Halophytes are capable of accumulating high concentrations of NaCl in their tissues, thus using halophytic plants in crop rotations or even in mixed cropping systems may be a promising management practices to mitigate salt stress related yield loses. Salinity induced yield losses and related physiological parameters on tomato plants (Lycopersicon esculentum Mill. cv. SC2121) grown with or without halophytic companion plants (SalsolasodaL. and Portulacaoleracea L.) were investigated in pot experiment. Treatments consist of four soil type (collected from Harran plain-Turkey) with similar physical properties but varying in salinity level: electrical conductivity (EC): 0.9, 4.2, 7.2, and 14.1 dS m/sup -1/. The reduction in plant total dry weight was 24, 19, and 48 percent in soils with slight (4.2dS m/sup -1/), moderate (7.2 dS m/sup -1/) and high (14.1 dS m/sup -1/) salinity as compared to non-saline soil (0.9 dS m/sup -1/), respectively. Leaf content of proline, malondialdehyde (MDA), catalase (CAT) and peroxidase (POX) enzyme activity increased with increasing level of salinity. In tomato plants grown in consociation with Salsolasoda, salinity induced DM decrease was only 6, 12 and 28% in soils with slight, moderate and high salinity as compared to non-saline soil, respectively. However, when Portulaca oleracea used as companion plant, no significant change in biomass or fruit yield was observed. This study showed that mixed planting with Salsolasodain high saline soils may be an effective phyto-remediation technique that may secure yield formation and quality of tomato. (author)

  3. Age Modulates Physiological Responses during Fan Use under Extreme Heat and Humidity.

    Science.gov (United States)

    Gagnon, Daniel; Romero, Steven A; Cramer, Matthew N; Kouda, Ken; Poh, Paula Y S; Ngo, Hai; Jay, Ollie; Crandall, Craig G

    2017-11-01

    We examined the effect of electric fan use on cardiovascular and thermoregulatory responses of nine young (26 ± 3 yr) and nine aged (68 ± 4 yr) adults exposed to extreme heat and humidity. While resting at a temperature of 42°C, relative humidity increased from 30% to 70% in 2% increments every 5 min. On randomized days, the protocol was repeated without or with fan use. HR, core (Tcore) and mean skin (Tsk) temperatures were measured continuously. Whole-body sweat loss was measured from changes in nude body weight. Other measures of cardiovascular (cardiac output), thermoregulatory (local cutaneous and forearm vascular conductance, local sweat rate), and perceptual (thermal and thirst sensations) responses were also examined. When averaged over the entire protocol, fan use resulted in a small reduction of HR (-2 bpm, 95% confidence interval [CI], -8 to 3), and slightly greater Tcore (+0.05°C; 95% CI, -0.13 to 0.23) and Tsk (+0.03°C; 95% CI, -0.36 to 0.42) in young adults. In contrast, fan use resulted in greater HR (+5 bpm; 95% CI, 0-10), Tcore (+0.20°C; 95% CI, 0.00-0.41), and Tsk (+0.47°C; 95% CI, 0.18-0.76) in aged adults. A greater whole-body sweat loss during fan use was observed in young (+0.2 kg; 95% CI, -0.2 to 0.6) but not aged (0.0 kg; 95% CI, -0.2 to 0.2) adults. Greater local sweat rate and cutaneous vascular conductance were observed with fan use in aged adults. Other measures of cardiovascular, thermoregulatory, and perceptual responses were unaffected by fan use in both groups. During extreme heat and humidity, fan use elevates physiological strain in aged, but not young, adults.

  4. Time course of physiological, biochemical, and gene expression changes under short-term salt stress in Brassica juncea L.

    Directory of Open Access Journals (Sweden)

    Manish Pandey

    2017-06-01

    Full Text Available Salinity-imposed limitations on plant growth are manifested through osmotic and ionic imbalances. However, because salinity-induced responses vary considerably among crop plants, monitoring of such responses at an early stage has relevance. In this study, physiological (seed germination, seed vigor index, root length, shoot length, fresh weight, dry weight and biochemical attributes (osmoprotectants, K+/Na+ ratio were analyzed for a time-course assessment of salt responses in Indian mustard (Brassica juncea L. with an emphasis on early monitoring. The results showed strong correlations for total soluble sugars at germination phase (24 h, proline content in the seedling establishment phase (48 h and various physiological parameters including seed vigor index (R2 = 0.901, shoot length (R2 = 0.982, and fresh weight (R2 = 0.980 at 72 h (adaptation under stress. In addition, transcriptional changes were observed under NaCl treatment for key genes belonging to the family of selective ion transporters (NHX, HKT and abscisic acid synthesis (AAO-3. The status of mitochondrial respiration was also examined as a probe for salinity tolerance at an early stage. The results suggested that although all the analyzed parameters showed correlations (negative or positive with salt stress magnitude, their critical response times differed, with most of the studied biochemical, physiological, or molecular markers providing valuable information only after radicle emergence, whereas mitochondrial respiration via alternative oxidase was useful for the early detection of salt responses.

  5. Progression Analysis and Stage Discovery in Continuous Physiological Processes Using Image Computing

    Directory of Open Access Journals (Sweden)

    Ferrucci Luigi

    2010-01-01

    Full Text Available We propose an image computing-based method for quantitative analysis of continuous physiological processes that can be sensed by medical imaging and demonstrate its application to the analysis of morphological alterations of the bone structure, which correlate with the progression of osteoarthritis (OA. The purpose of the analysis is to quantitatively estimate OA progression in a fashion that can assist in understanding the pathophysiology of the disease. Ultimately, the texture analysis will be able to provide an alternative OA scoring method, which can potentially reflect the progression of the disease in a more direct fashion compared to the existing clinically utilized classification schemes based on radiology. This method can be useful not just for studying the nature of OA, but also for developing and testing the effect of drugs and treatments. While in this paper we demonstrate the application of the method to osteoarthritis, its generality makes it suitable for the analysis of other progressive clinical conditions that can be diagnosed and prognosed by using medical imaging.

  6. Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology.

    Science.gov (United States)

    Margaritelis, Nikos V; Cobley, James N; Paschalis, Vassilis; Veskoukis, Aristidis S; Theodorou, Anastasios A; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-04-01

    The equivocal role of reactive species and redox signaling in exercise responses and adaptations is an example clearly showing the inadequacy of current redox biology research to shed light on fundamental biological processes in vivo. Part of the answer probably relies on the extreme complexity of the in vivo redox biology and the limitations of the currently applied methodological and experimental tools. We propose six fundamental principles that should be considered in future studies to mechanistically link reactive species production to exercise responses or adaptations: 1) identify and quantify the reactive species, 2) determine the potential signaling properties of the reactive species, 3) detect the sources of reactive species, 4) locate the domain modified and verify the (ir)reversibility of post-translational modifications, 5) establish causality between redox and physiological measurements, 6) use selective and targeted antioxidants. Fulfilling these principles requires an idealized human experimental setting, which is certainly a utopia. Thus, researchers should choose to satisfy those principles, which, based on scientific evidence, are most critical for their specific research question. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects

    Science.gov (United States)

    Wang, Jun-Ling; Li, Tao; Liu, Gao-Yuan; Smith, Joshua M.; Zhao, Zhi-Wei

    2016-02-01

    A growing body of evidence suggests that plant root-associated fungi such as dark septate endophytes (DSE) can help plants overcome many biotic and abiotic stresses, of great interest is DSE-plant metal tolerance and alleviation capabilities on contaminated soils. However, the tolerance and alleviation mechanisms involved have not yet been elucidated. In the current study, the regulation and physiological response of Zea mays to its root-associated DSE, Exophiala pisciphila was analyzed under increased soil Cd stress (0, 10, 50, 100 mg kg-1). Under Cd stress, DSE inoculation significantly enhanced the activities of antioxidant enzymes and low-molecular weight antioxidants, while also inducing increased Cd accumulation in the cell wall and conversion of Cd into inactive forms by shoot and root specific regulation of genes related to metal uptake, translocation and chelation. Our results showed that DSE colonization resulted in a marked tolerance to Cd, with a significant decrease in cadmium phytotoxicity and a significant increase in maize growth by triggering antioxidant systems, altering metal chemical forms into inactive Cd, and repartitioning subcellular Cd into the cell wall. These results provide comprehensive evidence for the mechanisms by which DSE colonization bioaugments Cd tolerance in maize at physiological, cytological and molecular levels.

  8. Kinetics of isomerization and inversion of aspartate 58 of αA-crystallin peptide mimics under physiological conditions.

    Directory of Open Access Journals (Sweden)

    Kenzo Aki

    Full Text Available Although proteins consist exclusively of L-amino acids, we have reported that aspartyl (Asp 58 and Asp 151 residues of αA-crystallin of eye lenses from elderly cataract donors are highly inverted and isomerized to D-β, D-α and L-β-Asp residues through succinimide intermediates. Of these Asp isomers, large amounts of D-β- and L-β-isomers are present but the amount of D-α-isomer is not significant. The difference in abundance of the Asp isomers in the protein may be due to the rate constants for the formation of the isomers. However, the kinetics have not been well defined. Therefore, in this study, we synthesized a peptide corresponding to human αA-crystallin residues 55 to 65 (T(55VLD(58SGISEVR(65 and its isomers in which L-α-Asp at position 58 was replaced with L-β-, D-β- and D-α-Asp and determined the rate of isomerization and inversion of Asp residues under physiological conditions (37°C, pH7.4. The rate constant for dehydration from L-α-Asp peptide to L-succinimidyl peptide was 3 times higher than the rate constant for dehydration from L-β-Asp peptide to L-succinimidyl peptide. The rate constant for hydrolysis from L-succinimidyl peptide to L-β-Asp peptide was about 5 times higher than the rate constant for hydrolysis from L-succinimidyl peptide to L-α-Asp peptide. The rate constant for dehydration from L-α-Asp peptide to L-succinimidyl peptide was 2 times higher than the rate constant for dehydration from D-α-Asp peptide to D-succinimidyl peptide. The rate constants for hydrolysis from L-succinimidyl peptide to L-β-Asp peptide and for hydrolysis from D-succinimidyl peptide to D-β-Asp peptide were almost equal. Using these rate constants, we calculated the change in the abundance ratios of the 4 Asp isomers during a human lifespan. This result is consistent with the fact that isomerized Asp residues accumulate in proteins during the ageing process.

  9. Physiological characteristics under the influence of heat stress working in the hot environment, (4)

    International Nuclear Information System (INIS)

    Nagasaka, Akihiko; Yoshino, Kenji; Takano, Ken-ichi

    1987-01-01

    There is a possibility that physical and mental stress appears under hot environmental condition for the cause of wearing protection suits on reactor maintenance work. It is important to reduce heat stress rapidly and effectively. This paper mentioned following about the results of static state and simulation work done by testees with or without protection suits under 25 kinds of temperatures and wind velocities in a artificial climate chamber. (1) the correlation between ambient temperatures or wind velocities and subjective symptoms without protection suits. (2) the correlation between ambient temperatures or wind velocities and skin temperatures without protection suits. (3) investigation of the parts of body affecting subjective symptoms. (4) the correlation between ambient temperatures or wind velocities and skin temperatures at working with protection suits. (5) working out countermeasures of recovery from heat stress with the index of skin temperatures and subjective symptoms. (author)

  10. BIOCHEMICAL PROCESSES IN CHERNOZEM SOIL UNDER DIFFERENT FERTILIZATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Ecaterina Emnova

    2012-06-01

    Full Text Available The paper deals with the evaluation of the intensity of certain soil biochemical processes (e.g. soil organic C mineralization at Organic and mixed Mineral+Organic fertilization of typical chernozem in crop rotation dynamics (for 6 years by use of eco-physiological indicators of biological soil quality: microbial biomass carbon, basal soil respiration, as well as, microbial and metabolic quotients. Soil sampling was performed from a long-term field crop experiment, which has been established in 1971 at the Balti steppe (Northern Moldova. The crop types had a more considerable impact on the soil microbial biomass accumulation and community biochemical activity compared to long-term Organic or mixed Mineral + Organic fertilizers amendments. The Org fertilization system doesn’t make it possible to avoid the loss of organic C in arable typical chernozem. The organic fertilizer (cattle manure is able to mitigate the negative consequences of long-term mineral fertilization.

  11. Hormonal regulation of apoptosis in the ovary under normal physiological and pathological conditions

    NARCIS (Netherlands)

    Slot, Karin Annemarie

    2005-01-01

    Programmed cell death or apoptosis plays an important role in normal reproductive function. Since apoptosis attributes to the exhaustion of the oocyte/follicle reserve, either directly through germ cell death or indirectly through follicular atresia, this process has been proposed to be the major

  12. The proportion of xanthine oxidase activity of total xanthine oxidoreductase activity in situ remains constant in rat liver under various (patho)physiological conditions

    NARCIS (Netherlands)

    Frederiks, W. M.; Bosch, K. S.

    1996-01-01

    Activity of xanthine oxidoreductase (total xanthine dehydrogenase plus xanthine oxidase) and xanthine oxidase was determined cytophotometrically in periportal and pericentral areas of livers of rats under various (patho)physiological conditions that are known to affect the content of reduced

  13. A physiological approach to oceanic processes and glacial-interglacial changes in atmospheric CO2

    Directory of Open Access Journals (Sweden)

    Josep L. Pelegrí

    2008-03-01

    Full Text Available One possible path for exploring the Earth’s far-from-equilibrium homeostasis is to assume that it results from the organisation of optimal pulsating systems, analogous to that in complex living beings. Under this premise it becomes natural to examine the Earth’s organisation using physiological-like variables. Here we identify some of these main variables for the ocean’s circulatory system: pump rate, stroke volume, carbon and nutrient arterial-venous differences, inorganic nutrients and carbon supply, and metabolic rate. The stroke volume is proportional to the water transported into the thermocline and deep oceans, and the arterial-venous differences occur between recently-upwelled deep waters and very productive high-latitudes waters, with atmospheric CO2 being an indicator of the arterial-venous inorganic carbon difference. The metabolic rate is the internal-energy flux (here expressed as flux of inorganic carbon in the upper ocean required by the system’s machinery, i.e. community respiration. We propose that the pump rate is set externally by the annual cycle, at one beat per year per hemisphere, and that the autotrophic ocean adjusts its stroke volume and arterial-venous differences to modify the internal-energy demand, triggered by long-period astronomical insolation cycles (external-energy supply. With this perspective we may conceive that the Earth’s interglacial-glacial cycle responds to an internal organisation analogous to that occurring in living beings during an exercise-recovery cycle. We use an idealised double-state metabolic model of the upper ocean (with the inorganic carbon/nutrients supply specified through the overturning rate and the steady-state inorganic carbon/nutrients concentrations to obtain the temporal evolution of its inorganic carbon concentration, which mimics the glacial-interglacial atmospheric CO2 pattern.

  14. The levels of processing effect under nitrogen narcosis.

    Science.gov (United States)

    Kneller, Wendy; Hobbs, Malcolm

    2013-01-01

    Previous research has consistently demonstrated that inert gas (nitrogen) narcosis affects free recall but not recognition memory in the depth range of 30 to 50 meters of sea water (msw), possibly as a result of narcosis preventing processing when learned material is encoded. The aim of the current research was to test this hypothesis by applying a levels of processing approach to the measurement of free recall under narcosis. Experiment 1 investigated the effect of depth (0-2 msw vs. 37-39 msw) and level of processing (shallow vs. deep) on free recall memory performance in 67 divers. When age was included as a covariate, recall was significantly worse in deep water (i.e., under narcosis), compared to shallow water, and was significantly higher in the deep processing compared to shallow processing conditions in both depth conditions. Experiment 2 demonstrated that this effect was not simply due to the different underwater environments used for the depth conditions in Experiment 1. It was concluded memory performance can be altered by processing under narcosis and supports the contention that narcosis affects the encoding stage of memory as opposed to self-guided search (retrieval).

  15. Plant growth regulator interactions in physiological processes for controlling plant regeneration and in vitro development of Tulbaghia simmleri

    Czech Academy of Sciences Publication Activity Database

    Kumari, A.; Baskaran, P.; Plačková, Lenka; Omámiková, Hana; Nisler, Jaroslav; Doležal, Karel; Van Staden, J.

    2018-01-01

    Roč. 223, APR (2018), s. 65-71 ISSN 0176-1617 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Endogenous hormone * Exogenous hormone application * In vitro regeneration * Ornamental and medicinal plant * Physiological process * Tulbaghia simmleri Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 3.121, year: 2016

  16. Process-Oriented Guided-Inquiry Learning in an Introductory Anatomy and Physiology Course with a Diverse Student Population

    Science.gov (United States)

    Brown, Patrick J. P.

    2010-01-01

    Process-oriented guided-inquiry learning (POGIL), a pedagogical technique initially developed for college chemistry courses, has been implemented for 2 yr in a freshman-level anatomy and physiology course at a small private college. The course is populated with students with backgrounds ranging from no previous college-level science to junior and…

  17. Physiological responses to changes in relative humidity under thermally neutral, warm and hot conditions.

    Science.gov (United States)

    Kakitsuba, Naoshi

    2016-07-01

    Four hypothetical thermophysiological responses to changes in relative humidity (Rh) under thermally neutral, warm, and hot conditions were proposed for a person at rest. Under thermally neutral and warm conditions, the first hypothetical response to an increase in Rh was a decrease in mean skin temperature (T¯sk) due to increase in mean evaporation rate (E¯sk), and the second hypothetical response to a decrease in Rh was a decrease, an increase, or no change in T¯sk, depending on changes in the E¯sk. Under hot conditions, the third hypothetical response to an increase in the Rh was an increase in T¯sk or decrease in T¯sk upon decrease in the Rh due to changes in E¯sk, and the forth hypothetical response to an increase in Rh was an increase in T¯sk due to increase in the peripheral blood flow rate (SkBF). To test these hypotheses, the T¯sk and E¯sk of four young male volunteers were measured at 28°C, 30°C, or 32°C while the Rh was maintained at 40% or 80% Rh for 60min after 20min exposure at 60% Rh (control condition). In a second experiment, the T¯sk, E¯sk, and SkBF of five young male volunteers were measured at 34°C-40% Rh or 36°C-40% Rh, or 34°C-70% Rh or 36°C-70% Rh for 60min after 20min exposure at 28°C-60% Rh (control condition). The first hypothesis was partly supported by the findings that the T¯sk was lower than the control values at 28°C-80% Rh and the E¯sk was higher than the control values at 80% Rh at any tested temperature. The second hypothesis was partly supported by the findings that the T¯sk was lower than the control values at 28°C-40% Rh, and there were small changes in both T¯sk and E¯sk at 30°C-40% Rh. The third and fourth hypotheses were supported by the findings that the T¯sk at 36°C-70% Rh was significantly higher (p<0.01) than at 36°C-40% Rh, the E¯sk was significantly higher (p<0.01) at 70% Rh than at 40% Rh, and SkBF was positively correlated with T¯sk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses.

    Science.gov (United States)

    Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger; Sepehri, Mozhgan

    2018-02-16

    Under combined drought and mechanical stresses, mechanical stress primarily controlled physiological responses of maize. Piriformospora indica mitigated the adverse effects of stresses, and inoculated maize experienced less oxidative damage and had better adaptation to stressful conditions. The objective of this study was to investigate the effect of maize root colonization by an endophytic fungus P. indica on plant water status, physiological traits and root morphology under combined drought and mechanical stresses. Seedlings of inoculated and non-inoculated maize (Zea mays L., cv. single cross 704) were cultivated in growth chambers filled with moistened siliceous sand at a matric suction of 20 hPa. Drought stress was induced using PEG 6000 solution with osmotic potentials of 0, - 0.3 and - 0.5 MPa. Mechanical stress (i.e., penetration resistances of 1.05, 4.23 and 6.34 MPa) was exerted by placing weights on the surface of the sand medium. After 30 days, leaf water potential (LWP) and relative water content (RWC), root and shoot fresh weights, root volume (RV) and diameter (RD), leaf proline content, leaf area (LA) and catalase (CAT) and ascorbate peroxidase (APX) activities were measured. The results show that exposure to individual drought and mechanical stresses led to higher RD and proline content and lower plant biomass, RV and LA. Moreover, increasing drought and mechanical stress severity increased APX activity by about 1.9- and 3.1-fold compared with the control. When plants were exposed to combined stresses, mechanical stress played the dominant role in controlling plant responses. P. indica-inoculated plants are better adapted to individual and combined stresses. The inoculated plants had greater RV, LA, RWC, LWP and proline content under stressful conditions. In comparison with non-inoculated plants, inoculated plants showed lower CAT and APX activities which means that they experienced less oxidative stress induced by stressful conditions.

  19. Characterizing physiological status in three breeds of bulls reared under ecological and climate conditions of the Altai region

    Directory of Open Access Journals (Sweden)

    L.V. Osadchuk

    2017-06-01

    Full Text Available Ecological and climatic factors have an impact on the health, productivity and reproduction of the cattle. The goal of this work is the study of physiological status of servicing bulls reared under ecological and climate conditions of the Altai region, by defining the differences between Red-Steppe, Simmental and Black-and-White breeds in spermatogenic, hormonal, biochemical and hematological parameters. Samples of peripheral blood and ejaculates were taken from 48 grown-up servicing bulls (average age 5.6±0.3 years in autumn period. It was established that Red-Steppe bulls have higher concentrations of nonorganic phosphorus, leucocytes, erythrocytes, hemoglobin, hematocrit and erythrocyte sedimentation rate in comparison with animals of Simmental breed, and the hemoglobin concentration and hematocrit are also higher in comparison with Black-and-White breed. It was noted that bulls of Black-and-White breed have a higher level of cortisol in comparison with the other breeds. The lowest level of serum urea and total protein and increased serum activity of creatine kinase and γ-glutamyl transferase, as well as the heaviest body weight were observed in Simmental breed bulls. The differences between breeds in a wide spectrum of physiological measures reflect not only genetically determined peculiarities of homeostatic mechanism, but also may reflect different ability to adapt to local ecological and climate conditions of the Altai region. Spermatogenic, biochemical and hematological measures in bull sires reared in the Altai region were similar to those in bulls bred in other Russian regions and some other countries. The measures reported could serve as reference values and therefore represent ‘normal’ values of physiological status for these bull sires reared in this ecological and climatic zone, but could be utilized in further studies for comprehensive monitoring of cattle breeding stock in other ecological and climatic zones of the Siberian

  20. A novel bioreactor for mechanobiological studies of engineered heart valve tissue formation under pulmonary arterial physiological flow conditions.

    Science.gov (United States)

    Ramaswamy, Sharan; Boronyak, Steven M; Le, Trung; Holmes, Andrew; Sotiropoulos, Fotis; Sacks, Michael S

    2014-12-01

    The ability to replicate physiological hemodynamic conditions during in vitro tissue development has been recognized as an important aspect in the development and in vitro assessment of engineered heart valve tissues. Moreover, we have demonstrated that studies aiming to understand mechanical conditioning require separation of the major heart valve deformation loading modes: flow, stretch, and flexure (FSF) (Sacks et al., 2009, "Bioengineering Challenges for Heart Valve Tissue Engineering," Annu. Rev. Biomed. Eng., 11(1), pp. 289-313). To achieve these goals in a novel bioreactor design, we utilized a cylindrical conduit configuration for the conditioning chamber to allow for higher fluid velocities, translating to higher shear stresses on the in situ tissue specimens while retaining laminar flow conditions. Moving boundary computational fluid dynamic (CFD) simulations were performed to predict the flow field under combined cyclic flexure and steady flow (cyclic-flex-flow) states using various combinations of flow rate, and media viscosity. The device was successfully constructed and tested for incubator housing, gas exchange, and sterility. In addition, we performed a pilot experiment using biodegradable polymer scaffolds seeded with bone marrow derived stem cells (BMSCs) at a seeding density of 5 × 10(6) cells/cm(2). The constructs were subjected to combined cyclic flexure (1 Hz frequency) and steady flow (Re = 1376; flow rate of 1.06 l/min (LPM); shear stress in the range of 0-9 dynes/cm(2) for 2 weeks to permit physiological shear stress conditions. Assays revealed significantly (P Engineered Tissue Formation: Implications for Engineered Heart Valve Tissues," Biomaterials, 27(36), pp. 6083-6095). The implications of this novel design are that fully coupled or decoupled physiological flow, flexure, and stretch modes of engineered tissue conditioning investigations can be readily accomplished with the inclusion of this device in experimental protocols on

  1. PHYSIOLOGICAL BEHAVIOR OF Bowdichia virgilioides KUNTH. SEEDS UNDER DIFFERENT TEMPERATURE AND LIGHT CONDICTIONS

    Directory of Open Access Journals (Sweden)

    KELINE SOUSA ALBUQUERQUE

    2007-03-01

    Full Text Available This research verified the influence of the temperature and light on seed germination of Bowdichia virgilioides. The experiment was conducted in factorial system 3x5x2, correspoding to three lots of seeds, five temperatures and two light condictions. The germination test was conducted in thermo gradiente table regulated in temperatures of 20°C, 25°C, 30°C and 35°C under constant light and BOD adjusted in temperature 20-30°C with photoperiod of 12 hours. In order to simulate the light absence the gerbox were involved with alluminium paper. There were evaluated the percentage of germination, index speed of germination and dry weight of seedlings. The tempeatures of 25°C and 20-30°C result in higher percentage. In relation to photoblastism, the seeds are indifferent to light conditions.

  2. A study on selected physiological parameters of plants grown under lithium supplementation.

    Science.gov (United States)

    Hawrylak-Nowak, Barbara; Kalinowska, Monika; Szymańska, Maria

    2012-12-01

    Exposure of sunflower and maize plants to increasing concentrations of lithium (0-50 mg Li dm(-3)) in a nutrient solution induced changes in biomass, leaf area and photosynthetic pigment accumulation, as well as levels of lipid peroxidation. The highest applied lithium dose (50 mg Li dm(-3)) evoked a significant reduction in the shoot biomass for both examined species, as well as necrotic spots and a reduction of the leaf area in sunflower plants. An enrichment of a nutrient solution with 5-50 mg Li dm(-3) did not significantly affect chlorophylls a and b and the carotenoid content in sunflower plants. However, in maize, a significant decrease in all pigment content under highest used lithium concentration was noted. The levels of lipid peroxidation of the cell membranes in leaves of sunflower plants and the roots of maize increased significantly in the presence of 50 mg Li dm(-3), which suggests disturbances of the membrane integrity and pro-oxidant properties of the excess lithium ions. Nonetheless, in maize, an increase of shoot biomass and leaf area in the presence of 5 mg Li dm(-3) was found. An analysis of the metal content indicated that lithium accumulated significantly in sunflower and maize shoots in a dose-dependent manner, but differences occurred between species. The sunflower plants accumulated considerably greater amounts of this metal than maize. The potassium content in shoots remained unchanged under lithium treatments, except for a significant increase in the potassium levels for sunflower plants grown in the presence of 50 mg Li dm(-3). These results suggest that lithium at 50 mg Li dm(-3) is toxic to both plant species, but the symptoms of toxicity are species-specific. Moreover, the lithium influence on plants is dose-dependent and its ions can exert toxicity at high concentrations (50 mg Li dm(-3)) or stimulate growth at low concentrations (5 mg Li dm(-3)).

  3. Physiological differences and changes in global DNA methylation levels in Agave angustifolia Haw. albino variant somaclones during the micropropagation process.

    Science.gov (United States)

    Duarte-Aké, Fátima; Castillo-Castro, Eduardo; Pool, Felipe Barredo; Espadas, Francisco; Santamaría, Jorge M; Robert, Manuel L; De-la-Peña, Clelia

    2016-12-01

    Global DNA methylation changes caused by in vitro conditions are associated with the subculturing and phenotypic variation in Agave angustifolia Haw. While the relationship between the development of albinism and in vitro culture is well documented, the role of epigenetic processes in this development leaves some important questions unanswered. During the micropropagation of Agave angustifolia Haw., we found three different phenotypes, green (G), variegated (V) and albino (A). To understand the physiological and epigenetic differences among the somaclones, we analyzed several morphophysiological parameters and changes in the DNA methylation patterns in the three phenotypes during their in vitro development. We found that under in vitro conditions, the V plantlets maintained their CAM photosynthetic capacity, while the A variant showed no pigments and lost its CAM photosynthetic ability. Epigenetic analysis revealed that global DNA methylation increased in the G phenotype during the first two subcultures. However, after that time, DNA methylation levels declined. This hypomethylation correlated with the appearance of V shoots in the G plantlets. A similar correlation occurred in the V phenotype, where an increase of 2 % in the global DNA methylation levels was correlated with the generation of A shoots in the V plantlets. This suggests that an "epigenetic stress memory" during in vitro conditions causes a chromatin shift that favors the generation of variegated and albino shoots.

  4. Changes in expression of klotho affect physiological processes, diseases, and cancer

    Directory of Open Access Journals (Sweden)

    Nguyen Xuan

    2018-01-01

    Full Text Available Klotho (KL encodes a single-pass transmembrane protein and is predominantly expressed in the kidney, parathyroid glands, and choroid plexus. Genetic studies on the KL gene have revealed that DNA hypermethylation is one of the major risk factors for aging, diseases, and cancer. Besides, KL exerts anti-inflammatory and anti-tumor effects by regulating signaling pathways and the expression of target genes. KL participates in modulation of the insulin/insulin-like growth factor-1 (IGF-1 signaling, which induces the growth hormone (GH secretion. Accordingly, KL mutant mice display multiple aging-like phenotypes, which are ameliorated by overexpression of KL. Therefore, KL is an important contributor to lifespan. KL is further identified as a regulator of calcium (Ca2+ channel-dependent cell physiological processes. KL has been also shown to induce cancer cell apoptosis, thus, it is considered as a potential tumor suppressor. Our recent studies have indicated that KL modulates an influx of Ca2+ from the extracellular space, leading to a change in CCL21-dependent migration in dendritic cells (DCs. Interestingly, the regulation of the expression of KL was mediated through a phosphoinositide 3-kinase (PI3K pathway in DCs. Moreover, downregulating of KL expression by using siRNA knockdown technique, we observed that the expression of Ca2+ channels including Orai3, but not Orai1, Orai2, TRPV5 and TRPV6 was significantly reduced in KL-silenced as compared to control BMDCs. Clearly, additional research is required to define the role of KL in the regulation of organismic and cellular functions through the PI3K signaling and the expression of the Ca2+ channels.

  5. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    Science.gov (United States)

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  6. Physicochemical characterization of engineered nanoparticles under physiological conditions: effect of culture media components and particle surface coating.

    Science.gov (United States)

    Fatisson, Julien; Quevedo, Ivan R; Wilkinson, Kevin J; Tufenkji, Nathalie

    2012-03-01

    The use of engineered nanoparticles (ENPs) in commercial products has increased substantially over the last few years. Some research has been conducted in order to determine whether or not such materials are cytotoxic, but questions remain regarding the role that physiological media and sera constituents play in ENP aggregation or stabilization. In this study, several characterization methods were used to evaluate the particle size and surface potential of 6 ENPs suspended in a number of culture media and in the presence of different culture media constituents. Dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) were employed for size determinations. Results were interpreted on the basis of ENP surface potentials evaluated from particle electrophoretic mobilities (EPM). Measurements made after 24h of incubation at 37°C showed that the cell culture medium constituents had only moderate impact on the physicochemical properties of the ENP, although incubation in bovine serum albumin destabilized the colloidal system. In contrast, most of the serum proteins increased colloidal stabilization. Moreover, the type of ENP surface modification played a significant role in ENP behavior whereby the complexity of interactions between the ENPs and the medium components generally decreased with increasing complexity of the particle surface. This investigation emphasizes the importance of ENP characterization under conditions that are representative of cell culture media or physiological conditions for improved assessments of nanoparticle cytotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Reach tracking reveals dissociable processes underlying cognitive control.

    Science.gov (United States)

    Erb, Christopher D; Moher, Jeff; Sobel, David M; Song, Joo-Hyun

    2016-07-01

    The current study uses reach tracking to investigate how cognitive control is implemented during online performance of the Stroop task (Experiment 1) and the Eriksen flanker task (Experiment 2). We demonstrate that two of the measures afforded by reach tracking, initiation time and reach curvature, capture distinct patterns of effects that have been linked to dissociable processes underlying cognitive control in electrophysiology and functional neuroimaging research. Our results suggest that initiation time reflects a response threshold adjustment process involving the inhibition of motor output, while reach curvature reflects the degree of co-activation between response alternatives registered by a monitoring process over the course of a trial. In addition to shedding new light on fundamental questions concerning how these processes contribute to the cognitive control of behavior, these results present a framework for future research to investigate how these processes function across different tasks, develop across the lifespan, and differ among individuals. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of a puzzle on the process of students' learning about cardiac physiology.

    Science.gov (United States)

    Cardozo, Lais Tono; Miranda, Aline Soares; Moura, Maria José Costa Sampaio; Marcondes, Fernanda Klein

    2016-09-01

    The aim of the present study was to evaluate the effects of using a puzzle to learn about cardiac physiology. Students were divided into control and game groups. In class 1, the control group had a 2-h theoretical class about cardiac physiology, including a detailed description of the phases of the cardiac cycle, whereas the game group had a 50-min theoretical class without the description of the cardiac cycle. In class 2, the control group did an assessment exercise before an activity with the cardiac puzzle and the game group answered questions after the above-mentioned activity. While solving the puzzle, the students had to describe the cardiac cycle by relating the concepts of heart morphology and physiology. To evaluate short-term learning, the number of wrong answers and grades in the assessment exercise were compared between the control and game groups. To evaluate medium-term learning, we compared the grades obtained by students of the control and game groups in questions about cardiac physiology that formed part of the academic exam. In the assessment exercise, the game group presented a lower number of errors and higher score compared with the control group. In the academic exam, applied after both groups had used the puzzle, there was no difference in the scores obtained by the control and game groups in questions about cardiac physiology. These results showed a positive effect of the puzzle on students' learning about cardiac physiology compared with those not using the puzzle. Copyright © 2016 The American Physiological Society.

  9. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Sanghamitra [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), El Paso, TX (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), El Paso, TX (United States); Trujillo-Reyes, Jesica [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Sun, Youping [Texas AgriLife Research Center at El Paso, Texas A& M University System, 1380 A & M Circle, El Paso, TX 79927 (United States); Barrios, Ana C. [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Niu, Genhua [Texas AgriLife Research Center at El Paso, Texas A& M University System, 1380 A & M Circle, El Paso, TX 79927 (United States); Margez, Juan P. Flores- [Autonomous University of Ciudad Juarez, Departamento de Química y Biología, Instituto de Ciencias Biomédicas, Anillo envolvente PRONAF y Estocolmo, Ciudad Juarez, Chihuahua 32310, México (Mexico); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), El Paso, TX (United States)

    2016-11-01

    Soil organic matter plays a major role in determining the fate of the engineered nanomaterials (ENMs) in the soil matrix and effects on the residing plants. In this study, kidney bean plants were grown in soils varying in organic matter content and amended with 0–500 mg/kg cerium oxide nanoparticles (nano-CeO{sub 2}) under greenhouse condition. After 52 days of exposure, cerium accumulation in tissues, plant growth and physiological parameters including photosynthetic pigments (chlorophylls and carotenoids), net photosynthesis rate, transpiration rate, and stomatal conductance were recorded. Additionally, catalase and ascorbate peroxidase activities were measured to evaluate oxidative stress in the tissues. The translocation factor of cerium in the nano-CeO{sub 2} exposed plants grown in organic matter enriched soil (OMES) was twice as the plants grown in low organic matter soil (LOMS). Although the leaf cover area increased by 65–111% with increasing nano-CeO{sub 2} concentration in LOMS, the effect on the physiological processes were inconsequential. In OMES leaves, exposure to 62.5–250 mg/kg nano-CeO{sub 2} led to an enhancement in the transpiration rate and stomatal conductance, but to a simultaneous decrease in carotenoid contents by 25–28%. Chlorophyll a in the OMES leaves also decreased by 27 and 18% on exposure to 125 and 250 mg/kg nano-CeO{sub 2}. In addition, catalase activity increased in LOMS stems, and ascorbate peroxidase increased in OMES leaves of nano-CeO{sub 2} exposed plants, with respect to control. Thus, this study provides clear evidence that the properties of the complex soil matrix play decisive roles in determining the fate, bioavailability, and biological transport of ENMs in the environment. - Highlights: • Ce translocation to leaves was facilitated by higher organic matter (OM) in soil. • Lower soil OM increased leaf cover area in nano-CeO{sub 2} exposed plants. • Nano-CeO{sub 2} effects on metabolic processes were more

  10. Reducing heat stress under thermal insulation in protective clothing: microclimate cooling by a 'physiological' method.

    Science.gov (United States)

    Glitz, K J; Seibel, U; Rohde, U; Gorges, W; Witzki, A; Piekarski, C; Leyk, D

    2015-01-01

    Heat stress caused by protective clothing limits work time. Performance improvement of a microclimate cooling method that enhances evaporative and to a minor extent convective heat loss was tested. Ten male volunteers in protective overalls completed a work-rest schedule (130 min; treadmill: 3 × 30 min, 3 km/h, 5% incline) with or without an additional air-diffusing garment (climatic chamber: 25°C, 50% RH, 0.2 m/s wind). Heat loss was supported by ventilating the garment with dry air (600 l/min, ≪5% RH, 25°C). Ventilation leads (M ± SD, n = 10, ventilated vs. non-ventilated) to substantial strain reduction (max. HR: 123 ± 12 b/min vs. 149 ± 24 b/min) by thermal relief (max. core temperature: 37.8 ± 0.3°C vs. 38.4 ± 0.4°C, max. mean skin temperature: 34.7 ± 0.8°C vs. 37.1 ± 0.3°C) and offers essential extensions in performance and work time under thermal insulation. Heat stress caused by protective clothing limits work time. Performance can be improved by a microclimate cooling method that supports evaporative and to a minor extent convective heat loss. Sweat evaporation is the most effective thermoregulatory mechanism for heat dissipation and can be enhanced by insufflating dry air into clothing.

