WorldWideScience

Sample records for underlying physics phenomena

  1. Self-organization phenomena in plasma physics

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Popescu, S.

    2001-01-01

    The self-assembling in nature and laboratory of structures in systems away from thermodynamic equilibrium is one of the problems that mostly fascinates the scientists working in all branches of science. In this context a substantial progress has been obtained by investigating the appearance of spatial and spatiotemporal patterns in plasma. These experiments revealed the presence of a scenario of self-organization able to suggest an answer to the central problem of the 'Science of Complexity', why matter transits spontaneously from a disordered into an ordered state? Based on this scenario of self-organization we present arguments proving the possibility to explain the challenging problems of nonequilibrium physics in general. These problems refer to: (i) genuine origin of phase transitions observed in gaseous conductors and semiconductors; (ii) the elucidation of the role played by self-organization in the simulation of oscillations; (iii) the physical basis of anomalous transport of matter and energy with special reference to the possibilities of improving the economical performance of fusion devices; (iv) the possibility to use self-confined gaseous space charged configurations as an alternative to the magnetically confined plasma used at present in fusion devices. In other branches of sciences, as for instance in Biology, the self-organization scenario reveals a new insight into a mechanism able to explain the appearance of the simplest possible space charge configuration able to evolve, under suitable conditions, into prebiotic structures. Referring to phenomena observed in nature, the same self-organization scenario suggests plausible answers to the appearance of ball lightening but also to the origin of the flickering phenomena observed in the light emission of the Sun and stars. For theory the described self-organization scenario offers a new physical basis for many problems of nonlinear science not solved yet and also a new model for the so-called 'self

  2. New phenomena in neutrino physics

    International Nuclear Information System (INIS)

    Kopp, Joachim

    2009-01-01

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  3. New phenomena in neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim

    2009-04-15

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  4. Fundamentals of Cryobiology Physical Phenomena and Mathematical Models

    CERN Document Server

    Zhmakin, Alexander I

    2009-01-01

    The book gives a summary of the state-of-the-art of cryobiology and its applications. The accent is on the underlying physical phenomena, which are common in such opposite applications as cryosurgery and cryoconservation, and the corresponding mathematical models, including numerical ones. The treatment of some more special issues is moved to the appendices. The glossary contains definitions and explanations of the major entities. All the topics considered are well referenced. The book is useful to both biologists and physicits of different level including practioners and graduate students.

  5. Ether and interpretation of some physical phenomena and concepts

    International Nuclear Information System (INIS)

    Rzayev, S.G.

    2008-01-01

    On the basis of the concept of existence of an ether representation about time, space, matters and physical field are profound and also the essence of such phenomena, as corpuscular - wave dualism, change of time, scale and mass at movement body's is opened. The opportunity of transition from probability-statistical interpretation of the quantum phenomena to Laplace's determinism is shown

  6. Physical phenomena in new organic conductors

    Energy Technology Data Exchange (ETDEWEB)

    Gor' kov, L.P.

    1984-11-01

    Recent theoretical and experimental results on new synthetic metals: Bechgaard's salts: are reviewed. Superconductivity has been observed in these organic compounds for the first time. Furthermore, these materials exhibit such a variety of new and unusual physical properties that research on them is opening up a new branch of solid state physics.

  7. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP)

  8. Elementary particle physics and high energy phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  9. Impact of measurable physical phenomena on contact thermal comfort

    Science.gov (United States)

    Fojtlín, Miloš; Pokorný, Jan; Fišer, Jan; Toma, Róbert; Tuhovčák, Ján

    Cabin HVAC (Heating Ventilation and Air-conditioning) systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  10. Impact of measurable physical phenomena on contact thermal comfort

    Directory of Open Access Journals (Sweden)

    Fojtlín Miloš

    2017-01-01

    Full Text Available Cabin HVAC (Heating Ventilation and Air-conditioning systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  11. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z 0 with the SLD detector; fixed-target K-decay experiments; the R ampersand D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs

  12. Flavour Physics and Implication for New Phenomena

    CERN Document Server

    Isidori, Gino

    2016-01-01

    Flavour physics represents one of the most interesting and, at the same time, less understood sector of the Standard Theory. On the one hand, the peculiar pattern of quark and lepton masses, and their mixing angles, may be the clue to some new dynamics occurring at high-energy scales. On the other hand, the strong suppression of flavour-changing neutral-current processes, predicted by the Standard Theory and confirmed by experiments, represents a serious challenge to extend the Theory. This article reviews both these aspects of flavour physics from a theoretical perspective.

  13. [Spin dependent phenomena in medium energy physics

    International Nuclear Information System (INIS)

    Souder, P.A.

    1992-11-01

    The Syracuse University Medium Energy Physics Group was actively engaged in several research projects. A laser was used to polarize muonic atoms with the goal of measuring fundamental spin-dependent parameters in the reaction μ - + 3 He → 3 H + ν. Time-averaged polarizations of 26.8±2.3% were achieved for the muon in muonic 3 He. The new approach uses atomic spin-dependent reactions between laser polarized Rb vapor and muonic helium. To exploit these high polarizations in a muon capture experiment an ion chamber which will detect the recoil tritons and also serve as a polarizing cell. Final data-taking will begin for an experiment to measure the spin-dependent structure functions of the neutron. A 288-element hodoscope system which features good timing and precise mechanical tolerances was constructed and evaluated

  14. Physically vapor deposited coatings on tools: performance and wear phenomena

    International Nuclear Information System (INIS)

    Koenig, W.; Fritsch, R.; Kammermeier, D.

    1991-01-01

    Coatings produced by physical vapor deposition (PVD) enhance the performance of tools for a broad variety of production processes. In addition to TiN, nowadays (Ti,Al)N and Ti(C,N) coated tools are available. This gives the opportunity to compare the performance of different coatings under identical machining conditions and to evaluate causes and phenomena of wear. TiN, (Ti,Al)N and Ti(C,N) coatings on high speed steel (HSS) show different performances in milling and turning of heat treated steel. The thermal and frictional properties of the coating materials affect the structure, the thickness and the flow of the chips, the contact area on the rake face and the tool life. Model tests show the influence of internal cooling and the thermal conductivity of coated HSS inserts. TiN and (Ti,Zr)N PVD coatings on cemented carbides were examined in interrupted turning and in milling of heat treated steel. Experimental results show a significant influence of typical time-temperature cycles of PVD and chemical vapor deposition (CVD) coating processes on the physical data and on the performance of the substrates. PVD coatings increase tool life, especially towards lower cutting speeds into ranges which cannot be applied with CVD coatings. The reason for this is the superior toughness of the PVD coated carbide. The combination of tough, micrograin carbide and PVD coating even enables broaching of case hardened sliding gears at a cutting speed of 66 m min -1 . (orig.)

  15. All basic condensed matter physics phenomena and notions mirror ...

    Indian Academy of Sciences (India)

    light harvesting in biological photosynthesis, of mesoscopic exciton condensation related phenomena at room temperature. Keywords. Condensed matter physics; magnetic crystals in biology; excitons and photosynthesis. PACS Nos 87.10. ..... Figure 1. Schematic diagram of the light harvesting complex containing LH1 and.

  16. Sixth Microgravity Fluid Physics and Transport Phenomena Conference Abstracts

    Science.gov (United States)

    Singh, Bhim (Compiler)

    2002-01-01

    The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This TM is a compilation of abstracts of the papers and the posters presented at the conference. Web-based proceedings, including the charts used by the presenters, will be posted on the web shortly after the conference.

  17. PREFACE: Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013)

    Science.gov (United States)

    Konopelchenko, B. G.; Landolfi, G.; Martina, L.; Vitolo, R.

    2014-03-01

    Modern theory of nonlinear integrable equations is nowdays an important and effective tool of study for numerous nonlinear phenomena in various branches of physics from hydrodynamics and optics to quantum filed theory and gravity. It includes the study of nonlinear partial differential and discrete equations, regular and singular behaviour of their solutions, Hamitonian and bi- Hamitonian structures, their symmetries, associated deformations of algebraic and geometrical structures with applications to various models in physics and mathematics. The PMNP 2013 conference focused on recent advances and developments in Continuous and discrete, classical and quantum integrable systems Hamiltonian, critical and geometric structures of nonlinear integrable equations Integrable systems in quantum field theory and matrix models Models of nonlinear phenomena in physics Applications of nonlinear integrable systems in physics The Scientific Committee of the conference was formed by Francesco Calogero (University of Rome `La Sapienza', Italy) Boris A Dubrovin (SISSA, Italy) Yuji Kodama (Ohio State University, USA) Franco Magri (University of Milan `Bicocca', Italy) Vladimir E Zakharov (University of Arizona, USA, and Landau Institute for Theoretical Physics, Russia) The Organizing Committee: Boris G Konopelchenko, Giulio Landolfi, Luigi Martina, Department of Mathematics and Physics `E De Giorgi' and the Istituto Nazionale di Fisica Nucleare, and Raffaele Vitolo, Department of Mathematics and Physics `E De Giorgi'. A list of sponsors, speakers, talks, participants and the conference photograph are given in the PDF. Conference photograph

  18. Introduction to symmetry-breaking phenomena in physics

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2001-01-01

    The notion of broken symmetries started slowly to emerge in the 19th century. The early studies of Pasteur on the parity asymmetry of life, the studies of Curie on piezoelectricity and on the symmetries of effects versus the symmetry of causes ( which clearly excluded spontaneous symmetry breaking), are important historical landmarks. However the possibility of spontaneous symmetry breaking within the usual principles of statistical mechanics, waited for the work of Peierls and Onsager. The whole theory of phase transitions and critical phenomena, as well as the construction of field theoretic models as long distance limit of yet unknown physics, relies nowadays on the concept of criticality associated to spontaneous symmetry breaking. The phenomena of Goldstone bosons, of Meissner-Higgs effects, are central to the theory of condensed matter as well as to particle physics. In cosmology as well, the various inflationary scenarios begin similarly with this same concept. The three lectures will provide a simple ...

  19. Space Commercial Opportunities for Fluid Physics and Transport Phenomena Applications

    Science.gov (United States)

    Gavert, R.

    2000-01-01

    Microgravity research at NASA has been an undertaking that has included both science and commercial approaches since the late 80s and early 90s. The Fluid Physics and Transport Phenomena community has been developed, through NASA's science grants, into a valuable base of expertise in microgravity science. This was achieved through both ground and flight scientific research. Commercial microgravity research has been primarily promoted thorough NASA sponsored Centers for Space Commercialization which develop cost sharing partnerships with industry. As an example, the Center for Advanced Microgravity Materials Processing (CAMMP)at Northeastern University has been working with cost sharing industry partners in developing Zeolites and zeo-type materials as an efficient storage medium for hydrogen fuel. Greater commercial interest is emerging. The U.S. Congress has passed the Commercial Space Act of 1998 to encourage the development of a commercial space industry in the United States. The Act has provisions for the commercialization of the International Space Station (ISS). Increased efforts have been made by NASA to enable industrial ventures on-board the ISS. A Web site has been established at http://commercial/nasa/gov which includes two important special announcements. One is an open request for entrepreneurial offers related to the commercial development and use of the ISS. The second is a price structure and schedule for U.S. resources and accommodations. The purpose of the presentation is to make the Fluid Physics and Transport Phenomena community, which understands the importance of microgravity experimentation, aware of important aspects of ISS commercial development. It is a desire that this awareness will be translated into a recognition of Fluid Physics and Transport Phenomena application opportunities coordinated through the broad contacts of this community with industry.

  20. Modelling transport phenomena in a multi-physics context

    Science.gov (United States)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  1. Modelling transport phenomena in a multi-physics context

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Francesco [Dipartimento di Ingegneria Chimica e Alimentare - Università degli studi di Salerno Via Ponte Don Melillo - 84084 Fisciano SA (Italy)

    2015-01-22

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  2. Modelling transport phenomena in a multi-physics context

    International Nuclear Information System (INIS)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating

  3. Ultrafast phenomena in molecular sciences femtosecond physics and chemistry

    CERN Document Server

    Bañares, Luis

    2014-01-01

    This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the ...

  4. Boiling and burnout phenomena under transient heat input, 1

    International Nuclear Information System (INIS)

    Aoki, Shigebumi; Kozawa, Yoshiyuki; Iwasaki, Hideaki.

    1976-01-01

    In order to simulate the thermo-hydrodynamic conditions at reactor power excursions, a test piece was placed in a forced convective channel and heated with exponential power inputs. The boiling heat transfer and the burnout heat flux under the transient heat input were measured, and pressure and water temperature changes in the test section were recorded at the same time. Following experimental results were obtained; (1) Transient boiling heat transfer characteristics at high heat flux stayed on the stationary nucleate boiling curve of each flow condition, or extrapolated line of the curves. (2) Transient burnout heat flux increased remarkably with decreasing heating-time-constant, when the flow rate was lower and the subcooling was higher. (3) Transient burnout phenomena were expressed with the relation of (q sub(max) - q sub(sBO)) tau = constant at several flow conditions. This relation was derived from the stationary burnout mechanism of pool boiling. (auth.)

  5. Proceedings of the physical phenomena at high magnetic fields - II

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, Z.; Gor`kov, L.; Meltzer, D.; Schrieffer, R. [eds.

    1996-12-31

    Physical Phenomena at High Magnetic Fields-II was the second conference sponsored by the National High Magnetic Field Laboratory in Tallahassee, FL. The success of the first conference encouraged the Laboratory to once again bring together experts in scientific research areas where high magnetic fields play an important role, to critically assess the current status of research in these areas, and discuss promising new directions in science, as well as applications which are at the forefront of these fields. For the Laboratory, this conference has some additional significance. The Laboratory had just completed its construction stage and full scale scientific efforts were already underway. The Laboratory especially benefited from the invited lectures, original presentations, and open discussions of the conference participants. The Laboratory intends to continue this tradition and host the conference every three years. Separate papers from this proceedings were indexed to the energy database.

  6. Unified Treatise of Phenomena of Seismic Fusion-Fission Under Seismonomy in the Light of Monistic Weltanschauung: the Doctrine of Dynamics Monism With Implication to the Earthquake Source Physics}

    Science.gov (United States)

    Zaurov, D.

    2006-12-01

    Established profoundly new conceptual framework by the five postulates of seismonomy, enables unified treatise of processes such as dynamic structural devastation, seismic blowing up of mount ridges, collision physics, meteorite impact cratering, and seismic global faulting with insight into the earthquake source physics. Hence, by establishing the parametric method of identification of natural modes and then Parametric Scan- Window Observation of Dynamic Responses (PSW-method), it becomes possible to obtain crucial field data. Thus, earth-dam dynamics data revealed an essential non-stationarity of dam's dynamic characteristics throughout earthquakes, the effect of stochastic alternation of the locally-stationary modal states with the discrete characteristics of their spectral distribution. At this point, in the course of other, separate line of far beyond lasting quest concerning metaphysical constituents of matter, and then constitutive relation between excited modal oscillation of structures and causal pattern of their fracture, the results of such analysis, resuming obscurity of the well known jaggedness of observing earthquake spectra, were illuminated and perceived. It was succeeded, on the one hand, to establish unitary conceptualized framework of seismic records analysis consisting both the PSW- and spectral- analysis, which reformulated to be a statistical representation complementary to PSW-method, and, on the other hand, to realize genesis of the doctrine of dynamics monism consisting concepts of both: fission-fusion dynamics and dynamics coherentism as an inspiration of the paradigm of seismic fusion-fission phenomena. Global faulting originating straight plane faults, which often stretch through large scale substantially inhomogeneous volumes, are, uncontestably, the result of dynamics fission, the first step of dynamics binary division of an emerged geoseismoid onto two secondary seismoids with a potential, occasionally stretched rupture plane. That

  7. On Process Modelling Using Physical Oriented And Phenomena Based Principles

    Directory of Open Access Journals (Sweden)

    Mihai Culea

    2000-12-01

    Full Text Available This work presents a modelling framework based on phenomena description of the process. The approach is taken to easy understand and construct process model in heterogeneous possible distributed modelling and simulation environments. A simplified case study of a heat exchanger is considered and Modelica modelling language to check the proposed concept. The partial results are promising and the research effort will be extended in a computer aided modelling environment based on phenomena.

  8. All basic condensed matter physics phenomena and notions mirror ...

    Indian Academy of Sciences (India)

    A few billion years of evolutionary time and the complex process of 'selection' has given biology an opportunity to explore a variety of condensed matter phenomena and situations, some of which have been discovered by humans in the laboratory, that too only in extreme non-biological conditions such as low temperatures, ...

  9. Nonequilibrium phenomena in chiral physics and hot gauge theories

    Science.gov (United States)

    Sivaramakrishnan, Prem Kumar

    We develop and implement a consistent quantum field theory framework for analysing a variety of non- equilibrium, non-perturbative phenomena associated with the Chiral Phase transition and gauge theories at finite temperature. We present a first principles calculation (within the framework of the gauged linear sigma-model) of the photon production rate during this phase transition and in the process we develop a new, improved approach towards quantum kinetics which goes far beyond standard Boltzmann-like equations. We also study the anomalous coupling of the neutral pion field to electromagnetism and find that under certain conditions, this coupling can lead to photon production via a process of parametric amplification which is intrinsically a non- perturbative phenomenon. The resulting spectrum of photons has very distinctive peaks and exhibits a polarisation asymmetry. We argue that these electromagnetic signals could be striking signatures of the Chiral Phase transition out-of-equilibrium. Motivated by certain issues associated with baryogenesis in the hot electroweak theory and with a view towards gaining an understanding of the dynamics of soft collective excitations in the Quark-Gluon Plasma, we turn our attention to the nonequilibrium dynamics of soft gauge field configurations in hot scalar QED. We argue that the dynamics of the long-wavelength excitations is determined by the Hard Thermal Loop self-energy which has the same form in both scalar QED and the non-Abelian case. We find that the relaxation of these excitations proceeds via power laws which are completely determined by the spectral density at the thresholds of Landau damping cuts. We then show that a Markovian approximation fails to describe the dynamics both at short and long times. We also introduce a new kinetic approach that goes beyond the standard Boltzmann equation by incorporating off-shell processes and find that the distribution function for soft quasiparticles relaxes with a power law

  10. Ancient Chinese observations of physical phenomena attending solar eclipses

    International Nuclear Information System (INIS)

    Wang, P.K.; Siscoe, G.L.

    1980-01-01

    The realization that solar activity probably undergoes changes in qualitative character on time scales greater than the 11 or 22 year cycle but short compared to the duration of recorded history gives renewed importance to historical documents describing the state of solar activity. Modern eclipse observation reveal the presence of solar acitivity through the appearance of coronal structures and prominences. It has been widely remarked that eclipse records prior to the 18th century are uniformly silent on these conspicuous solar eclipse features, raising the possibility, however unlikely, that a change in solar activity has occurred which rendered them only recently noticeable. We present here material from ancient Chinese sources, primarily astrological, that describe phenomena attending solar eclipses that are almost certainly coronal structures and prominences. Thus, these aspects of the present character of solar activity have apparently occurred at other times in history, if not continuously. (orig.)

  11. Reservoir management under consideration of stratification and hydraulic phenomena

    NARCIS (Netherlands)

    Nandalal, K.D.W.

    1995-01-01


    Reservoirs are the most important components in a water resources system. They are used to store water to extend its temporal availability. The physical, chemical and biological characteristics of water change when impounded in reservoirs. This implies the possibility of using reservoirs

  12. Optical and electrical phenomena in dielectric materials under irradiation

    CERN Document Server

    Plaksin, O A; Stepanov, P A; Demenkov, P V; Chernov, V M; Krutskikh, A O

    2002-01-01

    Optical and acoustic properties of the materials based on Al sub 2 O sub 3 , SiO sub 2 and BN under 8 MeV proton irradiation (<10 sup 4 Gy/s) have been measured. Electric charge partitioning has been shown to result in charging the microscopic regions in the bulk of the dielectrics under irradiation, which is due to different mobility of free electrons and holes (sapphire), concentration inhomogeneity in the system of charge carrier traps (alumina), or thermodynamic instability of the homogeneous distribution of the filled traps (silica glasses). Prevalent charge carrier recombination in the grain boundaries causes re-crystallization of pyrolytic boron nitride under irradiation, which shows up as simultaneous decrease of the intensity of radiation-induced luminescence (RIL) of the centres in the grain boundaries and the BN. The local charging results in optical inhomogeneity of the silica glasses which is sustained by the optical loss spectra of the irradiated glasses, features of kinetics of bleaching, RI...

  13. The mysteries of leptons. New physics and unexplained phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Merle, Alexander

    2009-12-09

    This doctoral thesis deals with the mysteries of the leptonic sector of the Standard Model of Elementary Particle Physics. After giving a short overview about the Standard Model itself, the text starts with introducing the so-called ''GSI anomaly'', the observation of a periodic modulation of the exponential decay law, which is still unexplained and has erroneously been attributed to neutrino oscillations. It is argued why this interpretation is incorrect and several further aspects of the phenomenon are discussed. Afterwards two topics of New Physics beyond the Standard Model are treated, double beta processes and lepton flavour violation. Some important phenomenological aspects of the former are discussed before performing a detailed calculation of the radiative process of neutrino-less double electron capture. In spite of the tiny rates, a detailed understanding of this process is important for setting proper experimental limits. The last part of the thesis starts with very general (and nearly model-independent) constraints for lepton flavour conservation, before discussing the interplay of structure and freedom in the Yukawa sector when a model is confronted with phenomenology. We also comment on a new mechanism that can indeed introduce some realistic structures leading to lepton flavour violating effects. (orig.)

  14. Basic physical phenomena, neutron production and scaling of the dense plasma focus

    International Nuclear Information System (INIS)

    Kaeppeler, H.J.

    This paper presents an attempt at establishing a model theory for the dense plasma focus in order to present a consistent interpretation of the basic physical phenomena leading to neutron production from both acceleration and thermal processes. To achieve this, the temporal history of the focus is divided into the compression of the plasma sheath, a qiescent and very dense phase with ensuing expansion, and an instable phase where the focus plasma is disrupted by instabilities. Finally, the decay of density, velocity and thermal fields is considered. Under the assumption that Io 2 /sigmaoRo 2 = const and to/Tc = const, scaling laws for plasma focus devices are derived. It is shown that while generally the neutron yield scales with the fourth power of maximum current, neutron production from thermal processes becomes increasingly important for large devices, while in the small devices neutron production from acceleration processes is by far predominant. (orig.) [de

  15. Sixth Microgravity Fluid Physics and Transport Phenomena Conference: Exposition Topical Areas 1-6. Volume 2

    Science.gov (United States)

    Singh, Bhim (Compiler)

    2002-01-01

    The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This CP (conference proceeding) is a compilation of the abstracts, presentations, and posters presented at the conference.

  16. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    Science.gov (United States)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  17. Electromagnetic, heat and fluid flow phenomena in levitated metal droplets both under earthbound and microgravity conditions

    Science.gov (United States)

    Szekely, Julian

    1988-01-01

    The purpose is to develop an improved understanding of the electromagnetic, heat, and fluid flow phenomena in electromagnetically levitated metal droplets, both under earthbound and microgravity conditions. The main motivation for doing this work, together with the past accomplishments, and the plans for future research are discussed.

  18. Identification of important phenomena under sodium fire accidents based on PIRT process with factor analysis in sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Aoyagi, Mitsuhiro; Uchibori, Akihiro; Kikuchi, Shin; Takata, Takashi; Ohno, Shuji; Ohshima, Hiroyuki

    2016-01-01

    The PIRT (Phenomena Identification and Ranking Table) process is an effective method to identify key phenomena involved in safety issues in nuclear power plants. The present PIRT process is aimed to validate sodium fire analysis codes. Because a sodium fire accident in sodium-cooled fast reactor (SFR) involves complex phenomena, various figures of merit (FOMs) could exist in this PIRT process. In addition, importance evaluation of phenomena for each FOM should be implemented in an objective manner under the PIRT process. This paper describes the methodology for specification of FOMs, identification of associated phenomena and importance evaluation of each associated phenomenon in order to complete a ranking table of important phenomena involved in a sodium fire accident in an SFR. The FOMs were specified through factor analysis in this PIRT process. Physical parameters to be quantified by a sodium fire analysis code were identified by considering concerns resulting from sodium fire in the factor analysis. Associated phenomena were identified through the element- and sequence-based phenomena analyses as is often conducted in PIRT processes. Importance of each associated phenomenon was evaluated by considering the sequence-based analysis of associated phenomena correlated with the FOMs. Then, we complete the ranking table through the factor and phenomenon analyses. (author)

  19. Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference

    Science.gov (United States)

    Singh, Bhim S. (Editor)

    1999-01-01

    This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." Plenary sessions provide an overview of the Microgravity Fluid Physics Program, the International Space Station and the opportunities ISS presents to fluid physics and transport phenomena researchers, and the process by which researchers may become involved in NASA's program, including information about the NASA Research Announcement in this area. Two plenary lectures present promising areas of research in electrohydrodynamics/electrokinetics in the movement of particles and in micro- and meso-scale effects on macroscopic fluid dynamics. Featured speakers in plenary sessions present results of recent flight experiments not heretofore presented. The conference publication consists of this book of abstracts and the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference (NASA/CP-1999-208526/SUPPL1).

  20. Contribution to the study of multi-physical phenomena in cementitious materials

    International Nuclear Information System (INIS)

    Bary, B.

    2010-09-01

    This document is a synthesis of the applied research studies undertaken by the author during ten years, first at the University of Marne-La-Vallee during the period 1999-2002, then at the CEA. These studies concern the modeling and the numerical simulations of the cementitious materials behavior subjected on the one hand to moderate thermomechanical and hydric loadings, and on the other hand to chemical attacks due to the migration of calcium, carbonate and sulfate ions. The developed approaches may be viewed as multi-physical in the sense that the models used for describing the behavior couple various fields and phenomena such as mechanics, thermal, hydric and ionic transfers, and chemistry. In addition, analytical up-scaling techniques are applied to estimate the physical properties associated with these phenomena (mechanical, hydraulic and diffusive parameters) as a function of the microstructure and the hydric state of the material. (author)

  1. Rethinking earthquake-related DC-ULF electromagnetic phenomena: towards a physics-based approach

    Directory of Open Access Journals (Sweden)

    Q. Huang

    2011-11-01

    Full Text Available Numerous electromagnetic changes possibly related with earthquakes have been independently reported and have even been attempted to apply to short-term prediction of earthquakes. However, there are active debates on the above issue because the seismogenic process is rather complicated and the studies have been mainly empirical (i.e. a kind of experience-based approach. Thus, a physics-based study would be helpful for understanding earthquake-related electromagnetic phenomena and strengthening their applications. As a potential physics-based approach, I present an integrated research scheme, taking into account the interaction among observation, methodology, and physical model. For simplicity, this work focuses only on the earthquake-related DC-ULF electromagnetic phenomena. The main approach includes the following key problems: (1 how to perform a reliable and appropriate observation with some clear physical quantities; (2 how to develop a robust methodology to reveal weak earthquake-related electromagnetic signals from noisy background; and (3 how to develop plausible physical models based on theoretical analyses and/or laboratory experiments for the explanation of the earthquake-related electromagnetic signals observed in the field conditions.

  2. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano, E-mail: dsierras@eafit.edu.co, E-mail: langel@eafit.edu.co [Grupo de Optica Aplicada, Universidad EAFIT, 1 Medellin (Colombia)

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  3. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    International Nuclear Information System (INIS)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  4. Unraveling the physics of nanofluidic phenomena at the single-molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Fornasiero, Francesco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-13

    Despite groundbreaking potential in a broad application space, several nanofluidic phenomena remain poorly understood. Toward advancing the understanding of fluid behavior under nanoscale confinement, we developed a novel, ideal platform for fundamental molecular transport studies, in which the fluidic channel is a single carbon nanotube (CNT). CNTs offer the advantage of simple chemistry and structure, which can be synthetically tuned with nanometer precision and accurately modeled. With combined experimental and computational approaches, we demonstrated that CNT pores with 1-5 nm diameters conduct giant ionic currents that follow an unusual sublinear electrolyte concentration dependence. The large magnitude of the ionic conductance appears to originate from a strong electro-osmotic flow in smooth CNT pores. First-principle simulations suggest that electro-osmotic flow arises from localized negative polarization charges on carbon atoms near a potassium (K+) ion and from the strong cation-graphitic wall interactions, which drive K+ ions much closer to the wall than chlorides (Cl-). Single-molecule translocation studies reveal that charged molecules may be distinguished from neutral species on the basis of the sign of the transient current change during their passage through the nanopore. Together with shedding light on a few controversial questions in the CNT nanofluidics area, these results may benefit LLNL’s Security Mission by providing the foundation for the development of advanced single-molecule detection system for bio/chem/explosive analytes. In addition, these experimental and computational platforms can be applied to advance fundamental knowledge in other fields, from energy storage and membrane separation to superfluid physics.

  5. First applications of structural pattern recognition methods to the investigation of specific physical phenomena at JET

    International Nuclear Information System (INIS)

    Ratta, G.A.; Vega, J.; Pereira, A.; Portas, A.; Luna, E. de la; Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Vargas, H.; Santos, M.; Pajares, G.; Murari, A.

    2008-01-01

    Structural pattern recognition techniques allow the identification of plasma behaviours. Physical properties are encoded in the morphological structure of signals. Intelligent access methods have been applied to JET databases to retrieve data according to physical criteria. On the one hand, the structural form of signals has been used to develop general purpose data retrieval systems to search for both similar entire waveforms and similar structural shapes inside waveforms. On the other hand, domain dependent knowledge was added to the structural information of signals to create particular data retrieval methods for specific physical phenomena. The inclusion of explicit knowledge assists in data analysis. The latter has been applied in JET to look for first, cut-offs in ECE heterodyne radiometer signals and, second, L-H transitions

  6. First applications of structural pattern recognition methods to the investigation of specific physical phenomena at JET

    Energy Technology Data Exchange (ETDEWEB)

    Ratta, G.A. [Asociacion EURATOM/CIEMAT para Fusion (Spain)], E-mail: giuseppe.ratta@ciemat.es; Vega, J.; Pereira, A.; Portas, A.; Luna, E. de la [Asociacion EURATOM/CIEMAT para Fusion (Spain); Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Vargas, H. [Dpto. Informatica y Automatica-UNED, 28040 Madrid (Spain); Santos, M.; Pajares, G. [Dpto. Arquitectura de Computadores y Automatica-UCM, 28040 Madrid (Spain); Murari, A. [Consorzio RFX-Associazione EURATOM ENEA per la Fusione, Padua (Italy)

    2008-04-15

    Structural pattern recognition techniques allow the identification of plasma behaviours. Physical properties are encoded in the morphological structure of signals. Intelligent access methods have been applied to JET databases to retrieve data according to physical criteria. On the one hand, the structural form of signals has been used to develop general purpose data retrieval systems to search for both similar entire waveforms and similar structural shapes inside waveforms. On the other hand, domain dependent knowledge was added to the structural information of signals to create particular data retrieval methods for specific physical phenomena. The inclusion of explicit knowledge assists in data analysis. The latter has been applied in JET to look for first, cut-offs in ECE heterodyne radiometer signals and, second, L-H transitions.

  7. Mathematical and physical modeling of thermal stratification phenomena in steel ladles

    Science.gov (United States)

    Putan, V.; Vilceanu, L.; Socalici, A.; Putan, A.

    2018-01-01

    By means of CFD numerical modeling, a systematic analysis of the similarity between steel ladles and hot-water model regarding natural convection phenomena was studied. The key similarity criteria we found to be dependent on the dimensionless numbers Fr and βΔT. These similarity criteria suggested that hot-water models with scale in the range between 1/5 and 1/3 and using hot water with temperature of 45 °C or higher are appropriate for simulating natural convection in steel ladles. With this physical model, thermal stratification phenomena due to natural convection in steel ladles were investigated. By controlling the cooling intensity of water model to correspond to the heat loss rate of steel ladles, which is governed by Fr and βΔT, the temperature profiles measured in the water bath of the model were to deduce the extent of thermal stratification in liquid steel bath in the ladles. Comparisons between mathematically simulated temperature profiles in the prototype steel ladles and those physically simulated by scaling-up the measured temperatures profiles in the water model showed good agreement. This proved that it is feasible to use a 1/5 scale water model with 45 °C hot water to simulate natural convection in steel ladles. Therefore, besides mathematical CFD models, the physical hot-water model provided an additional means of studying fluid flow and heat transfer in steel ladles.

  8. Quantitative physical models of volcanic phenomena for hazards assessment of critical infrastructures

    Science.gov (United States)

    Costa, Antonio

    2016-04-01

    Volcanic hazards may have destructive effects on economy, transport, and natural environments at both local and regional scale. Hazardous phenomena include pyroclastic density currents, tephra fall, gas emissions, lava flows, debris flows and avalanches, and lahars. Volcanic hazards assessment is based on available information to characterize potential volcanic sources in the region of interest and to determine whether specific volcanic phenomena might reach a given site. Volcanic hazards assessment is focussed on estimating the distances that volcanic phenomena could travel from potential sources and their intensity at the considered site. Epistemic and aleatory uncertainties strongly affect the resulting hazards assessment. Within the context of critical infrastructures, volcanic eruptions are rare natural events that can create severe hazards. In addition to being rare events, evidence of many past volcanic eruptions is poorly preserved in the geologic record. The models used for describing the impact of volcanic phenomena generally represent a range of model complexities, from simplified physics based conceptual models to highly coupled thermo fluid dynamical approaches. Modelling approaches represent a hierarchy of complexity, which reflects increasing requirements for well characterized data in order to produce a broader range of output information. In selecting models for the hazard analysis related to a specific phenomenon, questions that need to be answered by the models must be carefully considered. Independently of the model, the final hazards assessment strongly depends on input derived from detailed volcanological investigations, such as mapping and stratigraphic correlations. For each phenomenon, an overview of currently available approaches for the evaluation of future hazards will be presented with the aim to provide a foundation for future work in developing an international consensus on volcanic hazards assessment methods.

  9. Performance on Piagetian Horizontality and Verticality Tasks: Sex-Related Differences in Knowledge of Relevant Physical Phenomena.

    Science.gov (United States)

    Liben, Lynn S.; Golbeck, Susan L.

    1984-01-01

    Examines reasons for sex-related differences among adults on horizontality and verticality concepts. Studies the effects on task performance of inadequate knowlege of relevant physical phenomena and pictorial examples. (Author/AS)

  10. University Physics Students' Use of Models in Explanations of Phenomena Involving Interaction between Metals and Electromagnetic Radiation.

    Science.gov (United States)

    Redfors, Andreas; Ryder, Jim

    2001-01-01

    Examines third year university physics students' use of models when explaining familiar phenomena involving interaction between metals and electromagnetic radiation. Concludes that few students use a single model consistently. (Contains 27 references.) (DDR)

  11. Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference

    Science.gov (United States)

    Singh, Bhim S. (Editor)

    2000-01-01

    The Fifth Microgravity Fluid Physics and Transport Phenomena Conference provided the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program and research opportunities and plans for the near future. Consistent with the conference theme "Microgravity Research an Agency-Wide Asset" the conference focused not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. The conference included 14 invited plenary talks, 61 technical paper presentations, 61 poster presentations, exhibits and a forum on emerging research themes focusing on nanotechnology and biofluid mechanics. This web-based proceeding includes the presentation and poster charts provided by the presenters of technical papers and posters that were scanned at the conference site. Abstracts of all the papers and posters are included and linked to the presentations charts. The invited and plenary speakers were not required to provide their charts and are generally not available for scanning and hence not posted. The conference program is also included.

  12. Elementary particle physics and high energy phenomena. [Dept. of Physics, Univ. of Colorado, Boulder, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z[sup 0] with the SLD detector; fixed-target K-decay experiments; the R D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs.

  13. Expansion phenomena of aerosols generated by laser ablation under helium and argon atmosphere

    International Nuclear Information System (INIS)

    Koch, J.; Waelle, M.; Schlamp, S.; Roesgen, T.; Guenther, D.

    2008-01-01

    Specific expansion phenomena of aerosols generated by near infrared femtosecond laser ablation (NIR-fs-LA) of brass under helium and argon atmosphere were studied. For this purpose, particles were visualized by light scattering using a pulsed laser source. Aerosols were found to be captured in symmetric vortices when striking a solid boundary during their kinetic stage of expansion. Furthermore, high-repetitive LA resulted in the formation of a complex, macroscopic flow pattern driven by a pressure gradient locally built up. Our data indicate that aerosols released under those conditions experience only minor losses of around 1% if they get in contact with the inner walls of ablation cells operated at atmospheric pressures

  14. Structures including network and topology for identifying, locating and quantifying physical phenomena

    Science.gov (United States)

    Richardson, John G.; Moore, Karen A.; Carrington, Robert A.

    2006-04-25

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A plurality of laterally adjacent conductors may each include a plurality of segments. Each segment is constructed to exhibit a unit value representative of a defined energy transmission characteristic. A plurality of identity groups are defined with each identity group comprising a plurality of segments including at least one segment from each of the plurality of conductors. The segments contained within an identity group are configured and arranged such that each of their associated unit values may be represented by a concatenated digit string which is a unique number relative to the other identity groups. Additionally, the unit values of the segments within an identity group maintain unique ratios with respect to the other unit values in the identity group.

  15. Pipeline including network and topology for identifying, locating and quantifying physical phenomena

    Science.gov (United States)

    Richardson, John G.; Moore, Karen A.; Carrington, Robert A.

    2006-02-14

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A plurality of laterally adjacent conductors may each include a plurality of segments. Each segment is constructed to exhibit a unit value representative of a defined energy transmission characteristic. A plurality of identity groups are defined with each identity group comprising a plurality of segments including at least one segment from each of the plurality of conductors. The segments contained within an identity group are configured and arranged such that each of their associated unit values may be represented by a concatenated digit string which is a unique number relative to the other identity groups. Additionally, the unit values of the segments within an identity group maintain unique ratios with respect to the other unit values in the identity group.

  16. Network and topology for identifying, locating and quantifying physical phenomena, systems and methods for employing same

    Science.gov (United States)

    Richardson, John G.; Moore, Karen A.; Carrington, Robert A.

    2005-05-10

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A plurality of laterally adjacent conductors may each include a plurality of segments. Each segment is constructed to exhibit a unit value representative of a defined energy transmission characteristic. A plurality of identity groups are defined with each identity group comprising a plurality of segments including at least one segment from each of the plurality of conductors. The segments contained within an identity group are configured and arranged such that each of their associated unit values may be represented by a concatenated digit string which is a unique number relative to the other identity groups. Additionally, the unit values of the segments within an identity group maintain unique ratios with respect to the other unit values in the identity group.

  17. Superconductivity and superfluidity as universal emergent phenomena in diverse physical systems

    International Nuclear Information System (INIS)

    Guidry, Mike

    2014-01-01

    Superconductivity and superfluidity are observed across a strikingly broad range of physical systems. This universality seems unlikely to be coincidental but a unified understanding of superconductivity and superfluidity across these highly disparate fields seems impossible in traditional microscopic terms. I give an overview of superconductivity and superfluidity found in various fermionic condensed matter, nuclear physics, and neutron star systems, and propose that all result from generic algebraic structures for the emergent effective Hamiltonian, with the role of underlying microscopic physics largely relegated to influence on parameter values

  18. First steps in eukaryogenesis: Physical phenomena in the origin and evolution of chromosome structure

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1995-01-01

    Our present understanding of the origin and evolution of chromosomes differs considerably from current understanding of the origin and evolution of the cell itself. Chromosome origins have been less prominent in research, as the emphasis has not shifted so far appreciably from the phenomenon of primeval nucleic acid encapsulation to that of the origin of gene organization, expression, and regulation. In this work we discuss some reasons why preliminary steps in this direction are being taken. We have been led to examine properties that have contributed to raise the ancestral prokaryotic programmes to a level where we can appreciate in eukaryotes a clear departure from earlier themes in the evolution of the cell from the last common ancestor. We shift our point of view from evolution of cell morphology to the point of view of the genes. In particular, we focus attention on possible physical bases for the way transmission of information has evolved in eukaryotes, namely, the inactivation of whole chromosomes. The special case of inactivation of the X chromosome in mammals is discussed, paying particular attention to the physical process of the spread of X inactivation in monotremes (platypus and echidna.) When experimental data is unavailable some theoretical analysis is possible based on the idea that in certain cases collective phenomena in genetics, rather than chemical detail, are better correlates of complex chemical processes. (author). Abstract only

  19. First steps in eukaryogenesis: Physical phenomena in the origin and evolution of chromosome structure

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1995-08-01

    Our present understanding of the origin and evolution of chromosomes differs considerably from current understanding of the origin and evolution of the cell itself. Chromosome origins have been less prominent in research, as the emphasis has not shifted so far appreciably from the phenomenon of primeval nucleic acid encapsulation to that of the origin of gene organization, expression, and regulation. In this work we discuss some reasons why preliminary steps in this direction are being taken. We have been led to examine properties that have contributed to raise the ancestral prokaryotic programmes to a level where we can appreciate in eukaryotes a clear departure from earlier themes in the evolution of cell from the last common ancestor. We shift our point of view from evolution of cell morphology to the point of view of the genes. In particular we focus attention on possible physical bases for the way transmission of information has evolved in eukaryotes, namely, the inactivation of whole chromosomes. The special case of the inactivation of the X chromosome in mammals is discussed, paying particular attention to the physical process of the spread of X inactivation in monotremes (platypus and echidna). When experimental data is unavailable some theoretical analysis is possible based on the idea that in certain cases collective phenomena in genetics, rather than chemical detail, are better correlates of complex chemical processes. (author). 65 refs

  20. The German Physical Society Under National Socialism

    Science.gov (United States)

    Hoffmann, Dieter; Walker, Mark

    2004-12-01

    The history of the German Physical Society from 1933 to 1945 is not the same as a comprehensive history of physics under Adolf Hitler, but it does reflect important aspects of physicists' work and life during the Third Reich.

  1. Squeezout phenomena and boundary layer formation of a model ionic liquid under confinement and charging

    Science.gov (United States)

    Capozza, R.; Vanossi, A.; Benassi, A.; Tosatti, E.

    2015-02-01

    Electrical charging of parallel plates confining a model ionic liquid down to nanoscale distances yields a variety of charge-induced changes in the structural features of the confined film. That includes even-odd switching of the structural layering and charging-induced solidification and melting, with important changes of local ordering between and within layers, and of squeezout behavior. By means of molecular dynamics simulations, we explore this variety of phenomena in the simplest charged Lennard-Jones coarse-grained model including or excluding the effect a neutral tail giving an anisotropic shape to one of the model ions. Using these models and open conditions permitting the flow of ions in and out of the interplate gap, we simulate the liquid squeezout to obtain the distance dependent structure and forces between the plates during their adiabatic approach under load. Simulations at fixed applied force illustrate an effective electrical pumping of the ionic liquid, from a thick nearly solid film that withstands the interplate pressure for high plate charge to complete squeezout following melting near zero charge. Effective enthalpy curves obtained by integration of interplate forces versus distance show the local minima that correspond to layering and predict the switching between one minimum and another under squeezing and charging.

  2. Physical model of lean suppression pressure oscillation phenomena: steam condensation in the light water reactor pressure suppression system (PSS)

    International Nuclear Information System (INIS)

    McCauley, E.W.; Holman, G.S.; Aust, E.; Schwan, H.; Vollbrandt, J.

    1980-01-01

    Using the results of large scale multivent tests conducted by GKSS, a physical model of chugging is developed. The unique combination of accurate digital data and cinematic data has provided the derivation of a detailed, quantified correlation between the dynamic physical variables and the associated two-phase thermo-hydraulic phenomena occurring during lean suppression (chugging) phases of the loss-of-coolant accident in a boiling water reactor pressure suppression system

  3. Modelling of CRUD growth phenomena on PWR fuel rods under nucleate boiling conditions

    International Nuclear Information System (INIS)

    Ferrer, A.; Dacquait, F.; Gall, B.; Ranchoux, G.; Riot, G.

    2012-09-01

    PWR primary circuit materials undergo general corrosion leading to a release of metallic element release and subsequent process of particle deposition and ion precipitation on the primary circuit surfaces. The species accumulated on fuel rods are activated by neutron flux. Consequently, crud erosion and dissolution induce primary coolant contamination. In French PWRs, 58 Co volume activity is generally low and almost constant (< 30 MBq.m -3 ) throughout an ordinary operating cycle. In some specific cases, a significant increase in volume activity is observed after the middle of a cycle (100-1000 MBq.m -3 for 58 Co) when conditions for nucleate boiling are locally reached in certain fuel assemblies. Indeed, it is well known that nucleate boiling intensifies the deposition process. The thickness of the crud layer can reach some micrometers in non-boiling areas, whereas it can reach 100 micrometers in boiling areas. Crud growth in boiling conditions can be related to three phenomena: bubble growth induces deposition process (called boiling deposition), bubbles induce concentration increase at crud-coolant interface (called enrichment and modelled by the enrichment factor, the ratio between the wall concentration and the bulk concentration) and vaporisation induces concentration increase inside the crud. A literature review on the modelling of these phenomena and on the crud structure in nucleate boiling conditions has been carried out. The OSCAR [1] calculation code developed by the CEA to predict surface and volume activities in a single phase PWR primary circuit was chosen as a basis for present study. Ability to describe local nucleate boiling conditions was added to this code leading to realistic modelling of subsequent volume activity increase. In this article, we present the results obtained using a modified version of the OSCAR PC V1.2 calculation code including: - A double phase thermal-hydraulic module, - A model of boiling crud growth, able to calculate

  4. Transcritical phenomena of autoignited fuel droplet at high pressures under microgravity

    Science.gov (United States)

    Segawa, Daisuke; Kajikawa, Tomoki; Kadoka, Toshikazu

    2005-09-01

    An experimental study has been performed under microgravity to obtain the detailed information needed for the deep understanding of the combustion phenomena of single fuel droplets which autoignite in supercritical gaseous environment. The microgravity environments both in a capsule of a drop shaft and during the parabolic flight of an aircraft were utilized for the experiments. An octadecanol droplet suspended at the tip of a fine quartz fiber in the cold section of the high-pressure combustion chamber was transferred quickly to be subjected to a hot gaseous medium in an electric furnace, this followed by autoignition and combustion of the fuel droplet in supercritical gaseous environment. High-pressure gaseous mixture of oxygen and nitrogen was used as the ambient gas. Temporal variation of temperature of the fuel droplet in supercritical gaseous environment was examined using an embedded fine thermocouple. Sequential backlighted images of the autoignited fuel droplet or the lump of fuel were acquired in supercritical gaseous environment with reduced oxygen concentration. The observed pressure dependence of the ignition delay and that of the burning time of the droplet with the embedded thermocouple were consistent with the previous results. Simultaneous imaging with thermometry showed that the appearance of the fuel changed remarkably at measured fuel temperatures around the critical temperature of the pure fuel. The interface temperature of the fuel rose well beyond the critical temperature of the pure fuel in supercritical gaseous environment. The fuel was gasified long before the end of combustion in supercritical gaseous environment. The proportion of the gasification time to the burning time decreased monotonically with increasing the ambient pressure.

  5. The physics of nanoelectronics transport and fluctuation phenomena at low temperatures

    CERN Document Server

    Heikkila, Tero T

    2013-01-01

    Advances in nanotechnology have allowed physicists and engineers to miniaturize electronic structures to the limit where finite-size related phenomena start to impact their properties. This book discusses such phenomena and models made for their description. The book starts from the semiclassical description of nonequilibrium effects, details the scattering theory used for quantum transport calculations, and explains the main interference effects. It also describes how to treat fluctuations and correlations, how interactions affect transport through small islands, and how superconductivity modifies these effects. The last two chapters describe new emerging fields related with graphene and nanoelectromechanics. The focus of the book is on the phenomena rather than formalism, but the book still explains in detail the main models constructed for these phenomena. It also introduces a number of electronic devices, including the single-electron transistor, the superconducting tunnel junction refrigerator, and the s...

  6. Astronomy in the Middle of the World: a physical analysis of the astronomic phenomena at Latitude Zero

    Science.gov (United States)

    Silva, J. N.; Voelzke, M. R.; Araújo, M. S. T.

    2018-03-01

    Although Astronomy is part of everyday life of the people, peculiarities are little-known for an observer on the equator, as residents in Macapá-AP, located at Latitude Zero. So, this work aims to support physics teaching focusing on the correct diffusion of some physical phenomena which have an intrinsic relationship with Astronomy from the sight of an observer at latitude zero, highlighting the celestial sphere visualization and emphasizing which constellations are visible during an earth year, being proposed the elaboration of a planisphere to this latitude. It's also discussed about the Solstices and, more specifically, about the Equinoxes and their particularities for an observer in latitude zero. The offered approach can help teachers of Physics and Science who work in regular education schools to explore these important astronomical phenomena.

  7. Uncovering noisy social signals : Using optimization methods from experimental physics to study social phenomena

    NARCIS (Netherlands)

    Kaptein, Maurits; Van Emden, Robin; Iannuzzi, Davide

    2017-01-01

    Due to the ubiquitous presence of treatment heterogeneity, measurement error, and contextual confounders, numerous social phenomena are hard to study. Precise control of treatment variables and possible confounders is often key to the success of studies in the social sciences, yet often proves out

  8. Uncovering noisy social signals: Using optimization methods from experimental physics to study social phenomena

    NARCIS (Netherlands)

    Kaptein, M.C.; Emden, R. van; Iannuzzi, D.

    2017-01-01

    Due to the ubiquitous presence of treatment heterogeneity, measurement error, and contextual confounders, numerous social phenomena are hard to study. Precise control of treatment variables and possible confounders is often key to the success of studies in the social sciences, yet often proves out

  9. Some new and relatively infrequent phenomena by bronchography done under general venous anesthesia and monopulmonary controlled respiration

    International Nuclear Information System (INIS)

    Georgiev, G.; Nikolov, P.