  11. Molecular and physiological responses of sunflower (helianthus annuus l.) to pgpr and sa under salt stress

    International Nuclear Information System (INIS)

    Naz, R.

    2015-01-01

    This paper presents the efficacy of PGPR (Azospirillum and Pseudomonas) and its modulation by salicylic acid. Two hybrids of sunflower (Hysun and Parsun) were inoculated with Azospirillum spp. and Pseudomonas spp. prior to sowing. Salt stress (20 dSm-1) was applied 28 d after sowing followed by foliar spray of salicylic acid (100 micro M) after 4 h of salt treatment. Azospirillum and Pseudomonas inoculation alone and in combination with salicylic acid alleviated the effects of salt stress on both the sunflower hybrids. The salt tolerance in these treatments was mediated by an increase in relative water content, carotenoids, proline, ABA, induction of new polypeptide bands and yield of sunflower hybrids. In response to salt stress four new polypeptide bands were synthesized in both Hysun, whereas, a group of six polypeptide bands were observed in Parsun. Application of salicylic acid alone and in combination with Azospirillum found to induce four new polypeptide bands in Hysun and Parsun. It is inferred that synthesis of new proteins in response to the combined application of salicylic acid and Azospirillum under salt stress, may play an important role as stress proteins in tolerance of sunflower hybrids to salt stress. (author)

  12. Understanding the physiological roles of polyhydroxybutyrate (PHB) in Rhodospirillum rubrum S1 under aerobic chemoheterotrophic conditions.

    Science.gov (United States)

    Narancic, Tanja; Scollica, Elisa; Kenny, Shane T; Gibbons, Helena; Carr, Eibhlin; Brennan, Lorraine; Cagney, Gerard; Wynne, Kieran; Murphy, Cormac; Raberg, Matthias; Heinrich, Daniel; Steinbüchel, Alexander; O'Connor, Kevin E

    2016-10-01

    Polyhydroxybutyrate (PHB) is an important biopolymer accumulated by bacteria and associated with cell survival and stress response. Here, we make two surprising findings in the PHB-accumulating species Rhodospirillum rubrum S1. We first show that the presence of PHB promotes the increased assimilation of acetate preferentially into biomass rather than PHB. When R. rubrum is supplied with (13)C-acetate as a PHB precursor, 83.5 % of the carbon in PHB comes from acetate. However, only 15 % of the acetate ends up in PHB with the remainder assimilated as bacterial biomass. The PHB-negative mutant of R. rubrum assimilates 2-fold less acetate into biomass compared to the wild-type strain. Acetate assimilation proceeds via the ethylmalonyl-CoA pathway with (R)-3-hydroxybutyrate as a common intermediate with the PHB pathway. Secondly, we show that R. rubrum cells accumulating PHB have reduced ribulose 1,5-bisphosphate carboxylase (RuBisCO) activity. RuBisCO activity reduces 5-fold over a 36-h period after the onset of PHB. In contrast, a PHB-negative mutant maintains the same level of RuBisCO activity over the growth period. Since RuBisCO controls the redox potential in R. rubrum, PHB likely replaces RuBisCO in this role. R. rubrum is the first bacterium found to express RuBisCO under aerobic chemoheterotrophic conditions.

  13. Explaining individual differences in cognitive processes underlying hindsight bias.

    Science.gov (United States)

    Coolin, Alisha; Erdfelder, Edgar; Bernstein, Daniel M; Thornton, Allen E; Thornton, Wendy Loken

    2015-04-01

    After learning an event's outcome, people's recollection of their former prediction of that event typically shifts toward the actual outcome. Erdfelder and Buchner (Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 387-414, 1998) developed a multinomial processing tree (MPT) model to identify the underlying processes contributing to this hindsight bias (HB) phenomenon. More recent applications of this model have revealed that, in comparison to younger adults, older adults are more susceptible to two underlying HB processes: recollection bias and reconstruction bias. However, the impact of cognitive functioning on these processes remains unclear. In this article, we extend the MPT model for HB by incorporating individual variation in cognitive functioning into the estimation of the model's core parameters in older and younger adults. In older adults, our findings revealed that (1) better episodic memory was associated with higher recollection ability in the absence of outcome knowledge, (2) better episodic memory and inhibitory control and higher working memory capacity were associated with higher recollection ability in the presence of outcome knowledge, and (3) better inhibitory control was associated with less reconstruction bias. Although the pattern of effects was similar in younger adults, the cognitive covariates did not significantly predict the underlying HB processes in this age group. In sum, we present a novel approach to modeling individual variability in MPT models. We applied this approach to the HB paradigm to identify the cognitive mechanisms contributing to the underlying HB processes. Our results show that working memory capacity and inhibitory control, respectively, drive individual differences in recollection bias and reconstruction bias, particularly in older adults.

  14. REVIEWMolecular mechanisms underlying physiological and receptor pleiotropic effects mediated by GLP-1R activation

    Science.gov (United States)

    Pabreja, K; Mohd, M A; Koole, C; Wootten, D; Furness, S G B

    2014-01-01

    The incidence of type 2 diabetes in developed countries is increasing yearly with a significant negative impact on patient quality of life and an enormous burden on the healthcare system. Current biguanide and thiazolidinedione treatments for type 2 diabetes have a number of clinical limitations, the most serious long-term limitation being the eventual need for insulin replacement therapy (Table 1). Since 2007, drugs targeting the glucagon-like peptide-1 (GLP-1) receptor have been marketed for the treatment of type 2 diabetes. These drugs have enjoyed a great deal of success even though our underlying understanding of the mechanisms for their pleiotropic effects remain poorly characterized even while major pharmaceutical companies actively pursue small molecule alternatives. Coupling of the GLP-1 receptor to more than one signalling pathway (pleiotropic signalling) can result in ligand-dependent signalling bias and for a peptide receptor such as the GLP-1 receptor this can be exaggerated with the use of small molecule agonists. Better consideration of receptor signalling pleiotropy will be necessary for future drug development. This is particularly important given the recent failure of taspoglutide, the report of increased risk of pancreatitis associated with GLP-1 mimetics and the observed clinical differences between liraglutide, exenatide and the newly developed long-acting exenatide long acting release, albiglutide and dulaglutide. Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:23889512

  15. PHYSIOLOGICAL QUALITY OF SOYBEAN SEEDS UNDER MECHANICAL INJURIES CAUSED BY COMBINES

    Directory of Open Access Journals (Sweden)

    FÁBIO PALCZEWSKI PACHECO

    2015-01-01

    Full Text Available The mechanical harvesting causes injuries on seeds and may affect their quality. Different threshing mechanisms and their adjustments may also affect the intensity of impacts that machines cause on seeds. So, this study aimed at diagnosing and evaluating the effect of two combines: the first one with a threshing system of axial flow and the other one with a threshing system of tangential flow, under adjustments of concave opening (10 mm, 30 mm and 10 mm for a combine with axial flow and 3.0 mm, 15 mm and 3.0 mm for a combine with tangential flow and three cylinder rotations on the quality of soybean seeds harvested at two moisture contents. Soybean seeds of cultivar 'ND 4910' were harvested at 16.6% moisture (mid - morning and 13.7% moisture in the afternoon. The seeds quality was evaluated by germination tests, germination speed index (GSI, germination rate, moisture content, percentage of purity and vigor by tetrazolium test. Despite the combine, the results showed that the mechanical injury has most reduced seeds quality, at 16.6% moisture content, concave opening of 30 mm (axial and 10 mm (tangential and cylinder rotation of 1100 rpm (axial and 1000 (tangential, both with the highest rotations used. The combine with tangential flow had the highest degree of seeds purity. When seeds moisture content at harvest was close to 13.7%, there was the highest seed injury, while, at 16.6%, there was the highest number of crushed soybeans, regardless the combine adjustment.

  16. Physiological and metabolomic analysis of Punica granatum (L.) under drought stress.

    Science.gov (United States)

    Catola, Stefano; Marino, Giovanni; Emiliani, Giovanni; Huseynova, Taravat; Musayev, Mirza; Akparov, Zeynal; Maserti, Bianca Elena

    2016-02-01

    Punica granatum has a noticeable adaptation to drought stress. The levels of the green leaf volatile trans-2-hexenal increased in response to drought stress suggesting a possible role of this compound in drought stress response in pomegranate. Punica granatum (L.) is a highly valued fruit crop for its health-promoting effects and it is mainly cultivated in semi-arid areas. Thus, understanding the response mechanisms to drought stress is of great importance. In the present research, a metabolomics analysis was performed to evaluate the effects of drought stress on volatile organic compounds extracted from the leaves of pomegranate plants grown under water shortage conditions. The time course experiment (7 days of water deprivation and 24-h recovery) consisted of three treatments (control, drought stress, and rehydration of drought-stressed plants). Plant weights were recorded and control plants were irrigated daily at pot capacity to provide the lost water. Fraction of transpirable soil water has been evaluated as indicator of soil water availability in stressed plants. The levels of proline, hydrogen peroxide and lipid peroxidation as well as of the photosynthetic parameters such as photosynthesis rate (A), stomatal conductance (g s), photosynthetic efficiency of photosystem II, and photochemical quenching were monitored after the imposition of drought stress and recovery as markers of plant stress. Constitutive carbon volatile components were analyzed in the leaf of control and drought-stressed leaves using Head Space Solid Phase Micro Extraction sampling coupled with Gas Chromatography Mass Spectrometry. A total of 12 volatile compounds were found in pomegranate leaf profiles, mainly aldehydes, alcohols, and organic acids. Among them, the trans-2-hexenal showed a significant increase in water-stressed and recovered leaves respect to the well-watered ones. These data evidence a possible role of the oxylipin pathway in the response to water stress in pomegranate

  17. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress

    KAUST Repository

    Takahashi, Fuminori

    2015-08-05

    Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum) that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early “osmotic” phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions.

  18. Physiological functions of pyruvate:NADP+oxidoreductase and 2-oxoglutarate decarboxylase in Euglena gracilis under aerobic and anaerobic conditions.

    Science.gov (United States)

    Nakazawa, Masami; Hayashi, Ryuta; Takenaka, Shigeo; Inui, Hiroshi; Ishikawa, Takahiro; Ueda, Mitsuhiro; Sakamoto, Tatsuji; Nakano, Yoshihisa; Miyatake, Kazutaka

    2017-07-01

    In Euglena gracilis, pyruvate:NADP + oxidoreductase, in addition to the pyruvate dehydrogenase complex, functions for the oxidative decarboxylation of pyruvate in the mitochondria. Furthermore, the 2-oxoglutarate dehydrogenase complex is absent, and instead 2-oxoglutarate decarboxylase is found in the mitochondria. To elucidate the central carbon and energy metabolisms in Euglena under aerobic and anaerobic conditions, physiological significances of these enzymes involved in 2-oxoacid metabolism were examined by gene silencing experiments. The pyruvate dehydrogenase complex was indispensable for aerobic cell growth in a glucose medium, although its activity was less than 1% of that of pyruvate:NADP + oxidoreductase. In contrast, pyruvate:NADP + oxidoreductase was only involved in the anaerobic energy metabolism (wax ester fermentation). Aerobic cell growth was almost completely suppressed when the 2-oxoglutarate decarboxylase gene was silenced, suggesting that the tricarboxylic acid cycle is modified in Euglena and 2-oxoglutarate decarboxylase takes the place of the 2-oxoglutarate dehydrogenase complex in the aerobic respiratory metabolism.

  19. In Vitro Validation of a Numerical Simulation of Leaflet Kinematics in a Polymeric Aortic Valve Under Physiological Conditions.

    Science.gov (United States)

    Gharaie, Saleh Hassanzadeh; Mosadegh, Bobak; Morsi, Yosry

    2018-03-01

    This paper describes a computational method to simulate the non-linear structural deformation of a polymeric aortic valve under physiological conditions. Arbitrary Lagrangian-Eulerian method is incorporated in the fluid-structure interaction simulation, and then validated by comparing the predicted kinematics of the valve's leaflets to in vitro measurements on a custom-made polymeric aortic valve. The predicted kinematics of the valve's leaflets was in good agreement with the experimental results with a maximum error of 15% in a single cardiac cycle. The fluid-structure interaction model presented in this study can simulate structural behaviour of a stented valve with flexible leaflets, providing insight into the haemodynamic performance of a polymeric aortic valve.

  20. Assessing the Soil Physiological Potential Using Pedo-Biological Diagnosis Under Minimum-Tillage System and Mineral Fertilization

    Directory of Open Access Journals (Sweden)

    Lazar Bireescu

    2014-11-01

    Full Text Available The main objective of sustainable agriculture is the protection of environment and natural vegetal and soil resources. Accordingly, the objective of this research was to assess the impact of technological systems by minimum tillage on soil biological activity, using the Pedo-Biological Diagnosis of Soil Resources. Our research was conducted on haplic chernozem from Experimental Station of UASVM of Iasi, Romania, during the seasonal dynamic, to the soybean crop, on unfertilized and fertilized agrofond, using moderate mineral doses (N80P80 as average of 2009–2010 period, under minimum tillage (2x disk, paraplow, chisel compared to conventional (plugging at 20 cm and 30 cm. In the case of soil works with chisel and paraplow without return of furrow, the Pedo-Biological Diagnosis highlights an increase of soil physiological potential, in the both variants (unfertilized and fertilized, unlike the method of alternating the depth of plugging that proved to be ineffective.

  1. Effect of an Outer Sleeve on an Inflatable Balloon Tamp in Terms of Height Restoration Under Simulated Physiological Load.

    Science.gov (United States)

    Peppelman, Walter C; Beutler, William; Gordon, Michael; Chintakunta, Suresh R; O'Halloran, Damien; Bucklen, Brandon

    2017-04-01

    An in vitro biomechanical study. The aim of this study was to determine the effect of an optional sleeve on height restoration and compare it with the fracture reduction achieved by a commercially available inflatable bone tamp under simulated physiological load (110 N). Loss of reduction after bone tamp deflation before cement injection still remains a concern. The optional sleeve surrounds the bone tamp to help maintain height during the kyphoplasty procedure while filling the created cavity with bone cement on the contralateral side. Eighteen osteoporotic vertebral bodies (VBs) (T11-L4) were alternately assigned to 1 of the 2 treatment groups: group A: KYPHON (Kyphon Inc.) and group B: AFFIRM with sleeve (Globus Medical Inc.). The VBs were compressed axially at a rate of 5 mm/min until compressed to 40% of the initial anterior height. The fractured VBs then underwent kyphoplasty with cement augmentation while still maintaining load (110 N). The augmented VBs were then recompressed and anterior VB height (mm) and wedge angle (degrees) were measured initially after mechanically creating an anterior wedge fracture, and after repairing the compression fracture. The effect of kyphoplasty on vertebral height, kyphotic angle, cement volumes, and inflation pressures were compared between the treatment groups. Failure load (N) data were compared between intact and repaired VBs. Average percentage of lost VB height restored in group A was 30%, compared with 56% for group B. The mean changes in wedge angle were similar to those of vertebral height measurements. No significant difference in mean inflation pressures (group A: 175±37 psi; group B: 160±36 psi) were found between the 2 groups. Average percentage increase in failure load was 241% and 212% in groups A and B, respectively. Some height restoration was observed using the commercially available bone tamp in fractured VBs under simulated physiological load. The use of an outer sleeve significantly enhanced height

  2. Comparative Physiological and Molecular Analyses of Two Contrasting Flue-Cured Tobacco Genotypes under Progressive Drought Stress

    Directory of Open Access Journals (Sweden)

    Xinhong Su

    2017-05-01

    Full Text Available Drought is a major environmental factor that limits crop growth and productivity. Flue-cured tobacco (Nicotiana tabacum is one of the most important commercial crops worldwide and its productivity is vulnerable to drought. However, comparative analyses of physiological, biochemical and gene expression changes in flue-cured tobacco varieties differing in drought tolerance under long-term drought stress are scarce. In this study, drought stress responses of two flue-cured tobacco varieties, LJ851 and JX6007, were comparatively studied at the physiological and transcriptional levels. After exposing to progressive drought stress, the drought-tolerant LJ851 showed less growth inhibition and chlorophyll reduction than the drought-sensitive JX6007. Moreover, higher antioxidant enzyme activities and lower levels of H2O2, Malondialdehyde (MDA, and electrolyte leakage after drought stress were found in LJ851 when compared with JX6007. Further analysis showed that LJ851 plants had much less reductions than the JX6007 in the net photosynthesis rate and stomatal conductance during drought stress; indicating that LJ851 had better photosynthetic performance than JX6007 during drought. In addition, transcriptional expression analysis revealed that LJ851 exhibited significantly increased transcripts of several categories of drought-responsive genes in leaves and roots under drought conditions. Together, these results indicated that LJ851 was more drought-tolerant than JX6007 as evidenced by better photosynthetic performance, more powerful antioxidant system, and higher expression of stress defense genes during drought stress. This study will be valuable for the development of novel flue-cured tobacco varieties with improved drought tolerance by exploitation of natural genetic variations in the future.

  3. Lipid interaction converts prion protein to a PrPSc-like proteinase K-resistant conformation under physiological conditions.

    Science.gov (United States)

    Wang, Fei; Yang, Fan; Hu, Yunfei; Wang, Xu; Wang, Xinhe; Jin, Changwen; Ma, Jiyan

    2007-06-12

    The conversion of prion protein (PrP) to the pathogenic PrPSc conformation is central to prion disease. Previous studies revealed that PrP interacts with lipids and the interaction induces PrP conformational changes, yet it remains unclear whether in the absence of any denaturing treatment, PrP-lipid interaction is sufficient to convert PrP to the classic proteinase K-resistant conformation. Using recombinant mouse PrP, we analyzed PrP-lipid interaction under physiological conditions and followed lipid-induced PrP conformational change with proteinase K (PK) digestion. We found that the PrP-lipid interaction was initiated by electrostatic contact and followed by hydrophobic interaction. The PrP-lipid interaction converted full-length alpha-helix-rich recombinant PrP to different forms. A significant portion of PrP gained a conformation reminiscent of PrPSc, with a PrPSc-like PK-resistant core and increased beta-sheet content. The efficiency for lipid-induced PrP conversion depended on lipid headgroup structure and/or the arrangement of lipids on the surface of vesicles. When lipid vesicles were disrupted by Triton X-100, PrP aggregation was necessary to maintain the lipid-induced PrPSc-like conformation. However, the PK resistance of lipid-induced PrPSc-like conformation does not depend on amyloid fiber formation. Our results clearly revealed that the lipid interaction can overcome the energy barrier and convert full-length alpha-helix-rich PrP to a PrPSc-like conformation under physiological conditions, supporting the relevance of lipid-induced PrP conformational change to in vivo PrP conversion.

  4. Assessing neonatal heat balance and physiological strain in newborn infants nursed under radiant warmers in intensive care with fentanyl sedation.

    Science.gov (United States)

    Molgat-Seon, Yannick; Daboval, Thierry; Chou, Shirley; Jay, Ollie

    2014-12-01

    To assess heat balance status of newborn infants nursed under radiant warmers (RWs) during intensive care. Heat balance, thermal status and primary indicators of physiological strain were concurrently measured in 14 newborns nursed under RWs for 105 min. Metabolic heat production (M), evaporative heat loss (E), convective (C) and conductive heat flow (K), rectal temperature (T re) and mean skin temperatures (T sk) were measured continuously. The rate of radiant heat required for heat balance (R req) and the rate of radiant heat provided (R prov) were derived. The rate of body heat storage (S) was calculated using a two-compartment model of 'core' (T re) and 'shell' (T sk) temperatures. Mean M, E, C and K were 10.5 ± 2.7 W, 5.8 ± 1.1 W, 6.2 ± 0.8 W and 0.1 ± 0.1 W, respectively. Mean R prov (1.7 ± 2.6 W) and R req (1.7 ± 2.7 W) were similar (p > 0.05). However, while the resultant mean change in body heat content after 105 min was negligible (-0.1 ± 3.7 kJ), acute time-dependent changes in S were evidenced by a mean positive heat storage component of +6.4 ± 2.6 kJ and a mean negative heat storage component of -6.5 ± 3.7 kJ. Accordingly, large fluctuations in both T re and T sk occurred that were actively induced by changes in RW output. Nonetheless, no active physiological responses (heart rate, breathing frequency and mean arterial pressure) to these bouts of heating and cooling were observed. RWs maintain net heat balance over a prolonged period, but actively induce acute bouts of heat imbalance that cause rapid changes in T re and T sk. Transient bouts of heat storage do not exacerbate physiological strain, but could in the longer term.

  5. [Effects of silicon supply on diurnal variations of physiological properties at rice heading stage under elevated UV-B radiation].

    Science.gov (United States)

    Wu, Lei; Lou, Yun-sheng; Meng, Yan; Wang, Wei-qing; Cui, He-yang

    2015-01-01

    A pot experiment was conducted to investigate the effects of silicon (Si) supply on diurnal variations of photosynthesis and transpiration-related physiological parameters at rice heading stage under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B. (ambient, A) and elevated UV-B (elevated by 20%, E), and four Si supply levels, i.e. Sio (control, 0 kg SiO2 . hm-2), Si, (sodium silicate, 100 kg SiO2 . hm-2), Si2 (sodium silicate, 200 kg SiO2 . hm2), Si3 (slag fertilizer, 200 kg SiO2 . hm-2). The results showed that, compared with ambient UV-B radiation, elevated UV-B radiation decreased the net photosynthesis rate (Pn) , intercellular CO2 concentration (Ci), transpiration rate (Tr), stomatal conductivity (gs) and water use efficiency (WUE) by 11.3%, 5.5%, 10.4%, 20.3% and 6.3%, respectively, in the treatment without Si supply (Si, level), and decreased the above parameters by 3.8%-5.5%, 0.7%-4.8%, 4.0%-8.7%, 7.4%-20.2% and 0.7%-5.9% in the treatments with Si supply (Si1, Si2 and Si3 levels) , respectively. Namely, elevated UV-B radiation decreased the photosynthesis and transpiration-related physiological parameters, but silicon supply could obviously mitigate the depressive effects of elevated UV-B radiation. Under elevated UV-B radiation, compared with control (Si0 level), silicon supply increased Pn, Ci, gs and WUE by 16.9%-28.0%, 3.5%-14.3%, 16.8% - 38.7% and 29.0% - 51.2%, respectively, but decreased Tr by 1.9% - 10.8% in the treatments with Si supply (Si1 , Si2 and Si3 levels). That is, silicon supply could mitigate the depressive effects of elevated UV-B radiation through significantly increasingnP., CigsgK and WUE, but decreasing T,. However, the difference existed in ameliorating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among the treatments of silicon supply, with the sequence of Si3>Si2>1i >Si0. This study suggested that fertilizing slag was

  6. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Heng [Pacific Northwest National Laboratory, Richland Washington USA; Ye, Ming [Department of Scientific Computing, Florida State University, Tallahassee Florida USA; Walker, Anthony P. [Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge Tennessee USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA

    2017-04-01

    Hydrological models are always composed of multiple components that represent processes key to intended model applications. When a process can be simulated by multiple conceptual-mathematical models (process models), model uncertainty in representing the process arises. While global sensitivity analysis methods have been widely used for identifying important processes in hydrologic modeling, the existing methods consider only parametric uncertainty but ignore the model uncertainty for process representation. To address this problem, this study develops a new method to probe multimodel process sensitivity by integrating the model averaging methods into the framework of variance-based global sensitivity analysis, given that the model averaging methods quantify both parametric and model uncertainty. A new process sensitivity index is derived as a metric of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and model parameters. For demonstration, the new index is used to evaluate the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that converting precipitation to recharge, and the geology process is also simulated by two models of different parameterizations of hydraulic conductivity; each process model has its own random parameters. The new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.

  7. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress.

    Science.gov (United States)

    Guo, Yuqiong; Zhao, Shanshan; Zhu, Chen; Chang, Xiaojun; Yue, Chuan; Wang, Zhong; Lin, Yuling; Lai, Zhongxiong

    2017-11-21

    Drought stress is one of the major natural challenges in the main tea-producing regions of China. The tea plant (Camellia sinensis) is a traditional beverage plant whose growth status directly affects tea quality. Recent studies have revealed that microRNAs (miRNAs) play key functions in plant growth and development. Although some miRNAs have been identified in C. sinensis, little is known about their roles in the drought stress response of tea plants. Physiological characterization of Camellia sinensis 'Tieguanyin' under drought stress showed that the malondialdehyde concentration and electrical conductivity of leaves of drought-stressed plants increased when the chlorophyll concentration decreased under severe drought stress. We sequenced four small-RNA (sRNA) libraries constructed from leaves of plants subjected to four different treatments, normal water supply (CK); mild drought stress (T1); moderate drought stress (T2) and severe drought stress (T3). A total of 299 known mature miRNA sequences and 46 novel miRNAs were identified. Gene Ontology enrichment analysis revealed that most of the differentially expressed-miRNA target genes were related to regulation of transcription. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the most highly enriched pathways under drought stress were D-alanine metabolism, sulfur metabolism, and mineral absorption pathways. Real-time quantitative PCR (qPCR) was used to validate the expression patterns of 21 miRNAs (2 up-regulated and 19 down-regulated under drought stress). The observed co-regulation of the miR166 family and their targets ATHB-14-like and ATHB-15-like indicate the presence of negative feedback regulation in miRNA pathways. Analyses of drought-responsive miRNAs in tea plants showed that most of differentially expressed-miRNA target genes were related to regulation of transcription. The results of study revealed that the expressions of phase-specific miRNAs vary with morphological, physiological, and

  8. Ultrasonic signal processing for sizing under-clad flaws

    International Nuclear Information System (INIS)

    Shankar, R.; Paradiso, T.J.; Lane, S.S.; Quinn, J.R.

    1985-01-01

    Ultrasonic digital data were collected from underclad cracks in sample pressure vessel specimen blocks. These blocks were weld cladded under different processes to simulate actual conditions in US Pressure Water Reactors. Each crack was represented by a flaw-echo dynamic curve which is a plot of the transducer motion on the surface as a function of the ultrasonic response into the material. Crack depth sizing was performed by identifying in the dynamic curve the crack tip diffraction signals from the upper and lower tips. This paper describes the experimental procedure, digital signal processing methods used and algorithms developed for crack depth sizing

  9. Endurance Exercise: Normal Physiology and Limitations Imposed by Pathological Processes (Part 1).

    Science.gov (United States)

    Frontera, Walter R.; Adams, Richard P.

    1986-01-01

    The physiologic and metabolic adjustments of the body to a single endurance exercise session are analyzed in terms of the respiratory system, the cardiovascular system, and oxygen delivery to the muscles. Patients with cardiorespiratory and neuromuscular diseases are compared to normal individuals. (Author/MT)

  10. [Effects of exogenous nitric oxide on physiological characteristics of longan (Dimocarpus longana) seedlings under acid rain stress].

    Science.gov (United States)

    Liu, Jian-fu; Wang, Ming-yuan; Yang, Chen; Zhu, Ai-jun

    2013-08-01

    This paper studied the effects of exogenous nitric oxide donor sodium nitroprusside (SNP) on the chlorophyll content, antioxidant enzyme activities, and osmotic regulation substances of longan (Dimocarpus longana 'Fuyan') seedlings under acid rain (pH 3.0) stress. Under the acid rain stress, the seedling leaf superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and chlorophyll, soluble protein and soluble sugar contents decreased obviously, while the leaf malondialdedyde content had a remarkable increase, suggesting the toxic effect of the acid rain on the seedlings. Exogenous nitric oxide had dual nature on the physiological characteristics of longan seedlings under acid rain stress. Applying 0.1-0.5 mmol x L(-1) of SNP improved the SOD, POD and CAT activities and the chlorophyll, soluble protein and soluble sugar contents significantly, and decreased the malondialdedyde content. Low concentrations SNP reduced the oxidative damage caused by the acid rain stress, and 0.5 mmol x L(-1) of SNP had the best effect. Under the application of 0.5 mmol x L(-1) of SNP, the total chlorophyll, soluble protein, and soluble sugar contents and the SOD, POD and CAT activities increased by 76.0%, 107.0%, 216.1%, 150. 0%, 350.9% and 97.1%, respectively, and the malondialdedyde content decreased by 46.4%. It was suggested that low concentration (0.1-0.5 mmol x L(-1)) SNP could alleviate the toxic effect of acid rain stress on longan seedlings via activating the leaf antioxidant enzyme activities and reducing oxidative stress, while high concentration SNP (1.0 mmol x L(-1)) lowered the mitigation effect.

  11. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature.

    Science.gov (United States)

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Ihsan, Zahid; Shah, Adnan N; Wu, Chao; Yousaf, Muhammad; Nasim, Wajid; Alharby, Hesham; Alghabari, Fahad; Huang, Jianliang

    2016-01-01

    A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  12. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature

    Directory of Open Access Journals (Sweden)

    Shah Fahad

    2016-08-01

    Full Text Available A two-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR on rice growth and yield attributes under high day (HDT and high night temperature (HNT. Two rice cultivars (IR-64 and Huanghuazhan were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc, alpha-tocopherol (Ve, brassinosteroids (Br, methyl jasmonates (MeJA and triazoles (Tr were applied. High temperature severely affected rice morphology, and also reduced leaf area, above- and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  13. Integration of an optical coherence tomography (OCT) system into an examination incubator to facilitate in vivo imaging of cardiovascular development in higher vertebrate embryos under stable physiological conditions

    DEFF Research Database (Denmark)

    Happel, Christoph M.; Thrane, Lars; Thommes, Jan

    2011-01-01

    High-resolution in vivo imaging of higher vertebrate embryos over short or long time periods under constant physiological conditions is a technically challenging task for researchers working on cardiovascular development. In chick embryos, for example, various studies have shown that without...... significance, should be documented under physiological conditions. However, previous studies were mostly carried out outside of an incubator or under suboptimal environmental conditions. Here we present, to the best of our knowledge, the first detailed description of an optical coherence tomography (OCT......) system integrated into an examination incubator to facilitate real-time in vivo imaging of cardiovascular development under physiological environmental conditions. We demonstrate the suitability of this OCT examination incubator unit for use in cardiovascular development studies by examples of proof...

  14. Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses.

    Science.gov (United States)

    Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger

    2017-09-01

    This study was done to evaluate the effects of the root-colonizing endophytic fungus Piriformospora indica on wheat growth under combined drought and mechanical stresses. Inoculated (colonized) and non-inoculated (uncolonized) wheat (Triticum aestivum L. cv. Chamran) seedlings were planted in growth chambers filled with moist sand (at a matric suction of 20 hPa). Slight, moderate and severe mechanical stresses (i.e., penetration resistance, Q p , of 1.17, 4.17 and 5.96 MPa, respectively) were produced by a dead-load technique (i.e., placing a weight on the sand surface) in the root medium. Slight, moderate and severe drought stresses were induced using PEG 6000 solutions with osmotic potentials of 0, -0.3 and -0.5 MPa, respectively. After 30 days, plant physiological characteristics and root morphology were measured. An increase in Q p from 1.17 to 5.96 MPa led to greater leaf proline concentration and root diameter, and lower relative water content (RWC), leaf water potential (LWP), chlorophyll contents and root volume. Moreover, severe drought stress decreased root and shoot fresh weights, root volume, leaf area, RWC, LWP and chlorophyll content compared to control. Catalase (CAT) and ascorbate peroxidase (APX) activities under severe drought stress were about 1.5 and 2.9 times greater than control. Interaction of the stresses showed that mechanical stress primarily controls plant water status and physiological responses. However, endophyte presence mitigated the adverse effects of individual and combined stresses on plant growth. Colonized plants were better adapted and had greater root length and volume, RWC, LWP and chlorophyll contents under stressful conditions due to higher absorption sites for water and nutrients. Compared with uncolonized plants, colonized plants showed lower CAT activity implying that wheat inoculated with P. indica was more tolerant and experienced less oxidative damage induced by drought and/or mechanical stress. Copyright

  15. Physiological Effects of Ergot Alkaloid and Indole-Diterpene Consumption on Sheep under Hot and Thermoneutral Ambient Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Michelle L. E. Henry

    2016-06-01

    Full Text Available A controlled feeding study was undertaken to determine the physiological and production effects of consuming perennial ryegrass alkaloids (fed via seed under extreme heat in sheep. Twenty-four Merino ewe weaners (6 months; initial BW 30.8 ± 1.0 kg were selected and the treatment period lasted 21 days following a 14 day acclimatisation period. Two levels of two factors were used. The first factor was alkaloid, fed at a nil (NilAlk or moderate level (Alk; 80 μg/kg LW ergovaline and 20.5 μg/kg·LW lolitrem B. The second factor was ambient temperature applied at two levels; thermoneutral (TN; constant 21–22 °C or heat (Heat; 9:00 AM–5:00 PM at 38 °C; 5:00 PM–9:00 AM at 21–22 °C, resulting in four treatments, NilAlk TN, NilAlk Heat, Alk TN and Alk Heat. Alkaloid consumption reduced dry matter intake ( p = 0.008, and tended to reduce liveweight ( p = 0.07. Rectal temperature and respiration rate were increased by both alkaloid and heat ( p < 0.05 for all. Respiration rate increased to severe levels when alkaloid and heat were combined, indicating the short term effects which may be occurring in perennial ryegrass toxicosis (PRGT areas during severe weather conditions, a novel finding. When alkaloid ingestion and heat were administered separately, similar physiological responses occurred, indicating alkaloid ingestion causes a similar heat stress response to 38 °C heat.

  16. Effect of silicon application on physiological characteristics and growth of wheat (Triticum aestivum L. under drought stress condition

    Directory of Open Access Journals (Sweden)

    A. Karmollachaab

    2016-05-01

    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics and growth of Wheat (Triticum aestivum L. under late drought stress condition, an experiment was conducted at the Agriculture and Natural Resources University of Ramin, Khuzestan during year 2012. The experiment was conducted in the open environment as factorial randomized complete block design with three levels of drought stress (irrigation after 25, 50 and 75% depletion of available water content as the first factor and four levels of silicon (0, 10, 20 and 30 mg Si.kg-1 soil as the second factor with three replications. The results showed that drought stress imposed a negative significant effect on all traits. The drought stress led to increased electrolyte leakage and proline content, cuticular wax, leaf silicon concentration, superoxide dismutase activity (SOD and grain potassium were decreased. The severe drought stress has most effect on electrolyte leakage (up to 53%. The application of silicon except the shoot/root parameter, on all characters have been affected so that application of 30 mg Si.kg-1 soil led to decrease electrolyte leakage up to 22.5% and increased SOD activity, proline content, cuticular wax grain K and flag leaf Si concentration, 25, 12.8, 21, 17 and 30% compared to control, respectively. In general, the results showed a positive effect of silicon on wheat plant under stress conditions that were higher than no stress condition.

  17. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress*

    Science.gov (United States)

    Guan, Ya-jing; Hu, Jin; Wang, Xian-ju; Shao, Chen-xia

    2009-01-01

    Low temperature stress during germination and early seedling growth is an important constraint of global production of maize. The effects of seed priming with 0.25%, 0.50%, and 0.75% (w/v) chitosan solutions at 15 °C on the growth and physiological changes were investigated using two maize (Zea mays L.) inbred lines, HuangC (chilling-tolerant) and Mo17 (chilling-sensitive). While seed priming with chitosan had no significant effect on germination percentage under low temperature stress, it enhanced germination index, reduced the mean germination time (MGT), and increased shoot height, root length, and shoot and root dry weights in both maize lines. The decline of malondialdehyde (MDA) content and relative permeability of the plasma membrane and the increase of the concentrations of soluble sugars and proline, peroxidase (POD) activity, and catalase (CAT) activity were detected both in the chilling-sensitive and chilling-tolerant maize seedlings after priming with the three concentrations of chitosan. HuangC was less sensitive to responding to different concentrations of chitosan. Priming with 0.50% chitosan for about 60~64 h seemed to have the best effects. Thus, it suggests that seed priming with chitosan may improve the speed of germination of maize seed and benefit for seedling growth under low temperature stress. PMID:19489108

  18. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress.

    Science.gov (United States)

    Guan, Ya-jing; Hu, Jin; Wang, Xian-ju; Shao, Chen-xia

    2009-06-01

    Low temperature stress during germination and early seedling growth is an important constraint of global production of maize. The effects of seed priming with 0.25%, 0.50%, and 0.75% (w/v) chitosan solutions at 15 degrees C on the growth and physiological changes were investigated using two maize (Zea mays L.) inbred lines, HuangC (chilling-tolerant) and Mo17 (chilling-sensitive). While seed priming with chitosan had no significant effect on germination percentage under low temperature stress, it enhanced germination index, reduced the mean germination time (MGT), and increased shoot height, root length, and shoot and root dry weights in both maize lines. The decline of malondialdehyde (MDA) content and relative permeability of the plasma membrane and the increase of the concentrations of soluble sugars and proline, peroxidase (POD) activity, and catalase (CAT) activity were detected both in the chilling-sensitive and chilling-tolerant maize seedlings after priming with the three concentrations of chitosan. HuangC was less sensitive to responding to different concentrations of chitosan. Priming with 0.50% chitosan for about 60 approximately 64 h seemed to have the best effects. Thus, it suggests that seed priming with chitosan may improve the speed of germination of maize seed and benefit for seedling growth under low temperature stress.

  19. Aerobic storage under dynamic conditions in activated sludge processes

    DEFF Research Database (Denmark)

    Majone, M.; Dircks, K.

    1999-01-01

    In activated sludge processes, several plant configurations (like plug-flow configuration of the aeration tanks, systems with selectors, contact-stabilization processes or SBR processes) impose a concentration gradient of the carbon sources to the biomass. As a consequence, the biomass grows under...... mechanisms can also contribute to substrate removal, depending on the microbial composition and the previous "history" of the biomass. In this paper the type and the extent of this dynamic response is discussed by review of experimental studies on pure cultures, mixed cultures and activated sludges...... and with main reference to its relevance on population dynamics in the activated sludge. Possible conceptual approaches to storage modelling are also presented, including both structured and unstructured modelling. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  20. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions.

    Science.gov (United States)

    Ruíz-Sánchez, Michel; Armada, Elisabet; Muñoz, Yaumara; García de Salamone, Inés E; Aroca, Ricardo; Ruíz-Lozano, Juan Manuel; Azcón, Rosario

    2011-07-01

    The response of rice plants to inoculation with an arbuscular mycorrhizal (AM) fungus, Azospirillum brasilense, or combination of both microorganisms, was assayed under well-watered or drought stress conditions. Water deficit treatment was imposed by reducing the amount of water added, but AM plants, with a significantly higher biomass, received the same amount of water as non-AM plants, with a poor biomass. Thus, the water stress treatment was more severe for AM plants than for non-AM plants. The results showed that AM colonization significantly enhanced rice growth under both water conditions, although the greatest rice development was reached in plants dually inoculated under well-watered conditions. Water level did not affect the efficiency of photosystem II, but both AM and A. brasilense inoculations increased this value. AM colonization increased stomatal conductance, particularly when associated with A. brasilense, which enhanced this parameter by 80% under drought conditions and by 35% under well-watered conditions as compared to single AM plants. Exposure of AM rice to drought stress decreased the high levels of glutathione that AM plants exhibited under well-watered conditions, while drought had no effect on the ascorbate content. The decrease of glutathione content in AM plants under drought stress conditions led to enhance lipid peroxidation. On the other hand, inoculation with the AM fungus itself increased ascorbate and proline as protective compounds to cope with the harmful effects of water limitation. Inoculation with A. brasilense also enhanced ascorbate accumulation, reaching a similar level as in AM plants. These results showed that, in spite of the fact that drought stress imposed by AM treatments was considerably more severe than non-AM treatments, rice plants benefited not only from the AM symbiosis but also from A. brasilense root colonization, regardless of the watering level. However, the beneficial effects of A. brasilense on most of the

  1. Effects of Gibberellic Acid and Nitrogen on Some Physiology Parameters and Micronutrients Concentration in Pistachio under Salt Stress

    Directory of Open Access Journals (Sweden)

    vahid mozafari

    2017-02-01

    Full Text Available Introduction: Salinity is one of the main problems which limits crop production, especially in arid and semi-arid areas such as Iran. Iran is the most important producer of pistachio in the world. However, its performance is low in many areas. Most pistachio plantations are irrigated with saline water and with low quality (28. On the other hand, nitrogen is a dynamic element which is a constituent of amino acids, proteins, nucleic acids and Enzymes and it has a vital role in plant physiology, growth, chlorophyll formation and production of fruit and seeds (34. Gibberellic acid is known as phytohormon which varied physiological responses in plants under stress. acid gibberellic increases the photosynthesis and growth under stress and impact on the physiology and metabolism of plant (29. Based on previous studies, production and activity of plant hormones are affected by natural factors and plant nutrient requirements and the nitrogen has an important influence on production and transmission of acid gibberellic plant shoot. Therefore, in this study the effect of acid gibberellic and nitrogen on some characteristics of physiology parameters and micronutrient pistachio seedlings (Cv. Qazvini under saline conditions was studied. Materials and methods: Experiment under greenhouse condition and factorial in a completely randomized design with three replications was conducted in greenhouse agriculture college, Vali-E-Asr University of Rafsanjan. Treatments consisted of three levels of salinity (0, 1000 and 2000 mg of sodium chloride per kg of soil, three levels of nitrogen (0, 75 and 150 mg per kg of ammonium nitrate source and three acid gibberellic levels (0, 250 and 500 mg per liter. Adequate soil with little available salinity conditions was collected from the top 30-cm layer of a pistachio-culture region of Kerman province. After air drying and ground through passing a 2 mm sieve, some of the physical-chemical properties of this soil include pH (7

  2. Novel near-infrared BiFC systems from a bacterial phytochrome for imaging protein interactions and drug evaluation under physiological conditions.

    Science.gov (United States)

    Chen, Minghai; Li, Wei; Zhang, Zhiping; Liu, Sanying; Zhang, Xiaowei; Zhang, Xian-En; Cui, Zongqiang

    2015-04-01

    Monitoring protein-protein interactions (PPIs) in live subjects is critical for understanding these fundamental biological processes. Bimolecular fluorescence complementation (BiFC) provides a good technique for imaging PPIs; however, a BiFC system with a long wavelength remains to be pursued for in vivo imaging. Here, we conducted systematic screening of split reporters from a bacterial phytochrome-based, near-infrared fluorescent protein (iRFP). Several new near-infrared phytochrome BiFC systems were built based on selected split sites including the amino acids residues 97/98, 99/100, 122/123, and 123/124. These new near-infrared BiFC systems from a bacterial phytochrome were verified as powerful tools for imaging PPIs under physiological conditions in live cells and in live mice. The interaction between HIV-1 integrase (IN) and cellular cofactor protein Lens epithelium-derived growth factor (LEDGF/p75) was visualized in live cells using the newly constructed iRFP BiFC system because of its important roles in HIV-1 integration and replication. Because the HIV IN-LEDGF/p75 interaction is an attractive anti-HIV target, drug evaluation assays to inhibit the HIV IN-LEDGF/p75 interaction were also performed using the newly constructed BiFC system. The results showed that compound 6 and carbidopa inhibit the HIV IN-LEDGF/p75 interaction in a dose-dependent manner under physiological conditions in the BiFC assays. This study provides novel near-infrared BiFC systems for imaging protein interactions under physiological conditions and provides guidance for splitting other bacterial phytochrome-like proteins to construct BiFC systems. The study also provides a new method for drug evaluation in live cells based on iRFP BiFC systems and supplies some new information regarding candidate drugs for anti-HIV therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The effects of extended nap periods on cognitive, physiological and subjective responses under simulated night shift conditions.

    Science.gov (United States)

    Davy, Jonathan; Göbel, Matthias

    2018-02-01

    Extended nap opportunities have been effective in maintaining alertness in the context of extended night shifts (+12 h). However, there is limited evidence of their efficacy during 8-h shifts. Thus, this study explored the effects of extended naps on cognitive, physiological and perceptual responses during four simulated, 8-h night shifts. In a laboratory setting, 32 participants were allocated to one of three conditions. All participants completed four consecutive, 8-h night shifts, with the arrangements differing by condition. The fixed night condition worked from 22h00 to 06h00, while the nap early group worked from 20h00 to 08h00 and napped between 00h00 and 03h20. The nap late group worked from 00h00 to 12h00 and napped between 04h00 and 07h20. Nap length was limited to 3 hours and 20 minutes. Participants performed a simple beading task during each shift, while also completing six to eight test batteries roughly every 2 h. During each shift, six test batteries were completed, in which the following measures were taken. Performance indicators included beading output, eye accommodation time, choice reaction time, visual vigilance, simple reaction time, processing speed and object recognition, working memory, motor response time and tracking performance. Physiological measures included heart rate and tympanic temperature, whereas subjective sleepiness and reported sleep length and quality while outside the laboratory constituted the self reported measures. Both naps reduced subjective sleepiness but did not alter the circadian and homeostatic-related changes in cognitive and physiological measures, relative to the fixed night condition. Additionally, there was evidence of sleep inertia following each nap, which resulted in transient reductions in certain perceptual cognitive performance measures. The present study suggested that there were some benefits associated with including an extended nap during 8-h night shifts. However, the effects of sleep inertia

  4. Mycochemical Characterization of Agaricus subrufescens considering Their Morphological and Physiological Stage of Maturity on the Traceability Process

    OpenAIRE

    Zied, Diego Cunha; Pardo, Jose E; Tomaz, Rafael Simões; Miasaki, Celso Tadao; Pardo-Giménez, Arturo

    2017-01-01

    Agaricus subrufescens Peck is a basidiomycete with immunomodulatory compounds and antitumor activities. This research evaluated the mycochemical composition of A. subrufescens, considering their morphological and physiological stage of maturity, with a particular focus on the development of a traceability process for the formulation of new nutritional products based on fungal foods. The stipes contained a high amount of dry matter (10.33%), total carbohydrate (69.56%), available carbohydrate ...

  5. A mathematical model of physiological processes and its application to the study of aging

    Science.gov (United States)

    Hibbs, A. R.; Walford, R. L.

    1989-01-01

    The behavior of a physiological system which, after displacement, returns by homeostatic mechanisms to its original condition can be described by a simple differential equation in which the "recovery time" is a parameter. Two such systems, which influence one another, can be linked mathematically by the use of "coupling" or "feedback" coefficients. These concepts are the basis for many mathematical models of physiological behavior, and we describe the general nature of such models. Next, we introduce the concept of a "fatal limit" for the displacement of a physiological system, and show how measures of such limits can be included in mathematical models. We show how the numerical values of such limits depend on the values of other system parameters, i.e., recovery times and coupling coefficients, and suggest ways of measuring all these parameters experimentally, for example by monitoring changes induced by X-irradiation. Next, we discuss age-related changes in these parameters, and show how the parameters of mortality statistics, such as the famous Gompertz parameters, can be derived from experimentally measurable changes. Concepts of onset-of-aging, critical or fatal limits, equilibrium value (homeostasis), recovery times and coupling constants are involved. Illustrations are given using published data from mouse and rat populations. We believe that this method of deriving survival patterns from model that is experimentally testable is unique.

  6. Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress.

    Science.gov (United States)

    Sheikh Mohammadi, Mohammad Hossein; Etemadi, Nematollah; Arab, Mohammad Mehdi; Aalifar, Mostafa; Arab, Mostafa; Pessarakli, Mohammad

    2017-02-01

    Drought stress is the major limiting factor which affects turfgrass management in area with restricted rainfall or irrigation water supply. Trinexapac ethyl (TE), Paclobutrazol (PAC) and Abscisic acid (ABA) are three plant growth regulators (PGRs) that are commonly used on turf species for increasing their tolerance to different environmental stresses such as drought. However, little is known about the impact of PGRs on stress tolerance of Iranian Perennial ryegrass (Lolium perenne). The present study was conducted to examine the visual and physiological changes of Iranian Perennial ryegrass in response to foliar application of TE, PAC, and ABA under drought stress conditions. According to the obtained results, application of all three PGRs considerably restored visual quality of drought exposed plants. TE treatment increased chlorophyll content, proline content and resulted in less malondialdehyde (MDA) in drought stressed Perennial ryegrass. Application of all PGRs enhanced the relative water content (RWC) and decreased the electrolyte leakage (EL) and Hydrogen peroxide contents (H 2 O 2 content) of plants under drought stress, though the impact of TE was more pronounced. Throughout the experiment, TE- and ABA-treated plant showed greater soluble sugar (SSC) content as compared to the control. Antioxidant enzymes activities of drought exposed plants were considerably increased by PGRs application. Catalase (CAT) and Superoxide dismutase (SOD) activities were greater in TE-treated grasses followed by PAC-treated plants. Ascorbate peroxidase (APX) and peroxidase (POD) activities were significantly enhanced by TE and ABA application. The results of the present investigation suggest that application of TE, ABA and PAC enhances drought tolerance in Perennial ryegrass. TE, PAC and ABA were all effective in mitigating physiological damages resulting from drought stress, however the beneficial effects of TE were more pronounced. The result obtained of real time

  7. The Effect of Vermicompost and Mycorrhizal Inoculation on Grain Yield and some Physiological Characteristics of Soybean (Glycine max L. under Water Stress Condition

    Directory of Open Access Journals (Sweden)

    Elham Jahangiri nia

    2017-08-01

    grains under different treatments totally 7 samples were performed from flowering to harvest through checking the process of grain weight changes and final grain weight were determined during physiological maturation (when dry grain weight is fixed or changes are not significant. Filling rate and the effective grain filling period were measured using relevant formula. The grain yield measured at the time of maturing after harvesting 3 m² per two middle lines in the plot and through eliminating the fringes of the midfield. All statistical analyzes including variance analysis, comparison of means and interactional slicing using SAS software was done. Mean comparisons using LSD test at the probability of error of 5% was done. Results and discussion The results of this study concluded that by increasing stress intensity, traits of this research with negative effect on economic performance led to irreparable damage to crop plants. So the lowest grain yield with the rate of 3216.7 kg.ha-1 obtained from 180 mm evaporation. So it is expected to take steps to increase performance by avoiding or minimizing the impact of stress. So that the combined use of these fertilizers had a positive effect on reducing plant leaves heat in low and high water stress condition. Most grain yield obtained by combined treatment of 5 and 10 t.ha-1 vermicompost with mycorrhiza that respectively was 23 and 29 percent more than control treatment. In response to levels of fertilizer, the highest amount of LAI, RWC, Final grain weight and effective grain filling period obtained in vermicompost combined with mycorrhiza treatments. Conclusion It seems that the use of vermicompost and mycorrhizal fertilizer combination in areas that are subjected to water stress from improvement of plant physiologic condition can be cause improvement of plant growth conditioning and obtaining higher yielding. Accordingly, for saving irrigation water and cost inputs, farming management and achieving the favorite yield under

  8. The Effect of Vermicompost and Mycorrhizal Inoculation on Grain Yield and some Physiological Characteristics of Soybean (Glycine max L. under Water Stress Condition

    Directory of Open Access Journals (Sweden)

    Elham Jahangiri nia

    2017-03-01

    grains under different treatments totally 7 samples were performed from flowering to harvest through checking the process of grain weight changes and final grain weight were determined during physiological maturation (when dry grain weight is fixed or changes are not significant. Filling rate and the effective grain filling period were measured using relevant formula. The grain yield measured at the time of maturing after harvesting 3 m² per two middle lines in the plot and through eliminating the fringes of the midfield. All statistical analyzes including variance analysis, comparison of means and interactional slicing using SAS software was done. Mean comparisons using LSD test at the probability of error of 5% was done. Results and discussion The results of this study concluded that by increasing stress intensity, traits of this research with negative effect on economic performance led to irreparable damage to crop plants. So the lowest grain yield with the rate of 3216.7 kg.ha-1 obtained from 180 mm evaporation. So it is expected to take steps to increase performance by avoiding or minimizing the impact of stress. So that the combined use of these fertilizers had a positive effect on reducing plant leaves heat in low and high water stress condition. Most grain yield obtained by combined treatment of 5 and 10 t.ha-1 vermicompost with mycorrhiza that respectively was 23 and 29 percent more than control treatment. In response to levels of fertilizer, the highest amount of LAI, RWC, Final grain weight and effective grain filling period obtained in vermicompost combined with mycorrhiza treatments. Conclusion It seems that the use of vermicompost and mycorrhizal fertilizer combination in areas that are subjected to water stress from improvement of plant physiologic condition can be cause improvement of plant growth conditioning and obtaining higher yielding. Accordingly, for saving irrigation water and cost inputs, farming management and achieving the favorite yield under

  9. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses.

    Science.gov (United States)

    Saha, Rajib; Liu, Deng; Hoynes-O'Connor, Allison; Liberton, Michelle; Yu, Jingjie; Bhattacharyya-Pakrasi, Maitrayee; Balassy, Andrea; Zhang, Fuzhong; Moon, Tae Seok; Maranas, Costas D; Pakrasi, Himadri B

    2016-05-03

    synthetic biology and metabolic engineering applications. Such strains are being developed as a chassis for the sustainable production of food, feed, and fuel. To this end, a holistic knowledge of cyanobacterial physiology and its correlation with gene expression patterns under the diurnal cycle is warranted. In this report, a genomewide transcriptional analysis of Synechocystis PCC 6803, the most widely studied model cyanobacterium, sheds light on the global coordination of cellular processes during diurnal periods. Furthermore, we found that, in addition to light, the redox level of NADP(H) is an important endogenous regulator of diurnal entrainment of Synechocystis PCC 6803. Copyright © 2016 Saha et al.

  10. Efficient Option Pricing under Levy Processes, with CVA and FVA

    Directory of Open Access Journals (Sweden)

    Jimmy eLaw

    2015-07-01

    Full Text Available We generalize the Piterbarg (2010 model to include 1 bilateral default risk as in Burgard and Kjaer (2012, and 2 jumps in the dynamics of the underlying asset using general classes of L'evy processes of exponential type. We develop an efficient explicit-implicit scheme for European options and barrier options taking CVA-FVA into account. We highlight the importance of this work in the context of trading, pricing and management a derivative portfolio given the trajectory of regulations.

  11. The effects of perceptual load on semantic processing under inattention.

    Science.gov (United States)

    Koivisto, Mika; Revonsuo, Antti

    2009-10-01

    Inattentional blindness refers to a failure to consciously detect an irrelevant object that appears without any expectation when attention is engaged with another task. The perceptual load theory predicts that task-irrelevant stimuli will reach awareness only when the primary task is of low load, which allows processing resources to spill over to processing task-irrelevant stimuli as well. We studied whether perceptual load has an effect on inattentional blindness for a task-irrelevant stimulus whose meaning is or is not relevant to the attentional goals of the observer. In the critical trial, a word appeared without any expectation in the center of a display of attended pictures. The results showed that, under both high and low load, unexpected words belonging to the attended semantic category were detected more often than semantically unrelated words. These results imply that task-irrelevant stimuli, whose meanings are relevant to the observer's task, enter awareness irrespective of perceptual load.

  12. Recovery of Physiological Traits in Saplings of Invasive Bischofia Tree Compared with Three Species Native to the Bonin Islands under Successive Drought and Irrigation Cycles.

    Directory of Open Access Journals (Sweden)

    Kenichi Yazaki

    Full Text Available Partial leaf shedding induced by hydraulic failure under prolonged drought can prevent excess water consumption, resulting in delayed recovery of carbon productivity following rainfall. To understand the manner of water use of invasive species in oceanic island forests under a fluctuating water regime, leaf shedding, multiple physiological traits, and the progress of embolism in the stem xylem under repeated drought-irrigation cycles were examined in the potted saplings of an invasive species, Bischofia javanica Blume, and three endemic native species, Schima mertensiana (Sieb. Et Zucc, Koitz., Hibiscus glaber Matsum, and Distylium lepidotum Nakai, from the Bonin Islands, Japan. The progress of xylem embolism was observed by cryo-scanning electron microscopy. The samples exhibited different processes of water saving and drought tolerance based on the different combinations of partial leaf shedding involved in embolized conduits following repeated de-rehydration. Predawn leaf water potential largely decreased with each successive drought-irrigation cycle for all tree species, except for B. javanica. B. javanica shed leaves conspicuously under drought and showed responsive stomatal conductance to VPD, which contributed to recover leaf gas exchange in the remaining leaves, following a restored water supply. In contrast, native tree species did not completely recover photosynthetic rates during the repeated drought-irrigation cycles. H. glaber and D. lepidotum preserved water in vessels and adjusted leaf osmotic rates but did not actively shed leaves. S. mertensiana exhibited partial leaf shedding during the first cycle with an osmotic adjustment, but they showed less responsive stomatal conductance to VPD. Our data indicate that invasive B. javanica saplings can effectively use water supplied suddenly under drought conditions. We predict that fluctuating precipitation in the future may change tree distributions even in mesic or moist sites in the

  13. The signal processing architecture underlying subjective reports of sensory awareness.

    Science.gov (United States)

    Maniscalco, Brian; Lau, Hakwan

    2016-01-01

    What is the relationship between perceptual information processing and subjective perceptual experience? Empirical dissociations between stimulus identification performance and subjective reports of stimulus visibility are crucial for shedding light on this question. We replicated a finding that metacontrast masking can produce such a dissociation (Lau and Passingham, 2006), and report a novel finding that this paradigm can also dissociate stimulus identification performance from the efficacy with which visibility ratings predict task performance. We explored various hypotheses about the relationship between perceptual task performance and visibility rating by implementing them in computational models and using formal model comparison techniques to assess which ones best captured the unusual patterns in the data. The models fell into three broad categories: Single Channel models, which hold that task performance and visibility ratings are based on the same underlying source of information; Dual Channel models, which hold that there are two independent processing streams that differentially contribute to task performance and visibility rating; and Hierarchical models, which hold that a late processing stage generates visibility ratings by evaluating the quality of early perceptual processing. Taking into account the quality of data fitting and model complexity, we found that Hierarchical models perform best at capturing the observed behavioral dissociations. Because current theories of visual awareness map well onto these different model structures, a formal comparison between them is a powerful approach for arbitrating between the different theories.

  14. A glucose anode for enzymatic fuel cells optimized for current production under physiological conditions using a design of experiment approach.

    Science.gov (United States)

    Kumar, Rakesh; Leech, Dónal

    2015-12-01

    This study reports a design of experiment methodology to investigate and improve the performance of glucose oxidizing enzyme electrodes. Enzyme electrodes were constructed by co-immobilization of amine-containing osmium redox complexes, multiwalled carbon nanotubes and glucose oxidase in a carboxymethyldextran matrix at graphite electrode surfaces to provide a 3-dimensional matrix for electrocatalytic oxidation of glucose. Optimization of the amount of the enzyme electrode components to produce the highest current density under pseudo-physiological conditions of 5 mM glucose in saline buffer at 37 °C was performed using response surface methodology. A statistical analysis showed that the proposed model had a good fit with the experimental results. From the validated model, the addition of multiwalled carbon nanotubes and carboxymethyldextran components was identified as major contributing factors to the improved performance. Based on the optimized amount of components, enzyme electrodes display current densities of 1.2±0.1 mA cm(-2) and 5.2±0.2 mA cm(-2) at 0.2 V vs. Ag/AgCl in buffer containing 5 mM and 100 mM glucose, respectively, largely consistent with the predicted values. This demonstrates that use of a design of experiment approach can be applied effectively and efficiently to improve the performance of enzyme electrodes as anodes for biofuel cell device development. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Dynamics of seed germination, seedling growth and physiological responses of sweet corn under peg-induced water stress

    International Nuclear Information System (INIS)

    Li, W.; Zhang, X.; Li, G.; Suo, H.; Ashraf, U.; Mo, Z.

    2017-01-01

    Stress induced variations in seed germination of various crops has been well reported but germination potential of sweet corn seeds under osmotic stress with relation to time dynamics is still elusive. Present study explored the water absorption, germination potential and physiological indices and of sweet corn seeds exposed to five different levels of PEG-induced water stress i.e., 0, -0.3, -0.6, -0.9 and -1.2 M Pa water potential (Psi /sub w/) with respect to time dynamics. Results showed that enhanced water stress for prolonged time period (96 h) led to substantial reduction in water absorption and seed moisture contents, seed germination and vigor index as well as seedlings growth and fresh and dry biomass. Osmotic stress triggered antioxidant defense system like super-oxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and accumulation of soluble sugars, proline and protein contents considerably. Initially, activities of SOD and CAT were higher but then reduced as stress persisted, however, POD showed a linear increase with respect to stress exposure time. Water stress also increased MDA contents up to 36 h then declined. Further, alpha-amylase activity and soluble protein showed significant correlations with maize seed germination. Overall, germination potential decreased with increase in osmotic stress in sweet corn seeds. (author)

  16. The dtudy of physiological and biochemical responses of Agrostis stolonifera and Festuca arundinacea Schreb. under drought stress

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Alibiglouei

    2014-12-01

    Full Text Available Drought stress is a main limiting factor of turfgrass growth in arid and semi-arid regions. Therefore, in this study, the physiological and biochemical changes in two turfgrass species Agrostis stolonifera and Festuca arundinacea schreb during drought stress (70-75 centibar in a 40-day period and recovery were investigated. Control plants during drought stress were regularly irrigated at soil field capacity (20-25 centibar. The results showed that leaf relative water content and leaf chlorophyll content with long-term stress decreased. Electrolyte leakage and proline during drought stress significantly increased and in recovery stage, the level of electrolyte leakage and proline reached to the control. The activity of peroxidase and superoxide dismutase in two turfgrass significantly increased after 30 days and then significantly reduced. In F. arundinacea schreb the activity of ascorbat peroxidase after 20 days significantly increased and then significantly reduced. Also, in F. arundinacea schreb species the activity of catalase increased during drought stress and in recovery stage the activity of catalase reduced. In studied species during drought stress and recovery stage, the activity of ascorbat peroxidase and catalase significantly increased compared to the control. These results suggested that the resistant species F. arundinacea schreb, under drought stress had a low level of electrolyte leakage, higher level of relative water content and chlorophyll destruction was less than A. stolonifera.

  17. Long-Term Durability Test for the Left Ventricular Assist System EVAHEART under the Physiologic Pulsatile Load.

    Science.gov (United States)

    Kitano, Tomoya; Iwasaki, Kiyotaka

    The EVAHEART Left Ventricular Assist System (LVAS) was designed for the long-term support of a patient with severe heart failure. It has an original water lubrication system for seal and bearing and wear on these parts was considered one of its critical failure modes. A durability test focusing on wear was designed herein. We developed a mock loop, which generates a physiologic pulsatile flow and is sufficiently durable for a long-term test. The pulsatile load and the low fluid viscosity enable the creation of a severe condition for the mechanical seal. A total of 18 EVAHEART blood pumps completed 2 years of operation under the pulsatile condition without any failure. It indicated the EVAHEART blood pump had a greater than 90% reliability with a 88% confidence level. The test was continued with six blood pumps and achieved an average of 8.6 years, which was longer than the longest clinical use in Japan. The test result showed that no catastrophic, critical, marginal, or minor failures of the blood pump or their symptoms were observed. The seal performance was maintained after the test. Moreover, the surface roughness did not change, which showed any burn or abnormal wear occurred. The original water lubrication system equipped in EVAHEART LVAS prevent severe wear on the seal and the bearing, and it can be used in the bridge to transplant and destination therapy.

  18. [The visual process as a theological analog of Roger Bacon's eye anatomy and physiology].

    Science.gov (United States)

    Bergdolt, K

    1991-01-01

    The author presents Roger Bacon's conception of the anatomy and physiology of the human eye. The knowledge of ocular function is a precondition to understand the laws of the "perspectiva", the science of seeing. But Bacon doesn't stress perspective per se. The physical laws of light, which are to be analysed in geometrical forms, are analogous to those of the infusion of divine grace. Optics (in the Middle Ages synonymous with perspective) seemed to be the model by which God spread his grace to the world. To understand the physical laws of optics meant that one might gain insight into the nature of God.

  19. Effect of Trinexapac-Ethyl on Physiological and Morphological Characteristics of Tall Fescue Var Rebel under Irrigation Free Conditions

    Directory of Open Access Journals (Sweden)

    M. H. Sheikh Mohamadi

    2015-12-01

    Full Text Available Drought Stress is one of the most important limiting factors in plants growth and development. Growth regulator, Trinexapac-ethyl, might improve drought stress resistance via reducing stem growth and improving osmotic adjustments. In present study Trinexapac-ethyl effect on some tall fescue var Rebel physiological and morphological traits under irrigation free conditions was studied. So, an experiment was carried out as factorial in completely randomized design in three replicates in Research Farm of Isfahan University of Technology in 2011 - 2012. Treatments involved three growth regulator levels of Trinexapac-ethyl (0, 250 and 500 g.h-1 and two drought stresse levels (normal irrigation and without irrigation. Leaf growth rate, leaf tissue, leaf color, relative water content, electrolyte leakage, proline level, above ground fresh and dry weight, root penetration and effective depth were measured. Results showed that Trinexapac-ethyl and drought stress reduced growth rate, above ground organs fresh and dry weight. Concentrations of 250 and 500 g/ha Trinexapac-ethyl decreased plant height by 19.48 and 22.24 percent respectively. Unlike drought stress, concentrations of 250 and 500 g/h Trinexapac-ethyl increased tissues color by 11.62 and 13.08 percent respectively. Also, relative water content and electrolyte leakage increased and decreased respectively but proline content of the Trinexapac-ethyl treated plants was not affected significantly. Drought stress reduced relative water content significantly and increased electrolyte leakage and proline content. Application of Trinexapac-ethyl did not significantly affect root traits but it increased penetration and effective depth under stress condition. Levels of 250 and 500 g.ha-1 Trinexapac-ethyl showed significant differences in relative water content and no significant differences in other characteristics. It was found that tall fescue var Rebel is drought resistant and Trinexapac-ethyl can be

  20. Impact of seasonal thermal stress on physiological and blood biochemical parameters in pigs under different dietary energy levels.

    Science.gov (United States)

    Pathak, P K; Roychoudhury, R; Saharia, J; Borah, M C; Dutta, D J; Bhuyan, R; Kalita, D

    2018-02-13

    The present study was formulated to find out the status of important season related thermal stress biomarkers of pure-bred (Hampshire) and crossbred (50% Hampshire × 50% local) pigs under the agro-climatic condition of Assam State, India. The experiment was also aimed to study the role of different level of energy ration (110, 100, and 90% energy of NRC feeding standard for pig) in variation of physiological and biochemical parameters in two genetic groups of pigs in different seasons. The metabolizable energy value were 3260, 2936.5, and 3585.8 kcal/kg in grower ration and 3260.2, 2936.6, and 3587 kcal/kg in finisher ration for normal energy (NE), low energy (LE) and high energy (HE), respectively. Both the genetic group of animals were housed separately under intensive system of management. Each pen was measuring 10' × 12' along with an outer enclosure. Six weaned piglets (almost similar body weight of average 10.55 kg) of each group were kept in a separate pen. However, after attainment of 35 kg body weight, the animals of a group were divided in two pens of three animals each. The present experiment indicated that average ambient temperature during summer months (27.33-29.51 °C) was above the comfort zone for pigs (22 °C). The significantly (P energy (HE) ration during summer season. Serum triiodothyronine (T 3 ) and thyroxine (T 4 ) concentrations were significantly (P energy level of the ration might be helpful to minimize the effects of thermal stress during summer.

  1. Research on the changes of some physiological parameters in several fish species under the action of the talstar insecticide

    Directory of Open Access Journals (Sweden)

    Maria Cristina PONEPAL

    2010-05-01

    Full Text Available Talstar insecticide is labeled for numerous bugs and many other household pests and lawn pests. Bifenthrin is highly toxic to fish and aquatic arthropods. Bifenhrin LC50 values range from 0.0038 to17.8 μg/L and is only slightly toxic to both waterfowl and upland game birds (LD50 values range from 1.800 mg/kg to > 2.150 mg/kg. Bifenthrin had no effect on mollusks at its limit of water solubility. This study was carried out to analyze the effects of sublethal and lethal concentrations – from 0.000625 to 0.005 ml Talstar/l water on some physiological parameters (oxygen consumption, breathing frequency, number of erythrocytes on fish belonging to three species: prussian carp (Carassius auratus gibelio Bloch, bleak (Alburnus alburnus L. and perch (Perca fluviatilis L.. The acute and subacute toxicity of Talstar insecticide was evaluated in glass aquaria under semystatic conditions. The Tlastar product, under the concentrations from 0.000625 to 0.005 ml/l water, produces, after one week of immersion, a significant decrease of the fish oxygen consumption. The insecticide has changed the fish respiratory rhythm in all investigated concentrations after seven days of exposure. The number of erythrocytes has significantly decrease after seven days of immersion at insecticide concentrations of 0.000625 ml Talstar/l water (bleak and perch and 0.00125 (prussian carp ml Talstar/l water. From the three investigated fish species, the perch proved to be the most sensitive to the action of the toxic substance, followed by the bleak and the prussian carp.

  2. Mycochemical Characterization of Agaricus subrufescens considering Their Morphological and Physiological Stage of Maturity on the Traceability Process

    Science.gov (United States)

    Pardo, Jose E; Tomaz, Rafael Simões; Miasaki, Celso Tadao; Pardo-Giménez, Arturo

    2017-01-01

    Agaricus subrufescens Peck is a basidiomycete with immunomodulatory compounds and antitumor activities. This research evaluated the mycochemical composition of A. subrufescens, considering their morphological and physiological stage of maturity, with a particular focus on the development of a traceability process for the formulation of new nutritional products based on fungal foods. The stipes contained a high amount of dry matter (10.33%), total carbohydrate (69.56%), available carbohydrate (63.89%), and energy value (363.97 kcal 100 g−1 DM). The pilei contained a high amount of moisture (90.66%), nitrogen (7.75%), protein (33.96%), ash (8.24), crude fat (2.44%), acid detergent fiber (16.75 g kg−1), neutral detergent fiber (41.82 g kg−1), hemicellulose (25.07 g kg−1), and lignin (9.77 g kg−1). Stipes with mature physiological stage had higher values of dry matter (10.50%), crude fiber (5.94%), total carbohydrate (72.82%), AC (66.88%), and energy value (364.91 kcal 100 g−1 DM). Pilei of the mushrooms in the immature physiological stage had higher values of P (36.83%), N (8.41%), and A (8.44%). Due to the differences between the mycochemical compositions of the morphological parts of mushrooms linked to their physiological stage of maturity, such characteristics have immense potential to be considered for a traceability process. This study can be used for the purpose of providing the consumer with more product diversity, optimizing bioactivities of composts, and allowing farmers an efficient and profitable use of the mushroom biomass. PMID:29082241

  3. Mycochemical Characterization of Agaricus subrufescens considering Their Morphological and Physiological Stage of Maturity on the Traceability Process

    Directory of Open Access Journals (Sweden)

    Diego Cunha Zied

    2017-01-01

    Full Text Available Agaricus subrufescens Peck is a basidiomycete with immunomodulatory compounds and antitumor activities. This research evaluated the mycochemical composition of A. subrufescens, considering their morphological and physiological stage of maturity, with a particular focus on the development of a traceability process for the formulation of new nutritional products based on fungal foods. The stipes contained a high amount of dry matter (10.33%, total carbohydrate (69.56%, available carbohydrate (63.89%, and energy value (363.97 kcal 100 g−1 DM. The pilei contained a high amount of moisture (90.66%, nitrogen (7.75%, protein (33.96%, ash (8.24, crude fat (2.44%, acid detergent fiber (16.75 g kg−1, neutral detergent fiber (41.82 g kg−1, hemicellulose (25.07 g kg−1, and lignin (9.77 g kg−1. Stipes with mature physiological stage had higher values of dry matter (10.50%, crude fiber (5.94%, total carbohydrate (72.82%, AC (66.88%, and energy value (364.91 kcal 100 g−1 DM. Pilei of the mushrooms in the immature physiological stage had higher values of P (36.83%, N (8.41%, and A (8.44%. Due to the differences between the mycochemical compositions of the morphological parts of mushrooms linked to their physiological stage of maturity, such characteristics have immense potential to be considered for a traceability process. This study can be used for the purpose of providing the consumer with more product diversity, optimizing bioactivities of composts, and allowing farmers an efficient and profitable use of the mushroom biomass.

  4. Variation in antioxidant enzyme activities, growth and some physiological parameters of bitter melon (Momordica charantia) under salinity and chromium stress.

    Science.gov (United States)

    Bahrami, Mahsa; Heidari, Mostafa; Ghorbani, Hadi

    2016-07-01

    In general, salinity and heavy metals interfere with several physiological processes and reduce plant growth. In order to evaluate of three levels of salinity (0, 4 and 8 ds m(-1)) and three concentration of chromium (0, 10 and 20 mg kg(-1) soil) in bitter melon (Momordica charantia), a plot experiment was conducted in greenhouse at university of Shahrood, Iran. The results revealed that chromium treatment had no significant affect on fresh and dry weight, but salinity caused reduction of fresh and dry weight in growth parameter. Salinity and chromium enhanced antioxidant enzymes activities like catalase (CAT), guaiacol peroxidase (GPX) and sodium content in leaves. However salinity and chromium treatments had no effect on potassium, phosphorus in leaves, soluble carbohydrate concentration in leaves and root, but decreased the carotenoid content in leaves. On increasing salinity from control to 8 ds m(-1) chlorophyll a, b and anthocyanin content decreased by 41.6%, 61.1% and 26.5% respectively but chromium treatments had no significant effect on these photosynthetic pigments.