    1977-01-01

    The authors share their experience in studying some new and comparatively rare phenomena found by bronchography done under general venous anestesia and succinylcholine controlled monopulmonary respiration. They discuss the false obturation of the left upper lobar bronchus, dislocation of the bronchi due to a raised diaphragm and a false obturation of a bronchus in a one act bronchoscopy-bronchography with taking of a specimen for a histologic examination. (author)

  10. Transport phenomena in environmental engineering

    Science.gov (United States)

    Sander, Aleksandra; Kardum, Jasna Prlić; Matijašić, Gordana; Žižek, Krunoslav

    2018-01-01

    A term transport phenomena arises as a second paradigm at the end of 1950s with high awareness that there was a strong need to improve the scoping of chemical engineering science. At that point, engineers became highly aware that it is extremely important to take step forward from pure empirical description and the concept of unit operations only to understand the specific process using phenomenological equations that rely on three elementary physical processes: momentum, energy and mass transport. This conceptual evolution of chemical engineering was first presented with a well-known book of R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot, Transport Phenomena, published in 1960 [1]. What transport phenomena are included in environmental engineering? It is hard to divide those phenomena through different engineering disciplines. The core is the same but the focus changes. Intention of the authors here is to present the transport phenomena that are omnipresent in treatment of various process streams. The focus in this chapter is made on the transport phenomena that permanently occur in mechanical macroprocesses of sedimentation and filtration for separation in solid-liquid particulate systems and on the phenomena of the flow through a fixed and a fluidized bed of particles that are immanent in separation processes in packed columns and in environmental catalysis. The fundamental phenomena for each thermal and equilibrium separation process technology are presented as well. Understanding and mathematical description of underlying transport phenomena result in scoping the separation processes in a way that ChEs should act worldwide.

  11. Origin of life and the underlying physics of the universe.

    Science.gov (United States)

    Conrad, M

    1997-01-01

    The thesis is put forward that the non-linear self-organizing dynamics of biological systems are inherent in any physical theory that satisfies the requirements of both quantum mechanics and general relativity. Biological life is viewed as an extension of these underlying dynamics rather than as an emergent property of systems that reached a requisite threshold of complexity at a definite point in time. The underlying dynamics are based on interactions between manifest material organizations and an unmanifest vacuum sea whose density structure is isomorphic to the metric structure of space-time. These interactions possess an intrinsic self-corrective character, due to the fact that quantum processes lead to changes in particle states that have a random aspect, while general relativity requires that the distribution of manifest and unmanifest particles be self-consistent. The model implies vacuum hysteretic effects that would bear on nanobiological phenomena and that might be detected through nanobiological techniques.

  12. Modelling high frequency phenomena in the rotor of induction motors under no-load test conditions

    International Nuclear Information System (INIS)

    Boglietti, Aldo; Bottauscio, Oriano.; Chiampi, Mario; Lazzari, Mario

    2003-01-01

    The paper aims to deep the electromagnetic phenomena in the rotor of induction motors produced during the no-load test by the high-order harmonics of the spatial distribution of magnetic flux. The analysis is carried out by a flux driven finite element procedure, which can take into account the hysteresis of magnetic material, the induced currents in rotor cage and the eddy currents in the laminations. The computed results, including losses and local waveforms of electrical and magnetic quantities, are finally discussed

  13. Investigation of Physical Phenomena and Cutting Efficiency for Laser Cutting on Anode for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Dongkyoung Lee

    2018-02-01

    Full Text Available Lithium-ion batteries have a higher energy density than other secondary batteries. Among the lithium-ion battery manufacturing process, electrode cutting is one of the most important processes since poor cut quality leads to performance degradation, separator protrusion, and local electric stress concentration. This may, eventually, lead to malfunction of lithium-ion batteries or explosion. The current mechanical cutting technology uses a contact process and this may lead to process instability. Furthermore, there are additional costs if the tools and cell design are changed. To solve these issues, laser cutting has been used. Conventional dependent parameters have limitations in investigating and explaining many physical phenomena during the laser cutting of electrodes. Therefore, this study proposes specific widths such as melting, top, and kerf width. Moreover, the relationship between laser parameters and multiphysical phenomena with the proposed widths are investigated. Five types of classification with regard to physical phenomena are presented and explained with SEM images. Cutting efficiency is estimated with the proposed widths. The proposed specific cutting widths, five types of geometrical classification, and cutting efficiency can be used as standardized parameters to evaluate the cutting quality.

  14. How would photons describe natural phenomena based upon their physical experiences?

    Science.gov (United States)

    Roychoudhuri, Chandrasekhar

    2013-10-01

    The question posed in the title represents an impossible approach to scientific investigation, but the approach is like a subjectivist. Obviously, photons cannot express their views; neither can we ask directly any scientific questions to the photons. The purpose is to draw the attention of the reader that even our strongly mathematically driven scientific enterprise is full of subjectivism when we start dissecting our thinking process. First, we frame questions in our mind to understand a natural phenomenon we have been observing. Let us not forget that framing the question determine the answer. The answers guide us to frame the foundational hypotheses to build a theory to "explain" the phenomenon under study. Our mind is a product of biological evolutionary requirements; which is further re-programmed by strong human social cultures. In other words, human constructed theories cannot spontaneously become rigorously objective, unless we consciously make them so. We need to develop a methodology of scientific thinking that will automatically force us to make repeated iterative corrections in generating questions as objectively as possible. Those questions will then guide us to re-construct the foundational hypotheses and re-frame the working theories. We are proposing that we add Interaction Process Mapping Epistemology (IPM-E) as a necessary extra thinking tool; which will complement the prevailing Measurable Data Modeling Epistemology (MDM-E). We believe that ongoing interaction processes in nature represent reality ontology. So the iterative application of IPM-E, along with MDM-E, will keep us along the route of ontological reality. We apply this prescription to reveal the universal property, Non-Interaction of Waves, which we have been neglecting for centuries. Using this property, we demonstrate that a large number of ad hoc hypotheses from Classical-, QM-, Relativity- and Astro-Physics can be easily modified to make physics more causal and understandable

  15. Nicolas Lémery (1645-1715 and his Physical-chemical Theory about Different Phenomena for Earth Sciences

    Directory of Open Access Journals (Sweden)

    Cándido Manuel GARCÍA CRUZ

    2016-06-01

    Full Text Available An unabridged translation of a work of Nicolas Lémery (1645–1715 is presented for the first time in Spanish, wherein this French chemist and apothecary attempts an explanation on physical and chemical basis of several significant phenomena in Earth Sciences, such as earthquakes, subterranean fires, hurricanes, lightning and thunder. This explanation had a common cause for all the aforementioned phenomena: the processes of mineral fermentation, in this case of sulfur and iron, as a heat source, within the corpuscular theory of matter and mechanistic philosophy, and likewise it represents an interesting contribution of the influence of chemistry on the incipient development of experimental geology at the dawn of the 18th Century. 

  16. On the study of a nonlinear higher order dispersive wave equation: its mathematical physical structure and anomaly soliton phenomena

    Science.gov (United States)

    Lee, C. T.; Lee, C. C.

    2015-04-01

    This paper introduces a systematic approach to investigate a higher order nonlinear dispersive wave equation for modeling different wave modes. We present both the conventional KdV-type soliton and anomaly type solitons for the equation. We also show the conservation laws and Hamiltonian structures for the equation. Our results suggest that the underlying equation has more interacting soliton phenomena than one would have known for the classical KdV and Boussinesq equation.

  17. Statistical issues in searches for new phenomena in High Energy Physics

    Science.gov (United States)

    Lyons, Louis; Wardle, Nicholas

    2018-03-01

    Many analyses of data in High Energy Physics are concerned with searches for New Physics. We review the statistical issues that arise in such searches, and then illustrate these using the specific example of the recent successful search for the Higgs boson, produced in collisions between high energy protons at CERN’s Large Hadron Collider.

  18. Inference of physical phenomena from FFTF [Fast Flux Test Facility] noise analysis

    International Nuclear Information System (INIS)

    Thie, J.A.; Damiano, B.; Campbell, L.R.

    1989-01-01

    The source of features observed in noise spectra collected by an automated data collection system operated by the Oak Ridge National Laboratory at the Fast Flux Test Facility (FFTF) can be identified using a methodology based on careful data observation and intuition. When a large collection of data is available, as in this case, automatic pattern recognition and parameter storage and retrieval using a data base can be used to extract useful information. However, results can be limited to empirical signature comparison monitoring unless an effort is made to determine the noise sources. This paper describes the identification of several FFTF noise data phenomena and suggests how this understanding may lead to new or enhanced monitoring. 13 refs., 4 figs

  19. Fluid Physics and Transport Phenomena in a Simulated Reduced Gravity Environment

    Science.gov (United States)

    Lipa, J.

    2004-01-01

    We describe a ground-based apparatus that allows the cancellation of gravity on a fluid using magnetic forces. The present system was designed for liquid oxygen studies over the range 0.001 - 5 g s. This fluid is an essential component of any flight mission using substantial amounts of liquid propellant, especially manned missions. The apparatus has been used to reduce the hydrostatic compression near the oxygen critical point and to demonstrate inverted phase separation. It could also be used to study pool boiling and two-phase heat transfer in Martian, Lunar or near-zero gravity, as well as phenomena such as Marangoni flow and convective instabilities. These studies would contribute directly to the reliability and optimization of the Moon and Mars flight programs.

  20. Tonic and phasic phenomena underlying eye movements during sleep in the cat.

    Science.gov (United States)

    Márquez-Ruiz, Javier; Escudero, Miguel

    2008-07-15

    Mammalian sleep is not a homogenous state, and different variables have traditionally been used to distinguish different periods during sleep. Of these variables, eye movement is one of the most paradigmatic, and has been used to differentiate between the so-called rapid eye movement (REM) and non-REM (NREM) sleep periods. Despite this, eye movements during sleep are poorly understood, and the behaviour of the oculomotor system remains almost unknown. In the present work, we recorded binocular eye movements during the sleep-wake cycle of adult cats by the scleral search-coil technique. During alertness, eye movements consisted of conjugated saccades and eye fixations. During NREM sleep, eye movements were slow and mostly unconjugated. The two eyes moved upwardly and in the abducting direction, producing a tonic divergence and elevation of the visual axis. During the transition period between NREM and REM sleep, rapid monocular eye movements of low amplitude in the abducting direction occurred in coincidence with ponto-geniculo-occipital waves. Along REM sleep, the eyes tended to maintain a tonic convergence and depression, broken by high-frequency bursts of complex rapid eye movements. In the horizontal plane, each eye movement in the burst comprised two consecutive movements in opposite directions, which were more evident in the eye that performed the abducting movements. In the vertical plane, rapid eye movements were always upward. Comparisons of the characteristics of eye movements during the sleep-wake cycle reveal the uniqueness of eye movements during sleep, and the noteworthy existence of tonic and phasic phenomena in the oculomotor system, not observed until now.

  1. Elementary particle physics and high energy phenomena. Progress report for FY92

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  2. Phenomena-based Uncertainty Quantification in Predictive Coupled- Physics Reactor Simulations

    International Nuclear Information System (INIS)

    Adams, Marvin

    2017-01-01

    This project has sought to develop methodologies, tailored to phenomena that govern nuclearreactor behavior, to produce predictions (including uncertainties) for quantities of interest (QOIs) in the simulation of steady-state and transient reactor behavior. Examples of such predictions include, for each QOI, an expected value as well as a distribution around this value and an assessment of how much of the distribution stems from each major source of uncertainty. The project has sought to test its methodologies by comparing against measured experimental outcomes. The main experimental platform has been a 1-MW TRIGA reactor. This is a flexible platform for a wide range of experiments, including steady state with and without temperature feedback, slow transients with and without feedback, and rapid transients with strong feedback. The original plan was for the primary experimental data to come from in-core neutron detectors. We made considerable progress toward this goal but did not get as far along as we had planned. We have designed, developed, installed, and tested vertical guide tubes, each able to accept a detector or stack of detectors that can be moved axially inside the tube, and we have tested several new detector designs. One of these shows considerable promise.

  3. Phenomena-based Uncertainty Quantification in Predictive Coupled- Physics Reactor Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Marvin [Texas A & M Univ., College Station, TX (United States)

    2017-06-12

    This project has sought to develop methodologies, tailored to phenomena that govern nuclearreactor behavior, to produce predictions (including uncertainties) for quantities of interest (QOIs) in the simulation of steady-state and transient reactor behavior. Examples of such predictions include, for each QOI, an expected value as well as a distribution around this value and an assessment of how much of the distribution stems from each major source of uncertainty. The project has sought to test its methodologies by comparing against measured experimental outcomes. The main experimental platform has been a 1-MW TRIGA reactor. This is a flexible platform for a wide range of experiments, including steady state with and without temperature feedback, slow transients with and without feedback, and rapid transients with strong feedback. The original plan was for the primary experimental data to come from in-core neutron detectors. We made considerable progress toward this goal but did not get as far along as we had planned. We have designed, developed, installed, and tested vertical guide tubes, each able to accept a detector or stack of detectors that can be moved axially inside the tube, and we have tested several new detector designs. One of these shows considerable promise.

  4. Elementary particle physics and high energy phenomena. Progress report for FY93

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z{sup 0} with the SLD detector; fixed-target K-decay experiments; the R&D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs.

  5. Relaxation phenomena of polar non-polar liquid mixtures under low ...

    Indian Academy of Sciences (India)

    The hf s in Coulomb metre (C m) when compared with static and reported s indicate that ss favour the monomer formations which combine to form dimers in the hf electric field. The comparison among s shows that a part of the molecule is rotating under X-band electric field [5]. The theoretical theos from available ...

  6. Encouraging Prospective Teachers to Engage Friends and Family in Exploring Physical Phenomena

    Science.gov (United States)

    Crowl, Michele; Devitt, Adam; Jansen, Henri; van Zee, Emily H.; Winograd, Kenneth J.

    2013-01-01

    Involving people outside of a science course can foster learning for students enrolled in the course. Assignments involving friends and family provided such opportunities in an undergraduate physics course for prospective teachers. These assignments included reflecting upon prior experiences, interviewing friends and family members, engaging them…

  7. Paradox phenomena of proton exchange membrane fuel cells operating under dead-end anode mode

    Science.gov (United States)

    Jiang, Dong; Zeng, Rong; Wang, Shumao; Jiang, Lijun; Varcoe, John R.

    2014-11-01

    By using two spatially separated reference electrodes in a single cell proton-exchange membrane fuel cell (PEMFC), the individual potentials of the anode and cathode are recorded under realistic operating conditions. The PEMFC is operated under dead-end anode (DEA) mode, without any humidification, to mitigate water accumulation at the anode. Although N2 crossover from cathode to anode may play an important role in PEMFCs operating under DEA mode, our results unexpectedly show that the over-potentials of both the anode and cathode concomitantly increased or decreased at the same time. The increases of over-potentials correlate to the increase of the high frequency resistance of the cell (Rhf) imply that the water content in the membrane electrode assemblies is critical. However, the subsequent H2 depletion tests suggest that water may accumulate at the interface between the surface of the catalyst and the ultrathin perfluorosulfonic acid (PFSA) ionomer film and this contradicts the above (the increase in Rhf implies the drying out of the MEAs). This study highlights the need for further research into understanding the water transport properties of the ultrathin PFSA ionomer film (<60 nm): it is clear that these exhibit completely different properties to that of bulk proton-exchange membranes (PEM).

  8. Anomaly! collider physics and the quest for new phenomena at Fermilab

    CERN Document Server

    Dorigo, Tommaso

    2017-01-01

    From the mid-1980s, an international collaboration of 600 physicists embarked on the investigation of subnuclear physics at the high-energy frontier. As well as discovering the top quark, the heaviest elementary particle ever observed, the physicists analyzed their data to seek signals of new physics which could revolutionize our understanding of nature. Anomaly! tells the story of that quest, and focuses specifically on the finding of several unexplained effects which were unearthed in the process. These anomalies proved highly controversial within the large team: to some collaborators they called for immediate publication, while to others their divulgation threatened to jeopardize the reputation of the experiment. Written in a confidential, narrative style, this book looks at the sociology of a large scientific collaboration, providing insight in the relationships between top physicists at the turn of the millennium. The stories offer an insider's view of the life cycle of the "failed" discoveries that un...

  9. Esoteric elementary particle phenomena in undergraduate physics: spontaneous symmetry breaking and scale invariance

    International Nuclear Information System (INIS)

    Greenberger, D.M.

    1978-01-01

    We take two rather abstract concepts from elementary particle physics, and show that there actually exist analogs to both of them in undergraduate physics. In the case of spontaneous symmetry breaking, we provide an example where the most symmetrical state of a simple system suddenly becomes unstable, while a less symmetrical state develops lower energy and becomes stable. In the case of scale invariance, we consider an example with no natural scale determined, and show that a straightforward dimensional analysis of the problem leads to incorrect results, because of the occurrence of infinities, even though they would appear to be irrelevant infinities that might not be expected to affect the dimensions of the answer. We then show how a simple use of the scale invariance of the problem leads to the correct answer

  10. Study of surface phenomena in biomaterials: The influence of physical factors

    Science.gov (United States)

    Sachelarie, Liliana; Vasiliu, Mihaela Papusa; Ciobanu, Catalina

    2015-10-01

    This study's purpose is pointing out the phenomenon that occurs at time of interaction between the tissue with implant. The materials used are Ti and its alloys. The oral tissue must be compatible with the materials used in surgical implant to human body. The bio-materials surface behavior is influenced by physical characteristics. The methods we use show a number of bio-compatibility aspects. The success of an implant in a hard tissue depends not only on the initial attachment and the osteogenic cells consecutive proliferation, but also on their capacity to create a new bone.

  11. Study of surface phenomena in biomaterials: The influence of physical factors

    Energy Technology Data Exchange (ETDEWEB)

    Sachelarie, Liliana, E-mail: lisachero@yahoo.com; Vasiliu, Mihaela Papusa; Ciobanu, Catalina

    2015-10-15

    This study's purpose is pointing out the phenomenon that occurs at time of interaction between the tissue with implant. The materials used are Ti and its alloys. The oral tissue must be compatible with the materials used in surgical implant to human body. The bio-materials surface behavior is influenced by physical characteristics. The methods we use show a number of bio-compatibility aspects. The success of an implant in a hard tissue depends not only on the initial attachment and the osteogenic cells consecutive proliferation, but also on their capacity to create a new bone.

  12. FLARE: A New User Facility for Laboratory Studies of Multiple-Scale Physics of Magnetic Reconnection and Related Phenomena in Heliophysics and Astrophysics

    Science.gov (United States)

    Ji, H.; Bhattacharjee, A.; Goodman, A.; Prager, S.; Daughton, W.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Kozub, T.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Sloboda, P.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.

    2017-10-01

    The FLARE device (Facility for Laboratory Reconnection Experiments; flare.pppl.gov) is a new laboratory experiment under construction at Princeton with first plasmas expected in the fall of 2017, based on the design of Magnetic Reconnection Experiment (MRX; mrx.pppl.gov) with much extended parameter ranges. Its main objective is to provide an experimental platform for the studies of magnetic reconnection and related phenomena in the multiple X-line regimes directly relevant to space, solar, astrophysical and fusion plasmas. The main diagnostics is an extensive set of magnetic probe arrays, simultaneously covering multiple scales from local electron scales ( 2 mm), to intermediate ion scales ( 10 cm), and global MHD scales ( 1 m). Specific example space physics topics which can be studied on FLARE will be discussed.

  13. Physical modelling of near-wall phenomena in entrained-flow coal gasifiers

    OpenAIRE

    Troiano, Maurizio

    2015-01-01

    Combustion and gasification under slagging conditions are key aspects of the design of modern entrained-flow reactors for thermal conversion of solid fuels, aimed at increasing the overall energy efficiency. In these systems, solid particles migrate toward the reactor walls, due to swirled/tangential flow induced in the reaction chamber and to turbophoresis, generating, thanks to the very high operating temperatures, a slag layer that flows along the reactor internal walls and is drained to t...

  14. Dynamic modeling of physical phenomena for probabilistic risk assessments using artificial neural networks

    International Nuclear Information System (INIS)

    Benjamin, A.S.; Paez, T.L.; Brown, N.N.

    1998-01-01

    In most probabilistic risk assessments, there is a subset of accident scenarios that involves physical challenges to the system, such as high heat rates and/or accelerations. The system's responses to these challenges may be complicated, and their prediction may require the use of long-running computer codes. To deal with the many scenarios demanded by a risk assessment, the authors have been investigating the use of artificial neural networks (ANNs) as a fast-running estimation tool. They have developed a multivariate linear spline algorithm by extending previous ANN methods that use radial basis functions. They have applied the algorithm to problems involving fires, shocks, and vibrations. They have found that within the parameter range for which it is trained, the algorithm can simulate the nonlinear responses of complex systems with high accuracy. Running times per case are less than one second

  15. Physical interpretation of geysering phenomena and periodic boiling instability at low flows

    International Nuclear Information System (INIS)

    Duffey, R.B.; Rohatgi, U.S.

    1996-01-01

    Over 30 years ago, Griffith showed that unstable and periodic initial boiling occurred in stagnant liquids in heated pipes coupled to a cooler or condensing plenum volume. This was called ''geysering'', and is a similar phenomenon to the rapid nucleation and voiding observed in tubes filled with superheated liquid. It is also called ''bumping'' when non-uniformly heated water or a chemical suddenly boils in laboratory glassware. In engineering, the stability and predictability has importance to the onset of bulk boiling in a natural and forced circulation loops. The latest available data show the observed stability and periodicity of the onset of boiling flow when there is a plenum, multiple heated channels, and a sustained subcooling in a circulating loop. We examine the available data, both old and new, and develop a new theory to illustrate the simple physics causing the observed periodicity of the flow. We examine the validity of the theory by comparison to all the geysering data, and develop a useful and simple correlation. We illustrate the equivalence of the onset of geysering to the onset of static instability in subcooled boiling. We also derive the stability boundary for geysering, utilizing turbulent transport analysis to determine the effects of pressure and other key parameters. This new result explains the greater stability region observed at higher pressures. The paper builds on the 30 years of quite independent thermal hydraulic work that is still fresh and useful today. We discuss the physical interpretation of geysering onset with a consistent theory, and show where refinements would be useful to the data correlations

  16. X-Ray Visualisation Of High Speed Phenomena: Application To The Behavior Of Materials Under High Explosives Loading

    Science.gov (United States)

    Hauducoeur, A.; Fischer, D.; Guix, R.

    1983-08-01

    Flash Radiography and Cineradiography allow the visualisation of high speed phenomena and the stop motion effect with recording on film of qualitative and quantitative data on the dynamic state of the matter under very intense shock waves. In this paper, we present a set of experimental devices and results obtained with a large range of flash X-ray generators : - small generators made with Marx discharge circuits coupled to void X-ray tubes, working up to 2.5 MV, - a big flash machine, GREC (presented at this conference (ref.1))used with very absor-bing materials. The presented applications illustrate a large field of experiments in the field of shock waves, interaction of 2 shock or detonation waves, flow visualisation of detonation, Taylor instabilities/metal jetting, spalling in iron...

  17. Non-equilibrium phenomena in confined soft matter irreversible adsorption, physical aging and glass transition at the nanoscale

    CERN Document Server

    2015-01-01

    This book presents cutting-edge experimental and computational results and provides comprehensive coverage on the impact of non-equilibrium structure and dynamics on the properties of soft matter confined to the nanoscale. The book is organized into three main sections: ·         Equilibration and physical aging: by treating non-equilibrium phenomena with the formal methodology of statistical physics in bulk, the analysis of the kinetics of equilibration sheds new light on the physical origin of the non-equilibrium character of thin polymer films. Both the impact of sample preparation and that of interfacial interactions are analyzed using a large set of experiments. A historical overview of the investigation of the non-equilibrium character of thin polymer films is also presented. Furthermore, the discussion focuses on how interfaces and geometrical confinement perturb the pathways and kinetics of equilibrations of soft glasses (a process of tremendous technological interest). ·         Irr...

  18. Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13

    Energy Technology Data Exchange (ETDEWEB)

    Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.; DeWolfe, Oliver; Ford, William T.; Hasenfratz, Anna; Mahanthappa, K. T.; Marino, Alysia D.; Nauenberg, Uriel; Smith, James G.; Stenson, Kevin; Wagner, Stephen R.; Zimmerman, Eric D.

    2013-06-27

    The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions, lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.

  19. Cavitation phenomena in mechanical heart valves: studied by using a physical impinging rod system.

    Science.gov (United States)

    Lo, Chi-Wen; Chen, Sheng-Fu; Li, Chi-Pei; Lu, Po-Chien

    2010-10-01

    When studying mechanical heart valve cavitation, a physical model allows direct flow field and pressure measurements that are difficult to perform with actual valves, as well as separate testing of water hammer and squeeze flow effects. Movable rods of 5 and 10 mm diameter impinged same-sized stationary rods to simulate squeeze flow. A 24 mm piston within a tube simulated water hammer. Adding a 5 mm stationary rod within the tube generated both effects simultaneously. Charged-coupled device (CCD) laser displacement sensors, strobe lighting technique, laser Doppler velocimetry (LDV), particle image velocimetry (PIV) and high fidelity piezoelectric pressure transducers measured impact velocities, cavitation images, squeeze flow velocities, vortices, and pressure changes at impact, respectively. The movable rods created cavitation at critical impact velocities of 1.6 and 1.2 m/s; squeeze flow velocities were 2.8 and 4.64 m/s. The isolated water hammer created cavitation at 1.3 m/s piston speed. The combined piston and stationary rod created cavitation at an impact speed of 0.9 m/s and squeeze flow of 3.2 m/s. These results show squeeze flow alone caused cavitation, notably at lower impact velocity as contact area increased. Water hammer alone also caused cavitation with faster displacement. Both effects together were additive. The pressure change at the vortex center was only 150 mmHg, which cannot generate the magnitude of pressure drop required for cavitation bubble formation. Cavitation occurred at 3-5 m/s squeeze flow, significantly different from the 14 m/s derived by Bernoulli's equation; the temporal acceleration of unsteady flow requires further study.

  20. EFFECT OF FLUCTUATION OF WETTING AND DRYING PHENOMENA ON SOIL FERTILITY STATUS UNDER RICE CULTIVATION IN WETLAND SOIL IN RWANDA

    Directory of Open Access Journals (Sweden)

    Hamudu Rukangantambara

    2014-01-01

    Full Text Available Since 1980, wetland s in Rwanda have been considered as important areas for agriculture intensification through improving food security and incomes to the farmers. However, changes in the soil nutrient status due to repeatedly wetting and drying phenomena may considerably affect soil fertility status thus leading to low crop productivity of the wetlands. This has consequently created fear to the wetland users especially the local farmers, extension workers and agronomists. The comparative study was conducted to assess the effect of drained and irrigated phenomena at Mamba, Rwasave and Rugeramigozi marshlands on soil fertility change under rice growing. 24 samples were taken with 12 samples under drained and 12 under irrigated areas. The samples were collected randomly from top soil ( 0- 20 cm. The following parameters were quantified; soil pH( H 2O in soil water suspension with ratio 1:2.5; Al exchangeable( 1N Kcl, organic carbon( walkely and black method in Sumner method modified (1984, Total nitrogen kjeldahl (TNK in Bremner modified method, available phosphorus ( bray 1. Bases exchangeable with 1 N ammonium acetate following AAS and CEC and available Fe, Zn, Cu and Mn (DTDA diethylenetriaminepentaacetic acid. Data analyses were processed with GEN STAT version 3. The results showed that the fluctuation of wet and dry water have significantly affected soil fertility status at p= 0,05. The phosphorus and potassium are in the low levels of deficiency 2.32 ppm and 47.72 ppm in irrigated area while crop requirement nutrients are 20 ppm and 200 ppm respectively. And Al is in toxic level conditions, 27.5% in drained area while rice tolerance is 20%. Fe was 641.51 ppm in irrigated area while requirement narrowed to 300 ppm. As conclusion, the soil fertility is low and toxic which constitutes a limitation. The wetland soil in Rwanda should offer opportunities for paddy growing ( rice, etc, if soil fertility factors would be amended by lime for its

  1. Using analog instruments in Tracker video-based experiments to understand the phenomena of electricity and magnetism in physics education

    Science.gov (United States)

    Aguilar-Marín, Pablo; Chavez-Bacilio, Mario; Jáuregui-Rosas, Segundo

    2018-05-01

    Tracker is a piece of freeware software, designed to use video recorded images of the motion of objects as input data, and has been mostly applied in physics education to analyse and simulate physical phenomena in mechanics. In this work we report the application of Tracker to the study of experiments in electricity and magnetism using analog instruments for electrical signal measurements. As we are unable to directly video-track the motion of electrons in electric circuits, the angular deflections of the instruments’ pointers were video captured instead. The kinematic variables (angular position as a function of time) had to be related to the electrical ones (voltages and currents as a function of time). Two well-known experiments in physics teaching, the RC circuit for charging and discharging a capacitor and Faraday electromagnetic induction, were chosen to illustrate the procedures. The third experiment analysed and modeled with Tracker was the rather well-known electromagnetic retardation of disk- or cylinder-shaped magnets falling inside non-magnetic metallic pipes. Instead of metallic pipes we used an aluminum plate with an arrangement of a couple of parallelepiped-shaped magnets falling parallel to the plate. In the three cases studied, the experimental and the Tracker simulation results were in very good agreement. These outcomes show that it is possible to exploit the potential of Tracker software in areas other than mechanics, in areas where electrical signals are involved. The experiments are inexpensive and simple to perform, and are suitable for high school and introductory undergraduate courses in electricity, magnetism and electronics. We propose the use of Tracker combined with analog measuring devices to explore further its applications in electricity, magnetism, electronics and in other experimental sciences where electrical signals are involved.

  2. La cultura física y el deporte: fenómenos sociales /Physical culture and sport: social phenomena

    Directory of Open Access Journals (Sweden)

    Diana A. Camargo R

    2013-08-01

    Full Text Available La cultura física y el deporte son categorías que se han relacionado con la actividad física y la educación física a lo largo del tiempo, retomando diferentes paradigmas de conocimiento; sin embargo, el paradigma imperante ha sido el empírico-analítico, que reduce la mirada a los fenómenos medibles y observables. Objetivo: identificar las concepciones y enfoques de la cultura física y el deporte en los diferentes momentos de la historia, planteados desde la lógica del modelo de la determinación social propio de la epidemiología crítica. Metodología: revisión sistemática que permite reconocer los conceptos, teorías y modelos planteados nacional e internacionalmente alrededor de las categorías cultura física y deporte, tomando como modelo de análisis la determinación social. Resultados: la cultura física es un concepto relacionado con el cuerpo, la cultura y el movimiento que no se reconoce en las bases de datos; por el contrario, se relaciona con términos de búsqueda como deporte, recreación y actividad física. No obstante, en algunos países la cultura física se considera como un conjunto de programas y acciones desarrollados desde las áreas del deporte, la recreación y la actividad física, la cual se incluye dentro de las políticas públicas y planes de gobierno. Discusión: en Colombia no hay claridad sobre el significado y la implementación de la cultura física, por esto, se hace necesario revisar este concepto, el cual se ha utilizado dentro los procesos de formación de los profesionales de cultura física, el deporte y la recreación. -- Physical culture and sport are categories that have been associated with physical activity and physical education throughout time while picking up different paradigms of knowledge. However, the prevailing paradigm has been the empirical and analytical view, which focuses only on measurable and observable phenomena. Objective: to identify the concepts and approaches

  3. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  4. Science and Paranormal Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H. Pierre

    1999-06-03

    In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ''historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ''paranormal phenomena'' might-but need not- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be defined as contradicting physics.

  5. Dimensional analysis yields the general second-order differential equation underlying many natural phenomena: the mathematical properties of a phenomenon's data plot then specify a unique differential equation for it.

    Science.gov (United States)

    Kepner, Gordon R

    2014-08-27

    This study uses dimensional analysis to derive the general second-order differential equation that underlies numerous physical and natural phenomena described by common mathematical functions. It eschews assumptions about empirical constants and mechanisms. It relies only on the data plot's mathematical properties to provide the conditions and constraints needed to specify a second-order differential equation that is free of empirical constants for each phenomenon. A practical example of each function is analyzed using the general form of the underlying differential equation and the observable unique mathematical properties of each data plot, including boundary conditions. This yields a differential equation that describes the relationship among the physical variables governing the phenomenon's behavior. Complex phenomena such as the Standard Normal Distribution, the Logistic Growth Function, and Hill Ligand binding, which are characterized by data plots of distinctly different sigmoidal character, are readily analyzed by this approach. It provides an alternative, simple, unifying basis for analyzing each of these varied phenomena from a common perspective that ties them together and offers new insights into the appropriate empirical constants for describing each phenomenon.

  6. Underlying Mechanisms of Improving Physical Activity Behavior after Rehabilitation

    NARCIS (Netherlands)

    van der Ploeg, Hidde P.; Streppel, Kitty R.M.; van der Beek, Allard J.; Woude, Luc H.V.; van Harten, Willem H.; Vollenbroek-Hutten, Miriam Marie Rosé; van Mechelen, Willem

    2008-01-01

    Background: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. Purpose: To study the underlying mechanisms of the combined sport

  7. Neutron Stars: Laboratories for Fundamental Physics Under ...

    Indian Academy of Sciences (India)

    DEBADES BANDYOPADHYAY

    2017-09-07

    Sep 7, 2017 ... American Physical Society in 1933, Baade & Zwicky ... of pulsars and black holes using the SKA and LIGO-. India along with other ..... a black hole. Different groups investigated the problem of stability of a PNS for short times. When a PNS is made up of nucleons and leptons, it has a slightly smaller max-.

  8. Index-Based Assessment of Voltage Rise and Reverse Power Flow Phenomena in a Distribution Feeder Under High PV Penetration

    DEFF Research Database (Denmark)

    Hasheminamin, Maryam; Agelidis, Vassilios G.; Salehi, Vahid

    2015-01-01

    -based methodology for assessing the impact of high solar PV generation, considering the reverse power flow and voltage rise phenomena. Indices are defined that link these two phenomena and their impact on the voltage profile across the feeder. This assessment relies on detailed modeling of the network and the solar......The proliferation of photovoltaic (PV) generation in low- and medium-voltage distribution networks is expected to continue. Qualified studies can quantify adverse impacts of high PV penetration on distribution networks and assist utilities in decision making. This paper proposes an index...

  9. Transport Phenomena.

    Science.gov (United States)

    Shah, D. B.

    1984-01-01

    Describes a course designed to achieve a balance between exposing students to (1) advanced topics in transport phenomena, pointing out similarities and differences between three transfer processes and (2) common methods of solving differential equations. (JN)

  10. Growth modeling of the green microalga Scenedesmus obliquus in a hybrid photobioreactor as a practical tool to understand both physical and biochemical phenomena in play during algae cultivation.

    Science.gov (United States)

    Tramontin, Deise P; Gressler, Pablo D; Rörig, Leonardo R; Derner, Roberto B; Pereira-Filho, Jurandir; Radetski, Claudemir M; Quadri, Marintho B

    2018-04-01

    In recent years, numerous studies have justified the use of microalgae as a sustainable alternative for the generation of different types of fuels, food supplementation, and cosmetics, as well as bioremediation processes. To improve the cost/benefit ratio of microalgae mass production, many culture systems have been built and upgraded. Mathematical modeling the growth of different species in different systems has become an efficient and practical tool to understand both physical and biochemical phenomena in play during algae cultivation. In addition, growth modeling can guide design changes that lead to process optimization. In the present work, growth of the green microalga Scenedesmus obliquus was modeled in a hybrid photobioreactor that combines the characteristics of tubular photobioreactors (TPB) with thin-layer cascades (TLC). The system showed productivity greater than 8.0 g m -2 day -1 (dry mass) for CO 2 -fed cultures, and the model proved to be an accurate representation of experimental data with R 2 greater than 0.7 for all cases under variable conditions of temperature and irradiance to determine subsystem efficiency. Growth modeling also allowed growth prediction relative to the operating conditions of TLC, making it useful for estimating the system given other irradiance and temperature conditions, as well as other microalgae species. © 2017 Wiley Periodicals, Inc.

  11. The physical phenomena associated with stator winding insulation condition as detected by the ramped direct high-voltage method

    Science.gov (United States)

    Rux, Lorelynn Mary

    Deregulation of the electric utility industry has increased the need to monitor the state of powerplant equipment, such as critical generators and motors, to improve availability and reduce life cycle costs via condition-based maintenance. To achieve these goals, nondestructive condition assessment and diagnostic tests are necessary to evaluate the quality and condition of a machine's stator winding insulation system. Periodic tests are generally conducted to monitor insulation aging, diagnose problems, or provide some assurance that the winding has a minimum level of electrical strength. The basic principles of insulation testing are presented herein, and the physical mechanisms that affect the current versus voltage response are described. A stator winding insulation model was developed based on this theoretical foundation for use in understanding and analyzing the macroscopic behavior of complex insulation phenomena. A comprehensive, controlled laboratory experiment was conducted on a set of stator coils that were deliberately manufactured with and without insulation defects. Specific defects were chosen to represent the types of insulation problems typically encountered during manufacture or as a result of in-service aging, and included lack of resin cure, loosely-applied insulating tapes, internal conductive contamination, reduced density of the groundwall insulation, and thermal cycling damage. Results are presented from a series of electrical tests conducted on the coil specimens to compare the effectiveness of various test methods in detecting the different insulation problems. The tests included insulation resistance, polarization index, ramped direct voltage, dissipation factor, dielectric spectroscopy, partial discharge, and recovery voltage measurements. Dielectric principles and testing experience obtained during this investigation were applied to a collection of test results obtained by the author from in-service machines during the past ten years

  12. Fundamentals of Fire Phenomena

    DEFF Research Database (Denmark)

    Quintiere, James

    analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...... as a visiting professor at BYG.DTU financed by the Larsen and Nielsen Foundation, and is entered to the research database by Kristian Hertz responsible for the visiting professorship....

  13. Resistive switching phenomena of extended defects in Nb-doped SrTiO3 under influence of external gradients

    International Nuclear Information System (INIS)

    Rodenbuecher, Christian

    2014-01-01

    Redox-based memristive materials have attracted much attention in the last decade owing to their ability to change the resistance upon application of an electric field making them promising candidates for future non-volatile memories. However, a fundamental understanding of the nature of the resistive switching effect, which is indispensable for designing future technological applications,is still lacking. As a prototype material of a memristive oxide, strontium titanate (SrTiO 3 ) has been investigated intensively and it was revealed that the valence change of a Ti ''d'' electron plays an important role during resistive switching related to insulator-to-metal transition. Such a transition can be induced by electrical gradients, by chemical gradients, by a combination of these gradients or by donor doping. Hence, SrTiO 3 doped with the donor Nb should have metallic properties and is used commonly as a conducting substrate for the growth of functional oxide thin films. Nevertheless,the resistive switching effect has also be observed in Nb-doped SrTiO 3 . This paradoxical situation offers a unique opportunity to gain an insight into the processes during the insulator-to metal transition. In this thesis, a comprehensive study of the influence of external gradients on SrTiO 3 :Nb single crystals is presented. The focus is especially set on the investigation of the crystallographic structure, the chemical composition, the electronic structure, the lattice dynamics and the electronic transport phenomena using surface-sensitive methods on the macro- and nanoscale. On the as-received epi-polished single crystals, the evolution of a surface layer having a slight excess of strontium and - in contrast to the bulk of the material - semiconducting properties are observed. Hence, the key for understanding of the resistive switching effect is the knowledge of the nature of the surface layer. On the basis of systematic studies of the influence of external

  14. Physical and chemical mechanisms underlying hematoma evolution

    International Nuclear Information System (INIS)

    Cho, K.J.; Fanders, B.L.; Smid, A.R.; McLaughlin, P.

    1986-01-01

    Angiostat, a new collagen embolic material supplied at a concentration of 35 mg/ml (Target Therapeutics, Los Angeles) was used for flow-directed hepatic artery embolization in a series of rabbits to examine its acute effects on hepatic microcirculation. Arteriograms were obtained both before and after embolization. The aorta and portal vein were perfused with two different colors of Microfil after the animals were killed,. Cleared liver specimens were examined under a dissection microscope. Extent of dearterialization, status of portal sinusoidal perfusion, and collateral formation after embolization with Angiostat were evaluated. Results will be compared with results achieved using other liquid and particulate embolic agents

  15. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  16. Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena

    International Nuclear Information System (INIS)

    Akchurin, Garif; Khlebtsov, Boris; Akchurin, Georgy; Tuchin, Valery; Zharov, Vladimir; Khlebtsov, Nikolai

    2008-01-01

    Laser-nanoparticle interaction is crucial for biomedical applications of lasers and nanotechnology to the treatment of cancer or pathogenic microorganisms. We report on the first observation of laser-induced coloring of gold nanoshell solution after a one nanosecond pulse and an unprecedentedly low bubble formation (as the main mechanism of cancer cell killing) threshold at a laser fluence of about 4 mJ cm -2 , which is safe for normal tissue. Specifically, silica/gold nanoshell (140/15 nm) suspensions were irradiated with a single 4 ns (1064 nm) or 8 ns (900 nm) laser pulse at fluences ranging from 0.1 mJ cm -2 to 50 J cm -2 . Solution red coloring was observed by the naked eye confirmed by blue-shifting of the absorption spectrum maximum from the initial 900 nm for nanoshells to 530 nm for conventional colloidal gold nanospheres. TEM images revealed significant photomodification of nanoparticles including complete fragmentation of gold shells, changes in silica core structure, formation of small 20-30 nm isolated spherical gold nanoparticles, gold nanoshells with central holes, and large and small spherical gold particles attached to a silica core. The time-resolved monitoring of bubble formation phenomena with the photothermal (PT) thermolens technique demonstrated that after application of a single 8 ns pulse at fluences 5-10 mJ cm -2 and higher the next pulse did not produce any PT response, indicating a dramatic decrease in absorption because of gold shell modification. We also observed a dependence of the bubble expansion time on the laser energy with unusually very fast PT signal rising (∼3.5 ns scale at 0.2 J cm -2 ). Application of the observed phenomena to medical applications is discussed, including a simple visual color test for laser-nanoparticle interaction

  17. Fundamentals of wave phenomena

    CERN Document Server

    Hirose, Akira

    2010-01-01

    This textbook provides a unified treatment of waves that either occur naturally or can be excited and propagated in various media. This includes both longitudinal and transverse waves. The book covers both mechanical and electrical waves, which are normally covered separately due to their differences in physical phenomena.

  18. Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media

    Science.gov (United States)

    Shamshuddin, MD.; Anwar Bég, O.; Sunder Ram, M.; Kadir, A.

    2018-02-01

    Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic, incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland's diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted.

  19. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.

    Science.gov (United States)

    Merkel, A; Tournat, V; Gusev, V

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.

  20. Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lin, Shih-Cheng

    2015-01-01

    The reaction phenomena of CPOM (catalytic partial oxidation of methane) in a Swiss-roll reactor are studied numerically where a rhodium-based catalyst bed is embedded at the center of the reactor. CO 2 is added into the feed gas and excess enthalpy recovery is performed to evaluate their influences on CPOM performance. In the study, the mole ratio of O 2 to CH 4 (O 2 /CH 4 ratio) is fixed at 0.5 and the mole ratio of CO 2 to O 2 (CO 2 /O 2 ratio) is in the range of 0–2. The results reveal that CO 2 addition into the influent has a slight effect on methane combustion, but significantly enhances dry reforming and suppresses steam reforming. The reaction extents of steam reforming and dry reforming in CPOM without heat recovery and CO 2 addition are in a comparable state. Once CO 2 is added into the feed gas, the dry reforming is enhanced, thereby dominating CH 4 consumption. Compared to the reactor without excess enthalpy recovery, heat recirculation drastically increases the maximum reaction temperature and CH 4 conversion in the catalyst bed; it also intensifies the H 2 selectivity, H 2 yield, CO 2 conversion, and syngas production rate. The predictions indicate that the heat recirculation is able to improve the syngas formation up to 45%. - Highlights: • Catalytic partial oxidation of methane with CO 2 addition and heat recovery is studied. • CO 2 addition has a slight effect on methane combustion. • CO 2 addition significantly enhances dry reforming and suppresses steam reforming. • Dry reforming dominates CH 4 consumption when CO 2 addition is large. • Heat recirculation can improve the syngas formation up to 45%

  1. Physical simulation of precipitation of radioactive element oxalates by using the harmless neodymium oxalate for studying the agglomeration phenomena

    International Nuclear Information System (INIS)

    Lalleman, Sophie; Bertrand, Murielle; Plasari, Edouard

    2012-01-01

    Oxalic precipitation is usually applied in nuclear industry to process radioactive wastes or to recover actinides from a multicomponent solution.This paper deals with the development of methods adapted to a nuclear environment in order to study the agglomeration phenomena during actinide oxalic precipitation.These methods are previously set up with harmless elements that simulate the actinide behaviour: the lanthanides. A parametric study is carried out to quantify the influence of operating parameters on the agglomeration kernel and to determine a kinetic law for this mechanism. The experimental study is performed in a continuous-MSMPR precipitator at steady-state. The method is based on the resolution of two population balances using the moment approach, one for elementary crystals and the other for agglomerates. Provided that the kinetic rates of nucleation and growth are known, the agglomeration kernel can be obtained from a mathematical treatment of the experimental particle size distributions. Results point out that experimental crystal sizes are consistent with an independent kernel. It appears that the agglomeration kernel is directly proportional to supersaturation, increases with temperature but is limited by ionic strength and shear rate. (authors)

  2. Renormalization group and critical phenomena

    International Nuclear Information System (INIS)

    Ji Qing

    2004-01-01

    The basic clue and the main steps of renormalization group method used for the description of critical phenomena is introduced. It is pointed out that this method really reflects the most important physical features of critical phenomena, i.e. self-similarity, and set up a practical solving method from it. This way of setting up a theory according to the features of the physical system is really a good lesson for today's physicists. (author)

  3. Wave phenomena

    CERN Document Server

    Towne, Dudley H

    1988-01-01

    This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.

  4. Transport phenomena in nanofluidics

    OpenAIRE

    Schoch, Reto Bruno; Han, J.; Renaud, Philippe

    2008-01-01

    Transport of fluid in and around nanometer-sized objects with at least one characteristic dimension below 100 nm renders possible phenomena that are not accessible at bigger length scales. This research field is termed nanofluidics and received its name only recently, but the roots in science and technology are broad. Nanofluidics has experienced a big growth during the last few years, confirmed by significant scientific and practical achievements. This review focuses on physical proper...

  5. Review of corrosion phenomena on zirconium alloys, niobium, titanium, inconel, stainless steel, and nickel plate under irradiation

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1975-01-01

    The role of nuclear fluxes in corrosion processes was investigated in ATR, ETR, PRTR, and in Hanford production reactors. Major effort was directed to zirconium alloy corrosion parameter studies. Corrosion and hydriding results are reported as a function of oxygen concentration in the coolant, flux level, alloy composition, surface pretreatment, and metallurgical condition. Localized corrosion and hydriding at sites of bonding to dissimilar metals are described. Corrosion behavior on specimens transferred from oxygenated to low-oxygen coolants in ETR and ATR experiments is compared. Mechanism studies suggest that a depression in the corrosion of the Zr--2.5Nb alloy under irradiation is due to radiation-induced aging. The radiation-induced onset of transition on several alloys is in general a gradual process which nucleates locally, causing areas of oxide prosity which eventually encompass the surface. Examination of Zry-2 process tubes reveals that accelerated corrosion has occurred in low-oxygen coolants. Hydrogen contents are relatively low, but show some localized profiles. Gross hydriding has occurred on process tubes containing aluminum spacers, apparently by a galvanic charging mechanism. Titanium paralleled Zry-2 in corrosion behavior under irradiation. Niobium corrosion was variable, but did not appear to be strongly influenced by radiation. Corrosion rates on Inconel and stainless steel were only slightly higher in-flux than out-of-reactor. Corrosion rates on nickel-plated aluminum appeared to vary substantially with preexposure treatments, but the rates generally were accelerated compared to rates on unirradiated coupons. (59 references, 11 tables, 12 figs.)

  6. A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression.

    Science.gov (United States)

    Lee, Chi-Seung; Lee, Jae-Myung; Youn, BuHyun; Kim, Hyung-Sik; Shin, Jong Ki; Goh, Tae Sik; Lee, Jung Sub

    2017-01-01

    A new type of constitutive model and its computational implementation procedure for the simulation of a trabecular bone are proposed in the present study. A yield surface-independent Frank-Brockman elasto-viscoplastic model is introduced to express the nonlinear material behavior such as softening beyond yield point, plateau, and densification under compressive loads. In particular, the hardening- and softening-dominant material functions are introduced and adopted in the plastic multiplier to describe each nonlinear material behavior separately. In addition, the elasto-viscoplastic model is transformed into an implicit type discrete model, and is programmed as a user-defined material subroutine in commercial finite element analysis code. In particular, the consistent tangent modulus method is proposed to improve the computational convergence and to save computational time during finite element analysis. Through the developed material library, the nonlinear stress-strain relationship is analyzed qualitatively and quantitatively, and the simulation results are compared with the results of compression test on the trabecular bone to validate the proposed constitutive model, computational method, and material library. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Physics of Limiting Phenomena in Superconducting Microwave Resonators: Vortex Dissipation, Ultimate Quench and Quality Factor Degradation Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-12-01

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the

  8. Describing students' talk about physical science phenomena outside and inside the classroom: A case of secondary school students from Maragoli, western region of Kenya

    Science.gov (United States)

    Oberrecht, Stephen Patrick

    Because of cultural and linguistic influences on science learning involving students from diverse cultural and linguistic backgrounds, calls have been made for teachers to enact teaching that is sensitive to these students' backgrounds. However, most of the research involving such students has tended to focus on students at elementary grade levels from predominantly two linguistic backgrounds, Hispanic and Haitian Creole, learning science concepts mainly in the life sciences. Also, most of the studies examined classroom interactions between teachers and the students and among students. Not much attention had been paid to how students talk about ideas inherent in scientific phenomena in an outside-the-classroom context and much less on how that talk relates to that of the classroom. Thus, this research extends knowledge in the area of science learning involving students learning science in a language other than their first language to include students from a language background other than Hispanic and Haitian Creole at not only the high school level but also their learning of ideas in a content area other than the life science (i.e., the physical sciences). More importantly, this research extends knowledge in the area by relating science learning outside and inside the classroom. This dissertation describes this exploratory research project that adopted a case study strategy. The research involved seven Form Two (tenth grade) students (three boys and four girls) from one public, mixed gender day secondary school in rural Kenya. I collected data from the students through focus group discussions as they engaged in talking about ideas inherent in selected physical science phenomena and activities they encountered in their everyday lives, as well as learned about in their science classrooms. I supplemented these data with data from one-on-one semi-structured interviews with two teachers (one for chemistry and one for physics) on their teaching of ideas investigated in

  9. Decision-making in Sport under Mental and Physical Stress

    Directory of Open Access Journals (Sweden)

    Teri J. Hepler

    2015-10-01

    Full Text Available Background: Successful decision-making in sport requires good decisions to be made quickly, but little is understood about the decision process under stress. Objective: The purpose of this study was to compare decision outcomes and the Take the First (TTF heuristic under conditions of mental, physical, and no stress.  Method:  Participants (N=112 were divided into 3 stress groups:  mental stress (mental serial subtraction, physical stress (running on treadmill at 60-70% of maximum effort, and no stress (counting backwards by 1. Participants were exposed to 30 seconds of stress and then watched a video depicting an offensive situation in basketball requiring them to decide what the player with the ball should do next. Each participant performed 10 trials of the video decision-making task.  Results: No differences were found between the 3 stress groups on decision quality, TTF frequency, number of options generated, or quality of first generated option.  However, participants in the no stress and physical stress conditions were faster in generating their first option and making their final decision as compared to the mental stress group.  Conclusion: Overall, results suggest that mental stress impairs decision speed and that TTF is an ecologically rationale heuristic in dynamic, time-pressured situations.  Keywords: Take the first, Heuristic, Pressure, Cognitive performance

  10. Heat transfer and thermographic analysis of catalyst surface during multiphase phenomena under spray-pulsed conditions for dehydrogenation of cyclohexane over Pt catalysts.

    Science.gov (United States)

    Biniwale, Rajesh B; Kariya, N; Yamashiro, H; Ichikawa, Masaru

    2006-02-23

    Dehydrogenation of cyclohexane over Pt/alumite and Pt/activated carbon catalysts has been carried out for hydrogen storage and supply to fuel cell applications. An unsteady state has been created using spray pulsed injection of cyclohexane over the catalyst surface to facilitate the endothermic reaction to occur efficiently. Higher temperature of the catalyst surface is more favorable for the reaction, thus the heat transfer phenomena and temperature profile under alternate wet and dry conditions created using spray pulsed injection becomes important. IR thermography has been used for monitoring of temperature profile of the catalyst surface simultaneously with product analysis. The heat flux from the plate-type heater to the catalyst has been estimated using a rapid temperature recording and thermocouple arrangement. The estimated heat flux under transient conditions was in the range of 10-15 kW/m(2), which equates the requirement for endothermic reactions to the injection frequency of 0.5 Hz, as used in this study. The analysis of temperature profiles, reaction products over two different supports namely activated carbon cloth and alumite, reveals that the more conductive support such as alumite is more suitable for dehydrogenation of cyclohexane.

  11. Exergy performance of human body under physical activities

    International Nuclear Information System (INIS)

    Mady, Carlos Eduardo Keutenedjian; Albuquerque, Cyro; Fernandes, Tiago Lazzaretti; Hernandez, Arnaldo José; Saldiva, Paulo Hilário Nascimento; Yanagihara, Jurandir Itizo; Oliveira, Silvio de

    2013-01-01

    The aim of this work is to apply performance indicators for individuals under physical activity based on the concepts of exergy destroyed and exergy efficiency. The cardiopulmonary exercise test is one of the most used tests to assess the functional capacity of individuals with varying degrees of physical training. To perform the exergy analysis during the test, it is necessary to calculate heat and mass flow rates, associated with radiation, convection, vaporization and respiration, determined from the measurements and some relations found in the literature. The energy balance allowed the determination of the internal temperature over time and the exergy variation of the body along the experiment. Eventually, it was possible to calculate the destroyed exergy and the exergy efficiency from the exergy analysis. The exergy rates and flow rates are dependent of the exercise level and the body metabolism. The results show that the relation between the destroyed exergy and the metabolism is almost constant during the test, furthermore its value has a great dependence of the subject age. From the exergy analysis it was possible to divide the subjects according to their training level, for the same destroyed exergy, subjects with higher lactate threshold can perform more work. - Highlights: • Exergy analysis was applied to the human body under physical activities. • Concept of maximum available work from ATP hydrolysis was compared with exergy analysis results. • For the same destroyed exergy, subjects with higher lactate threshold can perform more work. • Runners during physical activities tend to a state of minimum destroyed exergy and maximum exergy efficiency

  12. Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs) under Static Loading Conditions.

    Science.gov (United States)

    Paredes-Madrid, Leonel; Palacio, Carlos A; Matute, Arnaldo; Parra Vargas, Carlos A

    2017-09-14

    Conductive polymer composites are manufactured by randomly dispersing conductive particles along an insulating polymer matrix. Several authors have attempted to model the piezoresistive response of conductive polymer composites. However, all the proposed models rely upon experimental measurements of the electrical resistance at rest state. Similarly, the models available in literature assume a voltage-independent resistance and a stress-independent area for tunneling conduction. With the aim of developing and validating a more comprehensive model, a test bench capable of exerting controlled forces has been developed. Commercially available sensors-which are manufactured from conductive polymer composites-have been tested at different voltages and stresses, and a model has been derived on the basis of equations for the quantum tunneling conduction through thin insulating film layers. The resistance contribution from the contact resistance has been included in the model together with the resistance contribution from the conductive particles. The proposed model embraces a voltage-dependent behavior for the composite resistance, and a stress-dependent behavior for the tunneling conduction area. The proposed model is capable of predicting sensor current based upon information from the sourcing voltage and the applied stress. This study uses a physical (non-phenomenological) approach for all the phenomena discussed here.

  13. Dielectric relaxation phenomena of rigid polar liquid molecules ...

    Indian Academy of Sciences (India)

    journal of. October 2001 physics pp. 775–793. Dielectric relaxation phenomena of rigid polar liquid molecules under giga hertz electric field. K DUTTA, S K SIT and S ... BDH, England, n-hexane and n-heptane from M/s. E Merck ... used in medicine as drug to induce sleep and relieve pain and in the manufacture of D.D.T..

  14. Evolutionary phenomena in galaxies

    International Nuclear Information System (INIS)

    Beckman, J.E.; Pagel, B.E.J.

    1989-01-01

    This book reviews the subject of evolutionary phenomena in galaxies, bringing together contributions by experts on all the relevant physics and astrophysics necessary to understand galaxies and how they work. The book is based on the proceedings of a conference held in July 1988 in Puerto de la Cruz, Tenerife which was timed to coincide with the first year of operation of the 4.2 m William Herschel Telescope. The broad topics covered include formation of galaxies and their ages, stellar dynamics, galactic scale gas and its role in star formation and the production and distribution of the chemical elements within galaxies. (author)

  15. Physical and Temporal Characteristics of Under 19, Under 21 and Senior Male Beach Volleyball Players

    Directory of Open Access Journals (Sweden)

    Alexandre Medeiros, Rui Marcelino, Isabel Mesquita, José Manuel Palao

    2014-09-01

    Full Text Available This study aimed to assess the effects of age groups and players’ role (blocker vs. defender specialist in beach volleyball in relation to physical and temporal variables, considering quality of opposition. 1101 rallies from Under 19 (U19, 933 rallies from Under 21 (U21, and 1480 rallies from senior (senior (Men’s Swatch World Championships, 2010-2011 were observed using video match analysis. Cluster analysis was used to set teams’ competitive levels and establish quality of opposition as “balanced”, “moderate balanced” and “unbalanced” games. The analyzed variables were: temporal (duration of set, total rest time, total work time, duration of rallies, rest time between rallies and physical (number of jumps and number of hits done by defenders and blockers characteristics. A one-way ANOVA, independent samples t-test and multinomial logistic regression were performed to analyze the variables studied. The analysis of temporal and physical characteristics showed differences considering age group, player’s role and quality of opposition. The duration of set, total rest time, and number of jumps done by defenders significantly increased from the U19 to senior category. Multinomial logistic regression showed that in: a balanced games, rest time between rallies was higher in seniors than in U19 or U21; number of jumps done by defenders was higher in seniors than in U19 and U21; b moderate balanced games, number of jumps done by defenders was higher in seniors than in U21 and number of jumps done by blockers was smaller in U19 than U21 or seniors; c unbalanced games, no significant findings were shown. This study suggests differences in players’ performances according to age group and players’ role in different qualities of opposition. The article provides reference values that can be useful to guide training and create scenarios that resemble a competition, taking into account physical and temporal characteristics.

  16. Physical and temporal characteristics of under 19, under 21 and senior male beach volleyball players.

    Science.gov (United States)

    Medeiros, Alexandre; Marcelino, Rui; Mesquita, Isabel; Palao, José Manuel

    2014-09-01

    This study aimed to assess the effects of age groups and players' role (blocker vs. defender specialist) in beach volleyball in relation to physical and temporal variables, considering quality of opposition. 1101 rallies from Under 19 (U19), 933 rallies from Under 21 (U21), and 1480 rallies from senior (senior) (Men's Swatch World Championships, 2010-2011) were observed using video match analysis. Cluster analysis was used to set teams' competitive levels and establish quality of opposition as "balanced", "moderate balanced" and "unbalanced" games. The analyzed variables were: temporal (duration of set, total rest time, total work time, duration of rallies, rest time between rallies) and physical (number of jumps and number of hits done by defenders and blockers) characteristics. A one-way ANOVA, independent samples t-test and multinomial logistic regression were performed to analyze the variables studied. The analysis of temporal and physical characteristics showed differences considering age group, player's role and quality of opposition. The duration of set, total rest time, and number of jumps done by defenders significantly increased from the U19 to senior category. Multinomial logistic regression showed that in: a) balanced games, rest time between rallies was higher in seniors than in U19 or U21; number of jumps done by defenders was higher in seniors than in U19) and U21; b) moderate balanced games, number of jumps done by defenders was higher in seniors than in U21 and number of jumps done by blockers was smaller in U19 than U21 or seniors; c) unbalanced games, no significant findings were shown. This study suggests differences in players' performances according to age group and players' role in different qualities of opposition. The article provides reference values that can be useful to guide training and create scenarios that resemble a competition, taking into account physical and temporal characteristics. Key PointsPlayer roles, quality of opposition

  17. Chalcogenides Metastability and Phase Change Phenomena

    CERN Document Server

    Kolobov, Alexander V

    2012-01-01

    A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devices¿optical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.

  18. USEFUL: Ultrasound Exam for Underlying Lesions Incorporated into Physical Exam

    Directory of Open Access Journals (Sweden)

    Jon Steller

    2014-05-01

    Full Text Available Introduction: The Ultrasound Screening Exam for Underlying Lesions (USEFUL was developed in an attempt to establish a role for bedside ultrasound in the primary and preventive care setting. It is the purpose of our pilot study to determine if students were first capable of performing all of the various scans required of our USEFUL while defining such an ultrasound-assisted physical exam that would supplement the standard hands-on physical exam in the same head-to-toe structure. We also aimed to assess the time needed for an adequate exam and analyze if times improved with repetition and previous ultrasound training. Methods: Medical students with ranging levels of ultrasound training received a 25-minute presentation on our USEFUL followed by a 30-minute hands-on session. Following the hands-on session, the students were asked to perform a timed USEFUL on 2-3 standardized subjects. All images were documented as normal or abnormal with the understanding that an official detailed exam would be performed if an abnormality were to be found. All images were read and deemed adequate by board eligible emergency medicine ultrasound fellows. Results: Twenty-six exams were performed by 9 students. The average time spent by all students per USEFUL was 11 minutes and 19 seconds. Students who had received the University of California, Irvine School of Medicine’s integrated ultrasound curriculum performed the USEFUL significantly faster (p< 0.0025. The time it took to complete the USEFUL ranged from 6 minutes and 32 seconds to 17 minutes, and improvement was seen with each USEFUL performed. The average time to complete the USEFUL on the first standardized patient was 13 minutes and 20 seconds, while 11 minutes and 2 seconds, and 9 minutes and 20 seconds were spent performing the exam on the second and third patient, respectively. Conclusion: Students were able to effectively complete all scans required by the USEFUL in a timely manner. Students who have

  19. Fast Particle Methods for Multiscale Phenomena Simulations

    Science.gov (United States)

    Koumoutsakos, P.; Wray, A.; Shariff, K.; Pohorille, Andrew

    2000-01-01

    We are developing particle methods oriented at improving computational modeling capabilities of multiscale physical phenomena in : (i) high Reynolds number unsteady vortical flows, (ii) particle laden and interfacial flows, (iii)molecular dynamics studies of nanoscale droplets and studies of the structure, functions, and evolution of the earliest living cell. The unifying computational approach involves particle methods implemented in parallel computer architectures. The inherent adaptivity, robustness and efficiency of particle methods makes them a multidisciplinary computational tool capable of bridging the gap of micro-scale and continuum flow simulations. Using efficient tree data structures, multipole expansion algorithms, and improved particle-grid interpolation, particle methods allow for simulations using millions of computational elements, making possible the resolution of a wide range of length and time scales of these important physical phenomena.The current challenges in these simulations are in : [i] the proper formulation of particle methods in the molecular and continuous level for the discretization of the governing equations [ii] the resolution of the wide range of time and length scales governing the phenomena under investigation. [iii] the minimization of numerical artifacts that may interfere with the physics of the systems under consideration. [iv] the parallelization of processes such as tree traversal and grid-particle interpolations We are conducting simulations using vortex methods, molecular dynamics and smooth particle hydrodynamics, exploiting their unifying concepts such as : the solution of the N-body problem in parallel computers, highly accurate particle-particle and grid-particle interpolations, parallel FFT's and the formulation of processes such as diffusion in the context of particle methods. This approach enables us to transcend among seemingly unrelated areas of research.

  20. Mesoscopic Modeling of Multiphysicochemical Transport Phenomena in Porous Media

    Directory of Open Access Journals (Sweden)

    Qinjun Kang

    2010-01-01

    Full Text Available We present our recent progress on mesoscopic modeling of multiphysicochemical transport phenomena in porous media based on the lattice Boltzmann method. Simulation examples include injection of CO2-saturated brine into a limestone rock, two-phase behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media. It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems and can shed some light on the underlying physics occurring at the fundamental scale. Therefore, it can be a potential powerful numerical tool to analyze multiphysicochemical processes in various energy, earth, and environmental systems.

  1. Studies of Novel Quantum Phenomena in Ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Zhiqiang

    2011-04-08

    Strongly correlated oxides have been the subject of intense study in contemporary condensed matter physics, and perovskite ruthenates (Sr,Ca)n+1RunO3n+1 have become a new focus in this field. One of important characteristics of ruthenates is that both lattice and orbital degrees of freedom are active and are strongly coupled to charge and spin degrees of freedom. Such a complex interplay of multiple degrees of freedom causes the properties of ruthenates to exhibit a gigantic response to external stimuli under certain circumstances. Magnetic field, pressure, and chemical composition all have been demonstrated to be effective in inducing electronic/magnetic phase transitions in ruthenates. Therefore, ruthenates are ideal candidates for searching for novel quantum phenomena through controlling external parameters. The objective of this project is to search for novel quantum phenomena in ruthenate materials using high-quality single crystals grown by the floating-zone technique, and investigate the underlying physics. The following summarizes our accomplishments. We have focused on trilayered Sr4Ru3O10 and bilayered (Ca1-xSrx)3Ru2O7. We have succeeded in growing high-quality single crystals of these materials using the floating-zone technique and performed systematic studies on their electronic and magnetic properties through a variety of measurements, including resistivity, Hall coefficient, angle-resolved magnetoresistivity, Hall probe microscopy, and specific heat. We have also studied microscopic magnetic properties for some of these materials using neutron scattering in collaboration with Los Alamos National Laboratory. We have observed a number of unusual exotic quantum phenomena through these studies, such as an orbital selective metamagnetic transition, bulk spin valve effect, and a heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio. Our work has also revealed underlying physics of these exotic phenomena. Exotic phenomena of correlated

  2. Chemical and physical reactions under thermal plasmas conditions

    International Nuclear Information System (INIS)

    Fauchais, P.; Vardelle, A.; Vardelle, M.; Coudert, J.F.

    1987-01-01

    Basic understanding of the involved phenomena lags far behind industrial development that requires now a better knowledge of the phenomena to achieve a better control of the process allowing to improve the quality of the products. Thus the authors try to precise what is their actual knowledge in the fields of: plasma generators design; plasma flow models with the following key points: laminar or turbulent flow, heat transfer to walls, 2D or 3D models, non equilibrium effects, mixing problems when chemical reactions are to be taken into account with very fast kinetics, electrode regions, data for transport properties and kinetic rates; nucleation problems; plasma flow characteristics measurements: temperature or temperatures and population of excited states (automatized emission spectroscopy, LIF, CARS) as well as flow velocity (LDA with small particles, Doppler effects...); plasma and particles momentum and heat transfer either with models taking into account particles size and injection velocity distributions, heat propagation, vaporization, Kundsen effect, turbulences ... or with measurements: particles velocity and flux distributions (Laser Anemometry) as well as surface temperature distributions (two colour pyrometry in flight statistical or not)

  3. The Role of Thermal Properties in Periodic Time-Varying Phenomena

    Science.gov (United States)

    Marin, E.

    2007-01-01

    The role played by physical parameters governing the transport of heat in periodical time-varying phenomena within solids is discussed. Starting with a brief look at the conduction heat transport mechanism, the equations governing heat conduction under static, stationary and non-stationary conditions, and the physical parameters involved, are…

  4. Physics of Lightning under Control of Big Scale Experiments

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Josef

    2007-01-01

    Roč. 52, č. 2 (2007), s. 173-186 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20570509 Keywords : gas discharges * physics of lightning * long air gaps Subject RIV: BL - Plasma and Gas Discharge Physics

  5. Mesoscopic phenomena in solids

    CERN Document Server

    Altshuler, BL; Webb, RA

    1991-01-01

    The physics of disordered systems has enjoyed a resurgence of interest in the last decade. New concepts such as weak localization, interaction effects and Coulomb gap, have been developed for the transport properties of metals and insulators. With the fabrication of smaller and smaller samples and the routine availability of low temperatures, new physics has emerged from the studies of small devices. The new field goes under the name ""mesoscopic physics"" and has rapidly developed, both experimentally and theoretically. This book is designed to review the current status of the field.

  6. Study of a particle detector with very high spatial precision (drift chambers), and analysis of the physical phenomena governing the operation of this detector

    International Nuclear Information System (INIS)

    Schultz, Guy.

    1976-01-01

    The physical principles of drift chambers are studied and various measurements which can be performed with these chambers are described. The laws governing the passage of particles through matter are first reviewed and different transport coefficients, (velocity, scattering coefficient, characteristic energy ...) of the electrons under the influence of an electric field for different gases (argon, CO 2 , isobutane, methane, methylal) are studied. The theoretical predictions are then compared with the experimental results. The different amplification processes in the gas and the space charge effect of the positive ions on electron multiplication for large particle fluxes are also studied as well as the mobility of positive ions in different gases. After these results, the operating characteristics (efficiency, linearity of the space-time ratio, spatial resolution), with and without an external magnetic field are determined [fr

  7. Nonlinear dynamical phenomena in liquid crystals

    International Nuclear Information System (INIS)

    Wang, X.Y.; Sun, Z.M.

    1988-09-01

    Because of the existence of the orientational order and anisotropy in liquid crystals, strong nonlinear phenomena and singular behaviors, such as solitary wave, transient periodic structure, chaos, fractal and viscous fingering, can be excited by a very small disturbance. These phenomena and behaviors are in connection with physics, biology and mathematics. 12 refs, 6 figs

  8. Propulsion Physics Under the Changing Density Field Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  9. Discrete computational mechanics for stiff phenomena

    KAUST Repository

    Michels, Dominik L.

    2016-11-28

    Many natural phenomena which occur in the realm of visual computing and computational physics, like the dynamics of cloth, fibers, fluids, and solids as well as collision scenarios are described by stiff Hamiltonian equations of motion, i.e. differential equations whose solution spectra simultaneously contain extremely high and low frequencies. This usually impedes the development of physically accurate and at the same time efficient integration algorithms. We present a straightforward computationally oriented introduction to advanced concepts from classical mechanics. We provide an easy to understand step-by-step introduction from variational principles over the Euler-Lagrange formalism and the Legendre transformation to Hamiltonian mechanics. Based on such solid theoretical foundations, we study the underlying geometric structure of Hamiltonian systems as well as their discrete counterparts in order to develop sophisticated structure preserving integration algorithms to efficiently perform high fidelity simulations.

  10. Physical quality of an oxisol under different uses

    Directory of Open Access Journals (Sweden)

    Francisco Ocian Bastos Mota

    2012-12-01

    Full Text Available The use of a soil induces changes in the physical properties according to the management, tillage intensity and type of crop. The objective of this work was to measure the alterations of some of the soil physical properties and evaluate the physical quality by the S index, an indicator proposed by Dexter (2004, comparing the land uses: eucalyptus plantations at different ages, grazing pasture, annual crops, and an area of preserved secondary vegetation with an area of preserved native forest (National Forest Araripe - NFA as control. The study was carried out on an Oxisol on the Fazenda Redenção, in Jardim, State of Ceará, Brazil. The experiment was arranged in a completely randomized design with seven treatments and three replications in the layers 0-0.1 and 0.1-0.2 m. The soil was analyzed for the following physical properties: bulk density, particle density, total pore volume, micro and macroporosity, soil water retention curves and water availability. Based on the S index, the hypothesis that the use of a soil deteriorates the physical quality was accepted. Clearly, native forest (NFA was the land use with the best conditions in all physical properties studied, followed closely by the area reforested with 20 year-old eucalyptus. The use as grazing pasture affected the soil physical conditions most, especially in the surface layer (0-0.1 m, as evidenced by increased bulk density and a substantial reduction in soil porosity, mainly in macroporosity. Microporosity was not influenced by any of the uses and in any layer studied.

  11. Crystallization phenomena in slags

    Science.gov (United States)

    Orrling, Carl Folke

    2000-09-01

    The crystallization of the mold slag affects both the heat transfer and the lubrication between the mold and the strand in continuous casting of steel. In order for mold slag design to become an engineering science rather than an empirical exercise, a fundamental understanding of the melting and solidification behavior of a slag must be developed. Thus it is necessary to be able to quantify the phenomena that occur under the thermal conditions that are found in the mold of a continuous caster. The double hot thermocouple technique (DHTT) and the Confocal Laser Scanning Microscope used in this study are two novel techniques for investigating melting and solidification phenomena of transparent slags. Results from these techniques are useful in defining the phenomena that occur when the slag film infiltrates between the mold and the shell of the casting. TTT diagrams were obtained for various slags and indicated that the onset of crystallization is a function of cooling rate and slag chemistry. Crystal morphology was found to be dependent upon the experimental temperature and four different morphologies were classified based upon the degree of melt undercooling. Continuous cooling experiments were carried out to develop CCT diagrams and it was found that the amount and appearance of the crystalline fraction greatly depends on the cooling conditions. The DHTT can also be used to mimic the cooling profile encountered by the slag in the mold of a continuous caster. In this differential cooling mode (DCT), it was found that the details of the cooling rate determine the actual response of the slag to a thermal gradient and small changes can lead to significantly different results. Crystal growth rates were measured and found to be in the range between 0.11 mum/s to 11.73 mum/s depending on temperature and slag chemistry. Alumina particles were found to be effective innoculants in oxide melts reducing the incubation time for the onset of crystallization and also extending

  12. Numerical identification of secondary buckling phenomena of elastic rectangular plate under pure bending; Tomage wo ukeru dansei kukeiban ni shojiru niji zakutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, M.; Ikeda, K. [Tohoku University, Sendai (Japan). Faculty of Engineering; Wachi, S. [NKK Corp., Tokyo (Japan); Kuranishi, S. [Kanto Gakuin University, Yokohama (Japan)

    1995-07-21

    In this paper, the secondary buckling phenomena of the elastic rectangular plate subject to the pure bending moment are investigated. The bifurcation points are classified numerically based on the determinant of tangential stiffness matrix and of its diagonal blocks obtained by means of the group-theoretic bifurcation theory. By using the sub-matrices within the whole block-diagonalized one, the informations of the instability points and equilibrium paths after bifurcation are easily obtained. The quantitative influence of the initial imperfections are investigated based on the asymptotic laws and the Monte Carlo simulations. 30 refs., 12 figs., 1 tab.

  13. Soil physical and hydraulic properties modification under Arachis ...

    African Journals Online (AJOL)

    Reductions in soil water evaporation were 44.5%, 41.1% and 34.7% under SAMNUT 21, PINTOI and SAMNUT 10 respectively. Significant (p= 0.05) improvement on soil structure and hydraulic conductivity was observed under Arachis varieties. Plant density of 66667 plants/ha showed the best positive effect on the ...

  14. Proceedings of the 1st workshop of 'quantum complex phenomena' under the NIMS-RIKEN-JAEA cooperative research program on quantum beam science and technology

    International Nuclear Information System (INIS)

    Shamoto, Shin-ichi; Fujii, Yasuhiko

    2007-10-01

    The 1st workshop of the NIMS-RIKEN-JAEA Cooperative Research Program on Quantum Beam Science and Technology entitled 'Quantum Complex Phenomena' was held on June 14, 2007 at Center for Computational Science and e-Systems, Japan Atomic Energy Agency. This workshop is aimed to reveal the mechanism of quantum complex phenomena for the developments of next generation functional materials on the basis of the NIMS-RIKEN-JAEA Cooperative Research Program about Quantum Beam Science and Technology. This Cooperative Research Program was concluded on December 20, 2006, in order to lead the research and development of Quantum Beam Technology by the cooperation among RIKEN, NIMS, and JAEA. World top level researchers in addition to the instruments at quantum beam facilities of RIKEN, NIMS, and JAEA are combined to contribute to new innovations with international competence. Along this meaning, this workshop is aimed to introduce own research characteristics for mutual understandings and to discuss starting cooperative research activity for intimate research collaborations. This report includes abstracts and materials of the presentations in the workshop. (author)

  15. Light-Emitting Diodes: Exploration of Underlying Physics

    Science.gov (United States)

    Etkina, Eugenia; Planinšic, Gorazd

    2014-01-01

    This paper is the second in the series of LED-dedicated papers that have a goal to systematically investigate the use of LEDs in a general physics course. The first paper, published in the February 2014 issue, provided an overview of the course units where LEDs can be used and suggested three different ways of utilizing LEDs in an introductory…

  16. US physics begins to crumble under budget strain

    CERN Multimedia

    2008-01-01

    The reality of the US budget cuts to particle physics has hit home. The Stanford Linear Accelerator Center (SLAC) in California, US, has just announced a trio of painful consequences: the end of work on the International Linear Collider, the imminent closure of its BaBar antimatter experiment, and the layoff of 125 workers.

  17. Physical and Chemical Properties of Soils under Contrasting Land ...

    African Journals Online (AJOL)

    The soil chemical properties studied were soil pH, organic carbon, total nitrogen, available P, exchangeable base (Ca2+, Mg2+, K+ and Na+) and exchangeable acidity (H+ and Al3+). The physical properties were aggregate stability, mean weight diameter, water dispersible clay and clay flocculation index. Two fractions of ...

  18. The birth of the blues: how physics underlies music

    International Nuclear Information System (INIS)

    Gibson, J M

    2009-01-01

    Art and science have intimate connections, although these are often underappreciated. Western music provides compelling examples. The sensation of harmony and related melodic development are rooted in physical principles that can be understood with simple mathematics. The focus of this review is not the better known acoustics of instruments, but the structure of music itself. The physical basis of the evolution of Western music in the last half millennium is discussed, culminating with the development of the 'blues'. The paper refers to a number of works which expand the connections, and introduces material specific to the development of the 'blues'. Several conclusions are made: (1) that music is axiomatic like mathematics and that to appreciate music fully listeners must learn the axioms; (2) that this learning does not require specific conscious study but relies on a linkage between the creative and quantitative brain and (3) that a key element of the musical 'blues' comes from recreating missing notes on the modern equal temperament scale. The latter is an example of 'art built on artifacts'. Finally, brief reference is made to the value of music as a tool for teaching physics, mathematics and engineering to non-scientists.

  19. The birth of the blues: how physics underlies music

    Science.gov (United States)

    Gibson, J. M.

    2009-07-01

    Art and science have intimate connections, although these are often underappreciated. Western music provides compelling examples. The sensation of harmony and related melodic development are rooted in physical principles that can be understood with simple mathematics. The focus of this review is not the better known acoustics of instruments, but the structure of music itself. The physical basis of the evolution of Western music in the last half millennium is discussed, culminating with the development of the 'blues'. The paper refers to a number of works which expand the connections, and introduces material specific to the development of the 'blues'. Several conclusions are made: (1) that music is axiomatic like mathematics and that to appreciate music fully listeners must learn the axioms; (2) that this learning does not require specific conscious study but relies on a linkage between the creative and quantitative brain and (3) that a key element of the musical 'blues' comes from recreating missing notes on the modern equal temperament scale. The latter is an example of 'art built on artifacts'. Finally, brief reference is made to the value of music as a tool for teaching physics, mathematics and engineering to non-scientists.

  20. The birth of the blues: how physics underlies music

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J M [Argonne National Laboratory, 9700 Cass Avenue, Argonne IL 60439 (United States)], E-mail: jmgibson@aps.anl.gov

    2009-07-15

    Art and science have intimate connections, although these are often underappreciated. Western music provides compelling examples. The sensation of harmony and related melodic development are rooted in physical principles that can be understood with simple mathematics. The focus of this review is not the better known acoustics of instruments, but the structure of music itself. The physical basis of the evolution of Western music in the last half millennium is discussed, culminating with the development of the 'blues'. The paper refers to a number of works which expand the connections, and introduces material specific to the development of the 'blues'. Several conclusions are made: (1) that music is axiomatic like mathematics and that to appreciate music fully listeners must learn the axioms; (2) that this learning does not require specific conscious study but relies on a linkage between the creative and quantitative brain and (3) that a key element of the musical 'blues' comes from recreating missing notes on the modern equal temperament scale. The latter is an example of 'art built on artifacts'. Finally, brief reference is made to the value of music as a tool for teaching physics, mathematics and engineering to non-scientists.

  1. The birth of the blues : how physics underlies music.

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J. M.

    2009-07-01

    Art and science have intimate connections, although these are often underappreciated. Western music provides compelling examples. The sensation of harmony and related melodic development are rooted in physical principles that can be understood with simple mathematics. The focus of this review is not the better known acoustics of instruments, but the structure of music itself. The physical basis of the evolution of Western music in the last half millennium is discussed, culminating with the development of the 'blues'. The paper refers to a number of works which expand the connections, and introduces material specific to the development of the 'blues'. Several conclusions are made: (1) that music is axiomatic like mathematics and that to appreciate music fully listeners must learn the axioms; (2) that this learning does not require specific conscious study but relies on a linkage between the creative and quantitative brain and (3) that a key element of the musical 'blues' comes from recreating missing notes on the modern equal temperament scale. The latter is an example of 'art built on artifacts'. Finally, brief reference is made to the value of music as a tool for teaching physics, mathematics and engineering to non-scientists.

  2. Quantum theory of collective phenomena

    CERN Document Server

    Sewell, G L

    2014-01-01

    ""An excellent and competent introduction to the field … [and] … a source of information for the expert."" - Physics Today""This a book of major importance…. I trust that this book will be used as a basis for the teaching of a balanced, modern and rigorous course on statistical mechanics in all universities."" - Bulletin of the London Mathematical Society""This is one of the best introductions to the subject, and it is strongly recommended to anyone interested in collective phenomena."" - Physics Bulletin ""The book may be recommended for students as a well-balanced introduction to this rich s

  3. The under-critical reactors physics for the hybrid systems

    International Nuclear Information System (INIS)

    Schapira, J.P.; Vergnes, J.; Zaetta, A.

    1998-01-01

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  4. Underlying Event Studies and Forward Physics at CMS

    International Nuclear Information System (INIS)

    Krammer, Manfred; Bartalini, Paolo

    2010-01-01

    Studies of the underlying event and forward processes are important tests of the standard model and inputs for Monte Carlo tuning. By selecting regions transverse and parallel to the hard parton-parton scatter, different aspects of non-perturbative QCD are enhanced and allow fine tuning of different Monte Carlo models. The underlying event in pp interactions, recorded by the CMS detector, is studied measuring the charged multiplicity density and the charged energy density in a region perpendicular to the plane of the hard 2-to-2 scattering. Two different methodologies are adopted to identify the direction and the energy scale of the hard scattering in Minimum Bias events that rely on the leading charged track and on the leading charged jet. The study allows to discriminate between various QCD Monte Carlo models with different multiple parton interaction schemes. In addition, we present the measurement of the underlying event using the jet area/ median approach. We demonstrate its sensitivity to different underlying event scenarios and tunes on generator level after applying detector specific cuts and thresholds. In the forward direction, the first measurement of forward energy flow in 3 35 GeV and compare to model with different multi-parton interaction schemes. In addition, the absence of energy deposition in the forward region is used to observe diffractive events. We compare our results with predictions from Monte Carlo event generators including a simulation of multi-parton scattering. All four measurements can be used to determine the parameters of multi-parton interaction models in a extended region of phase space. (author)

  5. Genetic and environmental transactions underlying the association between physical fitness/physical exercise and body composition

    DEFF Research Database (Denmark)

    Johnson, Wendy; de Ruiter, Ingrid; Kyvik, Kirsten Ohm

    2015-01-01

    We examined mean effects and variance moderating effects of measures of physical activity and fitness on six measures of adiposity and their reciprocal effects in a subsample of the population-representative Danish Twin Registry. Consistent with prior studies, higher levels of physical activity...... these reciprocal effects are uniform. Some variance moderating effects also appeared due to biases in individual measures of adiposity, as well as to differences and inaccuracies in measures of physical activity. This suggests a need to avoid reliance on single measures of both physical activity and adiposity...... in attempting to understand the pathways involved in their linkages, and constraint in interpreting results if only single measures are available. Future research indications include identifying which physical activity-related environmental circumstances have relatively uniform effects on adiposity in everyone...

  6. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  7. Transport phenomena in multiphase flows

    CERN Document Server

    Mauri, Roberto

    2015-01-01

    This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy.  It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory...

  8. Advancing solar energy forecasting through the underlying physics

    Science.gov (United States)

    Yang, H.; Ghonima, M. S.; Zhong, X.; Ozge, B.; Kurtz, B.; Wu, E.; Mejia, F. A.; Zamora, M.; Wang, G.; Clemesha, R.; Norris, J. R.; Heus, T.; Kleissl, J. P.

    2017-12-01

    As solar power comprises an increasingly large portion of the energy generation mix, the ability to accurately forecast solar photovoltaic generation becomes increasingly important. Due to the variability of solar power caused by cloud cover, knowledge of both the magnitude and timing of expected solar power production ahead of time facilitates the integration of solar power onto the electric grid by reducing electricity generation from traditional ancillary generators such as gas and oil power plants, as well as decreasing the ramping of all generators, reducing start and shutdown costs, and minimizing solar power curtailment, thereby providing annual economic value. The time scales involved in both the energy markets and solar variability range from intra-hour to several days ahead. This wide range of time horizons led to the development of a multitude of techniques, with each offering unique advantages in specific applications. For example, sky imagery provides site-specific forecasts on the minute-scale. Statistical techniques including machine learning algorithms are commonly used in the intra-day forecast horizon for regional applications, while numerical weather prediction models can provide mesoscale forecasts on both the intra-day and days-ahead time scale. This talk will provide an overview of the challenges unique to each technique and highlight the advances in their ongoing development which come alongside advances in the fundamental physics underneath.

  9. Interfacial transport phenomena

    CERN Document Server

    Slattery, John C; Oh, Eun-Suok

    2007-01-01

    Revised and updated extensively from the previous editionDiscusses transport phenomena at common lines or three-phase lines of contactProvides a comprehensive summary about the extensions of continuum mechanics to the nanoscale.

  10. Physical-chemical quality of onion analyzed under drying temperature

    Science.gov (United States)

    Djaeni, M.; Arifin, U. F.; Sasongko, S. B.

    2017-03-01

    Drying is one of conventional processes to enhance shelf life of onion. However, the active compounds such as vitamin and anthocyanin (represented in red color), degraded due to the introduction of heat during the process. The objective of this research was to evaluate thiamine content as well as color in onion drying under different temperature. As an indicator, the thiamine and color was observed every 30 minutes for 2 hours. Results showed that thiamine content and color were sensitvely influenced by the temperature change. For example, at 50°C for 2 hours drying process, the thiamine degradation was 55.37 %, whereas, at 60°C with same drying time, the degradation was 74.01%. The quality degradation also increased by prolonging drying time.

  11. Severe accident phenomena

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Kilpi, K.; Lindholm, I.; Maekynen, J.; Pekkarinen, E.; Sairanen, R.; Silde, A.

    1995-02-01

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  12. Integration phenomena Paralympic cyclists

    OpenAIRE

    Diepoldová, Tereza

    2017-01-01

    Title: Integration phenomena Paralympic cyclists. Objectives of work: Try to find integration phenomena in relation to sport training and its impact on selected cyclists with disabilities. Methods: Case report structured interview, data collection method - the method of interrogation. Results: Based on case studies developed a structured interview, we found differences in the integration, which we have divided into phases - before obtaining disability, acclimatization, sports integration. Fur...

  13. Modelling of Transport Phenomena

    OpenAIRE

    K., Itoh; S.-I., Itoh; A., Fukuyama

    1993-01-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the apomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confineme...

  14. Soil physical properties of high mountain fields under bauxite mining

    Directory of Open Access Journals (Sweden)

    Dalmo Arantes de Barros

    2013-10-01

    Full Text Available Mining contributes to the life quality of contemporary society, but can generate significant impacts, these being mitigated due to environmental controls adopted. This study aimed to characterize soil physical properties in high-altitude areas affected by bauxite mining, and to edaphic factors responses to restoration techniques used to recover mined areas in Poços de Caldas plateau, MG, Brazil. The experiment used 3 randomized block design involving within 2 treatments (before mining intervention and after environmental recovery, and 4 replicates (N=24. In each treatment, soil samples with deformed structures were determined: granulometry, water-dispersible clay content, flocculation index, particle density, stoniness level, water aggregate stability, and organic matter contend. Soil samples with preserved structures were used to determine soil density and the total volume of pores, macropores, and micropores. Homogenization of stoniness between soil layers as a result of soil mobilization was observed after the mined area recovery. Stoniness decreased in 0.10-0.20 m layer after recovery, but was similar in the 0-0.10 m layer in before and after samples. The recovery techniques restored organic matter levels to pre-mining levels. However, changes in soil, including an increase in soil flocculation degree and a decrease in water-dispersible clays, were still apparent post-recovery. Furthermore, mining operations caused structural changes to the superficial layer of soil, as demonstrated by an increase in soil density and a decrease in total porosity and macroporosity. Decreases in the water stability of aggregates were observed after mining operations.

  15. The 26th International Physics Olympiad: On top down under!

    Science.gov (United States)

    1996-01-01

    As they opened the plane door on arrival at Canberra it was like stepping inside a freezer. I had escaped from the heatwave in Britain to experience winter in Australia. I have not found anyone who believes that there was really frost! The Australian welcome did its best to combat the cold, however, and Professor Rod Jury had soon introduced our guides and got us settled in on the campus of Canberra University. The British team of five students, selected through the British Physics Olympiad, were: Alan Bain of Birkenhead School, Chris Blake of King Edward VI School, Southampton, Richard Davies of Dulwich College, Tom Down of Embley Park School, Romsey and Chris Webb of Royal Grammar School, Worcester. The two Leaders of the party were Cyril Isenberg of the University of Kent and Guy Bagnall of Harrow School. Chris Robson of St Bee's School and myself from Stoke on Trent Sixth form College were interested Observers and Guy's wife, Jenny, completed the party. For the old hands there were many friendships stretching back years to renew, and with 51 countries this year many new ones to be made. Â Photo Figure 1. Photograph taken by C Robson of the British Physics Team immediately after the Awards Ceremony in Canberra in July 1995. From left to right: Chris Webb, Richard Davies, Tom Down, Alan Bain and Chris Blake. In addition to the confusion caused by the Sun being in the North and the Moon appearing to lie on its back, we had to get used to the flocks of chattering parrots browsing on the lawns and the kangaroos on campus! Everyone was presented with a boomerang and there were several sessions introducing the art of throwing them, even in the dark! The Opening Ceremony was colourful and a good mix of ceremony and fun with the Aboriginal entertainment and the Flame of Science to be lit. This was followed by my first examiners' meeting. Once the questions have been introduced no one is allowed to leave the group until ten hours later when the students are in bed! The

  16. Dissipative phenomena in condensed matter some applications

    CERN Document Server

    Dattagupta, Sushanta

    2004-01-01

    From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.

  17. Laboratory simulation of space plasma phenomena*

    Science.gov (United States)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  18. Computational transport phenomena for engineering analyses

    CERN Document Server

    Farmer, Richard C; Cheng, Gary C; Chen, Yen-Sen

    2009-01-01

    Computational Transport PhenomenaOverviewTransport PhenomenaAnalyzing Transport PhenomenaA Computational Tool: The CTP CodeVerification, Validation, and GeneralizationSummaryNomenclatureReferencesThe Equations of ChangeIntroductionDerivation of The Continuity EquationDerivation of The Species Continuity EquationDerivation of The Equation Of MotionDerivation of The General Energy EquationNon-Newtonian FluidsGeneral Property BalanceAnalytical and Approximate Solutions for the Equations of ChangeSummaryNomenclatureReferencesPhysical PropertiesOverviewReal-Fluid ThermodynamicsChemical Equilibrium

  19. Sixteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Corkum, Paul; Nelson, Keith A; Riedle, Eberhard; Schoenlein, Robert W; Ultrafast Phenomena XVI

    2009-01-01

    Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

  20. Theory of nonlinear, distortive phenomena in solids: Martensitic, crack, and multiscale structures-phenomenology and physics. Progress summary, 1991--1994

    International Nuclear Information System (INIS)

    Sethna, J.P.; Krumhansl, J.A.

    1994-01-01

    We have identified tweed precursors to martensitic phase transformations as a spin glass phase due to composition variations, and used simulations and exact replica theory predictions to predict diffraction peaks and model phase diagrams, and provide real space data for comparison to transmission electron micrograph images. We have used symmetry principles to derive the crack growth laws for mixed-mode brittle fracture, explaining the results for two-dimensional fracture and deriving the growth laws in three dimensions. We have used recent advances in dynamical critical phenomena to study hysteresis in disordered systems, explaining the return-point-memory effect, predicting distributions for Barkhausen noise, and elucidating the transition from athermal to burst behavior in martensites. From a nonlinear lattice-dynamical model of a first-order transition using simulations, finite-size scaling, and transfer matrix methods, it is shown that heterophase transformation precursors cannot occur in a pure homogeneous system, thus emphasizing the role of disorder in real materials. Full integration of nonlinear Landau-Ginzburg continuum theory with experimental neutron-scattering data and first-principles calculations has been carried out to compute semi-quantitative values of the energy and thickness of twin boundaries in InTl and FePd martensites

  1. Theory of nonlinear, distortive phenomena in solids: Martensitic, crack, and multiscale structures-phenomenology and physics. Progress summary, 1991--1994

    Energy Technology Data Exchange (ETDEWEB)

    Sethna, J.P.; Krumhansl, J.A.

    1994-08-01

    We have identified tweed precursors to martensitic phase transformations as a spin glass phase due to composition variations, and used simulations and exact replica theory predictions to predict diffraction peaks and model phase diagrams, and provide real space data for comparison to transmission electron micrograph images. We have used symmetry principles to derive the crack growth laws for mixed-mode brittle fracture, explaining the results for two-dimensional fracture and deriving the growth laws in three dimensions. We have used recent advances in dynamical critical phenomena to study hysteresis in disordered systems, explaining the return-point-memory effect, predicting distributions for Barkhausen noise, and elucidating the transition from athermal to burst behavior in martensites. From a nonlinear lattice-dynamical model of a first-order transition using simulations, finite-size scaling, and transfer matrix methods, it is shown that heterophase transformation precursors cannot occur in a pure homogeneous system, thus emphasizing the role of disorder in real materials. Full integration of nonlinear Landau-Ginzburg continuum theory with experimental neutron-scattering data and first-principles calculations has been carried out to compute semi-quantitative values of the energy and thickness of twin boundaries in InTl and FePd martensites.

  2. The quest for new phenomena

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1996-12-01

    The Standard Model of particle physics has been very successful in describing experimental data with great precision. With the exception of some neutrino anomalies, there is no data that is in disagreement with it. Nevertheless, the model is regarded as incomplete and unsatisfactory. There is no explanation of the pattern of quark and lepton masses and, possibly more important, no understanding of the scale of electroweak interactions. Electroweak symmetry breaking is implemented in the Standard Model from the presence of a scalar electroweak doublet, the Higgs field, that acquires a vacuum expectation value of order 250 GeV and leaves as a remnant one physical state, the electrically neutral Higgs boson whose mass is not predicted. In this talk, the author compares the techniques used at, and capabilities of, various facilities in searching for new phenomena. The author emphasizes the cases where information from more than one facility may be needed to fully explore the physics

  3. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2001-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in

  4. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  5. Rheological phenomena in focus

    CERN Document Server

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  6. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions

    Science.gov (United States)

    Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan

    2018-02-01

    Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.

  7. Performance Evaluation of Survivability Strategies for Elastic Optical Networks under Physical Layer Impairments

    Directory of Open Access Journals (Sweden)

    Jurandir Lacerda Jr

    2017-08-01

    Full Text Available This paper carried out a performance evaluation study that compares two survivability strategies (DPP and SM-RSA for elastic optical networks with and without physical layer impairments. The evaluated scenarios include three representative topologies for elastic optical network, NSFNET, EON and USA. It also analyzes the increase of blocking probability when the survivability strategies are evaluated under the realistic scenario that assumes physical layer impairments. For all studied topologies under physical layer impairments, the survivability strategies achieved blocking probability above 80%.

  8. Bioelectrochemistry II membrane phenomena

    CERN Document Server

    Blank, M

    1987-01-01

    This book contains the lectures of the second course devoted to bioelectro­ chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special­ ized study of biological phenomena, for which the investigation using the dual approach, physico-che...

  9. Modelization of physical phenomena in research reactors with the help of new developments in transport methods, and methodology validation with experimental data

    International Nuclear Information System (INIS)

    Rauck, St.

    2000-10-01

    The aim of this work is to develop a scheme for experimental reactors, based on transport equations. This type of reactors is characterized by a small core, a complex, very heterogeneous geometry and a large leakage. The possible insertion of neutron beams in the reflector and the presence of absorbers in the core increase the difficulty of the 3D-geometrical description and the physical modeling of the component parameters of the reactor. The Orphee reactor has been chosen for our study. Physical models (homogenization, collapsing cross section in few groups, albedo multigroup condition) have been developed in the APOLLO2 and CRONOS2 codes to calculate flux and power maps in a 3D-geometry, with different burnup and through transport equations. Comparisons with experimental measurements have shown the interest of taking into account anisotropy, steep flux gradients by using Sn methods, and on the other hand using a 12-group cross section library. The modeling of neutron beams has been done outside the core modeling through Monte Carlo calculations and with the total geometry, including a large thickness of heavy water. Thanks to this calculations, one can evaluate the neutron beams anti-reactivity and determinate the core cycle. We assure these methods more accurate than usual transport-diffusion calculations will be used for the conception of new research reactors. (author)

  10. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  11. Cooperative photo-induced effects: from photo-magnetism under continuous irradiation to ultra-fast phenomena - study through optical spectroscopy and X-ray diffraction

    International Nuclear Information System (INIS)

    Glijer, D.

    2006-12-01

    The control with ultra-short laser pulses of the collective and concerted transformation of molecules driving a macroscopic state switching on an ultra-fast time scale in solid state opens new prospects in materials science. The goal is to realize at the material level what happens at the molecular level in femto-chemistry. These processes are highly cooperative and highly non-linear, leading to self-amplification and self-organization within the material, a so-called photo-induced phase transition with a new long range order (structural, magnetic, ferroelectric,...). Two families of molecular compounds have been studied here: first of all, spin transition materials changing from a diamagnetic state over to a paramagnetic state under the effect of temperature or under continuous laser excitation. It concerns photo-active molecular bi-stability prototype materials in solid state, whose switching has been studied during X-ray diffraction, optical reflectivity and magnetism experiments. Then we have studied charge-transfer molecular systems, prototype compounds for ultrafast photo-induced phase transitions: insulator-metal, neutral-ionic....As well as ultrafast optical experiments, time-resolved X ray crystallography is a key technique in order to follow at the atomic level the different steps of the photo-induced transformation and thus to observe the involved mechanisms. We have underlined a process of photo-formation of one-dimensional nano-domains of lattice-relaxed charge-transfer excitations, governing the photo-induced phase transition of the molecular charge-transfer complex TTF-CA by the first time-resolved diffuse scattering measurements. Moreover, a new femtosecond laser-plasma source and a optical pump-probe spectroscopy set-up with a highly sensitive detecting system have been developed in this work. The results presented here will be an illustration of the present scientific challenges existing on the one hand with the development of projects of major

  12. PHYSICS

    CERN Multimedia

    Chris Hill

    2012-01-01

    The months that have passed since the last CMS Bulletin have been a very busy and exciting time for CMS physics. We have gone from observing the very first 8TeV collisions produced by the LHC to collecting a dataset of the collisions that already exceeds that recorded in all of 2011. All in just a few months! Meanwhile, the analysis of the 2011 dataset and publication of the subsequent results has continued. These results come from all the PAGs in CMS, including searches for the Higgs boson and other new phenomena, that have set the most stringent limits on an ever increasing number of models of physics beyond the Standard Model including dark matter, Supersymmetry, and TeV-scale gravity scenarios, top-quark physics where CMS has overtaken the Tevatron in the precision of some measurements, and bottom-quark physics where CMS made its first discovery of a new particle, the Ξ*0b baryon (candidate event pictured below). Image 2:  A Ξ*0b candidate event At the same time POGs and PAGs...

  13. Acute physical exercise under hypoxia improves sleep, mood and reaction time.

    Science.gov (United States)

    de Aquino-Lemos, Valdir; Santos, Ronaldo Vagner T; Antunes, Hanna Karen Moreira; Lira, Fabio S; Luz Bittar, Irene G; Caris, Aline V; Tufik, Sergio; de Mello, Marco Tulio

    2016-02-01

    This study aimed to assess the effect of two sessions of acute physical exercise at 50% VO2peak performed under hypoxia (equivalent to an altitude of 4500 m for 28 h) on sleep, mood and reaction time. Forty healthy men were randomized into 4 groups: Normoxia (NG) (n = 10); Hypoxia (HG) (n = 10); Exercise under Normoxia (ENG) (n = 10); and Exercise under Hypoxia (EHG) (n = 10). All mood and reaction time assessments were performed 40 min after awakening. Sleep was reassessed on the first day at 14 h after the initiation of hypoxia; mood and reaction time were measured 28 h later. Two sessions of acute physical exercise at 50% VO2peak were performed for 60 min on the first and second days after 3 and 27 h, respectively, after starting to hypoxia. Improved sleep efficiency, stage N3 and REM sleep and reduced wake after sleep onset were observed under hypoxia after acute physical exercise. Tension, anger, depressed mood, vigor and reaction time scores improved after exercise under hypoxia. We conclude that hypoxia impairs sleep, reaction time and mood. Acute physical exercise at 50% VO2peak under hypoxia improves sleep efficiency, reversing the aspects that had been adversely affected under hypoxia, possibly contributing to improved mood and reaction time.