  5. Alternate furrow irrigation of four fresh-market tomato cultivars under semi-arid condition of Ethiopia – Part II: Physiological response

    Directory of Open Access Journals (Sweden)

    Ashinie Bogale

    2016-11-01

    Full Text Available Understanding the variation in physiological response to deficit irrigation together with better knowledge on physiological characteristics of different genotypes that contribute to drought adaptation mechanisms would be helpful in transferring different irrigation technologies to farmers. A field experiment was carried to investigate the physiological response of four tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2 to moderate water deficit induced by alternate furrow irrigation (AFI and deficit irrigation (DI under semi-arid condition of Ethiopia during 2013 and 2014. The study also aimed at identifying physiological attributes to the fruit yield of tomato under different deficit irrigation techniques. A factorial combination of irrigation treatments and cultivar were arranged in a complete randomized design with three replicates. Results showed that stomatal conductance (g_s was significantly reduced while photosynthetic performance measured as chlorophyll fluorescence (Fv’/Fm’, relative water content (RWC and leaf ash content remained unaffected under deficit irrigations. Significant differences among cultivars were found for water use efficiency (WUE, g_s, chlorophyll content (Chl_SPAD, normal difference vegetation index (NDVI, leaf ash content and fruit growth rate. However, cultivar differences in WUE were more accounted for by the regulation of g_s, therefore, g_s could be useful for breeders for screening large numbers of genotypes with higher WUE under deficit irrigation condition. The study result also demonstrated that cultivar with traits that contribute to achieve higher yields under deficit irrigation strategies has the potential to increase WUE.

  6. Age effects on preattentive and early attentive auditory processing of redundant stimuli: is sensory gating affected by physiological aging?

    Science.gov (United States)

    Gmehlin, Dennis; Kreisel, Stefan H; Bachmann, Silke; Weisbrod, Matthias; Thomas, Christine

    2011-10-01

    The frontal hypothesis of aging predicts an age-related decline in cognitive functions requiring inhibitory or attentional regulation. In Alzheimer's disease, preattentive gating out of redundant information is impaired. Our study aimed to examine changes associated with physiological aging in both pre- and early attentive inhibition of recurrent acoustic information. Using a passive double-click paradigm, we recorded mid-latency (P30-P50) and late-latency (N100 and P200) evoked potentials in healthy young (26 ± 5 years) and healthy elderly subjects (72 ± 5 years). Physiological aging did not affect auditory gating in amplitude measures. Both age groups exhibited clear inhibition in preattentive P50 and attention-modulated (N100) components, whereas P30 was not attenuated. Irrespective of age, the magnitude of inhibition differed significantly, being most pronounced for N100 gating. Inhibition of redundant information seems to be preserved with physiological aging. Early attentive N100 gating showed the maximum effect. Further studies are warranted to evaluate sensory gating as a suitable biomarker of underlying neurodegenerative disease.

  7. Independent component processes underlying emotions during natural music listening.

    Science.gov (United States)

    Rogenmoser, Lars; Zollinger, Nina; Elmer, Stefan; Jäncke, Lutz

    2016-09-01

    The aim of this study was to investigate the brain processes underlying emotions during natural music listening. To address this, we recorded high-density electroencephalography (EEG) from 22 subjects while presenting a set of individually matched whole musical excerpts varying in valence and arousal. Independent component analysis was applied to decompose the EEG data into functionally distinct brain processes. A k-means cluster analysis calculated on the basis of a combination of spatial (scalp topography and dipole location mapped onto the Montreal Neurological Institute brain template) and functional (spectra) characteristics revealed 10 clusters referring to brain areas typically involved in music and emotion processing, namely in the proximity of thalamic-limbic and orbitofrontal regions as well as at frontal, fronto-parietal, parietal, parieto-occipital, temporo-occipital and occipital areas. This analysis revealed that arousal was associated with a suppression of power in the alpha frequency range. On the other hand, valence was associated with an increase in theta frequency power in response to excerpts inducing happiness compared to sadness. These findings are partly compatible with the model proposed by Heller, arguing that the frontal lobe is involved in modulating valenced experiences (the left frontal hemisphere for positive emotions) whereas the right parieto-temporal region contributes to the emotional arousal. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Efficient implementation of Stockwell Transform for real-time embedded processing of physiologic signals.

    Science.gov (United States)

    Holmes, David; Cerqueira Pinto, Samuel; Felton, Christopher; Smital, Lukas; Leinveber, Pavel; Jurak, Pavel; Gilbert, Barry; Haider, Clifton

    2017-07-01

    Physiologic monitoring enables scientists and physicians to study both normal and pathologic signals of the body. While wearable technologies are available today, many of these technologies are limited to data collection only. Embedded processors have minimal computational capabilities. We propose an efficient implementation of the Stockwell Transform which can enable real-time time-frequency analysis of biological signals in a microcontroller. The method is built upon the fact that the Stockwell Transform can be implemented as a compact filter bank with pre-computed filter taps. Additionally, due to the long tails of the gaussian windowing function, low amplitude filter taps can be removed. The method was implemented on a TI MSP430 processor. Simulated ECG data was fed into the processor to demonstrate performance and evaluate computational efficiency.

  9. Physiological and Molecular Processes Associated with Long Duration of ABA Treatment

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2018-02-01

    Full Text Available Plants need to respond to various environmental stresses such as abiotic stress for proper development and growth. The responses to abiotic stress can be biochemically demanding, resulting in a trade-off that negatively affects plant growth and development. Thus, plant stress responses must be fine-tuned depending on the stress severity and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic stress. Here, we investigated time-dependent physiological and molecular responses to long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT, and then gradually decreased with time whereas ABA-GE was maintained at lower levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed by a gradual decline at later time points. Many genes involved in dehydration stress responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual decreases in induction fold or even suppression at later time points. At the physiological level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and inhibited chloroplast division in addition to the growth suppression whereas short-term ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling and plant responses: active mobilization of cellular resources at early time points and suppressive responses at later time points.

  10. Neural processes underlying the orienting of attention without awareness.

    Science.gov (United States)

    Giattino, Charles M; Alam, Zaynah M; Woldorff, Marty G

    2017-07-22

    Despite long being of interest to both philosophers and scientists, the relationship between attention and perceptual awareness is not well understood, especially to what extent they are even dissociable. Previous studies have shown that stimuli of which we are unaware can orient spatial attention and affect behavior. Yet, relatively little is understood about the neural processes underlying such unconscious orienting of attention, and how they compare to conscious orienting. To directly compare the cascade of attentional processes with and without awareness of the orienting stimulus, we employed a spatial-cueing paradigm and used object-substitution masking to manipulate subjects' awareness of the cues. We recorded EEG during the task, from which we extracted hallmark event-related-potential (ERP) indices of attention. Behaviorally, there was a 61 ms validity effect (invalidly minus validly cued target RTs) on cue-aware trials. On cue-unaware trials, subjects also had a robust validity effect of 20 ms, despite being unaware of the cue. An N2pc to the cue, a hallmark ERP index of the lateralized orienting of attention, was observed for cue-aware but not cue-unaware trials, despite the latter showing a clear behavioral validity effect. Finally, the P1 sensory-ERP response to the targets was larger when validly versus invalidly cued, even when subjects were unaware of the preceding cue, demonstrating enhanced sensory processing of targets following subliminal cues. These results suggest that subliminal stimuli can orient attention and lead to subsequent enhancements to both stimulus sensory processing and behavior, but through different neural mechanisms (such as via a subcortical pathway) than stimuli we perceive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Stochastic analysis in production process and ecology under uncertainty

    CERN Document Server

    Bieda, Bogusław

    2014-01-01

    The monograph addresses a problem of stochastic analysis based on the uncertainty assessment by simulation and application of this method in ecology and steel industry under uncertainty. The first chapter defines the Monte Carlo (MC) method and random variables in stochastic models. Chapter two deals with the contamination transport in porous media. Stochastic approach for Municipal Solid Waste transit time contaminants modeling using MC simulation has been worked out. The third chapter describes the risk analysis of the waste to energy facility proposal for Konin city, including the financial aspects. Environmental impact assessment of the ArcelorMittal Steel Power Plant, in Kraków - in the chapter four - is given. Thus, four scenarios of the energy mix production processes were studied. Chapter five contains examples of using ecological Life Cycle Assessment (LCA) - a relatively new method of environmental impact assessment - which help in preparing pro-ecological strategy, and which can lead to reducing t...

  12. Physiological parameters

    International Nuclear Information System (INIS)

    Natera, E.S.

    1998-01-01

    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  13. Real-time fMRI processing with physiological noise correction - Comparison with off-line analysis.

    Science.gov (United States)

    Misaki, Masaya; Barzigar, Nafise; Zotev, Vadim; Phillips, Raquel; Cheng, Samuel; Bodurka, Jerzy

    2015-12-30

    While applications of real-time functional magnetic resonance imaging (rtfMRI) are growing rapidly, there are still limitations in real-time data processing compared to off-line analysis. We developed a proof-of-concept real-time fMRI processing (rtfMRIp) system utilizing a personal computer (PC) with a dedicated graphic processing unit (GPU) to demonstrate that it is now possible to perform intensive whole-brain fMRI data processing in real-time. The rtfMRIp performs slice-timing correction, motion correction, spatial smoothing, signal scaling, and general linear model (GLM) analysis with multiple noise regressors including physiological noise modeled with cardiac (RETROICOR) and respiration volume per time (RVT). The whole-brain data analysis with more than 100,000voxels and more than 250volumes is completed in less than 300ms, much faster than the time required to acquire the fMRI volume. Real-time processing implementation cannot be identical to off-line analysis when time-course information is used, such as in slice-timing correction, signal scaling, and GLM. We verified that reduced slice-timing correction for real-time analysis had comparable output with off-line analysis. The real-time GLM analysis, however, showed over-fitting when the number of sampled volumes was small. Our system implemented real-time RETROICOR and RVT physiological noise corrections for the first time and it is capable of processing these steps on all available data at a given time, without need for recursive algorithms. Comprehensive data processing in rtfMRI is possible with a PC, while the number of samples should be considered in real-time GLM. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. CHANGES IN PHYSIOLOGICAL TREMOR RESULTING FROM SLEEP DEPRIVATION UNDER CONDITIONS OF INCREASING FATIGUE DURING PROLONGED MILITARY TRAINING

    Directory of Open Access Journals (Sweden)

    A. Tomczak

    2015-01-01

    Full Text Available The aim of the study was to define the changes of the characteristics of physiological postural tremor under conditions of increasing fatigue and lack of sleep during prolonged military training (survival.The subjects of the study were 15 students of the Polish Air Force Academy in Dęblin. The average age was 19.9±1.3 years. During the 36-hour-long continuous military training (survival the subjects were deprived of sleep. Four tremor measurements were carried out for each of the subjects: Day 1 – morning, after rest (measurement 0; Day 2 – morning, after overnight physical exercise (measurement 1; afternoon, after continuous sleep deprivation (measurement 2; Day 3 – morning, after a full night sleep (measurement 3. The accelerometric method using an acceleration measuring kit was applied to analyse tremor. A significant difference between mean values of the index evaluating tremor power in low frequencies L2-4 in measurement 0 and measurement 3 was observed (p<0.01. No significant differences were found in mean values of index L10-20. Mean frequencies F2-4 differed significantly from each other (F 2,42 =4.53; p<0.01. Their values were 2.94±0.11, 2.99±0.9, 2.93±0.07 and 2.91±0.07 for successive measurements. A gradual, significant decrease of F 8-14 was observed (F 2,42 =5.143; p<0.01. Prolonged sleep deprivation combined with performing tasks demanding constant physical effort causes long-lasting (over 24 hours changes of the amplitude of low-frequency tremor changes. This phenomenon may significantly influence psychomotor performance, deteriorating the ability to perform tasks requiring movement precision.

  15. Gene expression and physiological changes of different populations of the long-lived bivalve Arctica islandica under low oxygen conditions.

    Directory of Open Access Journals (Sweden)

    Eva E R Philipp

    Full Text Available The bivalve Arctica islandica is extremely long lived (>400 years and can tolerate long periods of hypoxia and anoxia. European populations differ in maximum life spans (MLSP from 40 years in the Baltic to >400 years around Iceland. Characteristic behavior of A. islandica involves phases of metabolic rate depression (MRD during which the animals burry into the sediment for several days. During these phases the shell water oxygen concentrations reaches hypoxic to anoxic levels, which possibly support the long life span of some populations. We investigated gene regulation in A. islandica from a long-lived (MLSP 150 years German Bight population and the short-lived Baltic Sea population, experimentally exposed to different oxygen levels. A new A. islandica transcriptome enabled the identification of genes important during hypoxia/anoxia events and, more generally, gene mining for putative stress response and (anti- aging genes. Expression changes of a antioxidant defense: Catalase, Glutathione peroxidase, manganese and copper-zinc Superoxide dismutase; b oxygen sensing and general stress response: Hypoxia inducible factor alpha, Prolyl hydroxylase and Heat-shock protein 70; and c anaerobic capacity: Malate dehydrogenase and Octopine dehydrogenase, related transcripts were investigated. Exposed to low oxygen, German Bight individuals suppressed transcription of all investigated genes, whereas Baltic Sea bivalves enhanced gene transcription under anoxic incubation (0 kPa and, further, decreased these transcription levels again during 6 h of re-oxygenation. Hypoxic and anoxic exposure and subsequent re-oxygenation in Baltic Sea animals did not lead to increased protein oxidation or induction of apoptosis, emphasizing considerable hypoxia/re-oxygenation tolerance in this species. The data suggest that the energy saving effect of MRD may not be an attribute of Baltic Sea A. islandica chronically exposed to high environmental variability (oxygenation

  16. Gene expression and physiological changes of different populations of the long-lived bivalve Arctica islandica under low oxygen conditions.

    Science.gov (United States)

    Philipp, Eva E R; Wessels, Wiebke; Gruber, Heike; Strahl, Julia; Wagner, Anika E; Ernst, Insa M A; Rimbach, Gerald; Kraemer, Lars; Schreiber, Stefan; Abele, Doris; Rosenstiel, Philip

    2012-01-01

    The bivalve Arctica islandica is extremely long lived (>400 years) and can tolerate long periods of hypoxia and anoxia. European populations differ in maximum life spans (MLSP) from 40 years in the Baltic to >400 years around Iceland. Characteristic behavior of A. islandica involves phases of metabolic rate depression (MRD) during which the animals burry into the sediment for several days. During these phases the shell water oxygen concentrations reaches hypoxic to anoxic levels, which possibly support the long life span of some populations. We investigated gene regulation in A. islandica from a long-lived (MLSP 150 years) German Bight population and the short-lived Baltic Sea population, experimentally exposed to different oxygen levels. A new A. islandica transcriptome enabled the identification of genes important during hypoxia/anoxia events and, more generally, gene mining for putative stress response and (anti-) aging genes. Expression changes of a) antioxidant defense: Catalase, Glutathione peroxidase, manganese and copper-zinc Superoxide dismutase; b) oxygen sensing and general stress response: Hypoxia inducible factor alpha, Prolyl hydroxylase and Heat-shock protein 70; and c) anaerobic capacity: Malate dehydrogenase and Octopine dehydrogenase, related transcripts were investigated. Exposed to low oxygen, German Bight individuals suppressed transcription of all investigated genes, whereas Baltic Sea bivalves enhanced gene transcription under anoxic incubation (0 kPa) and, further, decreased these transcription levels again during 6 h of re-oxygenation. Hypoxic and anoxic exposure and subsequent re-oxygenation in Baltic Sea animals did not lead to increased protein oxidation or induction of apoptosis, emphasizing considerable hypoxia/re-oxygenation tolerance in this species. The data suggest that the energy saving effect of MRD may not be an attribute of Baltic Sea A. islandica chronically exposed to high environmental variability (oxygenation, temperature

  17. Morpho-physiological and productive biometry in semi-erect cultivars of the cowpea under different plant populations

    Directory of Open Access Journals (Sweden)

    Antônio Aécio de Carvalho Bezerra

    Full Text Available ABSTRACT The aim of this study was to evaluate morpho-physiological and productive characteristics in four semi-erect cultivars of the cowpea under five plant populations. The experiment was conducted in the experimental area of Embrapa Meio-Norte in Teresina in the State of Piauí, Brazil (PI. The experimental design was of randomised complete blocks with four replications, in a 4 x 5 factorial scheme, for evaluating four cultivars (BRS Guariba, BRS Novaera, BRS Potengi and BRS Tumucumaque and five plant populations (105, 2x105, 3x105, 4x105 and 5x105 plants ha-1. There were significant differences between cultivars for primary branch length (PBL, number of lateral branches (NLB, 100-grain weight (HGW, and dry-grain yield (GY. The maximum PBL of 58.5 cm was obtained with 300 thousand plants ha-1, corresponding to an increase of 11.5% when compared to 100 thousand plants ha-1. However, there was a reduction of 91.2% in NLB when compared to the populations of 100 and 500 thousand plants ha-1. The increases of 188% obtained in the leaf area index (LAI in the range of 100 to 500 thousand plants ha-1 explain the linear increase in the crop growth rate (CGR as being due to the greater production of leaf area; also, the decreases seen in the net assimilation rate (NAR, especially in the range of 100 to 300 thousand plants ha-1, are explained as due to the consequent self-shading, which was intensified in the larger populations. LAI, light interception, and CGR in the cultivars increase in response to higher densities. HGW and GY are not significantly affected by the different populations.

  18. Human physiology in space

    Science.gov (United States)

    Vernikos, J.

    1996-01-01

    The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.

  19. Cognitive Processes in Decisions Under Risk Are Not the Same As in Decisions Under Uncertainty

    Directory of Open Access Journals (Sweden)

    Kirsten G Volz

    2012-07-01

    Full Text Available We deal with risk versus uncertainty, a distinction that is of fundamental importance for cognitive neuroscience yet largely neglected. In a world of risk (small world, all alternatives, consequences, and probabilities are known. In uncertain (large worlds, some of this information is unknown or unknowable. Most of cognitive neuroscience studies exclusively study the neural correlates for decisions under risk (e.g., lotteries, with the tacit implication that understanding these would lead to an understanding of decision making in general. First, we show that normative strategies for decisions under risk do not generalize to uncertain worlds, where simple heuristics are often the more accurate strategies. Second, we argue that the cognitive processes for making decisions in a world of risk are not the same as those for dealing with uncertainty. Because situations with known risks are the exception rather than the rule in human evolution, it is unlikely that our brains are adapted to them. We therefore suggest a paradigm shift towards studying decision processes in uncertain worlds and provide first examples.

  20. Biological and physiological changes in raw and radiation-processed legumes

    International Nuclear Information System (INIS)

    El Wakeil, F.A.; Sharabash, M.T.M.; Farag, M. Diaa El-Din H.; Mahrous, S.R.

    1994-01-01

    Body weight of rats fed on raw kidney beans, soybeans, broad beans, chick peas and lupines suffered from poor growth due to some antinutritional factors. When the studied legumes were exposed to 10 kGy, the rats gained more weight than those kept on raw legumes. When extracts of raw legumes were intraperitoneally injected, the LD 50 were found to be 125, 300 and 1800 mg/kg, for raw kidney beans, raw soybeans, and raw broad beans respectively. However, injecting extracts of raw chick peas and raw lupines did not kill the rats even at higher concentration levels of 3000 mg/kg. Similar results were obtained with irradiated chick peas and lupines (10 kGy). Meanwhile, after irradiation treatment of kidney beans, soybeans and broad beans, the LD 50 were found to be 250, 400 and 2000 mg/kg for the above pulses respectively. Both raw and irradiated kidney beans and raw soybeans were most active in stimulating pancreas and liver growth and reducing spleen weight. Irradiated soybeans showed a moderate but significant increase in liver weight only. However, rats fed on both raw and irradiated broad beans, chick peas and lupines in their diets did not suffer any pancreatic and liver hypertrophy or spleen atrophy. The haematological parameters investigated showed that there was no significant differences between rat groups fed on either raw or irradiated legumes. It could be concluded that irradiation offers a good treatment for legumes as it has a beneficial effect to correct the poor growth for rats fed on raw beans during experimental period without any deleterious physiological effects. (author)

  1. Neural processes underlying cultural differences in cognitive persistence.

    Science.gov (United States)

    Telzer, Eva H; Qu, Yang; Lin, Lynda C

    2017-08-01

    Self-improvement motivation, which occurs when individuals seek to improve upon their competence by gaining new knowledge and improving upon their skills, is critical for cognitive, social, and educational adjustment. While many studies have delineated the neural mechanisms supporting extrinsic motivation induced by monetary rewards, less work has examined the neural processes that support intrinsically motivated behaviors, such as self-improvement motivation. Because cultural groups traditionally vary in terms of their self-improvement motivation, we examined cultural differences in the behavioral and neural processes underlying motivated behaviors during cognitive persistence in the absence of extrinsic rewards. In Study 1, 71 American (47 females, M=19.68 years) and 68 Chinese (38 females, M=19.37 years) students completed a behavioral cognitive control task that required cognitive persistence across time. In Study 2, 14 American and 15 Chinese students completed the same cognitive persistence task during an fMRI scan. Across both studies, American students showed significant declines in cognitive performance across time, whereas Chinese participants demonstrated effective cognitive persistence. These behavioral effects were explained by cultural differences in self-improvement motivation and paralleled by increasing activation and functional coupling between the inferior frontal gyrus (IFG) and ventral striatum (VS) across the task among Chinese participants, neural activation and coupling that remained low in American participants. These findings suggest a potential neural mechanism by which the VS and IFG work in concert to promote cognitive persistence in the absence of extrinsic rewards. Thus, frontostriatal circuitry may be a neurobiological signal representing intrinsic motivation for self-improvement that serves an adaptive function, increasing Chinese students' motivation to engage in cognitive persistence. Copyright © 2017 Elsevier Inc. All rights

  2. Creative Industries: Development Processes Under Contemporary Conditions of Globalization

    Directory of Open Access Journals (Sweden)

    Valerija Kontrimienė

    2017-06-01

    Full Text Available The article deals with the processes of developing creative industries under conditions of a growth in the worldwide economy and globalization, discloses the role of the sector of creative industries and shows its place in the system of the modern global economy. The paper presents a comparative analysis of theories and theoretical approaches intended for the sector of creative industries and its development as well as defines regularities and specificities characteristic of the development of creative industries. Particular attention is shifted on the growth and development of creative industries considering the current challenges of globalization and on the most important specificities of the developing sector in the context of the challenges of economic globalization. The paper examines the trends reflecting the place of the sector of creative industries in the economy of the modern world, including the tendencies indicating changes in the export of the products created in this sector. The article considers the issues of developing creative industries and reveals priorities of future research.

  3. Gaussian process regression for sensor networks under localization uncertainty

    Science.gov (United States)

    Jadaliha, M.; Xu, Yunfei; Choi, Jongeun; Johnson, N.S.; Li, Weiming

    2013-01-01

    In this paper, we formulate Gaussian process regression with observations under the localization uncertainty due to the resource-constrained sensor networks. In our formulation, effects of observations, measurement noise, localization uncertainty, and prior distributions are all correctly incorporated in the posterior predictive statistics. The analytically intractable posterior predictive statistics are proposed to be approximated by two techniques, viz., Monte Carlo sampling and Laplace's method. Such approximation techniques have been carefully tailored to our problems and their approximation error and complexity are analyzed. Simulation study demonstrates that the proposed approaches perform much better than approaches without considering the localization uncertainty properly. Finally, we have applied the proposed approaches on the experimentally collected real data from a dye concentration field over a section of a river and a temperature field of an outdoor swimming pool to provide proof of concept tests and evaluate the proposed schemes in real situations. In both simulation and experimental results, the proposed methods outperform the quick-and-dirty solutions often used in practice.

  4. Optimization and Control of Pressure Swing Adsorption Processes Under Uncertainty

    KAUST Repository

    Khajuria, Harish

    2012-03-21

    The real-time periodic performance of a pressure swing adsorption (PSA) system strongly depends on the choice of key decision variables and operational considerations such as processing steps and column pressure temporal profiles, making its design and operation a challenging task. This work presents a detailed optimization-based approach for simultaneously incorporating PSA design, operational, and control aspects under the effect of time variant and invariant disturbances. It is applied to a two-bed, six-step PSA system represented by a rigorous mathematical model, where the key optimization objective is to maximize the expected H2 recovery while achieving a closed loop product H2 purity of 99.99%, for separating 70% H2, 30% CH4 feed. The benefits over sequential design and control approach are shown in terms of closed-loop recovery improvement of more than 3%, while the incorporation of explicit/multiparametric model predictive controllers improves the closed loop performance. © 2012 American Institute of Chemical Engineers (AIChE).

  5. Blind signal processing algorithms under DC biased Gaussian noise

    Science.gov (United States)

    Kim, Namyong; Byun, Hyung-Gi; Lim, Jeong-Ok

    2013-05-01

    Distortions caused by the DC-biased laser input can be modeled as DC biased Gaussian noise and removing DC bias is important in the demodulation process of the electrical signal in most optical communications. In this paper, a new performance criterion and a related algorithm for unsupervised equalization are proposed for communication systems in the environment of channel distortions and DC biased Gaussian noise. The proposed criterion utilizes the Euclidean distance between the Dirac-delta function located at zero on the error axis and a probability density function of biased constant modulus errors, where constant modulus error is defined by the difference between the system out and a constant modulus calculated from the transmitted symbol points. From the results obtained from the simulation under channel models with fading and DC bias noise abruptly added to background Gaussian noise, the proposed algorithm converges rapidly even after the interruption of DC bias proving that the proposed criterion can be effectively applied to optical communication systems corrupted by channel distortions and DC bias noise.

  6. Effects of body temperature on post-anoxic oxidative stress from the perspective of postnatal physiological adaptive processes in rats.

    Science.gov (United States)

    Kletkiewicz, H; Rogalska, J; Nowakowska, A; Wozniak, A; Mila-Kierzenkowska, C; Caputa, M

    2016-04-01

    It is well known that decrease in body temperature provides protection to newborns subjected to anoxia/ischemia. We hypothesized that the normal body temperature of 33°C in neonatal rats (4°C below normal body temperature in adults) is in fact a preadaptation to protect CNS from anoxia and further reductions as well as elevations in temperature may be counterproductive. Our experiments aimed to examine the effect of changes in body temperature on oxidative stress development in newborn rats exposed to anoxia. Two-day-old Wistar rats were divided into 4 temperature groups: i. hypothermic at body temperature of 31°C, ii. maintaining physiological neonatal body temperature of 33°C, iii. forced to maintain hyperthermic temperature of 37°C, and i.v. forced to maintain hyperthermic temperature of 39°C. The temperature was controlled starting 15 minutes before and afterword during 10 minutes of anoxia as well as for 2 hours post-anoxia. Cerebral concentrations of lipid peroxidation products malondialdehyde (MDA) and conjugated dienes (CD) and the activities of antioxidant enzymes had been determined post mortem: immediately after anoxia was finished and 3, 7, and 14 days later. There were no post-anoxic changes in the concentration of MDA, CD and in antioxidant enzymes activity in newborn rats kept at their physiological body temperature of 33°C. In contrast, perinatal anoxia at body temperature elevated to 37°C or 39°C as well as under hypothermic conditions (31°C) intensified post-anoxic oxidative stress and depleted the antioxidant pool. Overall, these findings suggest that elevated body temperature (hyperthermia or fever), as well as exceeding cooling beyond the physiological level of body temperature of newborn rats, may extend perinatal anoxia-induced brain lesions. Our findings provide new insights into the role of body temperature in anoxic insult in vivo.

  7. A physical explanation of the temperature dependence of physiological processes mediated by cilia and flagella

    Science.gov (United States)

    Humphries, Stuart

    2013-01-01

    The majority of biological rates are known to exhibit temperature dependence. Here I reveal a direct link between temperature and ecologically relevant rates such as swimming speeds in Archaea, Bacteria, and Eukaryotes as well as fluid-pumping and filtration rates in many metazoans, and show that this relationship is driven by movement rates of cilia and flagella. I develop models of the temperature dependence of cilial and flagellar movement rates and evaluate these with an extensive compilation of data from the literature. The model captures the temperature dependence of viscosity and provides a mechanistic and biologically interpretable explanation for the temperature dependence of a range of ecologically relevant processes; it also reveals a clear dependence on both reaction rate-like processes and the physics of the environment. The incorporation of viscosity allows further insight into the effects of environmental temperature variation and of processes, such as disease, that affect the viscosity of blood or other body fluids. PMID:23959901

  8. The Physiological Response of Fennel (Foeniculum vulgare Mill. to Manure and Super Absorbent Polymer under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    Zahra Rezai

    2017-12-01

    Full Text Available To evaluate theeffect of different ratios of animal manure and super absorbent polymer on some physiological characteristics of fennel under drought stress conditions, an experiment was conducted as spilt-plot based on a randomized complete block design with three replications in 2015 at the University of Shahrekord. Different levels of drought stress consisted of three levels of: control (50 mm, 100 mm and 150 mm evaporation from class A pan assigned to the main factor and different ratios of animal manure and super absorbent polymer in six levels including: D1: lack of manure and super absorbent polymer, D2: 10 t.ha-1 manure + 150 kg.ha-1 super absorbent polymer, D3: 20 t.ha-1 manure + 100 kg.ha-1 super absorbent polymer, D4: 30 t.ha-1 manure + 50 kg.ha-1super absorbent polymer, D5: 40 t.ha-1 manure and D6: 200 kg.ha-1 super absorbent polymer to the sub-factor. The results showed that the drought stress and animal manure and super absorbent polymer and their interactions had a significant effect on proline, chlorophyll b, and carotenoid contents, seed and essential oil yields. Also, the highest seed yield (146.66 g.m-2, essential oil yield (2.99 g.m-2 and carotenoid were obtained from control with D6. The highest proline content was obtained from 150 mm with the use of D4. The highest chlorophyll b was obtained from control and D3. The highest relative water content and total chlorophyll were obtained from control and D6, while the highest chlorophyll a was achieved from control and D4 treatment. In general, the highest seed and essential oil yields were obtained from 50 mm evaporation and 200 kg/ha superabsorbent polymer treatments. On the other hand, the effects of drought stress on seed and essential oil yields decreased by application of 40 t/ha manure at 100 mm evaporation conditions. Also, at 150 mm evaporation and use of manure and superabsorbent polymer (30 t.ha-1 and 50 kg/ha, respectively, the effects of drought stress on seed and

  9. Silicon Regulates Potential Genes Involved in Major Physiological Processes in Plants to Combat Stress

    OpenAIRE

    Manivannan, Abinaya; Ahn, Yul-Kuyn

    2017-01-01

    Silicon (Si), the quasi-essential element occurs as the second most abundant element in the earth's crust. Biological importance of Si in plant kingdom has become inevitable particularly under stressed environment. In general, plants are classified as high, medium, and low silicon accumulators based on the ability of roots to absorb Si. The uptake of Si directly influence the positive effects attributed to the plant but Si supplementation proves to mitigate stress and recover plant growth eve...

  10. Characterization of physiological and molecular processes associated with potato response to Zebra chip disease

    Science.gov (United States)

    Transcriptional analyses were applied to identify molecular mechanisms associated with the response of leaf and root potato tissues to ‘Ca. Liberibacter solanacearum’ (Lso) infection, causal agent of zebra chip disease (ZC). Lso infection affected several host processes including defense response-, ...

  11. Ruminant Metabolic Systems Biology: Reconstruction and Integration of Transcriptome Dynamics Underlying Functional Responses of Tissues to Nutrition and Physiological Statea

    Science.gov (United States)

    Bionaz, Massimo; Loor, Juan J.

    2012-01-01

    High-throughput ‘omics’ data analysis via bioinformatics is one key component of the systems biology approach. The systems approach is particularly well-suited for the study of the interactions between nutrition and physiological state with tissue metabolism and functions during key life stages of organisms such as the transition from pregnancy to lactation in mammals, ie, the peripartal period. In modern dairy cows with an unprecedented genetic potential for milk synthesis, the nature of the physiologic and metabolic adaptations during the peripartal period is multifaceted and involves key tissues such as liver, adipose, and mammary. In order to understand such adaptation, we have reviewed several works performed in our and other labs. In addition, we have used a novel bioinformatics approach, Dynamic Impact Approach (DIA), in combination with partly previously published data to help interpret longitudinal biological adaptations of bovine liver, adipose, and mammary tissue to lactation using transcriptomics datasets. Use of DIA with transcriptomic data from those tissues during normal physiological adaptations and in animals fed different levels of energy prepartum allowed visualization and integration of most-impacted metabolic pathways around the time of parturition. The DIA is a suitable tool for applying the integrative systems biology approach. The ultimate goal is to visualize the complexity of the systems at study and uncover key molecular players involved in the tissue’s adaptations to physiological state or nutrition. PMID:22807626

  12. The Evaluation of Exogenous Application of Salicylic Acid on Physiological Characteristics, Proline and Essential Oil Content of Chamomile (Matricaria chamomila L. under Normal and Heat Stress Conditions

    Directory of Open Access Journals (Sweden)

    Mojtaba Ghasemi

    2016-07-01

    Full Text Available The objective of this study was to investigate the effect of exogenous application of salicylic acid concentrations on the physiological and biochemical traits and essential oil content of chamomile under normal and heat stress conditions as induced by delayed sowing. The experiments were conducted during 2011–2012 as a factorial using a randomized complete block design with three replications, in a very hot region. The factors included five salicylic acid concentrations (0 (control, 1, 10, 25 and 100 mg·L−1 and three chamomile cultivars (Bushehr, Bona, Bodegold. The seeds of chamomile were sown on two different sowing dates including an optimum planting date and a late planting date. The physiological traits (plant height, capitol diameter, 1000 grain weight, fresh and dried flower weight, total chlorophyll, proline and essential oil content were investigated. Analysis of variance showed that the effect of the environmental conditions (normal and heat stress was significant on all physiological and biochemical traits with the exception of the essential oil content. The heat stress decreased physiological traits and total chlorophyll in comparison with the normal conditions but it had no significant effect on the essential oil content. Findings indicated that the application of exogenous salicylic acid improves essential oil content in chamomile cultivars under environmental heat stress conditions.

  13. Students' responses under “negative pressure” to respiratory questions at the 15th physiology quiz international event: 100 medical school teams from 22 countries

    Directory of Open Access Journals (Sweden)

    Hwee-Ming Cheng

    2017-01-01

    Full Text Available The annual Inter-medical School Physiology Quiz (IMSPQ reached a milestone in August 2017 with the participation of 100 university medical schools at the 15th IMSPQ. A total of 440 students from 22 countries competed. The written test on day 1 shortlisted 48 of the 100 teams for the 2nd day oral quiz stimulating sessions, conducted before a live audience. The IMSPQ provides a unique sample of international students, taught under a diverse spectrum of medical curriculums, designed to meet the university and national priorities of the countries. The written test, taken by all 440 students, is a challenging 75-min paper with 100 physiology statements covering all organ systems. Certainty in students' answers was targeted by a true/false response, with no marks for unattempted questions but with a negative mark on incorrect answers. The insights from an analysis of responses to the lung physiology, including cardiorespiratory mechanism, are helpful and enlightening for Physiology teachers. They show common areas of difficulty and imprecise understanding. This brief teaching note will describe and give some comments on the students' respiratory responses under pressure of negative marking.

  14. The interaction of psychological and physiological homeostatic drives and role of general control principles in the regulation of physiological systems, exercise and the fatigue process - The Integrative Governor theory.

    Science.gov (United States)

    St Clair Gibson, A; Swart, J; Tucker, R

    2018-02-01

    Either central (brain) or peripheral (body physiological system) control mechanisms, or a combination of these, have been championed in the last few decades in the field of Exercise Sciences as how physiological activity and fatigue processes are regulated. In this review, we suggest that the concept of 'central' or 'peripheral' mechanisms are both artificial constructs that have 'straight-jacketed' research in the field, and rather that competition between psychological and physiological homeostatic drives is central to the regulation of both, and that governing principles, rather than distinct physical processes, underpin all physical system and exercise regulation. As part of the Integrative Governor theory we develop in this review, we suggest that both psychological and physiological drives and requirements are underpinned by homeostatic principles, and that regulation of the relative activity of each is by dynamic negative feedback activity, as the fundamental general operational controller. Because of this competitive, dynamic interplay, we propose that the activity in all systems will oscillate, that these oscillations create information, and comparison of this oscillatory information with either prior information, current activity, or activity templates create efferent responses that change the activity in the different systems in a similarly dynamic manner. Changes in a particular system are always the result of perturbations occurring outside the system itself, the behavioural causative 'history' of this external activity will be evident in the pattern of the oscillations, and awareness of change occurs as a result of unexpected rather than planned change in physiological activity or psychological state.

  15. Aspectos da fisiologia de cenoura minimamente processada Physiological aspects of minimally processed carrot

    Directory of Open Access Journals (Sweden)

    Milza M. Lana

    2000-11-01

    Full Text Available O processamento mínimo de hortaliças compreende as operações que eliminam as partes não comestíveis, seguidas pelo corte em tamanhos menores, tornando-as prontas para consumo imediato e mantendo a condição de produto in natura. A oferta e o interesse do consumidor por esses produtos têm sido crescentes, tanto para o mercado institucional (restaurantes e cozinhas industriais, como para o consumidor final. A cenoura é, dentre as hortaliças, uma das principais espécies comercializadas nessa forma, ou seja, ralada, picada em cubos ou rodelas ou na forma de mini-cenoura (`baby-carrot'. As operações de processamento causam uma série de estresses e alterações metabólicas indesejáveis que reduzem a vida útil da hortaliça processada em relação ao produto inteiro. Dentre as principais, incluem-se o aumento da taxa respiratória e da transpiração, a deterioração microbiana, a produção de metabólitos secundários e a degradação de membranas lipídicas. São apresentados os efeitos de diversos fatores como cultivares, formas de corte, tratamentos químicos, uso de revestimentos, irradiação, atmosfera modificada e refrigeração sobre a magnitude das alterações fisiológicas resultantes do processamento.Minimal processing of vegetables involves the elimination of non-edible parts followed by cutting into smaller pieces, so that the product obtained is ready-to-eat and fresh-like. The demand for minimally processed vegetables by consumers and by food service industry has increased. Carrot is among the most popular vegetables marketed this way, that is shredded, cut as slices or cubes and as baby-carrot. Minimal processing operations induce stress and undesirable metabolic changes that reduce the product shelf life in relation to the intact organs from which they were obtained. These metabolic changes include increase in respiration and transpiration rate, pathological breakdown, synthesis of secondary compounds and membrane

  16. Understanding the regioselective hydrolysis of ginkgolide B under physiological environment based on generation, detection, identification, and semi-quantification of the hydrolyzed products.