  14. Introduction of chemical, physical and mechanical coupling in the study of the blistering phenomena for semi-crystalline polymers; Une approche multiphysique de l'endommagement de polymeres en milieu petrolier: exemple du blistering

    Energy Technology Data Exchange (ETDEWEB)

    Cangemi, L.; Klopffer, M.H.; Martin, J. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Grandidier, J.C. [Poitiers Univ., Lab. de Mecanique et de Physique des Materiaux, UMR 6617 CNRS, ENSMA, 86 (France)

    2005-09-01

    Polymer materials are used in numerous oil applications where the knowledge and the control of their barrier properties are required: thermosetting coatings, rubber seals, thermoplastic liners. In that case, thermoplastic materials are in contact with water, hydrocarbons, gases and all carried fluids at high temperature and high pressure (up to 13 deg C and to 100 MPa). Under these extreme conditions, gases contained in petroleum products (such as H{sub 2}S, CO{sub 2}) have a high tendency to dissolve into semi-crystalline polymers (polyolefins, fluorinated polymers). A decompression, i.e. a rupture of the thermodynamic equilibrium may eventually lead to gas concentration and temperature gradients in the polymer structures. The resulting damaging phenomenon is called blistering and can be really dramatic for the material because it is irreversible and may end the pipe leak-proofness. As a matter of fact, the condition of damage is mainly correlated to the temperature, the rate of decompression and the properties of the material. Thereby, it is important to have an accurate knowledge of all the involved phenomena in order to quantify and then predict the barrier properties of the materials in those aggressive conditions. The aim of this study is to identify the various mechanism involved in the blistering phenomena for semi-crystalline polymers (such as PVF2, PE), to establish some relations between the polymer microstructure (morphology), its mechanical properties and the damage and to build physicochemical models which will take into account some mechanical, thermal and diffusional aspects. (authors)

  15. Theory of threshold phenomena

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2002-01-01

    Theory of Threshold Phenomena in Quantum Scattering is developed in terms of Reduced Scattering Matrix. Relationships of different types of threshold anomalies both to nuclear reaction mechanisms and to nuclear reaction models are established. Magnitude of threshold effect is related to spectroscopic factor of zero-energy neutron state. The Theory of Threshold Phenomena, based on Reduced Scattering Matrix, does establish relationships between different types of threshold effects and nuclear reaction mechanisms: the cusp and non-resonant potential scattering, s-wave threshold anomaly and compound nucleus resonant scattering, p-wave anomaly and quasi-resonant scattering. A threshold anomaly related to resonant or quasi resonant scattering is enhanced provided the neutron threshold state has large spectroscopic amplitude. The Theory contains, as limit cases, Cusp Theories and also results of different nuclear reactions models as Charge Exchange, Weak Coupling, Bohr and Hauser-Feshbach models. (author)

  16. Transport phenomena II essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena II covers forced convention, temperature distribution, free convection, diffusitivity and the mechanism of mass transfer, convective mass transfer, concentration

  17. Designing quantum-information-processing superconducting qubit circuits that exhibit lasing and other atomic-physics-like phenomena on a chip

    Science.gov (United States)

    Nori, Franco

    2008-03-01

    Superconducting (SC) circuits can behave like atoms making transitions between a few energy levels. Such circuits can test quantum mechanics at macroscopic scales and be used to conduct atomic-physics experiments on a silicon chip. This talk overviews a few of our theoretical studies on SC circuits and quantum information processing (QIP) including: SC qubits for single photon generation and for lasing; controllable couplings among qubits; how to increase the coherence time of qubits using a capacitor in parallel to one of the qubit junctions; hybrid circuits involving both charge and flux qubits; testing Bell's inequality in SC circuits; generation of GHZ states; quantum tomography in SC circuits; preparation of macroscopic quantum superposition states of a cavity field via coupling to a SC qubit; generation of nonclassical photon states using a SC qubit in a microcavity; scalable quantum computing with SC qubits; and information processing with SC qubits in a microwave field. Controllable couplings between qubits can be achieved either directly or indirectly. This can be done with and without coupler circuits, and with and without data-buses like EM fields in cavities (e.g., we will describe both the variable-frequency magnetic flux approach and also a generalized double-resonance approach that we introduced). It is also possible to ``turn a quantum bug into a feature'' by using microscopic defects as qubits, and the macroscopic junction as a controller of it. We have also studied ways to implement radically different approaches to QIP by using ``cluster states'' in SC circuits. For a general overview of this field, see, J.Q. You and F. Nori, Phys. Today 58 (11), 42 (2005)

  18. Large momentum transfer phenomena

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

    1978-01-01

    The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

  19. Nonlinear, distortive phenomena in solids: Martensitic, crack, and multiscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, J.A.; Sethna, J.P.

    1992-01-01

    This ongoing program, from the beginning of the first three year grant 1988--1991 and now in the first year of the second phase 1991--1994, has been directed at developing both an understanding of the physics underlying structural transformations in real (alloy) materials as well as new theoretical methods which adequately describe the large (nonlinear) distortions which characterize such processes. We have had a particular interest in martensitic systems, first (1988--1991) in the equilibrium limits, and now (below) in phenomena associated with the transformation process.

  20. Physical investigation of square cylinder array dynamical response under single-phase cross-flow

    International Nuclear Information System (INIS)

    Longatte, E.; Baj, F.

    2014-01-01

    Fluid structure interaction and flow-induced vibration in square cylinder arrangement under single-phase incompressible laminar cross flow are investigated in the present paper. Dynamic instability governed by damping generation is studied without any consideration about mixing with turbulence effects. Conservative and non-conservative effects are pointed out and dynamical stability limit sensitivity to physical parameters is analyzed. Finally the influence of key physical parameters on fluid solid dynamics interaction is quantified. (authors)

  1. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of measurements by extracting unsteady three-dimensional data in applications related to transport phenomena. Keywords. Optical measurement; fluid flow and transport; refractive index ...

  2. Conference on Non-linear Phenomena in Mathematical Physics: Dedicated to Cathleen Synge Morawetz on her 85th Birthday. The Fields Institute, Toronto, Canada September 18-20, 2008. Sponsors: Association for Women in Mathematics, Inc. and The Fields Institute

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jennifer

    2012-10-15

    This scientific meeting focused on the legacy of Cathleen S. Morawetz and the impact that her scientific work on transonic flow and the non-linear wave equation has had in recent progress on different aspects of analysis for non-linear wave, kinetic and quantum transport problems associated to mathematical physics. These are areas where the elements of continuum, statistical and stochastic mechanics, and their interplay, have counterparts in the theory of existence, uniqueness and stability of the associated systems of equations and geometric constraints. It was a central event for the applied and computational analysis community focusing on Partial Differential Equations. The goal of the proposal was to honor Cathleen Morawetz, a highly successful woman in mathematics, while encouraging beginning researchers. The conference was successful in show casing the work of successful women, enhancing the visibility of women in the profession and providing role models for those just beginning their careers. The two-day conference included seven 45-minute lectures and one day of six 45-minute lectures, and a poster session for junior participants. The conference program included 19 distinguished speakers, 10 poster presentations, about 70 junior and senior participants and, of course, the participation of Cathleen Synge Morawetz. The conference celebrated Morawetz's paramount contributions to the theory of non-linear equations in gas dynamics and their impact in the current trends of nonlinear phenomena in mathematical physics, but also served as an awareness session of current women's contribution to mathematics.

  3. Transport phenomena in porous media

    CERN Document Server

    Ingham, Derek B

    1998-01-01

    Research into thermal convection in porous media has substantially increased during recent years due to its numerous practical applications. These problems have attracted the attention of industrialists, engineers and scientists from many very diversified disciplines, such as applied mathematics, chemical, civil, environmental, mechanical and nuclear engineering, geothermal physics and food science. Thus, there is a wealth of information now available on convective processes in porous media and it is therefore appropriate and timely to undertake a new critical evaluation of this contemporary information. Transport Phenomena in Porous Media contains 17 chapters and represents the collective work of 27 of the world's leading experts, from 12 countries, in heat transfer in porous media. The recent intensive research in this area has substantially raised the expectations for numerous new practical applications and this makes the book a most timely addition to the existing literature. It includes recent major deve...

  4. Summaries of reports of the 30. Conference on low-temperature physics. Pt. 2. Quantum liquids and crystals. Low-temperature solid-state physics. Electron phenomena at low temperatures

    International Nuclear Information System (INIS)

    1994-01-01

    Report thesises of the conference on the low-temperature physics are presented. The fundamental problems of solids low-temperature physics, quantum liquids and crystals. Specific features are considered of structures, magnetic and thermodynamic properties of metals, alloys and other materials, and also optical and electric properties of thin films

  5. Solid state phenomena

    CERN Document Server

    Lawrance, R

    1972-01-01

    Solid State Phenomena explores the fundamentals of the structure and their influence on the properties of solids. This book is composed of five chapters that focus on the electrical and thermal conductivities of crystalline solids. Chapter 1 describes the nature of solids, particularly metals and crystalline materials. This chapter also presents a model to evaluate crystal structure, the forces between atom pairs, and the mechanism of plastic and elastic deformation. Chapter 2 demonstrates random vibrations of atoms in a solid using a one-dimensional array, while Chapter 3 examines the resista

  6. Transport phenomena I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena I includes viscosity, flow of Newtonian fluids, velocity distribution in laminar flow, velocity distributions with more than one independent variable, thermal con

  7. Crystallography and Magnetic Phenomena

    Directory of Open Access Journals (Sweden)

    Vojtěch Kopský

    2015-02-01

    Full Text Available This essay describes the development of groups used for the specification of symmetries from ordinary and magnetic point groups to Fedorov and magnetic space groups, as well as other varieties of groups useful in the study of symmetric objects. In particular, we consider the problem of some incorrectness in Vol. A of the International Tables for Crystallography. Some results of tensor calculus are presented in connection with magnetoelectric phenomena, where we demonstrate the use of Ascher’s trinities and Opechowski’s magic relations and their connection. Specific tensor decomposition calculations on the grounds of Clebsch Gordan products are illustrated.

  8. Photon management of GaN-based optoelectronic devices via nanoscaled phenomena

    KAUST Repository

    Tsai, Yu-Lin

    2016-09-06

    Photon management is essential in improving the performances of optoelectronic devices including light emitting diodes, solar cells and photo detectors. Beyond the advances in material growth and device structure design, photon management via nanoscaled phenomena have also been demonstrated as a promising way for further modifying/improving the device performance. The accomplishments achieved by photon management via nanoscaled phenomena include strain-induced polarization field management, crystal quality improvement, light extraction/harvesting enhancement, radiation pattern control, and spectrum management. In this review, we summarize recent development, challenges and underlying physics of photon management in GaN-based light emitting diodes and solar cells. (C) 2016 Elsevier Ltd. All rights reserved.

  9. Mesoscopic modeling of multi-physicochemical transport phenomena in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Qinjin [Los Alamos National Laboratory; Wang, Moran [Los Alamos National Laboratory; Mukherjee, Partha P [Los Alamos National Laboratory; Lichtner, Peter C [Los Alamos National Laboratory

    2009-01-01

    We present our recent progress on mesoscopic modeling of multi-physicochemical transport phenomena in porous media based on the lattice Boltzmann method. Simulation examples include injection of CO{sub 2} saturated brine into a limestone rock, two-phase behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media. It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems and can shed some light on the underlying physics occuning at the fundamental scale. Therefore, it can be a potential powerful numerical tool to analyze multi-physicochemical processes in various energy, earth, and environmental systems.

  10. Controlled traffic and soil physical quality of an Oxisol under sugarcane cultivation

    Directory of Open Access Journals (Sweden)

    Gustavo Soares de Souza

    2015-06-01

    Full Text Available Machinery traffic in sugarcane (Saccharumsp. plantations reduces soil physical quality, and hinders both root development and crop yield. We evaluated the physical quality of an Oxisol and the development of sugarcane roots under controlled traffic. The treatments assessed were: without controlled machinery traffic (WCT, controlled traffic by adjusting the tractor and infield wagons to a 3.0 m track width with the operator guiding the machinery (CT1 and the previous treatment using real time kinematic / global positioning system (RTK / GPS precision auto steer (CT2. Soil samples were collected from the planting rows, seedbed and inter-row center to determine the least limiting water range (LLWR and soil porosity from scanned 2-D images. The root dry mass was sampled from monoliths, separated from the soil by washing through a 2-mm sieve and dried in an oven. A higher LLWR was observed in the planting row under CT1 and CT2 than under WCT. The planting row had a predominance of complex pores with a diameter > 500 µm in the 0.15-0.27 m depth layer under CT1 and CT2. In the planting rows under WCT, the root dry mass was only 44 % of that measured under CT2. Benefits regarding soil physical quality and growth roots were observed when the tractor-wagon track width was adjusted based on the sugarcane spacing using either precision auto steering or manual operation of the machinery.

  11. Direct channel problems and phenomena

    International Nuclear Information System (INIS)

    Cutkosky, R.E.

    1975-01-01

    Direct channel problems and phenomena are considered covering the need for precision hadron spectroscopy, the data base for precision hadron spectroscopy, some relations between direct-channel and cross-channel effects, and spin rotation phenomena

  12. 19th International Conference on Ultrafast Phenomena

    CERN Document Server

    Cundiff, Steven; Vivie-Riedle, Regina; Kuwata-Gonokami, Makoto; DiMauro, Louis

    2015-01-01

    This book presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond, and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh-speed communications. This book summarizes the results presented at the 19th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

  13. Physical Modelling of Bucket Foundation Under Long-Term Cyclic Lateral Loading

    DEFF Research Database (Denmark)

    Foglia, Aligi; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2012-01-01

    functioning. In this article a 1g physical model of bucket foundation under horizontal and moment cyclic loading is described. A testing program including four tests was carried out. Every test was conducted for at least 30000 cycles, each with different loading features. The capability of the model...

  14. Transport phenomena in nanoporous materials.

    Science.gov (United States)

    Kärger, Jörg

    2015-01-12

    Diffusion, that is, the irregular movement of atoms and molecules, is a universal phenomenon of mass transfer occurring in all states of matter. It is of equal importance for fundamental research and technological applications. The present review deals with the challenges of the reliable observation of these phenomena in nanoporous materials. Starting with a survey of the different variants of diffusion measurement, it highlights the potentials of "microscopic" techniques, notably the pulsed field gradient (PFG) technique of NMR and the techniques of microimaging by interference microscopy (IFM) and IR microscopy (IRM). Considering ensembles of guest molecules, these techniques are able to directly record mass transfer phenomena over distances of typically micrometers. Their concerted application has given rise to the clarification of long-standing discrepancies, notably between microscopic equilibrium and macroscopic non-equilibrium measurements, and to a wealth of new information about molecular transport under confinement, hitherto often inaccessible and sometimes even unimaginable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Emergent Phenomena at Oxide Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H.Y.

    2012-02-16

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the

  16. Physical properties evaluation of roselle extract-egg white mixture under various drying temperatures

    Science.gov (United States)

    Triyastuti, M. S.; Kumoro, A. C.; Djaeni, M.

    2017-03-01

    Roselle contains anthocyanin that is potential for food colorant. Occasionally, roselle extract is provided in dry powder prepared under high temperature. In this case, the anthocyanin color degrades due to the intervention of heat. The foammat drying with egg white is a potential method to speed up the drying process as well as minimize color degradation. This research aims to study the physical properties of roselle extract under foam mat drying. As indicators, the powder size and color intensity were observed. The result showed that at high temperatures, roselle powder under foam mat drying has the fine size with porous structure. However, at the higher the drying temperature the color retention decreased.

  17. Comparison of the light flash phenomena observed in space and in laboratory experiments

    International Nuclear Information System (INIS)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.

    1976-01-01

    Astronauts on Apollo and Skylab missions have reported observing a variety of visual phenomena when their eyes were closed and adapted to darkness. These observations were studied under controlled conditions during a number of sessions on board Apollo and Skylab spacecraft and the data available to date on these so-called light flashes is in the form of descriptions of the phenomena and frequency of occurrence. Similar visual phenomena have been demonstrated in a number of laboratories by exposing the eyes of human subjects to beams of neutrons, alphas, pions, and protons. More than one physical mechanism is involved in the laboratory and space phenomena. No direct comparison of the laboratory and space observations has been made by observers who have experienced both. However, the range of visual phenomena observed in the laboratory is consistent with the Apollo and Skylab observations. Measured detection efficiencies can be used to estimate the frequencies with which various phenomena would be observed if the subject was exposed to cosmic rays in space

  18. Auroral and sub-auroral phenomena: an electrostatic picture

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2010-02-01

    Full Text Available Many auroral and sub-auroral phenomena are manifestations of an underlying magnetosphere-ionosphere coupling. In the electrostatic perspective the associated auroral current circuit describes how the generator (often in the magnetosphere is connected to the load (often in the ionosphere through field-aligned currents. The present paper examines the generic properties of the current continuity equation that characterizes the auroral circuit. The physical role of the various elements of the current circuit is illustrated by considering a number of magnetospheric configurations, various auroral current-voltage relations, and different types of behaviour of the ionospheric conductivity. Based on realistic assumptions concerning the current-voltage relation and the ionospheric conductivity, a comprehensive picture of auroral and sub-auroral phenomena is presented, including diffuse aurora, discrete auroral arcs, black aurora, and subauroral ion drift. The electrostatic picture of field-aligned potential differences, field-aligned currents, ionospheric electric fields and plasma drift, and spatial scales for all these phenomena is in qualitative agreement with observations.

  19. Workshop on Interface Phenomena

    CERN Document Server

    Kreuzer, Hans

    1987-01-01

    This book contains the proceedings of the first Workshop on Interface Phenomena, organized jointly by the surface science groups at Dalhousie University and the University of Maine. It was our intention to concentrate on just three topics related to the kinetics of interface reactions which, in our opinion, were frequently obscured unnecessarily in the literature and whose fundamental nature warranted an extensive discussion to help clarify the issues, very much in the spirit of the Discussions of the Faraday Society. Each session (day) saw two principal speakers expounding the different views; the session chairmen were asked to summarize the ensuing discussions. To understand the complexity of interface reactions, paradigms must be formulated to provide a framework for the interpretation of experimen­ tal data and for the construction of theoretical models. Phenomenological approaches have been based on a small number of rate equations for the concentrations or mole numbers of the various species involved i...

  20. Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks

    Science.gov (United States)

    Karpatne, A.; Kumar, V.

    2017-12-01

    Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.

  1. [Comparative analysis of the physical status of students living under different conditions of environmental pollution].

    Science.gov (United States)

    Musalimova, R S; Valiakhmetov, R M

    2010-01-01

    The physical status was comparatively studied in students living under different conditions of environmental pollution. The anthropometric and some physiometric (vital capacity) parameters were established to be lower in students from polluted areas than in those from relatively pure ones. The students from polluted areas were observed to have higher hemodynamic parameters (heart rate, stroke volume, cardiac output). The results of the study improve and supplement knowledge of the physical development of the students living in the areas with varying environmental pollution levels and reflect the morphofunctional status that is an indicator in the evaluation of the body's functional tension, which may suggest the suppressing action of environmental pollution on the students' body.

  2. Denaturation of collagen structures and their transformation under the physical and chemical effects

    Science.gov (United States)

    Ivankin, A.; Boldirev, V.; Fadeev, G.; Baburina, M.; Kulikovskii, A.; Vostrikova, N.

    2017-11-01

    The process of denaturation of collagen structures under the influence of physical and chemical factors play an important role in the manufacture of food technology and the production of drugs for medicine and cosmetology. The paper discussed the problem of the combined effects of heat treatment, mechanical dispersion and ultrasonic action on the structural changes of the animal collagen in the presence of weak protonated organic acids. Algorithm combined effects of physical and chemical factors as a result of the formation of the technological properties of products containing collagen has been shown.

  3. Inertial confinement fusion reactor cavity phenomena

    International Nuclear Information System (INIS)

    Bohachevsky, I.O.; Hafer, J.F.; Devaney, J.J.; Pendergrass, J.H.

    1978-01-01

    Cavity phenomena in Inertial Confinement Fusion (ICF) are created by the interaction of energy released by the fuel pellet microexplosion with the medium inside the reactor cavity. The ambient state of the medium in ICF reactor cavities is restricted primarily by its effects on laser beam propagation and on the fuel pellet trajectory. Therefore, a relatively wide choice of ambient conditions can be exploited to gain first-wall protection and advantages in energy extraction. Depending on the choice of ambient cavity conditions and on fuel pellet design, a variety of physical phenomena may develop and dominate the ICF reactor cavity design. Because of the cavity phenomena, the forms of energy released by the fuel-pellet microexplosion are modified before reaching the first wall, thus giving rise to different cavity design problems. The types of cavity phenomena encountered in the conceptual design of ICF reactors are examined, the approaches available for their modeling and analysis are discussed, and some results are presented. Most phenomena are sufficiently well understood to permit valid engineering assessments of the proposed ICF reactor concepts

  4. Renal excretion of water in men under hypokinesia and physical exercise with fluid and salt supplementation

    Science.gov (United States)

    Zorbas, Yan G.; Federenko, Youri F.; Togawa, Mitsui N.

    It has been suggested that under hypokinesia (reduced number of steps/day) and intensive physical exercise, the intensification of fluid excretion in men is apparently caused as a result of the inability of the body to retain optimum amounts of water. Thus, to evaluate this hypothesis, studies were performed with the use of fluid and sodium chloride (NaCl) supplements on 12 highly trained physically healthy male volunteers aged 19-24 years under 364 days of hypokinesis (HK) and a set of intensive physical exercises (PE). They were divided into two groups with 6 volunteers per group. The first group of subjects were submitted to HK and took daily fluid and salt supplements in very small doses and the second group of volunteers were subjected to intensive PE and fluid-salt supplements. For the simulation of the hypokinetic effect, both groups of subjects were kept under an average of 4000 steps/day. During the prehypokinetic period of 60 days and under the hypokinetic period of 364 days water consumed and eliminated in urine by the men, water content in blood, plasma volume, rate of glomerular filtration, renal blood flow, osmotic concentration of urine and blood were measured. Under HK, the rate of renal excretion of water increased considerably in both groups. The additional fluid and salt intake failed to normalize water balance adequately under HK and PE. It was concluded that negative water balance evidently resulted not from shortage of water in the diet but from the inability of the body to retain optimum amounts of fluid under HK and a set of intensive PEs.

  5. 3Wave propagation in rock samples under medium and low temperature conditions. Characteristics of methane hydrate-BSR phenomena; Chu teion ryoiki ni okeru ganseki shiryo no hado denpa tokusei. 1. Methane hydrate BSR gensho no kosatsu suitei

    Energy Technology Data Exchange (ETDEWEB)

    Rokugawa, S.; Kato, Y.; Matsushima, J.; Sano, A. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1997-10-22

    In relation to sea-bottom pseudo reflection face and methane hydrate in seismic exploration records, fundamental experimental studies have been made. In order to get a handhold to elucidate phenomena accompanying methane hydrate, the studies have investigated wave propagation behavior of rock samples and sandy sediments under medium and low temperature conditions. The experiments have used a constant-temperature cooling water circulating equipment to control temperatures of each sample. The samples were placed in a cooler box with the vibration transmitter and receiver fixedly installed, and changes of the waves against temperature change were measured. Sand-stones and two kinds of tuffs were used as rock samples for the measurement. Artificial sand sample soaked in water was used as a substitute for a methane hydrate layer. As a result of the experiments, the relation between the hydrate layer and the gas layer was comprehended. In addition, the blanking phenomenon was thought occurring as a result of the nearly whole substance presenting the speed of ice due to freezing of the sediments, rather than by what is described in the ground homogeneousness theory. 5 refs., 9 figs.

  6. Pathways toward understanding Macroscopic Quantum Phenomena

    International Nuclear Information System (INIS)

    Hu, B L; Subaşi, Y

    2013-01-01

    Macroscopic quantum phenomena refer to quantum features in objects of 'large' sizes, systems with many components or degrees of freedom, organized in some ways where they can be identified as macroscopic objects. This emerging field is ushered in by several categories of definitive experiments in superconductivity, electromechanical systems, Bose-Einstein condensates and others. Yet this new field which is rich in open issues at the foundation of quantum and statistical physics remains little explored theoretically (with the important exception of the work of A J Leggett [1], while touched upon or implied by several groups of authors represented in this conference. Our attitude differs in that we believe in the full validity of quantum mechanics stretching from the testable micro to meso scales, with no need for the introduction of new laws of physics.) This talk summarizes our thoughts in attempting a systematic investigation into some key foundational issues of quantum macroscopic phenomena, with the goal of ultimately revealing or building a viable theoretical framework. Three major themes discussed in three intended essays are the large N expansion [2], the correlation hierarchy [3] and quantum entanglement [4]. We give a sketch of the first two themes and then discuss several key issues in the consideration of macro and quantum, namely, a) recognition that there exist many levels of structure in a composite body and only by judicious choice of an appropriate set of collective variables can one give the best description of the dynamics of a specific level of structure. Capturing the quantum features of a macroscopic object is greatly facilitated by the existence and functioning of these collective variables; b) quantum entanglement, an exclusively quantum feature [5], is known to persist to high temperatures [6] and large scales [7] under certain conditions, and may actually decrease with increased connectivity in a quantum network [8]. We use entanglement as a

  7. Prediction of physical properties of water under extremely supercritical conditions: A molecular dynamics study

    Science.gov (United States)

    Sakuma, Hiroshi; Ichiki, Masahiro; Kawamura, Katsuyuki; Fuji-ta, Kiyoshi

    2013-04-01

    The physical properties of water under a wide range of pressure and temperature conditions are important in fundamental physics, chemistry, and geoscience. Molecular simulations are useful for predicting and understanding the physical properties of water at phases extremely different from ambient conditions. In this study, we developed a new five-site flexible induced point charge model to predict the density, static dielectric constant, and transport properties of water in the extremely supercritical phase at high temperatures and pressures of up to 2000 K and 2000 MPa. The model satisfactorily reproduced the density, radial distribution function, static dielectric constant, reorientation time, and self-diffusion coefficients of water above the critical points. We also developed a database of the static dielectric constant, which is useful for discussing the electrical conductivity of aqueous fluids in the earth's crust and mantle.

  8. Dazzling Physics Gallery Opens in Dallas Art Deco Building.

    Science.gov (United States)

    Gifted Child Today (GCT), 1989

    1989-01-01

    The Dallas Science Place contains 55 interactive displays on observable phenomena, organized into 7 topic areas: motion, waves, matter, electromagnetism, energy, change, and entropy. Attempts were made to keep the exhibits' forms elemental, so that the underlying physical phenomena could be readily observed and experienced. (JDD)

  9. Soil physical and microbiological attributes cultivated with the common bean under two management systems

    Directory of Open Access Journals (Sweden)

    Lorena Adriana De Gennaro

    Full Text Available Agricultural management systems can alter the physical and biological soil quality, interfering with crop development. The objective of this study was to evaluate the physical and microbiological attributes of a Red Latosol, and its relationship to the biometric parameters of the common bean (Phaseolus vulgaris, irrigated and grown under two management systems (conventional tillage and direct seeding, in Campinas in the state of São Paulo, Brazil. The experimental design was of randomised blocks, with a split-plot arrangement for the management system and soil depth, analysed during the 2006/7 and 2007/8 harvest seasons, with 4 replications. The soil physical and microbiological attributes were evaluated at depths of 0.00-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.40 m. The following were determined for the crop: density, number of pods per plant, number of beans per pod, thousand seed weight, total weight of the shoots and harvest index. Direct seeding resulted in a lower soil physical quality at a depth of 0.00-0.05 m compared to conventional tillage, while the opposite occurred at a depth of 0.05-0.10 m. The direct seeding showed higher soil biological quality, mainly indicated by the microbial biomass nitrogen, basal respiration and metabolic quotient. The biometric parameters in the bean were higher under the direct seeding compared to conventional tillage.

  10. Geochemical modelling: what phenomena are missing

    International Nuclear Information System (INIS)

    Jacquier, P.

    1989-12-01

    In the framework of safety assessment of radioactive waste disposal, retention phenomena are usually taken into account by the Kd concept. It is well recognized that this concept is not enough for safety assessment models, because of the several and strong assumptions which are involved in this kind of representation. One way to have a better representation of the retention phenomena, is to substitute for this Kd concept an explicit description of geochemical phenomena and then couple transport codes with geochemical codes in a fully or a two-step procedure. We use currently such codes, but the scope of this paper is to display the limits today of the geochemical modelling in connection with sites analysis for deep disposal. In this paper, we intend to give an overview of phenomena which are missing in the geochemical models, or which are not completely introduced in the models. We can distinguish, on one hand phenomena for which modelling concepts exist such as adsorption/desorption and, on the other hand, phenomena for which modelling concepts do not exist for the moment such as colloids, and complexation by polyelectrolyte solutions (organics). Moreover we have to take care of very low concentrations of radionuclides, which can be expected from the leaching processes in the repository. Under those conditions, some reactions may not occur. After a critical review of the involved phenomena, we intend to stress the main directions of the wishful evolution of the geochemical modelling. This evolution should improve substantially the quality of the above-mentioned site assessments

  11. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  12. Immune phenomena in echinoderms.

    Science.gov (United States)

    Gliński, Z; Jarosz, J

    2000-01-01

    Advances in biochemistry and molecular biology have made it possible to identify a number of mechanisms active in the immune phenomena of echinoderms. It is obvious that echinoderms have the ability to distinguish between different foreign objects (pathologically changed tissues, microorganisms, parasites, grafts) and to express variable effector mechanisms which are elicited specifically and repeatably after a variety of non-self challenges. The molecular and biochemical basis for the expression of these variable defense mechanisms and the specific signals which elicit one type of effector mechanism are not, however, yet well known. The high capacity of coelomocytes to phagocytose, entrap and encapsulate invading microorganisms is a valid immune cell-mediated mechanism of echinoderms. The entrapped bacteria, discharged cellular materials and disintegrating granular cells are compacted and provoke the cellular encapsulation reaction. Moreover, humoral-based reactions form an integral part of the echinoderm defense system against microbial invaders. Factors such as lysozyme, perforins (hemolysins) vitellogenin and lectins are normal constituents of hemolymph, while cytokines are synthesized by echinoderms in response to infection.

  13. Plasma phenomena around comets: interaction with the solar wind

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Shapiro, V.D.; Shevchenko, V.I.; Szegoe, K.

    1987-08-01

    The most important plasma physical experimental data measured during the cometary missions are summarized. These data do not include tail phenomena. Theoretical considerations are also presented concerning the upstream and bow shock regions. (author) 47 refs.; 15 figs

  14. Haters Phenomena in Social Media

    OpenAIRE

    Pradipta, Angga; Lailiyah, S.Sos, M.I.Kom, Nuriyatul

    2016-01-01

    Social media is internet-basic media, functioned as interaction media room based on multimedia technology. And social media created some effects. One of the negative effects of social media is haters phenomena. Haters are a person who easily said dirty words, harass, and humiliate to others. This phenomena causes anxiety—especially in Indonesia, even the Government issued public policy and letter of regulation about this phenomena, through Paragraph 27 verse (3) IT Constitution, Paragraph 45 ...

  15. CVD diamond - fundamental phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, W.A. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  16. Terminology of allergic phenomena.

    Science.gov (United States)

    Ring, Johannes

    2014-01-01

    Over the last 2,000 years a variety of terms have been used for the description of phenomena possibly related to allergy. Many have been forgotten, while some of them have remained. In Greco-Roman literature the term 'idiosyncrasy' was used to describe an individual characterization of a health condition, possibly comparable to 'constitution'. The same term was also used to describe individual reaction patterns, and the term 'antipathy' was used in a similar sense. 'Hypersensitivity' originated from the German word 'Überempfindlichkeit' and was first used in a medical sense by Emil von Behring when he described untoward reactions to his antitoxin containing serum therapy. 'Anaphylaxis' was coined by Richet and Portier to describe the new phenomenon of a life-threatening general pathogenic reaction after repeated injection of antigen. In 1906, Clemens von Pirquet introduced the term 'allergy' in order to bring more clarity to the confusing debate regarding protective and harmful immunity. In order to characterize the familial occurrence of hypersensitivity reactions such as asthma, hay fever and others, the American allergists A.F. Coca and R.A. Cooke introduced the term 'atopy'. Contrary to anaphylaxis, which was experimentally induced, this type of 'hypersensitiveness' occurred spontaneously. The nature of the pathogenic factor was called the 'atopic reagin' and was found to be transferable with serum by Prausnitz and Küstner. After the detection of immunoglobulin (Ig) E as the carrier of this type of hypersensitivity, the term 'atopy' gained a new sense, since IgE is a characteristic - yet not exclusive - parameter of the so-called atopic diseases. Clinically similar diseases such as asthma, rhinoconjunctivitis or eczema can be found in the absence of IgE, and are then called 'intrinsic' variants of the same disease. © 2014 S. Karger AG, Basel.

  17. Mineralization of human bone tissue under hypokinesia and physical exercise with calcium supplements

    Science.gov (United States)

    Zorbas, Yan G.; Verentsov, Grigori E.; Abratov, Nikolai I.

    It has been suggested that physical exercise and calcium supplements may be used to prevent demineralization of bone tissue under hypokinesia (diminished muscular activity). Thus, the aim of this study was to determine mineral content of bones of 12 physically healthy men aged 19-24 years under 90 days of hypokinesia and intensive physical exercise (PE) with calcium lactate (C) supplements. They were divided into experimental and control groups with 6 men in each. The experimental group of men were subjected to hypokinesia (HK) and intensive PE and took 650 mg C 6 times per day; the control group was placed under pure HK, i.e. without the use of any preventive measures. The mineral content of different bone tissues was measured with a densitometric X-ray method in milligrams of calcium per 1 mm 3 before and after exposure to HK. The level of bone density of the examined bone tissues decreased by 7-9% and 5-7% for the control and experimental groups of men, respectively. A statistical analysis revealed that the reduction of bone mineralization was significant with P physical exercise with calcium supplements. Experimental studies of hypokinetic physiology are generally based on the assumption that diminished muscular activity (progressive reduction of number of steps per day) is detrimental to animal and human organisms, since the entire animal kingdom had been formed in an environment of high motor activity which left its imprint on the evolution, structure, function and behaviour of animals and men. The impossibility of the body tissues to retain optimum amounts of fluid and electrolytes is the dominant hypokinetic effect.

  18. Teaching wave phenomena via biophysical applications

    Science.gov (United States)

    Reich, Daniel; Robbins, Mark; Leheny, Robert; Wonnell, Steven

    2014-03-01

    Over the past several years we have developed a two-semester second-year physics course sequence for students in the biosciences, tailored in part to the needs of undergraduate biophysics majors. One semester, ``Biological Physics,'' is based on the book of that name by P. Nelson. This talk will focus largely on the other semester, ``Wave Phenomena with Biophysical Applications,'' where we provide a novel introduction to the physics of waves, primarily through the study of experimental probes used in the biosciences that depend on the interaction of electromagnetic radiation with matter. Topic covered include: Fourier analysis, sound and hearing, diffraction - culminating in an analysis of x-ray fiber diffraction and its use in the determination of the structure of DNA - geometrical and physical optics, the physics of modern light microscopy, NMR and MRI. Laboratory exercises tailored to this course will also be described.

  19. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  20. Soil physical and hydrological properties under three biofuel crops in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Catherine [Ohio State University; Lal, Dr. Rattan [Ohio State University; Schmitz, Matthias [Rheinsche Friedrich/Wilhelms Universitaet Boon; Wullschleger, Stan D [ORNL

    2012-01-01

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60% lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

  1. Physical properties of a rhodic haplustox under two sugarcane harvesting systems

    Directory of Open Access Journals (Sweden)

    Walquíria Machado

    2010-12-01

    Full Text Available This study had the purpose of evaluating the effects of two management types of sugarcane: harvesting of burnt cane (BCH and mechanized harvesting of unburnt green cane (MCH, on some soil physical properties of a dystrophic Rhodic Haplustox. The data were then compared with results for the same soil type under native forest. A completely randomized design was used, with three treatments and 20 replications. The following characteristics were determined: organic matter, aggregate stability, soil bulk density, and porosity at depths of 0-0.20 m and soil penetration resistance. After 15 years of cultivation, there were some alterations in the soil under cane burnt before harvesting, evidenced by a drop in the weighted average diameter of stable aggregates in water and increased soil bulk density. Significant changes were also detected in total porosity and pore distribution under both harvesting systems. Critical values for penetration resistance were observed in the area under mechanized sugar cane harvesting, with a value of 4.5 MPa in the 40-55 cm layer. This value is considered high and could indicate compaction and restriction of root growth. Soil properties under the green cane (unburned management system were closest to those of the soil under native forest.

  2. Soil physical and hydrological properties under three biofuel crops in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Catherine; Lal, Rattan [The Ohio State Univ., School of Environment and Natural Resources, Carbon Management and Sequestration Center, Columbus, OH (United States); Schmitz, Matthias [Rheinische Friedrich/Wilhelms-Universitaet Bonn, Steinmann Institut fuer Geologie, Mineralogie und Palaeontologie, Bonn (Germany); Wullschleger, S. [The Oakridge National Lab., Oakridge, TN (United States)

    2012-10-15

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60 % lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

  3. Device physics underlying silicon heterojunction and passivating-contact solar cells: A topical review

    KAUST Repository

    Chavali, Raghu V. K.

    2018-01-15

    The device physics of commercially dominant diffused-junction silicon solar cells is well understood, allowing sophisticated optimization of this class of devices. Recently, so-called passivating-contact solar cell technologies have become prominent, with Kaneka setting the world\\'s silicon solar cell efficiency record of 26.63% using silicon heterojunction contacts in an interdigitated configuration. Although passivating-contact solar cells are remarkably efficient, their underlying device physics is not yet completely understood, not in the least because they are constructed from diverse materials that may introduce electronic barriers in the current flow. To bridge this gap in understanding, we explore the device physics of passivating contact silicon heterojunction (SHJ) solar cells. Here, we identify the key properties of heterojunctions that affect cell efficiency, analyze the dependence of key heterojunction properties on carrier transport under light and dark conditions, provide a self-consistent multiprobe approach to extract heterojunction parameters using several characterization techniques (including dark J-V, light J-V, C-V, admittance spectroscopy, and Suns-Voc), propose design guidelines to address bottlenecks in energy production in SHJ cells, and develop a process-to-module modeling framework to establish the module\\'s performance limits. We expect that our proposed guidelines resulting from this multiscale and self-consistent framework will improve the performance of future SHJ cells as well as other passivating contact-based solar cells.

  4. Investigation of soil physical properties under Shorea peltata sym in Tengaroh Forest Reserve, Johor Bahru, Malaysia

    Directory of Open Access Journals (Sweden)

    Musalam Mohammed Abdalmoula

    2016-01-01

    Full Text Available Soil properties of tropical rain forest in Southeast Asia have been characterized by several researchers. However, empirical data on soil characteristics under rehabilitation program are still limited or even lacking. A study was conducted to characterize the soil physical properties under different densities of Shorea peltata species. The objective of the research was to determine the relationship between Shorea peltata species and soil physical properties. Twenty observational plots, 50 X 50 m namely, rare (A, low (B, moderate (C and high (D densities were established. Each plot was divided into 10 subplots. Five subplots were selected randomly. Soil samples were collected using auger at 0 - 15 cm, and core-ring at 0 - 10 cm depth. The results show that there was a significant difference among the groups. Analysis of the relationship between soil physical properties and site variables showed that moisture content, bulk density, particle density, silt and clay were the important factors in the distribution of Shorea peltata species in the study sites.

  5. Simulations of Biomechanical Phenomena

    Science.gov (United States)

    Gonzalez, Jose Cruz

    Recent studies have published breakthroughs in the application of finite element (FEA) studies in the design and analysis of advanced orthodontics. However, FEA has not captured bone remodeling responses to advanced orthodontics. The results of these simulations report unrealistic displacement around the nasal bridge, which impeded correlation with clinical data. Bone remodeling has been previously documented in FEA and has shown bone response to mechanical stimulus in femur bone models. However, the relationship between mechanical stimulus and bone remodeling has not been reported in orthodontic studies due to the complexity of the skull. In the current study, strain energy is used as the mechanical stimulus to control remodeling, from which density and modulus evolve. Due to the localization of forces in orthodontics, current remodeling algorithms have limited application. In turn, we developed an algorithm that dynamically collects, sorts, and bins stresses in all elements for regional remodeling based on the proximity of the element to the load. The results demonstrate that bone response to orthodontic appliances is different than that of an FEA without bone remodeling, due to load path changes based upon evolution of the bone properties. It was also found that density and moduli proximal to the load application site exhibit faster remodeling than those located remotely. Modeling another biomechanical phenomena, a 3D simulation was created to simulate recent experimental results that discovered a difference in impact mitigation properties of dense-polymer/foam bilayer structure based on the orientation of the dense-polymer with respect to the impact site. The impact energy transmitted varied in time of arrival and amplitude depending on the orientation of the structure (thin layer up or down). By creating a 3D explicit dynamic FEA simulation, it is expected to reduce costly experiments and time consumed in set up, and offer opportunities for optimization for

  6. Teaching Optical Phenomena with Tracker

    Science.gov (United States)

    Rodrigues, M.; Carvalho, P. Simeão

    2014-01-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a…

  7. Interfacial Transport Phenomena (Second edition)

    NARCIS (Netherlands)

    Slattery, J.C.; Sagis, L.M.C.; Oh, E.S.

    2007-01-01

    Gives a presentation of transport phenomena or continuum mechanics focused on momentum, energy, and mass transfer at interfaces. This work includes a discussion of transport phenomena at common lines or three-phase lines of contact, and a theory for the extension of continuum mechanics to the

  8. Influence of physical and chemical dispersion on the biodegradation of oil under simulated marine conditions

    International Nuclear Information System (INIS)

    Swannell, R. P. J.; Daniel, F.; Croft, B. C.; Engelhardt, M. A.; Wilson, S.; Mitchell, D. J.; Lunel, T.

    1997-01-01

    Dispersion and biodegradation of oil was studied in marine microcosms designed to simulate oil dispersion at sea. Dispersion was studied using both Phase Doppler Particle Analyser and a Chamber Slide technique. In both natural and artificial seawater, oil addition was observed to encourage the growth of hydrocarbon-degrading bacteria in the presence of sufficient nitrogen and phosphorus. Results showed that microorganisms enhanced oil dispersion by colonizing physically-dispersed oil droplets and preventing re-coalescence with the surface slick. The addition of dispersants increased the rate of colonization as well as the number of degraded droplets. These results suggest that stimulation of physical dispersion by chemical means increase the rate of oil biodegradation under natural conditions. 25 refs., 3 tabs., 14 figs

  9. Serving the Reich the struggle for the soul of physics under Hitler

    CERN Document Server

    Ball, Philip

    2013-01-01

    Serving the Reich tells the story of physics under Hitler. While some scientists tried to create an Aryan physics that excluded any 'Jewish ideas', many others made compromises and concessions as they continued to work under the Nazi regime. Among them were three world-renowned physicists: Max Planck, pioneer of quantum theory, regarded it as his moral duty to carry on under the regime. Peter Debye, a Dutch physicist, rose to run the Reich's most important research institute before leaving for the United States in 1940. Werner Heisenberg, discovered the Uncertainty Principle, and became the leading figure in Germany's race for the atomic bomb. After the war most scientists in Germany maintained they had been apolitical or even resisted the regime: Debye claimed that he had gone to America to escape Nazi interference in his research; Heisenberg and others argued that they had deliberately delayed production of the atomic bomb. Mixing history, science and biography, Serving the Reich is a gripping exploration o...

  10. Beyond relativity and quantum mechanics: space physics

    Science.gov (United States)

    Lindner, Henry H.

    2011-09-01

    Albert Einstein imposed an observer-based epistemology upon physics. Relativity and Quantum Mechanics limit physics to describing and modeling the observer's sensations and measurements. Their "underlying reality" consists only of ideas that serve to model the observer's experience. These positivistic models cannot be used to form physical theories of Cosmic phenomena. To do this, we must again remove the observer from the center of physics. When we relate motion to Cosmic space instead of to observers and we attempt to explain the causes of Cosmic phenomena, we are forced to admit that Cosmic space is a substance. We need a new physics of space. We can begin by replacing Relativity with a modified Lorentzian-Newtonian model of spatial flow, and Quantum Mechanics with a wave-based theory of light and electrons. Space physics will require the reinterpretation of all known phenomena, concepts, and mathematical models.

  11. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.

  12. Physical scale modeling of single free head piles under lateral loading in cohesive soils

    Directory of Open Access Journals (Sweden)

    Edgar Leonardo Salamanca-Medina

    2017-06-01

    Full Text Available This paper presents the results of the small scale modeling of free head wood piles under horizontal loading in cohesive soils, tested in order to compare the results with analytical models proposed by various authors. Characteristic Load (CLM and P-Y Curves methods were used for the prediction of lateral deflections at the head of the piles and the method proposed by Broms for estimating the ultimate lateral load. These predictions were compared with the results of the physical modeling, obtaining a good approximation between them.

  13. Rhabdomyolysis Occurring under Statins after Intense Physical Activity in a Marathon Runner

    Directory of Open Access Journals (Sweden)

    Éric Toussirot

    2015-01-01

    Full Text Available Statins are widely used in the treatment of hypercholesterolemia and their side effects on muscles are well established. Conversely, data are sparse regarding the safety of this class of drugs in subjects who engage in sports, particularly those who have intense sports activity. We report the case of a marathon runner who presented with acute rhabdomyolysis during competition while being under rosuvastatin treatment. This case raises the question of the need for temporary discontinuation of statin therapy when intense physical activity is planned.

  14. Thermo-Physical Properties of Ammonium Azide under High Pressure from First-Principles

    Science.gov (United States)

    Landerville, Aaron; Steele, Brad; Oleynik, Ivan

    2013-03-01

    Polynitrogen compounds offer tremendous promise for use as insensitive high-explosives or propellants. While the existence of such compounds have been observed in Diamond Anvil Cells (DAC) under high pressure, recovery to ambient pressure and temperature has proven problematic. A current thrust towards the recovery, and ultimate manufacture, of materials rich in polymeric nitrogen has brought renewed attention to various nitrogen-rich compounds, particularly crystalline azides, as possible precursors. We investigate the thermo-physical properties and Raman spectra of one azide candidate - ammonium azide - under hydrostatic compression using density functional theory with an empirical van der Waals correction. Additionally, we perform structural minima searches to discern possible polymorphs that may help to elucidate dynamical processes leading to the production of a material rich in polymeric nitrogen, as well as its recovery from DAC.

  15. Macrocrack propagation in concrete specimens under sustained loading: Study of the physical mechanisms

    International Nuclear Information System (INIS)

    Rossi, Pierre; Boulay, Claude; Tailhan, Jean-Louis; Martin, Eric; Desnoyers, Dominic

    2014-01-01

    This study presents a series of 4-point bending tests performed to describe the delayed behavior of unreinforced pre-cracked beams under low, moderate and high sustained loading levels. The deflection creep rate, the failure time and the load level were assessed. A linear relation, in a semi-log scale, was found for the deflection creep rate at high load levels. In addition, a linear relation, in a log–log scale, between the secondary deflection creep rate and failure time was observed. Besides, it was shown that the secondary creep deflection rate increases with the sustained loading level and the macrocrack propagation rate when macrocrack propagation occurs during the sustained loading. Physical mechanisms are proposed to explain these results and may be summarized as follows: the delayed behavior of an unreinforced cracked concrete specimen under sustained loading is mainly due to the cracking evolution, thus the creation of microcracks and/or the propagation of a macrocrack

  16. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  17. Micro transport phenomena during boiling

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xiaofeng [Tsinghua Univ., Beijing (China). Inst. of Thermal Engineering and Science

    2010-07-01

    ''Micro Transport Phenomena During Boiling'' reviews the new achievements and contributions in recent investigations at microscale. The content mainly includes (i) fundamentals for conducting investigations of micro boiling, (ii) microscale boiling and transport phenomena, (iii) boiling characteristics at microscale, (iv) some important applications of micro boiling transport phenomena. This book is intended for researchers and engineers in the field of micro energy systems, electronic cooling, and thermal management in various compact devices/systems at high heat removal and/or heat dissipation. (orig.)

  18. PETher - Physical Properties of Thermal Water under In-situ-Conditions

    Science.gov (United States)

    Herfurth, Sarah; Schröder, Elisabeth

    2016-04-01

    The objective of PETher, a research project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi), is to experimentally determine thermo-physical properties (specific isobaric heat capacity, kinematic viscosity, density and thermal conductivity) of geothermal water in-situ-conditions (pressure, temperature, chemical composition including gas content of the brine) present in geothermal applications. Knowing these thermo-physical properties reduces the uncertainties with respect to estimating the thermal output and therefore the economic viability of the power plant. Up to now, only a limited number of measurements of selected physical properties have been made, usually under laboratory conditions and for individual geothermal plants. In-situ measured parameters, especially in the temperature range of 120°C and higher, at pressures of 20 bar and higher, as well as with a salinity of up to 250 g/l, are sparse to non-existing. Therefore, pure water properties are often used as reference data and for designing the power plant and its components. Currently available numerical models describing the thermo-physical properties are typically not valid for the conditions in geothermal applications and do not consider the substantial influence of the chemical composition of the thermal water. Also, actual geothermal waters have not been subject of detailed measurements systematically performed under operational conditions on a large-scale basis. Owing to the lack of reliable data, a validation of numerical models for investigating geothermal systems is not possible. In order to determine the dependency of the thermo-physical properties of geothermal water on temperature, pressure and salinity in-situ measurements are conducted. The measurements are taking place directly at several geothermal applications located in Germany's hydrogeothermal key regions. In order to do this, a mobile testing unit was developed and refined with instruments specifically

  19. Micro transport phenomena during boiling

    CERN Document Server

    Peng, Xiaofeng

    2011-01-01

    "Micro Transport Phenomena During Boiling" reviews the new achievements and contributions in recent investigations at microscale. It presents some original research results and discusses topics at the frontier of thermal and fluid sciences.

  20. Nonlinear chiral transport phenomena

    Science.gov (United States)

    Chen, Jiunn-Wei; Ishii, Takeaki; Pu, Shi; Yamamoto, Naoki

    2016-06-01

    We study the nonlinear responses of relativistic chiral matter to the external fields such as the electric field E , gradients of temperature and chemical potential, ∇T and ∇μ . Using the kinetic theory with Berry curvature corrections under the relaxation time approximation, we compute the transport coefficients of possible new electric currents that are forbidden in usual chirally symmetric matter but are allowed in chirally asymmetric matter by parity. In particular, we find a new type of electric current proportional to ∇μ ×E due to the interplay between the effects of the Berry curvature and collisions. We also derive an analog of the "Wiedemann-Franz" law specific for anomalous nonlinear transport in relativistic chiral matter.

  1. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    Science.gov (United States)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  2. Colloquium: Strong-field phenomena in periodic systems

    Science.gov (United States)

    Kruchinin, Stanislav Yu.; Krausz, Ferenc; Yakovlev, Vladislav S.

    2018-04-01

    The advent of visible-infrared laser pulses carrying a substantial fraction of their energy in a single field oscillation cycle has opened a new era in the experimental investigation of ultrafast processes in semiconductors and dielectrics (bulk as well as nanostructured), motivated by the quest for the ultimate frontiers of electron-based signal metrology and processing. Exploring ways to approach those frontiers requires insight into the physics underlying the interaction of strong high-frequency (optical) fields with electrons moving in periodic potentials. This Colloquium aims at providing this insight. Introduction to the foundations of strong-field phenomena defines and compares regimes of field-matter interaction in periodic systems, including (perfect) crystals as well as optical and semiconductor superlattices, followed by a review of recent experimental advances in the study of strong-field dynamics in crystals and nanostructures. Avenues toward measuring and controlling electronic processes up to petahertz frequencies are discussed.

  3. Temporal Variability of Physical Properties on an Aquic Argiudoll under no Tillage

    Science.gov (United States)

    Castiglione, M. G.; Sasal, M. C.; Wilson, M. G.; Paz González, A.; Oszust, J. D.

    2012-04-01

    Practices for the implementation and development of crops affect soil properties and processes in space and time with consequences for the accumulation and movement of water, nutrients and pollutants, which affects plant growth. The aim of this study was to determine the temporal variability of soil physical properties and its link with the infiltration process, on an Aquic Argiudoll of the Argentine Pampas under no-till cultivation. Sampling was performed during six dates in the INTA EEA Paraná (Entre Ríos, Argentina), in the course of the succession of wheat/ soybean-corn. In each of those dates, rain simulations were performed under covered and uncovered soil. From these results it was determined the saturated hydraulic conductivity (Ks), the runoff coefficient (EC), the accumulated rainfall up to ponding (Tp), the accumulated rainfall to reach the steady state infiltration rate (TI) and the decline slope of the infiltration rate (Pd). Also we determine: the initial soil water content (HI), bulk density (Dap), volume occupied by pores larger than 50 µm (> 50), volume occupied by pores between 10 and 50 µm (10-50), soil physical quality index (S) and structural stability (CDMP). On three dates HI was approximately 11%, two were between 22 and 27% and in the remaining time HI was 36%. Despite these variations we don't observed significant changes in most soil physical properties associated with the structure and pore size. However, we could prove significant differences between dates in Ks and EC, both on bare and cover soil. At the same time, differences in these parameters between coverage degrees were significant only in two dates. The HI affected the variability of Ks results. Also Ks ratio between covered and uncovered soil improved with HI increment, except for HI equal to 36%. We found highly significant linkage between Ks, CE and Pd with HI. This study reveals the importance of the temporal dynamics of water movement in this Aquic Argiudoll, although

  4. On the problem of studying physical properties of rock collectors under conditions modelling layer ones

    Energy Technology Data Exchange (ETDEWEB)

    Petkevich, G.I.

    1972-01-01

    A review is given of the state in studying physical properties of rock collectors under conditions modelling the layer ones. From the theoretical point of view, this direction is determined as petrophysics of multiphase systems and from the practical, as oil field petrophysics. The following aspects of the problem are considered: models of porous media, thermodynamic conditions of deformation process, parameters of stressed state of porous deformed media, and analysis of experimental data. To describe collector behavior under thermodynamic conditions of natural occurrence, it is necessary to construct the model of the porous deformed medium. In connection with heterogeneity and multiphase character of rock collectors, they may be considered as differential-elastic media, and to characterize the stressed state such indices as coefficients of compressibility of skeleton, solid and liquid phase, as well as coefficients of pore compressibility, relaxation, structural parameter, etc. may be used. It is emphasized that only reversable (elastic) parameter changes are studied under laboratory conditions. The results of laboratory measurements of collector parameters are summarized on the basis of different researcher data. (54 refs.)

  5. Selected soil physical and hydraulic properties for different crop successions under no tillage

    Science.gov (United States)

    Sasal, M. C.; Castiglioni, M.; Paz-Ferreiro, J.; Wilson, M. G.; Oszust, J.

    2009-04-01

    No tillage is now widely widespread in Argentina in response to several circumstances, including limited runoff and a drop in soil erosion. Crop residues left on the soil surface help both natural rainfall and irrigation water infiltrate and also limits evaporation, conserving water for plant growth. This notwithstanding, wide differences in runoff rates between crop succession have been observed under no tillage. The aim of this work was to assess the effect of the main crop successions of Entre Ríos province, Argentina on selected soil physic and hydraulic properties. Results obtained on no-till plots were compared with those recorded on a 10-years old grassland plot and on a conventionally tilled plot left bare, both of them taken as references. The study soil was classified as an Aquic Argiudoll. Treatments were: maize and soybean, both cropped as monoculture, succession wheat/soybean or wheat/maize, grassland and conventionally tilled soil left bare. Soil runoff was recorded on experimental plots 100 m2 in surface. Saturated hydraulic conductivity (Khc) and sorptivity were measured in field conditions using a disc permeameter. Bulk density (Bd), saturated hydraulic conductivity (Kh) total porosity (TP) and pore size distributions were determined on undisturbed cores sampled at the 0-4 and 4-8 cm depth with five replications. Maximum water losses were recorded in bare soils conventionally tilled. Under maize and soybean monocultures water losses were six time higher than under grassland. Water losses under successions wheat/soybean-maize were lower than under monoculture but not significantly different. Field saturated hydraulic conductivity (Khc) was highest under grassland and the remaining treatments don't showed significant differences. Differences in sorptivity between plots were not significantly different. A significant relationship was found between saturated hydraulic conductivity measured in field conditions (Khc) and determined in soil cores (Kh

  6. How do soil physical conditions for crop growth vary over time under established contrasting tillage regimes?

    Science.gov (United States)

    Hallett, Paul; Stobart, Ron; Valentine, Tracy; George, Timothy; Morris, Nathan; Newton, Adrian; McKenzie, Blair

    2014-05-01

    When plant breeders develop modern cereal varieties for the sustainable intensification of agriculture, insufficient thought is given to the impact of tillage on soil physical conditions for crop production. In earlier work, we demonstrated that barley varieties that perform best in ploughed soil (the approach traditionally used for breeding trials) were not the same as those performing best under shallow non-inversion or zero-tillage. We also found that the Quantitative Trait Loci (QTL) associated with improved phosphorus uptake, and hence useful for marker assisted breeding, were not robust between different tillage regimes. The impact of the soil environment had greater impact than the genetics in GxE interactions. It is obvious that soil tillage should be considered when breeding the next generation of crops. Tillage may also have important impacts on carbon storage, but we found that despite greater soil carbon at shallow depths under non-inversion tillage, the carbon stored throughout the soil profile was not affected by tillage. Studies on soil tillage impacts to crop productivity and soil quality are often performed in one season, on single sites that have had insufficient time to develop. Our current research explores multiple sites, on different soils, with temporal measurements of soil physical conditions under contrasting tillage regimes. We use the oldest established contemporary tillage experiments in the United Kingdom, with all sites sharing ploughed and shallow (7cm) non-inversion tillage treatments. In eastern Scotland (Mid Pilmore), the site also has zero tillage and deep ploughing (40 cm) treatments, and was established 11 years ago. In east England there are two sites, both also having a deep non-inversion tillage treatment, and they were established 6 (New Farm Systems) and 8 (STAR) years ago. We measure a range of crop and soil properties at sowing, one month after sowing and post-harvest, including rapid lab based assays that allow high

  7. Induced Sporicidal Activity of Chlorhexidine against Clostridium difficile Spores under Altered Physical and Chemical Conditions

    Science.gov (United States)

    Nerandzic, Michelle M.; Donskey, Curtis J.

    2015-01-01

    Background Chlorhexidine is a broad-spectrum antimicrobial commonly used to disinfect the skin of patients to reduce the risk of healthcare-associated infections. Because chlorhexidine is not sporicidal, it is not anticipated that it would have an impact on skin contamination with Clostridium difficile, the most important cause of healthcare-associated diarrhea. However, although chlorhexidine is not sporicidal as it is used in healthcare settings, it has been reported to kill spores of Bacillus species under altered physical and chemical conditions that disrupt the spore’s protective barriers (e.g., heat, ultrasonication, alcohol, or elevated pH). Here, we tested the hypothesis that similarly altered physical and chemical conditions result in enhanced sporicidal activity of chlorhexidine against C. difficile spores. Principal Findings C. difficile spores became susceptible to heat killing at 80°C within 15 minutes in the presence of chlorhexidine, as opposed to spores suspended in water which remained viable. The extent to which the spores were reduced was directly proportional to the concentration of chlorhexidine in solution, with no viable spores recovered after 15 minutes of incubation in 0.04%–0.0004% w/v chlorhexidine solutions at 80°C. Reduction of spores exposed to 4% w/v chlorhexidine solutions at moderate temperatures (37°C and 55°C) was enhanced by the presence of 70% ethanol. However, complete elimination of spores was not achieved until 3 hours of incubation at 55°C. Elevating the pH to ≥9.5 significantly enhanced the killing of spores in either aqueous or alcoholic chlorhexidine solutions. Conclusions Physical and chemical conditions that alter the protective barriers of C. difficile spores convey sporicidal activity to chlorhexidine. Further studies are necessary to identify additional agents that may allow chlorhexidine to reach its target within the spore. PMID:25861057

  8. Contribution of underlying processes to improved visuospatial working memory associated with physical activity.

    Science.gov (United States)

    Ji, Qingchun; Wang, Yingying; Guo, Wei; Zhou, Chenglin

    2017-01-01

    Working memory is critical for various cognitive processes and can be separated into two stages: short-term memory storage and manipulation processing. Although previous studies have demonstrated that increased physical activity (PA) improves working memory and that males outperform females on visuospatial working memory tasks, few studies have determined the contribution of the two underlying stages to the visuospatial working memory improvement associated with PA. Thus, the aims of the present study were to verify the relationship between physical activity and visuospatial working memory, determine whether one or both stages were affected by PA, and investigate any sex differences. A total of 56 undergraduate students were recruited for this study. Their scores on the International Physical Activity Questionnaire (IPAQ) were used to separate them into either a lower PA ( n  = 26; IPAQ score ≤3,000 metabolic equivalent [MET]-min/week) or higher PA ( n  = 30; IPAQ score >3,000 MET-min/week) group. Participants were required to complete three tasks: a visuospatial working memory task, a task that examines the short-term memory storage stage, and a mental rotation task that examines the active manipulation stage. Participants in the higher PA group maintained similar accuracy but displayed significantly faster reaction times (RT) than those in the lower PA group on the visuospatial working memory and manipulation tasks. By contrast, no difference was observed between groups on the short-term memory storage task. In addition, no effects of sex were detected. Our results confirm that PA was positively to visuospatial working memory and that this positive relationship was associated with more rapid cognitive processing during the manipulation stage, with little or no relationship between PA and the memory storage stage of visuospatial working memory.

  9. THE DEVELOPMENT OF STUDENTS’ MOTIVATIONAL DIMENSIONS UNDER THE PHYSICAL EDUCATION EXPERIMENTAL PROGRAMME

    Directory of Open Access Journals (Sweden)

    Said Hasanbegović

    2014-04-01

    Full Text Available This study shows the development of some motivational dimensions of secondary school students when they are treated by the experimental way of teaching. The study was conducted on a sample of 240 pupils of The Secondary School Banovici, out of which 124 males and 116 females. The pupils were divided into two groups. The first group consisted of 120 pupils divided into four sections, out of which 73 males and 47 females. This is the control group. The second group also consisted of 120 pupils divided into four sections, out of which 51 male and 69 females. This group was subjected to the experimental way of teaching and thus represents the experimental group. Results show the changes in pupils’ motivational characteristics under the influence of innovative educational content that are reflected through their activities and final attitudes on the physical education value. The discriminate analysis revealed the statistically important differences between pupils that are treated by the experimental program compared to students treated by traditional program in terms of motivation in physical education classes (PE classes. However, the study, in some way, solves the problem of inactivity and pupils’ lack of interest for the PE classes, i.e. it suggests the pupils’ possible development of motivation for work using the appropriate educational contents.

  10. [Physics of materials and female stress urinary continence: New concepts: I) Elasticity under bladder].

    Science.gov (United States)

    Guerquin, B

    2015-09-01

    Improving the understanding of the adaptation to stress of urinary continence. A transversal analysis between physics of materials and the female anatomy. Laws of physics of the materials and of their viscoelastic behavior are applied to the anatomy of the anterior vaginal wall. The anterior vaginal wall may be divided into two segments of different viscoelastic behavior, the vertical segment below the urethra and the horizontal segment below the bladder. If the urethra gets crushed on the first segment according to the hammock theory, the crushing of the bladder on the second segment is, on the other hand, damped by its important elasticity. The importance of this elasticity evokes an unknown function: damping under the bladder that moderates and delays the increase of intravesical pressure. This damping function below the bladder is increased in the cystocele, which is therefore a continence factor; on the other hand, it is impaired in obesity, which is therefore a factor of SUI. It is necessary to include in the theory of stress continence, the notion of a damping function below the bladder. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Quenching phenomena in natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  12. Quenching phenomena in natural circulation loop

    International Nuclear Information System (INIS)

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-01-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity

  13. Computational analysis of interfacial attachment kinetics and transport phenomena during liquid phase epitaxy of mercury cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Rasin, Igal; Brandon, Simon [Dept. of Chemical Engineering, Technion, Haifa 32000 (Israel); Ben Dov, Anne; Grimberg, Ilana; Klin, Olga; Weiss, Eliezer [SCD-Semi-Conductor Devices, P.O. Box 2250/99, Haifa 31021 (Israel)

    2010-07-01

    Deposition of mercury cadmium telluride (MCT) thin films, on lattice matched cadmium zinc telluride substrates, is often achieved via Liquid Phase Epitaxy (LPE). The yield and quality of these films, required for the production of infrared detector devices, is to a large extent limited by lack of knowledge regarding details of physical phenomena underlying the deposition process. Improving the understanding of these phenomena and their impact on the quality of the resultant films is therefore an important goal which can be achieved through relevant computational and/or experimental studies. We present a combined computational and experimental effort aimed at elucidating physical phenomena underlying the LPE of MCT via a slider growth process. The focus of the presentation will be results generated by a time-dependent three-dimensional model of mass transport, fluid flow, and interfacial attachment kinetics, which we have developed and applied in the analysis of this LPE process. These results, combined with experimental analyses, lead to an improved understanding of the role of different transport and kinetic phenomena underlying this growth process.

  14. Quantum Chess: Making Quantum Phenomena Accessible

    Science.gov (United States)

    Cantwell, Christopher

    Quantum phenomena have remained largely inaccessible to the general public. There tends to be a scare factor associated with the word ``Quantum''. This is in large part due to the alien nature of phenomena such as superposition and entanglement. However, Quantum Computing is a very active area of research and one day we will have games that run on those quantum computers. Quantum phenomena such as superposition and entanglement will seem as normal as gravity. Is it possible to create such games today? Can we make games that are built on top of a realistic quantum simulation and introduce players of any background to quantum concepts in a fun and mentally stimulating way? One of the difficulties with any quantum simulation run on a classical computer is that the Hilbert space grows exponentially, making simulations of an appreciable size physically impossible due largely to memory restrictions. Here we will discuss the conception and development of Quantum Chess, and how to overcome some of the difficulties faced. We can then ask the question, ``What's next?'' What are some of the difficulties Quantum Chess still faces, and what is the future of quantum games?

  15. Thermal transport phenomena in nanoparticle suspensions

    International Nuclear Information System (INIS)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications. (topical review)

  16. Thermal transport phenomena in nanoparticle suspensions

    Science.gov (United States)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-12-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications.

  17. Synchronized mammalian cell culture: part I--a physical strategy for synchronized cultivation under physiological conditions.

    Science.gov (United States)

    Barradas, Oscar Platas; Jandt, Uwe; Becker, Max; Bahnemann, Janina; Pörtner, Ralf; Zeng, An-Ping

    2015-01-01

    Conventional analysis and optimization procedures of mammalian cell culture processes mostly treat the culture as a homogeneous population. Hence, the focus is on cell physiology and metabolism, cell line development, and process control strategy. Impact on cultivations caused by potential variations in cellular properties between different subpopulations, however, has not yet been evaluated systematically. One main cause for the formation of such subpopulations is the progress of all cells through the cell cycle. The interaction of potential cell cycle specific variations in the cell behavior with large-scale process conditions can be optimally determined by means of (partially) synchronized cultivations, with subsequent population resolved model analysis. Therefore, it is desirable to synchronize a culture with minimal perturbation, which is possible with different yield and quality using physical selection methods, but not with frequently used chemical or whole-culture methods. Conventional nonsynchronizing methods with subsequent cell-specific, for example, flow cytometric analysis, can only resolve cell-limited effects of the cell cycle. In this work, we demonstrate countercurrent-flow centrifugal elutriation as a useful physical method to enrich mammalian cell populations within different phases of a cell cycle, which can be further cultivated for synchronized growth in bioreactors under physiological conditions. The presented combined approach contrasts with other physical selection methods especially with respect to the achievable yield, which makes it suitable for bioreactor scale cultivations. As shown with two industrial cell lines (CHO-K1 and human AGE1.HN), synchronous inocula can be obtained with overall synchrony degrees of up to 82% in the G1 phase, 53% in the S phase and 60% in the G2/M phase, with enrichment factors (Ysync) of 1.71, 1.79, and 4.24 respectively. Cells are able to grow with synchrony in bioreactors over several cell cycles. This

  18. Microbial and physical properties as indicators of sandy soil quality under cropland and grassland

    Science.gov (United States)

    Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw; Oszust, Karolina; Brzezinska, Malgorzata

    2017-04-01

    Land use is one of the key factor driving changes in soil properties influencing on soil health and quality. Microbial diversity and physical properties are sensitive indicators for assessing soil health and quality. The alterations of microbial diversity and physical properties following land use changes have not been sufficiently elucidated, especially for sandy soils. We investigated microbial diversity indicators including fungal communities composition and physical properties of sandy acid soil under cropland and more than 20-yr-old grassland (after cropland) in Trzebieszów, Podlasie Region, Poland (N 51° 59' 24", E 22° 33' 37"). The study included four depths within 0-60 cm. Microbial genetic diversity was assessed by terminal restriction fragment length polymorphism (t-RFLP) analysis, fungal community composition was evaluated by next generation sequencing (NGS) analysis and functional diversity was determined by Biolog EcoPlate method. Overall microbial activity was assessed by soil enzymes (dehydrogenases, β-glucosidase) and respiration test. At the same places soil texture, organic carbon content, pH, bulk density, water holding capacity were determined. Our results showed that grassland soil was characterized by higher activity of soil enzymes than cropland. The average well color development of soil microorganisms, the microbial functional diversity and the number of carbon source utilization were significantly affected by land use type and were differentiated among soil depths. In grassland compared to cropland soil a significant increase of carboxylic acids and decrease of amino acids utilization was observed. The quantitative and qualitative differences were found in community of ammonia oxidizing archaea in cropland and grassland soil. The results of fungal community composition help to explain the soil health of grassland and cropland based on the appearance of phytopathogenic and antagonistic fungi. In general bulk density and field water

  19. Modeling in transport phenomena a conceptual approach

    CERN Document Server

    Tosun, Ismail

    2007-01-01

    Modeling in Transport Phenomena, Second Edition presents and clearly explains with example problems the basic concepts and their applications to fluid flow, heat transfer, mass transfer, chemical reaction engineering and thermodynamics. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations and the physical significance of each term are given in detail, for students to easily understand and follow up the material. There is a strong incentive in science and engineering to

  20. Cooperative phenomena in flows; Poster abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Loekseth, Trine (ed.)

    2011-05-15

    The objective of this 'Geilo School' was to bring together researchers with various interests and background including theoretical experimental physicists, material scientists and molecular biologists to identify and discuss areas where synergism between these disciplines may be most fruitfully applied to the study of various aspects of 'Cooperative phenomena in flows'. There were altogether 21 lecturers at the School with about 80 participants from 19 countries. This was the 21. Geilo School held biannually since the first one in I971. Reference to the earlier Geilo Schools 1971-2009 may be found here: http://www.ife.no/departments/physics/projects/geilo (Author)

  1. Phenomena and parameters important to burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Dehart, M.D.; Wagner, J.C.

    2001-01-01

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water- reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given. (author)

  2. Advances in modelling of condensation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  3. Layered phenomena in the mesopause region

    Science.gov (United States)

    Plane, J. M. C.; Bailey, S. M.; Baumgarten, G.; Rapp, M.

    2015-05-01

    This special issue of the Journal of Atmospheric and Solar-Terrestrial Physics comprises a collection of papers which were mostly presented at the 11th Layered Phenomena in the Mesopause Region (LPMR) Workshop, held at the University of Leeds between 29th July 2013 and 1st August 2013. The topics covered at the workshop included atmospheric dynamics, mesospheric ice clouds, meteoric metal layers, meteoric smoke particles, and airglow layers. There was also a session on the potential of planned sub-orbital spacecraft for making measurements in the mesosphere and lower thermosphere (MLT).

  4. Micro- and nanoscale phenomena in tribology

    CERN Document Server

    Chung, Yip-Wah

    2011-01-01

    Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study.After discussing the

  5. Containment severe accident thermohydraulic phenomena

    International Nuclear Information System (INIS)

    Frid, W.

    1991-08-01

    This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)

  6. Secure Fusion Estimation for Bandwidth Constrained Cyber-Physical Systems Under Replay Attacks.

    Science.gov (United States)

    Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li

    2017-07-03

    State estimation plays an essential role in the monitoring and supervision of cyber-physical systems (CPSs), and its importance has made the security and estimation performance a major concern. In this case, multisensor information fusion estimation (MIFE) provides an attractive alternative to study secure estimation problems because MIFE can potentially improve estimation accuracy and enhance reliability and robustness against attacks. From the perspective of the defender, the secure distributed Kalman fusion estimation problem is investigated in this paper for a class of CPSs under replay attacks, where each local estimate obtained by the sink node is transmitted to a remote fusion center through bandwidth constrained communication channels. A new mathematical model with compensation strategy is proposed to characterize the replay attacks and bandwidth constrains, and then a recursive distributed Kalman fusion estimator (DKFE) is designed in the linear minimum variance sense. According to different communication frameworks, two classes of data compression and compensation algorithms are developed such that the DKFEs can achieve the desired performance. Several attack-dependent and bandwidth-dependent conditions are derived such that the DKFEs are secure under replay attacks. An illustrative example is given to demonstrate the effectiveness of the proposed methods.

  7. Critical Phenomena in Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Gundlach Carsten

    1999-01-01

    Full Text Available As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term 'critical phenomena'. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. This review gives an introduction to the phenomena, tries to summarize the essential features of what is happening, and then presents extensions and applications of this basic scenario. Critical phenomena are of interest particularly for creating surprising structure from simple equations, and for the light they throw on cosmic censorship and the generic dynamics of general relativity.

  8. Transport Phenomena and Materials Processing

    Science.gov (United States)

    Kou, Sindo

    1996-10-01

    An extremely useful guide to the theory and applications of transport phenomena in materials processing This book defines the unique role that transport phenomena play in materials processing and offers a graphic, comprehensive treatment unlike any other book on the subject. The two parts of the text are, in fact, two useful books. Part I is a very readable introduction to fluid flow, heat transfer, and mass transfer for materials engineers and anyone not yet thoroughly familiar with the subject. It includes governing equations and boundary conditions particularly useful for studying materials processing. For mechanical and chemical engineers, and anyone already familiar with transport phenomena, Part II covers the many specific applications to materials processing, including a brief description of various materials processing technologies. Readable and unencumbered by mathematical manipulations (most of which are allocated to the appendixes), this book is also a useful text for upper-level undergraduate and graduate-level courses in materials, mechanical, and chemical engineering. It includes hundreds of photographs of materials processing in action, single and composite figures of computer simulation, handy charts for problem solving, and more. Transport Phenomena and Materials Processing: * Describes eight key materials processing technologies, including crystal growth, casting, welding, powder and fiber processing, bulk and surface heat treating, and semiconductor device fabrication * Covers the latest advances in the field, including recent results of computer simulation and flow visualization * Presents special boundary conditions for transport phenomena in materials processing * Includes charts that summarize commonly encountered boundary conditions and step-by-step procedures for problem solving * Offers a unique derivation of governing equations that leads to both overall and differential balance equations * Provides a list of publicly available computer

  9. Collective Phenomena in Kidney Autoregulation

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Sosnovtseva, Olga; Holstein-Rathlou, N.-H.

    2004-01-01

    By controling the excretion of water and salts, the kidneys play all important role ill regulating the blood pressure and maintaining a proper environment for the cells of the body. This control depends to a large extent oil mechanisms that are associated with the individual functional unit...... for the observed synchronization phenomena, and discuss the possible physiological significance of these phenomena. We are particularly interested ill synchronization effects that call occur among neighboring nephrons that individually display irregular (or chaotic) dynamics in their pressure and flow regulation....

  10. Whistlers and related ionospheric phenomena

    CERN Document Server

    Helliwell, Robert A

    2006-01-01

    The investigation of whistlers and related phenomena is a key element in studies of very-low-frequency propagation, satellite communication, the outer ionosphere, and solar-terrestrial relationships. This comprehensive text presents a history of the study of the phenomena and includes all the elements necessary for the calculation of the characteristics of whistlers and whistler-mode signals.An introduction and brief history are followed by a summary of the theory of whistlers and a detailed explanation of the calculation of their characteristics. Succeeding chapters offer a complete atlas of

  11. MASCA, In-vessel phenomena during severe accidents

    International Nuclear Information System (INIS)

    2007-01-01

    Description: The MASCA Project was a follow-up of the RASPLAV Project and investigated in-vessel phenomena during a severe accident. In particular, it addressed the influence of the chemical composition of the molten corium on the heat transfer to the pressure vessel environment. The project addressed this by investigating stratification phenomena of the molten pool and the partitioning of fission products (FP) within the different layers of the melt. The project was scheduled to be completed in July 2003, but it was continued until 2006 under the MACS-2 Project, given the experimental needs that still exist and the quality of the experimental work done so far. The tests aimed to resolve remaining uncertainties about the heat load on the reactor vessel and thus the possibility of retaining the melt in the vessel. These uncertainties are mainly associated with scaling effects and coupling between the thermal-hydraulic and chemical behaviour of the melt. Supporting experiments and analyses - in addition to helping understand key in-vessel phenomena - facilitated a consistent interpretation of the results. The experiments were carried out with corium compositions prototypical of power reactors which use iron and steel materials. The MASCA experimental goal was achieved through corium tests of different scale, and was complemented by pre- and post-test analyses and development of computational models. Additional measurements of thermo-physical properties of the melts such as density, thermal conductivity and liquidus-solidus temperatures considerably expanded the material properties data obtained during the RASPLAV Project. The major goals of the MASCA Project were to: - Investigate the influence of chemical behaviour on heat transfer in stratified molten pools of prototypical compositions; - Investigate FP behaviour in a molten pool and in particular: Partitioning of FP between layers in case of stratification; Partitioning of FP between phases during melting and

  12. In vessel core melt progression phenomena

    International Nuclear Information System (INIS)

    Courtaud, M.

    1993-01-01

    For all light water reactor (LWR) accidents, including the so called severe accidents where core melt down can occur, it is necessary to determine the amount and characteristics of fission products released to the environment. For existing reactors this knowledge is used to evaluate the consequences and eventual emergency plans. But for future reactors safety authorities demand decrease risks and reactors designed in such a way that fission products are retained inside the containment, the last protective barrier. This requires improved understanding and knowledge of all accident sequences. In particular it is necessary to be able to describe the very complex phenomena occurring during in vessel core melt progression because they will determine the thermal and mechanical loads on the primary circuit and the timing of its rupture as well as the fission product source term. On the other hand, in case of vessel failure, knowledge of the physical and chemical state of the core melt will provide the initial conditions for analysis of ex-vessel core melt progression and phenomena threatening the containment. Finally a good understanding of in vessel phenomena will help to improve accident management procedures like Emergency Core Cooling System water injection, blowdown and flooding of the vessel well, with their possible adverse effects. Research and Development work on this subject was initiated a long time ago and is still in progress but now it must be intensified in order to meet the safety requirements of the next generation of reactors. Experiments, limited in scale, analysis of the TMI 2 accident which is a unique source of global information and engineering judgment are used to establish and assess physical models that can be implemented in computer codes for reactor accident analysis

  13. [Response of Sediment Micro Environment and Micro Interface to Physical Disturbance Intensity Under the Disturbance of Chironomus plumosus].

    Science.gov (United States)

    Shi, Xiao-dan; Li, Yong; Li, Da-peng; Wang, Ren; Deng, Meng; Huang, Yong

    2015-05-01

    The response of sediment micro environment and micro intertace to physical disturbance intensity under the physical and Chironomus plumosus disturbance was investigated by means of sediment Rhizon samplers and Unisense micro sensor system. The sediment and overlying water were taken from Meiliang bay of Taihu Lake. The results showed that the OPD reached up to 12.1 mm under the high intensity (240 r · min(-1)), while it was higher than 3. 8. mm under low intensity (60 r · min(-1)). The TOE, the difference of TOE and DOE, OPD, ORP and the difference of DO spatial distribution were all positively correlated with the physical disturbance intensity. The increasing magnitude and range of pH as well as the decreasing magnitude and range of ferrous followed the same response tendency. Within the 0-6 cm sediment, the water content and porosity as well as the microbial activity at the same depth increased with the increase of physical disturbance intensity. In addition, the degree of response of the above parameters to the physical disturbance intensity was weakened with the increase of sediment depth. It was suggested that Chironomus plumosus dug more and deeper galleries under high intensity physical disturbance. Therefore, the sediment micro environment and micro interface were transformed in the vertical direction of the sediment.

  14. Strings, fields and critical phenomena

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1987-07-01

    The connection between field theory and critical phenomena is reviewed. Emphasis is put on the use of Monte Carlo methods in the study of non-perturbative aspects of field theory. String theory is then described as a statistical theory of random surfaces and the critical behaviour is analyzed both by analytical and numerical methods. (orig.)

  15. Transport phenomena in particulate systems

    CERN Document Server

    Freire, José Teixeira; Ferreira, Maria do Carmo

    2012-01-01

    This volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.

  16. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems.

    Science.gov (United States)

    Rachid, Caio T C C; Piccolo, Marisa C; Leite, Deborah Catharine A; Balieiro, Fabiano C; Coutinho, Heitor Luiz C; van Elsas, Jan Dirk; Peixoto, Raquel S; Rosado, Alexandre S

    2012-08-08

    Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use was observed in soil under

  17. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems

    Directory of Open Access Journals (Sweden)

    Rachid Caio TCC

    2012-08-01

    Full Text Available Abstract Background Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane, next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA and denitrifying (nirK genes, greenhouse gas flow and several soil physicochemical properties were evaluated. Results Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil

  18. Effect of L-carnitine Supplementation on Nutritional Status and Physical Performance Under Calorie Restriction.

    Science.gov (United States)

    Jain, Swati; Singh, Som Nath

    2015-04-01

    L-carnitine is popular as a potential ergogenic aid because of its role in the conversion of fat into energy. The present study was undertaken to investigate the effect of short term supplementation of L-carnitine on metabolic markers and physical efficiency tests under short term calorie restriction. Male albino rats were divided into four groups (n = 12 in each)-control, calorie restricted (CR for 5 days, 25 % of basal food intake), L-carnitine supplemented (CAR, given orally for 5 days at a dose of 100 mg/kg), CR with L-carnitine supplementation (CR + CAR). Food intake and body weight of the rats were measured along with biochemical variables like blood glucose, tissue glycogen, plasma and muscle protein and enzymatic activities of CPT-1 (carnitine palmitoyl transferase-1) and AMP kinase. Results demonstrated that L-carnitine caused marked increase in muscle glycogen, plasma protein, CPT-1 activity and swim time of rats (P supplementation. In addition to the substantive effects caused by CR alone, L-carnitine under CR significantly affected muscle glycogen, plasma protein, CPT-1 activity and AMP kinase (P < 0.05). Short term CR along with L-carnitine also resulted in increased swim time of rats than control, CR and L-carnitine treated rats (P < 0.05). The present study was an attempt towards developing an approach for better adherence to dietary restriction regimen, with the use of L-carnitine.

  19. Soil Physical Characteristics and Biological Indicators of Soil Quality Under Different Biodegradable Mulches

    Science.gov (United States)

    Schaeffer, S. M.; Flury, M.; Sintim, H.; Bandopadhyay, S.; Ghimire, S.; Bary, A.; DeBruyn, J.

    2015-12-01

    Application of conventional polyethylene (PE) mulch in crop production offers benefits of increased water use efficiency, weed control, management of certain plant diseases, and maintenance of a micro-climate conducive for plant growth. These factors improve crop yield and quality, but PE must be retrieved and safely disposed of after usage. Substituting PE with biodegradable plastic mulches (BDM) would alleviate disposal needs, and is potentially a more sustainable practice. However, knowledge of potential impacts of BDMs on agricultural soil ecosystems is needed to evaluate sustainability. We (a) monitored soil moisture and temperature dynamics, and (b) assessed soil quality upon usage of different mulches, with pie pumpkin (Cucurbita pepo) as the test crop. Experimental field trials are ongoing at two sites, one at Northwestern Washington Research and Extension Center, Mount Vernon, WA, and the other at East Tennessee Research and Education Center, Knoxville, TN. The treatments constitute four different commercial BDM products, one experimental BDM; no mulch and PE served as the controls. Soil quality parameters being examined include: organic matter content, aggregate stability, water infiltration rate, CO2 flux, pH, and extracellular enzyme activity. In addition, lysimeters were installed to examine the soil water and heat flow dynamics. We present baseline and the first field season results from this study. Mulch cover appeared to moderate soil temperatures, but biodegradable mulches also appeared to lose water more quickly than PE. All mulch types, with the exception of cellulose, reduced the diurnal fluctuations in soil temperature at 10cm depth from 1 to 4ºC. However, volumetric water content ranged from 0.10 to 0.22 m3 m-3 under the five biodegradable mulches compared to 0.22 to 0.28 m3 m-3 under conventional PE. Results from the study will be useful for management practices by providing knowledge on how different mulches impact soil physical and

  20. Study on cultural innovation of Shanghai physical education under international perspective—on the role of physical education teachers

    Directory of Open Access Journals (Sweden)

    WANG Ziqing

    2013-08-01

    Full Text Available Shanghai school sports culture is formed in the process of accumulation and inherited after years of school physical education reform and practice in Shanghai,with Shanghai local characteristics of the physical education culture.Its innovation will help the majority of Shanghai young students to meet their needs of culture and to promote their identity to cultural of Shanghai city to make Shanghai school sports achieve the power of sustainable development.The innovation of Shanghai school sports culture includes the innovation in ideas of school sports,school sports system,contains of school sports activities etc.Shanghai school sports culture innovative ways includes communication with the school′s sports culture,integration,the original innovation.Currently Shanghai school sports culture innovation level is not high, the incentive to innovate is accumulating.Innovation mechanisms is not yet perfect,it is needed to improve the mechanism,to optimize the environment for innovation.Further efforts are paid to stimulate innovation,giving full play to the main role of physical education teachers in order to further enhance the innovation level of Shanghai school sports culture.

  1. Physical attributes of ultisol of Brazil's northeastern semiarid under organic farming of wine grapes

    Directory of Open Access Journals (Sweden)

    Jardenia R. Feitosa

    2015-03-01

    Full Text Available The purpose of this study was to evaluate the effects of organic farming of wine grapes under physical and chemical characteristics of Ultisol Brazil's northeastern semiarid region. The samples of soil were collected from the row and interrow of the farming and from the fallow area, at the depths of 0.0-0.10, 0.10-0.20, 0.20-0.30 and 0.30-0.60 m. The samples were collected at six and twelve months after the culture implementation to evaluate the state of aggregation, bulk density and total soil porosity, flocculation index and organic matter contents, calcium, magnesium, and sodium. The results were submitted to statistical analysis. The adoption of organic farming contributed to the soil aggregation process. The bulk density and total soil porosity did not differ significantly between the evaluations, but were within the critical limits for sandy soils. The index flocculation did not have a great influence on the aggregates formation, being this process influenced by organic matter. The period of one year was considered short to obtain conclusive results in improving the soil quality by organic farming, since there are difficulties in tropical soils in promoting significant increases in organic matter content in short time.

  2. Physical attributes of Ultisol of Brazil's northeastern semiarid under organic farming of wine grapes.

    Science.gov (United States)

    Feitosa, Jardenia R; Mendes, Alessandra M S; Olszevski, Nelci; Cunha, Tony J F; Cortez, Jorge W; Giongo, Vanderlise

    2015-03-01

    The purpose of this study was to evaluate the effects of organic farming of wine grapes under physical and chemical characteristics of Ultisol Brazil's northeastern semiarid region. The samples of soil were collected from the row and interrow of the farming and from the fallow area, at the depths of 0.0-0.10, 0.10-0.20, 0.20-0.30 and 0.30-0.60 m. The samples were collected at six and twelve months after the culture implementation to evaluate the state of aggregation, bulk density and total soil porosity, flocculation index and organic matter contents, calcium, magnesium, and sodium. The results were submitted to statistical analysis. The adoption of organic farming contributed to the soil aggregation process. The bulk density and total soil porosity did not differ significantly between the evaluations, but were within the critical limits for sandy soils. The index flocculation did not have a great influence on the aggregates formation, being this process influenced by organic matter. The period of one year was considered short to obtain conclusive results in improving the soil quality by organic farming, since there are difficulties in tropical soils in promoting significant increases in organic matter content in short time.

  3. Evaluating the soil physical quality under long-term field experiments in Southern Italy

    Science.gov (United States)

    Castellini, Mirko; Stellacci, Anna Maria; Iovino, Massimo; Rinaldi, Michele; Ventrella, Domenico

    2017-04-01

    Long-term field experiments performed in experimental farms are important research tools to assess the soil physical quality (SPQ) given that relatively stable conditions can be expected in these soils. However, different SPQ indicators may sometimes provide redundant or conflicting results, making difficult an SPQ evaluation (Castellini et al., 2014). As a consequence, it is necessary to apply appropriate statistical procedures to obtain a minimum set of key indicators. The study was carried out at the Experimental Farm of CREA-SCA (Foggia) in two long-term field experiments performed on durum wheat. The first long-term experiment is aiming at evaluating the effects of two residue management systems (burning, B or soil incorporation of crop residues, I) while the second at comparing the effect of tillage (conventional tillage, CT) and sod-seeding (direct drilling, DD). In order to take into account both optimal and non-optimal soil conditions, five SPQ indicators were monitored at 5-6 sampling dates during the crop season (i.e., between November and June): soil bulk density (BD), macroporosity (PMAC), air capacity (AC), plant available water capacity (PAWC) and relative field capacity (RFC). Two additional data sets, collected on DD plot in different cropping seasons and in Sicilian soils differing for texture, depth and land use (N=140), were also used with the aim to check the correlation among indicators. Impact of soil management was assessed by comparing SPQ evaluated under different management systems with optimal reference values reported in literature. Two techniques of multivariate analysis (principal component analysis, PCA and stepwise discriminant analysis, SDA) were applied to select the most suitable indicator to facilitate the judgment on SPQ. Regardless of the considered management system, sampling date or auxiliary data set, correlation matrices always showed significant negative relationships between RFC and AC. Decreasing RFC at increasing AC is

  4. Dynamics of cardiovascular parameters in combined aortic malformations under the influence of a physical therapy program during the rehabilitation process

    Directory of Open Access Journals (Sweden)

    Serhii Kalmykov

    2017-12-01

    Full Text Available Purpose: to study hemodynamic parameters and the reaction of the cardiovascular system to the dosed physical load of patients combined aortic defect with heart failure of the I degree under the influence of the complex physical therapy program developed by us during the rehabilitation process. Material & Methods: the study involved 26 middle-aged men with a diagnosis: combined aortic valve disease, HF I st. Result: dynamics of functional parameters of the cardiovascular system of patients under the influence of the physical therapy program is analyzed. Conclusion: the combination of morning hygienic gymnastics, therapeutic gymnastics, independent activities and dosed walking with a therapeutic massage contributes to the normalization of vascular tone, motor-vascular reflexes and blood pressure, increasing the tolerance of the cardiovascular system to physical activity.

  5. Electrodiffusion phenomena in neuroscience: a neglected companion.

    Science.gov (United States)

    Savtchenko, Leonid P; Poo, Mu Ming; Rusakov, Dmitri A

    2017-09-19

    The emerging technological revolution in genetically encoded molecular sensors and super-resolution imaging provides neuroscientists with a pass to the real-time nano-world. On this small scale, however, classical principles of electrophysiology do not always apply. This is in large part because the nanoscopic heterogeneities in ionic concentrations and the local electric fields associated with individual ions and their movement can no longer be ignored. Here, we review basic principles of molecular electrodiffusion in the cellular environment of organized brain tissue. We argue that accurate interpretation of physiological observations on the nanoscale requires a better understanding of the underlying electrodiffusion phenomena.

  6. Ricci flows, wormholes and critical phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Viqar; Seahra, Sanjeev S [Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada)

    2008-11-21

    We study the evolution of wormhole geometries under the Ricci flow using numerical methods. Depending on values of initial data parameters, wormhole throats either pinch off or evolve to a monotonically growing state. The transition between these two behaviors exhibits a form of critical phenomena reminiscent of that observed in gravitational collapse. Similar results are obtained for initial data that describe space bubbles attached to asymptotically flat regions. Our numerical methods are applicable to 'matter-coupled' Ricci flows derived from conformal invariance in string theory. (fast track communication)

  7. Building physics from physical principles to international standards

    CERN Document Server

    Pinterić, Marko

    2017-01-01

    This textbook provides thorough coverage of the most important building physics phenomena: heat transfer, moisture, sound/acoustics, and illumination. Since the book is primarily aimed at engineers, it addresses professional issues with due pragmatism, and by including many practical examples and related ISO standards. Nevertheless, in order to guarantee full comprehension, it also explains the underlying physical principles and relates them to practical aspects in a simple and clear way. This is achieved with the aid of more than 100 figures and consistent cross-referencing of formulas and ideas. In addition, interrelationships between the different building physics phenomena are elucidated in a way that will enable readers to develop performance specifications that inform the design process. The book will primarily appeal to students of civil engineering and architecture, as well as to all practitioners in these areas who wish to broaden their fundamental understanding of topics in building physics.

  8. Chemical and physical fractions of soil organic matter under various management regimes in Roraima, Brazil

    Directory of Open Access Journals (Sweden)

    Marden Daniel Espinoza Guardiola

    2017-08-01

    Full Text Available The crop-livestock integration (CLI and crop-livestock-forest integration (CLFI management systems, have been shown to be viable approaches for increasing carbon sequestration in soils, resulting in the improvement of physical and chemical soil attributes. The objective of this study was to evaluate the chemical attributes and organic matter in soils under Natural Forest (NF converted to different uses and managed differently: rotational pasture area (PAST, crop-livestock integration (CLI, and crop-livestock-forest integration (CLIF. The research was conducted at the São Paulo farm, in Iracema, located in the south-central region of the state of Roraima, Brazil. The studied soil type was classified as Ultisol. Soil samples were taken by opening ditches and examining layers at 0.1-m depth intervals from surface to 0.60-m depth. Total organic carbon (TOC, chemical and granulometric fractionation of soil organic matter (SOM, oxidizable fractions, and light organic matter in water were analyzed. Our results showed low levels of the analyzed chemical elements, a characteristic of a soil with low natural fertility. This matches conditions inherent in source material, weathered by high rainfall, a warm and humid climate, and flat topographic relief. In the 0-0.1 m layer, the PAST and CLI systems had the highest TOC contents relative to the other systems studied. At other depths, there were no statistical differences among TOC levels. The highest concentration of C in the particulate fraction (POC was noted in the surface layer in all management systems. The pasture system had the highest concentration POC in the top 0.10 m. Our results also showed that the upper 0.10 m of soil in NF contained the lowest content of organic carbon associated with mineral (MOC relative to the managed agrosystems. In addition, humin provided the largest contribution to SOM in all evaluated management systems. The crop-livestock integration (CLI and crop

  9. Solar Neutrons and Related Phenomena

    CERN Document Server

    Dorman, Lev

    2010-01-01

    This book presents the first comprehensive compilation and review of the extensive body of experimental and theoretical material on solar neutrons and related phenomena published in the scientific literature over the last sixty years. Phenomena related to solar neutrons are more specifically: the decay products of solar neutrons solar gamma rays generated in processes like nuclear reactions between solar energetic charged particles and matter of the solar atmosphere, as well as by the capture of solar neutrons by hydrogen atoms in the solar atmosphere the propagation of solar neutrons, solar gamma rays and other secondary particles through the solar photosphere, chromosphere and corona, as well as through interplanetary space and through the Earth's atmosphere. Models and simulations of particle acceleration, interactions, and propagation processes show that observations of solar neutrons and gamma rays in space and in the Earth's atmosphere yield essential and unique information on the source function of ene...

  10. Mathematical Modeling of Diverse Phenomena

    Science.gov (United States)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  11. Gravitational anomaly and transport phenomena

    OpenAIRE

    Landsteiner, Karl

    2011-01-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficie...

  12. Physics based Degradation Modeling and Prognostics of Electrolytic Capacitors under Electrical Overstress Conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a physics based degradation modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors are critical components in...

  13. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. B K Goswami. Articles written in Pramana – Journal of Physics. Volume 75 Issue 5 November 2010 pp 915-921 Conributed Papers. Nonlinear resonance phenomena of a doped fibre laser under cavity-loss modulation: Experimental demonstrations · A Ghosh B K Goswami R ...

  14. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. R Vijaya. Articles written in Pramana – Journal of Physics. Volume 75 Issue 5 November 2010 pp 915-921 Conributed Papers. Nonlinear resonance phenomena of a doped fibre laser under cavity-loss modulation: Experimental demonstrations · A Ghosh B K Goswami R ...

  15. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    Science.gov (United States)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  16. Nonlinear, distortive phenomena in solids: Martensitic, crack, and multiscale structures. Progress report, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, J.A.; Sethna, J.P.

    1992-08-01

    This ongoing program, from the beginning of the first three year grant 1988--1991 and now in the first year of the second phase 1991--1994, has been directed at developing both an understanding of the physics underlying structural transformations in real (alloy) materials as well as new theoretical methods which adequately describe the large (nonlinear) distortions which characterize such processes. We have had a particular interest in martensitic systems, first (1988--1991) in the equilibrium limits, and now (below) in phenomena associated with the transformation process.

  17. Surface trapping phenomena in thermionic emission generating l/f noise

    International Nuclear Information System (INIS)

    Stepanescu, A.

    1975-01-01

    A general expression of the power spectrum of''flicker noise'', involving stochastic trapping phenomena and calculated on the basis of a two parameter model, is applied in the case of thermoionic emission from cathode surface. The fluctuation of the work function over the cathode surface is interpreted as being due to a trapping process of foreign atoms by the cathode. Taking into account the very physical nature of the trapping mechanism, under self-consistent assumptions, a 1/f power spectrum is obtained in a certain range of frequency. The two parameter model removes some discrepancies involved in the preceding theories. (author)

  18. PHYSICS

    CERN Multimedia

    P. Sphicas

    There have been three physics meetings since the last CMS week: “physics days” on March 27-29, the Physics/ Trigger week on April 23-27 and the most recent physics days on May 22-24. The main purpose of the March physics days was to finalize the list of “2007 analyses”, i.e. the few topics that the physics groups will concentrate on for the rest of this calendar year. The idea is to carry out a full physics exercise, with CMSSW, for select physics channels which test key features of the physics objects, or represent potential “day 1” physics topics that need to be addressed in advance. The list of these analyses was indeed completed and presented in the plenary meetings. As always, a significant amount of time was also spent in reviewing the status of the physics objects (reconstruction) as well as their usage in the High-Level Trigger (HLT). The major event of the past three months was the first “Physics/Trigger week” in Apri...

  19. Underlying Dimensions of the "Physical Educators' Judgments about Inclusion" Instrument: Brazilian-Version

    Science.gov (United States)

    Hodge, Samuel R.; Gutierres Filho, Paulo José Barbosa; Haegele, Justin A.; Kozub, Francis M.

    2015-01-01

    Background/Objective: The available information pertaining to the attitudes of Brazilian physical education teachers about teaching students with disabilities is limited in the extant literature base. Rationally, however, scholars argue that determining, analyzing, and theorizing about the attitudes of physical education teachers is important in…

  20. Nonlinear structural mechanics theory, dynamical phenomena and modeling

    CERN Document Server

    Lacarbonara, Walter

    2013-01-01

    Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...

  1. Shock Wave Diffraction Phenomena around Slotted Splitters

    Directory of Open Access Journals (Sweden)

    Francesca Gnani

    2015-01-01

    Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.

  2. Nuclear Physics Department annual report

    International Nuclear Information System (INIS)

    1997-07-01

    This annual report presents articles and abstracts published in foreign journals, covering the following subjects: nuclear structure, nuclear reactions, applied physics, instrumentation, nonlinear phenomena and high energy physics

  3. Physical, chemical, and biological properties of soil under soybean cultivation and at an adjacent rainforest in Amazonia

    Science.gov (United States)

    T.P. Beldini; R.C. Oliveira Junior; Michael Keller; P.B. de Camargo; P.M. Crill; A. Damasceno da Silva; D. Bentes dos Santos; D. Rocha de Oliveira

    2015-01-01

    Land-use change in the Amazon basin has occurred at an accelerated pace during the last decade, and it is important that the effects induced by these changes on soil properties are better understood. This study investigated the chemical, physical, and biological properties of soil in a field under cultivation of soy and rice, and at an adjacent primary rain forest....

  4. Density operator description of geometric phenomena in the ray space

    Indian Academy of Sciences (India)

    Density operator description of geometric phenomena in the ray space. APOORVA G WAGH£ and VEER CHAND RAKHECHAЭ. Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. Email: * nintsspd@magnum.barc.ernet.in; t vcr@apsara.barc.ernet.in. Abstract. A general gauge-invariant ...

  5. Extreme wave phenomena in down-stream running modulated waves

    NARCIS (Netherlands)

    Andonowati, A.; Karjanto, N.; van Groesen, Embrecht W.C.