    Science.gov (United States)

    Li, Xue-Jing; Yang, Kui; Du, Gang; Xu, Liang; Lan, Ke

    2015-10-01

    A liquid chromatography-mass spectrometry (LC-MS) method coupled with specialized sample-preparation strategies was developed to investigate the hydrolysis of ginkgolide B (GB) in physiological environments in comparison with that of ginkgolide A (GA). The rapid hydrolysis processes were captured by the direct injection of samples prepared in the volatile buffers. The LC-MS behavior of the hydrolyzed products, including three monocarboxylates and three dicarboxylates, was acquired. The monocarboxylates were identified by fragmentation analysis, and the dicarboxylates were accordingly tentatively identified by reaction sequences. The base-catalyzed hydrolysis of GB and GA was characterized at 4 °C within pH 7.0-10.7. The regioselective reactions on the lactone-C and lactone-F were revealed by thermodynamic studies at pH 6.8 and 7.4. It was revealed that the 1-hydroxyl group on the skeleton of GB blocks the reactivity of the lactone-E. On the basis of these results, a distinctive hydrolysis phenomenon of GB was confirmed in plasma of humans, rats, and dogs as a rapid degradation of the trilactone along with the only production of the lactone-F-hydrolyzed product. This phenomenon is also closely associated with the 1-hydroxyl group, because it was not observed in GA. More interestingly, the underlying mechanism was revealed not to be associated with any typical enzyme-catalyzed process, but to be potentially involved with a selective reaction of the intact or broken lactone-C moiety with endogenous small-molecule reactants in plasma. This in-depth knowledge of the hydrolysis of GB versus GA not only facilitated understanding of their pharmacological mechanisms but also provided potential routes to study the structure-activity relationships of ginkgolides. Graphical Abstract Regioselective hydrolysis of ginkgolide B in pH 7.4 buffers and plasma.

  17. Thermo-Mechanical Properties of Semi-Degradable Poly(β-amino ester)-co-Methyl Methacrylate Networks under Simulated Physiological Conditions

    Science.gov (United States)

    Safranski, David L.; Crabtree, Jacob C.; Huq, Yameen R.; Gall, Ken

    2011-01-01

    Poly(β-amino ester) networks are being explored for biomedical applications, but they may lack the mechanical properties necessary for long term implantation. The objective of this study is to evaluate the effect of adding methyl methacrylate on networks' mechanical properties under simulated physiological conditions. The networks were synthesized in two parts: (1) a biodegradable crosslinker was formed from a diacrylate and amine, (2) and then varying concentrations of methyl methacrylate were added prior to photopolymerizing the network. Degradation rate, mechanical properties, and glass transition temperature were studied as a function of methyl methacrylate composition. The crosslinking density played a limited role on mechanical properties for these networks, but increasing methyl methacrylate concentration improved the toughness by several orders of magnitude. Under simulated physiological conditions, networks showed increasing toughness or sustained toughness as degradation occurred. This work establishes a method of creating degradable networks with tailorable toughness while undergoing partial degradation. PMID:21966028

  18. Overcoming Methodological Obstacles in Business Process Simulation under Deep Uncertainty

    NARCIS (Netherlands)

    Markensteijn, T.L.

    2013-01-01

    Organizations are in ever changing environments which results in the need for constant adaptation of business processes and structures. Discrete Event Simulation (DES) is a commonly used application of Business Process Simulation to support decision makers in complex processes. However, in case deep

  19. Disruption of Relational Processing Underlies Poor Memory for Order

    Science.gov (United States)

    Jonker, Tanya R.; MacLeod, Colin M.

    2015-01-01

    McDaniel and Bugg (2008) proposed that relatively uncommon stimuli and encoding tasks encourage elaborative encoding of individual items (item-specific processing), whereas relatively typical or common encoding tasks encourage encoding of associations among list items (relational processing). It is this relational processing that is thought to…

  20. Starch hydrolysis under low water conditions: a conceptual process design

    NARCIS (Netherlands)

    Veen, van der M.E.; Veelaert, S.; Goot, van der A.J.; Boom, R.M.

    2006-01-01

    A process concept is presented for the hydrolysis of starch to glucose in highly concentrated systems. Depending on the moisture content, the process consists of two or three stages. The two-stage process comprises combined thermal and enzymatic liquefaction, followed by enzymatic saccharification.

  1. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes

    Directory of Open Access Journals (Sweden)

    Jose M. Requena

    2015-01-01

    Full Text Available Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges for drug discovery and improving of current treatments against leishmaniasis.

  2. Comparison Study of the Effects of Anthraquinone Extract and Emodin from Rheum officinale Bail on the Physiological Response, Disease Resistance of Megalobrama amblycephala under High Temperature Stress

    OpenAIRE

    Liu, Bo; Xie, Jun; Ge, Xianping; Xu, Pao; Miao, Linghong; Zhou, Qunlan; Pan, Liangkun; University, Ruli Chen2 1 Nanjing Agric; College, Wuxi Fishery; Road, No.9 Shanshui East; Agriculture, China. 2 Ministry of; Sciences, Chinese Academy of Fishery; Center, Freshwater Fisheries Research; Utilization, Key Laboratory of Freshwater Fisheries a; , China. * Corresponding Aut

    2014-01-01

    In order to evaluate the effects of anthraquinone extract and emodin from Rheum officinale Bail on the physiological response, disease resistance of Megalobrama amblycephala under high temperature stress, fish were randomly divided into three groups: one was the control group, fed with a basal diet, and the other two were the treatment groups, fed with the basal diet supplemented with 0.1% anthraquinone extract or 60 ppm emodin for 8 weeks. The results showed that compared with the control gr...

  3. Utilizing Virtual Reality to Understand Athletic Performance and Underlying Sensorimotor Processing

    Directory of Open Access Journals (Sweden)

    Toshitaka Kimura

    2018-02-01

    Full Text Available In behavioral sports sciences, knowledge of athletic performance and underlying sensorimotor processing remains limited, because most data is obtained in the laboratory. In laboratory experiments we can strictly control the measurement conditions, but the action we can target may be limited and differ from actual sporting action. Thus, the obtained data is potentially unrealistic. We propose using virtual reality (VR technology to compensate for the lack of actual reality. We have developed a head mounted display (HMD-based VR system for application to baseball batting where the user can experience hitting a pitch in a virtual baseball stadium. The batter and the bat movements are measured using nine-axis inertial sensors attached to various parts of the body and bat, and they are represented by a virtual avatar in real time. The pitched balls are depicted by computer graphics based on previously recorded ball trajectories and are thrown in time with the motion of a pitcher avatar based on simultaneously recorded motion capture data. The ball bounces depending on its interaction with the bat. In a preliminary measurement where the VR system was combined with measurement equipment we found some differences between the behavioral and physiological data (i.e., the body movements and respiration of experts and beginners and between the types of pitches during virtual batting. This VR system with a sufficiently real visual experience will provide novel findings as regards athletic performance that were formerly hard to obtain and allow us to elucidate their sensorimotor processing in detail.

  4. [Autonomic regulation at emotional stress under hypoxic conditions in the elderly with physiological and accelerated aging: effect of hypoxic training].

    Science.gov (United States)

    Os'mak, E D; Asanov, É O

    2014-01-01

    The effect of hypoxic training on autonomic regulation in psycho-emotional stress conditions in hypoxic conditions in older people with physiological (25 people) and accelerated (28 people) aging respiratory system. It is shown that hypoxic training leads to an increase in vagal activity indicators (HF) and reduced simpatovagal index (LF/HF), have a normalizing effect on the autonomic balance during stress loads in older people with different types of aging respiratory system.

  5. Physiological impacts of acute Cu exposure on deep-sea vent mussel Bathymodiolus azoricus under a deep-sea mining activity scenario.

    Science.gov (United States)

    Martins, Inês; Goulart, Joana; Martins, Eva; Morales-Román, Rosa; Marín, Sergio; Riou, Virginie; Colaço, Ana; Bettencourt, Raul

    2017-12-01

    Over the past years, several studies have been dedicated to understanding the physiological ability of the vent mussel Bathymodiolus azoricus to overcome the high metal concentrations present in their surrounding hydrothermal environment. Potential deep-sea mining activities at Azores Triple junction hydrothermal vent deposits would inevitably lead to the emergence of new fluid sources close to mussel beds, with consequent emission of high metal concentrations and potential resolubilization of Cu from minerals formed during the active phase of the vent field. Copper is an essential metal playing a key role in the activation of metalloenzymes and metalloproteins responsible for important cellular metabolic processes and tissue homeostasis. However, excessive intracellular amounts of reactive Cu ions may cause irreversible damages triggering possible cell apoptosis. In the present study, B. azoricus was exposed to increasing concentrations of Cu for 96h in conditions of temperature and hydrostatic pressure similar to those experienced at the Lucky Strike hydrothermal vent field. Specimens were kept in 1L flasks, exposed to four Cu concentrations: 0μg/L (control), 300, 800 and 1600μg/L and pressurized to 1750bar. We addressed the question of how increased Cu concentration would affect the function of antioxidant defense proteins and expression of antioxidant and immune-related genes in B. azoricus. Both antioxidant enzymatic activities and gene expression were examined in gills, mantle and digestive gland tissues of exposed vent mussels. Our study reveals that stressful short-term Cu exposure has a strong effect on molecular metabolism of the hydrothermal vent mussel, especially in gill tissue. Initially, both the stress caused by unpressurization or by Cu exposure was associated with high antioxidant enzyme activities and tissue-specific transcriptional up-regulation. However, mussels exposed to increased Cu concentrations showed both antioxidant and immune

  6. The relationships between environmental and physiological heat stress indices in Muslim women under the controlled thermal conditions

    Directory of Open Access Journals (Sweden)

    Peymaneh Habibi

    2015-01-01

    Full Text Available Aims: The aim of this study was to evaluate the relationship between environmental and physiological heat stress indices based on heart rate (HR, oral temperature for the estimation of heat strain, in veiled women in hot-dry condition in the climate chamber. Materials and Methods: The experimental study was carried out on 36 healthy Muslim women in hot-dry climatic conditions (wet bulb globe temperature (WBGT = 22-32°C in low workload for 2 h. The HR, oral temperature and WBGT index were measured. The obtained data were analyzed using descriptive statistics and Pearson correlation tests. Results: The results of the Pearson test indicated that physiological strain index was a high correlation (r = 0.975 with WBGT index (P < 0.05. Also, there was a good correlation among WBGT and HR (r = 0.779 and oral temperature (r = 0.981. Conclusion: The findings of this study illustrated that there is a good correlation between environmental and physiological heat stress indices in veiled women with Islamic clothing at the low workload over the action limit (WBGT = 31°C. So that it can be concluded that the WBGT 22-32°C is a good indicator of the heat strain in veiled women with Islamic clothing.

  7. The JAM Family of Molecules and Their Role in the Regulation of Physiological and Pathological Processes.

    Science.gov (United States)

    Kuznik, B I; Linkova, N S; Kolchina, N V; Kukanova, E O; Khavinson, V Kh

    2016-01-01

    The review covers the main functions of the family of adhesion molecules JAMs (Junctional adhesion molecules). This review provides information about the role of the molecules JAM-AH, JAM-BH and JAM-CF in the occurrence of pathological conditions, including diseases of the nervous and cardiovascular systems, atherosclerosis, thrombosis and malignant growth. A molecule JAM-C and JAM-C directly affect platelet’s adhesion to endothelial and dendritic cells, neutrophils, and other types of leukocytes, which makes their involvement in the regulation of hemostasis, and migration processes. JAM-A has an effect on the inflammatory response, leading to impaired cognitive function in HIV infection. JAM-B is involved in suppression of tumor growth in patients with Down syndrome. It is described the role of molecule JAM-A and JAM-C in the pathogenesis of hypertension, hypertensive crisis, atherosclerosis, cardiac abnormalities in the syndrome of Jacobson. Molecules JAM-B and JAM-C reduce the growth and invasion of human gliomas, and JAM-A has static effect against breast cancer. JAM-A molecule, JAM-B and JAM-C are involved in the development of inflammatory reactions and pathological neoangiogenesis in the cornea. The molecule JAM-C is involved in differentiation and polarization photoreceptors of the retina. The review provides own data of the authors, suggests the presence of epigenetic mechanisms of regulation of expression of the family of molecules JAMs, carried out with the direct participation of peptide geroprotectors.

  8. The porous surface model, a novel experimental system for online quantitative observation of microbial processes under unsaturated conditions

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Or, D.; Gulez, Gamze

    2008-01-01

    of bacterial growth and activity under controlled unsaturated conditions. Bacteria are inoculated on a porous ceramic plate, wetted by a liquid medium. The thickness of the liquid film at the surface of the plate is set by imposing suction, corresponding to soil matric potential, to the liquid medium......Water is arguably the most important constituent of microbial microhabitats due to its control of physical and physiological processes critical to microbial activity. In natural environments, bacteria often live on unsaturated surfaces, in thin (micrometric) liquid films. Nevertheless...

  9. MODEL-ASSISTED ESTIMATION OF THE GENETIC VARIABILITY IN PHYSIOLOGICAL PARAMETERS RELATED TO TOMATO FRUIT GROWTH UNDER CONTRASTED WATER CONDITIONS

    Directory of Open Access Journals (Sweden)

    Dario Constantinescu

    2016-12-01

    Full Text Available Drought stress is a major abiotic stres threatening plant and crop productivity. In case of fleshy fruits, understanding Drought stress is a major abiotic stress threatening plant and crop productivity. In case of fleshy fruits, understanding mechanisms governing water and carbon accumulations and identifying genes, QTLs and phenotypes, that will enable trade-offs between fruit growth and quality under Water Deficit (WD condition is a crucial challenge for breeders and growers. In the present work, 117 recombinant inbred lines of a population of Solanum lycopersicum were phenotyped under control and WD conditions. Plant water status, fruit growth and composition were measured and data were used to calibrate a process-based model describing water and carbon fluxes in a growing fruit as a function of plant and environment. Eight genotype-dependent model parameters were estimated using a multiobjective evolutionary algorithm in order to minimize the prediction errors of fruit dry and fresh mass throughout fruit development. WD increased the fruit dry matter content (up to 85 % and decreased its fresh weight (up to 60 %, big fruit size genotypes being the most sensitive. The mean normalized root mean squared errors of the predictions ranged between 16-18 % in the population. Variability in model genotypic parameters allowed us to explore diverse genetic strategies in response to WD. An interesting group of genotypes could be discriminated in which i the low loss of fresh mass under WD was associated with high active uptake of sugars and low value of the maximum cell wall extensibility, and ii the high dry matter content in control treatment (C was associated with a slow decrease of mass flow. Using 501 SNP markers genotyped across the genome, a QTL analysis of model parameters allowed to detect three main QTLs related to xylem and phloem conductivities, on chromosomes 2, 4 and 8. The model was then applied to design ideotypes with high dry matter

  10. The operation of criminal process under Constitutio Criminalis Theresiana

    Directory of Open Access Journals (Sweden)

    Feješ Ištvan

    2013-01-01

    Full Text Available The paper is divided into four larger parts. The first part is the introduction where the author briefly describes the history of born of inquisition procedure. The second part is devoted to the characteristics and the structures of the procedure. The author here shows Theresiana has all the features of a classical inquisitorial process. The process is generally divided into investigation and trial. In addition, there was a procedure for solving a so called 'racurs', that was not a legal remedy in the strict sense of the word, but an appeal for judgement reversal and amnesty. As the investigation is the central part of the process the paper devotes the most attention to this phase of the process. It analyzes the division, commencement, operation and ending of the investigation. The paper talks separately about the process of bringing the judgement, and the process based on 'racurs'. The fourth part is the conclusion where the author summarizes the characteristics of the process and the position of the accused. The paper concludes that despite important changes in the process, the position of the accused entirely reflected the spirit of feudal law and the accused remained a disempowered object of the process.

  11. Flux behaviour under different operational conditions in osmosis process

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Zarebska, Agata; Buksek, Hermina

    the active membrane layer is facing draw solution. Osmosis process can be affected by several factors, such as operating conditions (temperature and cross flow velocity), feed and draw solution properties, and membrane characteristics. These factors can significantly contribute to the efficiency...... of the process itself. In order to implement the osmosis process on an industrial scale, process economy need to be taken into consideration, as well as the desired final product quality. Membrane performance can be evaluated based on the water permeability and the selectivity of the membrane. The permeability...

  12. Genetic-Phenotypic Variability and Correlation between Morphology-Anatomy-Physiology Characteristics and Dry Matter Yield of Polyploidized Forage Grasses under Aluminum Stressed Condition

    Directory of Open Access Journals (Sweden)

    S Anwar

    2007-01-01

    Full Text Available The study was conducted with the aim to know the genetic-phenotypic variability (heritability value, and correlation between morphology-anatomy-physiology characters and dry matter yield (DMY of polyploidized forage grasses under aluminum (Al stressed condition. A total of 16 forage grass genotypes (polyploid and diploid Brachiaria brizantha, Brachiaria decumbens, Setaria sphacelata, Setaria splendida, Panicum muticum, Panicum maximum, Pennisetum purpureum, and Pennisetum purpupoides were subjected to Al-stressed (16 mM Al2(SO43. The treatments were allotted to a Randomized Completely Block Design with monofactorial pattern (genotypes and 5 blocks in each treatment. The morphology-anatomy-physiology characteristics evaluated were plant height, leaf number, tiller number, leaf color, chlorophyll content, stomata number, chloroplast number, leaf nitrate reductase activity, dry matter, wet matter yield, dry matter yield, stress tolerance index and pH media. Results showed the polyploidization increased stress tolerance index of grasses. The genetic-phenotypic variability (heritability value estimates for all morphology-anatomy-physiology characteristics were high. Most morphology-anatomy-physiology characteristics, except leaf number, chlorophyll content and chloroplast number, had significant correlation to dry matter yield. In conclusion, evaluation on selection progress of dry matter yield of forage grasses can be effectively done by selection for yield of wet matter, plant height, leaf color, branch number, stomata number, leaf nitrate reductase activity, pH media, and dry matter simultaneously. (Animal Production 9(1: 23-29 (2007

  13. Effect of Filter Cake on Physiological Traits and Ear Yield of Sweet Corn under Late Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    aziz karmollachaab

    2017-10-01

    Filter Cake, due to high salinity and salt accumulation in the root zone, causes secondary oxidative stress and increases damage to cell membranes and reduces the economic benefit. In order to investigate the effect of Filter Cake levels application on some morpho-physiological characteristics and ear yield of sweet corn (Zea mays var saccharata under late drought stress condition, an experiment was conducted in Ramin Agriculture and Natural Resources University, Khuzestan, at 2012. The experiment was arranged in split-plots design in RCBD (Randomized Complete Block Design with three replications. Treatments of experiment were drought stress (irrigation after 25, 50 and 75% depletion of available water content in main plots and filter cake (0, 10, 20 and 30 ton.ha-1 arranged in sub-plots. Results showed that the effect of drought stress significant on more traits and led to decrease of plant height, leaf area index (LAI, membrane stability index(MSI, leaf osmotic potential, soluble protein contents, ear and biological yield while effect of drought stress on shoot sodium concentration was not significant. The intensive drought stress led to decrease 21.7 and 27.3% ear and biological yield compared to control respectively. Application of filter cake on non-stress led to increase height of plant and ear and biological yield. But high levels of filter cake in intensive stress led to increase salinity and damage to cell membranes and reduce LAI and MSI and thus reduce economic performance. It also the amount of 30 ton.ha-1 of filter cake in intensive stress condition has been decrease ear and biological yield 18.7 and 23.3% compared to non-filter cake application respectively.

  14. Effect of Zeolite, Selenium and Silicon on Yield, Yield Components and Some Physiological Traits of Canola under Salt Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Bybordi

    2016-07-01

    Full Text Available Introduction Canola can be cultivated in large areas of the country due to its specific characteristics such as suitable composition of the fatty acids, its germination ability under low temperature, as well as its good compatibility with different climates. Canola is a high demanding crop in terms of fertilizers so that it uptakes considerable amount of nutrients from the soil during the growing season. Canola cultivation in poor soils or application of imbalanced fertilizers, especially nitrogen, can reduce qualitaty and quantity of final yield. On the other hand, salinity is known as one of the major limiting factors in canola production. Therefore, the aim of this study is the application of zeolite, selenium and silicon treatments to amend soil and increasing salinity tolerance in canola. Materials and Methods In order to study the effect of soil applied zeolite and foliar application of selenium and silicon on yield, yield components and some physiological traits of canola grown under salinity stress, a factorial experiment in randomized complete block design was conducted in Agriculture and Natural Resource Research Center in East Azerbaijan during 2011-2013 cropping seasons. Zeolite was applied at three levels (0, 5 and 10 ton ha-1 and foliar selenium and silicon were applied at three levels as well (each one zero, 2 and 4 g l-1. For this purpose, seedbed was prepared using plow and disk and then plot were designed. Canola seeds, cultivar Okapi, were sown in sandy loam soil with 4 dS.m-1 salinity at the depth of 2-3 cm. Irrigation was performed using local well based on 60% field capacity using the closed irrigation system. Potassium selentae and potassium silicate were used for selenium and silicon treatments. Treatments at rosette and stem elongation stages were sprayed on plants using a calibrated pressurized backpack sprayer. At flowering stage, photosynthesis rate was recorded. Then leaf samples were randomly collected to assay

  15. Electrocatalytic reduction of carbon dioxide under plasma DBD process

    International Nuclear Information System (INIS)

    Amouroux, Jacques; Cavadias, Simeon

    2017-01-01

    Carbon dioxide can be converted, by reaction with hydrogen, into fine chemicals and liquid fuels such as methanol and DME. Methane production by the Sabatier reaction opens the way of carbon recycling for a circular economy of carbon resources. The catalytic process of methanation of carbon dioxide produces two molecules of water as a by-product. A current limitation in the CO 2 methanation is the ageing of catalysts, mainly due to water adsorption during the process. To avoid this adsorption, the process is operated at high temperature (300 °C–400 °C), leading to carbon deposition on the catalyst and its deactivation. To overcome this problem, a methanation plasma-catalytic process has been developed, which achieves high CO 2 conversion rate (80%), and a selectivity close to 100%, working from room temperature to 150 °C, instead of 300 °C–400 °C for the thermal catalytic process. The main characteristics of this process are high-voltage pulses of few nanoseconds duration, activating the adsorption of CO 2 in bent configuration and the polarization of the catalyst. The key step in this process is the desorption of water from the polarized catalyst. The high CO 2 conversion at low temperature could be explained by the creation of a plasma inside the nanopores of the catalyst. (paper)

  16. Electrocatalytic reduction of carbon dioxide under plasma DBD process

    Science.gov (United States)

    Amouroux, Jacques; Cavadias, Simeon

    2017-11-01

    Carbon dioxide can be converted, by reaction with hydrogen, into fine chemicals and liquid fuels such as methanol and DME. Methane production by the Sabatier reaction opens the way of carbon recycling for a circular economy of carbon resources. The catalytic process of methanation of carbon dioxide produces two molecules of water as a by-product. A current limitation in the CO2 methanation is the ageing of catalysts, mainly due to water adsorption during the process. To avoid this adsorption, the process is operated at high temperature (300 °C-400 °C), leading to carbon deposition on the catalyst and its deactivation. To overcome this problem, a methanation plasma-catalytic process has been developed, which achieves high CO2 conversion rate (80%), and a selectivity close to 100%, working from room temperature to 150 °C, instead of 300 °C-400 °C for the thermal catalytic process. The main characteristics of this process are high-voltage pulses of few nanoseconds duration, activating the adsorption of CO2 in bent configuration and the polarization of the catalyst. The key step in this process is the desorption of water from the polarized catalyst. The high CO2 conversion at low temperature could be explained by the creation of a plasma inside the nanopores of the catalyst.

  17. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress.

    Science.gov (United States)

    Karl, J Philip; Margolis, Lee M; Madslien, Elisabeth H; Murphy, Nancy E; Castellani, John W; Gundersen, Yngvar; Hoke, Allison V; Levangie, Michael W; Kumar, Raina; Chakraborty, Nabarun; Gautam, Aarti; Hammamieh, Rasha; Martini, Svein; Montain, Scott J; Pasiakos, Stefan M

    2017-06-01

    The magnitude, temporal dynamics, and physiological effects of intestinal microbiome responses to physiological stress are poorly characterized. This study used a systems biology approach and a multiple-stressor military training environment to determine the effects of physiological stress on intestinal microbiota composition and metabolic activity, as well as intestinal permeability (IP). Soldiers ( n = 73) were provided three rations per day with or without protein- or carbohydrate-based supplements during a 4-day cross-country ski-march (STRESS). IP was measured before and during STRESS. Blood and stool samples were collected before and after STRESS to measure inflammation, stool microbiota, and stool and plasma global metabolite profiles. IP increased 62 ± 57% (mean ± SD, P Intestinal microbiota responses were characterized by increased α-diversity and changes in the relative abundance of >50% of identified genera, including increased abundance of less dominant taxa at the expense of more dominant taxa such as Bacteroides Changes in intestinal microbiota composition were linked to 23% of metabolites that were significantly altered in stool after STRESS. Together, pre-STRESS Actinobacteria relative abundance and changes in serum IL-6 and stool cysteine concentrations accounted for 84% of the variability in the change in IP. Findings demonstrate that a multiple-stressor military training environment induced increases in IP that were associated with alterations in markers of inflammation and with intestinal microbiota composition and metabolism. Associations between IP, the pre-STRESS microbiota, and microbiota metabolites suggest that targeting the intestinal microbiota could provide novel strategies for preserving IP during physiological stress. NEW & NOTEWORTHY Military training, a unique model for studying temporal dynamics of intestinal barrier and intestinal microbiota responses to stress, resulted in increased intestinal permeability concomitant with

  18. The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions.

    Science.gov (United States)

    Cao, Zhiming; Rossi, Lorenzo; Stowers, Cheyenne; Zhang, Weilan; Lombardini, Leonardo; Ma, Xingmao

    2018-01-01

    The ongoing global climate change raises concerns over the decreasing moisture content in agricultural soils. Our research investigated the physiological impact of two types of cerium oxide nanoparticles (CeO 2 NPs) on soybean at different moisture content levels. One CeO 2 NP was positively charged on the surface and the other negatively charged due to the polyvinylpyrrolidone (PVP) coating. The results suggest that the effect of CeO 2 NPs on plant photosynthesis and water use efficiency (WUE) was dependent upon the soil moisture content. Both types of CeO 2 NPs exhibited consistently positive impacts on plant photosynthesis at the moisture content above 70% of field capacity (θ fc ). Similar positive impact of CeO 2 NPs was not observed at 55% θ fc , suggesting that the physiological impact of CeO 2 NPs was dependent upon the soil moisture content. The results also revealed that V Cmax (maximum carboxylation rate) was affected by CeO 2 NPs, indicating that CeO 2 NPs affected the Rubisco activity which governs carbon assimilation in photosynthesis. In conclusion, CeO 2 NPs demonstrated significant impacts on the photosynthesis and WUE of soybeans and such impacts were affected by the soil moisture content. Graphical abstract Soil moisture content affects plant cerium oxide nanoparticle interactions.

  19. Influence of Bacillus subtilis on the physiological state of wheat and the microbial community of the soil under different rates of nitrogen fertilizers

    Science.gov (United States)

    Pishchik, V. N.; Vorobyev, N. I.; Moiseev, K. G.; Sviridova, O. V.; Surin, V. G.

    2015-01-01

    The effects of inoculation with bacteria Bacillus subtilis strain No. 2 (hereinafter, B. subtilis 2) and of the physical properties of the soil on the physiological state of wheat ( Triticum aestivum L.) plants and the soil microbial community under different rates of nitrogen fertilizers are studied. In the field, the physiological state of wheat was evaluated using the optical vegetation index. It was found that (1) the impact of B. subtilis 2 on plants decreases with an increase in the rate of fertilizers and soil bulk density, (2) the inoculation of wheat with bacteria enhances the resistance of the plant-microbial system to the adverse impact of high rates of nitrogen fertilizers due to the rearrangement of bacteria in rhizosphere ecological niches, and (3) the highest agronomic efficiency of nitrogen fertilizers is observed in wheat inoculation with B. subtilis 2 at the rate of nitrogen fertilization of 120 kg/ha.

  20. Failure Processes in Embedded Monolayer Graphene under Axial Compression

    Science.gov (United States)

    Androulidakis, Charalampos; Koukaras, Emmanuel N.; Frank, Otakar; Tsoukleri, Georgia; Sfyris, Dimitris; Parthenios, John; Pugno, Nicola; Papagelis, Konstantinos; Novoselov, Kostya S.; Galiotis, Costas

    2014-01-01

    Exfoliated monolayer graphene flakes were embedded in a polymer matrix and loaded under axial compression. By monitoring the shifts of the 2D Raman phonons of rectangular flakes of various sizes under load, the critical strain to failure was determined. Prior to loading care was taken for the examined area of the flake to be free of residual stresses. The critical strain values for first failure were found to be independent of flake size at a mean value of –0.60% corresponding to a yield stress up to -6 GPa. By combining Euler mechanics with a Winkler approach, we show that unlike buckling in air, the presence of the polymer constraint results in graphene buckling at a fixed value of strain with an estimated wrinkle wavelength of the order of 1–2 nm. These results were compared with DFT computations performed on analogue coronene/PMMA oligomers and a reasonable agreement was obtained. PMID:24920340

  1. Minimization of water consumption under uncertainty for PC process

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, J.; Diwekar, U.; Zitney, S.

    2009-01-01

    Integrated gasification combined cycle (IGCC) technology is becoming increasingly important for the development of advanced power generation systems. As an emerging technology different process configurations have been heuristically proposed for IGCC processes. One of these schemes combines water-gas shift reaction and chemical-looping combustion for the CO2 removal prior the fuel gas is fed to the gas turbine reducing its size (improving economic performance) and producing sequestration-ready CO2 (improving its cleanness potential). However, these schemes have not been energetically integrated and process synthesis techniques can be used to obtain optimal flowsheets and designs. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). For the alternative designs, large differences in the performance parameters (for instance, the utility requirements) predictions from AEA and AP were observed, suggesting the necessity of solving the HENS problem within the AP simulation environment and avoiding the AEA simplifications. A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case.

  2. Sustainable Process Design under uncertainty analysis: targeting environmental indicators

    DEFF Research Database (Denmark)

    L. Gargalo, Carina; Gani, Rafiqul

    2015-01-01

    This study focuses on uncertainty analysis of environmental indicators used to support sustainable process design efforts. To this end, the Life Cycle Assessment methodology is extended with a comprehensive uncertainty analysis to propagate the uncertainties in input LCA data to the environmental...

  3. Endocrine processes underlying victory and defeat in the male rat

    NARCIS (Netherlands)

    Schuurman, Teunis

    1981-01-01

    The central questions of the present study were:1. does base line hormonal state determine agonistic behavior in male-male encounters? 2. does agonistic behavior affect hormonal state? Such an interrelationship between agonistic behavior and hormonal processes might serve as a regulatory system for

  4. [Physiological responses of sugar beet (Beta vulgaris) to drought stress during vegetative development period under drip irrigation].

    Science.gov (United States)

    Li, Yang-yang; Geng, Qing-yun; Fei, Cong; Fan, Huai

    2016-01-01

    Sugar beet (Beta vulgaris cv. Beta 356) was subjected to drought stress during vegetative development by maintaining the soil water content in the 0-40 cm soil depth at 70%, 50% or 30% of field capacity to study the physiological traits of the leaves. Results showed that the compensation index was the highest in the 50% field capacity treatment. Malonaldehyde (MDA) content, relative conductivity, catalase (CAT) activity, and soluble sugar content began to increase 24 h after rehydration. Proline content began to increase 48 h after rehydration. In contrast, no compensation effect was observed in peroxidase (POD) activity after rehydration. Among the active oxygen scavenging enzymes, CAT was most sensitive to drought stress. Supplemental irrigation should be carried out promptly when the soil water content dropped to 50% of field capacity during vegetative development. Rehydration could promote self-repair functions in leaves, thus reducing the effects of drought on sugar beet yield and sugar content.

  5. The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration.

    Science.gov (United States)

    Uarrota, Virgílio Gavicho; Moresco, Rodolfo; Schmidt, Eder Carlos; Bouzon, Zenilda Laurita; Nunes, Eduardo da Costa; Neubert, Enilto de Oliveira; Peruch, Luiz Augusto Martins; Rocha, Miguel; Maraschin, Marcelo

    2016-04-15

    This study aimed to investigate the role of ascorbate peroxidase (APX), guaiacol peroxidase (GPX), polysaccharides, and protein contents associated with the early events of postharvest physiological deterioration (PPD) in cassava roots. Increases in APX and GPX activity, as well as total protein contents occurred from 3 to 5 days of storage and were correlated with the delay of PPD. Cassava samples stained with Periodic Acid-Schiff (PAS) highlighted the presence of starch and cellulose. Degradation of starch granules during PPD was also detected. Slight metachromatic reaction with toluidine blue is indicative of increasing of acidic polysaccharides and may play an important role in PPD delay. Principal component analysis (PCA) classified samples according to their levels of enzymatic activity based on the decision tree model which showed GPX and total protein amounts to be correlated with PPD. The Oriental (ORI) cultivar was more susceptible to PPD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Proteomic and Physiological Analysis of the Response of Oat (Avena sativa) Seeds to Heat Stress under Different Moisture Conditions.

    Science.gov (United States)

    Chen, Lingling; Chen, Quanzhu; Kong, Lingqi; Xia, Fangshan; Yan, Huifang; Zhu, Yanqiao; Mao, Peisheng

    2016-01-01

    Seeds lose their viability when they are exposed to high temperature and moisture content (MC) during storage. The expression and metabolism of proteins plays a critical role in seed resistance to heat stress. However, the proteome response to heat stress in oat (Avena sativa) seeds during storage has not been revealed. To understand mechanisms of heat stress acclimation and tolerance in oat seeds, an integrated physiological and comparative proteomic analysis was performed on oat seeds with different MC during heat stress. Oat seeds with 10% and 16% MC were subjected to high temperatures (35, 45, and 50°C) for 24 and 2 days, respectively, and changes in physiological and biochemical characteristics were analyzed. The results showed that seed vigor decreased significantly with temperature increase from 35 to 50°C. Also, the proline content in 10% MC seeds decreased significantly (p heat treatment from 35 to 50°C. There were no significant differences in malondialdehyde content in 10% MC seeds with temperature from 35 to 50°C, but a significant (p heat shock proteins and two ATP synthases, have important roles in the mobilization of carbohydrates and energy, and in the balance between synthesis and degradation of other proteins during seed deterioration. The up-regulation of argininosuccinate synthase participated in proline biosynthesis at 16% MC, which is important for maintaining reactive oxygen species homeostasis for the resistance of heat stress. In summary, heat-responsive protein species and mitochondrial respiratory metabolism were sensitive to high temperature and MC treatment. These studies provide a new insight into acclimation and tolerance to heat stress in oat seeds.

  7. Evaluation Physiological Characteristics and Grain Yield Canola Cultivars under end Seasonal Drought Stress in Weather Condition of Ahvaz

    Directory of Open Access Journals (Sweden)

    A Seyed Ahmadi

    2015-07-01

    Full Text Available To evaluate canola cultivars response to physiological characteristics and grain yield end seasonal drought stress in weather condition of Ahvaz, farm experiments were done at research farm of Khuzestan agriculture and natural resources center. During 2007-2008 and 2008-2009 crop years. Farm test comprised drought stress was done as split plot form with randomize complete block design with four replication, treatments consist of drought stress (main factor including 50, 60 and 70 percent of water use content, which was applied from early heading stage until physiological maturity, and three spring canola cultivar including Shirali, Hayola 401 and R.G.S. were considered as sub plots. Measurements include biological yield, grain yield, harvesting index, number of pod per plant 1000 grain weight, number of grain in pod, plant height, and stem diameter, oil and protein percentage. Results showed that drought stress reduced significantly grain yield, biological yield, harvest index and the average of reduction of them during 2 years for per unit reduce moisture from 50% to 70% were 2, 1.35, and 0.81 percent, respectively. During two years, 1000 grain weight, number of pods per plant and number of grain per pod reduced 27, 36 and 20 percent, respectively. Terminal Drought stress reduced significantly plant height, stem diameter, stem number per plant and pod length, this reduced were 12, 46, 36 and 14 percent, respectively. Stem diameter, and stem number per plant reduced more than other characteristics. In this study oil grain decreased 12 % and protein grain increased 18.5% but oil and protein yield decreased 44.9% and 27.1% respectively..Finally, in weather condition of Khuzestan, terminal drought stress on February and March in which has simultaneous with early flowering stage and filling seed, significantly, reduced yield and compounded yield and affects on stem growth and qualities oil and protein negatively. Therefore, with irrigation

  8. Effects of exogenous nitric oxide on the physiological characteristics of Indocalamus barbatus McClure seedlings under acid rain stress

    International Nuclear Information System (INIS)

    Yang, T.W.W.; Xie, Y.; Dai, L.