    Modulational, Benjamin-Feir, instability is studied for the down-stream evolution of surface gravity waves. An explicit solution, the soliton on finite background, of the NLS equation in physical space is used to study various phenomena in detail. It is shown that for sufficiently long modulation

  6. Proximity under Threat: The Role of Physical Distance in Intergroup Relations

    Science.gov (United States)

    Wohl, Michael J. A.; Van Bavel, Jay J.

    2016-01-01

    Throughout human history, social groups have invested immense amounts of wealth and time to keep threatening out-groups at a distance. In the current research, we explored the relationship between intergroup threat, physical distance, and discrimination. Specifically, we examined how intergroup threat alters estimates of physical distance to out-groups and how physical proximity affects intergroup relations. Previous research has found that people judge threatening out-groups as physically close. In Studies 1 and 2, we examined ways to attenuate this bias. In Study 1 a secure (vs. permeable) US-Mexico border reduced the estimated proximity to Mexico City among Americans who felt threatened by Mexican immigration. In Study 2, intergroup apologies reduced estimates of physical proximity to a threatening cross-town rival university, but only among participants with cross-group friendships. In Study 3, New York Yankees fans who received an experimental induction of physical proximity to a threatening out-group (Boston Red Sox) had a stronger relationship between their collective identification with the New York Yankees and support for discriminatory policies toward members of the out-group (Red Sox fans) as well as how far they chose to sit from out-group members (Red Sox fans). Together, these studies suggest that intergroup threat alters judgment of physical properties, which has important implications for intergroup relations. PMID:27467267

  7. Experimental studies of light emission phenomena in superconducting RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, P.L. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Delayen, J.R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport, News, VA 23606 (United States); Center for Accelerator Science, Old Dominion University, Norfolk, VA, 23529 (United States); Fryberger, D., E-mail: fryberger@slac.stanford.ed [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Goree, W.S. [2G Enterprises, Pacific Grove, CA 93950 (United States); Mammosser, J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport, News, VA 23606 (United States); Szalata, Z.M.; Weisend, J.G. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2009-12-21

    Experimental studies of light emission phenomena in superconducting RF cavities, which we categorize under the general heading of cavity lights, are described. The cavity lights data, which were obtained using a small CCD video camera, were collected in a series of nine experimental runs ranging from approx1/2 to approx2 h in duration. The video data were recorded on a standard VHS tape. As the runs progressed, additional instrumentation was added. For the last three runs a LabVIEW-controlled data acquisition system was included. These runs furnish evidence for several, possibly related, light emission phenomena. The most intriguing of these is what appear to be small luminous objects <=1.5 mm in size, freely moving about in the vacuum space, generally without wall contact, as verified by reflections of the tracks in the cavity walls. In addition, on a number of occasions, these objects were observed to bounce off of the cavity walls. The wall-bounce aspect of most of these events was clearly confirmed by pre-bounce and post-bounce reflections concurrent with the tracks. In one of the later runs, a mode of behavior was observed that was qualitatively different from anything observed in the earlier runs. Perhaps the most perplexing aspect of this new mode was the observation of as many as seven luminous objects arrayed in what might be described as a macromolecular formation, coherently moving about in the interior of the cavity for extended periods of time, evidently without any wall contact. It is suggested that these mobile luminous objects are without explanation within the realm of established physics. Some remarks about more exotic theoretical possibilities are made, and future plans are discussed.

  8. Experimental Studies of Light Emission Phenomena in Superconducting RF Cavitites

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, P.L.; /SLAC; Delayen, J.R.; /Jefferson Lab; Fryberger, D.; /SLAC; Goree, W.S.; Mammosser, J.; /Jefferson Lab /SNS Project, Oak Ridge; Szalata, Z.M.; II, J.G.Weisend /SLAC

    2009-08-04

    Experimental studies of light emission phenomena in superconducting RF cavities, which we categorize under the general heading of cavity lights, are described. The cavity lights data, which were obtained using a small CCD video camera, were collected in a series of nine experimental runs ranging from {approx} 1/2 to {approx} 2 h in duration. The video data were recorded on a standard VHS tape. As the runs progressed, additional instrumentation was added. For the last three runs a LabVIEW controlled data acquisition system was included. These runs furnish evidence for several, possibly related, light emission phenomena. The most intriguing of these is what appear to be small luminous objects {le} 1.5 mm in size, freely moving about in the vacuum space, generally without wall contact, as verified by reflections of the tracks in the cavity walls. In addition, on a number of occasions, these objects were observed to bounce off of the cavity walls. The wall-bounce aspect of most of these events was clearly confirmed by pre-bounce and post-bounce reflections concurrent with the tracks. In one of the later runs, a mode of behavior was observed that was qualitatively different from anything observed in the earlier runs. Perhaps the most perplexing aspect of this new mode was the observation of as many as seven luminous objects arrayed in what might be described as a macromolecular formation, coherently moving about in the interior of the cavity for extended periods of time, evidently without any wall contact. It is suggested that these mobile luminous objects are without explanation within the realm of established physics. Some remarks about more exotic theoretical possibilities are made, and future plans are discussed.

  9. Social phenomena from data analysis to models

    CERN Document Server

    Perra, Nicola

    2015-01-01

    This book focuses on the new possibilities and approaches to social modeling currently being made possible by an unprecedented variety of datasets generated by our interactions with modern technologies. This area has witnessed a veritable explosion of activity over the last few years, yielding many interesting and useful results. Our aim is to provide an overview of the state of the art in this area of research, merging an extremely heterogeneous array of datasets and models. Social Phenomena: From Data Analysis to Models is divided into two parts. Part I deals with modeling social behavior under normal conditions: How we live, travel, collaborate and interact with each other in our daily lives. Part II deals with societal behavior under exceptional conditions: Protests, armed insurgencies, terrorist attacks, and reactions to infectious diseases. This book offers an overview of one of the most fertile emerging fields bringing together practitioners from scientific communities as diverse as social sciences, p...

  10. Modeling electrical dispersion phenomena in Earth materials

    Directory of Open Access Journals (Sweden)

    D. Patella

    2008-06-01

    Full Text Available It is illustrated that IP phenomena in rocks can be described using conductivity dispersion models deduced as solutions to a 2nd-order linear differential equation describing the motion of a charged particle immersed in an external electrical field. Five dispersion laws are discussed, namely: the non-resonant positive IP model, which leads to the classical Debye-type dispersion law and by extension to the Cole-Cole model, largely used in current practice; the non-resonant negative IP model, which allows negative chargeability values, known in metals at high frequencies, to be explained as an intrinsic physical property of earth materials in specific field cases; the resonant flat, positive or negative IP models, which can explain the presence of peak effects at specific frequencies superimposed on flat, positive or negative dispersion spectra.

  11. Using Spatial Gradients to Model Localization Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    D.J.Bammann; D.Mosher; D.A.Hughes; N.R.Moody; P.R.Dawson

    1999-07-01

    We present the final report on a Laboratory-Directed Research and Development project, Using Spatial Gradients to Model Localization Phenomena, performed during the fiscal years 1996 through 1998. The project focused on including spatial gradients in the temporal evolution equations of the state variables that describe hardening in metal plasticity models. The motivation was to investigate the numerical aspects associated with post-bifurcation mesh dependent finite element solutions in problems involving damage or crack propagation as well as problems in which strain Localizations occur. The addition of the spatial gradients introduces a mathematical length scale that eliminates the mesh dependency of the solution. In addition, new experimental techniques were developed to identify the physical mechanism associated with the numerical length scale.

  12. Transitional Phenomena on Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Wójcik Tadeusz M.

    2014-03-01

    Full Text Available One of the most significant problem with technology development is transferring of large heat fluxes, which requires constant heat transfer temperature (in the specified temperature range. This problem concern mainly the nuclear energetics, space technologies, military technologies and most of all electronics containing integrated circuits with very large scale of integrations. Intensive heat transfer and thermal energy storage are possible by the use of phase change materials (PCMs. In the paper there are presented preliminary results of research on the use of liquid-gas (L-G PCMs and solid-solid phase change materials (S-S PCMs. For L-G PCMs the boiling characteristics were determined by increasing and decreasing the heat flux, which for certain sets of structural parameters of the heating surface and the physical properties of the liquid induce a variety of forms of transitional phenomena. Thermal energy storage is much more effective when using PCMs than sensible heat.

  13. Cheshire cat phenomena and quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1986-11-01

    The notion of the ''Cheshire Cat'' principle in hadron structure is developed rigorously in (1+1) dimensions and approximately in (3+1) dimensions for up- and down-quark flavor systems. This phenomenon is invoked to address the issue as to whether or not direct quark-gluon signatures can be ''seen'' in low-energy nuclear phenomena. How addition of the third flavor -strangeness- can modify the Cheshire Cat property is discussed. It is proposed that one of the primary objectives of nuclear physics be to probe -and disturb- the ''vacuum'' of the strong interactions (QCD) and that for this purpose the chiral symmetry SU(3)xSU(3) can play a crucial role in normal and extreme conditions. As an illustration, kaon condensation at a density ρ>∼ 3ρ 0 is discussed in terms of a toy model and is related to ''cleansing'' of the quark condensates from the vacuum

  14. Rod Driven Frequency Entrainment and Resonance Phenomena

    Directory of Open Access Journals (Sweden)

    Christina Salchow

    2016-08-01

    Full Text Available A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α of each volunteer in the range from 0.40–2.30*α. 306-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10*α and half of the alpha frequency (0.40–0.55*α. No signs of resonance and frequency entrainment phenomena were revealed around 2.00*α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30*α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex.

  15. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    A remarkable amount of progress has been made in Physics since the last CMS Week in June given the exponential growth in the delivered LHC luminosity. The first major milestone was the delivery of a variety of results to the ICHEP international conference held in Paris this July. For this conference, CMS prepared 15 Physics Analysis Summaries on physics objects and 22 Summaries on new and interesting physics measurements that exploited the luminosity recorded by the CMS detector. The challenge was incorporating the largest batch of luminosity that was delivered only days before the conference (300 nb-1 total). The physics covered from this initial running period spanned hadron production measurements, jet production and properties, electroweak vector boson production, and even glimpses of the top quark. Since then, the accumulated integrated luminosity has increased by a factor of more than 100, and all groups have been working tremendously hard on analysing this dataset. The September Physics Week was held ...

  16. Nonlinear Dynamic Phenomena in Mechanics

    CERN Document Server

    Warminski, Jerzy; Cartmell, Matthew P

    2012-01-01

    Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear

  17. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2000-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m

  18. Violent phenomena in the Universe

    CERN Document Server

    Narlikar, Jayant V

    2007-01-01

    The serenity of a clear night sky belies the evidence-gathered by balloons, rockets, satellites, and telescopes-that the universe contains centers of furious activity that pour out vast amounts of energy, some in regular cycles and some in gigantic bursts. This reader-friendly book, acclaimed by Nature as ""excellent and uncompromising,"" traces the development of modern astrophysics and its explanations of these startling celestial fireworks.This lively narrative ranges from the gravitational theories of Newton and Einstein to recent exciting discoveries of such violent phenomena as supernova

  19. Gravitational anomaly and transport phenomena.

    Science.gov (United States)

    Landsteiner, Karl; Megías, Eugenio; Pena-Benitez, Francisco

    2011-07-08

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.

  20. Phenomena and Diosignes of Aratous

    Science.gov (United States)

    Avgoloupis, S. I.

    2013-01-01

    Aratous (305-240B.C.) was a singular intellectual, writer and poet which engage himself to compose a very interesting astronomical poet, using the "Dactylous sixstage' style, the formal style of the ancient Greek Epic poetry. This astronomic poem of Aratous "Phenomena and Diosignes" became very favorite reading during the Alexandrine, the Romman and the Byzandin eras as well and had received many praises from significant poets and particularly from Hipparchous and from Theonas from Alexandria, an astronomer of 4rth century A.C.(in Greeks)

  1. PHYSICS

    CERN Multimedia

    P. Sphicas

    The CPT project came to an end in December 2006 and its original scope is now shared among three new areas, namely Computing, Offline and Physics. In the physics area the basic change with respect to the previous system (where the PRS groups were charged with detector and physics object reconstruction and physics analysis) was the split of the detector PRS groups (the old ECAL-egamma, HCAL-jetMET, Tracker-btau and Muons) into two groups each: a Detector Performance Group (DPG) and a Physics Object Group. The DPGs are now led by the Commissioning and Run Coordinator deputy (Darin Acosta) and will appear in the correspond¬ing column in CMS bulletins. On the physics side, the physics object groups are charged with the reconstruction of physics objects, the tuning of the simulation (in collaboration with the DPGs) to reproduce the data, the provision of code for the High-Level Trigger, the optimization of the algorithms involved for the different physics analyses (in collaboration with the analysis gr...

  2. PHYSICS

    CERN Multimedia

    J. Incandela

    There have been numerous developments in the physics area since the September CMS week. The biggest single event was the Physics/Trigger week in the end of Octo¬ber, whereas in terms of ongoing activities the “2007 analyses” went into high gear. This was in parallel with participation in CSA07 by the physics groups. On the or¬ganizational side, the new conveners of the physics groups have been selected, and a new database for man¬aging physics analyses has been deployed. Physics/Trigger week The second Physics-Trigger week of 2007 took place during the week of October 22-26. The first half of the week was dedicated to working group meetings. The ple¬nary Joint Physics-Trigger meeting took place on Wednesday afternoon and focused on the activities of the new Trigger Studies Group (TSG) and trigger monitoring. Both the Physics and Trigger organizations are now focused on readiness for early data-taking. Thus, early trigger tables and preparations for calibr...

  3. Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods

    Science.gov (United States)

    Wu, S. T.

    1988-01-01

    Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.

  4. Quantum Simulator for Transport Phenomena in Fluid Flows

    Science.gov (United States)

    Mezzacapo, A.; Sanz, M.; Lamata, L.; Egusquiza, I. L.; Succi, S.; Solano, E.

    2015-08-01

    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.

  5. Development of Physical Protection Regulations for Rosatom State Corporation Sites under the U.S.-Russian MPC&A Program

    Energy Technology Data Exchange (ETDEWEB)

    Izmaylov, Alexander; Babkin, Vladimir; Shemigon, Nikolai N.; O' Brien, Patricia; Wright, Troy L.; Hazel, Michael J.; Tuttle, John D.; Cunningham, Mitchel E.; Lane, Melinda; Kovchegin, Dmitry

    2012-07-14

    This paper describes issues related to upgrading the physical protection regulatory basis for Rosatom State Corporation sites. It is underlined that most of the regulatory and methodological documents for this subject area have been developed under the U.S.-Russian MPC&A Program. According to the joint management plan developed and agreed upon by the parties in 2005, nearly 50 physical protection documents were identified to be developed, approved and implemented at Rosatom sites by 2012. It is also noted that, on the whole, the plans have been fulfilled.

  6. Study of catalytic phenomena in radiation chemistry

    International Nuclear Information System (INIS)

    Dran, J.C.

    1965-01-01

    Two phenomena have been studied: the action of γ rays from radio-cobalt on the adsorption and catalytic properties of ZnO and NiO in. relationship with the heterogeneous oxidation of CO, and the homogeneous catalysis by OsO 4 of the oxidation of various aqueous phase solutes by the same radiation. The prior irradiation of ZnO and of NiO does not modify their catalytic activity but generally increases the adsorption energy of -the gases CO and O 2 . The influence of the radiations appears to be connected with the presence of traces of water on ZnO and of an excess of oxygen on NiO. Osmium tetroxide which is not degraded by irradiation in acid solution, accelerates the radiolytic oxidation of certain compounds (Te IV , Pt 11 , As 111 ) in the presence of oxygen, as a result of its sensitizing effect on the oxidation by H 2 O 2 . In the case of phosphites on the other hand, OsO 4 has a protecting action under certain conditions of acidity and may suppress entirely the chain reaction which characterizes the oxidation of this solute byγ rays. A general mechanism is proposed for these phenomena. The rate constant for the OsO 4 + HO 2 reaction is calculated to be 5.7 x 10 5 l.mol -1 . sec -1 . (author) [fr

  7. PHYSICS

    CERN Document Server

    Submitted by

    Physics Week: plenary meeting on physics groups plans for startup (14–15 May 2008) The Physics Objects (POG) and Physics Analysis (PAG) Groups presented their latest developments at the plenary meeting during the Physics Week. In the presentations particular attention was given to startup plans and readiness for data-taking. Many results based on the recent cosmic run were shown. A special Workshop on SUSY, described in a separate section, took place the day before the plenary. At the meeting, we had also two special DPG presentations on “Tracker and Muon alignment with CRAFT” (Ernesto Migliore) and “Calorimeter studies with CRAFT” (Chiara Rovelli). We had also a report from Offline (Andrea Rizzi) and Computing (Markus Klute) on the San Diego Workshop, described elsewhere in this bulletin. Tracking group (Boris Mangano). The level of sophistication of the tracking software increased significantly over the last few months: V0 (K0 and Λ) reconstr...

  8. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  9. Diffusion behaviors of fluorescence probe molecules through the stratum corneum layer under physical stress.

    Science.gov (United States)

    Lee, Ho; Kim, Jin Woong

    2013-04-01

    This study experimentally demonstrates how application of an external physical stress onto the skin membrane affects the permeation of penetrating molecules. As a proxy of active compounds, in this study, a series of fluorescence probe molecules were utilized. We observed that skin permeation could be enhanced by imparting vertical strokes from a tapping head consisting of projections onto the skin. This was confirmed with consistency from in vitro and in vivo transdermal permeation studies. After an effective physical stress was applied to the skin, the permeation depth of probe molecules remarkably increased, which was comparable to the case of topical treatment. This seems to arise from temporal disordering of the stratum corneum layer in response to the applied physical stress.

  10. How inflammation underlies physical and organ function in acutely admitted older medical patients

    DEFF Research Database (Denmark)

    Klausen, Henrik Hedegaard; Bodilsen, Ann Christine; Petersen, Janne

    2017-01-01

    OBJECTIVES: To investigate whether systemic inflammation in acutely admitted older medical patients (age >65 years) is associated with physical performance and organ dysfunction. Organ dysfunction´s association with physical performance, and whether these associations are mediated by systemic...... inflammation, was also investigated. METHODS: A cross-sectional study in an Emergency Department. Physical performance was assessed by handgrip strength and de Morton Mobility Index (DEMMI), and organ dysfunction by FI-OutRef, the number of standard blood tests outside the reference range. Systemic...... inflammation was assessed by suPAR, TNFα, and IL-6. Associations were investigated by regression analyses adjusted for age, sex, cognitive impairment, CRP, and VitalPAC Modified Early Warning Score. RESULTS: A total of 369 patients were evaluated. In adjusted analyses, suPAR and TNFα was associated with both...

  11. Resilience Evaluation of Demand Response as Spinning Reserve under Cyber-Physical Threats

    Directory of Open Access Journals (Sweden)

    Anas AlMajali

    2016-12-01

    Full Text Available In the future, automated demand response mechanisms will be used as spinning reserve. Demand response in the smart grid must be resilient to cyber-physical threats. In this paper, we evaluate the resilience of demand response when used as spinning reserve in the presence of cyber-physical threats. We quantify this evaluation by correlating the stability of the system in the presence of attacks measured by system frequency (Hz and attack level measured by the amount of load (MW that responds to the demand response event. The results demonstrate the importance of anticipating the dependability of demand response before it can be relied upon as spinning reserve.

  12. Modeling and simulation of transport phenomena in ionic gels

    Science.gov (United States)

    Leichsenring, Peter; Wallmersperger, Thomas

    2015-04-01

    Ionic hydrogels belong to the class of polyelectrolyte gels or ionic gels. Their ability to swell or shrink under different environmental conditions such as change of pH, ion concentration or temperature make them promising materials, e.g. for microsensoric or microactuatoric devices. The hydrogel swelling exhibits nonlinear effects due to the occurrence of different interacting transport phenomena. Numerical simulations are an essential part in the ongoing development of microsensors and microactuators. In order to determine transport effects due to diffusion, migration and convection a multiphase mesoscale model based on the Theory of Porous Media is applied. The governing field equations are solved in the transient regime by applying the Finite Element Method. By means of the derived numerical framework a detailed investigation of the different transport phenomena is carried out. Numerical experiments are performed to characterize the dominating transfer phenomena for ionic gels under chemical stimulation.

  13. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  14. Sensitivity analyses of biodiesel thermo-physical properties under diesel engine conditions

    DEFF Research Database (Denmark)

    Cheng, Xinwei; Ng, Hoon Kiat; Gan, Suyin

    2016-01-01

    This reported work investigates the sensitivities of spray and soot developments to the change of thermo-physical properties for coconut and soybean methyl esters, using two-dimensional computational fluid dynamics fuel spray modelling. The choice of test fuels made was due to their contrasting s...

  15. Nonlinear Magnetic Phenomena in Highly Polarized Target Materials

    CERN Document Server

    Kiselev, Yu F

    2007-01-01

    The report introduces and surveys nonlinear magnetic phenomena which have been observed at high nuclear polarizations in polarized targets of the SMC and of the COMPASS collaborations at CERN. Some of these phenomena, namely the frequency modulation eect and the distortion of the NMR line shape, promote the development of the polarized target technique. Others, as the spin-spin cross-relaxation between spin subsystems can be used for the development of quantum statistical physics. New findings bear on an electromagnetic noise and the spectrally resolved radiation from LiD with negatively polarized nuclei detected by low temperature bolometers. These nonlinear phenomena need to be taken into account for achieving the ultimate polarizations.

  16. MHD phenomena at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Guenter, S.; Gude, A.; Maraschek, M.; Pinches, S.D.; Sesnic, S.; Wolf, R.C.; Yu, Q.; Zohm, M.

    2001-01-01

    The onset of neoclassical tearing modes leads to the most serious β limit at ASDEX Upgrade. The β p value for the onset of neoclassical tearing modes is found to be proportional to the ion gyro-radius for collisionless plasmas as proposed by the ion polarisation current model. Larger collisionalities have a stabilizing effect. Sawtooth crashes or fishbones can trigger the mode, and in a few cases it appears spontaneously. Fishbones are shown to be able to cause magnetic reconnection. The fractional energy loss due to a (3,2) mode saturates for large pressures at around 25 %. In discharges with large impurity accumulation unusual MHD phenomena such as cascades of high-n tearing modes and modes driven by positive pressure gradients have been found. (author)

  17. MHD phenomena at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Guenter, S.; Gude, A.; Maraschek, M.; Pinches, S.D.; Sesnic, S.; Wolf, R.C.; Yu, Q.; Zohm, H.

    1999-01-01

    The onset of neoclassical tearing modes leads to the most serious β limit at ASDEX Upgrade. The β p value for the onset of neoclassical tearing modes is found to be proportional to the ion gyro-radius for collisionless plasmas as proposed by the ion polarisation current model. Larger collisionalities have a stabilizing effect. Sawtooth crashes or fishbones can trigger the mode, and in a few cases it appears spontaneously. Fishbones are shown to be able to cause magnetic reconnection. The fractional energy loss due to a (3,2) mode saturates for large pressures at around 25%. In discharges with large impurity accumulation unusual MHD phenomena such as cascades of high-n tearing modes and modes driven by positive pressure gradients have been found. (author)

  18. Critical Phenomena in Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Martín-García José M.

    2007-12-01

    Full Text Available As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term “critical phenomena”. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. Critical phenomena give a natural route from smooth initial data to arbitrarily large curvatures visible from infinity, and are therefore likely to be relevant for cosmic censorship, quantum gravity, astrophysics, and our general understanding of the dynamics of general relativity.

  19. In-vessel phenomena -- CORA

    International Nuclear Information System (INIS)

    Ott, L.J.; Rij, W.I. van.

    1991-01-01

    Experiment-specific models have been employed since 1986 by Oak Ridge National Laboratory (ORNL) severe accident analysis programs for the purpose of boiling water reactor experimental planning and optimum interpretation of experimental results. The large integral tests performed to date, which start from an initial undamaged core state, have involved significantly different-from-prototypic boundary and experimental conditions because of either normal facility limitations or specific experimental constraints. These experiments (ACRR: DF-4, NRU: FLHT-6, and CORA) were designed to obtain specific phenomenological information such as the degradation and interaction of prototypic components and the effects on melt progression of control-blade materials and channel boxes. Applications of ORNL models specific to the KfK CORA-16 and CORA-17 experiments are discussed and significant findings from the experimental analyses such as the following are presented: applicability of available Zircaloy oxidation kinetics correlations; influence of cladding strain on Zircaloy oxidation; influence of spacer grids on the structural heatup; and the impact of treating the gaseous coolant as a gray interacting medium. The experiment-specific models supplement and support the systems-level accident analysis codes. They allow the analyst to accurately quantify the observed experimental phenomena and to compensate for the effect of known uncertainties. They provide a basis for the efficient development of new models for phenomena that are currently not modeled (such as material interactions). They can provide validated phenomenological models (from the results of the experiments) as candidates for incorporation in the systems-level ''whole-core'' codes

  20. Physical, Chemical, and Biological Properties of Soil under Decaying Wood in a Tropical Wet Forest in Puerto Rico

    Science.gov (United States)

    Marcela Zalamea; Grizelle Gonzalez; D. Jean Lodge

    2016-01-01

    Decaying wood is related to nutrient cycling through its role as either a sink or source of nutrients. However, at micro scales, what is the effect of decaying logs on the physical, chemical,and biotic characteristics of the soil underneath? We took samples from a 0 to 5 cm depth under and a 50 cm distance away from decaying logs (Dacryodes excelsa and Swietenia...

  1. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.  Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish how ready we are to do physics with the early collisions at the LHC. The agenda of the week was thus pac...

  2. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.   Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish (we hoped) the readiness of CMS to do physics with the early collisions at the LHC. The agenda of the...

  3. Density turbulence and disruption phenomena in TEXTOR

    International Nuclear Information System (INIS)

    Waidmann, G.; Kuang, G.; Jadoul, M.

    1992-01-01

    Disruptive processes are observed in tokamak plasmas not only at the operating limits (density limit or q-limit) but can be found under a variety of experimental conditions. Large forces are exerted then on vessel components and support structures. The sudden release of stored plasma energy presents a serious erosion problem for the first wall already in the next generation of large tokamak machines. Strong energy losses from the plasma and an influx of impurities are already present in minor plasma disruptions which do not immediately lead to a plasma current termination. The rapid loss of energy confinement was investigated within the framework of a systematic study on plasma disruption phenomena in TEXTOR. (author) 4 refs., 4 figs

  4. Distinct effects of reminding mortality and physical pain on the default-mode activity and activity underlying self-reflection.

    Science.gov (United States)

    Shi, Zhenhao; Han, Shihui

    2018-06-01

    Behavioral research suggests that reminding both mortality and negative affect influences self-related thoughts. Using functional magnetic resonance imaging (MRI), we tested the hypothesis that reminders of mortality and physical pain decrease brain activity underlying self-related thoughts. Three groups of adults underwent priming procedures during which they answered questions pertaining to mortality, physical pain, or leisure time, respectively. Before and after priming, participants performed personality trait judgments on oneself or a celebrity, identified the font of words, or passively viewed a fixation. The default-mode activity and neural activity underlying self-reflection were identified by contrasting viewing a fixation vs. font judgment and trait judgments on oneself vs. a celebrity, respectively. The analyses of the pre-priming functional MRI (fMRI) data identified the default-mode activity in the posterior cingulate cortex (PCC), ventral medial prefrontal cortex (MPFC), and parahippocampal gyrus, and the activity underlying instructed self-reflection in both the ventral and dorsal regions of the MPFC. The analyses of the post-priming fMRI data revealed that, relative to leisure time priming, reminding mortality significantly reduced the default-mode PCC activity, and reminding physical pain significantly decreased the dorsal MPFC activity during instructed self-reflection. Our findings suggest distinct neural underpinnings of the effect of reminding morality and aversive emotion on default-mode and instructed self-reflection.

  5. Changes in physical fitness profilogramach women aged 60 - 75 years under training health

    Directory of Open Access Journals (Sweden)

    Kortas Jakub

    2011-10-01

    Full Text Available The growing awareness of the society with regards to the positive influence of physical activity, and the ageing of world population are two facts that promote the need to develop qualified personnel of instructors. Individual approach to each group of training attendants is the principle of effective health training at every level of sport activity. This individual approach should be reflected in both the selection of training program, and the perceived effect of the activity. In the present work, I present personal analysis of influence of general keep-fit training performed in a gym. 36 women were enrolled in the study, for whom profilograms were created, which reflected the results of five measurements of physical fitness.

  6. Laboratory Experiments to Simulate and Investigate the Physics Underlying the Dynamics of Merging Solar Corona Structures

    Science.gov (United States)

    2016-06-05

    described analytic Grad-Shafranov toroidal equilibria where the pressure on the magnetic axis is lower than the pres- sure external to the toroid so...2015. Magnetic axis safety factor of finite beta spheromaks and transition from spheromaks to toroidal magnetic bubbles. Physics of Plasmas, 22(2...Paccagnella, Roberto. 2015. Magnetic axis safety factor of finite beta spheromaks and transition from spheromaks to toroidal magnetic bubbles

  7. A large data base on a small computer. Neutron Physics data and bibliography under IDMS

    International Nuclear Information System (INIS)

    Schofield, A.; Pellegrino, L.; Tubbs, N.

    1978-01-01

    The transfer of three associated files to an IDMS data base is reported: the CINDA bibliographic index to neutron physics publications, the cumulated EXFOR exchange tapes used for maintaining parallel data collections at all four centres and the CCDN's internal data storage and retrieval system NEUDADA. With associated dictionaries and inter-file conversion tables the corresponding IDMS data base will be about 160 Mbytes. The main characteristics of the three files are shown

  8. Soil physical properties under different soil managements for the cultivation of sweet potato

    Directory of Open Access Journals (Sweden)

    Amarílis Beraldo Rós

    2014-02-01

    Full Text Available This study aimed to assess the impact of tillage systems on physical properties of an Alfissol type soil and on the growth of sweet potato tuberous roots. To assess the soil physical properties, an experiment was conducted in randomized blocks design, in split-plot scheme. The plots consisted of the treatments conventional tillage with making mounds and straw incorporated, conventional tillage with making mounds and without straw, reduced tillage with straw on the soil surface and reduced tillage without straw; and the subplots, to collect periods. The soil physical properties evaluated were soil bulk density, total soil porosity, soil macroporosity and soil microporosity, soil resistance to penetration and gravimetric soil water. For the assessment of the growth of sweet potato tuberous roots, it was adopted an experiment where the plots corresponded to the soil management forms and subplots to four collect periods: 90, 120, 150 and 180 (DAP. The length / roots diameter of individual roots relations were avaluated. It was concluded that the reduced tillage gives greater soil resistance to penetration of roots, by reducing the vertical growth of roots, and the presence of straw incorporated in the conventional tillage favors maintenance of lowest soil bulk density and highest soil macroporosity along the time.

  9. Multiscale Modeling of Mesoscale and Interfacial Phenomena

    Science.gov (United States)

    Petsev, Nikolai Dimitrov

    With rapidly emerging technologies that feature interfaces modified at the nanoscale, traditional macroscopic models are pushed to their limits to explain phenomena where molecular processes can play a key role. Often, such problems appear to defy explanation when treated with coarse-grained continuum models alone, yet remain prohibitively expensive from a molecular simulation perspective. A prominent example is surface nanobubbles: nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled researchers for over two decades due to their unusually long lifetimes. We show how an entirely macroscopic, non-equilibrium model explains many of their anomalous properties, including their stability and abnormally small gas-side contact angles. From this purely transport perspective, we investigate how factors such as temperature and saturation affect nanobubbles, providing numerous experimentally testable predictions. However, recent work also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale heights may require molecular detail to capture the relevant physics, in particular near the bubble three-phase contact line. Therefore, there is a clear need for general ways to link molecular granularity and behavior with large-scale continuum models in the treatment of many interfacial problems. In light of this, we have developed a general set of simulation strategies that couple mesoscale particle-based continuum models to molecular regions simulated through conventional molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that opens the possibility for a wide range of applications in biological and drug delivery problems, and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple multiple length scales for fluid mixtures are largely absent in the literature, and

  10. Light-induced phenomena in one-component gas: The transport phenomena

    Science.gov (United States)

    Chermyaninov, I. V.; Chernyak, V. G.

    2016-09-01

    The article presents the theory of transport processes in a one-component gas located in the capillary under the action of resonant laser radiation and the temperature and pressure gradients. The expressions for the kinetic coefficients determining heat and mass transport in the gas are obtained on the basis of the modified Boltzmann equations for the excited and unexcited particles. The Onsager reciprocal relations for cross kinetic coefficients are proven for all Knudsen numbers and for any law interaction of gas particles with each other and boundary surface. Light-induced phenomena associated with the possible non-equilibrium stationary states of system are analyzed.

  11. Thermal dynamics of thermoelectric phenomena from frequency resolved methods

    Directory of Open Access Journals (Sweden)

    J. García-Cañadas

    2016-03-01

    Full Text Available Understanding the dynamics of thermoelectric (TE phenomena is important for the detailed knowledge of the operation of TE materials and devices. By analyzing the impedance response of both a single TE element and a TE device under suspended conditions, we provide new insights into the thermal dynamics of these systems. The analysis is performed employing parameters such as the thermal penetration depth, the characteristic thermal diffusion frequency and the thermal diffusion time. It is shown that in both systems the dynamics of the thermoelectric response is governed by how the Peltier heat production/absorption at the junctions evolves. In a single thermoelement, at high frequencies the thermal waves diffuse semi-infinitely from the junctions towards the half-length. When the frequency is reduced, the thermal waves can penetrate further and eventually reach the half-length where they start to cancel each other and further penetration is blocked. In the case of a TE module, semi-infinite thermal diffusion along the thickness of the ceramic layers occurs at the highest frequencies. As the frequency is decreased, heat storage in the ceramics becomes dominant and starts to compete with the diffusion of the thermal waves towards the half-length of the thermoelements. Finally, the cancellation of the waves occurs at the lowest frequencies. It is demonstrated that the analysis is able to identify and separate the different physical processes and to provide a detailed understanding of the dynamics of different thermoelectric effects.

  12. Scaling of Thermal-Hydraulic Phenomena and System Code Assessment

    International Nuclear Information System (INIS)

    Wolfert, K.

    2008-01-01

    In the last five decades large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Many separate effects tests and integral system tests were carried out to establish a data base for code development and code validation. In this context the question has to be answered, to what extent the results of down-scaled test facilities represent the thermal-hydraulic behaviour expected in a full-scale nuclear reactor under accidental conditions. Scaling principles, developed by many scientists and engineers, present a scientific technical basis and give a valuable orientation for the design of test facilities. However, it is impossible for a down-scaled facility to reproduce all physical phenomena in the correct temporal sequence and in the kind and strength of their occurrence. The designer needs to optimize a down-scaled facility for the processes of primary interest. This leads compulsorily to scaling distortions of other processes with less importance. Taking into account these weak points, a goal oriented code validation strategy is required, based on the analyses of separate effects tests and integral system tests as well as transients occurred in full-scale nuclear reactors. The CSNI validation matrices are an excellent basis for the fulfilling of this task. Separate effects tests in full scale play here an important role.

  13. PHYSICS

    CERN Multimedia

    J. Incandela

    The all-plenary format of the CMS week in Cyprus gave the opportunity to the conveners of the physics groups to present the plans of each physics analysis group for tackling early physics analyses. The presentations were complete, so all are encouraged to browse through them on the Web. There is a wealth of information on what is going on, by whom and on what basis and priority. The CMS week was followed by two CMS “physics events”, the ICHEP08 days and the physics days in July. These were two weeks dedicated to either the approval of all the results that would be presented at ICHEP08, or to the review of all the other Monte-Carlo based analyses that were carried out in the context of our preparations for analysis with the early LHC data (the so-called “2008 analyses”). All this was planned in the context of the beginning of a ramp down of these Monte Carlo efforts, in anticipation of data.  The ICHEP days are described below (agenda and talks at: http://indic...

  14. PHYSICS

    CERN Multimedia

    Joe Incandela

    There have been two plenary physics meetings since the December CMS week. The year started with two workshops, one on the measurements of the Standard Model necessary for “discovery physics” as well as one on the Physics Analysis Toolkit (PAT). Meanwhile the tail of the “2007 analyses” is going through the last steps of approval. It is expected that by the end of January all analyses will have converted to using the data from CSA07 – which include the effects of miscalibration and misalignment. January Physics Days The first Physics Days of 2008 took place on January 22-24. The first two days were devoted to comprehensive re¬ports from the Detector Performance Groups (DPG) and Physics Objects Groups (POG) on their planning and readiness for early data-taking followed by approvals of several recent studies. Highlights of POG presentations are included below while the activities of the DPGs are covered elsewhere in this bulletin. January 24th was devo...

  15. Dielectric relaxation phenomena of rigid polar liquid molecules ...

    Indian Academy of Sciences (India)

    The dielectric relaxation phenomena of rigid polar liquid molecules chloral and ethyltrichloroacetate () in benzene, -hexane and -heptane () under 4.2, 9.8 and 24.6 GHz electric fields at 30°C are studied to show the possible existence of double relaxation times 2 and 1 for rotations of the whole and the flexible ...

  16. Nuclear chromodynamics: Novel nuclear phenomena predicted by QCD

    NARCIS (Netherlands)

    Bakker, B.L.G.; Ji, C.R.

    2014-01-01

    With the acceptance of QCD as the fundamental theory of strong interactions, one of the basic problems in the analysis of nuclear phenomena became how to consistently account for the effects of the underlying quark/gluon structure of nucleons and nuclei. Besides providing more detailed understanding

  17. Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, N. [RIKEN, Wako, iTHES Research Group, Saitama (Japan); Far Eastern Federal University, Complex Simulation Group, School of Biomedicine, Vladivostok (Russian Federation); Sahoo, B.K. [Physical Research Laboratory, Atomic, Molecular and Optical Physics Division, Ahmedabad (India); Yoshinaga, N. [Graduate School of Science and Engineering, Saitama (Japan); Sato, T. [RIKEN, Nishina Center, Saitama (Japan); Asahi, K. [RIKEN, Nishina Center, Saitama (Japan); Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan); Das, B.P. [Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan)

    2017-03-15

    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas, i.e. particle, nuclear and atomic, is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested. (orig.)

  18. Physics

    CERN Document Server

    Cullen, Katherine

    2005-01-01

    Defined as the scientific study of matter and energy, physics explains how all matter behaves. Separated into modern and classical physics, the study attracts both experimental and theoretical physicists. From the discovery of the process of nuclear fission to an explanation of the nature of light, from the theory of special relativity to advancements made in particle physics, this volume profiles 10 pioneers who overcame tremendous odds to make significant breakthroughs in this heavily studied branch of science. Each chapter contains relevant information on the scientist''s childhood, research, discoveries, and lasting contributions to the field and concludes with a chronology and a list of print and Internet references specific to that individual.

  19. The theory of critical phenomena in two-dimensional systems

    International Nuclear Information System (INIS)

    Olvera de la C, M.

    1981-01-01

    An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)

  20. Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena

    Science.gov (United States)

    Ryutov, Livermore, Ca 94550, Usa, D. D.

    2017-10-01

    The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.

  1. Physical electronics handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 2, Physical Electronics, discusses the fundamentals of electric discharges in gases. Electrical discharges in gases is used generically to denote the passage of electricity through a gas and implicitly embraces the wide variety of physical phenomena which accompany such a discharge of electricity. The discharge currents may be as small as 10-16A in certain ionization growth studies, or be as large as megamperes in thermonuclear and plasma physics studies. Key topics discussed include collision phenomena in gases; surface phenomena and transport of charged par

  2. Effects of four-month handbike training under free-living conditions on physical fitness and health in wheelchair users.

    Science.gov (United States)

    Hoekstra, Sven; Valent, Linda; Gobets, David; van der Woude, Lucas; de Groot, Sonja

    2017-08-01

    Recognizing the encouraging effect of challenging events, the HandbikeBattle (HBB) was created to promote exercise among wheelchair users. The purpose of this study was to reveal the effects on physical fitness and health outcomes of four-month handbike training under free-living conditions in preparation for the event. In this prospective cohort study, 59 relatively inexperienced handyclists participated in the HBB of 2013 or 2014. Incremental exercise tests were conducted, respiratory function was tested and anthropometrics were measured before and after the preparation period. Main outcome measures were peak power output (POpeak), peak oxygen uptake (VO2peak) and waist circumference, of which the changes were tested using repeated measures ANOVA. To detect possible determinants of changes in physical fitness, a linear regression analysis was conducted with personal characteristics, executed training volume and upper-extremity complaints during the training period as independent variables. POpeak, VO2peak and waist circumference improved significantly with 17%, 7% and 4.1%, respectively. None of the included variables were significant determinants for the changes in POpeak found as a result of the training. A challenging event such as the HBB provokes training regimes among participants of sufficient load to realize substantial improvements in physical fitness and health outcomes. Implications for Rehabilitation Due to the often impaired muscle function in the lower-limbs and an inactive lifestyle, wheelchair users generally show considerably lower levels of fitness compared to able-bodied individuals. This prospective cohort study showed that four months of handbike training under free-living conditions in preparation for this event resulted in substantial improvements in physical fitness and health outcomes in wheelchair users. The creation of a challenging event such as the HandbikeBattle as part of a follow-up rehabilitation practice can therefore be a useful

  3. Restorability on 3-connected WDM Networks Under Single and Dual Physical Link Failures

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Jensen, Michael; Riaz, Tahir

    2013-01-01

    This work studies the influence the network interconnection has over restoration techniques. The way physical links are distributed to interconnect network nodes has a great impact on parameters such as path distances when failures occur and restoration is applied. The work focuses on single and ...... to network planning, the trade-off network length vs. performance of the different topological options is studied. The results show how 3-connected graphs could provide a reasonable trade-off between costs, link failure rates, and restored path parameters....

  4. Under the spell of Landau when theoretical physics was shaping destinies

    CERN Document Server

    2013-01-01

    This invaluable collection of memoirs and reviews on scientific activities of the most prominent theoretical physicists belonging to the Landau School - Landau, Anselm, Gribov, Zeldovich, Kirzhnits, Migdal, Ter-Martirosyan and Larkin - are being published in English for the first time. The main goal is to acquaint readers with the life and work of outstanding Soviet physicists who, to a large extent, shaped theoretical physics in the 1950s - 70s. Many intriguing details have remained unknown beyond the "Iron Curtain" which was dismantled only with the fall of the USSR.

  5. Analysis of Physics Processes in the AC Plasma Torch Discharge under High Pressure

    International Nuclear Information System (INIS)

    Safronov, A A; Vasilieva, O B; Dudnik, J D; Kuznetsov, V E; Kuchina, J A; Shiryaev, V N; Pavlov, A V

    2017-01-01

    The paper is devoted to investigation of electrophysical processes in the electric discharge generated by a three-phase AC plasma torch when using a high pressure inert working gas. AC plasma torch design with end electrodes intended for work on inert gases at pressures up to 81 bar is studied. Current-voltage characteristics for different gas flow rates and pressures are presented. Physical processes characteristics of the arising voltage ripples which depend on various working parameters of the plasma torch have been investigated. Arc burning processes in the electric discharge chamber of the three-phase AC plasma torch at various working parameters were photographed. (paper)

  6. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems

    NARCIS (Netherlands)

    Rachid, Caio T. C. C.; Piccolo, Marisa C.; Leite, Deborah Catharine A.; Balieiro, Fabiano C.; Coutinho, Heitor Luiz C.; van Elsas, Jan Dirk; Peixoto, Raquel S.; Rosado, Alexandre S.

    2012-01-01

    Background: Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes

  7. Heavy physical work under time pressure: the garbage collection service--a case study.

    Science.gov (United States)

    Camada, Ilza Mitsuko de Oliveira; Pataro, Silvana Maria Santos; Fernandes, Rita de Cássia Pereira

    2012-01-01

    The increased generation of garbage has become a problem in large cities, with greater demand for collection services. The collector is subjected to high workload. This study describes the work in garbage collection service, highlighting the requirements of time, resulting in physical and psychosocial demands to collectors. Ergonomic Work Analysis (EWA) - a method focused on the study of work in real situations was used. Initially, technical visits, global observations and unstructured interviews with different subjects of a garbage collection company were conducted. The following step of the systematic observations was accompanied by interviews conducted during the execution of tasks, inquiring about the actions taken, and also interviews about the actions, but conducted after the development of the tasks, photographic records and audiovisual recordings, of workers from two garbage collection teams. Contradictions between the prescribed work and activities (actual work) were identified, as well as the variability present in this process, and strategies adopted by these workers to regulate the workload. It was concluded that the insufficiency of means and the organizational structure of management ensue a situation where the collection process is maintained at the expense of hyper-requesting these workers, both physically and psychosocially.

  8. Physical characteristics of potato flour from 'Ibituaçú' cv. under different extrusion parameters

    Directory of Open Access Journals (Sweden)

    Raema Fortes Vicente Cardoso

    2015-12-01

    Full Text Available ABSTRACT: This study aimed to evaluate potato flour from 'Ibituaçú' cultivar as raw material for extrudates. Potato flour was processed in a single-screw extruder following central composite rotational design for three factors, being considered as independent parameters: temperature in the third zone, humidity and screw speed. The products obtained were characterized by expansion index (EI, specific volume (SV, water solubility index (WSI, water absorption index (WAI, hardness (H, color (L*, a* and b*. Results showed an effect of the independent parameters on the extruded physical characteristics. The parameters varied from: 3.22 to 5.47 (EI; 2.08 to 11.23 mL g-1 (SV, 32.88 to 63.72% (WSI, 4.02 to 8.97 g gel g-1 (WAI, 7.54 to 29.85 kgf (H, 53.89 to 68.72 (L*, 5.59 to 6.92 (a*, 16.6 to 22.6 (b*. It was concluded that expanded products with desired physical characteristics are obtained at high temperature; low humidity and intermediate screw speed.

  9. IBPRO - A Novel Short-Duration Teaching Course in Advanced Physics and Biology Underlying Cancer Radiotherapy.

    Science.gov (United States)

    Joiner, Michael C; Tracey, Monica W; Kacin, Sara E; Burmeister, Jay W

    2017-06-01

    This article provides a summary and status report of the ongoing advanced education program IBPRO - Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists.

  10. Physical and mechanical properties of gelatin-CMC composite films under the influence of electrostatic interactions.

    Science.gov (United States)

    Esteghlal, Sara; Niakousari, Mehrdad; Hosseini, Seyed Mohammad Hashem

    2018-03-17

    The objective of current study was to examine the electrostatic interactions between gelatin and carboxymethyl cellulose (CMC) as a function of pH and mixing ratio (MR) and to observe how the physical and mechanical properties of gelatin-CMC composite films are affected by these interactions. The interaction between biopolymers was studied using turbidometric analysis at different gelatin: CMC MRs and pH values. A reduction in pH and MR enhanced the electrostatic interactions; while, decreased the relative viscosity of mixed system. Physical and mechanical properties of resultant composite films were examined and compared with those of control gelatin films. Changes in the intensity of interactions between the two biopolymers resulted in films with different properties. Polymer complexation led to formation of resistant film networks of less solubility and swellability. Water vapor permeability (WVP) was not significantly (P≤0.05) influenced by incorporating CMC into continuous gelatin films. Composite films prepared at MR of 9:1 and pH opt (corresponding to the maximum amount of interaction) revealed different characteristics such as maximum amounts of WVP and swelling and minimum amounts of tensile strength and solubility. FTIR spectra of composite films confirmed that gelatin and CMC were not covalently bonded. Copyright © 2018. Published by Elsevier B.V.

  11. PHYSICS

    CERN Document Server

    Guenther Dissertori

    The time period between the last CMS week and this June was one of intense activity with numerous get-together targeted at addressing specific issues on the road to data-taking. The two series of workshops, namely the “En route to discoveries” series and the “Vertical Integration” meetings continued.   The first meeting of the “En route to discoveries” sequence (end 2007) had covered the measurements of the Standard Model signals as necessary prerequisite to any claim of signals beyond the Standard Model. The second meeting took place during the Feb CMS week and concentrated on the commissioning of the Physics Objects, whereas the third occurred during the April Physics Week – and this time the theme was the strategy for key new physics signatures. Both of these workshops are summarized below. The vertical integration meetings also continued, with two DPG-physics get-togethers on jets and missing ET and on electrons and photons. ...

  12. PHYSICS

    CERN Multimedia

    D. Acosta

    2011-01-01

    Since the last CMS Week, all physics groups have been extremely active on analyses based on the full 2010 dataset, with most aiming for a preliminary measurement in time for the winter conferences. Nearly 50 analyses were approved in a “marathon” of approval meetings during the first two weeks of March, and the total number of approved analyses reached 90. The diversity of topics is very broad, including precision QCD, Top, and electroweak measurements, the first observation of single Top production at the LHC, the first limits on Higgs production at the LHC including the di-tau final state, and comprehensive searches for new physics in a wide range of topologies (so far all with null results unfortunately). Most of the results are based on the full 2010 pp data sample, which corresponds to 36 pb-1 at √s = 7 TeV. This report can only give a few of the highlights of a very rich physics program, which is listed below by physics group...

  13. Poorly studied phenomena in geoelectrics

    Directory of Open Access Journals (Sweden)

    В. С. Могилатов

    2016-12-01

    Full Text Available Undoubtedly, modern geoelectric technologies emerge in the result of the development of traditional approaches and techniques. However of more interest is the appearance of completely new technologies based on new effects and new models of interaction of geological medium and electromagnetic field. The author does not commit to indicate principally new directions, but only wants to discuss some poorly known facts from the theory and practice of geoelectrics. The outcome of this study could be considered attracting the attention of experts to non-traditional signals in geoelectrics. The reviewed phenomena of interest, not fully implemented in practice in the author’s opinion, are field split into two polarizations: transverse electric (the ТЕ-field and transverse magnetic (the ТМ-field, then some poorly known properties of ТМ-field, the role of bias currents, the anisotropy of horizontal resistances, the role of geomagnetic field in geoelectric sounding, the unique resolution of CSEM (Controlled Source Electro-Magnetic techniques at sea.

  14. Understanding empathy and related phenomena.

    Science.gov (United States)

    Shamasundar, C

    1999-01-01

    Over a period of time, the author arrived at a few tentative postulates concerning empathy and related processes based on some of his experiences and observations. The central theme of these postulates is, firstly, that interpersonal interaction is an interaction of the personal-space fields. Secondly, empathy, therapeutic benefit, and the professional stress are all related to the same process of interpersonal interaction. This interaction takes place as an enmeshment of personal spaces of the interacting individuals, and involves transfer of a wide range of information in the affective, cognitive, and other areas. This is because the personal spaces have fieldlike qualities analogous to what Kurt Lewin described. Thus, such phenomena as empathy, therapeutic benefit, professional stress are all consequences of the same process. It is possible to substantiate these postulates by diverse evidences in the published literature. The natural consequences of such an interpersonal interaction are empathic understanding, transfer of mood states (like hope, distress or expectancy), affective states (like anxiety, sadness, anger or hostility), ideas, images and even attitudes and values, etc. This phenomenon of transfer can explain such processes as therapeutic benefit in individual and group settings, professional stress, shared delusions, and even experimenter bias. Whether one becomes aware of such transferred information or not depends upon the intent and sensitivity of the participants.

  15. Conductance phenomena in microcrystalline cellulose

    Science.gov (United States)

    Nilsson, M.

    2006-02-01

    We have investigated the conduction phenomena in compacted tablets of cellulose with varying relative humidity (RH) with techniques such as Low Frequency Dielectric Spectroscopy (LFDS) and Transient Current (TC) at room temperature. Two exponential decaying regions in the transient current measurements indicate two ionic species contributing to the conduction mechanism. A high power-law exponent of 9 for the conductance with moisture content has been found. The mobility initially decreases with RH up to monolayer coverage, and further water vapor increases the mobility, indicating a blocking of available positions for the charge carrier ions. When the amount of water molecules present in the tablet increases one order of magnitude, the number of charge carriers increases 5-6 orders of magnitude, suggesting a transition from a power-law increase to a linear effective medium theory for the conduction. The charge carrier dependence on RH suggests that a percolating network of water molecules adsorbed to 6-OH units on the cellulose chain span through the sample. The conductivity mechanisms in cellulose are still not clear.

  16. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos

    2017-07-06

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.

  17. Physics Based Electrolytic Capacitor Degradation Models for Prognostic Studies under Thermal Overstress

    Science.gov (United States)

    Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam

    2012-01-01

    Electrolytic capacitors are used in several applications ranging from power supplies on safety critical avionics equipment to power drivers for electro-mechanical actuators. This makes them good candidates for prognostics and health management research. Prognostics provides a way to assess remaining useful life of components or systems based on their current state of health and their anticipated future use and operational conditions. Past experiences show that capacitors tend to degrade and fail faster under high electrical and thermal stress conditions that they are often subjected to during operations. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.

  18. Survival, physical and physiological changes of Taenia hydatigena eggs under different conditions of water stress.

    Science.gov (United States)

    Sánchez Thevenet, Paula; Alvarez, Hector Manuel; Basualdo, Juan Angel

    2017-06-01

    Taenia hydatigena eggs were investigated for morphological and physiological changes under water stress conditions. Fresh eggs were exposed at 31%, 47% and 89% of relative humidity (RH), and survival, size and ultrastructural changes were accounted up to 365 days of exposition. The article shows how each RH environment affects the vitality of the eggs. Results of this study suggest that T. hydatigena eggs have mechanisms to withstand water stress, indicating that the eggs clustering improves protection against desiccation, and that endogenous metabolism using triacylglycerols play an important role in the maintenance of embryo vitality under low, medium and high relative humidity conditions. This contributes to understanding the water stress resistance mechanism in eggs belonging to Taeniidae family. The findings shown herein have provided a basis to better comprehend basic biology and epidemiology of the cysticercosis caused by T. hydatigena. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The proteome of a healthy human during physical activity under extreme conditions

    OpenAIRE

    Larina, I.; Ivanisenko, V.; Nikolaev, E.; Grigorev, A.

    2014-01-01

    The review examines the new approaches in modern systems biology, in terms of their use for a deeper understanding of the physiological adaptation of a healthy human in extreme environments. Human physiology under extreme conditions of life, or environmental physiology, and systems biology are natural partners. The similarities and differences between the object and methods in systems biology, the OMICs (proteomics, transcriptomics, metabolomics) disciplines, and other related sciences have b...

  20. Random phenomena fundamentals of probability and statistics for engineers

    CERN Document Server

    Ogunnaike, Babatunde A

    2009-01-01

    PreludeApproach PhilosophyFour Basic PrinciplesI FoundationsTwo Motivating ExamplesYield Improvement in a Chemical ProcessQuality Assurance in a Glass Sheet Manufacturing ProcessOutline of a Systematic ApproachRandom Phenomena, Variability, and UncertaintyTwo Extreme Idealizations of Natural PhenomenaRandom Mass PhenomenaIntroducing ProbabilityThe Probabilistic FrameworkII ProbabilityFundamentals of Probability TheoryBuilding BlocksOperationsProbabilityConditional ProbabilityIndependenceRandom Variables and DistributionsDistributionsMathematical ExpectationCharacterizing DistributionsSpecial Derived Probability FunctionsMultidimensional Random VariablesDistributions of Several Random VariablesDistributional Characteristics of Jointly Distributed Random VariablesRandom Variable TransformationsSingle Variable TransformationsBivariate TransformationsGeneral Multivariate TransformationsApplication Case Studies I: ProbabilityMendel and HeredityWorld War II Warship Tactical Response Under AttackIII DistributionsIde...

  1. Physical health of young and middle age women under influence of step-aerobics exercises

    Directory of Open Access Journals (Sweden)

    I.P. Masliak

    2015-10-01

    Full Text Available Purpose: to determine the degree of step-aerobics exercises’ influence on 20-35 years age women’s health. Material: in the research 28 women of 20-35 years old age participated. Anthropometric indicators, heart beats rate in rest and after load (20 squats for 30 sec., blood pressure, vital capacity of lungs, hand dynamometry were registered. Results: level of physical health has been determined; influence of step-aerobics on women’s health has been found; age differences in the tested indicators have been analyzed. It was found out that step-aerobic trainings influence greatly on the following indicators: body mass, circumferential sizes and cardio vascular system; on functioning of respiratory system, strength of hand’s flexors and regulation of 31-35 years age women’s cardio-vascular system. Conclusions: application of step-aerobic exercises positively influenced on health of 20-35 years old women.

  2. Physical modeling of flow over an axisymmetric knoll under neutral atmospheric conditions

    International Nuclear Information System (INIS)

    Cliff, W.C.; Smith, J.D.

    1980-02-01

    A glass-walled hydraulic (water) flume was used to model physically air flow near an axisymmetric knoll in a neutral atmospheric boundary layer. The knoll was a 1:250 scale model. An upstream velocity profile (1/7 power law), characteristic of a neutral atmospheric boundary layer, was produced by locating a 10-cm-high (4-in.) trip near the flume entrance and by appropriately roughening the flume floor. Mean velocity, rms velocity, and turbulence intensity profiles were measured at locations near the knoll using an existing laser Doppler anemometer system. The flow accelerated over the knoll and produced a relatively uniform velocity profile at the crest. The measured velocity profile was in close agreement with a theoretical velocity profile developed using potential flow theory and an upstream power law velocity profile. The turbulence intensity decreased at the crest of the knoll as a result of the flow acceleration

  3. Range Verification Methods in Particle Therapy: Underlying Physics and Monte Carlo Modeling

    Science.gov (United States)

    Kraan, Aafke Christine

    2015-01-01

    Hadron therapy allows for highly conformal dose distributions and better sparing of organs-at-risk, thanks to the characteristic dose deposition as function of depth. However, the quality of hadron therapy treatments is closely connected with the ability to predict and achieve a given beam range in the patient. Currently, uncertainties in particle range lead to the employment of safety margins, at the expense of treatment quality. Much research in particle therapy is therefore aimed at developing methods to verify the particle range in patients. Non-invasive in vivo monitoring of the particle range can be performed by detecting secondary radiation, emitted from the patient as a result of nuclear interactions of charged hadrons with tissue, including β+ emitters, prompt photons, and charged fragments. The correctness of the dose delivery can be verified by comparing measured and pre-calculated distributions of the secondary particles. The reliability of Monte Carlo (MC) predictions is a key issue. Correctly modeling the production of secondaries is a non-trivial task, because it involves nuclear physics interactions at energies, where no rigorous theories exist to describe them. The goal of this review is to provide a comprehensive overview of various aspects in modeling the physics processes for range verification with secondary particles produced in proton, carbon, and heavier ion irradiation. We discuss electromagnetic and nuclear interactions of charged hadrons in matter, which is followed by a summary of some widely used MC codes in hadron therapy. Then, we describe selected examples of how these codes have been validated and used in three range verification techniques: PET, prompt gamma, and charged particle detection. We include research studies and clinically applied methods. For each of the techniques, we point out advantages and disadvantages, as well as clinical challenges still to be addressed, focusing on MC simulation aspects. PMID:26217586

  4. Range Verification Methods in Particle Therapy: Underlying Physics and Monte Carlo Modeling.

    Science.gov (United States)

    Kraan, Aafke Christine

    2015-01-01

    Hadron therapy allows for highly conformal dose distributions and better sparing of organs-at-risk, thanks to the characteristic dose deposition as function of depth. However, the quality of hadron therapy treatments is closely connected with the ability to predict and achieve a given beam range in the patient. Currently, uncertainties in particle range lead to the employment of safety margins, at the expense of treatment quality. Much research in particle therapy is therefore aimed at developing methods to verify the particle range in patients. Non-invasive in vivo monitoring of the particle range can be performed by detecting secondary radiation, emitted from the patient as a result of nuclear interactions of charged hadrons with tissue, including β (+) emitters, prompt photons, and charged fragments. The correctness of the dose delivery can be verified by comparing measured and pre-calculated distributions of the secondary particles. The reliability of Monte Carlo (MC) predictions is a key issue. Correctly modeling the production of secondaries is a non-trivial task, because it involves nuclear physics interactions at energies, where no rigorous theories exist to describe them. The goal of this review is to provide a comprehensive overview of various aspects in modeling the physics processes for range verification with secondary particles produced in proton, carbon, and heavier ion irradiation. We discuss electromagnetic and nuclear interactions of charged hadrons in matter, which is followed by a summary of some widely used MC codes in hadron therapy. Then, we describe selected examples of how these codes have been validated and used in three range verification techniques: PET, prompt gamma, and charged particle detection. We include research studies and clinically applied methods. For each of the techniques, we point out advantages and disadvantages, as well as clinical challenges still to be addressed, focusing on MC simulation aspects.

  5. PREFACE: Transport phenomena in proton conducting media Transport phenomena in proton conducting media

    Science.gov (United States)

    Eikerling, Michael

    2011-06-01

    Proton transport phenomena are of paramount importance for acid-base chemistry, energy transduction in biological organisms, corrosion processes, and energy conversion in electrochemical systems such as polymer electrolyte fuel cells. The relevance for such a plethora of materials and systems, and the ever-lasting fascination with the highly concerted nature of underlying processes drive research across disciplines in chemistry, biology, physics and chemical engineering. A proton never travels alone. Proton motion is strongly correlated with its environment, usually comprised of an electrolyte and a solid or soft host material. For the transport in nature's most benign proton solvent and shuttle, water that is, insights from ab initio simulations, matured over the last 15 years, have furnished molecular details of the structural diffusion mechanism of protons. Excess proton movement in water consists of sequences of Eigen-Zundel-Eigen transitions, triggered by hydrogen bond breaking and making in the surrounding water network. Nowadays, there is little debate about the validity of this mechanism in water, which bears a stunning resemblance to the basic mechanistic picture put forward by de Grotthuss in 1806. While strong coupling of an excess proton with degrees of freedom of solvent and host materials facilitates proton motion, this coupling also creates negative synergies. In general, proton mobility in biomaterials and electrochemical proton conducting media is highly sensitive to the abundance and structure of the proton solvent. In polymer electrolyte membranes, in which protons are bound to move in nano-sized water-channels, evaporation of water or local membrane dehydration due to electro-osmotic coupling are well-known phenomena that could dramatically diminish proton conductivity. Contributions in this special issue address various vital aspects of the concerted nature of proton motion and they elucidate important structural and dynamic effects of solvent

  6. Purcell effect and Lamb shift as interference phenomena.

    Science.gov (United States)

    Rybin, Mikhail V; Mingaleev, Sergei F; Limonov, Mikhail F; Kivshar, Yuri S

    2016-02-10

    The Purcell effect and Lamb shift are two well-known physical phenomena which are usually discussed in the context of quantum electrodynamics, with the zero-point vibrations as a driving force of those effects in the quantum approach. Here we discuss the classical counterparts of these quantum effects in photonics, and explain their physics trough interference wave phenomena. As an example, we consider a waveguide in a planar photonic crystal with a side-coupled defect, and demonstrate a perfect agreement between the results obtained on the basis of quantum and classic approaches and reveal their link to the Fano resonance. We find that in such a waveguide-cavity geometry the Purcell effect can modify the lifetime by at least 25 times, and the Lamb shift can exceed 3 half-widths of the cavity spectral line.

  7. A treatise on interpolar transport phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Einarsrud, Kristian Etienne

    2012-07-01

    This thesis contributes to the understanding of mechanisms for mass transport in aluminium electrolysis cells. Fundamental studies are undertaken of flow patterns and mass transport in the interpolar region under various operating conditions. A coupled model predicting the turbulent electrolyte flow, under the influence of both electromagnetism and forces from buoyant gas bubbles, crucial for better prediction of mass transfer mechanisms and voltage oscillations, has been developed from first principles. The model is validated against experiments performed on a lab scale electrolysis cell. Both modelling and experiments are performed within the scope of this thesis. Experiments on lab- and industrial scale cells have been conducted in order to study the behaviour of anodic gas bubbles under various operating conditions. On industrial scale, bubble related signals show typical frequencies in the range 0.5 to 2 Hz, with amplitudes up to 5% around the mean voltage. Results indicate that the bubble related voltage oscillations increase in both frequency and magnitude with increasing anode age, the latter of which due to the diminishing in influence of slots. No significant correlation between anode pairs is identified, suggesting that models treating individual anodes are meaningful also on an industrial scale. Due to challenges related to multiple simultaneous phenomena occurring on industrial scales, a series of lab scale measurements have been performed, in order to obtain quantitative data for model validation. The lab scale experimental cell allowed for different current densities, interpolar distances and inclination angles, thus spanning ranges typically encountered on the industrial scale. Lab scale frequencies are found to be in the range 0.25 to 0.65 Hz, with magnitude of up to 4% around the mean voltage. The magnitude of the oscillations decreases with increasing anode age, due to increased rounding of the initially sharp anode edges. The traditional voltage

  8. Anthropometric characteristics, physical fitness and technical performance of under-19 soccer players by competitive level and field position

    DEFF Research Database (Denmark)

    Rebelo, A; Brito, J; Maia, J

    2013-01-01

    Anthropometric characteristics, physical fitness and technical skills of under-19 (U19) soccer players were compared by competitive level (elite, n=95; non-elite, n=85) and playing position (goalkeeper, central defender, fullback, midfield, forward). Fitness tests included 5- and 30-m sprints...... and ball control tests (d>1.2). Elite players presented better agility and Yo-Yo IE2 performances than non-elite players within all positional roles (d>0.6). In conclusion, U19 players differed in anthropometric characteristics, physical fitness and technical skills by competitive level within field......, agility, squat jump (SJ) and countermovement jump (CMJ), strength and Yo-Yo intermittent endurance test level 2 (Yo-Yo IE2). Soccer-specific skills included ball control and dribbling. Independent of position, elite players presented more hours of training per year than non-elite players (d>1.2). Stature...

  9. Dynamics of Physical and Physicochemical Properties of Urban Soils under the Effect of Ice-Melting Salts

    Science.gov (United States)

    Azovtseva, N. A.; Smagin, A. V.

    2018-01-01

    Physical (water content, density, and air and water regimes) and physicochemical (electrical conductivity, pH, and SAR) properties of urban soils were investigated on test plots of Moscow to evaluate their dynamics under anthropogenic impact. The wilting point and the dependence of the capillary-sorption and total water potentials of the soil water content were determined in laboratory experiments with natural and artificially saline soil samples to evaluate the effect of salt antifreeze substances on water availability for plants under conditions of active application of deicing reagents. Seasonal dynamics of these parameters were investigated. It was found that electrolytes display a steady tendency for the accumulation and redistribution in the root zone rather than for their deep leaching despite humid climatic conditions in Moscow megalopolis. In summer, regular droughts result in drying of the root zone to critical values and to the concentration of electrolytes up to the values that make the total water potential of soil unsuitable for water uptake by roots. The key factor of soil degradation under the impact of electrolytes is the soil dispersity: the finer the texture, the higher the soil salinization and solonetzicity and the stronger irreversible changes in the soil water retention capacity and physical properties.

  10. Observation of Celestial Phenomena in Ancient China

    Science.gov (United States)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  11. [Paraneoplastic phenomena in patients with a thymoma].

    Science.gov (United States)

    Strijbos, Ellen; Pomp, Jacqueline; Gilhuis, H Jacobus

    2013-01-01

    A thymoma arises from the epithelial cells of the thymus. Local tumour growth may cause symptoms like coughing, dyspnoea or chest pain. Paraneoplastic phenomena can also occur in patients with a thymoma; myasthenia gravis is a well-known example. Other neurological, dermatological, cardiological and haematological disorders are not always recognised as being paraneoplastic phenomena. There is no clear relationship between tumour activity and the clinical course of paraneoplastic phenomena. The three cases in this article illustrate how the clinical presentation of these phenomena can vary.

  12. PHYSICS

    CERN Multimedia

    the PAG conveners

    2011-01-01

    The delivered LHC integrated luminosity of more than 1 inverse femtobarn by summer and more than 5 by the end of 2011 has been a gold mine for the physics groups. With 2011 data, we have submitted or published 14 papers, 7 others are in collaboration-wide review, and 75 Physics Analysis Summaries have been approved already. They add to the 73 papers already published based on the 2010 and 2009 datasets. Highlights from each physics analysis group are described below. Heavy ions Many important results have been obtained from the first lead-ion collision run in 2010. The published measurements include the first ever indications of Υ excited state suppression (PRL synopsis), long-range correlation in PbPb, and track multiplicity over a wide η range. Preliminary results include the first ever measurement of isolated photons (showing no modification), J/ψ suppression including the separation of the non-prompt component, further study of jet fragmentation, nuclear modification factor...

  13. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    The Physics Groups are actively engaged on analyses of the first data from the LHC at 7 TeV, targeting many results for the ICHEP conference taking place in Paris this summer. The first large batch of physics approvals is scheduled for this CMS Week, to be followed by four more weeks of approvals and analysis updates leading to the start of the conference in July. Several high priority analysis areas were organized into task forces to ensure sufficient coverage from the relevant detector, object, and analysis groups in the preparation of these analyses. Already some results on charged particle correlations and multiplicities in 7 TeV minimum bias collisions have been approved. Only one small detail remains before ICHEP: further integrated luminosity delivered by the LHC! Beyond the Standard Model measurements that can be done with these data, the focus changes to the search for new physics at the TeV scale and for the Higgs boson in the period after ICHEP. Particle Flow The PFT group is focusing on the ...

  14. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      The period since the last CMS Bulletin has been historic for CMS Physics. The pinnacle of our physics programme was an observation of a new particle – a strong candidate for a Higgs boson – which has captured worldwide interest and made a profound impact on the very field of particle physics. At the time of the discovery announcement on 4 July, 2012, prominent signals were observed in the high-resolution H→γγ and H→ZZ(4l) modes. Corroborating excess was observed in the H→W+W– mode as well. The fermionic channel analyses (H→bb, H→ττ), however, yielded less than the Standard Model (SM) expectation. Collectively, the five channels established the signal with a significance of five standard deviations. With the exception of the diphoton channel, these analyses have all been updated in the last months and several new channels have been added. With improved analyses and more than twice the i...

  15. PHYSICS

    CERN Document Server

    L. Demortier

    Physics-wise, the CMS week in December was dominated by discussions of the analyses that will be carried out in the “next six months”, i.e. while waiting for the first LHC collisions.  As presented in December, analysis approvals based on Monte Carlo simulation were re-opened, with the caveat that for this work to be helpful to the goals of CMS, it should be carried out using the new software (CMSSW_2_X) and associated samples.  By the end of the week, the goal for the physics groups was set to be the porting of our physics commissioning methods and plans, as well as the early analyses (based an integrated luminosity in the range 10-100pb-1) into this new software. Since December, the large data samples from CMSSW_2_1 were completed. A big effort by the production group gave a significant number of events over the end-of-year break – but also gave out the first samples with the fast simulation. Meanwhile, as mentioned in December, the arrival of 2_2 meant that ...

  16. PHYSICS

    CERN Multimedia

    Darin Acosta

    2010-01-01

    The collisions last year at 900 GeV and 2.36 TeV provided the long anticipated collider data to the CMS physics groups. Quite a lot has been accomplished in a very short time. Although the delivered luminosity was small, CMS was able to publish its first physics paper (with several more in preparation), and commence the commissioning of physics objects for future analyses. Many new performance results have been approved in advance of this CMS Week. One remarkable outcome has been the amazing agreement between out-of-the-box data with simulation at these low energies so early in the commissioning of the experiment. All of this is testament to the hard work and preparation conducted beforehand by many people in CMS. These analyses could not have happened without the dedicated work of the full collaboration on building and commissioning the detector, computing, and software systems combined with the tireless work of many to collect, calibrate and understand the data and our detector. To facilitate the efficien...

  17. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      2012 has started off as a very busy year for the CMS Physics Groups. Planning for the upcoming higher luminosity/higher energy (8 TeV) operation of the LHC and relatively early Rencontres de Moriond are the high-priority activities for the group at the moment. To be ready for the coming 8-TeV data, CMS has made a concerted effort to perform and publish analyses on the 5 fb−1 dataset recorded in 2011. This has resulted in the submission of 16 papers already, including nine on the search for the Higgs boson. In addition, a number of preliminary results on the 2011 dataset have been released to the public. The Exotica and SUSY groups approved several searches for new physics in January, such as searches for W′ and exotic highly ionising particles. These were highlighted at a CERN seminar given on 24th  January. Many more analyses, from all the PAGs, including the newly formed SMP (Standard Model Physics) and FSQ (Forward and Small-x QCD), were approved in February. The ...

  18. Determination of equilibrium composition of thermally ionized monoatomic gas under different physical conditions

    Science.gov (United States)

    Romanova, M. S.; Rydalevskaya, M. A.

    2017-05-01

    Perfect gas mixtures that result from thermal ionization of spatially and chemically homogeneous monoatomic gases are considered. Equilibrium concentrations of the components of such mixtures are determined using integration over the momentum space and summation with respect to energy levels of the distribution functions that maximize the entropy of system under condition for constancy of the total number of nuclei and electrons. It is demonstrated that such a method allows significant simplification of the calculation of the equilibrium composition for ionized mixtures at different temperatures and makes it possible to study the degree of ionization of gas versus gas density and number in the periodic table of elements.

  19. Applications of Canonical transformations and nontrivial vacuum solutions to flavor mixing and critical phenomena in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [North Carolina State Univ., Raleigh, NC (United States)

    2004-12-01

    MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati

  20. Effect of physical training on metabolic responses of pregnant rats submitted to swimming under thermal stress

    Directory of Open Access Journals (Sweden)

    Rodrigo Alexis Lazo-Osorio

    2009-08-01

    Full Text Available

    • BACKGROUND: The aim of this study is to assess the effect of pre-pregnancy physical training on metabolic responses and its effects on offspring.
    • METHODS: Three groups of rats (n = 7 in each group: sedentary pregnant rats (PS, exercised during  regnancy (PE and pregnant rats trained before and during pregnancy (PT were compared. They were separated  nto three subgroups regarding water temperature: 28°C, 35°C or 39°C. Plasma triglycerides and glucose levels,  eight gain during pregnancy and rectal temperature pre and post exercise (swim, as well as the offspring size and weight were analysed.
    • RESULTS: Rectal temperature post exercise was lower than pre exercise at 28°C and 35°C, and higher at 39°C.  eight gain was lower at 39°C for the PT group and at 35°C for the PT and PE groups compared to the PS group. Plasma glucose, at 28°C and 39°C for PS and PE groups, was higher than those obtained at 35°C, while triglycerides  ere lower. For trained rats, plasma glucose and triglycerides were similar at all water temperatures.  rained rats presented lower triglyceride values at 35°C, and higher triglyceride values at 39°C compared to PS  roup. Glucose presented inverse results. None of the groups presented fetal reabsorption. However, in the PS group, the offspring presented lower weight gain at 28

  1. Report of the workshop on nuclear polarization phenomena

    International Nuclear Information System (INIS)

    1985-01-01

    The third work shop on the study of the nuclear polarization was held in December 1984 at RCNP (Research Center for Nuclear Physics). Osaka University, in advance of the comming international conference. About 80 researchers gathered and discussed both theoretical and experimental aspects of nuclear polarization phenomena. Forty eight papers were presented at the work shop and they are collected in this report. Although almost all of them are written in Japanese, the abstracts are prepared in English. (Aoki, K.)

  2. Undergraduate Engineering Students’ Conceptual and Procedural Knowledge of Wave Phenomena

    OpenAIRE

    Mioković, Željka; Varvodić, Sanda; Radolić, Vanja

    2012-01-01

    The engineering students’ education at the university level is mainly focused on procedural knowledge which includes proficiency in problem-solving and calculation whereas their conceptual knowledge, as another very important factor associated with the enhancement of engineering skills, is often insufficient. The aim of this study is to assess the undergraduate engineering students’ conceptual and procedural knowledge of wave phenomena as one of basic topics in introductory physics courses ei...

  3. Assessment of soil organic matter persistence under different land uses applying a physical fractionation procedure

    Science.gov (United States)

    Giannetta, Beatrice; Plaza, César; López-de-Sá, Esther G.; Vischetti, Costantino; Zaccone, Claudio

    2017-04-01

    The understanding of the mechanisms involved in the build-up of soil organic matter (SOM) pools with long residence time is tightly linked to the comprehension of C dynamics. Organo-mineral associations are known to be strongly correlated with the accumulation of selective preserved C forms. Adsorption to minerals, as well as occlusion within aggregates, may affect SOM protection in different ways depending on its molecular structure and pedo-climatic conditions. In this research, we investigated changes in quantity and quality of SOM pools characterized by different protection mechanisms in coniferous and broadleaved forest soils, grassland soils, technosols and an agricultural soil with different organic amendments, in order to evaluate the influence of both land use and organic matter nature on physical and/or chemical stabilization of SOM. In particular, free (FR), intra-macroaggregate (MA), intra-microaggregate (MI), and mineral-associated (Min) fractions were separated in order to define physical and chemical mechanisms responsible for the SOM protection against degradation. All these SOM fractions were analyzed for organic C and total N concentration, and their stability assessed by thermogravimetric analysis (TD-TGA). Preliminary data show that, for all land uses, most of the organic C (40-60%) is found in the Min pool, followed by FR (20-40%)>MI MA. With the only exception of the FR, no significant correlations were found between the C/N ratio and a thermal stability index (H550-400/400-250) of each fraction; at the same time, a highly significant and positive correlation was found between these two parameters in all fractions isolated from agricultural soils. In particular, the thermal stability index measured in all Min fractions may be related to the more marked presence of labile compounds in this pool relative to recalcitrant compounds. Conversely, FR OM could not always represent a fresh and readily decomposable fraction.Furthermore, OM associated

  4. Magnetoelectric charge states of matter-energy. A second approximation. Part VII. Diffuse relativistic superconductive plasma. Measurable and non-measurable physical manifestations. Kirlian photography. Laser phenomena. Cosmic effects on chemical and biological systems.

    Science.gov (United States)

    Cope, F W

    1980-01-01

    Experimental evidence suggests that all objects, and especially living objects, contain and are surrounded by diffuse clouds of matter-energy probably best considered as a superconductive plasma state and best analyzed by application of an extended form of the Einstein special theory of relativity. Such a plasma state would have physical properties that for relativistic reasons the experimentalists could not expect to measure, and also those he could expect to measure. Not possible to measure should be (a) absorption or reflection of light, (b) electric charge mobilities of Hall effects, and (c) any particulate structure within the plasma. Possible to measure should be (a) channel formation ("arcing") in high applied electric fields (e.g., as in Kirlian photography), (b) effects of the plasma on temperatures and potentials of electrons in solid objects moving through that plasma, (c) facilitation of coupling between electromagnetic oscillations in sets of adjacent molecules, resulting in facilitation of laser and maser emissions of electromagnetic waves and in facilitation of geometrical alignment of adjacent molecules, and (d) magnetic and electric flux trapping with resultant magnetic and/or electric dipole moments. Experimental evidence suggests that diffuse superconductive plasma may reach the earth from the sun, resulting in diurnal and seasonal fluctuations in rates of antigen-antibody reactions as well as in rates of precipitation and crystallization of solids from solutions.

  5. Proceedings of the 17. International conference on phenomena in ionized gases held in Budapest, Hungary, July 8-12, 1985

    International Nuclear Information System (INIS)

    Bakos, J.S.; Soerlei, Zsuzsa

    1986-03-01

    The invited papers of the 17. International conference on phenomena in ionized gases are published containing papers on kinetic theory of ionized gases. The topics cover plasma kinetics, plasma diagnostic methods, arc and discharge physics, magnetic properties of plasmas, new plasma models, laser-plasma physics, and transport phenomena in ionized gases. (D.Gy.)

  6. Physical Modeling of Shear Behavior of Infilled Rock Joints Under CNL and CNS Boundary Conditions

    Science.gov (United States)

    Shrivastava, Amit Kumar; Rao, K. Seshagiri

    2018-01-01

    Despite their frequent natural occurrence, filled discontinuities under constant normal stiffness (CNS) boundary conditions have been studied much less systematically, perhaps because of the difficulties arising from the increased number of variable parameters. Because of the lack of reliable and realistic theoretical or empirical relations and the difficulties in obtaining and testing representative samples, engineers rely on judgment and often consider the shear strength of the infilled material itself as shear strength of rock joints. This assumption leads to uneconomical and also sometimes the unsafe design of underground structures, slopes, rock-socketed piles and foundations. To study the effect of infill on the shear behavior of rock joints, tests were performed on the modeled infilled rock joint having different joint roughness under constant normal load (CNL) and CNS boundary conditions at various initial normal stress and varying thickness of the infilled material. The test results indicate that shear strength decreases with an increase in t/ a ratio for both CNL and CNS conditions, but the reduction in shear strength is more for CNL than for CNS condition for a given initial normal stress. The detailed account of the effect of thickness of infilled material on shear and deformation behavior of infilled rock joint is discussed in this paper, and a model is proposed to predict shear strength of infilled rock joint.

  7. Understanding physical rock properties and their relation to fluid-rock interactions under supercritical conditions

    Science.gov (United States)

    Kummerow, Juliane; Raab, Siegfried; Meyer, Romain

    2017-04-01

    The electrical conductivity of rocks is, in addition to lithological factors (mineralogy, porosity) and physical parameters (temperature, pressure) sensitive to the nature of pore fluids (phase, salinity), and thus may be an indicative measure for fluid-rock interactions. Especially near the critical point, which is at 374.21° C and 22.12 MPa for pure water, the physico-chemical properties of aqueous fluids change dramatically and mass transfer and diffusion-controlled chemical reactivity are enhanced, which in turn leads to the formation of element depletion/ enrichment patterns or cause mineral dissolution. At the same time, the reduction of the dielectric constant of water promotes ion association and consequently mineral precipitation. All this cause changes in the electrical conductivity of geothermal fluids and may have considerable effects on the porosity and hydraulic properties of the rocks with which they are in contact. In order to study the impact of fluid-rock interactions on the physical properties of fluids and rocks in near- and supercritical geological settings in more detail, in the framework of the EU-funded project "IMAGE" (Integrated Methods for Advanced Geothermal Exploration) hydraulic and electrical properties of rock cores from different active and exhumed geothermal areas on Iceland were measured up to supercritical conditions (Tmax = 380° C, pfluid = 23 MPa) during long-term (2-3 weeks) flow-through experiments in an internally heated gas pressure vessel at a maximum confining pressure of 42 MPa. In a second flow-through facility both the intrinsic T-dependent electrical fluid properties as well as the effect of mineral dissolution/ precipitation on the fluid conductivity were measured for increasing temperatures in a range of 24 - 422° C at a constant fluid pressure of 31 MPa. Petro- and fluid physical measurements were supplemented by a number of additional tests, comprising microstructural investigations as well as the chemical

  8. Physics at 13 TeV: ALICE - scratching under the surface

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    ALICE’s wonderland materialises where the lead-lead ultrarelativistic collisions happen in the LHC. With a jump of over one order of magnitude in collision energy from the Relativistic Heavy Ion Collider (RHIC) and using state-of-the-art detectors, the experiment studies the quark-gluon plasma, a state of matter that existed during the Universe’s infancy.   The hugely hot medium was observed to behave almost like an ideal fluid, which, although absorbing their energy, leaves single propagating quarks and gluons almost undeflected, enhances the production of strange quarks, suppresses the production of particles made of quarks and antiquarks, and seems to be emitting light in the early stages of its expansion. “The data from the first LHC run have already challenged some of the notions that had emerged from the previous RHIC programme,” says Federico Antinori, ALICE Physics Coordinator. “The abundance of hard probes, that is, high-energy partic...

  9. "Lomonosov" Satellite—Space Observatory to Study Extreme Phenomena in Space

    Science.gov (United States)

    Sadovnichii, V. A.; Panasyuk, M. I.; Amelyushkin, A. M.; Bogomolov, V. V.; Benghin, V. V.; Garipov, G. K.; Kalegaev, V. V.; Klimov, P. A.; Khrenov, B. A.; Petrov, V. L.; Sharakin, S. A.; Shirokov, A. V.; Svertilov, S. I.; Zotov, M. Y.; Yashin, I. V.; Gorbovskoy, E. S.; Lipunov, V. M.; Park, I. H.; Lee, J.; Jeong, S.; Kim, M. B.; Jeong, H. M.; Shprits, Y. Y.; Angelopoulos, V.; Russell, C. T.; Runov, A.; Turner, D.; Strangeway, R. J.; Caron, R.; Biktemerova, S.; Grinyuk, A.; Lavrova, M.; Tkachev, L.; Tkachenko, A.; Martinez, O.; Salazar, H.; Ponce, E.

    2017-11-01

    The "Lomonosov" space project is lead by Lomonosov Moscow State University in collaboration with the following key partners: Joint Institute for Nuclear Research, Russia, University of California, Los Angeles (USA), University of Pueblo (Mexico), Sungkyunkwan University (Republic of Korea) and with Russian space industry organizations to study some of extreme phenomena in space related to astrophysics, astroparticle physics, space physics, and space biology. The primary goals of this experiment are to study: Ultra-high energy cosmic rays (UHECR) in the energy range of the Greizen-Zatsepin-Kuzmin (GZK) cutoff; Ultraviolet (UV) transient luminous events in the upper atmosphere; Multi-wavelength study of gamma-ray bursts in visible, UV, gamma, and X-rays; Energetic trapped and precipitated radiation (electrons and protons) at low-Earth orbit (LEO) in connection with global geomagnetic disturbances; Multicomponent radiation doses along the orbit of spacecraft under different geomagnetic conditions and testing of space segments of optical observations of space-debris and other space objects; Instrumental vestibular-sensor conflict of zero-gravity phenomena during space flight. This paper is directed towards the general description of both scientific goals of the project and scientific equipment on board the satellite. The following papers of this issue are devoted to detailed descriptions of scientific instruments.

  10. Thermal phenomenae in nuclear fuel rods

    International Nuclear Information System (INIS)

    Baigorria, Carlos.

    1983-12-01

    Thermal phenomenae occurring in a nuclear fuel rod under irradiation are studied. The most important parameters of either steady or transient thermal states are determined. The validity of applying the Fourier's approximation equations to these problems is also studied. A computer program TRANS is developed in order to study the transient cases. This program solves a system of coupled, non-linear partial differential equations, of parabolic type, in cylindrical coordinates with various boundary conditions. The benchmarking of the TRANS program is done by comparing its predictions with the analytical solution of some simplified transient cases. Complex transient cases such as those corresponding to characteristic reactor accidents are studied, in particular for typical pressurized heavy water reactor (PHWR) fuel rods, such as those of Atucha I. The Stefan problem emerging in the case of melting of the fuel element is solved. Qualitative differences between the classical Stefan problem, without inner sources, and that one, which includes sources are discussed. The MSA program, for solving the Stefan problem with inner sources is presented; and furthermore, it serves to predict thermal evolution, when the fuel element melts. Finally a model for fuel phase change under irradiation is developed. The model is based on the dimensional invariants of the percolation theory when applied to the connectivity of liquid spires nucleated around each fission fragment track. Suggestions for future research into the subject are also presented. (autor) [es

  11. Freezing in porous media: Phase behavior, dynamics and transport phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Wettlaufer, John S. [Yale Univ., New Haven, CT (United States)

    2012-12-21

    This research was focused on developing the underlying framework for the mechanisms that control the nature of the solidification of a broad range of porous media. To encompass the scope of porous media under consideration we considered material ranging from a dilute colloidal suspension to a highly packed saturated host matrix with a known geometry. The basic physical processes that occur when the interstitial liquid phase solidifies revealed a host of surprises with a broad range of implications from geophysics to materials science and engineering. We now understand that ostensibly microscopic films of unfrozen liquid control both the equilibrium and transport properties of a highly packed saturated host matrix as well as a rather dilute colloidal suspension. However, our description of the effective medium behavior in these settings is rather different and this sets the stage for the future research based on our past results. Once the liquid phase of a saturated relatively densely packed material is frozen, there is a rich dynamical behavior of particles for example due to the directed motion driven by thermomolecular pressure gradients or the confined Brownian motion of the particles. In quite striking contrast, when one freezes a dilute suspension the behavior can be rather more like that of a binary alloy with the particles playing the role of a ``solute''. We probed such systems quantitatively by (i) using X ray photon correlation spectroscopy (XPCS) and Small Angle X-ray Scattering (SAXS) at the Advanced Photon Source at Argonne (ii) studying the Argonne cell in the laboratory using optical microscopy and imagery (because it is not directly visible while in the vacuum can). (3) analyzed the general transport phenomena within the framework of both irreversible thermodynamics and alloy solidification and (4) applied the results to the study of the redistribution of solid particles in a frozen interstitial material. This research has gone a long way

  12. Interface between Physics and Biology: Training a New Generation of Creative Bilingual Scientists.

    Science.gov (United States)

    Riveline, Daniel; Kruse, Karsten

    2017-08-01

    Whereas physics seeks for universal laws underlying natural phenomena, biology accounts for complexity and specificity of molecular details. Contemporary biological physics requires people capable of working at this interface. New programs prepare scientists who transform respective disciplinary views into innovative approaches for solving outstanding problems in the life sciences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Condensed matter view of giant resonance phenomena

    International Nuclear Information System (INIS)

    Zangwill, A.

    1987-01-01

    The intent of this article is to present a view of giant resonance phenomena (an essentially atomic phenomenon) from the perspective of a condensed matter physicist with an interest in the optical properties of matter. As we shall see, this amounts to a particular prejudice about how one should think about many-body effects in a system of interacting electrons. Some of these effects are special to condensed matter systems and will be dealt with in the second half of this paper. However, it turns out that the authors view of the main ingredient to a giant resonance differs significantly from that normally taken by scientists trained in the traditional methods of atomic physics. Therefore, in the first section the author will take advantage of the fact that his contribution to this volume was composed and delivered to the publishers somewhat after the conclusion of the School (rather than before as requested by the organizers) and try to clearly distinguish the differences of opinion presented by the lecturers from the unalterable experimental facts. 46 references, 9 figures

  14. Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems

    Science.gov (United States)

    Khaetskii, A.

    Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.

  15. [Physical and chemical evaluation during refrigeration storage of salted catfish (Pseudoplatystoma sp.) in brine solution, and packed under vacuum].

    Science.gov (United States)

    Rodríguez, Diana; Barrero, Marinela; Kodaira, Makie

    2009-06-01

    Salting fish in the south Venezuelan towns are still the main method of preserving fish including cutt, and salting fish process, storage and commercialization. As the result, salted-dried fish is particularly susceptible to spoilage by a number of factors, including lipid oxidation, browning meat. Packing salted fish product is an alternative increasing storage life time reducing lost of quality and enhancing the storage time. The present study evaluated the physic, chemist, and sensory quality of fish fillet from cat fish (Pseudoplatystoma sp.) from Apure state, Venezuela. Fillet fish were placed in brine solution at 36% of sodium chloride 1:2 fillet: brine solution; after, they were packed under followed conditions: vacuum, vacuum and storage under refrigeration condition, and room temperature. The results showed significant differences (p refrigeration temperature after three moths. The best conditions treatment was vacuum packing and refrigeration at 4 degrees C.

  16. Scaling Extreme Astrophysical Phenomena to the Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B A

    2007-11-01

    High-energy-density (HED) physics refers broadly to the study of macroscopic collections of matter under extreme conditions of temperature and density. The experimental facilities most widely used for these studies are high-power lasers and magnetic-pinch generators. The HED physics pursued on these facilities is still in its infancy, yet new regimes of experimental science are emerging. Examples from astrophysics include work relevant to planetary interiors, supernovae, astrophysical jets, and accreting compact objects (such as neutron stars and black holes). In this paper, we review a selection of recent results in this new field of HED laboratory astrophysics and provide a brief look ahead to the coming decade.

  17. PHYSICS

    CERN Document Server

    C. Hill

    2013-01-01

    The period since the last CMS bulletin has seen the end of proton collisions at a centre-of-mass energy 8 TeV, a successful proton-lead collision run at 5 TeV/nucleon, as well as a “reference” proton run at 2.76 TeV. With these final LHC Run 1 datasets in hand, CMS Physics Analysis Groups have been busy analysing these data in preparation for the winter conferences. Moreover, despite the fact that the pp run only concluded in mid-December (and there was consequently less time to complete data analyses), CMS again made a strong showing at the Rencontres de Moriond in La Thuile (EW and QCD) where nearly 40 new results were presented. The highlight of these preliminary results was the eagerly anticipated updated studies of the properties of the Higgs boson discovered in July of last year. Meanwhile, preparations for Run 2 and physics performance studies for Phase 1 and Phase 2 upgrade scenarios are ongoing. The Higgs analysis group produced updated analyses on the full Run 1 dataset (~25 f...

  18. PHYSICS

    CERN Multimedia

    C. Hill

    2013-01-01

    In the period since the last CMS Bulletin, the LHC – and CMS – have entered LS1. During this time, CMS Physics Analysis Groups have performed more than 40 new analyses, many of which are based on the complete 8 TeV dataset delivered by the LHC in 2012 (and in some cases on the full Run 1 dataset). These results were shown at, and well received by, several high-profile conferences in the spring of 2013, including the inaugural meeting of the Large Hadron Collider    Physics Conference (LHCP) in Barcelona, and the 26th International Symposium on Lepton Photon Interactions at High Energies (LP) in San Francisco. In parallel, there have been significant developments in preparations for Run 2 of the LHC and on “future physics” studies for both Phase 1 and Phase 2 upgrades of the CMS detector. The Higgs analysis group produced five new results for LHCP including a new H-to-bb search in VBF production (HIG-13-011), ttH with H to γ&ga...

  19. PHYSICS

    CERN Multimedia

    J. D'Hondt

    The Electroweak and Top Quark Workshop (16-17th of July) A Workshop on Electroweak and Top Quark Physics, dedicated on early measurements, took place on 16th-17th July. We had more than 40 presentations at the Workshop, which was an important milestone for 2007 physics analyses in the EWK and TOP areas. The Standard Model has been tested empirically by many previous experiments. Observables which are nowadays known with high precision will play a major role for data-based CMS calibrations. A typical example is the use of the Z to monitor electron and muon reconstruction in di-lepton inclusive samples. Another example is the use of the W mass as a constraint for di-jets in the kinematic fitting of top-quark events, providing information on the jet energy scale. The predictions of the Standard Model, for what concerns proton collisions at the LHC, are accurate to a level that the production of W/Z and top-quark events can be used as a powerful tool to commission our experiment. On the other hand the measure...

  20. PHYSICS

    CERN Multimedia

    Christopher Hill

    2013-01-01

    Since the last CMS Bulletin, the CMS Physics Analysis Groups have completed more than 70 new analyses, many of which are based on the complete Run 1 dataset. In parallel the Snowmass whitepaper on projected discovery potential of CMS for HL-LHC has been completed, while the ECFA HL-LHC future physics studies has been summarised in a report and nine published benchmark analyses. Run 1 summary studies on b-tag and jet identification, quark-gluon discrimination and boosted topologies have been documented in BTV-13-001 and JME-13-002/005/006, respectively. The new tracking alignment and performance papers are being prepared for submission as well. The Higgs analysis group produced several new results including the search for ttH with H decaying to ZZ, WW, ττ+bb (HIG-13-019/020) where an excess of ~2.5σ is observed in the like-sign di-muon channel, and new searches for high-mass Higgs bosons (HIG-13-022). Search for invisible Higgs decays have also been performed both using the associ...

  1. Biological and physical factors controlling aggregate stability under different climatic conditions in Southern Spain.

    Science.gov (United States)

    Ángel Gabarrón-Galeote, Miguel; Damián Ruiz-Sinoga, Jose; Francisco Martinez-Murillo, Juan; Lavee, Hanoch

    2013-04-01

    Soil aggregation is a key factor determining the soil structure. The presence of stable aggregates is essential to maintain a good soil structure, that in turn plays an important role in sustaining agricultural productivity and preserving environmental quality. A wide range of physical and biological soil components are involved in the aggregate formation and stabilization, namely clay mineral content; the quantity and quality of organic matter, that can be derived from plants, fungal hyphae, microorganism and soil animals; and the soil water content. Climatic conditions, through their effect on soil water content, vegetation cover and organic matter content, are supposed to affect soil aggregation. Thus the main objective of this research is to analyse the effect of organic matter, clay content and soil water content on aggregate stability along a climatic transect in Southern Spain. This study was conducted in four catchments along a pluviometric gradient in the South of Spain (rainfall depth decreases from west to east from more than 1000 mm year-1 to less than 300 mm year-1) and was based on a methodology approximating the climatic gradient in Mediterranean conditions. The selected sites shared similar conditions of geology, topography and soil use, which allowed making comparisons among them and relating the differences to the pluviometric conditions. In February 2007, 250 disturbed and undisturbed samples from the first 5cm of the soil were collected along the transect. We measured the aggregate stability, organic matter, clay content and bulk density of every sample. In the field we measured rainfall, air temperature, relative humidity, wind speed, wind direction, solar radiation, potential evapotranspiration, soil water content, vegetation cover and presence of litter. Our results suggest that aggregate stability is a property determined by a great number of highly variable factors, which can make extremely difficult to predict its behavior taking in

  2. Mineralogical, textural and physical-mechanical study of hydraulic lime mortars cured under different moisture conditions

    Directory of Open Access Journals (Sweden)

    Arizzi, A.

    2015-06-01

    Full Text Available This work focuses on the chemical-mineralogical, textural and physical-mechanical properties of hydraulic lime mortars made with siliceous and calcareous aggregate. Mortars were cured at 60% and 90% of relative humidity, so as to assess the variability of mortar petrophysical properties in the hardened state due to the moisture conditions. The final aim was to determine the most adequate moisture conditions to be maintained during application and hardening of hydraulic mortars intended for repair interventions. We found out that using a calcareous aggregate and curing mortar at 90% of relative humidity give place to better textural and mechanical properties. However, these characteristics mostly depend on the maximum size of the aggregate grains, which should be smaller than 6 mm, in order to avoid the occurrence of mechanical discontinuities in the mortar.En este trabajo se han estudiado las propiedades químico-mineralógicas, texturales y físico-mecánicas de morteros de cal hidráulica elaborados con áridos silíceo y calcítico. Estos morteros se han curado al 60% y 90% de humedad relativa, con el fin de evaluar las eventuales diferencias en las propiedades petrofísicas de los morteros una vez endurecidos y así establecer cuál de los dos ambientes es recomendable durante la aplicación y fraguado de morteros de cal hidráulica destinados a obras de restauración. Se ha encontrado que el uso de un árido de composición calcítica y el curado al 90% de humedad relativa dan lugar a morteros hidráulicos con mejores características texturales y propiedades mecánicas. De todas formas, estas características dependen principalmente del tamaño máximo del árido empleado, que debería ser inferior a 6 mm para evitar discontinuidades mecánicas en el mortero.

  3. A Connection between Transport Phenomena and Thermodynamics

    Science.gov (United States)

    Swaney, Ross; Bird, R. Byron

    2017-01-01

    Although students take courses in transport phenomena and thermodynamics, they probably do not ask whether these two subjects are related. Here we give an answer to that question. Specifically we give relationships between the equations of change for total energy, internal energy, and entropy of transport phenomena and key equations of equilibrium…

  4. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...

  5. Physical application: Cannon case

    Science.gov (United States)

    Prada, D. A.; Tarazona, J. D.; Gómez, J. M.

    2018-04-01

    The study of physical phenomena by means of guided experimentation and experimental thinking, allow students to infer and understand the reason for the different variations that evidence. Parabolic motion of a projectile powered by a cannon under the spring mechanism, generates discussion regarding the choice of the proper angle, according to a certain distance, a known average initial velocity, and a given height. Give the blank is a great encouragement, however, being able to explain which conditions of the environment influenced the failed launches, generates a space of dialogue and a durable concrete learning.

  6. Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing.

    Directory of Open Access Journals (Sweden)

    Philippe Thomen

    Full Text Available Bacterial communities attached to surfaces under fluid flow represent a widespread lifestyle of the microbial world. Through shear stress generation and molecular transport regulation, hydrodynamics conveys effects that are very different by nature but strongly coupled. To decipher the influence of these levers on bacterial biofilms immersed in moving fluids, we quantitatively and simultaneously investigated physicochemical and biological properties of the biofilm. We designed a millifluidic setup allowing to control hydrodynamic conditions and to monitor biofilm development in real time using microscope imaging. We also conducted a transcriptomic analysis to detect a potential physiological response to hydrodynamics. We discovered that a threshold value of shear stress determined biofilm settlement, with sub-piconewton forces sufficient to prevent biofilm initiation. As a consequence, distinct hydrodynamic conditions, which set spatial distribution of shear stress, promoted distinct colonization patterns with consequences on the growth mode. However, no direct impact of mechanical forces on biofilm growth rate was observed. Consistently, no mechanosensing gene emerged from our differential transcriptomic analysis comparing distinct hydrodynamic conditions. Instead, we found that hydrodynamic molecular transport crucially impacts biofilm growth by controlling oxygen availability. Our results shed light on biofilm response to hydrodynamics and open new avenues to achieve informed design of fluidic setups for investigating, engineering or fighting adherent communities.