    2017-01-01

    The effects of four concentrations (100, 400, 700, and 1000 mg/L) of sodium nitroprusside (SNP, adonor of NO) on physiological characteristics were investigated in the leaves of bamboo (Indocalamus barbatus McClure) seedlings exposed to simulated acid rain (SAR; pH3.0) stress.The results showed that a foliar application of 100 - 400 mg/L SNP pretreatment mitigates the SAR-inflicted decrease in net photosynthetic rate (Pn), chlorophyll (SPAD) content, soluble protein (SP) content, and superoxide dismutase (SOD) activity, and the increase in peroxidase (POD) activity as well as in preventing an increase in membrane permeability (MP) and superoxide anion radical generation rate (O2.). This promoting effect was most pronounced at 400 mg/L SNP treatment, which also exhibited a time-dependent effect. However, seedlings subjected to higher concentrations of SNP such as 700 or 1000 mg/L showed little recovery from damage, and even showed signs of toxic damage, demonstrating the concentration-dependent effect of NO against acid rain. Further analysis showed that acid rain exposure caused oxidative stress by elevating MP and O2. in I. barbatus seedlings. Treatment with 400 mg/L SNP partly alleviated the acid rain toxicity by reducing O2. and stimulating SOD and POD activities. The recovery of Pn, SPAD, and SP was also significantly correlated with oxidative status in the seedlings. Moreover, the changes in the physiological indicators mentioned above, were consistent with the morphological observations. Based on these results, it can be concluded that SNP exerted an advantageous effect on alleviating the inhibitory effect of acid rain by regulating the balance of ROS metabolism and reducing the accumulation of ROS. (author)

  9. Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid.

    Directory of Open Access Journals (Sweden)

    Elizabeth L Sandvik

    Full Text Available The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10(th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log(10 CFU/cm(2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm(2 both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm(2 in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications.

  10. Direct Electric Current Treatment under Physiologic Saline Conditions Kills Staphylococcus epidermidis Biofilms via Electrolytic Generation of Hypochlorous Acid

    Science.gov (United States)

    Sandvik, Elizabeth L.; McLeod, Bruce R.; Parker, Albert E.; Stewart, Philip S.

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10 CFU/cm2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications. PMID:23390518

  11. Category Specific Spatial Dissociations of Parallel Processes Underlying Visual Naming

    OpenAIRE

    Conner, Christopher R.; Chen, Gang; Pieters, Thomas A.; Tandon, Nitin

    2013-01-01

    The constituent elements and dynamics of the networks responsible for word production are a central issue to understanding human language. Of particular interest is their dependency on lexical category, particularly the possible segregation of nouns and verbs into separate processing streams. We applied a novel mixed-effects, multilevel analysis to electrocorticographic data collected from 19 patients (1942 electrodes) to examine the activity of broadly disseminated cortical networks during t...

  12. Neural Correlates of Feedback Processing in Decision Making under Risk

    Directory of Open Access Journals (Sweden)

    Beate eSchuermann

    2012-07-01

    Full Text Available Introduction. Event-related brain potentials (ERP provide important information about the sensitivity of the brain to process varying risks. The aim of the present study was to determine how different risk levels are reflected in decision-related ERPs, namely the feedback-related negativity (FRN and the P300. Material and Methods. 20 participants conducted a probabilistic two-choice gambling task while an electroencephalogram was recorded. Choices were provided between a low-risk option yielding low rewards and low losses and a high-risk option yielding high rewards and high losses. While options differed in expected risks, they were equal in expected values and in feedback probabilities. Results. At the behavioral level, participants were generally risk-averse but modulated their risk-taking behavior according to reward history. An early positivity (P200 was enhanced on negative feedbacks in high-risk compared to low-risk options. With regard to the FRN, there were significant amplitude differences between positive and negative feedbacks in high-risk options, but not in low-risk options. While the FRN on negative feedbacks did not vary with decision riskiness, reduced amplitudes were found for positive feedbacks in high-risk relative to low-risk choices. P300 amplitudes were larger in high-risk decisions, and in an additive way, after negative compared to positive feedback. Discussion. The present study revealed significant influences of risk and valence processing on ERPs. FRN findings suggest that the reward prediction error signal is increased after high-risk decisions. The increased P200 on negative feedback in risky decisions suggests that large negative prediction errors are processed as early as in the P200 time range. The later P300 amplitude is sensitive to feedback valence as well as to the risk of a decision. Thus, the P300 carries additional information for reward processing, mainly the enhanced motivational significance of risky

  13. Category specific spatial dissociations of parallel processes underlying visual naming.

    Science.gov (United States)

    Conner, Christopher R; Chen, Gang; Pieters, Thomas A; Tandon, Nitin

    2014-10-01

    The constituent elements and dynamics of the networks responsible for word production are a central issue to understanding human language. Of particular interest is their dependency on lexical category, particularly the possible segregation of nouns and verbs into separate processing streams. We applied a novel mixed-effects, multilevel analysis to electrocorticographic data collected from 19 patients (1942 electrodes) to examine the activity of broadly disseminated cortical networks during the retrieval of distinct lexical categories. This approach was designed to overcome the issues of sparse sampling and individual variability inherent to invasive electrophysiology. Both noun and verb generation evoked overlapping, yet distinct nonhierarchical processes favoring ventral and dorsal visual streams, respectively. Notable differences in activity patterns were noted in Broca's area and superior lateral temporo-occipital regions (verb > noun) and in parahippocampal and fusiform cortices (noun > verb). Comparisons with functional magnetic resonance imaging (fMRI) results yielded a strong correlation of blood oxygen level-dependent signal and gamma power and an independent estimate of group size needed for fMRI studies of cognition. Our findings imply parallel, lexical category-specific processes and reconcile discrepancies between lesional and functional imaging studies. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. A model for optimization of process integration investments under uncertainty

    International Nuclear Information System (INIS)

    Svensson, Elin; Stroemberg, Ann-Brith; Patriksson, Michael

    2011-01-01

    The long-term economic outcome of energy-related industrial investment projects is difficult to evaluate because of uncertain energy market conditions. In this article, a general, multistage, stochastic programming model for the optimization of investments in process integration and industrial energy technologies is proposed. The problem is formulated as a mixed-binary linear programming model where uncertainties are modelled using a scenario-based approach. The objective is to maximize the expected net present value of the investments which enables heat savings and decreased energy imports or increased energy exports at an industrial plant. The proposed modelling approach enables a long-term planning of industrial, energy-related investments through the simultaneous optimization of immediate and later decisions. The stochastic programming approach is also suitable for modelling what is possibly complex process integration constraints. The general model formulation presented here is a suitable basis for more specialized case studies dealing with optimization of investments in energy efficiency. -- Highlights: → Stochastic programming approach to long-term planning of process integration investments. → Extensive mathematical model formulation. → Multi-stage investment decisions and scenario-based modelling of uncertain energy prices. → Results illustrate how investments made now affect later investment and operation opportunities. → Approach for evaluation of robustness with respect to variations in probability distribution.

  15. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Directory of Open Access Journals (Sweden)

    Ramin Lotfi

    2015-10-01

    Full Text Available The ameliorative effect of fulvic acid (0, 300, and 600 mg L− 1 on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L. plant under water stress (60, 100, and 140 mm evaporation from class A pan was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA improved the maximum quantum efficiency of PSII (Fv/Fm and performance index (PI of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  16. Physiological factors affecting intrinsic water use efficiency of potato clones within a dihaploid mapping population under well-watered and drought-stressed conditions

    DEFF Research Database (Denmark)

    Topbjerg, Henrik Bak; Kaminski, Kacper Piotr; Markussen, Bo

    2014-01-01

    Optimizing crops water use is essential for ensuring food production under future climate scenarios. Therefore, new cultivars that are capable of maintaining production under limited water resource are needed. This study screened for clonal differences in intrinsic water use efficiency (WUEi......) within a dihaploid potato (Solanum tuberosum L.) mapping population under well-watered (WW) and drought-stress (DS) conditions. The factorial dependency of WUEi on several plant bio-physiological traits was analyzed, and clonal difference of WUEi was compared. Significant differences in WUEi were found...... with high WUEi could be potentially used as material in future breeding programs. Furthermore CCI seemed to be a reliable tool in estimating the clonal An and thereby WUEi....

  17. Dissociable neural processes underlying risky decisions for self versus other

    Directory of Open Access Journals (Sweden)

    Daehyun eJung

    2013-03-01

    Full Text Available Previous neuroimaging studies on decision making have mainly focused on decisions on behalf of oneself. Considering that people often make decisions on behalf of others, it is intriguing that there is little neurobiological evidence on how decisions for others differ from those for self. Thus, the present study focused on the direct comparison between risky decisions for self and those for other using functional magnetic resonance imaging (fMRI. Participants (N = 23 were asked to perform a gambling task for themselves (decision-for-self condition or for another person (decision-for-other condition while in the scanner. Their task was to choose between a low-risk option (i.e., win or lose 10 points and a high-risk option (i.e., win or lose 90 points. The winning probabilities of each option varied from 17% to 83%. Compared to choices for others, choices for self were more risk-averse at lower winning probability and more risk-seeking at higher winning probability, perhaps due to stronger affective process during risky decision for self compared to other. The brain activation pattern changed according to the target of the decision, such that reward-related regions were more active in the decision-for-self condition than in the decision-for-other condition, whereas brain regions related to the theory of mind (ToM showed greater activation in the decision-for-other condition than in the decision-for-self condition. A parametric modulation analysis reflecting each individual’s decision model revealed that activation of the amygdala and the dorsomedial prefrontal cortex (DMPFC were associated with value computation for self and for other, respectively, during a risky financial decision. The present study suggests that decisions for self and other may recruit fundamentally distinctive neural processes, which can be mainly characterized by dominant affective/impulsive and cognitive/regulatory processes, respectively.

  18. Inhibition of Hb Binding to GP1bα Abrogates Hb-Mediated Thrombus Formation on Immobilized VWF and Collagen under Physiological Shear Stress.

    Science.gov (United States)

    Annarapu, Gowtham K; Singhal, Rashi; Peng, Yuandong; Guchhait, Prasenjit

    2016-01-01

    Reports including our own describe that intravascular hemolysis increases the risk of thrombosis in hemolytic disorders. Our recent study shows that plasma Hb concentrations correlate directly with platelet activation in patients with paroxysmal nocturnal hemoglobinuria (PNH). The binding of Hb to glycoprotein1bα (GP1bα) increases platelet activation. A peptide AA1-50, designed from N-terminal amino acid sequence of GP1bα significantly inhibits the Hb binding to GP1bα as well as Hb-induced platelet activation. This study further examined if the Hb-mediated platelet activation plays any significant role in thrombus formation on subendothelium matrix under physiological flow shear stresses and the inhibition of Hb-platelet interaction can abrogate the above effects of Hb. Study performed thrombus formation assay in vitro by perfusing whole blood over immobilized VWF or collagen type I in presence of Hb under shear stresses simulating arterial or venous flow. The Hb concentrations ranging from 5 to 10 μM, commonly observed level in plasma of the hemolytic patients including PNH, dose-dependently increased thrombus formation on immobilized VWF under higher shear stress of 25 dyne/cm2, but not at 5 dyne/cm2. The above Hb concentrations also increased thrombus formation on immobilized collagen under both shear stresses of 5 and 25 dyne/cm2. The peptide AA1-50 abrogated invariably the above effects of Hb on thrombus formation. This study therefore indicates that the Hb-induced platelet activation plays a crucial role in thrombus formation on immobilized VWF or collagen under physiological flow shear stresses. Thus suggesting a probable role of this mechanism in facilitating thrombosis under hemolytic conditions.

  19. Introductory Biology Textbooks Under-Represent Scientific Process

    Directory of Open Access Journals (Sweden)

    Dara B. Duncan

    2011-08-01

    Full Text Available Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process.To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own.

  20. Morpho-physiological variation of white spruce seedlings from various seed sources and implications for deployment under climate change

    Directory of Open Access Journals (Sweden)

    Isabelle Villeneuve

    2016-09-01

    Full Text Available Because of changes in climatic conditions, tree seeds originating from breeding programs may no longer be suited to sites where they are currently sent. As a consequence, new seed zones may have to be delineated. Assisted migration consists of transferring seed sources that match the future climatic conditions to which they are currently adapted. It represents a strategy that could be used to mitigate the potential negative consequences of climate change on forest productivity. Decisions with regard to the choice of the most appropriate seed sources have to rely on appropriate knowledge of morpho-physiological responses of trees. To meet this goal, white spruce (Picea glauca [Moench] Voss seedlings from eight seed orchards were evaluated during two years in a forest nursery, and at the end of the first growing season on three plantation sites located in different bioclimatic domains in Quebec.The morpho-physiological responses obtained at the end of the second growing season (2+0 in the nursery made it possible to cluster the orchards into three distinct groups. Modelling growth curves of these different groups showed that the height growth of seedlings from the second-generation and southern first-generation seed orchards was significantly higher than that of those from other orchards, by at least 6%. A multiple regression model with three climatic variables (average growing season temperature, average July temperature, length of the growing season showed that the final height of seedlings (2+0 from the first-generation seed orchards was significantly related to the local climatic conditions at the orchard sites of origin where parental trees from surrounding natural populations were sampled to provide grafts for orchard establishment. Seedling height growth was significantly affected by both seed source origins and planting sites, but the relative ranking of the different seed sources was maintained regardless of reforestation site. This

  1. Modelling soil carbon fate under erosion process in vineyard

    Science.gov (United States)

    Novara, Agata; Scalenghe, Riccardo; Minacapilli, Mario; Maltese, Antonino; Capodici, Fulvio; Borgogno Mondino, Enrico; Gristina, Luciano

    2017-04-01

    Soil erosion processes in vineyards beyond water runoff and sediment transport have a strong effect on soil organic carbon loss (SOC) and redistribution along the slope. The variation of SOC across the landscape determines a difference in soil fertility and vine productivity. The aim of this research was to study erosion of a Mediterranean vineyard, develop an approach to estimate the SOC loss, correlate the vines vigor with sediment and carbon erosion. The study was carried out in a Sicilian (Italy) vineyard, planted in 2011. Along the slope, six pedons were studied by digging 6 pits up to 60cm depth. Soil was sampled in each pedon every 10cm and SOC was analyzed. Soil erosion, detachment and deposition areas were measured by pole height method. The vigor of vegetation was expressed in term of NDVI (Normalized difference Vegetation Index) derived from a satellite image (RapidEye) acquired at berry pre-veraison stage (July) and characterized by 5 spectral bands in the shortwave region, including a band in the red wavelength (R, 630-685 nm) and in the near infrared (NIR, 760-850 nm) . Results showed that soil erosion, sediments redistribution and SOC across the hill was strongly affected by topographic features, slope and curvature. The erosion rate was 46Mg ha-1 y-1 during the first 6 years since planting. The SOC redistribution was strongly correlated with the detachment or deposition area as highlighted by pole height measurements. The approach developed to estimate the SOC loss showed that during the whole study period the off-farm SOC amounts to 1.6Mg C ha-1. As highlighted by NDVI results, the plant vigor is strong correlated with SOC content and therefore, developing an accurate NDVI approach could be useful to detect the vineyard areas characterized by low fertility due to erosion process.

  2. Physiologically motivated time-delay model to account for mechanisms underlying enterohepatic circulation of piroxicam in human beings.

    Science.gov (United States)

    Tvrdonova, Martina; Dedik, Ladislav; Mircioiu, Constantin; Miklovicova, Daniela; Durisova, Maria

    2009-01-01

    The study was conducted to formulate a physiologically motivated time-delay (PM TD) mathematical model for human beings, which incorporates disintegration of a drug formulation, dissolution, discontinuous gastric emptying and enterohepatic circulation (EHC) of a drug. Piroxicam, administered to 24 European, healthy individuals in 20 mg capsules Feldene Pfizer, was used as a model drug. Plasma was analysed for piroxicam by a validated high-performance liquid chromatography method. The PM TD mathematical model was developed using measured plasma piroxicam concentration-time profiles of the individuals and tools of a computationally efficient mathematical analysis and modeling, based on the theory of linear dynamic systems. The constructed model was capable of (i) quantifying different fractions of the piroxicam dose sequentially disposable for absorption and (ii) estimating time delays between time when the piroxicam dose reaches stomach and time when individual of fractions of the piroxicam dose is disposable for absorption. The model verification was performed through a formal proof, based on comparisons of observed and model-predicted plasma piroxicam concentration-time profiles. The model verification showed an adequate model performance and agreement between the compared profiles. Accordingly, it confirmed that the developed model was an appropriate representative of the piroxicam fate in the individuals enrolled. The presented model provides valuable information on factors that control dynamic mechanisms of EHC, that is, information unobtainable with the models proposed for the EHC analysis previously.

  3. Physiology and postharvest conservation of ‘Paluma’ guava under coatings using Jack fruit seed-based starch

    Directory of Open Access Journals (Sweden)

    Antonio Augusto Marques Rodrigues

    2018-04-01

    Full Text Available Abstract The aim of this work was to evaluate the effect of jackfruit seed starch-based (S coatings, added to chitosan and alginate on the physiology and maintenance of quality of cold stored ‘Paluma’ guavas, followed by transfer to the room condition. The design was the completely randomized, in a 4x2 factorial scheme, in 4 replications, with 4 coatings (dispersion of S - 4%; S 2% + chitosan - 2% (SC; S - 2% + alginate - 2% (SA; and the uncoated control, in 2 environments (refrigerated (10±2 °C e 80±2% RH with transfer to room condition (25±3 °C e 75±4% HR, on the 16th and 20th day of cold storage. The SC and SA coatings were efficient in reducing the respiratory rate in fruits during 10 days at room condition. The SC coating delayed fruit ripening, and maintained firmness and color, with intention of purchasing and appearance higher than the limit of acceptance for another 6 days, following transferring to room condition, at the 16th day of refrigeration.

  4. Physiological characteristics underlying the distribution patterns of luminous bacteria in the mediterranean sea and the gulf of elat.

    Science.gov (United States)

    Shilo, M; Yetinson, T

    1979-10-01

    Physiological characteristics of luminous bacteria isolated from the Mediterranean and Gulf of Elat were compared to determine their relationship to the specific seasonal and geographic distribution patterns of these bacteria. The effects of temperature on growth rate and yield, relative sensitivity to photooxidation, resistance to high salt concentration (8%), and ability to grow in nutrient-poor conditions appear to control these patterns. The winter appearance of Photobacterium fischeri and the succession of winter and summer types of Beneckea harveyi in the eastern Mediterranean are explained by different temperature requirements for growth. Sensitivity to photooxidation explains the disappearance of P. leiognathi, present in the main body of the Gulf of Elat throughout the year, from the shallow coastal strip. B. harveyi is present in this coastal strip which is higher in nutrients and in productivity than the open waters. Competition experiments between B. harveyi and P. leiognathi in batch and continuous culture indicate that the oligotrophic P. leiognathi is outcompeted by B. harveyi in rich and even in relatively poor media. The distribution pattern found in the Bardawil hypersaline lagoon is explained by selection of salinity-resistant mutants of B. harveyi from the Mediterranean Sea.

  5. Translational physiology: from molecules to public health.

    Science.gov (United States)

    Seals, Douglas R

    2013-07-15

    The term 'translational research' was coined 20 years ago and has become a guiding influence in biomedical research. It refers to a process by which the findings of basic research are extended to the clinical research setting (bench to bedside) and then to clinical practice and eventually health policy (bedside to community). It is a dynamic, multidisciplinary research approach. The concept of translational physiology applies the translational research model to the physiological sciences. It differs from the traditional areas of integrative and clinical physiology by its broad investigative scope of basic research to community health. Translational physiology offers exciting opportunities, but presently is under-developed and -utilized. A key challenge will be to expand physiological research by extending investigations to communities of patients and healthy (or at risk) individuals. This will allow bidirectional physiological investigation throughout the translational continuum: basic research observations can be studied up to the population level, and mechanisms can be assessed by 'reverse translation' in clinical research settings and preclinical models based on initial observations made in populations. Examples of translational physiology questions, experimental approaches, roadblocks and strategies for promotion are discussed. Translational physiology provides a novel framework for physiology programs and an investigational platform for physiologists to study function from molecular events to public health. It holds promise for enhancing the completeness and societal impact of our work, while further solidifying the critical role of physiology in the biomedical research enterprise.

  6. Translational physiology: from molecules to public health

    Science.gov (United States)

    Seals, Douglas R

    2013-01-01

    The term ‘translational research’ was coined 20 years ago and has become a guiding influence in biomedical research. It refers to a process by which the findings of basic research are extended to the clinical research setting (bench to bedside) and then to clinical practice and eventually health policy (bedside to community). It is a dynamic, multidisciplinary research approach. The concept of translational physiology applies the translational research model to the physiological sciences. It differs from the traditional areas of integrative and clinical physiology by its broad investigative scope of basic research to community health. Translational physiology offers exciting opportunities, but presently is under-developed and -utilized. A key challenge will be to expand physiological research by extending investigations to communities of patients and healthy (or at risk) individuals. This will allow bidirectional physiological investigation throughout the translational continuum: basic research observations can be studied up to the population level, and mechanisms can be assessed by ‘reverse translation’ in clinical research settings and preclinical models based on initial observations made in populations. Examples of translational physiology questions, experimental approaches, roadblocks and strategies for promotion are discussed. Translational physiology provides a novel framework for physiology programs and an investigational platform for physiologists to study function from molecular events to public health. It holds promise for enhancing the completeness and societal impact of our work, while further solidifying the critical role of physiology in the biomedical research enterprise. PMID:23732641

  7. Calcium-Sensing Receptor Antagonist NPS 2143 Restores Amyloid Precursor Protein Physiological Non-Amyloidogenic Processing in Aβ-Exposed Adult Human Astrocytes.

    Science.gov (United States)

    Chiarini, Anna; Armato, Ubaldo; Liu, Daisong; Dal Prà, Ilaria

    2017-04-28

    Physiological non-amyloidogenic processing (NAP) of amyloid precursor holoprotein (hAPP) by α-secretases (e.g., ADAM10) extracellularly sheds neurotrophic/neuroprotective soluble (s)APPα and precludes amyloid-β peptides (Aβs) production via β-secretase amyloidogenic processing (AP). Evidence exists that Aβs interact with calcium-sensing receptors (CaSRs) in human astrocytes and neurons, driving the overrelease of toxic Aβ 42 /Aβ 42 -os (oligomers), which is completely blocked by CaSR antagonist (calcilytic) NPS 2143. Here, we investigated the mechanisms underlying NPS 2143 beneficial effects in human astrocytes. Moreover, because Alzheimer's disease (AD) involves neuroinflammation, we examined whether NPS 2143 remained beneficial when both fibrillary (f)Aβ 25-35 and a microglial cytokine mixture (CMT) were present. Thus, hAPP NAP prevailed over AP in untreated astrocytes, which extracellularly shed all synthesized sAPPα while secreting basal Aβ 40/42 amounts. Conversely, fAβ 25-35 alone dramatically reduced sAPPα extracellular shedding while driving Aβ 42 /Aβ 42 -os oversecretion that CMT accelerated but not increased, despite a concurring hAPP overexpression. NPS 2143 promoted hAPP and ADAM10 translocation to the plasma membrane, thereby restoring sAPPα extracellular shedding and fully suppressing any Aβ 42 /Aβ 42 -os oversecretion, but left hAPP expression unaffected. Therefore, as anti-AD therapeutics calcilytics support neuronal viability by safeguarding astrocytes neurotrophic/neuroprotective sAPPα shedding, suppressing neurons and astrocytes Aβ 42 /Aβ 42 -os build-up/secretion, and remaining effective even under AD-typical neuroinflammatory conditions.

  8. [Effects of inoculating AM fungi on physiological characters and nutritional components of Astragalus membranaceus under different N application levels].

    Science.gov (United States)

    He, Xue-li; Liu, Ti; Zhao, Li-li

    2009-09-01

    A pot culture with unsterilized soil as growth substrate showed that AM fungi had significant effects on the growth of Astragalus membranaceus (Fabaceae) under different N application levels. Inoculation with AM fungi promoted the AM infection of A. membranaceus roots, but high N application level suppressed the infection. Inoculating AM fungi increased the growth rate, soluble protein and sugar contents, and SOD, POD and CAT activities of A. membranaceus. Under 50 and 100 mg x kg(-1) of N application, new bands of POD isozyme occurred in inoculated plants, and the contents of flavonoid, N, and P in A. membranaceus also had definite increase. The best inoculation effect was observed under the N application level of 50-100 mg N x kg(-1) soil.

  9. Foveal Processing Under Concurrent Peripheral Load in Profoundly Deaf Adults

    Science.gov (United States)

    2016-01-01

    Development of the visual system typically proceeds in concert with the development of audition. One result is that the visual system of profoundly deaf individuals differs from that of those with typical auditory systems. While past research has suggested deaf people have enhanced attention in the visual periphery, it is still unclear whether or not this enhancement entails deficits in central vision. Profoundly deaf and typically hearing adults were administered a variant of the useful field of view task that independently assessed performance on concurrent central and peripheral tasks. Identification of a foveated target was impaired by a concurrent selective peripheral attention task, more so in profoundly deaf adults than in the typically hearing. Previous findings of enhanced performance on the peripheral task were not replicated. These data are discussed in terms of flexible allocation of spatial attention targeted towards perceived task demands, and support a modified “division of labor” hypothesis whereby attentional resources co-opted to process peripheral space result in reduced resources in the central visual field. PMID:26657078

  10. A regional process under the international initiative for IFM

    Directory of Open Access Journals (Sweden)

    Murase Masahiko

    2016-01-01

    Full Text Available Climate change is likely to result in increases in the frequency or intensity of extreme weather events including floods. The International Flood Initiative (IFI, initiated in January 2005 by UNESCO and WMO and voluntary partner organizations has promoted an integrated flood management (IFM to take advantage of floods and use of floodplains while reducing the social, environmental and economic risks. Its secretariat is located in ICHARM. The initiative objective is to support national platforms to practice evidence-based disaster risk reduction through mobilizing scientific and research networks. After its initial decade, the initiative is providing a stepping-stone for the implementation of Sendai Framework by revitalizing its activities aimed at building on the sucess of the past, while addressing existing gaps in integrated flood managemnet strategies comprising of optimal structural and nonstructural measures thereby mainstreaming disaster risk reduction and targeting sustainable development. In this context, a new mechanism try to facilitate monitoring, assessment and capacity building in the Asia Pacific region. The primary outcomes of the mechanism are demand-driven networking and related documentations of best practices for 1 hazard assessment, 2 exposure assessment, 3 vulnerability assessment and coping capacity to identify the gaps, and 4 follow-ups and monitoring of the IFM process.

  11. Neural processing of reward magnitude under varying attentional demands.

    Science.gov (United States)

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Hopf, Jens-Max; Schoenfeld, Mircea Ariel

    2011-04-06

    Central to the organization of behavior is the ability to represent the magnitude of a prospective reward and the costs related to obtaining it. Therein, reward-related neural activations are discounted in dependence of the effort required to resolve a given task. Varying attentional demands of the task might however affect reward-related neural activations. Here we employed fMRI to investigate the neural representation of expected values during a monetary incentive delay task with varying attentional demands. Following a cue, indicating at the same time the difficulty (hard/easy) and the reward magnitude (high/low) of the upcoming trial, subjects performed an attention task and subsequently received feedback about their monetary reward. Consistent with previous results, activity in anterior-cingulate, insular/orbitofrontal and mesolimbic regions co-varied with the anticipated reward-magnitude, but also with the attentional requirements of the task. These activations occurred contingent on action-execution and resembled the response time pattern of the subjects. In contrast, cue-related activations, signaling the forthcoming task-requirements, were only observed within attentional control structures. These results suggest that anticipated reward-magnitude and task-related attentional demands are concurrently processed in partially overlapping neural networks of anterior-cingulate, insular/orbitofrontal, and mesolimbic regions. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Effect of Seed Priming on Growth and Some Physiological Characteristics of Sesame (Sesamum indicum L. under salinity Stress Condition caused by Alkali Salts

    Directory of Open Access Journals (Sweden)

    H. Bekhrad

    2016-02-01

    Full Text Available Introduction Sesame (Sesamun indicum L. is an important oil seed crop. Its seed has excellent nutritional value with a high and unique protein composition, making it a perfect food. Salinity is a serious problem in many regions of the world including Iran. Salinity stress is one of the widespread environmental constraints affecting crop productivity. Salinity generally induces osmotic stress and causes direct ion injury by disrupting ion homeostasis and the ion balance within plant cells (25. Seed priming is one of the ways to reduce negative effects of salt which is used for increasing germination percentage and seed resistance in salty zones. Seed priming is a pre-germination treatment that provides a moisture level sufficient to start pre-germination metabolic processes. It entails the partial germination of seeds by soaking them in water (or in a solution of salts for specified period of time, and then re-dry them just before radicle emerges (24. Priming stimulates many of the metabolic processes involved with the early phases of germination. Given that part of the germination processes have been initiated, seedlings from primed seed grow faster, grow more vigorously, and perform better in adverse conditions (24. The objective of this study was to investigate the effects of salinity stress caused by alkali salts on growth and some physiologic characteristics of sesame. Materials and Methods This study was conducted in a greenhouse in Vali-e-Asr University of Rafsanjan as factorial arrangement in randomized complete block design with three replications. Experimental factors included priming (control (unprimed, hydropriming, halopriming with NaCl and NaHCO3 and level of salinity with sodium bicarbonate salt (Zero, 15, 30 and 45 mM. Seeds were planted in pots filled with perlite and cocopite (1:1. The pots were irrigated with a nutrient solution (with half strength Hoagland's solution. After the fourth true leaves appeared, salinty stress in

  13. Expression and role of CR1 and CR2 on B and T lymphocytes under physiological and autoimmune conditions.

    Science.gov (United States)

    Erdei, Anna; Isaák, Andrea; Török, Katalin; Sándor, Noémi; Kremlitzka, Mariann; Prechl, József; Bajtay, Zsuzsa

    2009-09-01

    The involvement of complement in the development and regulation of antibody responses under both healthy and pathological conditions is known for long. Unravelling the molecular mechanisms underlying the events however is still in progress. This review focuses on the role of complement receptors CR1 (CD35) and CR2 (CD21) expressed on T and B cells. Alteration in the expression and function of these receptors may contribute to the initiation and maintenance of immune complex mediated autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. Recent data regarding complement receptor expression on T lymphocytes and on memory B cells are also discussed.

  14. Physiological and Biochemical Responses in Japanese Quail (Coturnix coturnix japonica) Fed Radiation Processed Aflatoxin-Contaminated Diet

    International Nuclear Information System (INIS)

    El-Niely, H.F.G.; Abdalla, E.A.; Abd El-Azeem, A.F.

    2008-01-01

    Aflatoxins (AFs) contamination of foods and live-stock feeds is an ongoing problem. In this research, the amelioration of aflatoxicosis in Japanese quails was examined by the radiation processing of their contaminated-diets, as a physical detoxifying method. Diets contaminated with two different levels of AFB 1 (2 or 5 mg kg -1 diet) were subjected to 10, 20, or 30 kGy and fed to growing Japanese quails for 5 weeks. The physiological and biochemical responses were evaluated for irradiation ability to reduce the deleterious effects of 2 and 5 mg AFB 1 kg -1 diet. A total of 270 seven-day-old Japanese quail chicks were assigned to 2 factorial arrangements of nine treatments (level of toxin and radiation dose) each consisted of three replicates with 10 quails per pen. The significant adverse effect of AFB 1 on the food consumption, body-weight gain, food conversion ratio, mortality rate and internal organ weights, from the first week onwards, were determined. Radiation processing reduced concentration of AFB 1 in all experimental diets and significantly reduced the deleterious effects of AFB 1 on food consumption, body-weight gain, food conversion ratio, and the relative weights of most observed organs, as a function of radiation dose. Muscles, liver, kidneys and heart tissues were analyzed for aflatoxin (AF) residues. The residual level of AFB 1 was significantly higher in liver than in kidneys, muscles or heart. The level in the observed organs and the muscles was lower in those received irradiated diet at high 30 kGy. Plasma samples were tested for glucose, triglyceride, cholesterol, aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), urea and creatinine. They were significantly increased in AF treated groups in comparison with those received AF-containing diet and irradiated up to 30 kGy. Birds ate contaminated diet with both level of toxin were suffered from the lower level of total proteins, albumin, globulin, phosphorus and

  15. Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress

    Science.gov (United States)

    Salah, Sheteiwy Mohamed; Yajing, Guan; Dongdong, Cao; Jie, Li; Aamir, Nawaz; Qijuan, Hu; Weimin, Hu; Mingyu, Ning; Jin, Hu

    2015-01-01

    The present study was designed to highlight the impact of seed priming with polyethylene glycol on physiological and molecular mechanism of two cultivars of Oryza sativa L. under different levels of zinc oxide nanorods (0, 250, 500 and 750 mg L−1). Plant growth parameters were significantly increased in seed priming with 30% PEG under nano-ZnO stress in both cultivars. Whereas, this increase was more prominent in cultivar Qian You No. 1 as compared to cultivar Zhu Liang You 06. Significant increase in photosynthetic pigment with PEG priming under stress. Antioxidant enzymes activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) as well as malondialdehyde (MDA) contents were significantly reduced with PEG priming under nano-ZnO stress. Gene expression analysis also suggested that expression of APXa, APXb, CATa, CATb, CATc, SOD1, SOD2 and SOD3 genes were down regulated with PEG priming as compared to non-primed seeds under stress. The ultrastructural analysis showed that leaf mesophyll and root cells were significantly damaged under nano-ZnO stress in both cultivars but the damage was prominent in Zhu Liang You 06. However, seed priming with PEG significantly alleviate the toxic effects of nano-ZnO stress and improved the cell structures of leaf and roots in both cultivars. PMID:26419216

  16. Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought.

    Science.gov (United States)

    Alguacil, Maria Del Mar; Kohler, Josef; Caravaca, Fuensanta; Roldán, Antonio

    2009-11-01

    Arbuscular mycorrhizal (AM) symbiosis and plant-growth-promoting rhizobacterium (PGPR) can alleviate the effects of water stress in plants, but it is unknown whether these benefits can be maintained at elevated CO2. Therefore, we carried out a study where seedlings of Lactuca sativa were inoculated with the AM fungus (AMF) Glomus intraradices N.C. Schenk & G.S. Sm. or the PGPR Pseudomonas mendocina Palleroni and subjected to two levels of watering and two levels of atmospheric CO2 to ascertain their effects on plant physiological parameters and gene expression of one PIP aquaporin in roots. The inoculation with PGPR produced the greatest growth in lettuce plants under all assayed treatments as well as the highest foliar potassium concentration and leaf relative water content under elevated [CO2] and drought. However, under such conditions, the PIP2 gene expression remained almost unchanged. G. intraradices increased significantly the AMF colonization, foliar phosphorus concentration and leaf relative water content in plants grown under drought and elevated [CO2]. Under drought and elevated [CO2], the plants inoculated with G. intraradices showed enhanced expression of the PIP2 gene as compared to P. mendocina or control plants. Our results suggest that both microbial inoculation treatments could help to alleviate drought at elevated [CO2]. However, the PIP2 gene expression was increased only by the AMF but not by the PGPR under these conditions.

  17. Real-time electrical impedimetric monitoring of blood coagulation process under temperature and hematocrit variations conducted in a microfluidic chip.

    Directory of Open Access Journals (Sweden)

    Kin Fong Lei

    Full Text Available Blood coagulation is an extremely complicated and dynamic physiological process. Monitoring of blood coagulation is essential to predict the risk of hemorrhage and thrombosis during cardiac surgical procedures. In this study, a high throughput microfluidic chip has been developed for the investigation of the blood coagulation process under temperature and hematocrit variations. Electrical impedance of the whole blood was continuously recorded by on-chip electrodes in contact with the blood sample during coagulation. Analysis of the impedance change of the blood was conducted to investigate the characteristics of blood coagulation process and the starting time of blood coagulation was defined. The study of blood coagulation time under temperature and hematocrit variations was shown a good agreement with results in the previous clinical reports. The electrical impedance measurement for the definition of blood coagulation process provides a fast and easy measurement technique. The microfluidic chip was shown to be a sensitive and promising device for monitoring blood coagulation process even in a variety of conditions. It is found valuable for the development of point-of-care coagulation testing devices that utilizes whole blood sample in microliter quantity.

  18. Agronomic and physiological performance of Teqing x Lemont introgression rice (Oryza sativa L.) lines under limited irrigation system

    Science.gov (United States)

    Rice is a staple food for almost half of the world. Most rice in the world, including the USA, is produced under a flooded paddy system that makes rice one of the most irrigated grain crops on earth. With many water resources being depleted due to high irrigation demands, it has become essential to ...

  19. Fast “Feast/Famine” Cycles for Studying Microbial Physiology Under Dynamic Conditions : A Case Study with Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Suarez-Mendez, C.A.; Sousa, A.; Heijnen, J.J.; Wahl, S.A.