  7. Nanophenomena at surfaces fundamentals of exotic condensed matter phenomena

    CERN Document Server

    Michailov, Michail

    2011-01-01

    This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging 'classical' and 'nano' concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played

  8. Measuring and characterizing beat phenomena with a smartphone

    Science.gov (United States)

    Osorio, M.; Pereyra, C. J.; Gau, D. L.; Laguarda, A.

    2018-03-01

    Nowadays, smartphones are in everyone’s life. Apart from being excellent tools for work and communication, they can also be used to perform several measurements of simple physical magnitudes, serving as a mobile and inexpensive laboratory, ideal for use physics lectures in high schools or universities. In this article, we use a smartphone to analyse the acoustic beat phenomena by using a simple experimental setup, which can complement lessons in the classroom. The beats were created by the superposition of the waves generated by two tuning forks, with their natural frequencies previously characterized using different applications. After the characterization, we recorded the beats and analysed the oscillations in time and frequency.

  9. Buckling Behavior of Carbon Nanotubes Functionalized with Carbene under Physical Adsorption of Polymer Chains: a Molecular Dynamics Study

    Science.gov (United States)

    Ajori, S.; Haghighi, S.; Ansari, R.

    2017-12-01

    The buckling analysis of functionalized carbon nanotubes (CNTs) is of great importance for the better understanding of mechanical behavior of nanocomposites. The buckling behavior of carbene-functionalized CNTs (cfCNTs) under physical adsorption of polymer chains (cfCNTs/polymers) is studied in this paper by the classical molecular dynamics (MD) simulations. In this regard, to investigate the interactions between non-covalent polymer chains and cfCNTs, two different non-covalent functional groups, i.e. polycarbonate (PC) and polypropylene (PP), are selected. The findings are compared with those of pure CNTs under the physical adsorption of polymer chains (pCNTs/polymers). The obtained results show that at a given weight percentage of non-covalent functional groups, the gyration radius of cfCNTs/polymers is higher than that of pCNTs/polymers. Furthermore, an increase in the critical buckling force of cfCNTs/polymers is dependent on the type of non-covalent polymer chains. For cfCNTs/PC and cfCNTs/PP, the critical buckling force is respectively lower and higher than that of pCNTs/polymers for the similar weight percentage of non-covalent functional groups. In addition, it is found that the critical buckling strain of cfCNTs/polymers is smaller than that of pCNTs/polymers for the same weight percentage of non-covalent polymer chains.

  10. A core eating network and its modulations underlie diverse eating phenomena

    NARCIS (Netherlands)

    Chen, Jing; Papies, Esther K.; Barsalou, Lawrence W.

    2016-01-01

    We propose that a core eating network and its modulations account for much of what is currently known about the neural activity underlying a wide range of eating phenomena in humans (excluding homeostasis and related phenomena). The core eating network is closely adapted from a network that Kaye,

  11. A framework for back-up and restore under the Experimental Physics and Industrial Control System

    International Nuclear Information System (INIS)

    Karonis, N.T.

    1992-12-01

    EPICS is a system that allows one to design and implement a controls system. At its foundation, i.e., the level closest to the devices being controlled, are autonomous computers, each called an Input/Output Controller or IOC. In EPICS, devices controlled by an IOC are represented by software entities called process variables. All devices are monitored/controlled by reading/writing values from/to their associated process variables. Under this schema, distributing processing over a number of IOCs and representing devices with process variables, there are a variety of ways one can view or group the information in the control system. Two of the more common groupings are by IOC (location) and by devices (function). Simply stated, the authors require a system capable of restoring the state of the machine, in their case the Advanced Photon Source, to a known desired state from somewhere in the past. To that end, they propose a framework which describes a system that periodically records and preserves the values of key process variables so that later on, those values can be written to the machine in an attempt to restore it to that same state. One of the more powerful notions that must be preserved in any system that solves this problem is the independence between the specification of what is monitored and the specification of what is written. In other words, grouping process variables for monitoring must be kept independent of the number of different ways to group process variables (e.g., by IOC, by device, etc.) when they are written

  12. Pattern formations and oscillatory phenomena

    CERN Document Server

    Kinoshita, Shuichi

    2013-01-01

    Patterns and their formations appear throughout nature, and are studied to analyze different problems in science and make predictions across a wide range of disciplines including biology, physics, mathematics, chemistry, material science, and nanoscience. With the emergence of nanoscience and the ability for researchers and scientists to study living systems at the biological level, pattern formation research has become even more essential. This book is an accessible first of its kind guide for scientists, researchers, engineers, and students who require a general introduction to thi

  13. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls.

    Science.gov (United States)

    Vaezi, Ali Reza; Ahmadi, Morvarid; Cerdà, Artemi

    2017-04-01

    Soil erosion by water is a three-phase process that consists of detachment of soil particles from the soil mass, transportation of detached particles either by raindrop impact or surface water flow, and sedimentation. Detachment by raindrops is a key component of the soil erosion process. However, little information is available on the role of raindrop impact on soil losses in the semi-arid regions where vegetation cover is often poor and does not protect the soil from rainfall. The objective of this study is to determine the contribution of raindrop impact to changes in soil physical properties and soil losses in a semiarid weakly-aggregated agricultural soil. Soil losses were measured under simulated rainfalls of 10, 20, 30, 40, 50, 60 and 70mmh -1 , and under two conditions: i) with raindrop impact; and, ii) without raindrop impact. Three replications at each rainfall intensity and condition resulted in a total of 42 microplots of 1m×1.4m installed on a 10% slope according to a randomized complete block design. The contribution of raindrop impact to soil loss was computed using the difference between soil loss with raindrop impact and without raindrop impact at each rainfall intensity. Soil physical properties (aggregate size, bulk density and infiltration rate) were strongly damaged by raindrop impact as rainfall intensity increased. Soil loss was significantly affected by rainfall intensity under both soil surface conditions. The contribution of raindrop impact to soil loss decreased steadily with increasing rainfall intensity. At the lower rainfall intensities (20-30mmh -1 ), raindrop impact was the dominant factor controlling soil loss from the plots (68%) while at the higher rainfall intensities (40-70mmh -1 ) soil loss was mostly affected by increasing runoff discharge. At higher rainfall intensities the sheet flow protected the soil from raindrop impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [Heidaigou Opencast Coal Mine: Soil Enzyme Activities and Soil Physical and Chemical Properties Under Different Vegetation Restoration].

    Science.gov (United States)

    Fang, Ying; Ma, Ren-tian; An, Shao-shan; Zhao, Jun-feng; Xiao, Li

    2016-03-15

    Choosing the soils under different vegetation recovery of Heidaigou dump as the research objects, we mainly analyzed their basic physical and chemical properties and enzyme activities with the method of Analysis of Variance as well as their relations using Pearson correlation analysis and path analysis hoping to uncover the driving factors of the differences between soil enzyme activities under different vegetation restoration, and provide scientific suggestions for the plant selection as well as make a better evaluation to the reclamation effect. The results showed that: (1) Although the artificial vegetation restoration improved the basic physical and chemical properties of the soils while increasing their enzyme activities to a certain extent, the soil conditions still did not reach the level of the natural grassland; (2) Contents of soil organic carbon (SOC) and soil total nitrogen (TN) of the seabuckthorns were the nearest to those of the grassland, which reached 54. 22% and 70. 00% of those of the grassland. In addition, the soil bulk density of the seabuckthorns stand was 17. 09% lower than the maximum value of the amorpha fruitcosa land. The SOC and TN contents as well as the bulk density showed that seabuckthorns had advantages as the species for land reclamation of this dump; Compared with the seabuckthorn, the pure poplar forest had lower contents of SOC and TN respectively by 35.64% and 32.14% and displayed a 16.79% higher value of soil bulk density; (3) The activities of alkaline phosphotase under different types of vegetation rehabilitation had little variation. But soil urease activities was more sensitive to reflect the effects of vegetation restoration on soil properties; (4) Elevation of the SOC and TN turned out to be the main cause for soil fertility restoration and increased biological activities of the dump.

  15. Effect of potassium and calcium loading on healthy subjects under hypokinesia and physical exercise with fluid and salt supplements

    Science.gov (United States)

    Zorbas, Yan G.; Naexu, Konstantin A.; Federenko, Youri F.

    1995-08-01

    The objective of this investigation was to determine the acute responses to the electrolyte challenges under hypokinesia and physical exercise (PE) of different intensities with fluid and salt supplementation (FSS). The studies were performed on 12 physically healthy male volunteers aged 19-24 years under 364 days of hypokinesia (decreased number of steps per day) with a set of PE with FSS. The volunteers were divided into two equal groups. The first group was subjected to a set of intensive PE and the second group was submitted to a set of moderate PE. Both groups of subjects consumed daily water and salt supplements that aimed to increase the body hydration level. For simulation of the hypokinetic effect all subjects were kept under an average of 3000 steps per day. Functional tests with a potassium chloride (KCl) and calcium lactate (Cal) load were performed during the hypokinetic period of 364 days and the 60-day prehypokinetic period that served as control, while both groups of subjects consumed daily calcium and potassium supplements. The concentration of electrolyte and hormone levels in the blood and their excretion rate in urine were determined. Renal excretion of calcium and potassium and the blood concentration thereof increased markedly in both groups of subjects. With the potassium chloride load tests the increased potassium excretion was accompanied by higher aldosterone and insulin blood levels, and with the calcium lactate load tests the increased calcium excretion was accompanied by a decreased parathyroid content in the blood. FSS and PE, regardless of intensity, failed to attenuate calcium and potassium losses. Additional intake of KCl and Cal also failed to normalize potassium and calcium abnormalities. It was concluded that during the KCl and Cal loading tests, the increased losses of potassium and calcium in the hypokinetic subjects were due to the inability of their bodies to retain these electrolytes, and that electrolyte abnormalities could

  16. Nonlinear resonance phenomena of a doped fibre laser under cavity ...

    Indian Academy of Sciences (India)

    Harmonic resonance leads to period-1 bistability and hysteresis. Inside the period-2 sub-harmonic resonance region, the laser exhibits Feigenbaum sequence and generalized bistability. Keywords. Fibre lasers; chaos; modulation; nonlinear oscillators; optical bistability. PACS Nos 05.45.Ac; 42.55.Wd; 05.45.Tp; 42.55.Rz.

  17. Nonlinear resonance phenomena of a doped fibre laser under cavity ...

    Indian Academy of Sciences (India)

    - verse mode and multiaxial mode) with an intracavity LiNbO3 electro-optic modulator. (EOM) display the characteristic features of a nonlinear oscillator (e.g., harmonic and period-2 sub-harmonic resonances) when the EOM driver voltage is ...

  18. PHYSICS

    CERN Multimedia

    V.Ciulli

    2011-01-01

    The main programme of the Physics Week held between 16th and 20th May was a series of topology-oriented workshops on di-leptons, di-photons, inclusive W, and all-hadronic final states. The goal of these workshops was to reach a common understanding for the set of objects (ID, cleaning...), the handling of pile-up, calibration, efficiency and purity determination, as well as to revisit critical common issues such as the trigger. Di-lepton workshop Most analysis groups use a di-lepton trigger or a combination of single and di-lepton triggers in 2011. Some groups need to collect leptons with as low PT as possible with strong isolation and identification requirements as for Higgs into WW at low mass, others with intermediate PT values as in Drell-Yan studies, or high PT as in the Exotica group. Electron and muon reconstruction, identification and isolation, was extensively described in the workshop. For electrons, VBTF selection cuts for low PT and HEEP cuts for high PT were discussed, as well as more complex d...

  19. Separation phenomena in Liquids and Gases

    Energy Technology Data Exchange (ETDEWEB)

    Louvet, P.; Dr Soubbaramayer [CEA Saclay, Dept. des Lasers et de la Physico-Chimie, DESICP/DLPC/SPP, 91 - Gif-sur-Yvette (France); Noe, P

    1989-07-01

    The Proceedings of the 1989 Workshop are presented in two volumes: volume 1 contains 4 papers on plasma processes and 7 papers on centrifugation. The papers on plasma processes deal with two main methods: ion cyclotron resonance and rotating plasmas. A survey lecture reviews extensively the physics of the two processes, the published experimental results and includes an abundant bibliography of about 200 references. The 3 other papers communicate original and recent experiments carried out by the authors. The plasma process remains as a possible technology to separate stable isotopes and isotopes of metals located in the middle of the Mendeleev Table. Regarding the stable isotopes, the ion cyclotron resonance might be an alternative to the Calutron process. The sessions on centrifugation include 2 review papers by URENCO authors and 5 specialized communications. The review papers take stock of the centrifuge research and gives the current status of the centrifuge technology in URENCO. The authors say that the centrifugation is presently an established industrial and commercial process ready to enter in competition for any new construction of enrichment capacity. Volume 2 contains the papers on 3 topics: basic studies (11 papers), chemical process (2 papers) and laser processes (7 papers). The papers on basic studies include investigations on rotating flows. A special attention is given to studies on convection flows, driven by acceleration field or (and) capillary forces. The interest of convection is obvious, as it has applications in important fields: the hydrodynamics of liquid uranium in the evaporation crucible of AVLIS Process, the crystal growth experiments on earth or under microgravity conditions (future experiments planned in space-labs) and the welding by electron or photon beams. Two papers are presented on the chemical process and both of them are by French authors. The French CEA has, in the past, developed with success the CHEMEX process. The

  20. Separation phenomena in Liquids and Gases

    International Nuclear Information System (INIS)

    Louvet, P.; Dr Soubbaramayer; Noe, P.

    1989-01-01

    The Proceedings of the 1989 Workshop are presented in two volumes: volume 1 contains 4 papers on plasma processes and 7 papers on centrifugation. The papers on plasma processes deal with two main methods: ion cyclotron resonance and rotating plasmas. A survey lecture reviews extensively the physics of the two processes, the published experimental results and includes an abundant bibliography of about 200 references. The 3 other papers communicate original and recent experiments carried out by the authors. The plasma process remains as a possible technology to separate stable isotopes and isotopes of metals located in the middle of the Mendeleev Table. Regarding the stable isotopes, the ion cyclotron resonance might be an alternative to the Calutron process. The sessions on centrifugation include 2 review papers by URENCO authors and 5 specialized communications. The review papers take stock of the centrifuge research and gives the current status of the centrifuge technology in URENCO. The authors say that the centrifugation is presently an established industrial and commercial process ready to enter in competition for any new construction of enrichment capacity. Volume 2 contains the papers on 3 topics: basic studies (11 papers), chemical process (2 papers) and laser processes (7 papers). The papers on basic studies include investigations on rotating flows. A special attention is given to studies on convection flows, driven by acceleration field or (and) capillary forces. The interest of convection is obvious, as it has applications in important fields: the hydrodynamics of liquid uranium in the evaporation crucible of AVLIS Process, the crystal growth experiments on earth or under microgravity conditions (future experiments planned in space-labs) and the welding by electron or photon beams. Two papers are presented on the chemical process and both of them are by French authors. The French CEA has, in the past, developed with success the CHEMEX process. The

  1. Electrokinetic phenomena in nanopore transport

    OpenAIRE

    Laohakunakorn, Nadanai

    2015-01-01

    Nanopores are apertures of nanometric dimensions in an insulating matrix. They are routinely used to sense and measure properties of single molecules such as DNA. This sensing technique relies on the process of translocation, whereby a molecule in aqueous solution moves through the pore under an applied electric field. The presence of the molecule modulates the ionic current through the pore, from which information can be obtained regarding the molecule's properties. Whereas the electrical pr...

  2. Highly energetic phenomena in water electrolysis

    Science.gov (United States)

    Postnikov, A. V.; Uvarov, I. V.; Lokhanin, M. V.; Svetovoy, V. B.

    2016-01-01

    Water electrolysis performed in microsystems with a fast change of voltage polarity produces optically invisible nanobubbles containing H2 and O2 gases. In this form the gases are able to the reverse reaction of water formation. Here we report extreme phenomena observed in a millimeter-sized open system. Under a frequency of driving pulses above 100 kHz the process is accompanied by clicking sounds repeated every 50 ms or so. Fast video reveals that synchronously with the click a bubble is growing between the electrodes which reaches a size of 300 μm in 50 μs. Detailed dynamics of the system is monitored by means of a vibrometer by observing a piece of silicon floating above the electrodes. The energy of a single event is estimated as 0.3 μJ and a significant part of this energy is transformed into mechanical work moving the piece. The observations are explained by the combustion of hydrogen and oxygen mixture in the initial bubble with a diameter of about 40 μm. Unusual combustion mechanism supporting spontaneous ignition at room temperature is responsible for the process. The observed effect demonstrates a principal possibility to build a microscopic internal combustion engine. PMID:27982103

  3. Highly energetic phenomena in water electrolysis

    Science.gov (United States)

    Postnikov, A. V.; Uvarov, I. V.; Lokhanin, M. V.; Svetovoy, V. B.

    2016-12-01

    Water electrolysis performed in microsystems with a fast change of voltage polarity produces optically invisible nanobubbles containing H2 and O2 gases. In this form the gases are able to the reverse reaction of water formation. Here we report extreme phenomena observed in a millimeter-sized open system. Under a frequency of driving pulses above 100 kHz the process is accompanied by clicking sounds repeated every 50 ms or so. Fast video reveals that synchronously with the click a bubble is growing between the electrodes which reaches a size of 300 μm in 50 μs. Detailed dynamics of the system is monitored by means of a vibrometer by observing a piece of silicon floating above the electrodes. The energy of a single event is estimated as 0.3 μJ and a significant part of this energy is transformed into mechanical work moving the piece. The observations are explained by the combustion of hydrogen and oxygen mixture in the initial bubble with a diameter of about 40 μm. Unusual combustion mechanism supporting spontaneous ignition at room temperature is responsible for the process. The observed effect demonstrates a principal possibility to build a microscopic internal combustion engine.

  4. Supercoherent phenomena in pulsed power

    International Nuclear Information System (INIS)

    O'Rourke, R.C.

    1983-01-01

    This chapter proposes the formulation of programs of basic physics research to transform Pulsed Power Technology (PPT) to Pulsed Power Science and Technology (PPS and T) by formulating the laws of the quantized microscopic electromagnetic field; applying the microscopic electromagnetic field theory to the generation, propagation and deposition of pulses in nonlinear networks; learning more about the basic super coherent ''micro-structure'' in space and time of the many-photon states of pulsed laser beams; learning more about the basic super coherent ''micro-structure'' in space and time of the many-electronstates of pulsed electron and ion laser beams; and learning everything about the ''micro-picture'' of so-called ''dielectric breakdown'' and the associated absolute time delays. Promotes the idea that laser, electron and ion beams are similar kinds of pulses in the microscopic electromagnetic field. Presents expression for the microscopic electromagnetic field in order to show the role of supercoherence in PPS and T

  5. Nonlinear Photonics and Novel Optical Phenomena

    CERN Document Server

    Morandotti, Roberto

    2012-01-01

    Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.

  6. Transient phenomena in electrical power systems

    CERN Document Server

    Venikov, V A; Higinbotham, W

    1964-01-01

    Electronics and Instrumentation, Volume 24: Transient Phenomena in Electrical Power Systems presents the methods for calculating the stability and the transient behavior of systems with forced excitation control. This book provides information pertinent to the analysis of transient phenomena in electro-mechanical systems.Organized into five chapters, this volume begins with an overview of the principal requirements in an excitation system. This text then explains the electromagnetic and electro-mechanical phenomena, taking into account the mutual action between the components of the system. Ot

  7. IUTAM Symposium on Fracture Phenomena in Nature and Technology

    CERN Document Server

    Carini, Angelo; Gei, Massimiliano; Salvadori, Alberto

    2014-01-01

    This book contains contributions presented at the IUTAM Symposium "Fracture Phenomena in Nature and Technology" held in Brescia, Italy, 1-5 July, 2012.The objective of the Symposium was fracture research, interpreted broadly to include new engineering and structural mechanics treatments of damage development and crack growth, and also large-scale failure processes as exemplified by earthquake or landslide failures, ice shelf break-up, and hydraulic fracturing (natural, or for resource extraction or CO2 sequestration), as well as small-scale rupture phenomena in materials physics including, e.g., inception of shear banding, void growth, adhesion and decohesion in contact and friction, crystal dislocation processes, and atomic/electronic scale treatment of brittle crack tips and fundamental cohesive properties.Special emphasis was given to multiscale fracture description and new scale-bridging formulations capable to substantiate recent experiments and tailored to become the basis for innovative computationa...

  8. Theoretical and experimental notes on noise phenomena of KUR

    International Nuclear Information System (INIS)

    Kishida, Kuniharu

    1980-01-01

    The classification of global or local noise is important in reactor noise analysis. The term of ''global'' or ''local'' corresponds to that of ''system size'' or ''cell size'' in statistical physics. On the other hand, point model or phase space description is used in time series analysis. If a time series model describing spatial behavior is established, it will serve to reactor diagnosis. The noise phenomena of KUR are discussed from these points of view. In other words, from experimental results, the point reactor picture is reasonable to neutronic aspect but quantitative problem remains in coolant temperature fluctuations. By taking into account a diffusion type model, the spatial dependence is discussed for the problem remaining in coolant temperature fluctuations. It is pointed out that the time-space picture is a crucial idea of reactor noise phenomena. (author)

  9. Transport phenomena in granular materials: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ialali, P.; Sarkomaa, P. [Department of Energy and Environmental Engineering, Lappeenranta University of Technology, Lappeenranta (Finland); Mo Li [School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2007-07-01

    Granular materials are found in nature and in the technology. Common examples are sand, sugar, snow, synthetic powders, cement and soil. They are collections of individual solid grains with hybrid bulk properties so that they display both solid-like and fluid-like behaviors under various circumstances. Grains are interacting through collisions or contacts either with each other or with confining walls. The transport of mass, momentum and kinetic energy (not thermal energy) has been studied in deforming granular materials both theoretically and experimentally. In static granular media (no deformation), the distribution of forces and contact stresses has attracted a great deal of scientists' attention. In this article, different aspects of transport phenomena in sheared granular media are introduced based on experimental and numerical simulation results obtained by other scientists and via our research. The transport of mass and momentum are basically needed to understand the mixing phenomenon in granular materials. Deformation of granular material (the relative motion of grains) is extremely heterogeneous unlike the ordinary fluids and solids. Also, the most highlighted difference between granular materials and other states of matter is associated with the ineffectiveness of grains thermal energy in building the mechanical and physical properties of granular materials. Instead, the fluctuation of grains kinetic energy plays the major role in controlling the mechanics of granular materials. Strange behaviors of granular materials such as jamming the flow of discharging sand from a hopper and avalanching snow over the surface of mountains can be properly explained only based on the models addressing the transport and the dissipation of grains kinetic energy. (orig.)

  10. Dielectric relaxation phenomena of rigid polar liquid molecules ...

    Indian Academy of Sciences (India)

    Abstract. The dielectric relaxation phenomena of rigid polar liquid molecules chloral and ethyl- trichloroacetate (j) in benzene, n-hexane and n-heptane (i) under 4.2, 9.8 and 24.6 GHz electric fields at 30ÆC are studied to show the possible existence of double relaxation times τ2 and τ1 for rotations of the whole and the ...

  11. Coordinated Scheme of Under-Frequency Load Shedding with Intelligent Appliances in a Cyber Physical Power System

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2016-08-01

    Full Text Available The construction of a cyber physical system in a power grid provides more potential control strategies for the power grid. With the rapid employment of intelligent terminal equipment (e.g., smart meters and intelligent appliances in the environment of a smart grid, abundant dynamic response information could be introduced to support a secure and stable power system. Combining demand response technology with the traditional under-frequency load shedding (UFLS scheme, a new UFLS strategy-determining method involving intelligent appliances is put forward to achieve the coordinated control of quick response resources and the traditional control resources. Based on this method, intelligent appliances can be used to meet the regulatory requirements of system operation in advance and prevent significant frequency drop, thereby improving the flexibility and stability of the system. Time-domain simulation verifies the effectiveness of the scheme, which is able to mitigate frequency drop and reduce the amount of load shedding.

  12. SOIL PHYSICAL ATTRIBUTES AND YIELD OF WINTER COMMON BEAN CROP UNDER A NO-TILL SYSTEM IN THE BRAZILIAN CERRADO

    Directory of Open Access Journals (Sweden)

    MARIA CECÍLIA CAVALLINI DA SILVA

    2017-01-01

    Full Text Available Knowledge of the interactions between soil physical properties and yield performance in agricultural crops is very important for the adoption of appropriate management practices. This study aimed to evaluate the linear and spatial correlations between some soil physical attributes, straw production in the palisade grass (Urochloa brizantha, and grain yield of winter common bean in succession to the grass under an irrigated no-till system in an Oxisol Haplorthox in the Cerrado lowlands region of Brazil. The plant attributes determined were dry matter yield of U. brizantha (DMY, and grain yield (GY and final plant population (PP of winter common bean. The soil physical attributes, evaluated at 0.0-0.10 m and 0.10-0.20 m, were soil bulk density (BD, macroporosity (MA, microporosity (MI, total porosity (TP, penetration resistance (PR, gravimetric water content (GW, and volumetric water content (VW. A geostatistical grid with 124 sampling points was installed to collect the soil and plant data in an area of 4000 m2. The remaining straw amount of palisade grass exhibited an inverse linear correlation with bean yield and bean plant population when the bean was cultivated in succession. However, no spatial correlations were observed among the attributes. The common bean yield had a direct linear correlation with gravimetric water content in the 0.10-0.20 m soil layer. From a spatial point of view, winter bean yield showed a strong dependence on the distribution of the volumetric water content in the 0-0.10 m soil layer.

  13. Magnetoacoustic Phenomena in Saturated Porous Media

    Science.gov (United States)

    Perepechko, Y.

    2007-12-01

    This work deals with dynamic interaction between electromagnetic and hydrodynamic types of motions in a porous medium, saturated with electrolyte. The system of equations is a coupling of equations of the two-velocity continuous filtration theory and Maxwell equations in quasi-stationary approximation. The method of separation by the physical processes is used for numerical solution, and the hyperbolic system is approximated by the explicit expanded Godunov scheme, and the parabolic system is approximated by the inexplicit Crank-Nicolson scheme. Generation of the magnetic field was modeled in the process of 2D electrolyte filtration in a porous medium, which is considered to be conducing because of a double electric layer. An entrainment in the external magnetic field over the electrolyte flow into a porous medium is observed, and the location of magnetic field maximum relative to the inlet boundary is determined by the ratio of kinematic viscosity to magnetic viscosity. A rise of this ratio provides more intensive drag of a filtered liquid and increasing magnetic field, reached in a porous medium. Downward the flow the field decreases because of magnetic field diffusion. The problem with simultaneous excitation of acoustic and electromagnetic perturbations at the boundary of saturated porous medium was also considered, and this allows us to obtain additional knowledge about accompanying effects and phenomena, what is the main scientific and practical goal of geophysics and oil survey. This research was supported by the Russian Foundation for Basic Research grant 06-05-65110, by the President's grants NSh-1573.2003.5, and by the Russian Ministry Science and Education grant RNP.2.1.1.702.

  14. Orthogonal polarization in lasers physical phenomena and engineering applications

    CERN Document Server

    Zhang, Shulian

    2013-01-01

    This practical book summarizes the latest research results of orthogonally polarized lasers, birefringence laser cavities, and their applications. Coverage ranges from basic principles and technologies to the characteristics of different cavities and lasers to various measurement techniques. A number of figures, experimental designs, and measurement curves are included, helping readers gain a thorough understanding of the many applications in modern engineering and start their own projects. Many types of relevant lasers (Helium/Neon lasers, Nd:YAG lasers, laser diodes, etc.) are also discussed

  15. Large X Hadron Physics and Correlations with Central Region Phenomena

    CERN Multimedia

    2002-01-01

    The experiment uses a forward double-septum magnetic spectrometer with acceptance of @+~150~mrad to study the production of multiparticle systems. The system of mini-drift MWPC's has a processor which enables real-time selection of different multiplicities. The 32-cell Cherenkov counters along with the T.O.F. system allow the identification and separation of @p's, K's and p's over a large momentum range. A 3~m~x~3~m shower counter is installed to measure @p|0's and @g's traversing the spectrometer. \\\\ \\\\ A magnetic spectrometer installed at 90|0 measures identified single particles (T.O.F. and aerogel Cherenkov counters) and permits the measurement of flavour correlations with the forward spectrometer. Momentum selection of the 90|0 particles is incorporated in the trigger. .in +3 The experiment is data taking and studying such topics as 1) Production of @L^c|+ @A @L@p|+@p|+@p|- @A pK|-@p|+ 2) Glueball search in diffractive production of p @A pK|0^sK@+@p, pK|0^sK|0^s, p@L@L, etc... 3) p@*, pp comparison inclu...

  16. Constructive Models of Discrete and Continuous Physical Phenomena

    Science.gov (United States)

    2014-02-08

    time. The hardware description language VHDL has a related model of time, where time is a member of N×N, and the second value is used in a manner...behaviors. Tech. Rep. RR 95–52, rev. RR (96–56), I3S, April 1996. 4. ARMSTRONG, J. R., AND GRAY, F. G. VHDL Design Representation and Synthesis, sec- ond

  17. Towards High Resolution Numerical Algorithms for Wave Dominated Physical Phenomena

    Science.gov (United States)

    2009-01-30

    Simulation hochfrequenter elektromagnetischer Felder mit der Discontinuous Galerkin Fi- nite Elemente Methode [ Numerical Simulations of High...elektromagnetischer Felder mit der Discontinuous Galerkin Finite Elemente Methode [ Local Time Integration for Efficient Com- putation of High-Frequency...hochfrequenter elektromagnetischer Felder mit der Discontinuous Galerkin Finite Elemente Methode [ Local Time Integration for Efficient Com- putation of

  18. All basic condensed matter physics phenomena and notions mirror ...

    Indian Academy of Sciences (India)

    But, like every hypothesis, when spelt out with support it can guide us, focus our thinking in some useful fashion and ... it in unexpected places. I do not want my limited hypothesis to meanthat 'human mind', believed to be a product ... biology which mirrors some of the condensed matter ideas in a more transparent fashion.

  19. Conditioning and breakdown phenomena in accelerator tubes

    International Nuclear Information System (INIS)

    Skorka, S.J.

    1979-01-01

    Important breakdown mechanisms in accelerator tubes are reviewed, and discharge phenomena in NEC tubes are deduced from the surface appearance of the electrodes and insulators of a used tube. Microphotos of these surfaces are shown

  20. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    Black holes; numerical relativity; nonlinear sigma. Abstract. Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. ... Theoretical and Computational Studies Group, Southampton College, Long Island University, Southampton, NY 11968, USA ...

  1. Periglacial phenomena affecting nuclear waste disposal

    Directory of Open Access Journals (Sweden)

    Niini, H.

    1997-12-01

    Full Text Available Slow future changes in astronomic phenomena seem to make it likely that Finland nll suffer several cold periods during the next 100,000 years. The paper analyses the characteristics of the periglacial factors that are most likely to influence the long-term safety of high-level radioactive waste disposed of in bedrock. These factors and their influences have been divided into two categories, natural and human. It is concluded that the basically natural phenomena are theoretically better understood than the complicated phenomena caused by man. It is therefore important in future research into periglacial phenomena, as well as of the disposal problem, to emphasize not only the proper applications of the results of natural sciences, but especially the effects and control of mankind's own present and future activities.

  2. Noise induced phenomena in combustion

    Science.gov (United States)

    Liu, Hongliang

    Quantitative models of combustion usually consist of systems of deterministic differential equations. However, there are reasons to suspect that noise may have a significant influence. In this thesis, our primary objective is to study the effect of noise on measurable quantities in the combustion process. Our first study involves combustion in a homogeneous gas. With a one step reaction model, we analytically estimate the requirements under which noise is important to create significant differences. Our simulation shows that a bi-modality phenomenon appears when appropriate parameters are applied, which agrees with our analytical result. Our second study involves steady planar flames. We use a relatively complete chemical model of the H2/air reaction system, which contains all eight reactive species (H2, O2, H, O, OH, H2O, HO2, H2O2) and N2. Our mathematical model for this system is a reacting flow model. We derive noise terms related to transport processes by a method advocated by Landau & Lifshitz, and we also derive noise terms related to chemical reactions. We develop a code to simulate this system. The numerical implementation relies on a good Riemann solver, suitable initial and boundary conditions, and so on. We also implement a code on a continuation method, which not only can be used to study approximate properties of laminar flames under deterministic governing equations, but also eliminates the difficulty of providing a suitable initial condition for governing equations with noise. With numerical experiments, we find the difference of flame speed exist when the noise is turned on or off although it is small when compared with the influence of other parameters, for example, the equivalence ratio. It will be a starting point for further studies to include noise in combustion.

  3. Evidence on Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Malene Rode; Sommersel, Hanna Bjørnøy; Larsen, Michael Søgaard

    This publication is an excerpt from the full technical report ‘Dropout Phenomena at Universities: What is Dropout? Why does Dropout Occur? What Can be Done by the Universities to Prevent or Reduce it? A systematic review’, which was completed in April 2013. The purpose of this excerpt is to prese...... the knowledge we have on dropout phenomena at European universities in a short, precise and comprehensible form to allow readers to orient themselves on the subject in a more readable manner....

  4. Transport phenomena an introduction to advanced topics

    CERN Document Server

    Glasgow, Larry A

    2010-01-01

    Enables readers to apply transport phenomena principles to solve advanced problems in all areas of engineering and science This book helps readers elevate their understanding of, and their ability to apply, transport phenomena by introducing a broad range of advanced topics as well as analytical and numerical solution techniques. Readers gain the ability to solve complex problems generally not addressed in undergraduate-level courses, including nonlinear, multidimensional transport, and transient molecular and convective transport scenarios. Avoiding rote memorization, the author em

  5. The NSF Condensed Matter Physics Program

    Science.gov (United States)

    Sokol, Paul

    The Condensed Matter Physics (CMP) program in the NSF Division of Materials Research (DMR) supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems. CMP is the largest Individual Investigator Award program in DMR and supports a broad portfolio of research spanning both hard and soft condensed matter. Representative research areas include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; topological insulators; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, liquid crystals, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields. In this talk I will review the current CMP portfolio and discuss future funding trends for the program. I will also describe recent activities in the program aimed at addressing the challenges facing current and future principal investigators.

  6. Second DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1989-01-01

    This conference has been organized into ten presentation sessions which include an overview of the DOE Natural Phenomena Guidelines, Seismic Analysis, Seismic Design, Modifying Existing Facilities, DOE Orders, Codes, and Standards (2 sessions), Seismic Hazard (2 sessions), and Probabilistic Risk Assessment (2 sessions). Two poster sessions were also included in the program to provide a different forum for communication of ideas. Over the past fourteen years, Lawrence Livermore National Laboratory, Nuclear Systems Safety Program, has been working with the US Department of Energy, Office of Safety Appraisals and their predecessors in the area of natural phenomena hazards. During this time we have developed seismic, extreme wind/tornado, and flood hazard models for DOE sites in the United States. Guidelines for designing and evaluating DOE facilities for natural phenomena have been developed and are in interim use throughout the DOE community. A series of state-of-the practice manuals have also been developed to aid the designers. All of this material is listed in the Natural Phenomena Hazards Bibliography included in these proceedings. This conference provides a mechanism to disseminate current information on natural phenomena hazards and their mitigation. It provides an opportunity to bring together members of the DOE community to discuss current projects, to share information, and to hear practicing members of the structural engineering community discuss their experiences from past natural phenomena, future trends, and any changes to building codes. Each paper or poster presented is included in these proceedings. We have also included material related to the luncheon and dinner talks

  7. Wheat yield and physical properties of a brown latosol under no-tillage in south-central Paraná

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Machado Kramer

    2013-10-01

    Full Text Available Soil management influences the chemical and physical properties of soil. Chemical conditions have been thoroughly studied, while the role of soil physical conditions regarding crop yield has been neglected. This study aimed to analyze the wheat yield and its relationship with physical properties of an Oxisol under no-tillage (NT. The study was carried out between 2010 and 2011, in Reserva do Iguaçu, State of Paraná, Brazil, on the Campo Bonito farm, after 25 years of NT management. Based on harvest maps of barley (2006, wheat (2007 and maize (2009 of a plot (150 ha, zones with higher and lower yield potential (Z1 and Z2, respectively were identified. Sampling grids with 16 units (50 x 50 m and three sampling points per unit were established. The wheat grain yield (GY and water infiltration capacity (WIC were evaluated in 2010. Soil samples with disturbed and undisturbed structure were collected from the 0.00-0.10 and 0.10-0.20 m layers. The former were used to determine soil organic carbon (Corg levels and the latter to determine soil bulk density (BD, total porosity (TP, macroporosity (Mac, and microporosity (Mic. Soil penetration resistance (PR and water content (SWC were also evaluated. The wheat GY of the whole plot was close to the regional average and the yield between the zones differed significantly, i.e. 22 % higher in Z1 than in Z2. No significant variation in Mic was observed between zones, but Z1 had higher Corg levels, SWC, TP and Mac and lower BD than Z2 in both soil layers, as well as a lower PR than Z2 in the 0.00-0.10 m layer. Therefore, soil physical conditions were more restrictive in Z2, in agreement with wheat yield and zone yield potential defined a priori, based on the harvest maps. Soil WIC in Z1 was significantly higher (30 % than in Z2, in agreement with the results of TP and Mac which were also higher in Z1 in both soil layers. The correlation analysis of data of the two layers showed a positive relationship between

  8. Toward multi-scale simulation of reconnection phenomena in space plasma

    Science.gov (United States)

    Den, M.; Horiuchi, R.; Usami, S.; Tanaka, T.; Ogawa, T.; Ohtani, H.

    2013-12-01

    Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. It is well known that magnetic reconnection is controlled by microscopic kinetic mechanism. Frozen-in condition is broken due to particle kinetic effects and collisionless reconnection is triggered when current sheet is compressed as thin as ion kinetic scales under the influence of external driving flow. On the other hand configuration of the magnetic field leading to formation of diffusion region is determined in macroscopic scale and topological change after reconnection is also expressed in macroscopic scale. Thus magnetic reconnection is typical multi-scale phenomenon and microscopic and macroscopic physics are strongly coupled. Recently Horiuchi et al. developed an effective resistivity model based on particle-in-cell (PIC) simulation results obtained in study of collisionless driven reconnection and applied to a global magnetohydrodynamics (MHD) simulation of substorm in the Earth's magnetosphere. They showed reproduction of global behavior in substrom such as dipolarization and flux rope formation by global three dimensional MHD simulation. Usami et al. developed multi-hierarchy simulation model, in which macroscopic and microscopic physics are solved self-consistently and simultaneously. Based on the domain decomposition method, this model consists of three parts: a MHD algorithm for macroscopic global dynamics, a PIC algorithm for microscopic kinetic physics, and an interface algorithm to interlock macro and micro hierarchies. They verified the interface algorithm by simulation of plasma injection flow. In their latest work, this model was applied to collisionless reconnection in an open system and magnetic reconnection was successfully found. In this paper, we describe our approach to clarify multi-scale phenomena and report the current status. Our recent study about extension of the MHD domain to global system is presented. We

  9. TOTEM Physics

    CERN Document Server

    Eggert, K; Aurola, A; Avati, V; Berardi, V; Bottigli, U; Bozzo, M; Brucken, E; Buzzo, A; Calicchio, M; Capurro, F; Catanesi, M G; Ciocci, M A; Cuneo, S; Da Vià, C; Deile, M; Dimovasili, E; Eraluoto, M; Ferro, F; Giachero, A; Hasi, J; Haug, F; Heino, J; Hilden, T; Jarron, P; Kalliopuska, J; Kaspar, J; Kok, A; Kundrát, V; Kurvinen, K; Lami, S; Lamsa, J; Latino, G; Lauhakangas, R; Lippmaa, E; Lippmaa, J; Lokajícek, M; Lo Vetere, M; Macina, D; Macri, M; Meucci, M; Minutoli, S; Morelli, A; Musico, P; Negri, M; Niewiadomski, H; Noschis, E; Ojala, J; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Paoletti, R; Perrot, Anne Laure; Radermacher, E; Radicioni, E; Robutti, E; Ropelewski, Leszek; Ruggiero, G; Rummel, A; Saarikko, H; Sanguinetti, G; Santroni, A; Saramad, S; Sauli, Fabio; Scribano, A; Sette, G; Smotlacha, J; Snoeys, W; Taylor, C; Toppinen, A; Trummal, A; Turini, N; Van Remortel, N; Verardo, L; Verdier, A; Watts, S; Whitmore, J

    2006-01-01

    This article discusses the physics programme of the TOTEM experiment at the LHC. A new special beam optics with beta* = 90 m, enabling the measurements of the total cross-section, elastic pp scattering and diffractive phenomena already at early LHC runs, is explained. For this and the various other TOTEM running scenarios, the acceptances of the leading proton detectors and of the forward tracking stations for some physics processes are described.

  10. TOTEM physics

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, G.; Aurola, A.; Avati, V.; Berardi, V.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Calicchio, M.; Capurro, F.; Catanesi, M.G.; Ciocci, M.A.; Cuneo, S.; Da Vi' a, C.; Deile, M.; Dimovasili, E.; Eggert, K.; Eraluoto, M.; Ferro, F.; Giachero, A.; Hasi, J.; Haug, F.; Heino, J.; Hilden, T.; Jarron, P.; Kalliopuska, J.; Kaspar, J.; Kok, A.; Kundrat, V.; Kurvinen, K.; Lami, S.; Lamsa, J.; Latino, G.; Lauhakangas, R.; Lippmaa, E.; Lippmaa, J.; Lokajfeek, M.; LoVetere, M.; Macina, D.; Macri, M.; Meucci, M.; Minutoli, S.; Morelli, A.; Musico, P.; Negri, M.; Niewiadomski, H.; Noschis, E.; Ojala, J.; Oljemark, F.; Orava, R.; Oriunno, M.; Osterberg, K.; Paoletti, R.; Perrot, A.L.; Radermacher, E.; Radicioni, E.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Rummel, A.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Saramad, S.; Sauli, F.; Scribano, A.; Sette, G.; Smotlacha, J.; Snoeys, W.; Taylor, C.; Toppinen, A.; Trummal, A.; Turini, N.; Van Remortel, N.; Verardo, L.; Verdier, A.; Watts, S.; Whitmore, J

    2005-07-01

    This article discusses the physics programme of the TOTEM experiment at the LHC (Large Hadron Collider in CERN). A new special beam optics with {beta}{sup *} 90 m (betatron value), enabling the measurements of the total cross-section, elastic pp scattering and diffractive phenomena already at early LHC runs, is explained. For this and the various other TOTEM running scenarios, the acceptances of the leading proton detectors and of the forward tracking stations for some physics processes are described. (authors)

  11. Statistical physics

    CERN Document Server

    Sadovskii, Michael V

    2012-01-01

    This volume provides a compact presentation of modern statistical physics at an advanced level. Beginning with questions on the foundations of statistical mechanics all important aspects of statistical physics are included, such as applications to ideal gases, the theory of quantum liquids and superconductivity and the modern theory of critical phenomena. Beyond that attention is given to new approaches, such as quantum field theory methods and non-equilibrium problems.

  12. Helios: a tangible and augmented environment to learn optical phenomena in astronomy

    Science.gov (United States)

    Fleck, Stéphanie; Hachet, Martin

    2015-10-01

    France is among the few countries that have integrated astronomy in primary school levels. However, for fifteen years, a lot of studies have shown that children have difficulties in understanding elementary astronomic phenomena such as day/night alternation, seasons or moon phases' evolution. To understand these phenomena, learners have to mentally construct 3D perceptions of aster motions and to understand how light propagates from an allocentric point of view. Therefore, 4-5 grades children (8 to 11 years old), who are developing their spatial cognition, have many difficulties to assimilate geometric optical problems that are linked to astronomy. To make astronomical learning more efficient for young pupils, we have designed an Augmented Inquiry-Based Learning Environment (AIBLE): HELIOS. Because manipulations in astronomy are intrinsically not possible, we propose to manipulate the underlying model. With HELIOS, virtual replicas of the Sun, Moon and Earth are directly manipulated from tangible manipulations. This digital support combines the possibilities of Augmented Reality (AR) while maintaining intuitive interactions following the principles of didactic of sciences. Light properties are taken into account and shadows of Earth and Moon are directly produced by an omnidirectional light source associated to the virtual Sun. This AR environment provides users with experiences they would otherwise not be able to experiment in the physical world. Our main goal is that students can take active control of their learning, express and support their ideas, make predictions and hypotheses, and test them by conducting investigations.

  13. Polarization phenomena in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J. [Stanford Univ., CA (United States)

    1994-12-01

    The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and nonperturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g{sub A} on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x{sub bj}; (b) consequences of the principle of hadron retention in high x{sub F} inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. The author also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A{sub NN} observed in large angle proton-proton scattering, the anomalously large {rho}{pi} branching ratio of the J/{psi}, and the rapidly changing polarization dependence of both J/{psi} and continuum lepton pair hadroproduction observed at large x{sub F}. The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron.

  14. Application of digital image processing techniques to faint solar flare phenomena

    Science.gov (United States)

    Glackin, D. L.; Martin, S. F.

    1980-01-01

    Digital image processing of eight solar flare events was performed using the Video Information Communication and Retrieval language in order to study moving emission fronts, flare halos, and Moreton waves. The techniques used include contrast enhancement, isointensity contouring, the differencing of images, spatial filtering, and geometrical registration. The spatial extent and temporal behavior of the faint phenomena is examined along with the relation of the three types of phenomena to one another. The image processing techniques make possible the detailed study of the history of the phenomena and provide clues to their physical nature.

  15. Application of digital image processing techniques to faint solar flare phenomena

    International Nuclear Information System (INIS)

    Glackin, D.L.; Martin, S.F.

    1980-01-01

    Digital image processing of eight solar flare events was performed using the Video Information Communication and Retrieval language in order to study moving emission fronts, flare halos, and Moreton waves. The techniques used include contrast enhancement, isointensity contouring, the differencing of images, spatial filtering, and geometrical registration. The spatial extent and temporal behavior of the faint phenomena is examined along with the relation of the three types of phenomena to one another. The image processing techniques make possible the detailed study of the history of the phenomena and provide clues to their physical nature

  16. Using LabVIEW for Applying Mathematical Models in Representing Phenomena

    Science.gov (United States)

    Faraco, G.; Gabriele, L.

    2007-01-01

    Simulations make it possible to explore physical and biological phenomena, where conducting the real experiment is impracticable or difficult. The implementation of a software program describing and simulating a given physical situation encourages the understanding of a phenomenon itself. Fifty-nine students, enrolled at the Mathematical Methods…

  17. Statistical physics of human beings in games: Controlled experiments

    International Nuclear Information System (INIS)

    Liang Yuan; Huang Ji-Ping

    2014-01-01

    It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings; making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system, thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems. (topical review - statistical physics and complex systems)

  18. Analysis and design of Fuel Cycle Plant for natural phenomena hazards

    International Nuclear Information System (INIS)

    Horsager, B.K.

    1985-01-01

    A description of the Design Basis and the analysis and design methods used for natural phenomena at the Fuel Cycle Plant at Hanford, Washington is presented. A physical description of the main process facility and the auxiliary emergency and support facilities is given. The mission of the facility is presented and a brief description of the processes which will take place within the facility is given. The Design Criteria and design bases for natural phenomena including tornados, earthquakes and volcanic eruptions are described

  19. Novel Phenomena in Modern Studies of Magnetism

    Science.gov (United States)

    Makhfudz, Imam

    In this PhD Dissertation, we present investigation of contemporary problems in magnetism. We focus on two important themes that have been active research topics in condensed matter community: 1. Topological defects in magnet and their dynamics 2. Exotic states and critical phenomena in frustrated spin systems. In the first topic, we consider the dynamics of topological defect known as Skyrmion in thin film ferromagnet. We first discuss the nontrivial dynamics exhibited by a Skyrmion bubble confined in thin film disk as observed by numerical simulation. We propose a phenomenological theory that can reproduce the peculiar dynamics of the Skyrmion bubble. We show that, unlike previously studied topological defects, a Skyrmion bubble possesses inertia. We derive a theoretical description of the dynamics using standard theory of ferromagnet. We discover the presence of two counter propagating chiral edge modes. Most importantly, we derive the mass (inertia) from the theory and express it in terms of microscopic parameters. In the second topic, a quantum phase transition in U(1) quantum spin liquid phase of 3-d pyrochlore quantum spin ice is investigated. Starting from microscopic spin model, we map the spin to slave-boson, derive continuum theory, and finally arrive at a U(1) gauge theory which takes the form of scalar quantum electrodynamics (QED). The effective free energy for quantum spin liquid (QSL) to antiferromagnetic (AFM) phase transition mimics the one for Bardeen-Cooper-Schrieffer (BCS) superconductors classical transition under magnetic field. We show that, provided Ginzburg criterion is satisfied, the gauge field fluctuations drive the originally continuous QSL to AFM phase transition at mean field level into discontinuous one. We predict the location of quantum critical point which agrees well with gauge mean field theory result. We calculate the size of phase transition and find that it is a weakly first order.

  20. Uranium Pyrophoricity Phenomena and Prediction (FAI/00-39)

    Energy Technology Data Exchange (ETDEWEB)

    PLYS, M.G.

    2000-10-10

    The purpose of this report is to provide a topical reference on the phenomena and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel (SNF) Project with specific applications to SNF Project processes and situations. Spent metallic uranium nuclear fuel is currently stored underwater at the K basins in the Hanford 100 area, and planned processing steps include: (1) At the basins, cleaning and placing fuel elements and scrap into stainless steel multi-canister overpacks (MCOs) holding about 6 MT of fuel apiece; (2) At nearby cold vacuum drying (CVD) stations, draining, vacuum drying, and mechanically sealing the MCOs; (3) Shipping the MCOs to the Canister Storage Building (CSB) on the 200 Area plateau; and (4) Welding shut and placing the MCOs for interim (40 year) dry storage in closed CSB storage tubes cooled by natural air circulation through the surrounding vault. Damaged fuel elements have exposed and corroded fuel surfaces, which can exothermically react with water vapor and oxygen during normal process steps and in off-normal situations, A key process safety concern is the rate of reaction of damaged fuel and the potential for self-sustaining or runaway reactions, also known as uranium fires or fuel ignition. Uranium metal and one of its corrosion products, uranium hydride, are potentially pyrophoric materials. Dangers of pyrophoricity of uranium and its hydride have long been known in the U.S. Department of Energy (Atomic Energy Commission/DOE) complex and will be discussed more below; it is sufficient here to note that there are numerous documented instances of uranium fires during normal operations. The motivation for this work is to place the safety of the present process in proper perspective given past operational experience. Steps in development of such a perspective are: (1) Description of underlying physical causes for runaway reactions, (2) Modeling physical processes to explain runaway reactions, (3) Validation of the method