    2014-01-01

    Microorganisms are constantly exposed to rapidly changing conditions, under natural as well as industrial production scale environments, especially due to large-scale substrate mixing limitations. In this work, we present an experimental approach based on a dynamic feast/famine regime (400 s) that

  20. Behaviour of radionuclides in sedimentation processes under varying redox conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ilus, E.; Ikaeheimonen, T.K.; Mattila, J.; Klemola, S. [STUK Radiation and Nuclear Safety Authority (Finland)

    2001-04-01

    Determination of sedimentation rates plays an important role in material balance and model calculations of seas and other bodies of water. The Baltic Sea offers an exceptionally good opportunity to study processes in sediments and sedimentation rates with radioecological methods, because the concentration peaks of {sup 137}Cs and {sup 239,240}Pu are easily detectable in its sediments. In 1995-1996 sediment profiles were taken at 51 sampling stations situated in the Baltic Proper, Bothnian Bay, Bothnian Sea and Gulf of Finland. The aim was to estimate sedimentation rates in different parts of the Baltic Sea by using alternative methods and to consider reasons for eventual differences in results. The {sup 210}Pb, {sup 137}Cs, {sup 239,240}Pu and th sediment trap methods were used in estimations. The results show that the accumulation rates of dry matter may vary between 0.006 and 0.90 g cm{sup -2}y{sup -1} at different sampling stations of the Baltic Sea and the sedimentation rates between 0.2 and 29 mm y{sup -1} depending on the sedimentation itself and the method used in calculation. This is a considerable range in results, considering that all of the sampling stations were located in areas of soft sediment bottoms. In general, the sedimentation rates were highest at the Bothnian Sea sampling stations. In the Gulf of Finland the sedimentation rates were highest in the eastern part, while in the Bothnian Bay and in the Baltic Proper the rates were in general lower than in the 2 areas first mentioned. The differences among the results obtained with various methods varied unsystematically; thus it was not possible to predict that anyone of the methods would always give higher results than any of the others or vice versa. The results show that in the Baltic Sea the use of more than 1 parallel methods in estimation of sedimentation rate is highly recommended. None of the methods is necessarily suitable for routine use in the Baltic Sea. In those cases where the {sup 137

  1. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature

    OpenAIRE

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Ihsan, Zahid; Shah, Adnan N.; Wu, Chao; Yousaf, Muhammad; Nasim, Wajid; Alharby, Hesham; Alghabari, Fahad; Huang, Jianliang

    2016-01-01

    A two-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were applied. High temperature s...

  2. [Effect of exogenous Ca2+, ALA, SA and Spd on seed germination and physiological characteristics of Perilla frutescens seedlings under NaCl stress].

    Science.gov (United States)

    Zhang, Chunping; He, Ping; Yu, Zeli; Du, Dandan; Wei, Pinxiang

    2010-12-01

    To find a method for improving the salt resistance of seeds and seedlings for Perilla Frutescens under NaCl stress, seed germination and physiological characteristics of P. frutescens seedlings were studied. Several physiological indexes of P. frutescens seeds treated with different concentrations of Ca2+, 5-aminolevulinic acid (ALA), salicylic acid (SA) and spermidine (Spd) under NaCl stress like the germination vigor, germination rate, germination index and vigor index were measured. And other indexes like the biomass of the seedlings, the content of malondialdehyde (MDA) in leaves, the activities of superoxide (SOD), peroxidase (POD) and catalase (CAT) were also measured. The germination of P. frutescens seeds under NaCl stress (100 mmol x L(-1)) was inhibited obviously. But after the treatment with Ca2+, ALA , SA and Spd, all germination indexes were increased. Ca2+ (10 mmol x L(-1)), ALA (100 mg x L(-1)), SA (50 mg x L(-1)) and Spd (0.25 mmol x L(-1)) could obviously alleviate the damage of salt stress to the seeds of P. frutescens. ALA (100 mg x L(-1)) significantly increased all indexes. The germination vigor was 65.3%, the germination rate was 89.7%, the germination index and vigor index were 15.2 and 0.1238, respectively. All treatments decreased the content of MDA in leaves. The activities of three enzymes including SOD, POD and CAT were all increased. ALA (100 mg x L(-1)) had the enzymes activity reach the maximum with 0.72, 6, 82 and 5.64 U x mg(-1), respectively. Ca2+ ALA , SA and Spd with appropriate concentration could significantly alleviate the damages to the seeds and seedlings of P. frutescens under NaCl stress and promote the salt resistance of the seeds and seedlings.

  3. [Effect of exogenous carbon monoxide donor hematin on seed germination and physiological characteristics of Cassia obtusifolia seedlings under NaCl stress].

    Science.gov (United States)

    Zhang, Chunping; He, Ping; Liu, Haiying; Yuan, Fenggang; Wei, Pinxiang; Xie, Yingzan; Hu, Shijun

    2012-01-01

    In order to get the method to improve the salt resistance of seeds and seedlings for Cassia obtusbifolia under NaCl stress, seed germination and physiological characteristics of C. obtusifolia seedlings were studied. Several physiological indexes of C. obtusifolia seeds treated with exogenous carbon monoxide donor hematin under NaCl stress like the germination vigor, germination rate, germination index and vigor index were measured. And other indexes like the relative water content, the contents of photosynthetic pigment, chlorophyll fluorescence parameters, the contents of soluble sugar, protein and proline, malondialdehyde (MDA), the activities of superoxide (SOD), peroxidase (POD) and catalase (CAT) were also measured. The germination indexes of C. obtusifolia seeds under NaCl stress had been inhibited obviously. But after the treatment of hematin, every germination indexes were all increased. The result showed that the treatment of exogenous CO donor hematin obviously improved the germination vigor, germination rate, germination index and vigor index, increased the content of chlorophyll a, chlorophyll b, total chlorophyll, improved the photochemical efficiency of photosystem II (Fv/Fm), photochemical efficiency (Fv'/Fm'), PS II actual photochemical efficiency (phiPS II), photochemical quench coefficient (qP), decreased non-photochemical quenching coefficient (NPQ) and the content of malondialdehyde (MDA) , increased the relative water content of leaves and the content of soluble surge, protein and proline. Meanwhile, the results also indicated that CO improved the activities of superoxide (SOD), peroxidase (POD) and catalase (CAT). The effects of CO could be reversed when CO scavenger Hb is added. Exogenous CO donor hematin with appropriate concentration could significantly alleviate the damages to the seeds and seedlings of C. obtusifolia under NaCl stress and promote the salt resistance of the seeds and seedlings through improving the germination indexes

  4. Astrocyte-like glial cells physiologically regulate olfactory processing through the modification of ORN-PN synaptic strength in Drosophila.

    Science.gov (United States)

    Liu, He; Zhou, Bangyu; Yan, Wenjun; Lei, Zhengchang; Zhao, Xiaoliang; Zhang, Ke; Guo, Aike

    2014-09-01

    Astrocyte-like glial cells are abundant in the central nervous system of adult Drosophila and exhibit morphology similar to astrocytes of mammals. Previous evidence has shown that astrocyte-like glial cells are strongly associated with synapses in the antennal lobe (AL), the first relay of the olfactory system, where olfactory receptor neurons (ORNs) transmit information into projection neurons (PNs). However, the function of astrocyte-like glia in the AL remains obscure. In this study, using in vivo calcium imaging, we found that astrocyte-like glial cells exhibited spontaneous microdomain calcium elevations. Using simultaneous manipulation of glial activity and monitoring of neuronal function, we found that the astrocyte-like glial activation, but not ensheathing glial activation, could inhibit odor-evoked responses of PNs. Ensheathing glial cells are another subtype of glia, and are of functional importance in the AL. Electrophysiological experiments indicated that astrocyte-like glial activation decreased the amplitude and slope of excitatory postsynaptic potentials evoked through electrical stimulation of the antennal nerve. These results suggest that astrocyte-like glial cells may regulate olfactory processing through negative regulation of ORN-PN synaptic strength. Beyond the antennal lobe we observed astrocyte-like glial spontaneous calcium activities in the ventromedial protocerebrum, indicating that astrocyte-like glial spontaneous calcium elevations might be general in the adult fly brain. Overall, our study demonstrates a new function for astrocyte-like glial cells in the physiological modulation of olfactory information transmission, possibly through regulating ORN-PN synapse strength. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: catabolic adaptation, stress responses, and autophagic processes.

    Science.gov (United States)

    Vanz, Ana Leticia; Lünsdorf, Heinrich; Adnan, Ahmad; Nimtz, Manfred; Gurramkonda, Chandrasekhar; Khanna, Navin; Rinas, Ursula

    2012-08-08

    Pichia pastoris is an established eukaryotic host for the production of recombinant proteins. Most often, protein production is under the control of the strong methanol-inducible aox1 promoter. However, detailed information about the physiological alterations in P. pastoris accompanying the shift from growth on glycerol to methanol-induced protein production under industrial relevant conditions is missing. Here, we provide an analysis of the physiological response of P. pastoris GS115 to methanol-induced high-level production of the Hepatitis B virus surface antigen (HBsAg). High product titers and the retention of the protein in the endoplasmic reticulum (ER) are supposedly of major impact on the host physiology. For a more detailed understanding of the cellular response to methanol-induced HBsAg production, the time-dependent changes in the yeast proteome and ultrastructural cell morphology were analyzed during the production process. The shift from growth on glycerol to growth and HBsAg production on methanol was accompanied by a drastic change in the yeast proteome. In particular, enzymes from the methanol dissimilation pathway started to dominate the proteome while enzymes from the methanol assimilation pathway, e.g. the transketolase DAS1, increased only moderately. The majority of methanol was metabolized via the energy generating dissimilatory pathway leading to a corresponding increase in mitochondrial size and numbers. The methanol-metabolism related generation of reactive oxygen species induced a pronounced oxidative stress response (e.g. strong increase of the peroxiredoxin PMP20). Moreover, the accumulation of HBsAg in the ER resulted in the induction of the unfolded protein response (e.g. strong increase of the ER-resident disulfide isomerase, PDI) and the ER associated degradation (ERAD) pathway (e.g. increase of two cytosolic chaperones and members of the AAA ATPase superfamily) indicating that potential degradation of HBsAg could proceed via the

  6. Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: catabolic adaptation, stress responses, and autophagic processes

    Science.gov (United States)

    2012-01-01

    Background Pichia pastoris is an established eukaryotic host for the production of recombinant proteins. Most often, protein production is under the control of the strong methanol-inducible aox1 promoter. However, detailed information about the physiological alterations in P. pastoris accompanying the shift from growth on glycerol to methanol-induced protein production under industrial relevant conditions is missing. Here, we provide an analysis of the physiological response of P. pastoris GS115 to methanol-induced high-level production of the Hepatitis B virus surface antigen (HBsAg). High product titers and the retention of the protein in the endoplasmic reticulum (ER) are supposedly of major impact on the host physiology. For a more detailed understanding of the cellular response to methanol-induced HBsAg production, the time-dependent changes in the yeast proteome and ultrastructural cell morphology were analyzed during the production process. Results The shift from growth on glycerol to growth and HBsAg production on methanol was accompanied by a drastic change in the yeast proteome. In particular, enzymes from the methanol dissimilation pathway started to dominate the proteome while enzymes from the methanol assimilation pathway, e.g. the transketolase DAS1, increased only moderately. The majority of methanol was metabolized via the energy generating dissimilatory pathway leading to a corresponding increase in mitochondrial size and numbers. The methanol-metabolism related generation of reactive oxygen species induced a pronounced oxidative stress response (e.g. strong increase of the peroxiredoxin PMP20). Moreover, the accumulation of HBsAg in the ER resulted in the induction of the unfolded protein response (e.g. strong increase of the ER-resident disulfide isomerase, PDI) and the ER associated degradation (ERAD) pathway (e.g. increase of two cytosolic chaperones and members of the AAA ATPase superfamily) indicating that potential degradation of HBsAg could

  7. Thermal, physiological strain index and perceptual responses in Iranian Muslim women under Thermal Condition in order to Guide in Prevention of Heat Stress

    Directory of Open Access Journals (Sweden)

    Peymaneh Habibi

    2014-09-01

    Full Text Available Heat stress risk assessment, as a harmful agent at workplace, is essential for controlling heat strain. The purpose of this study was relation between physiological and perceptual heat strain responses in Iranian veiled women under laboratory thermal conditions. This experimental study was carried out on 36 healthy females (age 22.3 ± 2.0 yr, height 162.76±5. 57cm, weight 55.82 ± 9.27kg in sitting state under thermal conditions (27 - 38° C in the hot-dry climatic condition for 120 min. In order to calculate the physiological strain index (PSI, oral temperature and heart rate were measured every 5 min. Physiological factors, and Heat Strain Score Index (HSSI questionnaires are simultaneous measurements taken at any 5 min during the exposure and physiological factors, and Heat Strain Score Index (HSSI questionnaires are the initial measurements. The data were analyzed using correlation and line regression by test spss16. The results showed that the average heart rate and oral temperature at resting and sitting were between 83.06 ±9.41bpm, 87.91 ±7.87 bpm and 36.7° C, 37. 1° C respectively. Also, the results have revealed a direct and significant and direct correlation among HSSI with WBGT (R2 = 0.97, P< 0.001, PSI (R2 = 0.96, P< 0.001, oral temperature (R2 = 0.96, P< 0.001 and heart rate (R2 = 0.62, P< 0.01 indices. The results have shown that simultaneously with the increase in valid indices of heat stress evaluation such as WBGT and PSI indices, the amount of HSSI index has also increased with high power. Therefore, it can be conclude that when there is no access to a reliable heat stress method such as WBGT or PSI indices, HSSI index, an objective and subjective heat strain method, can be used as a simple, fast and inexpensive method for evaluating the heat strain in women.

  8. Leaf Physiological and Proteomic Analysis to Elucidate Silicon Induced Adaptive Response under Salt Stress in Rosa hybrida 'Rock Fire'.

    Science.gov (United States)

    Soundararajan, Prabhakaran; Manivannan, Abinaya; Ko, Chung Ho; Muneer, Sowbiya; Jeong, Byoung Ryong

    2017-08-14

    Beneficial effects of silicon (Si) on growth and development have been witnessed in several plants. Nevertheless, studies on roses are merely reported. Therefore, the present investigation was carried out to illustrate the impact of Si on photosynthesis, antioxidant defense and leaf proteome of rose under salinity stress. In vitro-grown, acclimatized Rosa hybrida 'Rock Fire' were hydroponically treated with four treatments, such as control, Si (1.8 mM), NaCl (50 mM), and Si+NaCl. After 15 days, the consequences of salinity stress and the response of Si addition were analyzed. Scorching of leaf edges and stomatal damages occurred due to salt stress was ameliorated under Si supplementation. Similarly, reduction of gas exchange, photosynthetic pigments, higher lipid peroxidation rate, and accumulation of reactive oxygen species under salinity stress were mitigated in Si treatment. Lesser oxidative stress observed was correlated with the enhanced activity and expression of antioxidant enzymes, such as superoxide dismutase, catalase, and ascorbate peroxidase in Si+NaCl treatment. Importantly, sodium transportation was synergistically restricted with the stimulated counter-uptake of potassium in Si+NaCl treatment. Furthermore, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) results showed that out of 40 identified proteins, on comparison with control 34 proteins were down-accumulated and six proteins were up-accumulated due to salinity stress. Meanwhile, addition of Si with NaCl treatment enhanced the abundance of 30 proteins and downregulated five proteins. Differentially-expressed proteins were functionally classified into six groups, such as photosynthesis (22%), carbohydrate/energy metabolism (20%), transcription/translation (20%), stress/redox homeostasis (12%), ion binding (13%), and ubiquitination (8%). Hence, the findings reported in this work could facilitate a deeper

  9. Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum

    DEFF Research Database (Denmark)

    Andresen, Elisa; Kappel, Sophie; Stärk, Hans-Joachim

    2016-01-01

    Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under......, reactive oxygen species (superoxide and hydrogen peroxide) appeared. Cadmium had negative effects on macrophytes at much lower concentrations than reported previously, emphasizing the importance of studies applying environmentally relevant conditions. A chain of inhibition events could be established....

  10. Beyond dual-process models: A categorisation of processes underlying intuitive judgement and decision making

    NARCIS (Netherlands)

    Glöckner, A.; Witteman, C.L.M.

    2010-01-01

    Intuitive-automatic processes are crucial for making judgements and decisions. The fascinating complexity of these processes has attracted many decision researchers, prompting them to start investigating intuition empirically and to develop numerous models. Dual-process models assume a clear

  11. Uropathogenic Escherichia coli Express Type 1 Fimbriae Only in Surface Adherent Populations Under Physiological Growth Conditions

    DEFF Research Database (Denmark)

    Stærk, Kristian; Kolmos, Hans Jørn; Khandige, Surabhi

    2016-01-01

    BACKGROUND:  Most uropathogenic Escherichia coli (UPEC) strains harbor genes encoding adhesive type 1 fimbria (T1F). T1F is a key factor for successful establishment of urinary tract infection. However, UPEC strains typically do not express T1F in the bladder urine, and little is understood about...... its induction in vivo. METHODS:  A flow chamber infection model was used to grow UPEC under conditions simulating distinct infection niches in the bladder. Type 1 fimbriation on isolated UPEC was subsequently determined by yeast cell agglutination and immunofluorescence microscopy, and the results...... were correlated with the ability to adhere to and invade cultured human bladder cells. RESULTS:  Although inactive during planktonic growth in urine, T1F expression occurs when UPEC settles on and infects bladder epithelial cells or colonizes catheters. As a result, UPEC in these sessile populations...

  12. Comparative study of hematopoietic stem and progenitor cells between sexes in mice under physiological conditions along time.

    Science.gov (United States)

    Gasco, Samanta; Rando, Amaya; Zaragoza, Pilar; García-Redondo, Alberto; Calvo, Ana Cristina; Osta, Rosario

    2017-12-01

    Hematopoietic stem and progenitor cells (HSPCs) are attractive targets in regenerative medicine, although the differences in their homeostatic maintenance between sexes along time are still under debate. We accurately monitored hematopoietic stem cells (HSCs), common lymphoid progenitors (CLPs), and common myeloid progenitors (CMPs) frequencies by flow cytometry, by performing serial peripheral blood extractions from male and female B6SJL wild-type mice and found no significant differences. Only modest differences were found in the gene expression profile of Slamf1 and Gata2. Our findings suggest that both sexes could be used indistinctly to perform descriptive studies in the murine hematopoietic system, especially for flow cytometry studies in peripheral blood. This would allow diminishing the number of animals needed for the experimental procedures. In addition, the use of serial extractions in the same animals drastically decreases the number of animals needed. © 2017 International Federation for Cell Biology.

  13. Physiological and Fluorescence Reaction of Four Rice Genotypes to Exogenous Application of IAA and Kinetin under Drought Stress

    Directory of Open Access Journals (Sweden)

    Mostafa SALEHIFAR

    2017-09-01

    Full Text Available To assess the effects of IAA and Kinetin plant growth regulators in order to improve the drought tolerance in rice seedlings (Oryza sativa L., a factorial experiment was carried out based on complete randomized design with three replications. The experimental factors included different rice genotypes [‘Gharib’, ‘Khazar’, ‘Sepidrood’ and ‘IR83750 -131-1’ (‘IR83750’ ], drought stress from 1 to 4 code of the Vergara coding system and control (normal irrigation and growth regulators in three levels (IAA and Kinetin through foliar spraying and non-application as control. The results indicated, under normal irrigation condition together with IAA application, ‘IR83750’ rice had the highest number of tillers and leaf greenness, with mean of 18.27 and 49.46, respectively. The highest amount of leaf relative water content 95.11 percent was related to ‘Sepidrood’. Under drought stress condition, the highest electrolyte leakage (36.59 percent was observed in ‘Gharib’. In drought condition, the highest leaf drying score was related to ‘Gharib’ in both years, but the highest score of leaf rolling index (9 was observed in ‘Gharib’ and ‘Khazar’. The present findings showed that drought stress had harmful effects in all examined genotypes and the impact in susceptible genotypes (‘Gharib’ and ‘Khazar’ was more than ‘IR83750’ and ‘Sepidrood’. Application of growth regulators (IAA and Kin improved conditions for the growth of all genotypes. Therefore, using the tolerant genotypes along with growth regulators can improve the rice growth traits.

  14. Physiological and biochemical characterization of the assai palm (Euterpe oleracea Mart. during seed germination and seedling growth under aerobic and anaerobic conditions

    Directory of Open Access Journals (Sweden)

    José Francisco de Carvalho Gonçalves

    2010-12-01

    Full Text Available Physiological and biochemical aspects of assai palm during seed germination and early seedling growth were investigated. Seeds collected from plants growing in flooded and upland forests were used to determine the influence of normoxic (aerobic and anoxic (anaerobic conditions in germination and the initial and average time of development in the roots and shoots. After 75 days, seedlings germinated under normoxia were transferred to trays and submitted to flooding. Seed reserves (lipids, proteins, soluble sugars and starch were monitored for quiescent and germinated seeds maintained under normoxic and anoxic conditions, as well as after 5, 10 and 20 days of seedling growth. Alcohol dehydrogenase (ADH activity was quantified in roots and leaves of seedlings without or with flooding (partial and total. Seeds were not able to germinate under anoxia. Different strategies of storage mobilization of lipids, proteins, soluble sugars and starch were observed in seeds of each environment. ADH activity was induced by anoxia, with the highest level observed in the leaves. This study showed that, under normoxic conditions, the best developmental performance of assai palm seeds, from flooded or upland forest areas, during germination was associated with primary metabolites mobilization and seedling flooding tolerance with increased ADH activity. We conclude that the assai palm is well adapted to the anoxic conditions provoked by flooding.

  15. Nasal Physiology

    Science.gov (United States)

    ... Anatomy Virtual Anatomy Disclosure Statement Printer Friendly Nasal Physiology Jeremiah A. Alt, MD, PhD Noam Cohen, MD, ... control the inflammation. CONCLUSION An understanding of the physiology of the nose is critical to understand nasal ...

  16. Effects of ambient solar UV radiation on grapevine leaf physiology and berry phenolic composition along one entire season under Mediterranean field conditions.

    Science.gov (United States)

    Del-Castillo-Alonso, María-Ángeles; Diago, María P; Tomás-Las-Heras, Rafael; Monforte, Laura; Soriano, Gonzalo; Martínez-Abaigar, Javier; Núñez-Olivera, Encarnación

    2016-12-01

    In the present study we assessed the effects of ambient solar UV exclusion on leaf physiology, and leaf and berry skin phenolic composition, of a major grapevine cultivar (Tempranillo) grown under typically Mediterranean field conditions over an entire season. In general, the effects of time were stronger than those of UV radiation. Ambient UV caused a little stressing effect (eustress) on leaf physiology, with decreasing net photosynthesis rates and stomatal conductances. However, it was not accompanied by alterations in F v /F m or photosynthetic pigments, and was partially counterbalanced by the UV-induced accumulation of protective flavonols. Consequently, Tempranillo leaves are notably adapted to current UV levels. The responses of berry skin phenolic compounds were diverse, moderate, and mostly transitory. At harvest, the clearest response in UV-exposed berries was again flavonol accumulation, together with a decrease in the flavonol hydroxylation level. Contrarily, responses of anthocyanins, flavanols, stilbenes and hydroxycinnamic derivatives were much more subtle or nonexistent. Kaempferols were the only compounds whose leaf and berry skin contents were correlated, which suggests a mostly different regulation of phenolic metabolism for each organ. Interestingly, the dose of biologically effective UV radiation (UV BE ) was correlated with the leaf and berry skin contents of quercetins and kaempferols; relationships were linear except for the exponential relationship between UV BE dose and berry skin kaempferols. This opens management possibilities to modify kaempferol and quercetin contents in grapevine through UV manipulation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Variation Analysis of Physiological Traits in Betula platyphylla Overexpressing TaLEA-ThbZIP Gene under Salt Stress.

    Directory of Open Access Journals (Sweden)

    Xiyang Zhao

    Full Text Available The aim of this study was to determine whether transgenic birch (Betula platyphylla ectopic overexpressing a late embryogenesis abundant (LEA gene and a basic leucine zipper (bZIP gene from the salt-tolerant genus Tamarix (salt cedar show increased tolerance to salt (NaCl stress. Co-transfer of TaLEA and ThbZIP in birch under the control of two independent CaMV 35S promoters significantly enhanced salt stress. PCR and northern blot analyses indicated that the two genes were ectopically overexpressed in several dual-gene transgenic birch lines. We compared the effects of salt stress among three transgenic birch lines (L-4, L-5, and L-8 and wild type (WT. In all lines, the net photosynthesis values were higher before salt stress treatment than afterwards. After the salt stress treatment, the transgenic lines L-4 and L-8 showed higher values for photosynthetic traits, chlorophyll fluorescence, peroxidase and superoxide dismutase activities, and lower malondialdehyde and Na+ contents, compared with those in WT and L-5. These different responses to salt stress suggested that the transcriptional level of the TaLEA and ThbZIP genes differed among the transgenic lines, resulting in a variety of genetic and phenotypic effects. The results of this research can provide a theoretical basis for the genetic engineering of salt-tolerant trees.

  18. Mechanism underlying the suppressor activity of retinoic acid on IL4-induced IgE synthesis and its physiological implication.

    Science.gov (United States)

    Seo, Goo-Young; Lee, Jeong-Min; Jang, Young-Saeng; Kang, Seung Goo; Yoon, Sung-Il; Ko, Hyun-Jeong; Lee, Geun-Shik; Park, Seok-Rae; Nagler, Cathryn R; Kim, Pyeung-Hyeun

    2017-12-01

    The present study extends an earlier report that retinoic acid (RA) down-regulates IgE Ab synthesis in vitro. Here, we show the suppressive activity of RA on IgE production in vivo and its underlying mechanisms. We found that RA down-regulated IgE class switching recombination (CSR) mainly through RA receptor α (RARα). Additionally, RA inhibited histone acetylation of germ-line ε (GL ε) promoter, leading to suppression of IgE CSR. Consistently, serum IgE levels were substantially elevated in vitamin A-deficient (VAD) mice and this was more dramatic in VAD-lecithin:retinol acyltransferase deficient (LRAT -/- ) mice. Further, serum mouse mast cell protease-1 (mMCP-1) level was elevated while frequency of intestinal regulatory T cells (Tregs) were diminished in VAD LRAT -/- mice, reflecting that deprivation of RA leads to allergic immune response. Taken together, our results reveal that RA has an IgE-repressive activity in vivo, which may ameliorate IgE-mediated allergic disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Physiological ecology of larval muskellunge and norlunge: temperature tolerance and growth rates under hatchery conditions. [Esox masquinongy, E. lucius

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, J.D.

    1976-01-01

    Critical Thermal Maxima (CTM) and growth rates of larval muskellunge (Esox masquinongy) and norlunge (E. masquinongy female x E. lucius male) were determined under hatchery conditions. Two groups of fish were maintained at ambient water temperatures with natural photoperiod. Weekly water samples were collected to monitor the troughs. Parameters measured were dissolved oxygen, pH, and ammonia which were within normal limits. Norlunge had higher temperature tolerance and developed faster than muskellunge. CTM of larval norlunge (30.9/sup 0/ to 36.0/sup 0/C, anti X = 34.0/sup 0/C) were significantly different (P< 0.01) from those of muskellunge (29.9/sup 0/ to 35.6/sup 0/C, anti X = 32.8/sup 0/C). Both species exhibited a sharp decrease in CTM during swim-up, followed by a slow recovery period indicated by a general increase in CTM values. Both species steadily increased in length during development. Weight remained stable through swim-up, decreased with absorption of the yolk sac and then increased as the fry began to feed. The results obtained in this study indicate that both age and past thermal history had a significant effect on the temperature tolerance of muskellunge and norlunge fry.

  20. Effect of Zeolite and Nitrogen Fertilizer Application under Water Deficit Stress Conditions on Agronomical and Physiological Traits of Rapeseed

    Directory of Open Access Journals (Sweden)

    A. Ghiasvand Ghiasi

    2014-08-01

    Full Text Available In order to evaluation of zeolite and nitrogen fertilizer application effect on agronomic and physilogical traits of rapeseed (cv RGS003 under water deficit stress conditions, an experiment was conducted in factorial based on randomized complete block design with three replications during 2010 in Qazvin region, Iran. In the where, the two levels of irrigation factor as the normal irrigation (irrigation after 80 mm evaporation from class A pan as control and irrigation cease from stem elongation stage till end of growth, nitrogen factor was at three levels (0, 75 and 150 kg.ha-1 and zeolite factor (0 and 10tons per hectare were studied. Results showed that drought stress decreased evaluated traits such as silique per plant (41%, grain per silique (26%, 1000 seed weight (33%, grain yield (52.5%, oil percent (14%, RWC (31.5% and chlorophyll content (35%. Non-application of nitrogen had adverse effects on total traits and reduced them. However, zeolite application at water deficit stress conditions had positive and significant effect on total traits except of oil percent and chlorophyll content, specially improved grain yield and oil yield. Based on the results of this experiment, application of zeolite (10ton/ha-1 through storage and maintenance of water and nutrients, reduced the intensity and harmful effects of stress in plants and enhances crop yield.

  1. Mashing of Rice with Barley Malt Under Nonconventional Process Conditions for Use in Food Processes

    DEFF Research Database (Denmark)

    Moe, T.; Adler-Nissen, Jens

    1994-01-01

    Non-conventional mashing conditions are relevant in the development of a lactic acid-fermented soymilk beverage where mashed rice is the source of carbohydrates for the fermentation and sweetness of the beverage. Advantages in the process layout could be achieved by mashing at higher pH and lower...... conditions when a mashing step is integrated in other food processes....

  2. Physiology, Fe(II oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions

    Directory of Open Access Journals (Sweden)

    Elizabeth D. Swanner

    2015-10-01

    Full Text Available Evidence for Fe(II oxidation and deposition of Fe(III-bearing minerals from anoxic or redox-stratified Precambrian oceans has received support from decades of sedimentological and geochemical investigation of Banded Iron Formations (BIF. While the exact mechanisms of Fe(II oxidation remains equivocal, reaction with O2 in the marine water column, produced by cyanobacteria or early oxygenic phototrophs, was likely. In order to understand the role of cyanobacteria in the deposition of Fe(III minerals to BIF, we must first know how planktonic marine cyanobacteria respond to ferruginous (anoxic and Fe(II-rich waters in terms of growth, Fe uptake and homeostasis, and Fe mineral formation. We therefore grew the common marine cyanobacterium Synechococcus PCC 7002 in closed bottles that began anoxic, and contained Fe(II concentrations that span the range of possible concentrations in Precambrian seawater. These results, along with cell suspension experiments, indicate that Fe(II is likely oxidized by this strain via chemical oxidation with oxygen produced during photosynthesis, and not via any direct enzymatic or photosynthetic pathway. Imaging of the cell-mineral aggregates with scanning electron microscopy (SEM and confocal laser scanning microscopy (CLSM are consistent with extracellular precipitation of Fe(III (oxyhydroxide minerals, but that >10% of Fe(III sorbs to cell surfaces rather than precipitating. Proteomic experiments support the role of reactive oxygen species (ROS in Fe(II toxicity to Synechococcus PCC 7002. The proteome expressed under low Fe conditions included multiple siderophore biosynthesis and siderophore and Fe transporter proteins, but most siderophores are not expressed during growth with Fe(II. These results provide a mechanistic and quantitative framework for evaluating the geochemical consequences of perhaps life’s greatest metabolic innovation, i.e. the evolution and activity of oxygenic photosynthesis, in ferruginous

  3. Tissue-engineered vessel strengthens quickly under physiological deformation: application of a new perfusion bioreactor with machine vision.

    Science.gov (United States)

    Xu, Jie; Ge, Haiyan; Zhou, Xiaolin; Yang, Daping; Guo, Tiefang; He, Jian; Li, Qing; Hao, Zhenhong

    2005-01-01

    In order to develop a patent tissue-engineered blood vessel that grossly resembles native tissue, required culture times in most studies exceed 8 weeks. For the sake of shortening the maturation period of the constructs, we have used deformation as the basic index for mechanical environment control. A new bioreactor with a machine vision identifier was developed to accurately control the deformation of the construct during the perfusion process. Two groups of seeded constructs (n = 4 per group) were investigated in this study, with one group stimulated by a cyclic deformation of 10% and the other by a pulsatile pressure that gradually increased to 120 mm Hg (the control group). After 21 days of culture, the mechanical properties of the constructs were examined. The average burst strength and suture retention strength in the two groups were significantly different (t test, p < 0.05). For the experimental group, the average burst strength and suture retention strength were higher than those of the control group, by 31.6 and 23.4%, respectively. Specifically, the average burst strength of the constructs reached 1,402 mm Hg (close to that of the native vessel, i.e. 1,680 mm Hg) within a relatively short period of 21 days. In conclusion, deformation is an observable, controllable and very valuable index for mechanical environment control in vascular tissue engineering. It makes the control of mechanical stimuli more essential and experiments more comparable.

  4. Association between physical activity levels and physiological factors underlying mobility in young, middle-aged and older individuals living in a city district.

    Directory of Open Access Journals (Sweden)

    Luca Laudani

    Full Text Available Maintaining adequate levels of physical activity is known to preserve health status and functional independence as individuals grow older. However, the relationship between determinants of physical activity (volume and intensity and physiological factors underlying mobility (cardio-respiratory fitness, neuromuscular function and functional abilities is still unclear. The aim of this study was to investigate the association between objectively quantified physical activity and a spectrum of physiological factors underlying mobility in young, middle-aged and older individuals living in a city district. Experiments were carried out on 24 young (28 ± 2 years, 24 middle-aged (48 ± 2 years and 24 older (70 ± 3 years gender-matched volunteers. Physical activity was monitored by a wearable activity monitor to quantify volume and intensity of overall physical activity and selected habitual activities over 24 hours. Ventilatory threshold was assessed during an incremental cycling test. Torque, muscle fiber conduction velocity and agonist-antagonist coactivation were measured during maximal voluntary contraction of knee extensors and flexors. Ground reaction forces were measured during sit-to-stand and counter-movement jump. K-means cluster analysis was used to classify the participants' physical activity levels based on parameters of volume and intensity. Two clusters of physical activity volume (i.e., high and low volume and three clusters of physical activity intensity (i.e. high, medium and low intensity were identified in all participants. Cardio-respiratory fitness was associated with volume of overall physical activity as well as lying, sitting, standing, walking and stair climbing. On the other hand, neuromuscular function and functional abilities showed a significant association with intensity of overall physical activity as well as postural transition, walking and stair climbing. As a practical application, the relative role played by volume

  5. Crystal structure of Bacillus fastidious uricase reveals an unexpected folding of the C-terminus residues crucial for thermostability under physiological conditions.

    Science.gov (United States)

    Feng, Juan; Wang, Lu; Liu, Hongbo; Yang, Xiaolan; Liu, Lin; Xie, Yanling; Liu, Miaomiao; Zhao, Yunsheng; Li, Xiang; Wang, Deqiang; Zhan, Chang-Guo; Liao, Fei

    2015-10-01

    Bacillus fastidious uricase (BF uricase) containing 322 amino acid residues exhibited high stability under physiological conditions. Its crystal structure was solved to 1.4-Å resolution, showing homotetramer containing two homodimers. After the intersubunit antiparallel β-sheet in its homodimer, each subunit had a total of 18 C-terminus residues forming an α-helix (Q305-A313) and random coil (S314-L322) on surface to bury other two α-helices (I227-T238 and I244-R258). In comparison, reported crystal structures of Arthrobacter globiformis and Aspergillus flavus uricases had atomic coordinates of only some C-terminus residues, while the crystal structures of all the other uricases accessible before September 2014 missed atomic coordinates of all their C-terminus residues, after the intersubunit antiparallel β-sheets. In each homodimer of BF uricase, H-bonds were found between E311 and Y249 and between Y319 and D257; electrostatic interaction networks were found to surround D307 plus R310 and intersubunit R3, K312 plus D257, E318 plus K242, and L322 plus R258. Amino acid mutations that disrupted those interactions when R3 and D307 were reserved caused moderate decreases of activity at pH 9.2 while negligible decreases of activity at pH 7.4, but destroyed stability at pH 7.4 while slightly decreased stability at pH 9.2. Such structural information guided the fusion of 6His-tag to the C-terminus of the mutant L322D with SNSNSN as a linker to reserve the activity and stability. Hence, the folding of the C-terminus residues is crucial for thermal stability of BF uricase under physiological conditions; these new structural insights are valuable for molecular engineering of uricases.

  6. Heterogeneity of equilibrium molten globule state of cytochrome c induced by weak salt denaturants under physiological condition.

    Directory of Open Access Journals (Sweden)

    Hamidur Rahaman

    Full Text Available While many proteins are recognized to undergo folding via intermediate(s, the heterogeneity of equilibrium folding intermediate(s along the folding pathway is less understood. In our present study, FTIR spectroscopy, far- and near-UV circular dichroism (CD, ANS and tryptophan fluorescence, near IR absorbance spectroscopy and dynamic light scattering (DLS were used to study the structural and thermodynamic characteristics of the native (N, denatured (D and intermediate state (X of goat cytochorme c (cyt-c induced by weak salt denaturants (LiBr, LiCl and LiClO4 at pH 6.0 and 25°C. The LiBr-induced denaturation of cyt-c measured by Soret absorption (Δε400 and CD ([θ]409, is a three-step process, N ↔ X ↔ D. It is observed that the X state obtained along the denaturation pathway of cyt-c possesses common structural and thermodynamic characteristics of the molten globule (MG state. The MG state of cyt-c induced by LiBr is compared for its structural and thermodynamic parameters with those found in other solvent conditions such as LiCl, LiClO4 and acidic pH. Our observations suggest: (1 that the LiBr-induced MG state of cyt-c retains the native Met80-Fe(III axial bond and Trp59-propionate interactions; (2 that LiBr-induced MG state of cyt-c is more compact retaining the hydrophobic interactions in comparison to the MG states induced by LiCl, LiClO4 and 0.5 M NaCl at pH 2.0; and (3 that there exists heterogeneity of equilibrium intermediates along the unfolding pathway of cyt-c as highly ordered (X1, classical (X2 and disordered (X3, i.e., D ↔ X3 ↔ X2 ↔ X1 ↔ N.

  7. A regime map for secondary flow structures under physiological and multi-harmonic inflow through a bent tube model for curved arteries

    Science.gov (United States)

    Callahan, Shannon M.; Caldwell, Kirin; Bulusu, Kartik V.; Plesniak, Michael W.

    2012-11-01

    Secondary flow structures are known to affect wall shear stress, which is closely related to atherogenesis and drug particle deposition. A regime map provides a framework to examine phase-wise variations in secondary flow structures under physiological and multi-harmonic inflow waveforms under conditions of a fixed Womersley number (4.2) and curvature ratio (1/7). Experimental PIV data were acquired at the 90-degree location in a 180-degree curved test section of a bent tube model for curved arteries using a blood analog working fluid. Coherent structure detection was performed using a continuous wavelet transform algorithm (PIVlet 1.2) and further analysis was carried out by grouping similar secondary flow structures at a fixed secondary Reynolds numbers. Phase-locked, planar vorticity fields over one period of inflow waveform revealed size, structure and strength similarities in secondary flow morphologies during the acceleration and deceleration phases. The utility of the new regime map lies in the a priori identification of pulsatile secondary flow structures, eliminating the need for exhaustive experimentation or computing, requiring only flow rate measurements that are easily acquired under clinical conditions. Supported by the National Science Foundation, Grant No. CBET-0828903 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  8. Assessment of filtration efficiency and physiological responses of selected plant species to indoor air pollutants (toluene and 2-ethylhexanol) under chamber conditions.

    Science.gov (United States)

    Hörmann, Vanessa; Brenske, Klaus-Reinhard; Ulrichs, Christian

    2018-01-01

    Three common plant species (Dieffenbachia maculata, Spathiphyllum wallisii, and Asparagus densiflorus) were tested against their capacity to remove the air pollutants toluene (20.0 mg m -3 ) and 2-ethylhexanol (14.6 mg m -3 ) under light or under dark in chamber experiments of 48-h duration. Results revealed only limited pollutant filtration capabilities and indicate that aerial plant parts of the tested species are only of limited value for indoor air quality improvement. The removal rate constant ranged for toluene from 3.4 to 5.7 L h -1  m -2 leaf area with no significant differences between plant species or light conditions (light/dark). The values for 2-ethylhexanol were somewhat lower, fluctuating around 2 L h -1  m -2 leaf area for all plant species tested, whereas differences between light and dark were observed for two of the three species. In addition to pollutant removal, CO 2 fixation/respiration and transpiration as well as quantum yield were evaluated. These physiological characteristics seem to have no major impact on the VOC removal rate constant. Exposure to toluene or 2-ethylhexanol revealed no or only minor effects on D. maculata and S. wallisii. In contrast, a decrease in quantum yield and CO 2 fixation was observed for A. densiflorus when exposed to 2-ethylhexanol or toluene under light, indicating phytotoxic effects in this species.

  9. Studying multisensory processing and its role in the representation of space through pathological and physiological crossmodal extinction

    Directory of Open Access Journals (Sweden)

    Stéphane eJacobs

    2011-05-01

    Full Text Available The study of crossmodal extinction has brought a considerable contribution to our understanding of how the integration of stimuli perceived in multiple sensory modalities is used by the nervous system to build coherent representations of the space that directly surrounds us. Indeed, by revealing interferences between stimuli in a disturbed system, extinction provides an invaluable opportunity to investigate the interactions that normally exist between those stimuli in an intact system. Here, we first review studies on pathological crossmodal extinction, from the original demonstration of its existence, to its role in the exploration of the multisensory neural representation of space and the current theoretical accounts proposed to explain the mechanisms involved in extinction and multisensory competition. Then, in the second part of this paper, we report recent findings showing that physiological multisensory competition phenomena resembling clinical crossmodal extinction exist in the healthy brain. We propose that the development of a physiological model of sensory competition is fundamental to deepen our understanding of the cerebral mechanisms of multisensory perception and integration. In addition, a similar approach to develop a model of physiological sensory competition in nonhuman primates should allow combining functional neuroimaging with more invasive techniques, such as transient focal lesions, in order to bridge the gap between works done in the two species and at different levels of analysis.

  10. Respostas fisiológicas de folhas de couve minimamente processadas Physiological response of kale leaves minimally processed

    Directory of Open Access Journals (Sweden)

    Marcelo Augusto G. Carnelossi

    2005-06-01

    closed. The packs were stored during 24 hours under temperatures of 1; 5; 10 and 25ºC. The respiratory rate and the ethylene production increased immediately after the detachment of the leaves from the mother plant. Cutting increased the respiratory rate in approximately two-folds. Increasing of the temperature affected significantly (P<0,05% the respiratory rate and the production of ethylene. Fast cooling reduced the metabolism, but did not result in greater storage time. The low temperature during sanitization is important for the conservation of the minimally processed kale. The harvest time influenced significantly (P<0,05% the respiratory rate and PPO activity of the minimally processed kale, but did not influence the storage time.

  11. Effects of planting date and corm size on flower yield and physiological traits of saffron (Crocus sativus L. under Varamin plain climatic conditions

    Directory of Open Access Journals (Sweden)

    Fatemeh Ghobadi

    2015-01-01

    Full Text Available In order to evaluate the effect of different planting dates and the corm size on yield and some physiological characteristics of saffron, an experiment was conducted as factorial in a randomized complete block design with three replications at the Research Farm of College of Abouraihan, University of Tehran, is located in Varamin dry plain during growing season 2013-2014. Four planting dates, 10 June, 7 and 27 September and 12 October and two corm sizes 5-9 g and 10-14 g were considered as treatments. Evaluated physiological traits include such as proline and protein content in leaves and yield traits, include number of flowers and dry weight of stigma were measured and were examined in a square meter and starting date of flowering were recorded. The results of this research showed that cultivation of large saffron corms (10-14 g on planting date of 10 June, had Maximum yield, by production 62.7 number of flower and 0.299 gram dry weight of stigma in a square meter. Leaf proline concentration of small saffron corms (5-9 g on planting date of 12 October and leaf protein concentration of small saffron corms (5-9 g on planting date of 10 June, were higher than the other planting dates. Increasing proline concentration increased plant resistance under drought and cold in corms planting on 12 October, particularly small corms. In general, these results indicate that flower yield in first year is more influenced by corm size and planting of large corms (10-14 g on 10 June will have a suitable production.

  12. Residual Effect of Chemical and Animal Fertilizers and Compost on Yield, YieldComponents, Physiological Characteristics and Essential Oil Content of Matricaria chamomilla L. under Drought Stress conditions

    Directory of Open Access Journals (Sweden)

    a Ahmadian

    2011-02-01

    Full Text Available Abstract The residual effect of inorganic and organic fertilizers on growth and yield of plants is one of the important problems in nutrition. This study was conducted to determine the residual effect of different fertilizers on yield, yield components, physiological parameters and essential oil percentage of Matricaria chamomilla under drought stress. A split plot arrangement based on randomized completely block design (RCBD with three replication was conducted in 2009, at the University of Zabol. Treatments included W1 (non stress, W2 (75% FC and W3 (50% FC as main plot and three types of residual’s fertilizers: F1 (non fertilizer, F2 (chemical fertilizer, F3 (manure fertilizer and F4 (compost as sub plot. Results showed that water stress at W3 treatment reduced dry flower yield. Low water stress increased essential oil percentage and the highest oil was obtained in W2. In this experiment, free proline and total soluble carbohydrate concentration were increased under water stress. The residual’s manure and compost enhanced flower yield, percentage and yield of essential oil of chamomile at the second year. At a glance, animal manure application and light water stress (75% FC was recommended to obtain best quantitative and qualitative yield. Keywords: Water Stress, Fertilizer, Carbohydrate, Proline, Chamomile

  13. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti.

    Science.gov (United States)

    Draghi, W O; Del Papa, M F; Hellweg, C; Watt, S A; Watt, T F; Barsch, A; Lozano, M J; Lagares, A; Salas, M E; López, J L; Albicoro, F J; Nilsson, J F; Torres Tejerizo, G A; Luna, M F; Pistorio, M; Boiardi, J L; Pühler, A; Weidner, S; Niehaus, K; Lagares, A

    2016-07-11

    Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0-6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia.

  14. [Physiological characteristics of Pinus densiflora var. zhangwuensis and Pinus sylvestris var. mongolica seedlings on sandy lands under salt-alkali stresses].

    Science.gov (United States)

    Meng, Peng; Li, Yu-Ling; Zhang, Bai-xi

    2013-02-01

    For the popularization of Pinus densiflora var. zhangwuensis, a new afforestation tree species on the desertified and salinized-alkalized lands in Northern China, and to evaluate the salinity-alkalinity tolerance of the tree species and to better understand the tolerance mechanisms, a pot experiment with 4-year old P. densiflora var. zhangwuensis and P. sylvestris var. mongolica was conducted to study their seedlings growth and physiological and biochemical indices under the effects of three types salt (NaCl, Na2CO3, and NaHCO3 ) stresses and of alkali (NaOH) stress. Under the salt-alkali stresses, the injury level of P. densiflora var. zhangwuensis was lower, and the root tolerance index was higher. The leaf catalase (CAT) activity increased significantly by 22. 6 times at the most, as compared with the control; the leaf malondialdehyde (MDA) content had no significant increase; the leaf chlorophyll (Chl) content had a smaller decrement; and the leaf water content (LWC) increased slightly. P. sylvestris var. mongolica responded differently to the salt-alkali stresses. Its leaf CAT activity had less change, MDA content increased significantly, Chl content had significant decrease, and LWC decreased slightly. It was suggested that P. densi-flora var. zhangwuensis had a greater salinity-alkalinity tolerance than P. sylvestris var. mongolica. The higher iron concentration in P. densiflora var. zhangwuensis needles enhanced the CAT activity and Chl content, whereas the higher concentrations of zinc and copper were associated with the stronger salinity-alkalinity tolerance.

  15. In-situ determination of the mechanical properties of gliding or non-motile bacteria by atomic force microscopy under physiological conditions without immobilization.

    Directory of Open Access Journals (Sweden)

    Samia Dhahri

    Full Text Available We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions.

  16. Synthesis of Optimal Processing Pathway for Microalgae-based Biorefinery under Uncertainty

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2015-01-01

    MINLP) problem is formulated for determining the optimal biorefinery structure under given parameter uncertainties modelled as sampled scenarios. The solution to the sMINLP problem determines the optimal decisions with respect to processing technologies, material flows, and product portfolio in the presence...... decision making, we propose a systematic framework for the synthesis and optimal design of microalgae-based processing network under uncertainty. By incorporating major uncertainties into the biorefinery superstructure model we developed previously, a stochastic mixed integer nonlinear programming (s...

  17. Exploring the Use of Design of Experiments in Industrial Processes Operating Under Closed-Loop Control

    DEFF Research Database (Denmark)

    Capaci, Francesca; Kulahci, Murat; Vanhatalo, Erik

    2017-01-01

    Industrial manufacturing processes often operate under closed-loop control, where automation aims to keep important process variables at their set-points. In process industries such as pulp, paper, chemical and steel plants, it is often hard to find production processes operating in open loop....... Instead, closed-loop control systems will actively attempt to minimize the impact of process disturbances. However, we argue that an implicit assumption in most experimental investigations is that the studied system is open loop, allowing the experimental factors to freely affect the important system...... responses. This scenario is typically not found in process industries. The purpose of this article is therefore to explore issues of experimental design and analysis in processes operating under closed-loop control and to illustrate how Design of Experiments can help in improving and optimizing...

  18. Mashing of Rice with Barley Malt Under Nonconventional Process Conditions for Use in Food Processes

    DEFF Research Database (Denmark)

    Moe, T.; Adler-Nissen, Jens

    1994-01-01

    Non-conventional mashing conditions are relevant in the development of a lactic acid-fermented soymilk beverage where mashed rice is the source of carbohydrates for the fermentation and sweetness of the beverage. Advantages in the process layout could be achieved by mashing at higher pH and lower...... at 50 degrees C and 62 degrees C was investigated. Regression equations have been established for predicting yields of soluble protein, low molecular weight sugars and total fermentability as functions of pH and malt concentration. The results showed that the maltose yield was constant while glucose......, maltotriose and total fermentable sugar yields decreased slightly with increasing pH and decreasing malt concentration. Prolonged mash holding times at 50 degrees C and 62 degrees C gave minor increases in protein yields only. It is concluded that it is quite acceptable to use nonconventional mashing...

  19. The Effect of Paclobutrazol on Morphological, Physiological and Gas Exchange Charactersitics of Pear (Pyrus communus cv. Shah Mive under Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Taimoor Javadi

    2017-02-01

    Full Text Available Introduction: Drought is a major environmental stress that affects agricultural systems and induces several physiological, biochemical and molecular responses in plants. Drought inhibits the plant photosynthesis causing changes of chlorophyll contents, damage the photosynthetic apparatus and decreases plant growth and development. Generally, the environmental stresses, especially drought stress, give rise to accumulation of soluble carbohydrates, proline and free amino acids as well as antioxidant compounds. Triazoles are the active ingredient of fungicides (propoconazole, penconazole, epixiconazole and some growth regulators. The fungicidal properties of triazoles depend on inhibition of the C4-demethylase reactions in sterol biosynthesis of fungi. However, triazole-based fungicides induce a suite of morphological and physiological adaptations and allow plants to tolerate a broad range of environmental stresses including drought, herbicide treatment and elevated temperatures. The growth inhibitor paclobutrazol (PBZ is a triazole and has been reported to protect plants against several environmental stresses, i.e. drought, low and high temperature. The purpose of this study was to evaluate the effect of palobutrazol on vegetative, physiological and gas exchange characteristics of pear (Pyrus communis cv. ShahMive under different irrigation regimes. Materials and Methods: In March, 2011, 1-year-old pear (Pyrus communis cv. ShahMive saplings 80±2 cm high were planted in 20-l plastic pots filled with loamy sand soil (8% clay, 15% silt, 77% Sand in experimental greenhouse. Paclobutrazol was added to soil at the same time with sapling cultivation at rates of 0, 0.15 and 0.3 g active ingredient per pot. PBZ was diluted in 500 ml distilled water and solution applied to the soil at the base of the saplings on pots. The control saplings were treated with distilled water of equal volume. Vegetative (stem growth, stem diameter, leaf number, shoot dry

  20. Cell volume regulation: physiology and pathophysiology

    DEFF Research Database (Denmark)

    Lambert, I H; Hoffmann, E K; Pedersen, Stine Helene Falsig

    2008-01-01

    not only under physiological conditions, e.g. following accumulation of nutrients, during epithelial absorption/secretion processes, following hormonal/autocrine stimulation, and during induction of apoptosis, but also under pathophysiological conditions, e.g. hypoxia, ischaemia and hyponatremia....../hypernatremia. On the other hand, it has recently become clear that an increase or reduction in cell volume can also serve as a specific signal in the regulation of physiological processes such as transepithelial transport, cell migration, proliferation and death. Although the mechanisms by which cell volume perturbations...... are sensed are still far from clear, significant progress has been made with respect to the nature of the sensors, transducers and effectors that convert a change in cell volume into a physiological response. In the present review, we summarize recent major developments in the field, and emphasize...

  1. Kinetics and mechanism of the reaction of aminoguanidine with the alpha-oxoaldehydes glyoxal, methylglyoxal, and 3-deoxyglucosone under physiological conditions.

    Science.gov (United States)

    Thornalley, P J; Yurek-George, A; Argirov, O K

    2000-07-01

    Aminoguanidine (AG), a prototype agent for the preventive therapy of diabetic complications, reacts with the physiological alpha-oxoaldehydes glyoxal, methylglyoxal, and 3-deoxyglucosone (3-DG) to form 3-amino-1,2,4-triazine derivatives (T) and prevent glycation by these agents in vitro and in vivo. The reaction kinetics of these alpha-oxoaldehydes with AG under physiological conditions pH 7.4 and 37 degrees was investigated. The rate of reaction of AG with glyoxal was first order with respect to both reactants; the rate constant k(AG,G) was 0.892 +/- 0.037 M(-1) sec(-1). The kinetics of the reaction of AG with 3-DG were more complex: the rate equation was d[T](o)/dt (initial rate of T formation) = [3-DG](k(AG,3-DG)[AG] + k(3-DG)), where k(AG,3-DG) = (3. 23 +/- 0.25) x 10(-3) M(-1) sec(-1) and k(3-DG) = (1.73 +/- 0.08) x 10(-5) sec(-1). The kinetics of the reaction of AG with methylglyoxal were consistent with the reaction of both unhydrated (MG) and monohydrate (MG-H(2)O) forms. The rate equation was d[T](o)/dt = ¿k(1)k(AG,MG)/(k(-1) + k(AG,MG)[AG]) + k(AG, MG-H(2)O)¿[MG-H(2)O][AG], where the rate constant for the reaction of AG with MG, k(AG,MG), was 178 +/- 15 M(-1) sec(-1) and for the reaction of AG with MG-H(2)O, k(AG,MG-H(2)O), was 0.102 +/- 0.001 M(-1) sec(-1); k(1) and k(-1) are the forward and reverse rate constants for methylglyoxal dehydration MG-H(2)O right harpoon over left harpoon MG. The kinetics of these reactions were not influenced by ionic strength, but the reaction of AG with glyoxal and with methylglyoxal under MG-H(2)O dehydration rate-limited conditions increased with increasing phosphate buffer concentration. Kinetic modelling indicated that the rapid reaction of AG with the MG perturbed the MG/MG-H(2)O equilibrium, and the ratio of the isomeric triazine products varied with initial reactant concentration. AG is kinetically competent to scavenge the alpha-oxoaldehydes studied and decrease related advanced glycated endproduct (AGE

  2. Transcriptional and Physiological Characterizations of Escherichia coli MG1655 that have been grown under Low Shear Stress Environment for 1000 Generations

    Science.gov (United States)

    Karouia, Fathi; Tirumalai, Madhan R.; Nelman-Gonzalez, Mayra A.; Sams, Clarence F.; Ott, Mark C.; Pierson, Duane L.; Fofanov, Yuriy; Willson, Richard C.; Fox, George E.

    Human space travelers experience a unique environment that affects homeostasis and physio-logic adaptation. One of the important regulatory biology interactions affected by space flight is the alteration of the immune response. As such, the impairment of the immune system may lead to higher risk of bacterial and/or viral infection during human space flight missions. Mi-crobiological contaminants have been a source of concern over the years for NASA and there is evidence to suggest that microbes in space do not behave like they do on Earth. Previ-ous studies have examined the physiological response of bacteria when exposed to short-term microgravity either during spaceflight or in a Low Shear Modeled Microgravity (LSMMG) en-vironment. Exposure to these environments has been found to induce increased resistance to stresses and antibiotics, and in one case increase of virulence. As NASA increases the duration of space flight missions and is starting to envision human presence on the lunar surface and Mars, it becomes legitimate to question the long-term effects of microgravity on bacteria. The effect of long-term exposure to LSMMG on microbial gene expression and physiology in Escherichia coli (E. coli) is being examined using functional genomics, and molecular tech-niques. In previous E. coli short term studies, reproducible changes in transcription were seen but no direct responses to changes in the gravity vector were identified. Instead, absence of shear and a randomized gravity vector appeared to cause local extra-cellular environmental changes, which elicited cellular responses. In order to evaluate the long-term effects of micro-gravity on bacteria, E. coli was grown under simulated microgravity for 1000 generations and gene expression patterns and cellular physiology were analyzed in comparison with short-term exposure. The analysis revealed that the long-term response differed significantly from the short-term exposure and 357 genes were expressed

  3. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds.

    Science.gov (United States)

    Jaganathan, Ganesh K; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-03-13

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h -1 ) suffered significantly higher membrane damage at temperature between -20 °C and -10 °C than slow cooled (3 °Ch -1 ) seeds (P  0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to -20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes.

  4. Investigation of the physiological response to oxygen limited process conditions of Pichia pastoris Mut(+) strain using a two-compartment scale-down system.

    Science.gov (United States)

    Lorantfy, Bettina; Jazini, Mohammadhadi; Herwig, Christoph

    2013-09-01

    Inhomogeneities in production-scale bioreactors influence microbial growth and product quality due to insufficient mixing and mass transfer. For this reason, lots of efforts are being made to investigate the effects of gradients that impose stress in large-scale reactors in laboratory scale. We have implemented a scale-down model which allows separating a homogeneous part, a stirred tank reactor (STR), and a plug flow reactor (PFR) which mimics the inhomogeneous regimes of the large-scale fermenters. This scale-down model shows solutions to trigger oxygen limited conditions in the PFR part of the scale-down setup for physiological analysis. The goal of the study was to investigate the scale-up relevant physiological responses of Pichia pastoris strain to oxygen limited process conditions in the above mentioned two-compartment bioreactor setup. Experimental results with non-induced cultures show that the specific growth rate significantly decreased with increasing the exposure time to oxygen limitation. In parallel more by-products were produced. Examining physiological scalable key parameters, multivariate data analyses solely using on-line data revealed that different exposures to the oxygen limitation significantly affected the culture performance. This work with the small scale-downs setup reflects new approaches for a valuable process development tool for accelerating strain characterization or for verifying CFD simulations of large-scale bioreactors. As a novel methodological achievement, the combination of the two-compartment scale-down system with the proposed multivariate techniques of solely using on-line data is a valuable tool for recognition of stress effects on the culture performance for physiological bioprocess scale-up issues. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. A systematic framework for enterprise-wide optimization: Synthesis and design of processing network under uncertainty

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Sarup, Bent; Sin, Gürkan

    2013-01-01

    In this paper, a systematic framework for synthesis and design of processing networks under uncertaintyis presented. Through the framework, an enterprise-wide optimization problem is formulated and solvedunder uncertain conditions, to identify the network (composed of raw materials, process techn...

  6. From production-oriented farming towards multifunctional entrepreneurship : exploring the underlying learning process

    NARCIS (Netherlands)

    Seuneke, P.L.M.

    2014-01-01

      This thesis unravels the learning process underlying the switch from conventional production-oriented farming towards ‘multifunctional entrepreneurship’. In other words: the process by which former production-oriented farmers (men, women and their families) re-invent themselves

  7. The effects of early age thermal conditioning and vinegar supplementation of drinking water on physiological responses of female and male broiler chickens reared under summer Mediterranean temperatures

    Science.gov (United States)

    Berrama, Zahra; Temim, Soraya; Djellout, Baya; Souames, Samir; Moula, Nassim; Ain Baziz, Hassina

    2018-02-01

    The effects of early age thermal conditioning (ETC), vinegar supplementation (VS) of drinking water, broilers' gender, and their interactions on respiratory rate, body temperature, and blood parameters (biochemical, hematological, and thyroid hormones) of broiler chickens reared under high ambient temperatures were determined. A total of 1100 1-day-old chicks were divided into four treatments: the "control" which were non-conditioned and non-supplemented; "heat-conditioned" which were exposed to 38 ± 1 °C for 24 h at 5 days of age; "vinegar supplemented" which were given drinking water supplemented with 0.2% of commercial vinegar from 28 to 49 days of age; and "combined" which were both heat conditioned and vinegar supplemented. All groups were exposed to the natural fluctuations of summer ambient temperature (average diurnal ambient temperature of about 30 ± 1 °C and average relative humidity of 58 ± 5%). ETC and broiler gender did not affect the respiratory rate or body temperature of chronic heat-exposed chickens. VS changed the body temperature across time (d35, d42, d49) (linear and quadratic effects, P blood cell counts (P blood concentrations. A significant (P < 0.05) effect of ETC, gender, and ETC×gender on T3:T4 ratio was observed. Finally, some beneficial physiological responses induced by ETC and VS, separately or in association, on chronically heat-stressed chickens were observed. However, the expected cumulative positive responses when the two treatments were combined were not evident.

  8. Search for Fibrous Aggregates Potentially Useful in Regenerative Medicine Formed under Physiological Conditions by Self-Assembling Short Peptides Containing Two Identical Aromatic Amino Acid Residues

    Directory of Open Access Journals (Sweden)

    Justyna Fraczyk

    2018-03-01

    Full Text Available This study investigates the propensity of short peptides to self-organize and the influence of aggregates on cell cultures. The dipeptides were derived from both enantiomers of identical aromatic amino acids and tripeptides were prepared from two identical aromatic amino acids with one cysteine or methionine residue in the C-terminal, N-terminal, or central position. The formation or absence of fibrous structures under physiological conditions was established using Congo Red and Thioflavine T assays as well as by microscopic examination using normal and polarized light. The in vitro stability of the aggregates in buffered saline solution was assessed over 30 days. Materials with potential for use in regenerative medicine were selected based on the cytotoxicity of the peptides to the endothelial cell line EA.hy 926 and the wettability of the surfaces of the films, as well as using scanning electron microscopy. The criteria were fulfilled by H-dPhedPhe-OH, H-dCysdPhedPhe-OH, H-CysTyrTyr-OH, H-dPhedPhedCys-OH, H-TyrTyrMet-OH, and H–TyrMetTyr–OH. Our preliminary results suggest that the morphology and cell viability of L919 fibroblast cells do not depend on the stereochemistry of the self-organizing peptides.

  9. Phyto-management of Cr-contaminated soils by sunflower hybrids: physiological and biochemical response and metal extractability under Cr stress.

    Science.gov (United States)

    Farid, Mujahid; Ali, Shafaqat; Akram, Nudrat Aisha; Rizwan, Muhammad; Abbas, Farhat; Bukhari, Syed Asad Hussain; Saeed, Rashid

    2017-07-01

    Chromium (Cr) is a biologically non-essential, carcinogenic and toxic heavy metal. The cultivation of Cr-tolerant genotypes seems the most favorable and environment friendly strategy for rehabilitation and remediation of Cr-contaminated soils. To prove this hypothesis and identify the Cr tolerance, the present study was performed to assess the physiological and biochemical response of sunflower genotypes to Cr stress. The seeds of six sunflower hybrids, namely FH-425, FH-600, FH-612, FH-614, FH-619, and FH-620, were grown in spiked soil for 12 weeks under increasing concentrations of Cr (0, 5, 10, and 20 mg kg -1 ). A seed germination test was also run under different concentrations of Cr (0, 5, 10, 200 mM) in petri dishes. Plants were harvested after 12 weeks of germination. Different plant attributes such as growth; biomass; photosynthesis; gas exchange; activity of antioxidant enzymes, i.e., superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate (APX), and catalases (CAT); reactive oxygen species (ROS); lipid peroxidation; electrolyte leakage; and Cr concentration as well as accumulations in all plant parts were studied for the selection of the most Cr-tolerant genotype. Increasing concentration of Cr in soil triggered the reduction of all plant parameters in sunflower. Cr stress increased electrolyte leakage and production of reactive oxygen species which stimulated the activities of antioxidant enzymes and gas exchange attributes of sunflower. Chromium accumulation in the root and shoot increased gradually with increasing Cr treatments and caused reduction in overall plant growth. The accumulation of Cr was recorded in the order of FH-614 > FH-620 > FH-600 > FH-619 > FH-612 > FH-425. The differential uptake and accumulation of Cr by sunflower hybrids may be useful in selection and breeding for Cr-tolerant genotypes.

  10. Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation.

    Science.gov (United States)

    Pogrzeba, Marta; Rusinowski, Szymon; Sitko, Krzysztof; Krzyżak, Jacek; Skalska, Aleksandra; Małkowski, Eugeniusz; Ciszek, Dorota; Werle, Sebastian; McCalmont, Jon Paul; Mos, Michal; Kalaji, Hazem M

    2017-06-01

    Crop growth and development can be influenced by a range of parameters, soil health, cultivation and nutrient status all play a major role. Nutrient status of plants can be enhanced both through chemical fertiliser additions (e.g. N, P, K supplementation) or microbial fixation and mobilisation of naturally occurring nutrients. With current EU priorities discouraging the production of biomass on high quality soils there is a need to investigate the potential of more marginal soils to produce these feedstocks and the impacts of soil amendments on crop yields within them. This study investigated the potential for Miscanthus x giganteus to be grown in trace element (TE)-contaminated soils, ideally offering a mechanism to (phyto)manage these contaminated lands. Comprehensive surveys are needed to understand plant-soil interactions under these conditions. Here we studied the impacts of two fertiliser treatments on soil physico-chemical properties under Miscanthus x giganteus cultivated on Pb, Cd and Zn contaminated arable land. Results covered a range of parameters, including soil rhizosphere activity, arbuscular mycorrhization (AM), as well as plant physiological parameters associated with photosynthesis, TE leaf concentrations and growth performance. Fertilization increased growth and gas exchange capacity, enhanced rhizosphere microbial activity and increased Zn, Mg and N leaf concentration. Fertilization reduced root colonisation by AMF and caused higher chlorophyll concentration in plant leaves. Microbial inoculation seems to be a promising alternative for chemical fertilizers, especially due to an insignificant influence on the mobility of toxic trace elements (particularly Cd and Zn). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of silicon application on diurnal variations of physiological properties of rice leaves of plants at the heading stage under elevated UV-B radiation.

    Science.gov (United States)

    Lou, Yun-sheng; Wu, Lei; Lixuan, Ren; Meng, Yan; Shidi, Zhao; Huaiwei, Zhu; Yiwei, Zhang

    2016-02-01

    We investigated the effects of silicon (Si) application on diurnal variations of photosynthetic and transpiration physiological parameters in potted rice (Oryza sativa L. cv Nanjing 45) at the heading stage. The plants were subjected to two UV-B radiation levels, i.e., reference UV-B (A, ambient, 12.0 kJ m(-2) day(-1)) and elevated UV-B radiation (E, a 20% higher dose of UV-B than the reference, 14.4 kJ m(-2) day(-1)), and four Si application levels, i.e., Si0 (no silicon supplementation, 0 kg SiO2 ha(-1)), Si1 (sodium silicate, 100 kg SiO2 ha(-1)), Si2 (sodium silicate, 200 kg SiO2 ha(-1)), and Si3 (slag silicon fertilizer, 200 kg SiO2 ha(-1)). Compared with the reference, elevated UV-B radiation decreased the diurnal mean values of the net photosynthetic rate (Pn), intercellular carbon dioxide (CO2) concentration (Ci), transpiration rate (Tr), stomatal conductivity (Gs), and water use efficiency (WUE) by 11.3, 5.5, 10.4, 20.3, and 6.3%, respectively, in plants not supplemented with silicon (Si0), and decreased the above parameters by 3.8-5.5, 0.7-4.8, 4.0-8.7, 7.4-20.2, and 0.7-5.9%, respectively, in plants treated with silicon (Si1, Si2, and Si3), indicating that silicon application mitigates the negative effects of elevated UV-B radiation. Under elevated UV-B radiation, silicon application (Si1, Si2, and Si3) increased the diurnal mean values of Pn, Ci, Gs, and WUE by 16.9-28.0, 3.5-14.3, 16.8-38.7, and 29.0-51.2%, respectively, but decreased Tr by 1.9-10.8%, compared with plants not treated with silicon (E+Si0), indicating that silicon application mitigates the negative effects of elevated UV-B radiation by significantly increasing the P n, C i, G s, and WUE and decreasing the T r of rice. Evident differences existed in mitigating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among different silicon application treatments, exhibiting as Si3>Si2>Si1>Si0. In addition to recycling steel industrial wastes, the

  12. Effects of silicon application on diurnal variations of physiological properties of rice leaves of plants at the heading stage under elevated UV-B radiation

    Science.gov (United States)

    Lou, Yun-sheng; Wu, Lei; Lixuan, Ren; Meng, Yan; Shidi, Zhao; Huaiwei, Zhu; Yiwei, Zhang

    2016-02-01

    We investigated the effects of silicon (Si) application on diurnal variations of photosynthetic and transpiration physiological parameters in potted rice ( Oryza sativa L. cv Nanjing 45) at the heading stage. The plants were subjected to two UV-B radiation levels, i.e., reference UV-B (A, ambient, 12.0 kJ m-2 day-1) and elevated UV-B radiation (E, a 20 % higher dose of UV-B than the reference, 14.4 kJ m-2 day-1), and four Si application levels, i.e., Si0 (no silicon supplementation, 0 kg SiO2 ha-1), Si1 (sodium silicate, 100 kg SiO2 ha-1), Si2 (sodium silicate, 200 kg SiO2 ha-1), and Si3 (slag silicon fertilizer, 200 kg SiO2 ha-1). Compared with the reference, elevated UV-B radiation decreased the diurnal mean values of the net photosynthetic rate ( Pn), intercellular carbon dioxide (CO2) concentration ( Ci), transpiration rate ( Tr), stomatal conductivity ( Gs), and water use efficiency (WUE) by 11.3, 5.5, 10.4, 20.3, and 6.3 %, respectively, in plants not supplemented with silicon (Si0), and decreased the above parameters by 3.8-5.5, 0.7-4.8, 4.0-8.7, 7.4-20.2, and 0.7-5.9 %, respectively, in plants treated with silicon (Si1, Si2, and Si3), indicating that silicon application mitigates the negative effects of elevated UV-B radiation. Under elevated UV-B radiation, silicon application (Si1, Si2, and Si3) increased the diurnal mean values of Pn, Ci, Gs, and WUE by 16.9-28.0, 3.5-14.3, 16.8-38.7, and 29.0-51.2 %, respectively, but decreased Tr by 1.9-10.8 %, compared with plants not treated with silicon (E+Si0), indicating that silicon application mitigates the negative effects of elevated UV-B radiation by significantly increasing the P n, C i, G s, and WUE and decreasing the T r of rice. Evident differences existed in mitigating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among different silicon application treatments, exhibiting as Si3>Si2>Si1>Si0. In addition to recycling steel industrial wastes, the

  13. Net assimilation and photosynthate allocation of Populus clones grown under short-rotation intensive culture: Physiological and genetic responses regulating yield

    Energy Technology Data Exchange (ETDEWEB)

    Dickmann, D.I.; Pregitzer, K.S.; Nguyen, P.V. [Michigan State Univ., East Lansing, MI (United States)

    1996-08-01

    The overall objective of this project was to determine the differential responses of poplar clones from sections Tacamahaca and Aigeiros of the genus Populus to varying levels of applied water and nitrogen. Above- and below-ground phenology and morphology, photosynthate allocation, and physiological processes were examined. By manipulating the availability of soil resources, we have been able to separate inherent clonal differences from plastic responses, and to determine genotype-environment interactions. We also have been able to make some contrasts between trees grown from hardwood cuttings and coppice sprouts. Our overall hypothesis was that carbon allocation during growth is greatly influenced by interactions among moisture, nitrogen, and genotype, and that these interactions greatly influence yield in short-rotation plantations. As is true of any project, some of our original expectations were not realized, whereas other initially unforeseen results were obtained. The reduced funding from the Biofuels Feedstock Development Program (BFDP) during the last few years of the project slowed us down to some extent, so progress was not been as rapid as we might have hoped. The major problem associated with this funding shortfall was the inability to employ skilled and unskilled student labor. Nonetheless, we were able to accomplish most of our original goals. All of the principal investigators on this project feel that we have made progress in advancing the scientific underpinning of short-rotation woody biomass production.

  14. Quality assessment of baby food made of different pre-processed organic raw materials under industrial processing conditions.

    Science.gov (United States)

    Seidel, Kathrin; Kahl, Johannes; Paoletti, Flavio; Birlouez, Ines; Busscher, Nicolaas; Kretzschmar, Ursula; Särkkä-Tirkkonen, Marjo; Seljåsen, Randi; Sinesio, Fiorella; Torp, Torfinn; Baiamonte, Irene

    2015-02-01

    The market for processed food is rapidly growing. The industry needs methods for "processing with care" leading to high quality products in order to meet consumers' expectations. Processing influences the quality of the finished product through various factors. In carrot baby food, these are the raw material, the pre-processing and storage treatments as well as the processing conditions. In this study, a quality assessment was performed on baby food made from different pre-processed raw materials. The experiments were carried out under industrial conditions using fresh, frozen and stored organic carrots as raw material. Statistically significant differences were found for sensory attributes among the three autoclaved puree samples (e.g. overall odour F = 90.72, p processed from frozen carrots show increased moisture content and decrease of several chemical constituents. Biocrystallization identified changes between replications of the cooking. Pre-treatment of raw material has a significant influence on the final quality of the baby food.

  15. Assessing the most suitable floor system for growing-finishing piggery under tropical conditions using the analytic hierarchy process

    Directory of Open Access Journals (Sweden)

    Fabiana Ribeiro Caldara

    2014-03-01

    Full Text Available Studies were carried out worldwide for evaluating different types of floor systems for growing-finishing pigs, specifically for assessing their effectiveness